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ABSTRACT

The Special Materials Experiment was conducted at the Oak Ridge National
Laboratory (ORNL) during 1992 as the final experiment in a series of eight experiments
conducted for the Japanese-American Shielding Program for Experimental Research
(JASPER) program that started in 1986. This experiment completes the experimental
program providing support for the development of current designs proposed for advanced
liquid metal reactor (LMR) systems both in Japan and the United States. The Tower
Shielding Reactor II (TSR-II) source was modified to provide a neutron spectrum that
would be typical of that to be found both radially and axially surrounding the LMR core.

The experimental program plan was divided into two phases. In phase I, the
mockups consisted of stainless steel followed by slabs of polyethylene and zirconium. For
phase II, the stainless steel and zirconium were eliminated, leaving only the different
thicknesses of polyethylene. Integral neutron flux measurements were obtained behind

each of the mockups accompanied by spectral measurements for each configuration except

one.




1. INTRODUCTION

This experiment is the last in a series of eight experiments conducted at the Tower
Shielding Facility (TSF) that were jointly planned by ORNL, participant for the United
States Department of Energy (U.S. DOE), and the Japan Power Reactor and Nuclear
Fuel Development Corporation (PNC). This phase of the program, called the Special
Materials Experiment, was preceded by the Radial Shield Attenuation and Fission Gas
Plenum Experiments completed in 1986-87, the Axial Shield Experiment completed in
1990, the In-Vessel Fuel Storage (IVFS) Experiment completed during 1991, and the
Intermediate Heat Exchanger (IHX) Activation Experiment, the Gap Streaming
Experiment, and the Flux Monitor Experiment, all of which were completed during 1992.

The Special Materials Experiment was designed to compare the effectiveness of
selected shielding materials for use in the advanced liquid metal reactor systems. The
material of particular interest for this experiment was zirconium hydride, but it was not
readily available in large dimensions needed for the experiment. In its place the one slab
of zirconium that was available at the TSF was combined with slabs of polyethylene to
simulate the hydrogen that would be found in the zirconium hydride. Boron carbide was
added to the mockups to complete the configurations as requested. The mockups were

preceded by a spectrum modifier to generate the proper incident neutron spectrum. The

mockups and the corresponding measurements made are described in the program plan in
Appendix A.







2. INSTRUMENTATION

The TSF Bonner ball detection system consists of a proportional counter
surrounded by a series of different-sized polyethylene balls, each of which measures an
integral of the neutron flux weighted by the energy-dependent response function for that
ball. The detection device of a Bonner ball consists of a 5.1-cm-diameter spherical
proportional counter filled with BF; gas (1°B/B concentration = 0.96) to a pressure of 0.5
atmospheres. In order to cover a range of neutron energies, the counter may be used
bare, covered with cadmium, or enclosed in various thicknesses of polyethylene shells
surrounded by cadmium, each detector being identified by the diameter of its shell.
Bonner ball experimental results are predicted analytically by folding a calculated neutron
spectrum with the Bonner ball response functions determined by R. E. Maerker et al.! and
C. E. Burgart et al.?

An NE 213 liquid scintillator spectrometer was used to measure the neutron
spectral region from about 800 keV to 15 MeV. This device makes use of pulse-shape
discrimination (PSD) to distinguish between neutron and gamma-ray pulses. Pulse-height
data obtained with the spectrometer were unfolded with the FERD code?® to yield absolute
neutron energy spectra.

Spherical proton-recoil counters, filled with hydrogen to pressures of 1, 3, and 10
atmospheres, measured the neutron energy range from about 50 keV to 1 MeV. Pulse-
height data from the counters were unfolded with the SPEC-4 code,* which makes use of
the unfolded NE 213 neutron spectrum to correct for effects of higher-energy neutrons.

The measurements for each detector were referenced to the reactor power (watts)
based on the data from two fission chambers positioned along the reactor centerline. The
response of these chambers as a function of reactor power level was established previously

through several calorimetric measurements of the heat generated in the reactor during a

temperature equilibrium condition (heat power run).







3. EXPERIMENTAL CONFIGURATION

The experimental program plan called for measurements behind mockups that
included slabs of stainless steel, polyethylene, zirconium, and boron carbide in selected
arrangements. The three plain polyethylene slabs purchased for use in the mockups were
only available in widths less than the normal 152.4 cm, thus requiring the use of extra
lithiated paraffin around the periphery of the polyethylene.

The neutron source was the TSR-II whose emergent flux was modified using iron,
aluminum, boral, and two slabs of the radial blankets. It should be noted that the material
thicknesses mentioned in the program plan are nominal, the actual thicknesses are given

in the left corner of the slabs shown in the various schematics displayed in Appendix C.
3.1 SPECTRUM MODIFIER

The test configurations were preceded by the radial shield spectrum modifier of
iron, aluminum, boral, and "radial blanket" as shown in Figure 1. The iron component
consisted of two rectangular slabs 5.20- and 5.13-cm-thick, both 152.4 cm (60-in) on an
edge. The combined thickness of the three aluminum slabs was 9.12 cm followed by 2.54
cm of boral, all of the slabs having the same edge length as the iron slabs. Compositions
of the iron, aluminum, and boral are given in Tables 1, 2, and 3 respectively. (Note: All
tables are included in Appendix B.)

The uranium oxide (UO,) slabs, commonly referred to as the "radial blanket” in
this report, were fabricated for earlier experiments performed in the Liquid Metal Fast
Breeder Reactor (LMFBR) program. They contained natural UQ, pellets, 1.397-cm
outside diameter (OD), enclosed in 1.524-cm OD aluminum cylinders. Between the
aluminum and the pellets was a 0.00508- to 0.01016-cm annulus filled with argon. The
cylinders were stacked side-by-side vertically having a triangular pitch of 1.608 cm. The
space between the aluminum cylinders was filled with sodium. This arrangement of the
rods and sodium was enclosed in an iron vessel having an overall thickness of 11.05 cm
and a length of 152.4 cm on each side.

Each of the two radial blanket slabs used in this modifier contained 522 rods of

UO, amounting to 64.6% of the volume of the slab. The rods were divided into seven
rows, with alternating rows of 74 and 75 rods. The density of the UO, was 10.28 g/cc




(94% of theoretical). The volume fraction of the aluminum cladding was 11.2% while that
for the sodium and argon are 23.3% and about 1% respectively. The pellet stack length
in each of the rods was approximately 121.9 cm. These rods were built by Numes
Corporation in 1962 to conform, in general, to the then AEC/RDT design standards for
the Fast Flux Test Facility (FFTF). A schematic of the slab is shown in Figure 2, with
analyses of the UQO, and aluminum given in Tables 4 and 5.

This spectrum modifier (SM1) was surrounded by 20.3 cm (8-in) of lithiated
paraffin followed by up to 152.4 cm (60-in) of concrete to minimize the neutrons
scattering back into the slabs and to reduce the amount of background radiation reaching
the detectors. The lithiated paraffin was shaped as small bricks 10.16 cm on edge and 20.3
cm long (4-in-facing x 8-in-long) and the concrete consisted of blocks 61 cm on each edge
and 30.48 cm thick. The composition of the lithiated paraffin and the concrete blocks are

presented in Tables 6 and 7 respectively.
3.2 ALUMINUM SLAB

The aluminum slab that was placed in the mockup as part of the radial shield to
mockup the sodium passing through the shield is of the same type (6061) aluminum
contained in the aluminum slabs in the spectrum modifier. Composition of that type

aluminum, noted earlier, is given in Table 2.

3.3 STAINLESS STEEL SLABS

Stainless steel slabs, type 304, were used as part of the radial shield mockup. The
slabs were 5.15, 5.15, and 5.27 cm thick and 152.4 cm on an edge. Their elemental

composition can be found in Table 8.
3.4 POLYETHYLENE SLABS

The three polyethylene slabs were purchased just for this experiment. The slabs
were 5.22, 5.31, and 5.31 cm thick, each being 122 cm on an edge. The composition of
the polyethylene is given in Table 9.




3.5 ZIRCONIUM SLAB

The zirconium slab consisted of five individual pieces 122 cm long and 20.3 cm
wide. The pieces were contained within an iron frame with inside dimensions of 122 cm
square. The width of the five pieces, when placed edge-to-edge within the frame, was
only 101.6 cm, leaving a 20.3 cm void between the zirconium and the top piece of the
7.62-cm-wide iron channel frame that enclosed the zirconium. When placed in the
mockup, this void was filled with a 5.07-cm-thick piece of polyethylene. Analysis of this
polyethylene piece indicated it contained 27.5 micrograms of boron per gram of
polyethylene. In the mockup the center of the zirconium pieces coincided with the

reactor beam centerline. Analysis of the zirconium slab is given in Table 10.
3.6 BORON CARBIDE

The boron carbide (B,C) slab used in this experiment consisted of a stainless steel
can filled with 120 grit boron carbide powder having a density of 1.42 gfcc. The slab,
denoted as 1W, was 16.95 cm thick (stainless steel included) measured along the
centerline as indicated in Figure 3. Spacer pins placed near the center of the slab were
used to maintain constant thickness between the thin walls. The slab was 152.4 cm on an
edge. The composition of the powder is given in Table 11. The amount of boron nitride
(BN) as a component in this slab was not established. However, previous analysis (see
ORNL/TM-11839)° indicated there was about 1.8 percent present in previous B,C

samples.
3.7 SMALL CONCRETE BLOCKS

The small concrete blocks, 15.24 cm square by 30.5 cm long, were placed outside

the lithiated paraffin bricks placed on the sides of the slabs beyond the stainless steel
radial shield. The analysis of the blocks is given in Table 12. The H,O content of these
blocks was found to be 7.5 + 0.5 wt% in an experiment® conducted at the TSF.




3.8 LEAD SLABS

Lead slabs were placed in the beam between the mockup and the spectrometers
when the spectral measurements are were made. Analysis of the lead slabs is contained in
Table 13.

3.9 BACKGROUND SHIELD

It has been the custom in past measurements to obtain background measurements
along with foreground measurements when the detectors were located at sufficient
distances behind the mockups where neutron contributions to the detector from areas
other than the mockup itself might not be negligible. For these measurements, a
container of lithiated paraffin bricks, 91.4 cm x 91.4 cm x 40.6 cm thick, was usually placed
between the detector and mockup in such a manner that contributions directly to the
detector from just the mockup would be greatly reduced. This same procedure was used
in this experiment to measure backgrounds when the Bonner balls were located on

centerline at 150 cm beyond the mockup.




4. MEASUREMENTS

The typical mockup consisted of a series of slabs stacked in proper sequence with
their centers coincident with the reactor beam centerline. The slabs are usually
surrounded by 20.3 cm of lithiated paraffin bricks on the sides and bottom, with the top of
‘the slabs covered by a minimum of 20.3 cm but that thickness could be greater depending
on the vertical height of the slabs. For the mockups where the polyethylene and
zirconium slabs were included, it was necessary to use additional lithiated paraffin to
center these slabs because they were only 122 cm on an edge (the typical slab is 152.4
cm). When the zirconium slabs were used, the upper 20.3 cm of the slab (see Section 3.5)
was filled with polyethylene to extend the slab to 122 cm since the vertical height of the
zirconium itself was only 101.6 cm. Concrete blocks were then placed beyond the lithiated
paraffin that surrounded the mockups to attenuate the neutrons beyond the edges of the
mockups and, as a result, minimize the number of "background" neutrons that would reach
the detectors.

Background measurements were obtained with the Bonner balls on centerline at
150 cm beyond the mockup. To make these measurements, a 40.6-cm-thick lithiated
paraffin-filled slab, 91 cm on a side, was placed approximately halfway between the
detector and the last slab in the mockup so that the neutrons leaving the last slab in the
mockup and moving directly toward the detector would be prevented from reaching it.
For those configurations where the narrower polyethylene or zirconium slabs were the last
slab, the background shadow shield was located in the same manner as for the full width
| (152.4 cm) slabs again blocking out the same area, only this time this area included part of
the lithiated paraffin surrounding the slabs. This procedure was used to maintain
consistency throughout the measurements.

The order in which the measurements were performed followed the order as listed
in the program plan. Throughout this report the words configuration, item, and mockup

are used interchangeably when referring to the contents of the program plan.
4.1 SPECTRUM MODIFIER (ITEM 1A)

The program plan called for measurements behind a spectrum modifier composed

of iron, aluminum, boral, and "radial blankets" as shown in the schematic in Figure 1. Two
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slabs of lead were placed behind the radial blanket for the measurement of the neutron
spectrum. The high-energy part of the spectrum was obtained with the NE 213 scintillator
located on the beam centerline at 25 cm behind the lead. The resulting spectrum is listed
in Table 14 and plotted in Figure 4. Three hydrogen-filled proton recoil counters filled to
1, 3, and 10 atmospheres of pressure were used to measure the lower energy part of the
spectrum. These data are given in Table 15 and plotted in Figure 5. The 3-, 5-, and 10-
inch Bonner ball measurements at the NE 213 location are included in Table 16. The
lead slabs were removed to make the centerline measurements with the 3-, 5-, 8-, and 10-
inch Bonner balls at 30 and 150 cm. The data obtained at 30 cm are given in Table 17,
while both the foreground and background measurements at 150 cm are part of Table 18.

42 SM-1 + ZIRCONIUM (ITEMS HIIA-D)

Aluminum and stainless steel slabs were placed in the mockup to represent part of
the removable radial shield. This mockup (Item IIA) is shown in the schematic in Figure
6. The only measurements behind this mockup were the 3-, 5-, 8-, and 10-inch Bonner
balls on centerline at 30 and 150 cm. The results from the measurements at 30 cm are
given in Table 17, and those obtained at 150 cm are part of Table 18.

A 5.31-cm-thick slab of polyethylene was added to the mockup as also shown in
Figure 6 (Item IIB). A single slab of lead was added to improve the neutron-to-gamma-
ray ratio for obtaining the spectral measurements. Results from the measurement at 25
cm behind the lead with the NE 213 scintillator are given in Table 19 and plotted in
Figure 7. Results from measurements with the hydrogen-filled counters at 25 cm are
listed also in Table 20 and plotted in Figure 8. The Bonner ball measurements at this
same location are part of Table 16. The Bonner ball measurements on centerline at 30
and 150 cm without the lead present are listed in Tables 17 and 18. Results from the
radial traverses at 30 cm behind the mockup with the 3-, 5-, and 8-inch Bonner balls are
given in Tables 21, 22, and 23 with plots in Figures 9, 10, and 11 respectively.

The slab of zirconium was placed in the mockup as shown in Figure 12 (Item IIC).
Again a slab of lead was added to make the spectral measurements. Data obtained with
the NE 213 on centerline at 25 cm behind the lead are given in Table 24 and plotted in
Figure 13. The lower-energy spectrurh obtained with the hydrogen-filled detectors is listed
in Table 25 and plotted in Figure 14. The Bonner ball measurements at this same
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location are part of Table 16. The radial traverse data at 30 cm with the Bonner balls
without the lead slab in the mockup are given in Tables 21, 22, and 23 and plbtted in
Figures 9, 10, and 11. The centerline measuremenfs at 30 and 150 cm with the Bonner
balls are given in Tables 17 and 18.

Placement of 16.95 cm of boron carbide in the mockup behind the zirconium
(Item IID), as shown in Figure 15, completed the series of configurations for this phase of
the program plan. Again a lead slab was used to make the spectral measurements. The
high-energy data obtained at 25 cm behind the lead are given in Table 26 and plotted in
Figure 16. The lower-energy data are listed in Table 27 and plotted in Figure 17. The
Bonner ball data at the same location are given in Table 17. The lead was removed for
measurements with the Bonner balls on the centerline at 30 and 150 cm and these data
are listed in Tables 17 and 18. The radial traverse results with the three Bonner balls are

contained in Tables 21, 22, and 23, and plotted in Figures 9, 10, and 11.
43 SM-1 + POLYETHYLENE (ITEMS IIIA-C)

For the first of these series of measurements the mockup consisted of the
spectrum modifier plus 10.53 cm of polyethylene (Item IIIA) as shown in Figure 18. Two
slabs of lead were added for the spectral measurements. The NE 213 scintillator was
placed on centerline at 25 cm behind the lead, and the resulting spectrum is located in
Table 28 and plotted in Figure 19. The spectral information obtained with the three
hydrogen-filled detectors are listed in Table 29 and plotted in Figure 20. The 3-, 5-, and
10-inch Bonner ball data at the same location are part of Table 16.

Centerline measurements with the 3-, 5-, and 8-inch Bonner balls were obtained at
30 and 150 cm after the lead slabs were removed. These results are contained in Tables
17 and 18 respectively. No radial traverses were made behind this particular mockup.

Another 5.21-cm-thick polyethylene slab was added to get the second mockup
(Item IIIB) listed in Phase III of the program plan. Again, two slabs of lead, 3.81 cm
each, were added for the spectral measurements as shown in Figure 21. Data obtained
with the NE 213 on centerline at 25 cm behind the lead are listed in Table 30 and plotted

in Figure 22. The low-energy spectrum data obtained with the proton-recoil detectors are

listed in Table 31 and plotted in Figure 23. Bonner ball results at this same location are
in Table 16.
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Bonner ball centerline measurements with the lead slabs removed are given in
Table 17 for the 30 cm location and for those at 150 cm the results are in Table 18.
Radial traverses were included for this mockup and these results using the 3-, 5-, and 8-
inch Bonner balls are given in Tables 21, 22, and 23 respectively and plotted in Figures 9,
10, and 11.

The last mockup listed in the program plan (Item IIIC) contained the 16.95 cm
slab of B,C following the polyethylene as shown in Figure 24. The same two slabs of lead
were added for the spectral measurements. These results are given in Table 32 and
plotted in Figure 25 for the high-energy part of the neutron spectrum and for the lower-
energy part of the spectrum they are listed in Table 33 and plotted in Figure 26. Data
from the Bonner ball measurements at this location are in Tabie 16.

The radial traverse results using the 3-, 5-, and 8-inch Bonner balls at 30 cm
behind the B,C, with no lead present, are given in Tables 21, 22, and 23, and plotted in
Figures 9, 10, and 11.
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5. ANALYSIS OF EXPERIMENTAL ERRORS

The errors associated with the measurements are due to a number of uncertainties:
(1) the sizes of the gaps between slabs, unavoidably introduced in the configurations,

(2) in the positions of the detectors, (3) the detector count rate statistics and calibrations,
(4) the reactor power determinations, and (5) the effects of the exposure of the
configurations to the weather. Of these, the uncertainty due to the weather is the least
understood and probably beyond simple estimation. The uncertainty lies in the amount of
moisture collecting between the slabs and in the lithiated paraffin surrounding them.
During this experiment, however, the mockups were covered with a plastic tarpaulin that
would somewhat limit the amount of moisture reaching the slabs. Thus, for this
experiment, the effect of the weather was assumed to be negligible.

The TSR-II power level for each measurement was determined from the output of
two fission chambers located in the reactor shield along the midplané of the reactor. The
response of these chambers to the reactor source was monitored prior to the experiment
through the use of gold foils and this ratio, detector response to gold foil results, agreed
within about 5% with a history of earlier such comparisons. These detectors were
calibrated on a daily basis using a 2>2Cf source, with the calibration values lying within
about a 6% spread (+ 3% of an average value). During any one detector traverse in a
given day, the variation in the reactor power indicated by the monitor outputs was at most
only 3%; however, during' the several months the experiment was being performed, the
monitors indicated a spread in any one power level of about + 5%. Thus, the uncertainty
in the reactor power determination was assumed to be + 5%.

Count-rate statistics are expressed in a manner specific to each detector. For the
NE 213 measurements, counting statistics and unfolding errors are included in the
unfolding of the pulse-height spectra using the FERD code, with the resulting flux
expressed in terms of lower and upper limits that represent a 68% confidence interval.
Similar errors are expressed in the tabular data for the hydrogen counter measurements
unfolded using SPEC4. Neither of the spectra, NE 213 or hydrogen counter, reflects the
error in determining the reactor power since this error is not included in the unfolding
program. This, as seen above, could be as much as + 5%.

The Bonner ball detectors were calibrated on a daily basis using 252Cf as a source,

with the resulting count rates falling within about + 3% of an average value obtained
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throughout the years. Movement of the Bonner balls along a traversing mechanism can
vary the detector location with respect to the configuration several millimeters on either
side of a straight line. For the measurements perpendicular to the configuration
centerline at 30 cm behind the configuration, such variations in the detector position could
amount to a change in the count rate of about 2%. For the measurements on centerline
beyond the 30 cm point, the error in positioning several millimeters either side of the
selected location would lie within the statistics of the measurement. Rather than calculate
probable errors for each measurement in a series of measurements during a traverse, we
prefer, in general, to quote a value for the error in the measurements for a given
experiment. Thus, assuming the estimated upper limit for all the errors, the errors
assigned to the Bonner ball measurements should be less than +10%.

The fission chamber used throughout this experiment as a companion detector to
the Bonner balls was calibrated on a daily basis using the thermal neutron flux generated
by placement of the %%Cf source in a jug of lucite. The resulting count rates fell within
about +5% of an average value obtained throughout the experiment. Movement of the

fission chamber was similar to that of the Bonner ball described earlier and the procedure

in determining the possible errors with this detector follow that described for the Bonner
balls.
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APPENDIX A

EXPERIMENTAL PROGRAM PLAN FOR THE
JASPER SPECIAL MATERIALS EXPERIMENT

L Spectrum Modifier (SM-1)
A SM-1 (10 cm Fe + 9 cm Al + 2.5 cm boral + 20 cm Radial Blanket)

1. NE 213/Benjamin spectrometer measurements on centerline as
close as feasible behind shield mockup

2. 3-, 5-, and 10-in Bonner ball measurements on centerline at NE 213
location '

3. 3-, 5-, 8-, and 10-in Bonner ball measurements on centerline:

a. 30 cm behind shield mockup
b. 150 cm behind shield mockup (foreground and background)

11 SM-1 + zirconium
A. SM-1 + 13 cm Al 4+ 15cm SS
1. 3-, 5-, 8-, and 10-in Bonner ball measurements on centerline:

a. 30 cm behind shield mockup
b. 150 cm behind shield mockup (foreground and background)
B. SM-1 + 1.3 cm Al + 15 cm SS + 5 cm polyethylene

1. NE 213/Benjamin spectrometer measurements on centerline as
close as feasible behind shield mockup

2. 3-, 5-, and 10-in Bonner ball measurements on centerline at NE 213
location

3. 3-, 5-, 8-, and 10-in Bonner ball measurements on centerline:

a. 30 cm behind shield mockup
b. 150 cm behind shield mockup (foreground and background)

4, 3-, §5-, and 8-in Bonner ball horizontal traverse at 30 cm behind

shield mockup
C. SM-1 + 1.3 cm Al + 15 cm SS + 5 cm polyethylene + 5 cm zirconium

1. NE 213/Benjamin spectrometer measurements on centerline as
close as feasible behind shield mockup

2. 3-, 5-, and 10-in Bonner ball measurements on centerline at NE 213
location

3. 3-, 5-, 8-, and 10-in Bonner ball measurements on centerline:

a. 30 cm behind shield mockup

b. 150 cm behind shield mockup (foreground and background)
4. 3-, 5-, and 8-in Bonner ball horizontal traverse at 30 cm behind

shield mockup




D.
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SM-1 + 1.3 cm Al + 15cm SS + 5 cm polyethylene + 5 cm zirconium +

15em B,C
1. NE 213/Benjamin spectrometer measurements on centerline as
close as feasible behind shield mockup
2. 3-, 5-, and 10-in Bonner ball measurements on centerline at NE 213
location
3. 3-, 5-, 8-, and 10-in Bonner ball measurements on centerline:
a. 30 cm behind shield mockup
b. 150 cm behind shield mockup (foreground and background)
4, 3-, 5-, and 8-in Bonner ball horizontal traverse at 30 cm behind

shield mockup

I SM-1 + polyethylene
SM-1 + 10 cm polyethylene

A

1.

2.

3.

NE 213/Benjamin spectrometer measurements on centerline as
close as feasible behind shield mockup

3-, 5-, and 10-in Bonner ball measurements on centerline at NE 213
location

3-, 5-, 8-, and 10-in Bonner ball measurements on centerline:

a. 30 cm behind shield mockup

b. 150 cm behind shield mockup (foreground and background)

SM-1 + 10 cm polyethylene + 5 cm polyethylene

1.

2.

3.

4.

NE 213/Benjamin spectrometer measurements on centerline as
close as feasible behind shield mockup

3-, 5-, and 10-in Bonner ball measurements on centerline at NE 213
location

3-, 5+, 8-, and 10-in Bonner ball measurements on centerline:

a. 30 cm behind shield mockup

b. 150 cm behind shield mockup (foreground and background)
3-, 5-, and 8-in Bonner ball horizontal traverse at 30 cm behind
shield mockup

SM-1 + 10 cm polyethylene + 5 cm polyethylene + 15 cm B,C

1.

2.

3.

NE 213/Benjamin spectrometer measurements on centerline as
close as feasible behind shield mockup

3-, 5-, and 10-in Bonner ball measurements on centerline at NE 213
location

3-, 5-, 8-, and 10-in Bonner ball measurements on centerline:

a. 30 cm behind shield mockup

b. 150 cm behind shield mockup (foreground and background)
3-, 5-, and 8-in Bonner ball horizontal traverse at 30 cm behind
shield mockup
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APPENDIX B

TABLES OF DATA
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Table 1. Analysis of iron slabs (p = 7.86 g/cc)

used in spectrum modifier
Element wt %
Fe 98.4
C 25
Cr 15
Cu .03
Mn 1.0
Mo .02
Ni .05
Si 25

Table 2. Analysis of 6061 aluminum (p = 2.70 g/cc)

Element wt% ppm

Al 97.5

Cr 22

Cu 23

Fe 47

Mg .86

Mn 01

Si .63

Ti 042

Zn 07

Li 3
Ni 50
Sn <10

Vv 150
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Table 3. Composition of boral slabs used
in spectrum modifier

(B,C - 40-43 vol % in B,C-Al mixture)

Elemental With
Density Composition Al Cladding
Component  (g/cc) (wt %) (Wt %)
B,C 23
Al 2.70 65
B 275
C 7.5
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Table 4. Composition of UO, radial blanket

Component vol % Density
(g/ce)
U0, (pellets) 64.6 10.28
Al (8001) - 11.2 2.8
Na 232 0.92
Void 1.0 —

U content 88.18 wt % of UO,

Isotope %

By 0053 U
»y M3 BBU 928

Metallic Impurities in UO, (ppm)’

<20 Cu 1 Na <20
<1 F <2 Ni <10
<2 Fe <20 Pb <4
<2 HO 21 Si <20
<10 Li «1 Sn <2
<20 Mg <10 Ta <25
<{Q.5 Mn <4 Ti <4
<33 Mo <10 W <25
<2 N 54 Zr <25
<10

0pagpoEpTR

*ppm = parts per million
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Table 5. Analysis of aluminum used in UO, radial blanket cladding (p = 2.7 g/cc)

Element wt% ppm
Al Major
Fe 59
Ni 1.13
B <6
Be <20
Cd <20
Co <20
Cr <6
Cu 52.9
Li 6
Mg 3.04
Mn 11.2
Mo <6
Pb <20
Si 27.5
Sn <60
Ta <2000
Ti 65.5
A% 442
w <60
Zr <20

Table 6. Composition of lithiated-paraffin bricks (p = 1.15 gfcc)

Component wt %
CnH2n+2 60
Li,CO, 40




Table 7. Analysis of 61-cm x 61cm x 30.5<cm (p = 240 g/cc)
concrete blocks used to surround configuration

Component wt% Component wt%

CO, 41.9 ALO, 22

Ca 274 Fe,0, .60

] Sio, 18.1 SO, 32
H,0 4.0 P,O; 035

Mg 3.66 K 30
0, 14 '




Table 8. Analysis of type 304 stainless steel (p = 7.92 gfcc)

wt%

Element Lower Upper

Fe 68.1 -712
180 -19.1
88 - 98
1.04 - 1.65
033 - 065
0.024 - 0.085
- 0.013 - 0.021
0.028

0.022

0.30

0.26

0.10
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Table 9. Analysis of polyethylene
slabs (p = 0.955 g/cc)

Element wt % ppm
H 14.4
C 85.6
Na <140
Cr <140
Si <140
P <140

Table 10. Analysis of zirconium
(p = 6.54 g/cc)

Element wt %

Hf 1.8
Zr 98.2




Table 11. Analysis of boron carbide used in shield mockups

Element wt% ppm

B 76.7

C 19.52

Al 50
Ca 800
Cl 10
Co <1
Cr 2
Cu <1
Fe 600
Mg 25
Mn 10
Na

P 2

S

Si 50
Ti 225
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Table 12. Composition of the small
concrete blocks on each side of the

mockup beyond spectrum modifier
(p = 239 g/cr)

Element wt %
C 10.36
0 49.03
Ca 38.05
Fe 037
Si 0.78
Mg 023
S 0.17

0.04
Na _ 0.03
K 0.04
H 0.42
R’ 0.47

99.99

‘R is an unspecified mix of Al, Ti, Cr, and possibly other
traces of metals.
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Table 13. Analysis of lead slabs (p = 11.35 g/cc)

Element wt% PPM
Pb 99.9
Al <3
Ag 30
B <1
Ca 1
Cr 10
Cu 800
Fe 1
Li 20
Mg <3
Mn 5
Na 1
Ni 30
P 5
Si <3

Sn 30
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Table 14. Spectrum of high-energy neutrons (>0.8 MeV) on centerline
at 25 cm behind the lead slabs (Item IA): Run 7931.A

Flux (neutrons cm?MeV-tkw-is1)

Flux (neutrons comMeV-kW-lsl)

Neutron Neutron
Energy Lower Upper Energy Lower Upper
MeV) Limit Limit (MeV) Limit Limit
8.11E -01 1.84E +05 1.86E +05 5.94E +00 1.80E +03 1.87E +03
9.07E -01 1.68E +05 1.69E +05 6.2SE +00 1.42E +03 1.51E +03
1.01E +00 1.28E +05 1.28E +05 6.55E +00 1.15E +03 1.23E +03
1.11E +00 1.01E +05 1.01E +05 6.84E +00 9.81E +02 1.03E +03
1.20E +00 8.79E +04 8.85E +04 7.24E +00 7.83E +02 8.24E +02
1.31E +00 7.97E +04 8.03E +04 7.74E +00 5.31E +02 5.80E +02
1.41E +00 7.32E +04 7.37E +04 8.24E +00 3.74E +02 4.21E +02
1.51E +00 6.69E +04 6.75E +04 8.76E +00 2.87E +02 3.12E +02
1.61E +00 6.05E +04 6.09E +04 9.26E +00 2.15E +02 2.37E +02
1.71E +00 5.42E +04 5.46E +04 9.74E +00 1.67E +02 1.84E +02
1.81E +00 4.84E +04 4.89E +04 1.03E +01 1.25E +02 1.40E +02
1.93E +00 4.30E +04 4.34E +04 1.08E +01 8.06E +01  9.4(E +01
2.10E +00 3.70E +04 3.74E +04 1.12E +01 5.29E +01 6.31E +01
2.30E +00 3.13E +04 3.16E +04 1.18E +01 3.49E +01 4.33E +01
2.50E +00 2.62E +04 2.65E +04 1.24E +01 2.18E +01 2.98E +01
2.70E +00- 2.13E +04 2.15E +04 1.32E +01 1.32E +01 1.87E +01
2.90E +00 1.68E +04 1.70E +04 1.40E +01 4.32E +00 9.10E +00
3.10E +00 1.29E +04 1.32E +04 1.48E +01 1.59E +00 5.48E +00
3.30E +00 1.02E +04 1.04E +04 1.56E +01 2.53E +00 5.76E +00
3.50E +00 8.15E +03 8.37E +03 1.65E +01 1.91E +00 4.60E +00
3.711E +00 6.67E +03 6.83E +03 1.75E +01 -2.52E -01 1.82E +00
3.91E +00 5.68E +03 5.82E +03 1.85E +01 -5.91E -01 1.07E +00
4.15E +00 4.85E +03 4.99E +03 1.95E +01 -5.11E -01 1.05E +00
4.45E +00 4.16E +03 4.27E +03 2.05E +01 -1.22E +00 1.17E +00
4.75E +00 3.56E +03 3.66E +03 2.16E +01 -1.36E +00 1.1SE +00
5.04E +00 3.02E +03 3.11E +03 2.26E +01 -8.71E -01 8.35E -01
5.34E +00 2.56E +03 2.64E +03 2.35E +01 -7.16E -01 7.49E -01
5.64E +00 3.16E +03 2.25E +03
E1l E2 Integral Error
MeV) (MeV) neutrons cm2kWs™! neutrons cm 2kWls™!
0.811 1.000 3.11E +04 1.01E +02
1.000 1.200 2.10E +04 6.44E +01
1.200 1.600 2.97E +04 1.08E +02
1.600 2.000 1.99E +04 8.16E +01
2.000 3.000 2.67E +04 1.42E +02
3.000 4.000 8.83E +03 9.54E +01
4.000 6.000 6.57E +03 9.73E +01
6.000 8.000 1.95E +03 6.00E +01
8.000 10.000 5.51E +02 2.74E +01
10.000 12.000 1.59E +02 1.19E +01
12.000 16.000 4.55E +01 1.00E +01
16.000 20.000 4.51E +00 4.05E +00
3.000 10.000 1.79E +04 2.81E +02
1.500 15.000 7.11E +04 5.49E +02
3.000 12.000 1.81E +04 2.92E +02
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Table 15. Neutron spectrum (50 keV to 1.4 MeV) on centerline
at 25 cm behind the lead slabs (Item IA) Runs 1602.C, 1602.B, 1602.A

Energy Boundary Flux Error
N (MeV) (neutrons cm?MeVkWs?) - (%)
RUN 1602.C
1 0.0380 0.0451 5.46E +06 1.63
2 0.0451 0.0539 S.11E +06 1.55
3 0.0539 0.0628 4.80E +06 1.84
4 0.0628 0.0734 4.42E +06 1.79
S 0.0734 0.0875 3.66E +06 1.72
6 0.0875 0.1035 2.82E +06 2.17
7 0.1035 0.1211 2.77E +06 2.18
8 0.1211 0.1424 2.53E +06 212
9 0.1424 0.1671 2.04E +06 2.40
10 0.1671 0.1972 1.80E +06 2.35
11 0.1972 0.2308 1.50E +06 2.68
12 0.2308 0.2732 1.26E +06 2.56
RUN 1602.B
1 0.1942 0.2337 1.51E +06 1.10
2 0.2337 0.2732 1.22E +06 1.51
3 0.2732 0.3193 1.06E +06 1.59
4 0.3193 0.3786 7.40E +05 1.88
5 0.3786 0.4444 5.10E +05 2.70
6 0.4444 0.5234 6.02E +05 2.03
7 0.5234 0.6156 5.30E +05 1.99
RUN 1602.A
1 0.4521 0.5284 5.45E +05 1.26
2 0.5284 0.6156 5.28E +05 1.17
3 0.6156 0.7245 3.65E +05 1.33
4 0.7245 0.8553 2.49E +05 1.62
5 0.8553 1.0078 1.28E +05 2.75
6 1.0078 1.1821 9.01E +04 3.62
7 1.1821 1.4000 791E +04 3.33
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Table 16. Bonner ball measurements on centerline
at NE 213 location (Items IA, IIB-D, IIIA-C)

Bonner ball count rates (s W)

Detector 3-in-Diam 5-in-Diam 8-in-Diam
Configuration’ Location Ball ¢ Ball ¢ Ball ¢
IA 25 cm 4.69 (2)* 217 3) 7.65 (2)
behind lead®
IIB 25cm 295 (1) 5.79 (1) 1.63 (1)
behind lead
IIc 25 cm 1.45 (1) 3.37 (1) 9.89 (0)
behind lead
D 25 cm 1.72 (-1) 1.28 (0) 7.78 (-1)
behind lead
1A 25 cm 1.04 (1) 3.56 (1) 253 (1)
behind lead
IIB 25 cm 2.63 (0) 1.01 (1) 8.36 (0)
behind lead
IIIC 25 cm 1.82 (-1) 1.91 (0) 1.87 (0)
behind lead

“See experimental program plan in Appendix A for description of configurations.
®1ead slab between configuration and detector (see schematics).

‘Foreground only. Count rates without shadow shield between detector and
configuration.

Read: 4.69 x 102
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Table 17. Bonner ball measurements on centerline
at 30 cm behind mockups (Items IA, IIA-D, IITA-C)

Bonner ball count rates (s W)

Configuration’ 3-in-Diam Ball 5-in-Diam Ball 8-in-Diam Ball 10-in-Diam Ball

IA 6.75 (2)¢ 3.34 (3) 232 (3) 1.19 (3)
IIA 2.41 (2) 9.69 (2) 6.44 (2) 3.18 (2)
1IB 481 (1) 9.28 (1) 4.94 (1) 2.39 (1)
TC 2.01 (1) 436 (1) 2.41 (1) 1.22 (1)
1D 2.20 (-1) 1.65 (0) 1.60 (0) 1.01 (0)
A 2.47 (1) 7.25 (1) 7.03 (1) 5.04 (1)
1B 4.76 (0) 1.74 (1) 1.92 (1) 1.48 (1)
IIC 2.40 (-1) 2.71 (0) 3.84 (0) 3.05 (0)

“See experimental program plim in Appendix A for description of configurations.
*Read: 6.75 x 10%
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Table 19. Spectrum of high-energy neutrons (>0.8 MeV) on centerline
at 25 cm behind the lead slabs (Item IIB): Run 7932

Flux (neutrons cm?MeV- kW5l Flux (neutrons cm?MeV-kW-is1y
Neutron Neutron
Energy Lower Upper Energy Lower Upper
(MeV) Limit Limit (MeV) Limit Limit
8.11E -01 3.82E +03 3.94E +03 5.94E +00 5.65E +01 6.22E +01
9.07E -01 4.05E +03 4.10E +03 6.25E +00 4.75E +01 5.42E +01
1.01E +00 3.65E +03 3.69E +03 6.55E +00 3.99E +01 4.56E +01
111E +00 3.13E +03 3.17E +03 6.84E +00 3.60E +01 4.01E +01
1.20E +00 2.67E +03 2.70E +03 7.24E +00 3.16E +01 3.52E +01
1.31E +00 2.25E +03 2.29E +03 7.74E +00 245E +01 2.87E +01
141E +00 1.94E +03 1.97E +03 8.24E +00 1.82E +01 2.24E +01
1.51E +00 1.72E +03 1.74E +03 8.76E +00 1.42E +01 1.65E +01
1.61E +00 1.53E +03 1.55E +03 9.26E +00 1.20E +01 141E +01
1.71E +00 1.36E +03 1.38E +03 9.74E +00 1.05E +01 1.23E +01
1.81E +00 1.19E +03 1.22E +03 1.03E +01 8.09E +00 9.70E +00
1L93E +00 1.03E +03 1.05E +03 1.08E +01 5.82E +00 7.24E +00
2.10E +00 8.25E +02 8.44E +02 1.12E +01 4.79E +00 5.98E +00
2.30E +00 6.49E +02 6.66E +02 1.18E +01 4.04E +00 5.02E +00
2.50E +00 5.17E +02 5.31E +02 1.24E +01 2.58E +00 3.54E +00
2.70E +00 4.05E +02 4.19E +02 1.32E +01 1.17E +00 1.90E +00
2.90E +00 3.34E +02 3.47E +02 - 1.40E +01 8.54E -01 1.52E +00
3.10E +00 2.69E +02 2.83E +02 1.48E +01 7.98E -01 1.32E +00
3.30E +00 2.08E +02 2.19E +02 1.56E +01 6.03E -01 1.00E +00
3.50E +00 1.65E +02 1.77E +02 1.65E +01 241E -01 5.45E -01
3.71E +00 1.40E +02 1.50E +02 1.75E +01 -9.22E -02 1.43E -01
3.91E +00 1.25E +02 1.34E +02 1.85E +01 -8.75E -02 9.26E -02
4.15E +00 1.19E +02 1.27E +02 1.95E +01 -5.94E -02 1.15E -01
4.45E +00 1.16E +02 1.23E +02 2.05E +01 -841E -02 1.83E -01
4.75E +00 1.07E +02 1.14E +02 2.16E +01 -1.00E -01 1.80E -01
5.04E +00 9.19E +01 9.79E +01 2.26E +01 -1.06E -01 8.44E -02
5.34E +00 7.52E +01 8.08E +01 2.3S5E +01 -1.13E -01 S.05E -02
5.64E +00 6.34E +01 6.97E +01
E1l E2 Integral Error
MeV) (MeV) neutrons em2kWls! neutrons cm kW15
0.811 1.000 7.51E +02 5.59E +00
1.000 1.200 6.37E +02 3.61E +00
1.200 1.600 8.14E +02 5.98E +00
1.600 2.000 4.93E +02 4.36E +00
2.000 3.000 5.54E +02 7.73E +00
3.000 4.000 1.87E +02 5.62E +00
4.000 6.000 1.90E +02 6.57E +00
6.000 8.000 7.50E +01 4.71E +00
8.000 10.000 3.00E +01 2.57E +00
10.000 12.000 1.27E +01 1.31E +00
12.000 16.000 6.13E +00 1.30E +00
16.000 20.000 4.75E 01 4.55E 01
3.000 10.000 4.82E +02 1.95E +01
1.500 15.000 1.71E +03 3.53E +01
3.000 12.000 4.95E +02 2.08E +01
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Table 20. Neutron spectrum (50 keV to 1.4 MeV) on centerline
at 25 cm behind the lead slabs (Item IIB) Runs 1603.C, 1603.B, 1603.A

Energy Boundary Flux Error
N (MeV) (neutrons cm?MeVkWs™) (%)
RUN 1603.C
1 0.0448 0.0536 7.14E +04 2.05
2 0.0536 0.0624 4.68E +04 3.48
3 0.0624 0.0747 3.75E +04 3.38
4 0.0747 0.0870 3.47E +04 4.18
5 0.0870 0.1028 3.11E +04 3.92
6 0.1028 0.1204 2.68E +04 4.61
7 0.1204 0.1415 2.56E +04 4.41
8 0.1415 0.1679 2.44E +04 3.99
9 0.1679 0.1977 2.12E +04 4.48
RUN 1603.B
1 0.1459 0.1653 2.34E +04 2.32
2 0.1653 0.1977 2.14E +04 1.73
3 0.1977 0.2302 1.90E +04 2.23
4 0.2302 0.2755 1.75E +04 191
5 0.2755 0.3209 1.69E +04 2.26
6 0.3209 0.3793 1.45E +04 2.23
7 0.3793 0.4441 1.15E +04 2.81
8 0.4441 0.5284 1.08E +04 2.40
RUN 1603.A
1 0.3759 0.4521 1.11E +04 1.24
2 0.4521 0.5284 1.06E +04 1.45
3 0.5284 0.6156 9.82E +03 143
4 0.6156 0.7245 7.14E +03 1.61
5 0.7245 0.8553 5.10E +03 1.95
6 0.8553 1.0078 3.70E +03 241
7 1.0078 1.1821 ' 2.92E +03 2.78
8 1.1821 1.4000 2.48E +03 2.57
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Table 21. 3-inch Bonner ball traverses through the
horizontal midplane at 30 cm behind a series of configurations

(ftems I1B-D, IIIB-C)
Distance from Bonner ball count rates (s W)
Centerline

(cm) Item I11B* Item IIC Item IID Item IIIB Item IIIC

100 S 5.14 (0 530 (-2) 7.53 (-1)

96.4 6.57 (-2)
90 7.26 (0) 7.09 (-2) 1.01 (0) 7.59 (-2)
80 1.30 (1) 9.93 (0) 9.85 (-2) 1.47 (0) 9.45 (-2)
70 172 (1) 122 (1) 121 (-1) 1.99 (0) 1.16 (-1)
60 2.28 (1) 1.40 (1) 1.44 (-1) 2.82 (0) 1.40 (-1)
50 3.08 (1) 1.54 (1) 1.63 (-1) 3.25 (0) 1.63 (-1)
40 3.76 (1) 170 (1) 179 (-1) 3.86 (0) 1.89 (-1)
30 4.23 (1) 1.87 (1) 2.00 (-1) 4.36 (0) 2.10 (-1)
20 4.65 (1) 1.97 (1) 2.10 (-1) 4.73 (0) 2.26 (-1)
10 4.89 (1) 2.06 (1) 2.17 (-1) 5.05 (0) 2.36 (-1)
0 4.89 (1) 2.06 (1) 2.19 (-1) 507 (0) 2.39 (-1)
10 4.77 (1) 2.00 (1) 2.19 (-1) 4.92 (0) 2.33 (-1)
20 4.43 (1) 1.90 (1) 2.10 (-1) 4.61 (0) 223 (-1)
30 3.95 (1) 177 (1) 1.95 (-1) 4.24 (0) 2.05 (-1)
40 3.46 (1) 1.59 (1) 1.80 (-1) 3.64 (0) 1.82 (-1)
50 2.77 (1) 139 (1) 1.58 (-1) 3.09 (0) 1.58 (-1)
60 211 (1) 122 (1) 1.44 (-1) 2.60 (0) 1.33 (-1)
65 1.80 (1) '

70 1.01 (1) 1.21 (-1) 1.88 (0) 1.10 (-1)

75 111 (-1) 1.62 (0)

80N 7.64 (0) 8.81 (-2)

“See experimental program plan in Appendix A for description of configurations.
’Read: 5.14 x 10°.
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Table 22. 5-inch Bonner ball traverses through the
horizontal midplane at 30 cm behind a series of configurations

(Items IIB-D, IIIB-C)
Distance from Bonner ball count rates (s W)
Centerline

(cm) Item 1IB* Item IIC Item [ID Item {[IB Item T1IC

100 S 7.04 (0)° 2.96 (-1) 2.22 (0)

929 553 (-1)
90 1.08 (1) 435 (-1) 3.1 (0) 6.00 (-1)
80 2.52 (1) 1.71 (1) 6.31 (-1) 4.66 (0) 8.39 (-1)
70 321 (1) 248 (1) 8.11 (-1) 6.48 (0) 1.11 (0)
60 434 (1) 3.06 (1) 9.81 (-1) 9.13 (0) 1.42 (0)
50 573 (1) 335 (1) 1.15 (0) 1.11 (1) 1.72 (0)
40 6.96 (1) 3.68 (1) 1.31 (0) 1.33 (1) 2.04 (0)
30 8.04 (1) 405 (1) 1.45 (0) 1.52 (1) 2.34 (0)
20 8.82 (1) 429 (1) 1.54 (0) 167 (1) 2.53 (0)
10 9,08 (1) 442 (1) 1.63 (0) 1.78 (1) 2.65 (0)
0 930 (1) 448 (1) 1.61 (0) 1.79 (1) 2.66 (0)
10 8.96 (1) - 432(1) 1.58 (0) 1.74 (1) 2.60 (0)
20 837 (1) 4.08 (1) 1.51 (0) 1.65 (1) 2.46 (0)
30 733 (1) 375 (1) 1.42 (0) 1.48 (1) 2.26 (0)
40 638 (1) 335 (1) 1.26 (0) 1.28 (1) 1.97 (0)
50 5.20 (1) 2.99 (1) 1.12 (0) 1.07 (1) 1.65 (0)
60 3.86 (1) 2.65 (1) 9.85 (-1) 8.60 (0) 1.33 (0)
65 331 (1)

70 2.23 (1) 7.98 (-1) 6.18 (0) 1.02 (0)
75 6.97 (-1) 5.21 (0)

80 N 1.64 (1) 7.66 (-1)

“See experimental program plan in Appendix A for description of configurations.
bRead: 7.04 x 10°.




Table 23. 8-inch Bonner ball traverses through the
horizontal midplane at 30 cm behind a series of configurations

(Items IIB-D, IIIB-C)
Distance from Bonner ball count rates (sTW1)
Centerline

(cm) Item IIB* Item IIC Item IID Item ITIB Item IIIC

100 S 3.95 (0) 2.61 (-1) 1.94 (0)
90 6.15 (0) 3.76 (-1) 2.90 (0)
80 1.36 (1) 9.73 (0) 5.69 (-1) 4.51 (0) 1.04 (0)
70 1.74 (1) 1.36 (1) 743 (-1) 6.71 (0) 1.43 (0)
60 2.43 (1) 1.67 (1) 9.13 (-1) 9.31 (0) 1.87 (0)
50 3.21 (1) 1.83 (1) 1.08 (0) 119 (1) 2.34 (0)
40 3.81 (1) 2.02 (1) 1.24 (0) 143 (1) 2.83 (0)
30 4.39 (1) 2.16 (1) 1.37 (0) 1.64 (1) 3.25 (0)
20 4.87 (1) 237 (1) 1.52 (0) 1.82 (1) 3.56 (0)
10 4.99 (1) 242 (1) 1.58 (0) 1.92 (1) 3.78 (0)
0 513 (1) 244 (1) 1.59 (0) 1.95 (1) 3.85 (0)
10 4.85 (1) 2.34 (1) 1.58 (0) 1.89 (1) 3.78 (0)
20 4.69 (1) 2.20 (1) 1.49 (0) 1.78 (1) 3.63 (0)
30 4.10 (1) 2.03 (1) 1.35 (0) 1.59 (1) 3.32 (0)
40 3.58 (1) 1.80 (1) 1.23 (0) 1.37 (1) 2.90 (0)
50 2.88 (1) 1.59 (1) 1.06 (0) 1.12 (1) 2.47 (0)
60 2.10 (1) 1.43 (1) 9.08 (-1) 8.75 (0) 1.99 (0)
70 1.43 (1) 1.15 (1) 7.40 (-1) 6.20 (0) 1.52 (0)
75 6.41 (-1) 5.09 (0)

80N 8.44 (0) 1.10 (0)

“See experimental program plan in Appendix A for description of configurations.
’Read: 3.95 x 10°.
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Table 24. Spectrum of high-energy neutrons (>0.8 MeV) on centerline
at 25 cm behind the lead slabs (Item IIC): Run 7933

Flux (neutrons cm?MeV-kWis1) Flux (neutrons cm2MeV-kWis1y
Neutron Neutron
Energy Lower Upper Energy Lower Upper
(MeV) Limit Limit (MeV) Limit Limit
8.11E -01 2.55E +03 2.62E +03 S5.94E +00 3.35E +01 3.69E +01
9.07E -01 2.68E +03 2.71E +03 6.25E +00 2.86E +01 3.26E +01
1.01E +00 2.38E +03 2.40E +03 6.55E +00 2.46E +01 2.79E +01
1.11E +00 2.02E +03 2.05E +03 6.84E +00 2.14E +01 2.38E +01
1.20E +00 1.72E +03 1.74E +03 7.24E +00 1.75E +01 1.95E +01
1.31E +00 1.46E +03 147E +03 7.74E +00 1.38E +01 1.62E +01
141E +00 1.25E +03 1.27E +03 8.24E +00 1.12E +01 1.37E +01
1.51E +00 1.09E +03 1.11E +03 8.76E +00 9.14E +00 1.05E +01
1.61E +00 9.58E +02 9.73E +02 9.26E +00 6.85E +00 8.05E +00
1.71E +00 8.37E +02 8.50E +02 9.74E +00 5.44E +00 6.46E 400
1.81E +00 7.25E +02 7.38E +02 1.03E +01 4.63E +00 5.56E +00
1.93E +00 6.11E +02 6.23E +02 1.08E +01 3.71E +00 4.55E +00
2.10E +00 4.89E +02 S.00E +02 1.12E +01 3.01E +00 3.70E +00
2.30E +00 3.83E +02 3.93E +02 1.18E +01 2.62E +00 3.18E +00
2.50E +00 2.95E +02 3.03E +02 1.24E +01 1.79E +00 2.34E +00
2.70E +00 2.28E +02 2.35E +02 1.32E 401 8.04E -01 1.18E +00
2.90E +00 1.79E +02 1.87E +02 1.40E +01 3.82E -01 7.46E -01
3.10E +00 141E +02 1.49E +02 1.48E +01 2.87E 01 S.34E 01
3.30E +00 1.16E +02 1.22E +02 1.56E +01 2.28E -01 4.80E -01
3.50E +00 9.78E +01 1.05E +02 1.65E +01 4.21E -02 2.21E -01
3.71E +00 8.46E +01 9.03E +01 1.75E +01 -7.18E -02 9.92E -02
3.91E +00 7.68E +01 8.19E +01 1.85E +01 -9.24E -02 4.70E -02
4.15E +00 7.14E +01 7.62E +01 1.95E +01 -1.05E -01 3.11E -02
4.45E +00 6.57E +01 6.98E +01 2.05E +01 -1.06E -01 9.54E -02
4.75E +00 6.01E +01 6.39E +01 2.16E +01 -9.36E -02 1.17E -01
5.04E +00 5.25E +01 5.60E +01 2.26E +01 -1.39E -02 7.90E -02
5.34E +00 4.37E +01 4.70E +01 2.35E +01 -6.96E -02 5.66E -02
5.64E +00 3.76E +01 4.13E +01
E1 E2 Integral Error
(MeV) (MeV) neutrons cm2kWls! neutrons cm kW51
0.811 1.000 496E +02 3.33E +00
1.000 1.200 4.13E +02 2.16E +00
1.200 1.600 5.23E +02 3.44E +00
1.600 2.000 3.01E +02 2.54E +00
2.000 3.000 3.19E +02 4.48E +00
3.000 4.000 1.07E +02 3.24E +00
4.000 6.000 1.10E +02 3.83E +00
6.000 8.000 4.39E +01 2.72E +00
8.000 10.000 1.79E +01 1.47E +00
10.000 12.000 7.74E +00 7.60E -01
12.000 16.000 3.50E +00 7.05E -01
16.000 20.000 1.08E -01 3.20E -01
3.000 10.000 2.78E +02 1.13E +01
1.500 15.000 1.01E +03 2.05E +01
3.000 12.000 2.86E +02 1.21E +01
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Table 25. Neutron spectrum (50 keV to 1.4 MeV) on centerline
at 25 cm behind the lead slabs (Item IIC) Runs 1604.C, 1604.B, 1604.A

Energy Boundary Flux Error
N (MeV) (neutrons cmMeVkWs™) (%)
RUN 1604.C
1 0.0448 0.0536 3.76E +04 2.13
2 0.0536 0.0624 2.90E +04 3.09
3 0.0624 0.0730 2.43E +04 3.40
4 0.0730 0.0870 2.24E +04 3.01
5 0.0870 0.1011 1.92E +04 4.00
6 0.1011 0.1187 1.67E +04 4.00
7 0.1187 0.1398 1.74E +04 3.50
8 0.1398 0.1662 1.46E +04 3.57
RUN 1604.B
1 0.1205 0.1466 1.74E +04 1.32
2 0.1466 0.1662 - 1.49E +04 2.30
3 0.1662 0.1987 1.38E +04 1.69
4 0.1987 0.2313 1.22E +04 219
5 0.2313 0.2769 1.11E +04 1.88
6 0.2769 0.3225 1.08E +04 2.20
7 0.3225 0.3812 8.94E +03 2.23
8 0.3812 0.4463 7.25E +03 2.74
9 0.4463 0.5310 7.02E +03 2.26
RUN 1604.A
1 0.3808 0.4452 6.94E +03 1.50
2 0.4452 0.5310 . 6.89E +03 1.20
3 0.5310 0.6169 6.21E +03 1.44
4 0.6169 0.7241 4.59E +03 1.60
5 0.7241 0.8529 3.45E +03 1.84
6 0.8529 1.0031 2.53E +03 224
7 1.0031 1.1854 2.00E +03 236
8 1.1854 1.4000 1.55E +03 2.58
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Table 26. Spectrum of high-energy neutrons (>0.8 MeV) on centerline
at 25 cm behind the lead slabs (Item IID): Run 7934

Flux (neutrons cm2MeV-'kW-s') Flux (neutrons cm2MeV-kWsT)
Neutron Neutron
Energy Lower Upper Energy Lower Upper
(MeV) Limit Limit (MeV) Limit Limit

8.11E -01 4.04E +02 4.14E +02 5.94E +00 5.37E +00 5.94E +00
9.07E -01 4.40E +02 4.44E +02 6.25E +00 4.74E +00 5.40E +-00
1.01E +00 377E +02 3.80E +02 6.55E +00 4.48E +00 5.02E +00
1.11E +00 2.82E +02 2.85E +02 6.84E +00 4.04E 400 445E +00
1.20E +00 2.01E +02 2.04E +02 7.24E +00 3.48E +00 3.83E +00
1.31E +00 1.48E +02 1.51E +02 7.714E +00 3.07E +00 3.50E +00
1.41E +00 1.23E +02 1.26E +02 8.24E +00 2.74E +00 3.19E +00
1.51E +00 1.10E +02 1.12E +02 8.76E +00 2.19E +00 2.42E +00
1.61E +00 9.99E +01 1.02E +02 9.26E +00 1.48E +00 1.69E +00
1.71E +00 9.17E +01 9.36E +01 9.74E +00 1.11E +00 1.29E +00
1.81E +00 8.51E +01 8.69E +01 1.03E +01 1.01E +00 1.17E +00

1.93E +00 7.82E +01 7.99E +01 1.08E +-01 9.00E -01 1.05E +00
2.10E +00 6.80E +01 6.97E +01 1.12E +01 6.54E 01 7.75E -01
2.30E +00 S47E +01 5.62E +01 1.18E +01 4.63E -01 5.60E -01
2.50E +00 4.13E +01 4.25E +01 1.24E +01 3.57E -01 4.50E -01
2.70E +00 3.17E +01 3.29E +01 1.32E +01 1.91E 01 2.58E -01
2.90E +00 2.74E +01 2.87E +01 1.40E +01 8.12E (02 1.40E -01
3.10E +00 2.45E +01 2.58E +01 1.48E +01 7.51E -02 1.21E -01
3.30E +00 2.10E +01 2.20E +01 1.56E +01 7.99E -02 1.18E -01
3.50E +00 1.73E +01 1.85E +01 1.65E +01 5.11E -02 8.21E -02
3.71E +00 1.53E +01 1.62E +01 1.75E +01 -441E -03 1.98E -02
3.91E 400 1.46E +01 1.55E +01 1.85E +01 -1.84E 02 4.10E -04
4.15E +00 1.42E +01 1.49E +01 1.95E +01 -1.10E -02 7.01E 03

4.45E +00 1.26E +01 1.33E +01 2.05E +01 -2.33E -02 4.23E -03
4.75E +00 1.02E +01 1.09E +01 2.16E +01 -2.66E -02 2.28E -03
5.04E +00 8.37E +00 8.93E +00 2.26E +01 -1.15E -02 8.16E -03
5.34E +00 7.39E +00 7.92E +00 2.35E +01 -3.88E -03 1.30E -02
S.64E +00 6.38E +00 7.01E +00

E1l E2 Integral ’ Error
(MeV) (MeV) neutrons cm %k Ws! neutrons cm 2k Wls?
0.811 1.000 8.06E +01 5.09E -01
1.000 1.200 5.82E +01 2.94E -01
1.200 1.600 541E +01 4.81E -01
1.600 2.000 3.49E +01 3.64E -01
2.000 3.000 4.53E +01 6.86E -01
3.000 4.000 1.91E +01 5.24E -01
4.000 6.000 1.95E +01 6.21E -01
6.000 8.000 8.23E +00 4.65E -01
8.000 10.000 4.03E +00 2.63E -01
10.000 12.000 1.65E +00 1.31E -01
12.000 16.000 7.46E -01 1.21E -01
16.000 20.000 6.31E -02 4.67E -02
3.000 10.000 3.08E +01 1.88E +00
1.500 15.000 1.44E +02 3.27E +00

3.000 12.000 5.24E +01 2.01E +00




Table 27. Neutron spectrum (50 keV to 1.4 MeV) on centerline
at 25 cm behind the lead slabs (Item IID) Runs 1605.C, 1605.B, 1605.A

Energy Boundary Flux Error
N (MeV) (neutrons cm*MeVkWis?) (%)
RUN 1605.C
1 0.0376 0.0446 1.27E +04 0.88
2 0.0446 0.0534 5.55E +03 1.66
3 0.0534 0.0621 3.18E +03 3.19
4 0.0621 0.0726 2.50E +03 3.73
5 0.0726 0.0866 2.39E +03 , 3.18
6 0.0866 0.1006 2.07E +03 4.18
7 0.1006 0.1181 1.78E +03 4.19
8 0.1181 0.1392 1.71E +03 3.98
9 0.1392 0.1654 1.56E +03 3.75
RUN 1605.B
1 0.1200 0.1459 1.76E +03 1.34
2 0.1459 0.1654 1.45E +03 241
3 0.1654 0.1978 1.29E +03 1.84
4 0.1978 0.2303 1.09E +03 2.50
5 0.2303 0.2757 9.61E +02 2.25
6 0.2757 0.3211 9.22E +02 2.71
7 0.3211 0.3795 7.61E +02 2.81
8 0.3795 0.4443 6.12E +02 3.58
9 0.4443 0.5222 6.69E +02 3.00
10 0.5222. 0.6195 6.77E +02 2.51
11 0.6195 0.7297 5.81E +02 2.72
RUN 1605.A
1 0.5243 0.6216 6.27E +02 1.92
2 0.6216 0.7297 3.53E +02 2.11
3 0.7297 0.8595 5.10E +02 1.98
4 0.8595 1.0108 4.15E +02 2.10
5 1.0108 1.1838 2.68E +02 2.79
6 1.1838 1.4000 1.34E +02 4.35
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Table 28. Spectrum of high-energy neutrons (>0.8 MeV) on centerline
at 25 cm behind the lead slabs (Item IMA): Run 7935

Flux (neutrons cmMeV-'kW-s 1) Flux (neutrons cmMeV-kWls
Neutron Neutron
Energy Lower Upper Energy Lower Upper
(MeV) Limit Limit (MeV) Limit Limit
8.11E -01 8.18E +03 841E +03 S94E 400 4.60E +02 4.80E +02
9.07E -01 9.13E +03 9.25E +03 6.25E +00 3.82E +02 4.05E +02
1.01E +00 8.82E +03 8.92E +03 6.55E +00 3.27E +02 347E +02
1.11E +00 8.27E +03 8.38E +03 6.84E +00 2.80E +02 2.94E +02
1.20E +00 7.85E +03 7.95E +03 724E +00 2.22E +02 2.33E +02
1.31E +00 743E +03 7.53E +03 7.74E +00 1.68E +02 1.82E +02
141E +00 7.06E +03 7.15E +03 8.24E +00 1.22E +02 1.35E +02
1.51E +00 6.72E +03 6.80E +03 8.76E +00 8.04E +01 8.70E +01
1.61E +00 6.33E +03 6.41E +03 9.26E +00 5.64E +01 6.22E +01
1.71E +00 5.93E +03 6.00E +03 9.74E +00 449E +01 4.94E +01
1.81E +00 5.57E +03 S.64E +03 1.03E +01 3.51E +01 3.93E +01
1.93E +00 5.18E +03 5.25E +03 1.08E +01 2.54E +01 291E +01
2.10E +00 4.59E +03 4.66E +03 1.12E +01 1.69E +01 1.98E +01
2.30E +00 4.02E +03 4.08E"+03 1.18E +01 1.10E +01 1.33E +01
2.50E +00 3.49E +03 3.54E +03 1.24E +01 7.85E +00 1.01E +01
2.70E +00 2.90E +03 2.95E +03 1.32E +01 539E +00 6.91E +00
2.90E +00 245E +03 2.50E +03 1.40E +01 2.87E +00 4.26E +00
3.10E +00 2.05E +03 2.10E +03 148E +01 1.65E +00 2.63E +00
3.30E +00 1.66E +03 1.71E +03 1.56E +01 1.24E +00 2.09E +00
3.50E +00 1.40E +03 145E +03 1.65E +01 6.22E -01 1.22E +00
3.71E +00 1.26E +03 1.29E +03 1.75E +01 -1.63E -01 2.83E 01
391E +00 1.14E +03 1.18E +03 1.85E +01 -2.99E -01 7.02E -02
4.15E +00 1.05E +03 1.08E +03 1.95E +01 -2.10E 01 1.14E -01
4.45E +00 9.63E +02 9.89E +02 2.05E +01 -292E -01 2.06E -01
4.75E +00 8.46E +02 8.71E +02 2.16E +01 -3.10E -01 2.12E -01
5.04E +00 7.25E +02 7.47E +02 2.26E +01 -1.94E -01 1.50E 01
5.34E +00 6.28E +02 6.49E +02 2.35E +01 -1.52E -01 1.50E -01
5.64E +00 S543E +02 5.65E +02
E1 E2 Integral Error
(MeV) (MeV) neutrons cm 2k W-ls! neutrons cm kW5
0.811 1.000 1.70E +03 1.30E +01
1.000 1.200 1.68E +03 1.04E +01
1.200 1.600 2.86E +03 1.81E +01
1.600 2.000 2.26E +03 1.50E +01
2.000 3.000 3.52E +03 2.89E +01
3.000 4.000 1.52E +03 2.18E +01
4.000 6.000 1.54E +03 241E +01
6.000 8.000 5.50E +02 1.55E +01
8.000 10.000 1.59E +02 7.37E +00
10.000 12.000 4.77E +01 3.27E +00
12.000 16.000 1.81E +01 2.76E +00
16.000 20.000 8.55E -01 8.89E -01
3.000 10.000 3.78E +03 6.90E +01
1.500 15.000 1.03E +04 1.23E +02
3.000 12.000 3.82E +03 7.23E +01




Table 29. Neutron spectrum (50 keV to 1.4 MeV) on centerline
at 25 cm behind the lead slabs (Item IITA) Runs 1606.C, 1606.B, 1606.A

Energy Boundary Flux Error
N (MeV) (neutrons cm?MeVkWs™) (%)
RUN 1606.C
1 0.0394 0.0447 5.97E +04 3.20
2 0.0447 0.0534 3.41E +04 3.78
3 0.0534 0.0622 2.31E +04 6.43
4 0.0622 0.0744 2.16E +04 5.51
5 0.0744 0.0867 2.18E +04 6.37
6 0.0867 0.1025 1.86E +04 6.44
7 0.1025 0.1200 1.79E +04 6.92
8 0.1200 0.1410 1.82E +04 6.32
9 0.1410 0.1673 1.68E +04 6.00
10 0.1673 0.1971 1.46E +04 6.86
RUN 1606.B
1 0.1436 0.1703 1.52E +04 292
2 0.1703 0.1971 1.42E +04 3.66
3 0.1971 0.2371 1.28E +04 3.14
4 0.2371 0.2772 1.27E +04 3.78
5 0.2772 0.3240 1.32E +04 3.60
6 0.3240 0.3841 1.31E +04 3.17
7 0.3841 0.4509 1.12E +04 3.87
8 0.4509 0.5310 1.28E +04 3.10
RUN 1606.A
1 0.3808 0.4452 1.13E +04 2.82
2 0.4452 0.5310 1.19E +04 2.24
3 0.5310 0.6169 1.09E +04 2.85
4 0.6169 0.7241 9.69E +03 2.85
5 0.7241 0.8529 9.18E +03 2.79
6 0.8529 1.0031 71.74E +03 3.16
7 1.0031 1.1854 7.33E +03 2.99
8 1.1854 1.4000 7.22E +03 2.76
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Table 30. Spectrum of high-energy neutrons (>0.8 MeV) on centerline
at 25 cm behind the lead slabs (Item ITIB): Run 7936

Flux (neutrons cm2MeV-kw-is1)

Flux (peutrons cm2MeV- kW™

Neutron Neutron
Energy Lower Upper Energy Lower Upper
(MeV) Limit Limit (MeV) Limit Limit
8.11E -01 2.36E +03 243E +03 5.94E +00 2.18E +02 225E +02
9.07E -01 2.68E +03 2.72E +03 6.25E +00 1.89E +02 1.96E +02
1.01E +00 2.64E +03 2.67E +03 6.55E +00 1.64E +02 1.70E +02
1.11E +00 2.49E +03 2.52E +03 6.84E +00 1.40E +02 1.44E +02
1.20E +00 2.37E +03 2.40E +03 7.24E +00 1.11E +02 1.15E +02
1.31E +00 2.26E +03 2.29E +03 7.74E +00 841E +01 8.88E +01
141E +00 2.17E +03 2.20E +03 8.24E +00 6.09E +01 6.59E +01
1.51E +00 2.08E +03 2.10E +03 8.76E +00 444E +01 4.67E +01
1.61E +00 1.98E +03 2.00E +03 9.26E +00 3.17E +01 3.37E +01
1.71E +00 1.87E +03 1.89E +03 9.74E +00 2.32E +01 2.47E +01
1.81E +00 1.76E +03 1.78E +03 1.03E +01 1.76E +01 1.91E +01
1.93E +00 1.67E +03 1.69E +03 1.08E +01 1.35E +01 147E +01
2.10E +00 1.52E +03 1.54E +03 1.12E +01 9.85E +00 1.08E +01
2.30E +00 1.33E +03 1.35E +03 1.18E +01 6.93E +00 7.69E +00
2.50E +00 1.16E +03 1.17E +03 1.24E +01 4.74E +00 5.48E +00
2.70E +00 9.77E +02 991E +02 1.32E +01 2.69E +00 3.15E +00
290E +00 8.30E +02 8.45E +02 1.40E +01 1.16E +00 1.55E +00
3.10E +00 7.03E +02 7.19E +02 1.48E +01 5.71E 01 8.88E -01
3.30E +00 S.99E +02 6.13E +02 1.56E +01 4.20E -01 6.96E -01
3.50E +00 5.25E +02 5.40E +02 1.65E +01 2.59E -01 4.58E -01
3. 71E +00 4.77E +02 "4.89E +02 1.75E +01 -3.53E -02 1.11E 01
3.91E +00 4.46E +02 4.56E +02 1.85E +01 -1.03E -01 2.72E -02
4.15E +00 4.23E +02 4.33E +02 1.95E +01 -5.75E -02 4.74E -02
4.45E +00 4.01E +02 4.09E +02 2.05E +01 -1.21E -01 4.07E -02
4.75E +00 3.70E +022 3.78E +02 2.16E +01 -1.35E -01 3.38E -02
5.04E +00 3.33E +02 341E +02 2.26E +01 -6.42E -02 4.61E -02
5.34E +00 291E +02 2.98E +02 2.35E +01 -3.30E -02 6.42E -02
S.64E +00 _ 2.51E +02 2.58E +02
El E2 Integral Error
(MeV) MeV) neutrons cm2kWls1 neutrons cm%kW-ls!
- 0.811 1.000 4.99E +02 4.51E +00
1.000 1.200 5.03E +02 2.72E +00
1.200 1.600 8.77E +02 5.33E +00
1.600 2.000 7.17E +02 4.07E +00
2.000 3.000 1.17E +03 8.22E +00
3.000 4.000 5.57E +02 6.68E +00
4.000 6.000 6.73E +02 7.72E +00
6.000 8.000 2.71E +02 5.25E +00
8.000 10.000 8.31E +01 2.62E +00
10.000 12.000 2.52E +01 1.11E +00
12.000 16.000 8.60E +00 8.64E -01
16.000 20.000 3.55E -01 2.96E -01
3.000 10.000 1.58E +03 2.24E +01
1.500 15.000 3.71E +03 3.77E +01
3.000 12.000 1.61E +03 2.35E 401




Table 31. Neutron spectrum (50 keV to 1.4 MeV) on centerline
at 25 cm behind the lead slabs (Item IIIB) Runs 1607.C, 1607.B, 1607.A

Energy Boundary Flux Error
N (MeV) (neutrons cm*MeVkWs?) (%)
RUN 1607.C
1 0.0452 0.0523 1.33E +04 3.48
2 0.0523 0.0629 7.81E +03 4.40
3 0.0629 0.0736 5.90E +03 6.82
4 0.0736 0.0860 5.75E +03 6.77
5 0.0860 0.1019 5.81E +03 577
6 0.1019 0.1197 4.71E +03 7.34
7 0.1197 0.1409 4.56E +03 7.06
8 0.1409 0.1658 4.56E +03 6.74
RUN 1607.B
1 0.1184 0.1387 4.54E +03 3.27
2 0.1387 0.1658 4.03E +03 3.33
3 0.1658 0.1996 3.76E +03 343
4 0.1996 0.2334 3.57E +03 4.32
5 0.2334 0.2740 3.20E +03 4.67
6 0.2740 0.3214 3.62E +03 4.12
7 0.3214 0.3755 3.58E +03 4.20
8 0.3755 0.4431 3.01E +03 4.49
9 0.4431 0.5243 3.34E +03 3.78
RUN 1607.A
1 0.3838 0.4486 3.02E +03 2381
2 0.4486 0.5243 3.21E +03 2.60
3 0.5243 0.6216 3.02E +03 2.40
4 0.6216 0.7297 2.65E +03 2.86
5 0.7297 0.8595 2.62E +03 271
6 0.8595 1.0108 2.28E +03 2.98
7 1.0108 1.1838 2.23E +03 2.96
8 1.1838 1.4000 2.14E +03 2.60
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Table 32. Spectrum of high-energy neutrons (>0.8 MeV) on centerline
at 25 cm behind the lead slabs (Item IIIC): Run 7938

Flux (neutrons cm2MeV-kw-ls'1) Flux (neutrons cm2MeV-kWisT)
Neutron Neutron
Energy Lower Upper Energy Lower Upper
(MeV) Limit Limit (MeV) Limit Limit

8.11E -01 8.39E +02 8.57E +02 5.94E +00 4.02E +01 4.16E +01
9.07E -01 9.46E +02 9.56E +02 6.25E +00 347E +01 3.64E +01
1.01E +00 8.63E +02 8.69E +02 6.55E +00 3.06E +01 3.20E +01
1.11E +00 7.09E +02 7.16E +02 6.84E +00 2.68E +01 2.79E +01
1.20E +00 S.74E +02 S.80E +02 7.24E +00 2.13E +01 2.21E +01
1.31E +00 4.85E +02 491E +02 7.74E +00 1.52E +01 1.62E +01
1.41E +00 4.44E +02 4.50E +02 8.24E +00 1.15E +01 1.25E +01
1.51E +00 4.24E +02 430E +02 = 8.76E +00 9.07E +00 9.59E +00
1.61E +00 4.07E +02 4.12E +02 9.26E +00 7.06E +00 7.52E +00
1.71E +00 3.89E +02 3.94E +02 9.74E +00 5.28E +00 5.63E +00
1.81E +00 3.71E +02 3.76E +02 1.03E +01 3.72E +00 4.05E +00
1.93E +00 3.51E +02 3.55E +02 1.08E +01 2.74E +00 3.03E +00
2.10E +00 3.16E +02 3.20E +02 1.12E +01 2.05E +00 2.27E +00
2.30E +00 2.64E +02 2.68E +02 1.18E +01 1.36E +00 1.54E +00
2.50E +00 2.16E +02 2.19E +02 1.24E +01 8.72E -01 1.04E +00

2.70E +00 1.78E +02 1.81E +02 1.32E +01 5.89E -01 6.98E -01
2.90E +00 1.55E +02 1.59E +02 1.40E +01 3.18E -01 4.09E -01
3.10E +00 1.39E +02 1.43E +02 1.48E +01 1.82E -01 2.53E -01
3.30E +00 1.23E +02 1.26E +02 1.56E +01 7.76E -02 1.37E -01
3.50E +00 111E +02 1.14E +02 1.65E +01 1.83E -02 5.65E -02

3.71E +00 1.02E +02 1.04E +02 1.75E +01 -7.58E -03 1.98E -02
391E +00 9.46E +01 9.68E +01 1.85E +01 -9.50E -03 1.58E -02
4.15E +00 8.78E +01 8.99E +01 1.95E +01 -5.83E -03 1.33E -02
4.45E +00 8.01E +01 8.19E +01 2.05E +01 -1.72E -02 1.14E -02
4.75E +00 7.01E +01 7.18E +01 2.16E +01 -1.92E -02 1.08E -02
5.04E +00 6.10E +01 6.26E +01 2.26E +01 -9.93E -03 9.52E -03
5.34E +00 5.36E +01 5.50E +01 2.35E +01 -6.79E -03 1.04E -02
S5.64E +00 4.65E +01 4.81E +01

El E2 Integral Error
(MeV) (MeV) neutrons cm kW5 neutrons cm kW51
0.811 1.000 1.74E +02 9.93E -01
1.000 1.200 1.45E +02 6.69E -01
1.200 1.600 1.86E +(2 1.16E +00
1.600 2.000 1.50E +02 9.25E -01
2.000 3.000 2.27E +02 1.82E +00
3.000 4.000 1.16E +02 1.47E +00
4.000 6.000 1.30E +02 1.68E +00
6.000 8.000 S.08E +01 1.16E +00
8.000 10.000 1.71E +01 5.92E -01
10.000 12.000 5.24E +00 2.54E -01
12.000 16.000 1.86E +00 1.98E -01
16.000 20.000 5.58E -02 5.65E 02
3.000 10.000 3.13E +02 4.92E +00
1.500 15.000 740E +02 8.35E +00

3.000 12.000 3.18E +02 5.17E 400
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Table 33. Neutron spectrum (50 keV to 1.4 MeV) on centerline
at 25 cm behind the lead slabs (Item IIIC) Runs 1608.B, 1608.C, 1608.A

Energy Boundary Flux Error
N (MeV) (neutrons cm*MeV'kWis?) - (%)
RUN 1608.B
1 0.0393 0.0463 5.93E +03 1.79
2 0.0463 0.0550 2.70E +03 3.50
3 0.0550 0.0655 1.86E +03 4.84
4 0.0655 0.0759 1.77E +03 5.94
5 0.0759 0.0899 1.71E +03 ' 5.09
6 0.0899 0.1056 1.61E +03 5.48
7 0.1056 0.1248 1.50E +03 5.33
RUN 1608.C
1 0.0911 0.1046 1.59E +03 2.18
2 0.1046 0.1248 1.28E +03 225
3 0.1248 0.1450 1.30E +03 2.61
4 0.1450 0.1720 1.22E +03 : 248
5 0.1720 0.1990 1.16E +03 3.08
6 0.1990 0.2328 1.08E +03 3.06
7 0.2328 0.2732 1.05E +03 3.02
8 0.2732 0.3272 1.05E +03 2.58
RUN 1608.A
1 0.2307 0.2736 1.10E +03 1.88
2 0.2736 0.3272 1.01E +03 1.94
3 0.3272 0.3808 9.21E +02 2.52
4 0.3808 0.4452 8.04E +02 2.78
5 0.4452 0.5310 9.42E +02 2.01
6 0.5310 0.6169 - 1.00E +03 2.20
7 0.6169 0.7241 9.27E +02 2.08
8 0.7241 0.8259 9.53E +02 1.84
9 0.8529 1.0031 8.38E +02 1.94
10 1.0031 1.1854 6.37E +02 221
11 1.1854 1.4000 4.48E +02 2.82
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APPENDIX C

FIGURES
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ORNL DWG 87-7281

RADIAL BLANKET

X U0, +Na + Al

Na FiLLED\ s
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DIMENSIONS OF THE UO, + Na + Al SECTION TRANSVERSE TO THE
NEUTRON BEAM ARE 125 79-cm HIGH AND 121.64.cm WIDE

P
N4
N4

}/

THEORETICAL DENSITY = 10.96 g/cc
ACTUAL DENSITY (0.94 THEO.) = 10.28 g/cc

1.40 OD (UO,)
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Figure 2. Schematic of radial blanket slab containing UO,.
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(ALL DIMENSIONS ARE IN CENTIMETERS)

Figure 3. Schematic of stainless steel containers used for boron carbide shicld slabs.
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Figure 4. Spectrum of high-energy neutrons (>0.8 MeV) on centerline at 25 cm behind the lead slabs (Item IA) Run 7931
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Figure 9. 3-inch Bonner ball traverses through the horizontal mldplane at 30 cm
behind a series of configurations (Items IIB-D, IIIB, C).
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Figure 10. 5-inch Bonner ball traverses through the horizontal midplane at 30 cm
behind a series of configurations (Items IIB-D, IIIB, C).




63

10 r T T T T T T T T T ]

0

T; 101 —

2 ]

=

E... -

<

= J

|

=

jom

(@]

O

=

—J -

<

m

=

=z 0

Z 10 -

o

& ]
° ]
. -t
v =
v IIIB
a [IIC

107t i ) I ; ! ; ] A i \ 1 A } L ] ) ]
80S 60 40 20 0 20 40 60 80N

DISTANCE FROM CENTER (cm)

Figure 11. 8-inch Bonner ball traverses through the horizontal midplane at 30 cm
behind a series of configurations (Items IIB-D, ITIB, C).
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