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1. INTRODUCTION 

The s imi lar i ty  between the  convolution integral1 and the  Fourier 

transform in teg ra l  has probably been recognized by mathematicians fo r  

many years; however, an application of t h i s  s imilar i ty  t o  the  task of 

calculat ing Fourier transforms numerically has apparently not been 

widely appreciated. The basic method described i n  t h i s  paper was 

reported by Broome and ~oope? who implemented it using an analog 

computer. I n  many applications,  however, it i s  more convenient t o  

work with d ig i t ized  data  and a d i g i t a l  computer analysis code even 

though sampling problems might be introduced. 

This method of d i g i t a l  f i l t e r i n g  has several advantages over the  

conventional, d i r ec t  integrat ion method: 

1. Computing time f o r  the  f i l t e r  method i s  roughly one-third tha t  

of the  d i r ec t  method, which may be s ignif icant  e i ther  i f  large 

volumes of data a r e  t o  be processed or  i f  t he  computation i s  t o  be 

done "on-line . " 
2 . Linear f i l t e r i n g  theory h~1.s hcen developed c~rtcnoively, wl'lilti 

t h e  problems of numerical integrat ion of products of sampled data 

f'unctions a r e  apparently not well ~ n d e r s t o o d . ~  It appears tha t  

extensions of t h i s  method cmllr l  oa .a i ly  load t o  a bc t t e r  u ~ d e r s t a l ~ d l r ~  

of the  e r rors  i n  numerical Fourier transform calculations due t o  

noise i n  the  function being transformed, and hence t o  be t te r  ways of 

estimating these e r rors .  

Subsequent t o  the  development (but not the  reporting) of t h i s  

technique, a method devised by Cooley and Tukey has been reported t o  be 

l ~ u l i v  ulution I s  a l te rna t ive ly  referred t o  as the  superposition 

theorem, Green's theorem,. and Duhamel's theorem, 

2 R .  W .  Broome and G .  C .  Cooper, "Fourier Spectrum Analysis by 

Analog Methods, It I n s t r  . Control Sys . ( 5)  , 155-60 ( ~ a y  1962) . - 
3 ~ .  Lees and R .  C .  Dougherty, Refinement of t h e  Pulse Testing 

Procedure-Computer Limitations,   art mouth College Research Report ( Oct . '64) 



4 
orders of magnitude f a s t e r  than d i r ec t  in tegrat ion.  Consequently, 

f o r  applications requiring s ign i f ican t  reductions i n  computing time, 

t he  Cooley-Tukey algorithm would be t he  l i ke ly  choice. 

2 .  DESCRIPTION OF THE METHOD 

,The Fourier transform of a time-varying function f ( t )  i s  a 

frequency-domain function F(U) given by 

00 

F(m) = J f ( t )  k-j'IJt d t ,  

where 

o, = radian frequency, , 

Equation (1 )  can be divided i n t o  i t s  r e a l  and imaginary par t s :  

OD - 
~ ( m )  = J f ( t )  cos cut d t  - j J f ( t )  s i n  ut d t .  

- M -QD 

(2 )  

Thus t o  calculate  t h e  ~ b u r i e r  transform d i rec t ly ,  t h e  products of 

two time-varying functions must be integrated.  

The convolution i n t e g r a l  gives t he  output of a l i nea r  system, or 

f i l t e r j  a t  any time t a s  a function of an input applied a t  previous 

times, f ( 7 ) :  
t 

g ( t )  = J f (4  h(t-7)  d.r 
-09 

(3) 

out put of input t o  response 'of f i l t e r  
f i l t e r  a t  f i l t e r  at' a t  time t t o  an 
time t time T impulse applied 

a t  time 7 

where t h e  function h ( t ) ,  t he  response of a l i nea r  f i l t e r  t o  an impulse 

applied a t  t = 0, i s  known as t h c  i m p u l ~ e  response or  weighting 

f'unction of t h e  f i l t e r .  Thus t h e  convolution i n t e g r a l  i s  a l s o  an 

integrat ion of t h e  product of two time-varying functions s imilar  t o  

.each term of Eq. ( 2 ) .  Furthermore, a few manipulations of Eqs . 
(2) and (3)  will make them eqiil.v~.l.ent. Hence, t o  aggady eoiwolution 

4 ~ .  W. Cooley and J. W .  Tukey, "An Algorithm f o r  t h e  Machine 

Calculation of Fourier Ser ies ,  It J. Math. Comp., 297, ( ~ ~ r 5 . 1  1965) - 



t o  the  problem of calculating ~ o u r i e r  transforms, the  output time 

responses. of f i l t e r s  with t h e  appropriate weighting functions (i .e. 

cos cut and s i n  cot )  a r e  calculated for  an input perturbation f .  Then 

t h e  outputs of t h e  f i l t e r s  a t  a par t icular  time w i l l  correspond t o  the  

r e a l  and imaginary pa r t s  of the  Fourier transform of f (t ) . 
To equate t h e  convolution in t eg ra l  t o  the  Fourier transform 

in tegra l ,  we f i r s t  make the  upper l i m i t  of integration i n  Eq. (3)  

zero, which can be done i f  f ( 7 )  can be made zero f o r  a l l  posit ive time: 

0 
g ( ~ )  = J f ( r )  h( - r )  dr (4)  

-00 

Equation (4)  shows t h a t  the  f i l t e r  output a t  time t = 0 would 

be equivalent t o  the  r e a l  (o r  imaginary) par t  of the Fourier transform 

of f ( r ) ,  Eq. (3), i f  h(-r)  were equal t o  cos ccrt (or -sin cut).  

For t h e  r e a l  part ,  since cos ut i s  an even function, then cos w t  = 

c o s ( 4 )  and h ( - r )  = h(r ) ;  SO Eq. (4) becomes 

On the  other hand, since s i n  oJt i s  an odd function, then -sin cut = 

s in (&)  and h.(-r) = - h ( ~ ) ;  so t h e  solution for the imaginary part, i s  

Usually the response of t h e  system t o  be analyzed, f ( t ) ,  w i l l  be 

a function which has nonzero values fo r  O < t < T, and zero values fo r  - - 
negative t and f o r  times greater  than T shown i n  Fig. la. There a r e  

two methods tha t  we can use t o  make the  function tha t  we e.nalyze zero 

f o r  a l l  posit ive time: we can e i ther  reverse the  direct ion of f ( t ) ,  

i . e .  f ( - t )  shown i n  Fig. lb, or s h i f t  it by a time T, f .e .  f ( t + ~ )  

shown i n  Fig. l c .  . . 



Fig. 1. Original Time Function with Time Reversal and Sh i f t .  

2..1 Method 1,Reversing f ( t )  : . f ( - t )  

If the  ac tua l  function transformed i s  f ( - t ) ,  ra ther  than f ( t ) ,  - 

the relationship between t h i s  r e su l t  and the  desired transform of f ( t , )  

m u ~ t  be determined: 

which i s  just  the  complex conjugate of ~ ( w ) .  



2.2 Method 11,Shifting f ( t )  : f ( t + ~ )  

The equation i s  

I n  t h i s  case, t h e  desired r e su l t  i s  obtained by correcting fo r  a 

phase s h i f t  of d radians.  

3 DIGITAL FILTER SIMIlT,ATTON 

A key fac tor  i n  t h e  method i s  t h e  accurate d i g i t a l  simulation of 

t h e  response of a cosine - sine f i l t e r  (e.g. an undamped spring-mass 

system) t o  an a rb i t r a ry  forcing function. This i s  accomplished by 

means of t h e  matrix exponential technique. 5J6 

The d i f f e r e n t i a l  equation f o r  a system which osc i l l a t e s  with. a 

frequency o i s  

Alternatively, Eq. (9) can be put i n  the  form of two f i rs t -order  

equations and made t o  include a forcing funct ion 'z l( t ) :  

The solut ion of Eq. (10) when xl(0) = x2(0) = 0 and z ( t  ) 

i s  a uni t  impulse f'unction applied a t  t = 0' is: 

5 ~ .  M. Paynter and J. Suez, "~utomat ic  Digi ta l  Setup and Scaling 

of Analog Computers, I' Trans. I n s t r  . Soc. Am. 3, 55-64 (Jan. 1964). - 
'5. J. Ball  and R . K.  Adams, "MATEXP" - A General Purpose Digi tal  

Computer Program f o r  Solving Ordinary Dif ferent ia l  Equations by the  

Matrix Exponential Method, ORNL-TM- ( i n  preparation) 



This corresponds precisely t o  the impulse responses of the  sine 'and 

cosine f i l t e r s  which were required t o  sa t i s fy  Eq.  ( 4 ) .  
To obtain the  general solution t o  Eq. ( l o ) ,  it i s  convenient t o  

convert Eq. (10) t o  matrix form: 

where 

x = (1;) ) 

The exact "incremental" solution of Eq.  (12), which updates X 

by a time 7 ,  i s  

i f  we assume tha t  Z i s  constant between t and (t + T ) .  Hence, by 
AT evaluating the cAT and ( E  - I)A-' matrices once ( fo r  each m),  X can 

be successively updated by two matrix multiplications.  The ser ies  

form of Ef17 i s  
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1 - . + h.4  - . . . . . CUT - ( y ) 3  + (w)5 - .... 

4: 3 5 ! 

-UM + = C 3 - (WT)5 ..... 1 - + ( W f i  
3: 5 :  2 : 4 ! I - .... 

Thus 

EAT = [cos ut s i n  "1 
-sin ust cos cot 

Ekpanding (eAT - I)A-1 i n  the  same manner, we eventually get 

s i n  w 

W 

1 .- cos WT I W 
(EAT - = 

s i n  cu.r 
( 16) 

CU 

Subst i tut ing Eqs . (15) and (16) i n t o  (13) and expanding, we get 

xl(t  + T )  = cos WT xl( t )  + s i n  u~ x2( t )  + s i n  WT 
CU z l ( t )  , 

, x2( t  + T )  = -sin WT x l ( t )  + cos WT x2( t )  + cos UM - 
W zl(t)  . 

Since t h i s  solution i s  "exact" only when z I s  a s ta i r - s tep  function, 1 
it might appear t h a t  greater  accuracy could be achieved by using a 

trapezoidal (or  higher order) approximation t o  r l ( t )  . However, as 
3 Lees has pointed out, t h i s  r e su l t s  i n  a correction term f o r  the  

Fourier transform calculation of the  form ' .  

Ftrue ( 1  * ('stairstep. ( (correction term w 

However, t he  Fourier transforms a re  usually used t o  calculate  the  

t r ans fe r  f'unction G(W) of a system from tohe ~ ~ . t , i . o  of output-to-input 

Fourier transforms: 

'output ("I ~ ( w )  = 
Finput ( cu J 

With the  assumption t h a t  the'same sampling in terva l  T i s  used f o r  

both input and output, t he  correction terms fo r  both the  input and 

output transforms w i i l  be the  same and w i l l  cancel out. Hence nothing 



i s  gained by using higher-order approximations t o  t he  forcing functions.  

4. ESTIMATION OF ERRORS I N  FOURIER.TRANSFORM CALCULATIONS DUE TO NOISE 

An elegant method fo r  determining the mean-square response of 

l inear ,  c.onstant-coefficient f i l t e r s  t o  random noise inputs has been 

7,8 Th i s  a par t  of t he  analog computer l i t e r a t u r e  f o r  many years. 

method ( i . l lus t ra ted  i n  Fig. 2 )  i s  based on the  equivalence of t he  

cor re la t ion  fi~.n.ction of white noise and a uni t  impulse function 6 ( t ) .  

F i l t e r  Impulse Response r 

Fig. 2 Impulse-Response Method f o r  Mcan-Square Output Response. 

Noise- 

A noise-shaping f i l t e r  (Fig. 2 )  i s  used t o  account f o r  differences 

.between pure white noise and the  ac tua l  input noise seen by the  l i nea r  

f i l t e r ,  which i n  t h i s  case would be noise i n  t he  s igna l  t o  be Fourier 

transformed. The gain f ac to r  No i s  the  power-spectral density (PSD) 

of t he  white noise input (before being shaped). Analysis sh&s t h a t  

t he  steady-state output of t h e  integrator  equals t he  mean-square out - 
put of the  f i l t e r  due t o  t he  Gaussian noise input .  The problem with 

applying t h i s  method. t o  t h e  s ine or cosine f i l t e r ,  however, i s  t h a t  

t h e  integrator  output would never reach a steady s t a t e ,  but would 

continue t o  increase with time, indicat ing t h a t  the  e r ro r  components 

- 

of t he  r e a l  and imaginary par t  estimations would increase with 

7 ~ .  E. Rogers and T. W . Connolly, Analog Computation i n  Engineering 

/;shaping -r squaring 
t Integrator  4 '  4 

Design, McGraw-Hill, New York, 1960, Chapter 7 .  

F i l t e r  

4 

8J. H.  Loning and R .  H. B a t t i n , ,  Random Processes i n  Automatic 

Control, McGraw-Hill, New York, 1956, pp 90-144. 

Device 
* A ,  



integrat ing time. 

A detai led analysis of the  e f fec ts  of noise i s  beyond the  intent  

of t h i s  report, but it i s  hoped tha t  these observations might serve 

as a s t a r t ing  point f o r  fur ther  investigations.  

5 .  DESCRIPTION OF THE FOURIER TRANSFORM CODE FOURCO 

FOURCO has been s e t  up a s  a general purpose Fortran IV code for  

calculat ing the  Fourier transform of sampled. input data (FI)  and output 

data  (FO) , and f o r  pr in t ing  frequency response functions ' for  up .to 

100 selected radian frequencies (w). The date. i.s read i n  by the  

subroutine DmMN, which can eas i ly  be a l te red  t o  su i t  the format of 

t h e  par t icu lar  data .  There i s  no nominal l i m i t  on the  number of data  

points t h a t  can be processed, because the  code w i l l  read i n  successive 

batches of 10,000 time samples a s  required, process each one as  it 

goes u n t i l  it reaches the  end of a run, and then w i l l  compute t h e  

frequency response. Because of the batch data  option, t h e  second 

method of sh i f t ing  f ( t )  i s  used i n  preference t o  t h e  reversed inpilt, 

f ( - t ) .  The sh i f t ing  method i s  a l so  be t t e r  suited t o  on-line calculations.  

A var iety of options i s  provided by FOURCO; t h e  choice of  which 

option Lo use sometbe depends on the  type of s ignal  beine; anal-yZed 

( i  .e. periodic or  aperiodic) or on personal preferences. Specification 

of t h e  choices by the  user i s  made by se t t ing  the  option f lags ~ ( 1 )  

through M(5), as follows: 

1. Da$a Head-in and Processing Option, ~ ( 1 )  

~ ( 1 )  > 0: Read I n  (and process) only ~ ( 1 )  'input function data 

points (FI) .  Read i n  FO u n t i l  a blank card i s  

encountered. 

~ ( 1 )  = 0 :  Read i n  both FI and FO u n t i l  a blank card i s  

encountered . 
~ ( 1 )  < 0 :  Read i n  (and process) a sing1.e input function (FO) only. 



2.  Frequency Option, ~ ( 2 )  , , 

~ ( 2 )  > 0: Read i n  a l l  ~ ( 2 )  frequencies, . W ( 1 )  up t o  ~ ( 1 0 0 ) .  

~ ( 2 )  = 0: Frequencies t o  be harmonics of the  f'undanental 

(wo), up t o  a ' l i m i t  WFIN, with a minimum spacing 

of DW; i .e., i f  w ( I + ~ ) / W ( I )  < DW, the next harmonic 

frequency would be substi tuted f o r  w ( I + ~ ) ,  e tc . ,  
W . I+1 

u n t i l  +j+ IN. 

~ ( 2 )  < 0 :  Frequencies t o  be equally spaced on a logarithmic 

plot between WO and WFIN, where W(I) = 

m * w ( 1 - 1 ) ;  Dw > 1.0. 

3. Input Data Printout Option ~ ( 3 )  

~ ( 3 )  > 0 :  Print  F? Fn rla.t,~. as read i n ,  

~ ( 3 )  = 0: Print FI and FO data a f t e r  subtracting bias .  

~ ( 3 )  < 0: No printout.  

4. Bias Selection Option, ~ ( 4 )  
~ ( 4 )  > 0: Subtract average values of FI and FO before processing. 

~ ( 4 )  = 0: Subtract f i r s t -poin t  values of 'M and. FO before 

processing. 

5. Ensemble Average Option, ~ ( 5 )  

~ ( 5 )  > 0: Average and p r in t  ~ ( 5 )  data s e t  transforms. 

~ ( 5 )  5 0: O m i t  option. 

A magnitude r a t i o  correction factor  COR i s  a l so  read i n  so tha t  

different  scale factors  for  FI and FO can be accounted fo r .  The 

magnitude r a t i o  printed i s  the  r a t i o  of output-to-input from raw 

data  calculations multiplied by COR. 

The computation times f o r  FOURCO are  roughly proportional t o  the 

number of input data  points multiplied by the  number of frequencies 

calculated. The basic (and most time consuming) calculation i s  

updating the f i l t e r  outputs; t h i s  requires s ix  f loa t ing  multiplies 

and .four f loat ing adds per step. Approximate running times on the  

IHM-7090 a re  given by 

T X K  .x NT * NW, 



where 

T = running time, min, 
-6 K = 5.0 x 10 , 

NT = t o t a l  number of data  points and analyzed, 

NW = number of frequencies. 

K i s  somewhat larger  i f  t h e  input data  printout option i s  selected. 

A t yp ica l  analysis of 12,500 input and output data  points a t  47 
frequencies took 4 min with input data  pr in t  out. 

6.1 FOURCO Input Instructions 

T11e f iipul; data  arrangement for  a typ ica l  case ' is  shown i n  Fig. 3. 

TITLE CARD 

..** P C  

O W I O N  CARD 

Flg. 3 .  FOURCO Input Data Layout 

The t i t l e ,  option, and frequency c u d s  are  se t  up wit11 the 

following format : 

1. T i t l e  Card (12A6) 

Any 72 alphanumeric characters 



2. Option Card (615, 2F10.0) 

----.- 

[ M ( 1 ) ; ( 3 )  - - , - . - - . . . .  . . L --.--- I L-. -.--. ~ ( 4 1 1  -- ~ ( 5 )  I (SPARE) 7 DT 1 COR 

~ ( 1 )  t o  ~ ( 5 )  = Option f lags  (see Sect.  5) . 
M! = Sampling in terva l  

COR = Magnitude r a t i o  correction factor  

3 . Frequency card( s)  

a .  I f  ~ ( 2 )  - C 0 :  ( 3 ~ 1 0 . 0 )  

WO = minimum radiari frequency 

DW = frequency spacing fuctor' ( see  Sect. 5 )  
W E N  = high frequency l i m i t  

~ ( 2 )  I ....... up t o  8 per card 

Total number of W's read i n  = ~ ( 2 )  

W(I)  = radian frequency. 

6 2 1Y)UKCO P'ortrari L i  sting 

FOURCO i s  wri t ten i n  Fortran I V  fo r  the  IBM-7090 computers at  

the  Oak Ridge Computing Technology Center. Copies of the  source or 

binary decks a re  available from the  author on request. 



B I B F T C  M A I N  !I E  C 1: 
C  PROGRAK FOURCO 
C  D I G I T A L  F I L T E R  FOURIER TRANSFORM CODE 
C  
C OPT ION CODE 
C  M ( l )  
C  PC5  # NO. DATA PTS. FOR INPUT  F I  ( P U L S E )  
c n # NO. D A T A  P T S  FOR FI AND FO EQUAL 
C  NEG # S I N G L E  I N P U T  ( F O )  ONLY 
C  M ( 2 )  
C  POS B FEAD I N  A L L  Y (  2 W-S 
C  0  # WO + HAPVONICS, DW#MIN. SPACING 
C  NEG # M ( l + I ) # W ( l ) * D W  
C M(3) 
C POS # P R I N T  F I ,  FO DATA A S  READ 
C  0  +t P R I N T  AFTER SUBTRACTING B I A S  
C  NEG # NO PRINTOUT 
C  M ( 4 )  
C PO5 # SUBTRACT AVERAGhS ' IU  P H O f F S s  F I r  FO 
C ' 0  # SUBTRACT. FIRST POINTS 
C  M ( 5 )  # NO. OF DATA SETS I N  ENSEMBLE TO BE AVERAGED 
C 
c ** PROGRA'P ~ F T S  M ( G )  i~ - I  IF MORE THAN I O O O O  D A T A , F T S  
C 

D I M E N S I O N  FI(1000@)*F0(1000~),M(6)~W~lOO) 
DIMEN~ION T I T L E ( I ~ ) s C I A ( I O ~ ) S C O A (  1 0 0 )  
D I M E N S I G N  X 1 ~ 1 ( 1 0 0 ) * X 1 5 0 (  I U O ) * X 2 s I (  1 0 0 ) r X 2 S 0 ( 1 0 0 )  
COMPLEX C I * C O s C I A , C O A  
COMMON F I ~ F O ~ M I W , X I S I I X I S O * X ~ ~ I ~ X ~ S O  

I R E A D ( 5 , ! 0 0 ) T I T L E , M , D T , C O R  
1 0 0  F O R M A T ( 1 2 A 6 / 6 1 5 ~ 2 F I 9 r O )  

W R ~ T E ( ~ ~ ~ O ~ ) T I T L F , M , D T , C O R  
IOIOFORMAT(IHI~IZA6/6HOM I - 6 r 6 1 6 ~ 6 H  DT # r F I O . 4 r  

13Xs14HCORR. FACTOR #,E?O.8) 
I S E f # O  
I F ( M ( 2 ) ) 1 5 , 1 5 , 1 6  

15  R E A D ( ~ B I ~ ~ ) W O I D W I W F I N  
1 0 3  FORMAT(8F IO .O)  

W (  I )#WO 
NW# I 
I F ( Y ( 2 ) ) 1 7 * 1 8 r 1 6  

1 7  DO 1 9  I # Z r I U O  
b!( 1 I . # $ (  1-1 l*D!d 
I F ( W F I N - W ( 1 ) ) 2 C r l 9 , 1 9  

1 9  NWINW+I 
GO TO 2 0  

18  DWS#2.0 



T T O A # O  .'O 
5 2  N T O # O  

N G R O U P # I  ' 

D O  40 J # I  ,NW 
X I S I ( J ) # O . O  
X I S O ( J ) # O . O  
x ~ S I (  J ) # 0 . 6  

40  X 2 S O (  J )#O:O 
8 C A L L  D A T A I N ( N T )  

N T O P # N T O  
N T O # N T O + N T  
N T T # N G R O U P * 1 0 0 0 0  
I F ( N T O - N T T ) 7 * 6 * 6 .  

7 l R F T # f l  ' 

GO T O  26  
6 N G R O U P # K G R O U P +  I 

M ( 6 ) # - I  
I R E T #  I 

2 4  N T I # O  
I F ( M (  I ) . e ~ . o , r . r i ~ r / r ~ ~  
IF(M(I).GT.O.AND.NGROUP.EQ~I)NTI#M(I) 
C A L L  F O U R T ( N T I , N T I D T * N W )  
I F ( I R E T ) 2 , 2 * 8  

2 W R I T E ( 6 , l O 2 )  
~ U ~ U F O R M A T ~ ~ H ~ ~ ~ ~ X ~ ~ H F K E Q ~ ~ I ~ X ~ ~ ~ H M A G N I T U D E  RATIO*  

I ~ X * I Z H P H A S E  ( D E G . ) )  
T T O # F L O A T ( N T O ) * D T  
P I # O . O  
T T  I # T T O  
I F ( M ( I ) . G T . O )  T T I # F L O A T ( M ( I ) ) * D T  
D O  41 '  J # I  ,hk' 
I F ~ M ( I I . L T . O ) , G O  T O  4 2  
S J W T I #  T T I * W ( J )  
C I # C M P L X ( X I ~ I ( J ) r X 2 S I ( J ) ) * C E X P ~ C M P L X ( O * O ~ S J W T I ) )  
C A L L  AMPH(CI,AIIP!)  

4 2  S J W T O #  T T O * W ( J )  
C O # C M P L X ~ X ~ S O ( J ) , X ~ , S O ( J ) ) * C E X P ( C M P L X ( ~ ~ O ~ S J W T ~ ) ) * C O R  
C A L L  A M P H ( C O , A O , P O )  
I F ( M ( I ) . L T . o )  A I # T T O  
A O b A O / A I  . , 

PO#P I - p 6  
I F ( M ( S ) . L E . I )  GO TO 41 
C I A ( J ) # C I A ( J ~ + C I * T T O  
c O A ( J ) # C O A ( J ~ + C O * T T O  
T T O A # T T O A + T T O  

41 W R I T E ( h , l 0 4 ) J , \ d ( J ) r A O , P O  
104 F 3 R M A T ( I H  , 1 3 , 6 X , 3 E 2 0 . 8 )  

I F ( M ( 5 ) * L E . I )  GO T O  I 
I S E T # I S E T + I  
I F ( ? ' I ( ~ ) . G T . I S E T )  GO T O  5 2  
W R I T E ( 6 , 1 0 5 )  M ( 5 )  

1 0 5  F O R I * I A T ( 2 2 H I E N S E M B L E  A V E R A G E S  F 3 R , I 4 , 1 4 H  S E T S  O F  D A T A . )  
W R I T E ( 6 ? 1 0 2 )  
D O  5 0  J # I , N W  
I F ( M ( I  ) .LT .U)  C I A ( J I # C M P L X ( T T O A , O . ~ )  
C O # C O N J G ( C O A ( J ) / C I A ( J ) )  
C A L L  A M P H ( C O * A O * P O )  

513 i . I R I T F ( h * I f l 4 ) J ~ W ( J ) . , A O , P O  
GO T O  I 
E N'D 



.BIBFTC DIN DECK 
SUBROUTINE DATAIN(NT1 . . 

C 'DATA 'INPUT FOR FOURCO 
DIMENSION FI(10000)~F0(10000),M16)~LJiIOO)rD(Q) 
DIMENSION XIS1(100),XISC(IOJ),X2SI(IOo)~X2SO(IOO) 
CCMMON F I , F C ~ N ~ ~ J , X I S I , X I S ~ ~ X ~ S I * X ~ S @  
NT#O 
FIA#O.U 
FOA#O. 0 
IF(M(II.LE.O.OR.M(6).LT.O) GO TO 50 
NTI#M( I )  
R E A 9 ( 5 r l 0 5 ) ( F O l l ) r F I ( I ) ~ I # I ~ N T I )  

C FORMAT FOR MSRE PULSE RESPONSE 10596 
105 F@RMAT(26X,2F3.0) 

I DB#NT I + I 
D O  33 I#IDB910000 
READ(5*106)TIME9FO(I) 

106 FORMAT(F4.0v22X*F3.0) 
TFt TIME134 r3'1r33 

33 NT#NT+I 
3 4  NT#NT+NTI 

GO TO 35 
5 0  IF(M(I ).EQoO) GO TO 31 

C FORMAT FOR ORR NOISE - .  109 
NS# 1 
NF#20, 
D O  52 I#lr500 
READ(59109) TIME,(FO(J)rJ#NS9NF) 

'109 FORMAT(15XsF5.0,20F3.0) 
I F ( T I M E ) ~ I ~ ~ ~ ~ ~ I  

5 1 NS#NS+2O 
NF*dF+ZU 

52 NT#NT+ZO 
53 NTI#O 

GO TO 4 2  
31 30 36 1#lrl1ld~Or4 

C . FORMAT FOR MSRE P R B l  TESTS - 107 
READ(59107) D 

107 FORMhT(F8.2r4(F7.3rEI1.4)) 
IF(DII).LE.O.O) G O  TO 37 
00 5 J# 1911 
K#I+J-I 
K P # Z + J  
FI(K)#D(KP) 

5 FO(K)#D(KP+I) 
3 6  NT#NT+4 
3 7  NTI#NT 
3 5  D O  40 I#I 9NTI 
40 FIAIFIAIFI(1) 

FIA#FIA/(FLOAT(NTI)) 
4 2  D O  4 3  1#1 ,NT 
4 3  FOA#FOA+FO(I) 

FOA#FOA/FLOAT(NT) 
IF(M(3))44944r45 

4 5  IF(NTI.GT.O) ~ R I T E ( 6 ~ 1 0 0 ) ( F I ( I ) ~ I # I ~ N T I )  
100 FORMAT(3HOFI/(IH 9IPIOEll~3)) ' 

W R I T E ( 6 r 1 0 8 ) ( F O ( I ) r l ~ I ~ N T )  ' 

108 FORMAT(3HOFO/( IH rlPIOE11.3)) 
44 IF(M(6)oLT.O) GO TO 6 

IF(M(4))7r7,8 



C SUBTRACT AVERAGE 
8 F I S # F I A  

FOS#FOA . 
GO TO 6 

C SUBTRACT I -ST POINT 
7 F I S # F I ( I )  

FOS#FO ( ! ) 

C SUBTRACT SAME ,AS I N  DATA GROUP I  
6 I F ( N T I . E Q o O I  GO T O  13 

03 9 I # I  9 N T I .  
C NEC F I  FOR MSRE PROS 

9 F I ( I ) # F I S - F I ( 1 )  
13  DO I 2  I # I , N T  
12 F O ( I ) # F O ( I ) - F O S  

. IF (NT I .GT .0 )  W R I T E ( 6 ~ 1 0 1 ) F I A ~ N T I  
101  FORMAT(I3HOAVERACE F I  #,E20.8, 

14H FOR,I6?,5H PTS.) 
W R I T E ( 6 ,  IOZ)FOA,NT 

1 0 2  F O R M A T ( I ~ F / O A V E R A G E  F O  #rE20.8,4H FOR,I6,5H PTS.) 
ltIM1'3))46r4/r46 

47 W R I T E ( ~ ~ ~ ~ ~ ) ( F I ( I ) ~ I # I , M P U I N T )  
W R I T E ( ~ , I O ~ ) ( F O ( I ) , I # I , N T )  

46 RETURN 
END 



A I B F T C  FOUR1 DECK 
SUBROUTINE FOURT(NTI,NT,DT,NW) 
D I M E N S I O N  F I ( 1 0 0 0 0 ) ~ F O ( 1 ~ 0 0 0 1 r ? ~ ( 6 ) , W ( 1 0 0 )  
D I M E K S I O N  X I S I ( I O O ) ~ X I S O ( I ~ ~ ) , X ~ S I ( I O O ) , X ~ S O ( I O O )  

, COMMON FI,FO~M,W,XISI,XISO~X2SI,X2SO 
DO 8 J # I  ,NW 
WT#h'( J )+DT 
CWT#COS( WT) 
S W T # S I N ( W T )  
SWTW#ShT/W(J)  
CWTMW#(CWT-I mO) /h l (  J )  
I F ( N T 1 s E C m O ) G O  TO 10  

C I N P U T  F ( T )  I N T O  S I N E  F I L T E R  
X I T I X I S I ( J )  
X Z T I X 2 S I  ( J  
PO 9 I # l r N T I  
X I T T # C W T * X I T + S W T * X 2 T + S W T L J * F I ( I )  
X 2 T # C W T * X 2 T - S W T * X I T + C W T M \ J * F I  ( 1 )  

0 .Y I  TCX I TT 
X I  S I  ( J  ) # X  1 T  
X 2 S I  ( J  ) # X 2 T  

1 0  X I T # X I S O ( J )  
X2T#X2.50 1 J 1 
DO I1  I # l t N T  
X I T T # C W T * X I T + S W T * X 2 T + S W T W + F O ( I )  
X 2 T # C W T * X 2 T - S W T * X I T + C \ J T M W * F O ( I )  

I I  X l T # X I T T  
X I S O ( J ) # X I T  

8 X 2 S 0 (  J ) # X Z T  
RETURN 
END 

B I B F T C  AMPHl DECK 
SUBROUTINE APPH(CIAIP) 

C  CONVERTS COMPLEX NUMBER C TO MR AND PHASE (DEG)  
COMDLEX C 
A#CARS ( C  
I F ( A )  l a 2 r  l 

2  P#O*O 
R E T U R N  - 

I  P # 5 7 m 2 9 6 * A T A N 2 ( A I M A G ( C ) r R E A L ( C ) )  
RETURN 
END 
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