

INVESTIGATION OF BURNOUT HEAT FLUX IN
RECTANGULAR CHANNELS AT 2000 PSIA

by

H. S. Jacket, J. D. Roarty, and J. E. Zerbe

June 1956

Contract AT-11-1-GEN-14

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.

Photostat Price \$ 4.80

Microfilm Price \$ 2.70

Available from the
Office of Technical Services
Department of Commerce
Washington 25, D. C.

BETTIS PLANT

Operated for the U. S. Atomic Energy Commission by
Westinghouse Electric Corporation

PITTSBURGH, PA.

053 001

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

INVESTIGATION OF BURNOUT HEAT FLUX IN
RECTANGULAR CHANNELS AT 2000 PSIA

by

H. S. Jacket, J. D. Roarty, and J. E. Zerbe

June 1956

Contract AT-11-1-GEN-14

ABSTRACT

Burnout heat flux data were obtained under conditions of zero exit quality and bulk boiling at the exit of electrically heated test specimens. These specimens were long, narrow channels with various slot thicknesses, surfaces, materials, and length-to-diameter ratios. Tests were run at 2000 psia and mass velocities from approximately 0.2×10^6 to 3×10^6 lb/hr-ft 2 . The effect of inclining the channel at 45° was also investigated.

The rectangular channel burnout results are in reasonable agreement with data previously obtained for round tubes.

A design equation is suggested which yields a conservative estimate of the burnout heat flux in the low subcooling and quality regions for the range of variables investigated herein.

A burnout loop and method of operation are described.

NOMENCLATURE

The following nomenclature is used in this paper:

D = equivalent diameter of test section - ft
 G = mass velocity - lb/hr-ft²
 H = enthalpy of mixture - Btu/lb
 L = test section heated length - ft
 ϕ = heat flux density - Btu/hr-ft²
 r_{ms} = root mean square - microinch
 x = bulk quality of liquid - vapor mixture, mass fraction of vapor
 T = temperature of bulk liquid - °F
 ΔT = saturated temperature minus test water bulk temperature - F°

Subscripts

$B.O.$ = burnout
 in = inlet to test section

Terminology

Local or Subcooled Boiling - occurs with the surrounding liquid mostly at a temperature below saturation. The bubbles usually condense in the subcooled liquid and as a result, there is no net retention of vapor.

Saturated or Bulk Boiling - occurs in a liquid where temperature is equal to or slightly higher than saturation; it implies a net generation of vapor.

Nucleate Boiling - vapor is formed as discrete bubbles; a condition which is characteristic of wetted heating surfaces.

Film Boiling - condition developed wherein vapor exists as a continuous film on the heating surface.

INTRODUCTION

A knowledge of the heat flux under which physical burnout of a heat transfer surface occurs is of prime importance for boiling systems with forced circulation of the coolant. Water-cooled and/or moderated nuclear reactors must be designed to avoid physical burnout under the various abnormal conditions that might occur during operation. Information on maximum heat flux or burnout flux is, therefore, essential to this type of reactor core design.

A program of burnout testing has been conducted to investigate the effects of geometry, surface material and finish, length-to-diameter ratio, and test section orientation on burnout heat flux in both the local and bulk boiling regions. The purpose of this investigation is to provide the necessary data for reactor core designs where boiling and high heat flux conditions might exist during operation of the reactor.

APPARATUS AND TEST PROCEDURE

The burnout loop was designed with two test legs to accommodate both burnout and pressure drop experimentation at pressures up to 2000 psia. Both test sections are heated by a 480 kw d-c power supply. The maximum flow to either section is 30 gpm. A schematic diagram of the facilities is shown in Fig. 1. The major loop components and instrumentation are described in Appendix I.

Test Specimens

An exploded view of a typical test specimen assembly is shown in Fig. 2. To obtain closer simulation of an actual reactor channel, the test specimens were designed to burn out on the flat plate rather than at the corners. This was accomplished by reducing the thickness of the cross section in each corner.

In order to determine the effect of different channel lengths and equivalent diameters, materials, specimen construction, and specimen surfaces on the burnout flux, the following variables were built into the specimens:

Channel material: commercial grade "A" nickel and Zircaloy-2
Channel flow spacing: 0.050 in., 0.055 in., and 0.097 in.
Channel width: 1 in.
Channel length: 12-1/16 in. and 27 in.
Channel manufacturing technique: roll-bonded or welded
Heat transfer surface: machined or hot-rolled and pickled.

Test Procedure

The loop was filled with cold, demineralized water and degassed for 4 to 8 hours. Flow was then passed through the ion-exchanger until a minimum

purity of 2 megohm-cm was obtained. The loop was raised to the desired test pressure and the preheaters set to give required temperature conditions. The flow rate was set to the desired value and power applied to the test section at a rate that permitted all conditions to remain essentially in thermal equilibrium throughout the test. The burnout point was determined when the burnout detector tripped the circuit breaker of the power supply or when the exit wall thermocouple exhibited an excursion or a steadily increasing reading without an accompanying increase in test section power. The temperature excursion was generally greater than 50 F°.

The test conditons were as follows:

1. Approximately Zero Exit Subcooling, (Zero Exit Quality)

Burnout Tests

- a. 2000 psia, vertical, upflow
- b. Mass velocity range: 0.2×10^6 to 1.0×10^6 lb/hr-ft².

2. Quality Burnout Tests

- a. 2000 psia, vertical and inclined 45°, upflow
- b. Mass velocity range: 0.15×10^6 to 3.0×10^6 lb/hr-ft²
- c. Exit steam quality range: 0 to 100 per cent.

ACCURACY OF RESULTS

The method of Kline and McClintock¹ was used to evaluate the uncertainty interval of the burnout flux results because of uncertainties in each variable involved in the computation.

The reported burnout heat fluxes are average values over the heated specimen and are based on power and heat transfer area measurements with an error of less than ± 1 per cent for 20:1 odds (95 per cent confidence in the specified error of the individual measurements). Considering a possible maximum discrepancy in a heat balance of 5% as discussed below, the uncertainty in the burnout flux would be approximately $\pm 1\%$ and -5% .

A heat balance was made to determine the agreement between the amount of heat picked up in the water and the power dissipated in the test section. In the subcooled region, the heat balance generally checked to within 5 per cent. In the quality region, it was not possible to make a heat balance because of the lack of an independent measurement of the exit steam quality.

In the subcooled region, the interval of uncertainty in the calculation (for 95 per cent confidence limit) of the heat picked up in the water was found to be approximately ± 2.5 per cent. This error is based on a water temperature

1 - "Describing Uncertainties in Single-Sample Experiments," by S. J. Kline and F. A. McClintock, Mechanical Engineering, vol. 75, 1953, pp. 3-8.

rise of 200°F or a corresponding enthalpy rise (a mean value for the results reported here) as the water passes through the test section.

The difference between the discrepancy in the heat balance and the estimated error caused by errors in the measurement taken is probably due to heat leakage from the test specimen to its environment and to its terminals. It is believed that the accuracy of the heat balance in the quality region is approximately the same as in the subcooled region.

In the course of the investigations, the test specimens had a tendency to expand against the back-up housing and thus increase the nominal channel spacing. Because of this increase, the inaccuracy of the channel dimensions is rather large, as shown in Table 1. The interval of uncertainty (for 95 per cent confidence limit) in the calculation of G , the mass velocity, is ± 11.0 per cent for the 0.055 in. channels and ± 4.6 per cent for the 0.097 in. channels. The weight flow, which is independent of the spacing, is accurate to within ± 2.1 per cent.

The interval of uncertainty associated with each variable employed in these calculations is estimated for 95 per cent confidence level as shown in Table 1.

RESULTS AND DISCUSSION

Zero Exit Quality-Zero Exit Subcooled Burnout

The burnout heat flux is defined as the maximum heat flux that can exist in the nucleate boiling region before vapor blanketing of the heat transfer surface begins.

Tests were run to determine the effect of geometry, length-to-diameter (L/D) ratio, and material on the burnout flux. L/D ratios of approximately 64, 120, and 140 were investigated. The data obtained are tabulated in Table 2 and plotted in Fig. 3 (includes some round tube data for comparison). From Fig. 3 the following observations may be noted:

- Rectangular channels appear to burn out at about the same heat flux as round tubes.
- A variation in the length-to-diameter ratio between 64 and 140 appears to have no effect on burnout heat flux.
- There are no apparent effects on burnout due to the materials and surfaces investigated.

Quality Burnout

Quality burnout heat flux is characterized by the coexistence of net steam and water at the burnout point as calculated by a heat balance for the system. The quality burnout data reported herein for rectangular channels are in reasonable agreement with similar data for round tubes. Typical graphs of the quality data appear in Figs. 4 and 5.

053 006

Effect of L/D

The L/D effect is interpreted to mean any variation in the burnout flux due to changing the heated length of the channel while the local fluid conditions at the burnout point are kept constant. This series of tests was run on machined Zircaloy-2 test specimens 12-1/16 in. and 27 in. long (L/D = 64 and 140). Data were taken on a 12-1/16 in. long channel at an inlet subcooling of 11 F° and a mass velocity of 0.2×10^6 to 2.5×10^6 lb/hr-ft². A comparative set of data was run on a 27 in. channel; however, the inlet temperature was adjusted so that 11 F° subcooling existed 12-1/16 in. from the exit of the channel. In conducting the test this way, the L/D effect attributable to a heat balance is separated from any additional L/D effect that might be present. If any discrepancy existed between the data obtained from the two channels, information on the degree of mixing or validity of calculating the exit quality from the First Law could be derived. Data from these runs are reported in Table 4 and compared in Fig. 6.

Figure 6 indicates that the burnout flux for the 27 in. channel (L/D = 140) is approximately equal to the corresponding flux for a 12-1/16 in. channel. This evidence may be interpreted to mean that there is excellent mixing in the channels and that the calculated exit quality may be a significant parameter for predicting burnout.

In the L/D effect tests described, it was necessary to increase the inlet subcooling with the longer channel in order to obtain the same bulk coolant conditions at burnout at the end of the channel. It is thus possible that there are two opposing effects occurring that make the burnout fluxes approximately equal: the effect of L/D and the effect of inlet subcooling. The comparison in Table 5 indicates the possible effect of inlet subcooling on burnout for a given geometry (27 in. long, 97 mil channel); in general, the higher the inlet subcooling, the higher the burnout flux. For this comparison the following conditions are maintained.

- a. approximately constant bulk quality,
- b. constant mass velocity or larger mass velocity for the condition yielding the lower value of burnout flux.

Another method of comparison is shown in Table 6. In this table a comparison of burnout points for 97 mil channels, 12-1/16 in. and 27 in. long, was made on the following basis:

- a. constant inlet subcooling,
- b. approximately constant exit bulk quality,
- c. mass velocity greater for the condition that yields the lower value of burnout flux.

From Table 6, it is noted that, although the inlet temperature and exit quality are the same for both channels and the mass velocity is higher for the longer channel, burnout in general occurs at a lower heat flux in the longer channel.

Effect of Inclination

Burnout tests were run on 97 mil smooth, and 50 and 55 mil hot-rolled Zircaloy specimens inclined at an angle of 45°. The data are tabulated in

Tables 3 and 7. All inclined specimens were observed to burn out on the upper side only, an indication that preferential stratification did occur at the burnout point.

Zero exit subcooling and zero exit quality data for a vertical and an inclined 187 mil round tube are compared in Fig. 3. No effect on burnout due to inclination can be seen. In Fig. 7 vertical and inclined 50, 55, and 97 mil data are compared with a suggested design equation. The 50 mil inclined quality data are somewhat lower than expected. This is probably due to instabilities as discussed in the following section.

Quality burnout data were obtained for a 50 mil channel with the thin edge in the vertical position. These data are reported in Table 3. It appears that this orientation of the test section has no significant effect on burnout heat flux.

Effect of Instability on Burnout

From time to time other investigators² have reported a sudden instability in a test system at fluxes well below the expected burnout flux. Similar instabilities have been encountered occasionally while obtaining the data reported here. The results of specific tests to investigate these instabilities are reported in Table 7 and may be summarized as follows.

- a. Instabilities occurred at heat fluxes as much as 21 per cent below the actual burnout heat flux. Such instabilities may be partially responsible for lower burnout in the case of inclined 50 mil channels.
- b. Neither the exact nature nor the cause of the instabilities was determined. Loop effects such as control valve chatter and lack of sufficient pump head were investigated and appeared to have little effect on the instability. The rate of heat flux application did not affect burnout in the ranges investigated.

Particular attention was devoted to ascertaining whether or not an instability in flow or autocatalytic effect as discussed by Jens³ accompanied burnout. This effect was not detected. The flow meter used in these investigations indicated no appreciable decrease in flow at the burnout point.

Effect of Power Pulse on Burnout

Preliminary power pulse tests are reported in Table 8. Pulsing the power from about 20 per cent below the burnout point to the burnout point apparently had no effect on burnout for the few tests conducted. The rate of heat flux application was approximately 100,000 to 200,000 Btu/hr-ft² per sec.

2 - W. H. Rohsenow and J. A. Clark, Boiling Burnout Newsletter No. 2, Brookhaven National Laboratory BNL-2141, January 5, 1955.

3 - J. A. Clark and W. M. Rohsenow, "Local Boiling Heat Transfer to Water at Low Reynolds Numbers and High Pressures," T.A.S.M.E., vol. 76, May, 1954, pp. 553-562.

Effect of Surface and Material

Figure 3 includes a comparison of the machined Zircaloy-2 surface and the hot-rolled, pickled Zircaloy-2 surface. Despite the rather obvious difference in surface roughness (32 microin. rms for the machined surface compared to 140 microin. rms for the hot-rolled surface), no apparent effect on burnout was observed. For the few data available from this investigation there was also no observable difference in results obtained on a nickel specimen and on a Zircaloy-2 specimen.

CORRELATION OF RESULTS

The burnout data obtained in the series of experiments conducted cannot be applied directly to nuclear reactor design because the reactor heat flux distribution in the direction of flow is not uniform as was that of the cases tested herein. To utilize the burnout data in reactor design, it is desirable that burnout be correlated on the basis of the local fluid conditions. An expression was developed which is believed to give approximations of burnout heat flux within the ranges of variables investigated. No generality is intended in this expression, but it is useful as a design equation provided that (a) no extrapolation of the equation to regions beyond the limits of the variables investigated is made except for preliminary evaluations, and (b) the value calculated by Eqs. 1 and 2 is reduced by 25 per cent.

Burnout heat flux is defined as the minimum value calculated from either of the following two equations:

$$\frac{\phi_{B.O.}}{10^6} = 0.60 \left(\frac{G}{10^6} \right)^{0.7} \left(\frac{H}{10^3} \right)^{-0.8} \quad [1]$$

$$\frac{\phi_{B.O.}}{10^6} = 0.30 \left(\frac{H}{10^3} \right)^{-3.0} \quad [2]$$

where

$$\begin{aligned} \phi_{B.O.} &= \text{burnout flux, Btu/hr-ft}^2 \\ G &= \text{mass velocity, lb/hr-ft}^2 \\ H &= \text{enthalpy of fluid, Btu/lb} \end{aligned}$$

Limits on the equation are as follows:

Pressure - 2000 psia

Geometry - Round tubes and rectangular channels similar to those tested

Mass velocity - 0.2×10^6 lb/hr-ft 2 to 4×10^6 lb/hr-ft 2

L/D - 60 to 140

Local Enthalpy at Burnout Point - 650 to 1135 Btu/lb

Test Section Position - 45° and vertical

053 009

The possible influences of the past history effects (inlet temperature and L/D) on burnout were considered in establishing Eqs. 1 and 2. These equations were developed so that a conservative estimate of burnout heat flux is given, namely, the case when water at the saturation temperature is supplied at the inlet to the longest test channel investigated. Under these circumstances any inlet subcooling effect tends to increase the burnout heat flux. The L/D limit of 140 is very important because increasing L/D appears to lower the burnout flux.

In Fig. 7, Eqs. 1 and 2 are compared with the Bettis Plant burnout data.

Fig. 8 is a graph of Eqs. 1 and 2. On this graph burnout appears to be a function of both mass velocity and bulk quality or enthalpy in certain regions. However, there are also regions where burnout appears dependent only on the fluid enthalpy or, in other words, the effect of mass velocity is insignificant.

CONCLUSIONS

The following conclusions can be drawn.

1. Zero exit subcooling (i.e. zero exit quality) burnout flux increases as the mass velocity increases in the range from approximately 200,000 to 1,000,000 lb/hr-ft². Few data are available at higher mass velocities, but, based on the behavior of low quality burnout data in the range of 1,000,000 to 4,000,000 lb/hr-ft², it appears that zero exit quality and subcooling burnout flux increases only slightly for mass velocities above $G = 1,000,000$ lb/hr-ft².
2. There is no significant effect on burnout flux for conditions of zero exit quality and zero exit subcooling as a result of changing channel slot thickness (from 55 to 97 mil), channel geometry (round tube or narrow rectangular channels of approximately the same equivalent diameter), channel length, heat transfer surface finish, or heat transfer material.
3. Quality burnout results, as compared with a suggested design equation are essentially independent of channel position (vertical or 45°), geometry (round tubes or rectangular channel), heat transfer surface finish, or heat transfer materials.
4. In the bulk boiling region, there are apparent inlet subcooling and length-to-diameter ratio effects on burnout. For approximately constant local fluid conditions, increasing the inlet subcooling tends to increase the burnout heat flux, whereas increasing the L/D ratio tends to decrease the burnout heat flux.

APPENDIX I
LOOP COMPONENTS

Power Supply

Power is supplied by a 480 kw d-c generator designed to operate at 12,000 amp and 40 v. However, for short periods, as much as 20,000 amp can be drawn from the generator.

Piping System

The main piping system is constructed of 1-1/2 in., schedule-80, type 347 stainless steel. All main system valves have type 316 cast stainless steel bodies and stellite seats and plugs. The valves are Teflon packed. The throttle valves are globe type; all others are gate valves.

Pumps

Two Westinghouse oil-cooled, 30-A sealed pumps are used to circulate the water. The pumps may be run individually or connected in series. The control circuits are so interlocked that the pumps must be in operation before the generator can deliver power to the test section.

Pressurizing Tank

This vessel is used both to pressurize and degas the system. Pressurizing is accomplished by means of eight heaters which provide a total of 30 kw: six are manually controlled and two are operated by an automatic pressure controller. A liquid-level controller operates the system's high pressure make-up pump. If the liquid level becomes too low, the main circulating pumps are automatically shut-off. Shutting off these pumps shuts off the test section power.

Deionizer

A deionizer is in the system to maintain the water purity at a high value (resistivity approximately 2 megohm-cm). The deionizer loop draws about 1/2 gpm. It contains a bed of Amberlite MB-1 resin, 3-1/2 in. diameter by 36 in. long, and two filters, a Neva Clog filter at the ion-bed inlet and a Micrometallic Filter at its outlet. Automatic controls prevent the ion-exchanger from overheating during operation.

Preheater

In order to vary the inlet temperature to the test section, the loop has an immersion type preheater with a capacity of 20 kw. Half of the power is controlled by switches and half by a hand-operated variac. The preheater cannot be turned on unless there is flow in the test section. The loop overall temperature is controlled by 70 kw of "cast-in-bronze" line heaters. These heaters operate through the same type of safety circuit as the immersion preheater.

Heat Exchanger

There is a water-to-water heat exchanger in the system to remove heat from the primary flow.

INSTRUMENTATIONBurnout Detection

Incipient burnout of the test specimen is prevented from proceeding to actual failure by the use of a burnout detector or by observation of a wall temperature excursion with a thermocouple. The burnout detector consists of the following:

- a. a bridge-type circuit of which the test specimen forms two legs,
- b. an amplifier that magnifies the bridge unbalance caused by a portion of the tube overheating,
- c. a thyratron that receives the amplified unbalance signal and strikes when the signal reaches a predetermined magnitude, permitting a condenser to discharge,
- d. a high speed breaker whose trip coil is actuated by the condenser discharge.

Such a detection system is based on using a test specimen material that has a large and continuous temperature coefficient of resistivity. When the test material meets these specifications, the detector will interrupt the power very close to the physical burnout point. When the specimen is constructed of a material whose resistivity does not increase with increasing temperature at high temperature levels (for example, Zircaloy-2), the detector does not function properly, and burnout must be detected either through a sudden, continuous rise in the wall temperature or through physical rupture of the specimen.

Burnouts have been checked with and without a detector. In all cases, the detector fired at heat flux values greater than 90 per cent of the physical burnout flux.

Flow Meter

Flow is measured by a Potter turbine-type flow meter. The instrument is calibrated to be accurate to within 1/2 per cent of the instantaneous flow reading.

Temperature Measurement

Temperatures are measured by either a Leeds and Northrup 24-point precision indicator or a 16-point recorder. Both instruments have 10 suppressed ranges and are accurate to approximately 0.03 Mv or slightly greater than 1 F° at 635°F. All thermocouples are chromel-alumel.

053 012

Current Measurement Shunts

Current is measured by the voltage drop across two calibrated 6000 amp Westinghouse type-G shunts. The readings are taken on a 5-range Brown recorder.

Voltage Measurement

The voltage drop across the test section is recorded on a 2-range Brown recorder.

ACKNOWLEDGEMENT

The authors wish to express their gratitude to the Westinghouse Electric Corporation and to the U. S. Atomic Energy Commission for permission to publish this work. An expression of gratitude is also appropriate to Messrs. S. J. Green, R. A. DeBortoli, A. Weiss, T. W. Hunt, and S. W. Cota for assistance in the conduct of the investigation and in the design and operation of the laboratory equipment.

Table 1. Uncertainty of Variables

Voltage	$v:w_v \pm 0.005 v$
Current	$I:w_I \pm 0.0016 I$
Flow Rate, gpm	$W:w_W \pm 0.005 W$
Test Section Length	$L:w_L \pm 1/64 \text{ in.}$
Channel Spacing	$D:w_D \pm 0.006 \text{ in. for}$ $0.055\text{-in. channels}$ $\pm 0.004 \text{ in. for}$ $0.097\text{-in. channels}$
Inlet Temperature*	$T_i:w_{T_i} \pm 2F^\circ$
Outlet Temperature*	$T_o:w_{T_o} \pm 2F^\circ$
Fluid Density	$\rho:w_\rho \pm 0.02\rho$
Channel Width	$b:w_b \pm 0.001 \text{ in.}$

* The inlet and exit temperatures are used to calculate the enthalpies of the fluid.

Table 2. Zero Exit Quality and Subcooled Burnout Data,
Exit Pressure 2000 psia

Test Channel	Exit Subcooling F°	Mass Velocity 10^6 lb/hr-ft 2	Burnout Flux* 10^6 Btu/hr-ft 2
Vertical nickel (machined)	3	1.35	1.120
Flow dimension: 1 in. x 0.055 in.	5	1.32	0.920
Length: 12-1/16 in.	2	0.926	0.938
	4	0.667	0.949
	6	0.578	0.786
	3	0.269	0.360
Vertical Zircaloy-2 (hot-rolled)	3	1.47	1.42
Flow dimension: 1 in. x 0.055 in.	12	0.919	0.765
Length: 12-1/16 in.	11	0.858	0.786
	4	0.571	0.695
	0	0.195	0.300**
Vertical Zircaloy-2 (machined)	11	1.24	0.979
Flow dimension: 1 in. x 0.097 in.	14	0.888	0.921
Length: 12-1/16 in.	3	0.529	0.851
	4	0.208	0.333
Vertical Zircaloy-2 (machined)	3	1.21	1.11
Flow dimension: 1 in. x 0.097 in.	4	0.906	0.847
Length: 27 in.	4	0.906	0.841
	4	0.604	0.747

* Burnout Flux is evaluated from 94% of the total power as generated in the thick portion of the rectangular channel (6% of the power is generated in the thin edges). The surface area of the thick portion of the channel is 0.88 in. x length x 2.

** This value is estimated as the maximum heat flux in the nucleate boiling region. Physical burnout occurred in the film boiling region at a heat flux of approximately 0.560×10^6 Btu/hr-ft 2 .

Table 3. Quality Burnout Data, Exit Pressure 2000 psia

Test Channel	Inlet Subcooling F°	Mass Velocity 10^6 lb/hr-ft ²	Burnout Flux 10^6 Btu/hr-ft ²	Quality %
Vertical Zircaloy-2 (machined)	8	2.67	0.808	12.3
Flow dimension: 1 in. x 0.097 in.	11	2.57	0.860	13.0
Length: 12-1/16 in.	8	1.94	0.771	17.0
	9	1.38	0.718	22.6
	8	1.19	0.773	29.2
	9	0.864	0.704	37.1
	10	0.479	0.558	54.3
	10	0.187	0.376	97.0
	36	2.74	1.08	7.7
	36	2.74	1.10	3.1
	34	2.72	1.08	8.4
	37	2.10	0.970	11.0
	36	1.28	0.839	20.5
	63	2.92	1.24	0.9
	60	2.17	1.08	5.7
	62	1.41	0.969	14.0
	60	1.32	0.959	16.9
	60	0.924	0.760	21.6
	60	0.466	0.618	46.7
	62	0.179	0.402	92.5
Inclined (45°) Zircaloy-2 (machined)	11	1.22	0.731	25.8
Flow dimension: 1 in. x 0.097 in.	12	0.843	0.625	32.4
Length: 12-1/16 in.	11	0.443	0.502	52.6
	10	0.171	0.330	93.3
	58	1.31	0.974	17.5
	59	0.915	0.823	25.2
	60	0.469	0.622	46.3
	60	0.176	0.375	87.2
Vertical Zircaloy-2 (machined)	10	2.71	0.557	19.2
Flow dimension: 1 in. x 0.097 in.	10	2.03	0.504	24.1
Length: 27 in.	10	1.35	0.448	33.0
	9	1.13	0.436	39.6
	10	0.840	0.397	48.7
	10	0.438	0.320	76.9
	9	0.157	0.170	100.0*
	63	3.29	0.902	10.7
	62	2.88	0.848	12.2
	61	2.24	0.732	15.7
	66	1.49	0.594	24.6
	62	1.32	0.565	27.4
	62	0.937	0.487	37.4
	62	0.467	0.392	72.6
	62	0.187	0.207	100.0*
Inclined (45°) Zircaloy-2 (hot-rolled)	11	1.33	0.596	35.4
Flow dimension: 1 in. x 0.055 in.	9	0.894	0.496	45.6
Length: 12-1/16 in.	9	0.473	0.403	72.0
	10	0.175	0.242	100.0*
	60	1.42	0.755	23.5
	59	0.955	0.613	37.6
	60	0.499	0.472	64.0
	60	0.173	0.253	100.0*
Inclined (45°) Zircaloy-2 (hot-rolled)	35	1.47	0.700	34.0
Thin edge up	34	1.46	0.697	34.7
Flow dimension: 1 in. x 0.050 in.	36	1.10	0.558	36.1
Length: 12-1/16 in.	34	1.03	0.598	44.9
	37	1.02	0.602	44.2
	38	0.494	0.446	74.6
	37	0.490	0.446	75.6
Vertical Zircaloy-2 (hot-rolled)	335	1.05	1.142	18.55
Flow dimension: 1 in. x 0.050 in.	335	0.626	0.842	43.2
Length: 12-1/16 in.	335	0.333	0.573	79.5
	136	1.91	0.855	5.6
	137	0.891	0.713	36.7
	135	0.595	0.595	56.6
	11	1.58	0.586	30.6
	11	0.842	0.526	55.9
	11	0.578	0.509	81.6

* Exit fluid is actually a few degrees superheated.

Table 4. Comparison of Burnout Flux (Subcooled and Bulk Boiling)
in Zircaloy-2 Channels (Machined)
Exit Pressure 2000 psia

Mass Velocity 10^6 lb/hr-ft 2		Burnout Flux 10^6 Btu/hr-ft 2		Quality %	
12-1/16 in.	27 in.	12-1/16 in.	27 in.	12-1/16 in.	27 in.
2.67	2.74	0.808	0.892	12.3	11.8
2.57	2.47	0.860	0.806	13.0	13.0
1.94	2.03	0.771	0.793	17.0	14.3
	2.08		0.806		13.4
1.38	1.38	0.718	0.712	22.6	21.9
1.19	1.21	0.773	0.699	29.2	24.6
0.864	0.897	0.704	0.649	37.1	29.5
0.479	0.481	0.588	0.522	54.3	49.0
0.187	0.188	0.376	0.367	97.0	88.3
Exit Subcooling, F°					
1.24	1.21	0.979	1.11	11	3
0.888	0.906	0.921	0.847	14	4
	0.906		0.841		4
0.529	0.605	0.851	0.747	3	4

Table 5. Possible Effect of Inlet Subcooling on Burnout

Comparison Set	Quality %	Mass Velocity 10^6 lb/hr-ft^2	ΔT_{IN} F°	Burnout Flux 10^6 Btu/hr-ft^2
I	88.3	0.188	513	0.367*
I	100.0	0.187	62	0.207
II	49.0	0.481	263	0.522
II	48.5	0.840	10	0.397
III	29.5	0.897	177	0.649
III	27.4	1.32	62	0.565**
IV	24.6	1.21	133	0.699
IV	24.6	1.49	66	0.594
IV	24.1	2.03	10	0.504
V	13.0	2.47	73	0.806
V	14.3	2.03	94	0.793
V	15.7	2.24	61	0.732

* For comparison purposes, if quality = 100%, burnout flux may be estimated as approximately 0.325×10^6 .

** For comparison purposes, if quality = 29.5%, burnout flux may be estimated as approximately 0.550×10^6 .

Table 6. Possible Effect of L/D on Burnout

Comparison Set	ΔT_{IN} F°	Quality %	Mass Velocity 10^6 lb/hr-ft ²	Length in.	Burnout Flux 10^6 Btu/hr-ft ²
I	62	14.0	1.41	12-1/16	0.969
I	62	12.2	2.88	27	0.848
II	60	16.9	1.32	12-1/16	0.959
II	61	15.7	2.24	27	0.732
III	60	21.6	0.924	12-1/16	0.760
III	66	24.6	1.49	27	0.594
IV	60	46.7	0.466	12-1/16	0.618
IV	62	37.4	0.937	27	0.487*
V	62	92.5	0.179	12-1/16	0.402
V	62	72.6	0.467	27	0.392**
VI	8	29.2	1.19	12-1/16	0.773
VI	10	24.1	2.03	27	0.504
VII	9	37.1	0.864	12-1/16	0.704
VII	10	33.0	1.35	27	0.448
VIII	10	97.0	0.187	12-1/16	0.376***
VIII	9	100.0	0.157	27	0.170

* For comparison purposes, if quality = 46.7%, burnout flux may be estimated as approximately 0.450×10^6 .

** For comparison purposes, if quality = 92.5%, burnout flux may be estimated as approximately 0.300×10^6 .

*** For comparison purposes, if mass velocity = 0.157×10^6 , burnout flux may be estimated as approximately 0.300×10^6 .

Table 7. Subcooled and Bulk Boiling Burnout Flux in Zircaloy-2 Hot-Rolled Channels Inclined 45°. Exit Pressure 2000 psia
(Channel flow dimensions: 0.050 in. by 1 in. Length: 12-1/16 in.)

Inlet Temp °F	Inlet Vel ft/s	Mass Velocity G 10^6 lb/hr-ft 2	Exit Subcooling or Quality F° or %	Burnout Flux $\phi_{B.O.}$ 10^6 Btu/hr-ft 2	Remarks
301	2.08	0.431	49.6%	0.611	Burnout indicated by excessive wall temp
300	2.06	0.423	53.3%	0.642	Previous run reproduced
300	2.06	0.428	52.8%	0.622	Heat flux applied in increments of $10,000$ Btu/hr-ft 2 every 2 min, commencing well below $\phi_{B.O.}$ and increasing until burnout occurred
301	2.00	0.417	54.3%	0.611	Heat flux applied in increments of $10,000$ Btu/hr-ft 2 every min, commencing well below $\phi_{B.O.}$ and increasing until burnout occurred
301	2.08	0.431	55.6%	0.638	Same as above
302	5.03	1.04	1F°	0.909	Burnout indicated by wall temp excursion
300	5.09	1.05	1F°	0.924	Instability occurred indicating incipient burnout
300	5.08	1.05	1F°	0.924	Previous instability reproduced
300	5.06	1.05	11.4%	1.05	Heat flux applied in increments of $5,000$ Btu/hr-ft 2 every 2 min, commencing at $\phi = 0.820 \times 10^6$, until instability was noted at $\phi = 0.911 \times 10^6$. Flux was increased until wall temp excursion occurred at $\phi_{B.O.} = 1.05 \times 10^6$
301	5.16	1.07	2F°	0.939	Previous run reproduced with different test section and operating crew
295	9.00	1.85	31F°	1.44	Burnout indicated by excessive wall temp
500	5.8	1.03	15.26%	0.581	Instability first noted at $\phi = 0.528 \times 10^6$ Btu/hr-ft 2 at $G = 1.03 \times 10^6$ and quality = 11.6%. Heat flux was increased until burnout occurred at $\phi_{B.O.} = 0.581$ Btu/hr-ft 2 .
501	5.4	0.951	19.7%	0.562	Heat flux applied in increments of $20,000$ Btu/hr-ft 2 every min, commencing at $\phi = 0.350 \times 10^6$ Btu/hr-ft 2 . Instability observed at $\phi = 0.436 \times 10^6$ Btu/hr-ft 2 , $G = 0.957$ and quality = 7%. Heat flux was increased until burnout occurred.
500	6.1	1.09	31.7%	0.798	Burnout indicated by excessive wall temp
501	6.2	1.10	32.7%	0.810	Previous runs reproduced
500	9.8	1.74	2.95%	0.722	Instability occurred indicating incipient burnout
500	9.5	1.69	7.4%	0.770	Heat flux applied in increments of $20,000$ Btu/hr-ft 2 every min, commencing at a flux well below burnout. Instability noted at $\phi = 0.708 \times 10^6$ Btu/hr-ft 2 , $G = 1.69$ and quality = 3.7%. Heat flux was increased until burnout occurred.
599	5.4	0.828	45.15%	0.495	Incipient burnout
600	5.2	0.799	46.9%	0.492	Heat flux applied in increments of $10,000$ Btu/hr-ft 2 every min, commencing at $\phi = 0.602 \times 10^6$ Btu/hr-ft 2 . Incipient burnout was indicated at $\phi_{B.O.} = 0.482 \times 10^6$ by instability in wall temp.
500	5.0	0.800	45.99%	0.477	Heat flux applied in increments of $20,000$ Btu/hr-ft 2 every min, commencing at $\phi = 0.315 \times 10^6$. Incipient burnout was indicated by severe instability in wall temp.
599	9.7	1.5	29.7%	0.660	Burnout indicated by excessive wall temp

Table 8. Effect of Power Pulse on Burnout in Zircaloy-2 Hot-Rolled Channels
 Inclined 45°, Exit Pressure 2000 psia*
 (Channel flow dimensions: 0.050 in. by 1 in. Length: 12-1/16 in.)

Inlet Temp °F	Inlet Vel fps	Mass Velocity 10^6 lb/hr-ft ²	Heat Flux 10^6 Btu/hr-ft ²		Duration of Transient sec	Expected Steady-State Burnout Flux 10^6 Btu/hr-ft ²
			Initiation of Pulse	Termination of Pulse**		
301	5.0	1.04	0.692	0.853	1.5	0.900
300	5.0	1.04	0.692	0.858	1.5	0.900
300	5.0	1.04	0.692	1.31	2.5-3	0.900

* Exit subcooling not known because, due to the nonequilibrium condition of the loop, the exit water conditions were difficult to estimate.

** No burnout occurred in any of the tests.

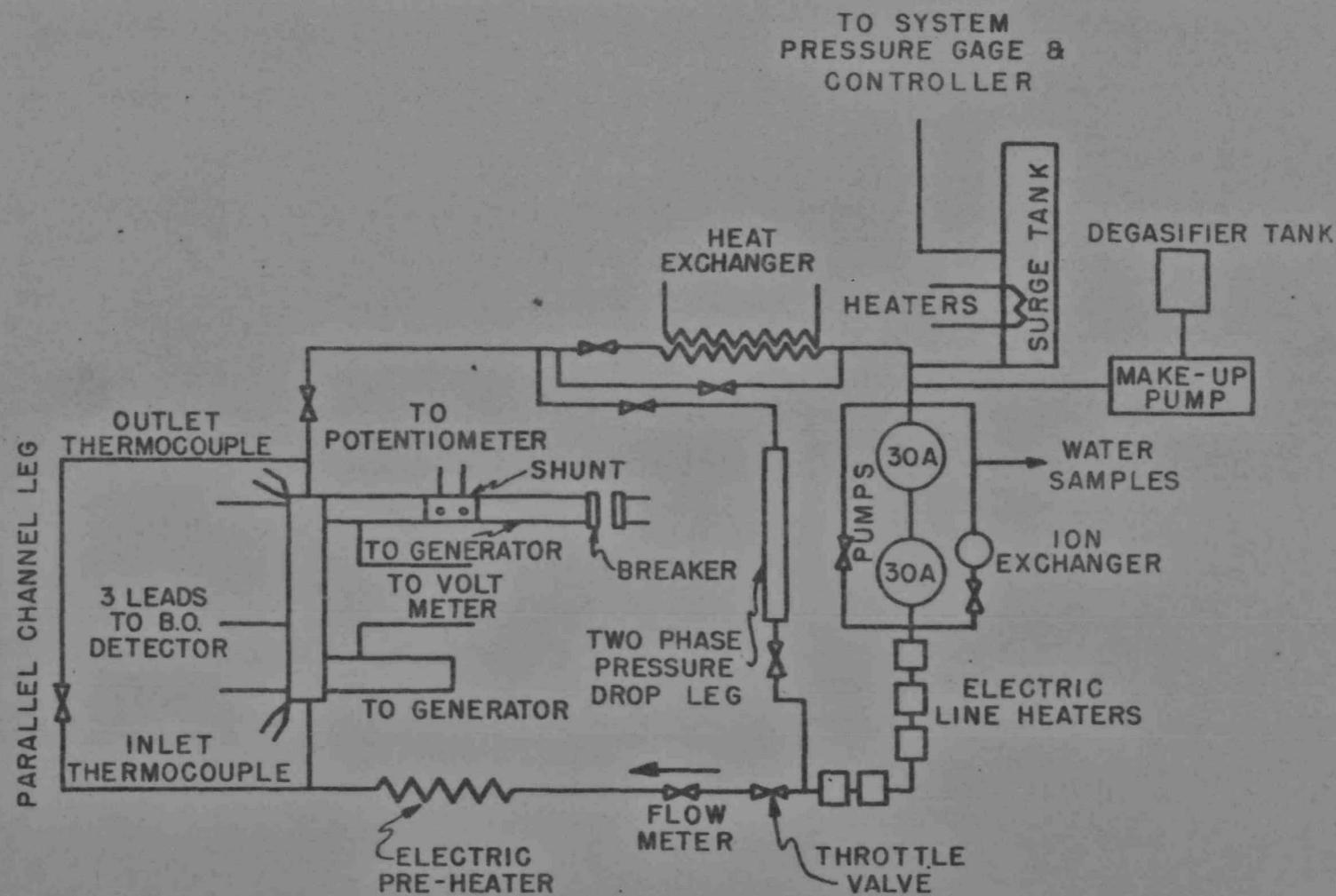


Fig. 1 Schematic Diagram of Burnout Loop

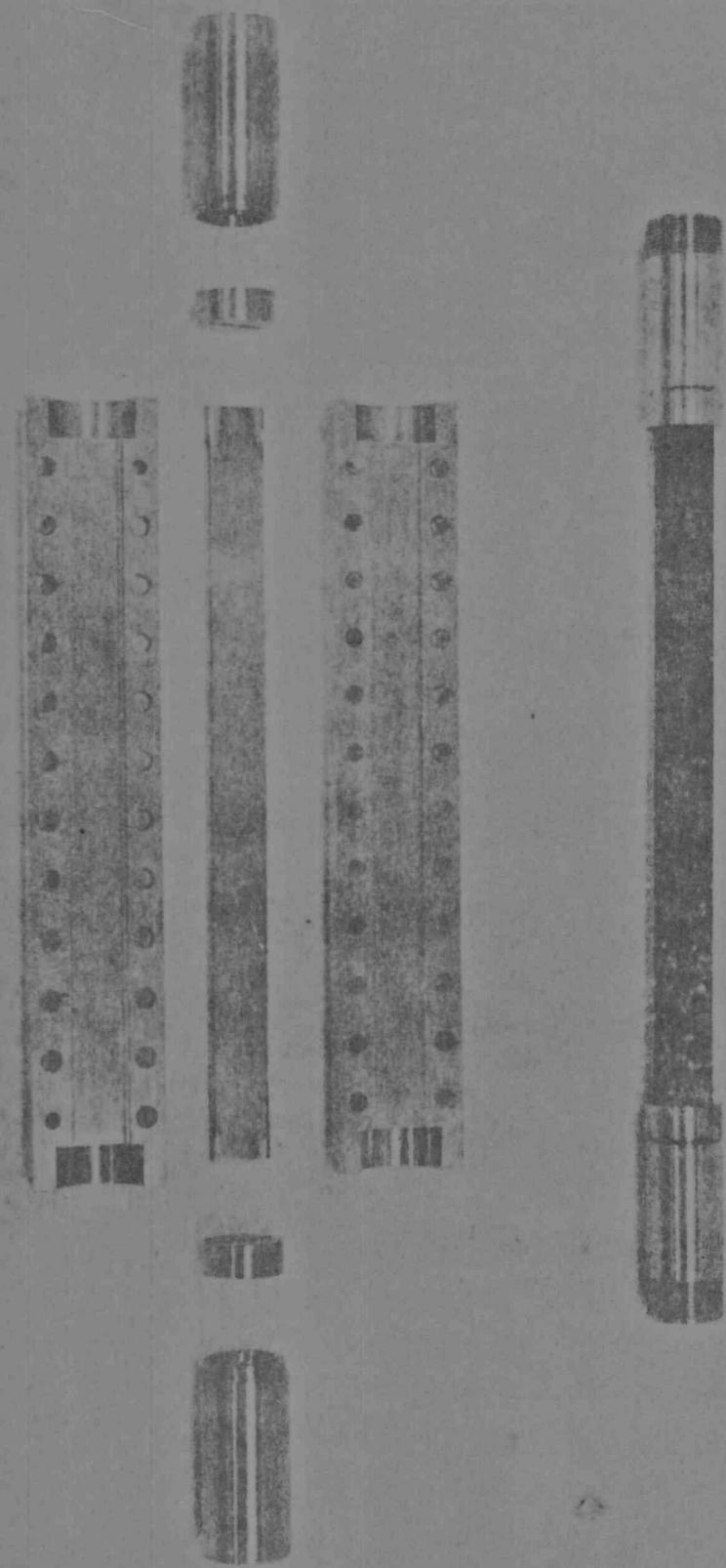

053
0231 2 3 4 5 6
Holes
1.3 mm

Fig. 2 Typical Test Specimen Assembly

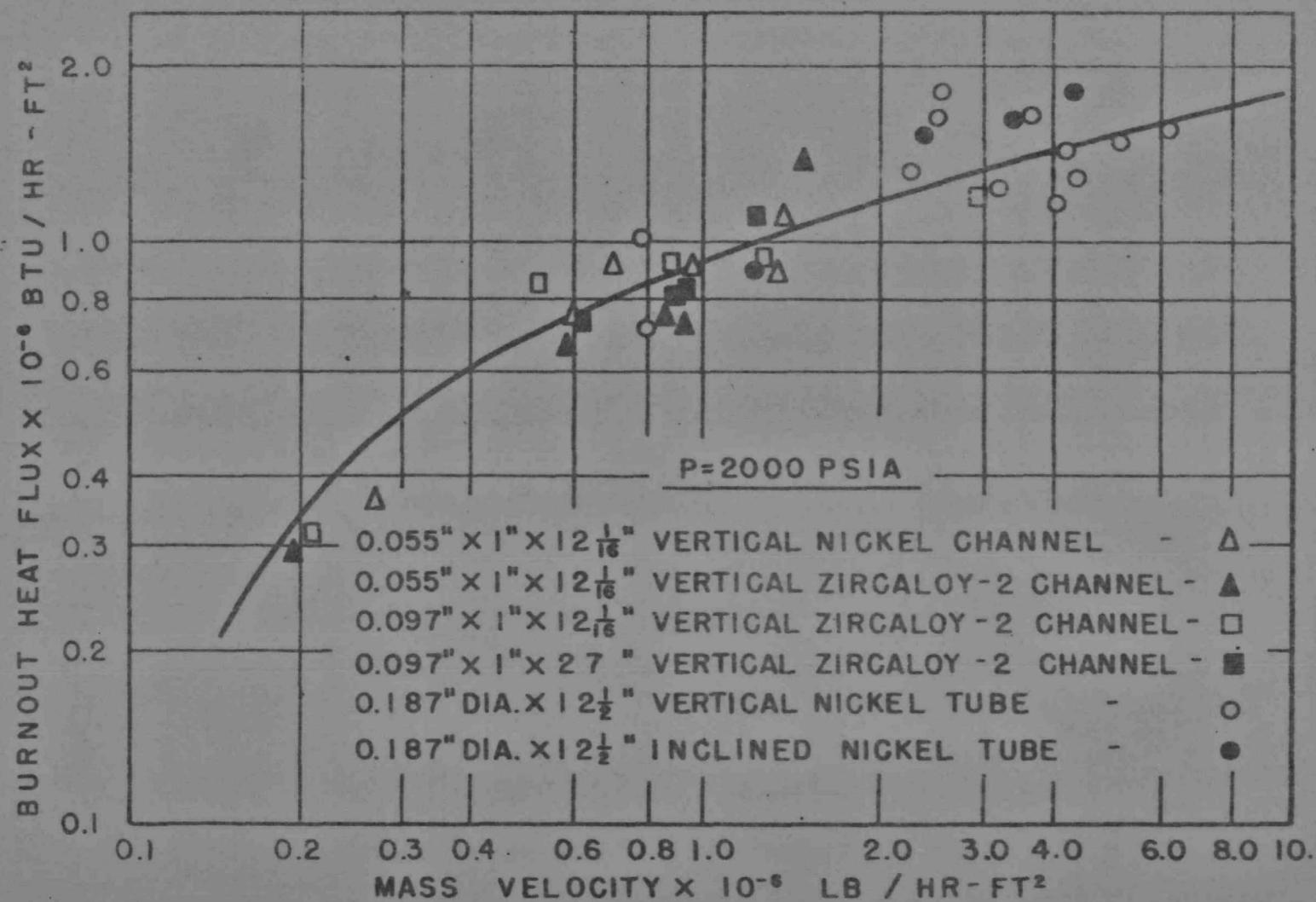


Fig. 3 Burnout Heat Flux vs Mass Velocity for Approximately Zero Exit Quality and Zero Exit Subcooling

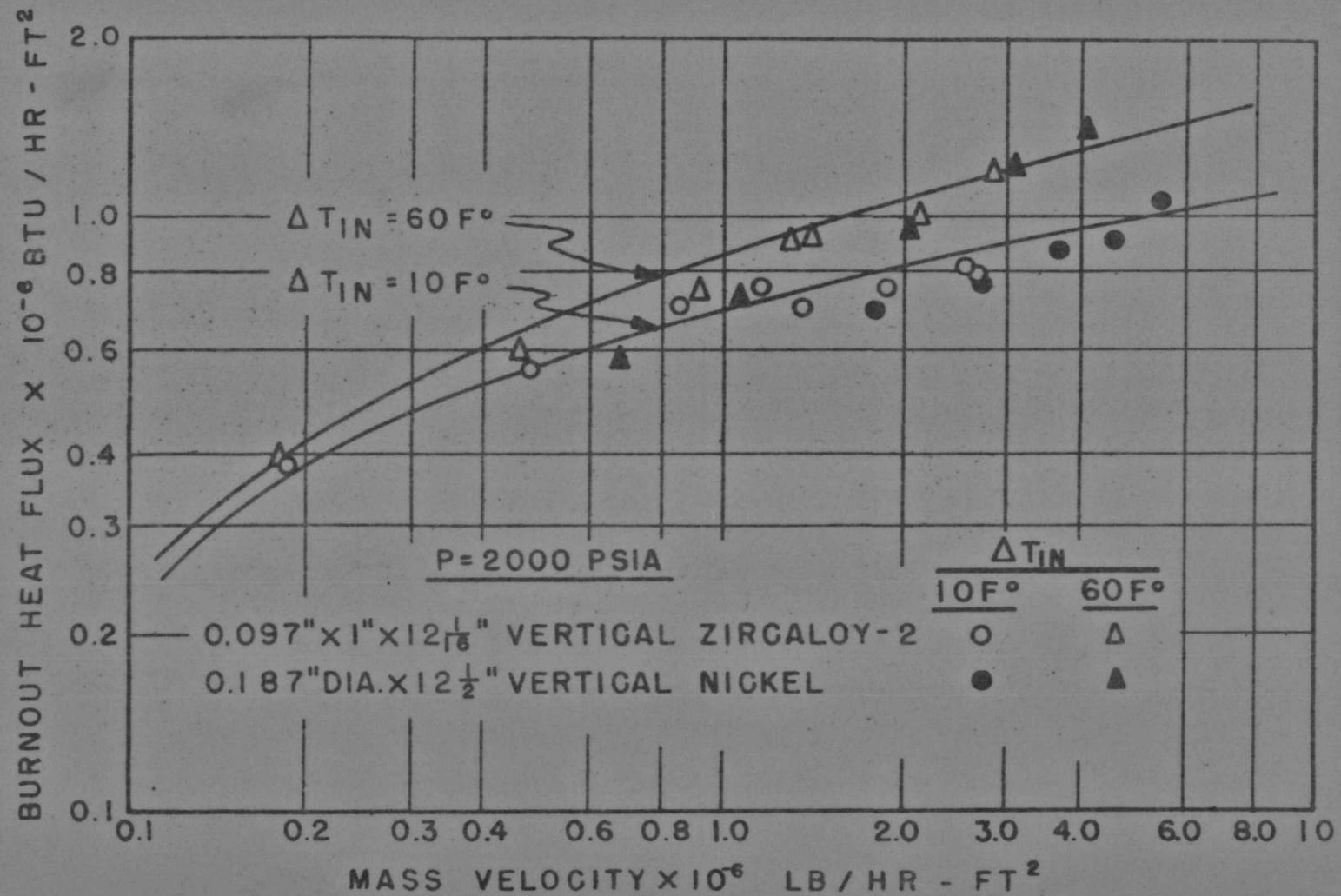


Fig. 4 Bulk Boiling Burnout Heat Flux vs Mass Velocity for 10F° and 60F° Inlet Subcoolings.
 (Note: The enthalpy at exit of the round tube and rectangular channel is approximately equal for a given heat flux, mass velocity, and inlet subcooling.)

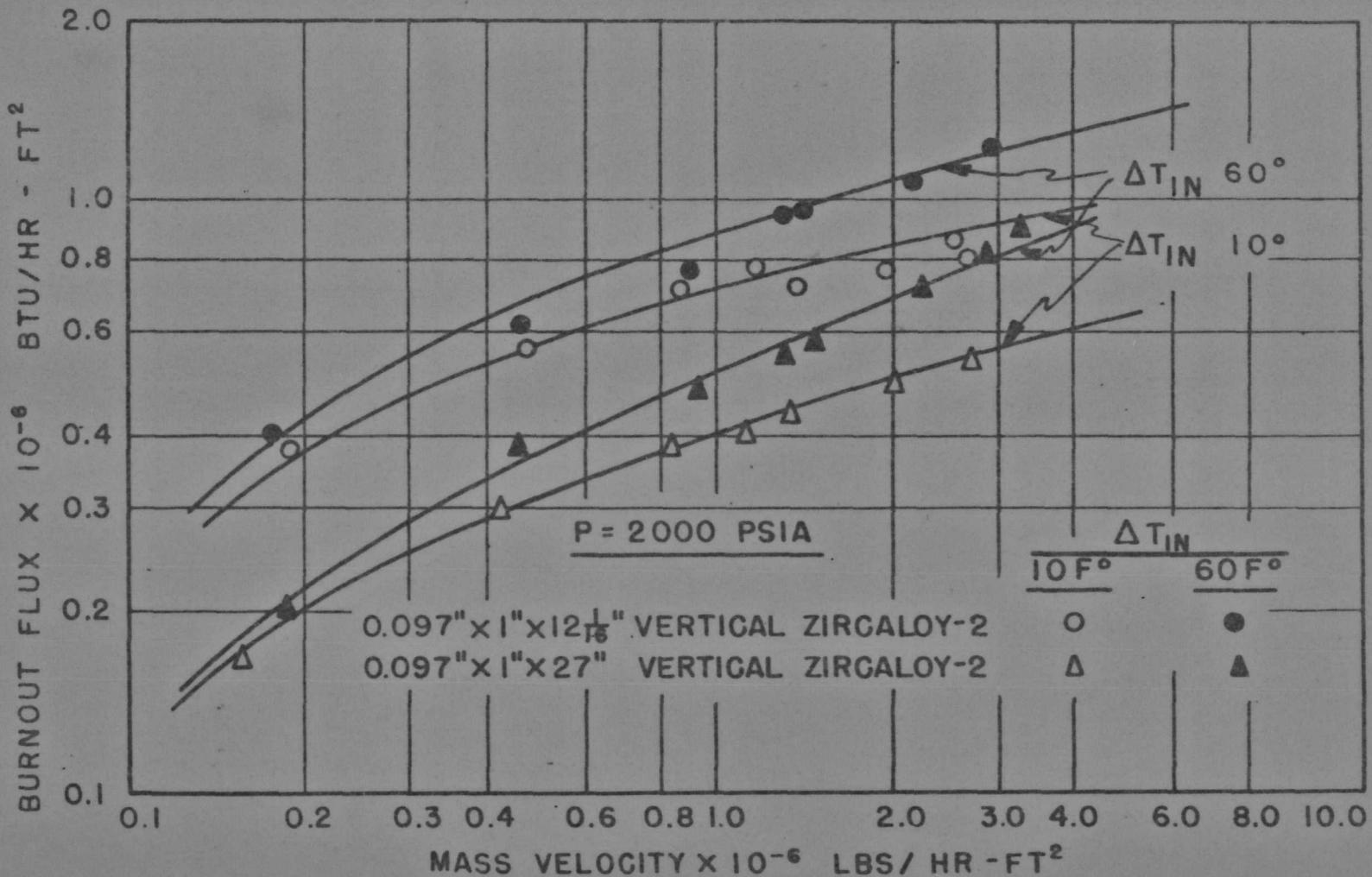


Fig. 5 Bulk Boiling Burnout Data vs Mass Velocity for $10^\circ F$ and $60^\circ F$ Inlet Subcoolings.
 (Note: The enthalpy at the exit of each channel is different for a given heat flux, mass velocity, and inlet subcooling.)

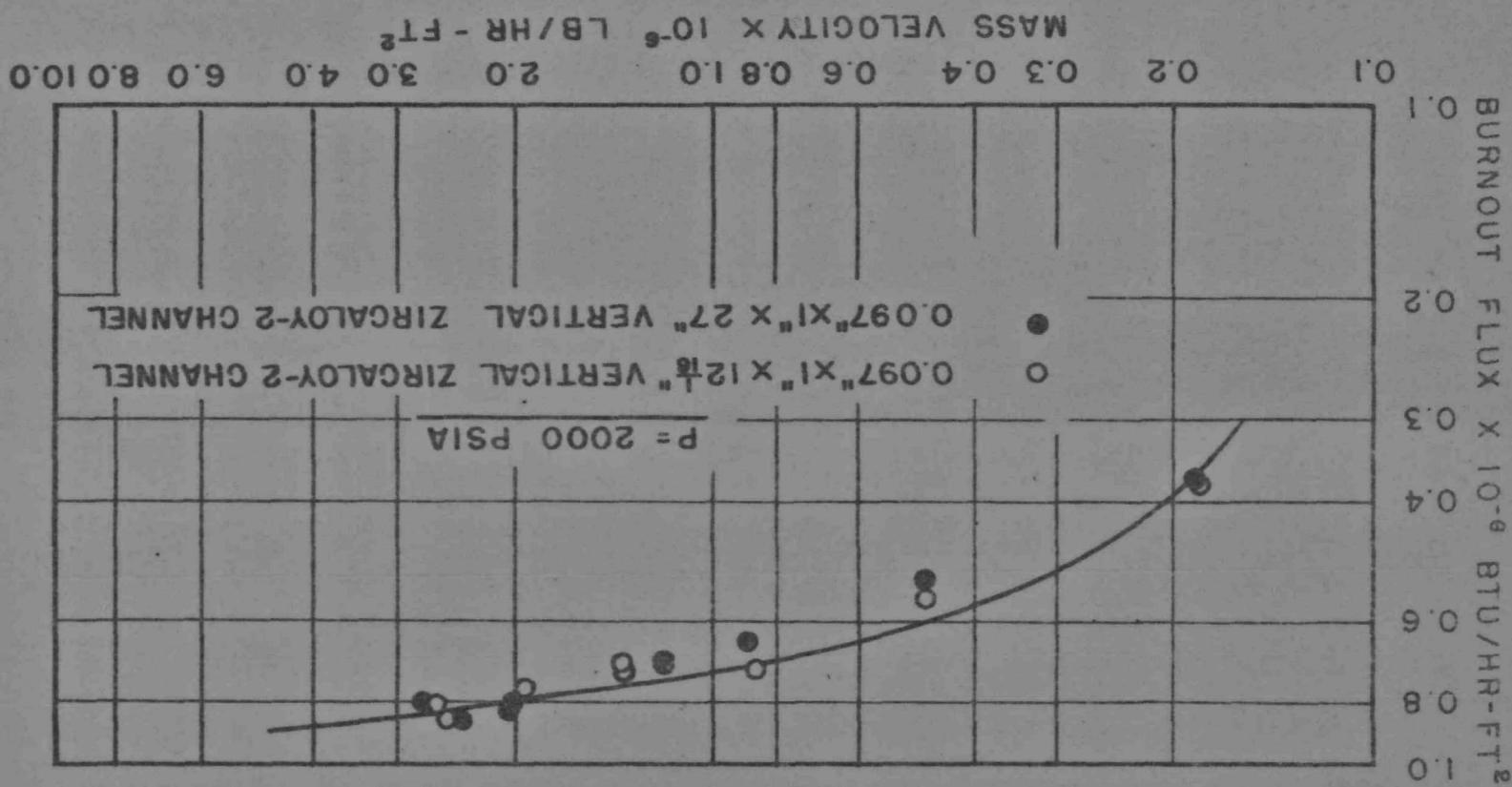


Fig. 6 An Investigation of the Effect of L/D Ratio on Burnout Flux for Vertical Rectangular Channels
(Note: The enthalpy of the fluid at the exit was the same in each channel for a given heat flux and mass velocity.)

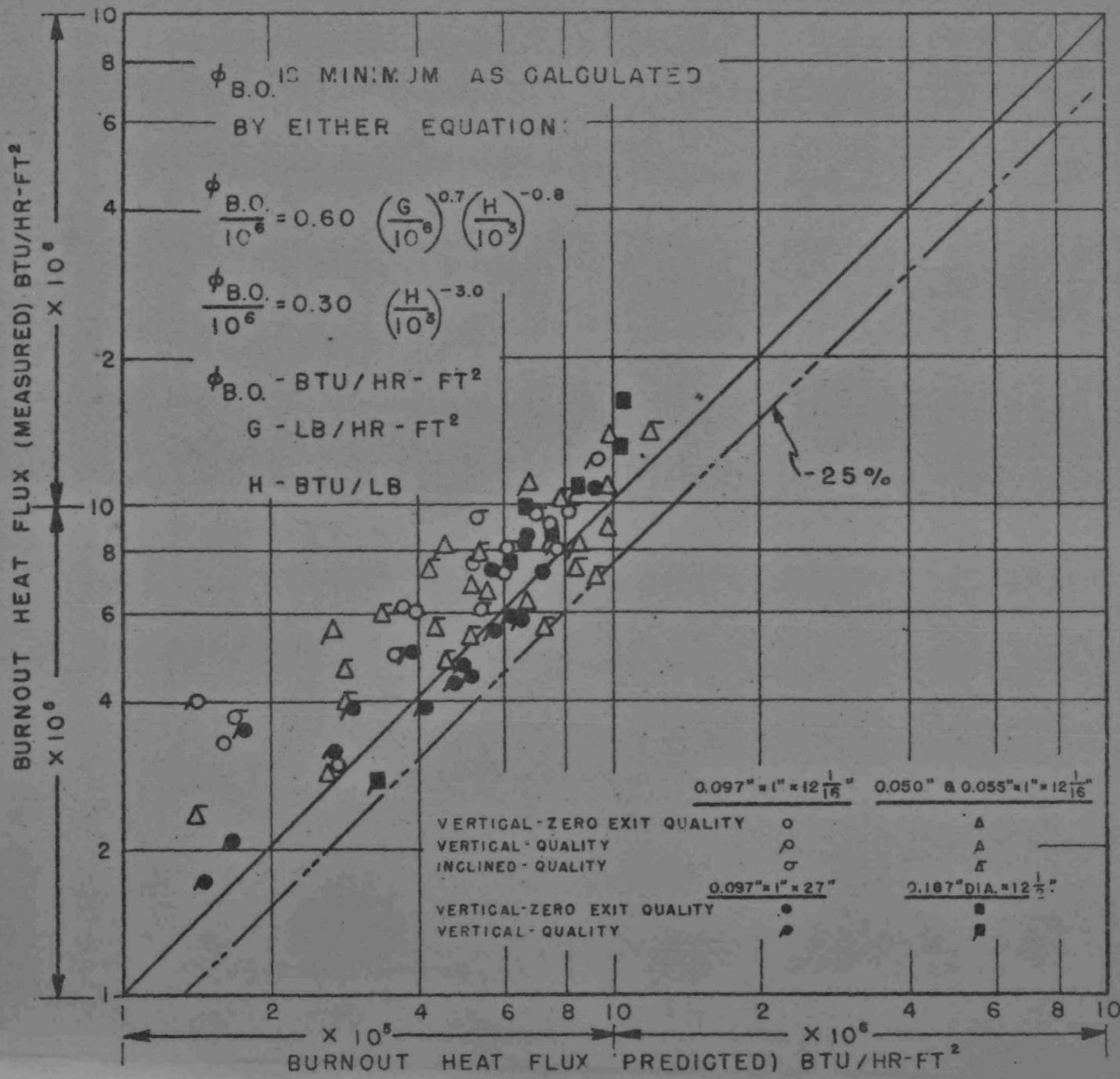


Fig. 7 Comparison of Bettis Data with Burnout Design Equation
(P = 2000 psia)

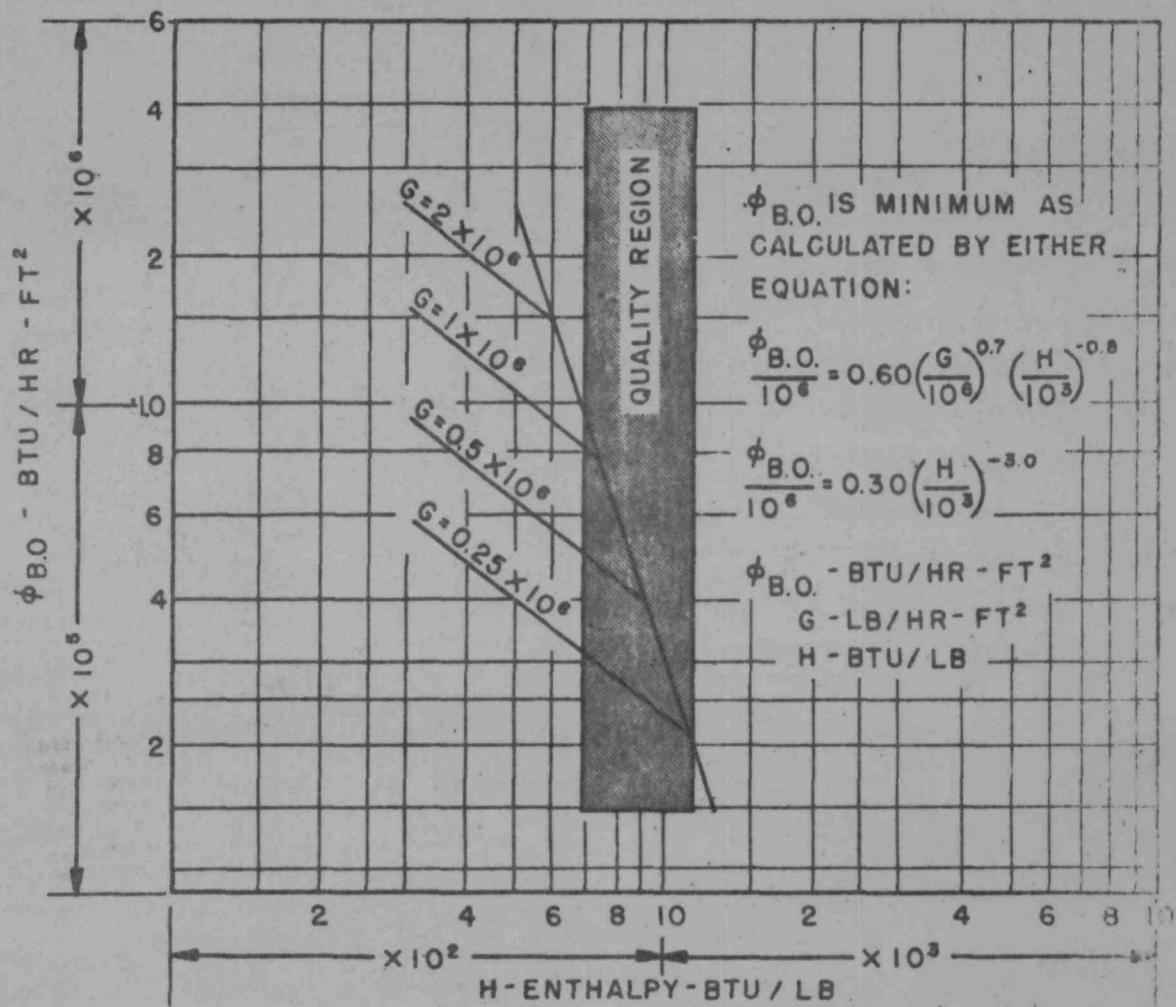


Fig. 8 Graph of Burnout Design Equation (P = 2000 psia)

053 029