

A MICROPROCESSOR SAMPLED DATA
PROCESS CONTROLLER

T. A. Seim

Pacific Northwest Laboratories
Richland, Washington 99352

NOVEMBER 1973

Prepared for the U.S. Atomic Energy
Commission under Contract AT(45-1):1830

NOTICE

The report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

PACIFIC NORTHWEST LABORATORY
operated by
BATTELLE
for the
U.S. ATOMIC ENERGY COMMISSION
Under Contract AT(45-1)-1830

Printed in the United States of America
Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22151
Price: Printed Copy \$5.45, Microfiche \$1.45

BNWL-1795

3 3679 00062 3001

A MICROPROCESSOR SAMPLED DATA
PROCESS CONTROLLER

by

T. A. Seim

November 1973

BATTELLE
PACIFIC NORTHWEST LABORATORIES
RICHLAND, WASHINGTON

A MICROPROCESSOR SAMPLED DATA
PROCESS CONTROLLER

ABSTRACT

A micro-miniaturized digital processor was utilized in the development of a sampled data process controller. While general purpose in nature, the processor was applied specifically to control temperature. Physically the processor was found to be well suited for industrial environments, as its relatively slow speed and high switching voltage levels made it exceptionally noise immune. Successful application was found to be more dependent on external software development support than anything else. This is because of the very limited nature of the processor in terms of memory and input-output peripherals.

SUMMARY

This report documents the application of an Intel MCS-8 microprocessor to sampled data process control. Microprocessors are small scale digital processors which offer low cost, small size, and high reliability to areas such as process control. The programming and application of microprocessors, however, present problems much different than those associated with minicomputer applications. Hence a major portion of the development was expended solving these problems, most of which centered around software development. It was concluded that software could only be conveniently and inexpensively developed with the use of a larger computer system.

The MCS-8 was found to be a highly reliable unit, and considerably more immune to electrical noise than conventional digital logic. This is due in part to its p-channel MOS construction, and in part to its relatively slow execution speed (higher speed logic is inherently more susceptible to electrical noise).

Because of the low cost of microprocessors, many new application areas will become feasible. But this depends directly on minimizing other development costs as well, notably software development costs. The potential impact of microprocessors on technology and productivity is tremendous if the application problems are known and understood.

CONTENTS

SUMMARY	i
ILLUSTRATIONS	ii
INTRODUCTION	1
Application Description	1
Feasibility	2
Sampled Data Control Systems	4
Feedback Control	5
Development Sequence	6
CONCLUSIONS AND RECOMMENDATIONS	9
Reliability	9
Other Processors	10
Cost Reduction	11
Packaging	13
INSTALLATION	14
Controller	14
Cables	14
Stepping Motor	14
OPERATING INSTRUCTIONS	17
Normal Operation	17
Adjustments	17
Control Response Adjustments	17
Proportional Gain.	19
Integral Gain	19
Differential Gain.	20
MAINTENANCE.	22
Digital Process Simulator	22
Test Programs	22
Calibration	27
Oscilloscope Waveforms	28
Maintaining the Processor	29
Single Stepping	30
ODT	30
Memory	31

CONTENTS (continued)

SOFTWARE	34
Octal Debug Technique	36
MCS-8 Instruction Set	38
Control Program	39
Digital Filter.	41
Multiple Precision Data	43
Control Algorithm	44
Sequential Control	46
THEORY OF OPERATION	48
Intel Micro Computer Set	48
MCS-4	48
MCS-8	51
MCS-8 Basic System	58
Interface Logic	60
Digital Simulator	65
ACKNOWLEDGMENT	67
BIBLIOGRAPHY	68
APPENDIX A - WIRING SCHEMATICS	
APPENDIX B - FABRICATION DOCUMENTS	
APPENDIX C - PROGRAM LISTINGS	
APPENDIX D - CALIBRATION TABLE	

ILLUSTRATIONS

<u>Figure</u>	<u>Title</u>	
1	Signal sampling	4
2	Single loop feedback control.	5
3	Control system block diagram.	6
4	Prototype braze controller	8
5	Input/output connectors	15
6	Controller internal view.	18
7	Effects of various proportional gain settings	21
8	Adjusting integral control	21
9	Process simulator connected to the controller	23
10	Process simulator	24
11	Controller setup for maintenance and calibration.	25
12	Real time clock waveforms	28
13	Data multiplexer waveforms	29
14	Quantization error	41
15	4004 CPU block diagram	50
16	8008 CPU block diagram	53
17	MCS-8 state diagram	54
18	MCS-8 system block diagram	59
19	Clock timing diagram.	59
20	Detailed control system block diagram	61
21	Stepping motor translator	63
22	Translator output	64
23	Block diagram of the digital simulator	66

A MICROPROCESSOR SAMPLED DATA
PROCESS CONTROLLER

INTRODUCTION

Under initial funding from Lawrence Livermore Laboratory, Livermore, California, and later by funding from Dow Chemical, Rocky Flats Division, Golden, Colorado, Battelle was directed to undertake two tasks. First, establish the feasibility of using large scale integrated (LSI) circuit computers known as *microprocessors* in industrial environments; and secondly to implement a digital brazing process controller with a microprocessor. This report is concerned primarily with the later task, but discusses topics of the former where pertinent.

Application Description

The wider goal, of which this development was a part, was to upgrade the performance of a brazing process and minimize uncertainties of the joint parameters. This, in turn, would reduce rejects and improve component reliability, and would ease the problems of a component failure analysis.

The braze is done under high vacuum, with heat applied by an inductively coupled coil. The coil is fed by a three phase motor-generator. Heating energy is controlled by the voltage applied to the generator's primary winding. Presently the brazing temperature is uncontrolled, and its rise time varies from part to part, depending upon the degree of coupling between the heating coil and the part. Also the temperature rise, or overshoot, after the braze occurs is unknown. The object of closed loop control is to have repeatable rise time and minimal overshoot. It was also specified that a post-braze temperature hold be maintained for a selectable period of time.

During discussions of this problem at Battelle in March of 1972 it was agreed that a small digital processor with its control program stored in an unchangeable type of media, termed a *read only memory* (ROM)¹, would satisfy the requirements of the controller for the brazing process. Recent semiconductor developments had made available a digital processing unit in a single integrated circuit (IC), which was ideal for the processor required by the controller. From this base a controller was developed using the microprocessor and analog input and output subsystems. The use of ROM for program storage eliminated the problems of alteration caused by electro-magnetic interference (EMI).²

Feasibility

The use of microprocessors in industrial applications have been demonstrated to be a viable alternative to conventional control techniques. They offer improvements in reliability, capability, and cost. Further, such advantages as vastly simplified maintenance techniques (the "throw-away" philosophy) will minimize the necessity of employing skilled technicians to keep this equipment in operating order, which is especially inviting at a time when skilled labor is becoming increasingly scarce. But this is the positive outlook, the negative aspects include the fact that digital processors are high technology devices, and require at least an acquaintance with the numerous technologies they touch on. The difficulty is that many of these areas are simply out of the realm of the average control engineer. In other words, some education and re-orientation of one's thinking are in order. For instance, the idea that reliability is a function of the switching function complexity (i.e. the number of relay contacts) does not hold for microprocessors, where reliability is more a function of the number of interconnections. As the complexity of the

1. *The actual memory used could not only be programmed, but could also be erased and reprogrammed indefinitely. It was read only, or unchangeable, in the sense that this operation could not be done under program control, but took a special programming device which applied programming pulses unavailable to the processor.*
2. *Some programmable controllers used core memory for program storage, and had problems because of EMI.*

individual circuits increase the number of interconnections drop significantly, thus yielding a considerable reliability increase.

Obsolescence of the controller is minimized by (a) the universality of the control element, and (b) the ability of the unit to be reprogrammed. The latter feature is especially important with an in-place process which must be updated to some new specifications. Redesign of an existing relay control panel is a costly and time-consuming task, but the alteration of a control program is a far less formidable undertaking. Testimony to this observation is readily available from numerous special purpose controllers now obsolete, while computers procured at the same time are still performing valuable functions.

Apparent contradictions will be the order of the day for some time for those recently introduced to this area. The initial impression one has of microprocessors is that of unbridled complexity. Yet microprocessors represent simplicity itself. Instead of being confronted with a bewildering array of semi-compatible control elements the microprocessor represents a definite move toward standardization. Instead of hundreds or thousands of unique components a control function can be performed by single component, the digital processor. Many functions can be executed by one processor, whose particular character is governed by the control program.

The control engineer who is unacquainted with computer technology is not the only one caught in the tides of change. Engineers already associated with computer applications must accept some radically different theorems of use ("rules of thumb") concerning microprocessors. For the most part the central processor was treated as a scarce resource which must be utilized to the utmost. This is direct result of the cost of the processor and its associated peripherals. Consequently much effort has been expended to make programs as efficient as possible, and to maximize the number of functions performed by the processor (the most irritating sight a programmer can see is a computer which is not being used). This concept is being invalidated by the microprocessor, whose cost is becoming

an insignificant factor. In other words the processor has changed from a scarce resource to an overabundant resource, which can be used almost at will. The impact of this new factor alone is so immense as to defy full consideration.

If the processor is no longer the scarce resource, what is? Unquestionably this is in the domain of invested man-time, which continues to rise and is accelerated by the rapidly changing technology. If savings are to be realized it will be by minimizing the invested man time in each application. Specific recommendations will be made as how to fully use microprocessors, while minimizing the investment in both man-time and equipment. But it must be expected that a greater development of capabilities is required than, say, relay controller design. It is only through the availability of powerful development tools that the full advantage of microprocessors can be gained.

Sampled Data Control Systems

Originally sampled data control systems implied the existence of a sampler in what was otherwise a continuous system. The sampler would measure a continuous signal at discrete points in time for short intervals, thereby approximating the input with a pulse train similar to Fig. 1.

FIGURE 1. *Signal sampling*

While sampled data control systems still are used which contain continuous type components this term is more often applied to digital control systems which, by the very nature, are discrete. Indeed, it was the advent of practical digital control systems that motivated the theoretical development of sampled data control.

Unfortunately until very recently the cost and reliability of a completely digital system had a hard time competing directly with analog controllers economically. The prime use of computers was not in the control loops, but in a supervisory role performing functions which simply could not be done with analog techniques. Now, however, the economics of LSI make it feasible for general digital controllers to compete directly with their analog counterparts, almost on a loop-for-loop basis.

Feedback Control

The initial goal was to implement a single feedback control loop as diagrammed in Fig. 2.

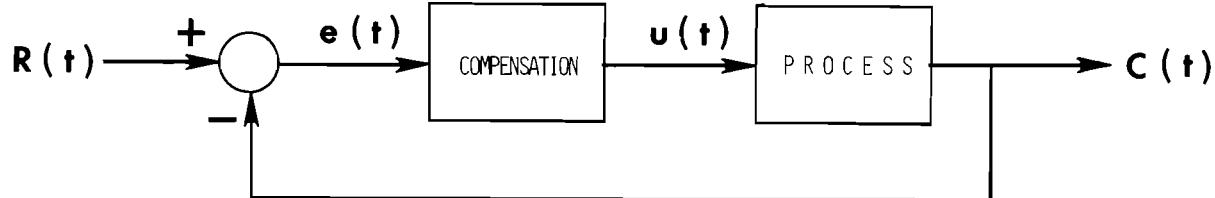


FIGURE 2. Single loop feedback control

The target, or desired control point is $R(t)$, while $C(t)$ is the actual process output, in this case temperature. Their difference, the control error $e(t)$, is what the controller uses to compute the control action, $U(t)$.

As the time functional notation suggests $R(t)$ is not a constant "setpoint," but is rather a function of time, or a time profile. This allows the temperature to be increased in a controlled manner during a brazing cycle and makes the temperature control more stable.

The feedback control system of Fig. 2 takes on the physical formulation of Fig. 3.

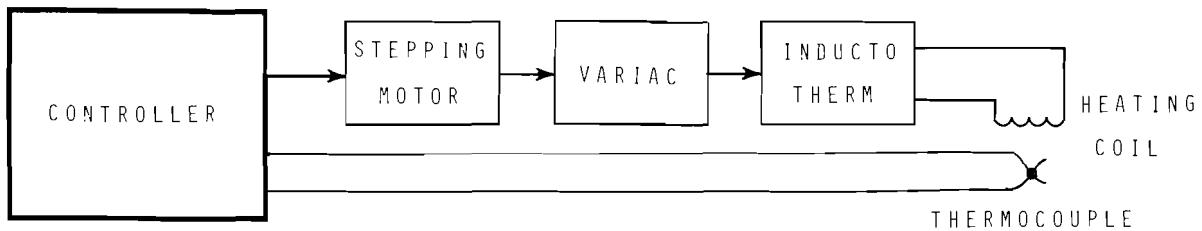


FIGURE 3. Controller internal view

The temperature, which corresponds to $C(t)$, is sensed by a thermocouple, and is amplified and converted to digital form by the controller. The control output, $U(t)$, is in the form of rotary motion derived from a stepping motor. This is converted to electrical energy by a Variac to ultimately supply power to a heating coil. The independent control variable, $R(t)$, is generated internally by the controller from a profile table.

Development Sequence

While the end result is most visible in the hardware form the major part of the development effort was in software. This includes not only the control program, but several other programs written for a Battelle-owned SEL 840. The SEL 840 proved to be a convenient vehicle with which to develop the controller software, most of which was designed and operational before any hardware had been received. Part of the SEL 840 software included a simulator for the microprocessor. With this program the SEL 840 simulated the microprocessor in every detail, allowing it to be used to debug software for use on the microprocessor.

Final design of the hardware was not done until the software was completely operational. This resulted in the least number of hardware design changes, and the most efficient software design. Then the hardware was breadboarded using a device designed for this purpose by the manufacturer of the microprocessor. This breadboard was used to find any errors in the control program, and to check out a data link to the SEL 840. This

data link was used primarily to load programs into the controller (the programs were stored in volatile memory at this time). Because all of these preparatory steps were taken the main task involved with the prototype were final fabrication details, as most all the design problems had been solved. The prototype controller, remote control box, and stepping motor are pictured in Fig. 4.

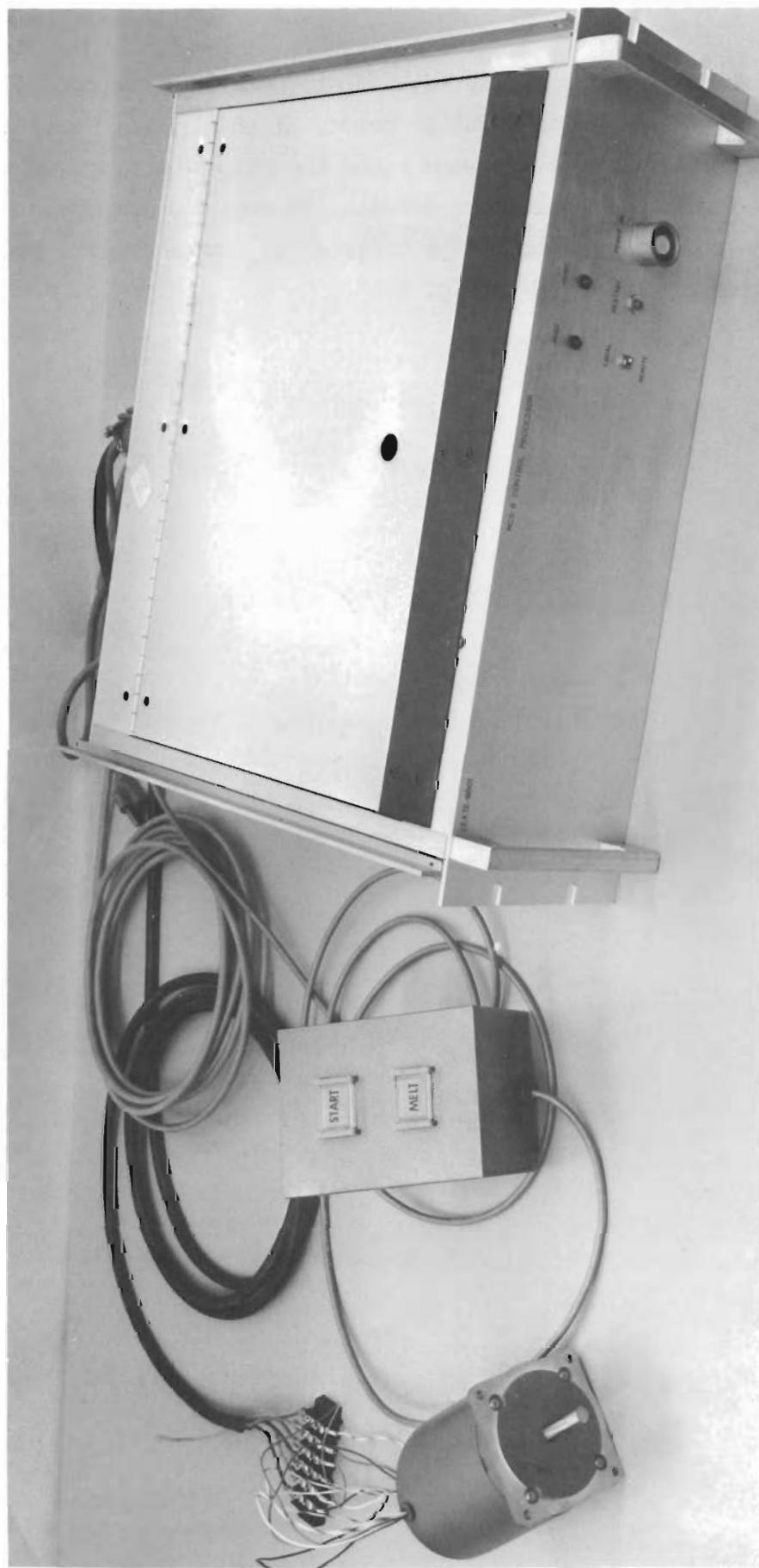


FIGURE 4. Prototype braze controller

CONCLUSIONS AND RECOMMENDATIONSReliability

The initial conclusion I have reached based on personal experience with MCS-8 processors at Battelle and other installations is that they are highly reliable and relatively immune to EMI. The only reliability problems I encountered were with the RAM memory units.¹ These exhibited a failure rate which was unusually high (ten percent of exercised units). The sample size, however, was too small (40 IC's) to base a firm judgment on.

The PROM's were never observed to fail when used properly. They are probably a more reliable memory medium than the more common magnetic core memories. The later devices are known to be susceptible to EMI commonly found in industrial environments. The immunity of the PROM's is due to the insulated floating gate on which the data are stored (each integrated circuit has 2048 such gates). This gate is isolated in an extremely high resistance material. Data are stored by avalanche injecting a charge into the gate by relatively high voltage pulses. Since EMI is highly unlikely to duplicate these conditions the only possibility for loss of data is through degradation of the charge stored on the gate by leakage (it can also be erased with a high intensity short wavelength ultraviolet light). This degradation has been measured and found to take years to occur (only about three years data are available, with estimates based on projections past this point). This failure mechanism is considered to be insignificant as annual, or bi-annual, re-programming defeats it.

Reliability of the processor can be further increased by minimizing the digital logic external to the processor. As is explained in the section on the micro computer set, much of this external circuitry is due to the choice of packaging of the MCS-8. The device is pin limited and must multiplex data in and out of the processor. Much of the external circuitry is required to handle this multiplexing.

¹ *Volatile storage devices used for storing program variables.*

Other Processors

Intel will soon introduce an improved version of the 8008 processor, numbered 8080, which will eliminate these and other problems with the unit. Furthermore, programs written for the 8008 will run on the 8080 (which is what is called "upwards compatible"). The instruction set will be expanded by about 60 percent more instructions than are available with the 8008, and will execute these instructions several times faster than the 8008.

Future applications should definitely consider other available microprocessors. Currently most semiconductor manufacturers are developing microprocessors, some of which are available. An incomplete list of these companies is:

American Microsystems, Inc.

Computer Automation

Fairchild Semiconductor

National Semiconductor

RCA

Rockwell International

Teledyne

Texas Instruments.

Of these only Computer Automation and Rockwell International have units available, while Teledyne repackages chips manufactured by some other firm (as many as 30 companies are packaging the Intel processors, mostly the MCS-4).

Choice of the processor will increasingly depend less on performance and more on software support. This is a simple result of the generally long time constants found in process control (high performance applications, of course, will be an exception). In other words if a processor can perform a task within specified time constraints the major consideration will be what it costs to build and program it. And since the costs of building the processor are decreasing the major cost will increasingly be programming (high volume applications are the exception here).

Cost Reduction

Software costs can be minimized in at least two ways. The first way is to take advantage of vendor supplied software. This typically consists of programs such as assemblers, compilers, and operating systems. Selection of a processor can in part be based on the software available for it and the cost of that software. Intel offers programs written in Fortran to assemble code for the MCS-8 and simulate the MCS-8, either as an outright sale or from a time sharing service. For us neither of those choices was acceptable due to the high cost. It was more economical to develop the same programs for our own computer system. The reason for that lies in the fact that this type of program, when written in Fortran, becomes machine dependent. The effort involved in adapting the Fortran code for our own system plus the acquisition cost made it more economical to design what we wanted to begin with.

Computer Automation, a minicomputer manufacturer as opposed to a semiconductor manufacturer, based their micro design on a previous minicomputer series. Since the instruction sets were compatible, software developed for the earlier series can be used with the micro series. This presents the tremendous advantage of a large body of existing software. It must be understood that the Computer Automation processor is considerably more powerful than the MCS-8, being comparable to most minicomputers in all respects with the exception of speed. Thus with a reasonable amount of memory (at least 4K words) it is possible to operate an assembler with the unit. The primary disadvantage here is with the lack of high speed peripherals and mass storage. This can be overcome by using it in conjunction with another computer system already possessing those peripherals, communicating by means of a medium speed data link (an asynchronous 9600 baud interface will do nicely).

Another approach to take is to develop a simulator for the target computer, and execute the assembler with simulator on the host computer. This has proven satisfactory in the past, and has the great advantage of not requiring the availability of the target computer. The value of a good simulator, in this and other respects, should not be under-estimated.

Almost all of the software development for this project was done in this fashion, with few changes when run on the actual processor. If this approach had not been taken a delay of between one and two months would have resulted. In addition, program changes can be tested with the simulator before they are installed in the field. If the process operation is critical, or the time to deliver and install a change lengthy, this alone can be justification for the simulator's development.

The other area where software development costs can be saved falls in the category of remote site assistance. Generally the application process will be physically separated from the research and development location, perhaps by thousands of miles. Thus it may be inconvenient, or patently impractical, to make repeated trips to the host computer for program changes and re-assemblies. Yet the use of these facilities is very useful for such purposes as

- Program debug
- Equipment installation
- Program changes
- Process alterations.

The obvious conclusion is some sort of data link between the host computer and the process control site. Where it is infeasible to install a dedicated communications line the telephone lines can be used. This requires a data modulator/demodulator (modem) at each location. The use of switched telephone lines for data transmission involves well known problems. These problems can and have been solved by the use of error checking techniques. The teletype interface can be used to complete the data link from the modem to the MCS-8 processor (the serial data format is compatible with most modems). In this case the Teletype cannot be used while the modem is connected to the processor. A second telephone line would be necessary for the operators at each end to communicate. Another alternative is the addition of an interface dedicated to the modem so that the Teletype would be on-line with the processor while the communications link is established.

The primary use of the data link would be to load programs in writable storage (RAM), but other uses come to mind. For instance, by means of the necessary "operating system" (not to be confused with operating systems developed for larger systems) the system developer could monitor and change program data and parameters during operation. At present this can only be done by stopping the processor and, hence, the process.

Packaging

Packaging and interface hardware can easily dwarf the cost of the microprocessor, its peripheral logic, and memory. And adapting a particular microprocessor to a package configuration consistent with the user's usual electronics packaging can be an expensive proposition. Packaging alone can sway the choice from a lower cost, higher performance processor, merely because the older processor is already available in a desirable package.

INSTALLATIONController

The controller rack mounts and is equipped with ball bearing slides with a tilt-lock mechanism. Other than physical proximity to the brazing process the only consideration need be given toward placement is the availability of free air flow behind the unit. The box has two fans, one for blowing cool air in and the other for exhausting hot air. The input fan has no filter so if installation is in a dusty area it may be wise to add a filter to this fan.

Cables

The unit has three cables which mate to the controller via two connectors. The analog input uses a special twisted pair shielded cable and three conductor coaxial connector (both manufactured by Trompeter Electronics), J56, for minimal electrical noise pickup (Fig. 5).

The other two cables are for the remote control box and the stepping motor. They both use J53, control output, for mating to the controller, and are both ten feet long.

Stepping Motor

The HS-50 stepping motor requires a 15 volt, 6 amp power supply, connected by terminal strip J55 (Fig. 5). If desired, the power can be provided by two 15 volt, 3 amp supplies. Good regulation of this power is not necessary, and a brute force regulated supply is more than sufficient. Sixteen gauge wire should be used in the power distribution.

The program is designed to have the motor connect directly to a Variac, or equivalent. The control output is limited to 180 degrees maximum rotation for this reason. If the 85 oz-in torque of the motor is insufficient to rotate the shaft, gearing can be added, but this will require a program change.

Because there is no feedback from the stepping motor it is necessary for the program to rotate the motor far enough in CCW direction to reach a travel limit. After this initialization has been accomplished the program

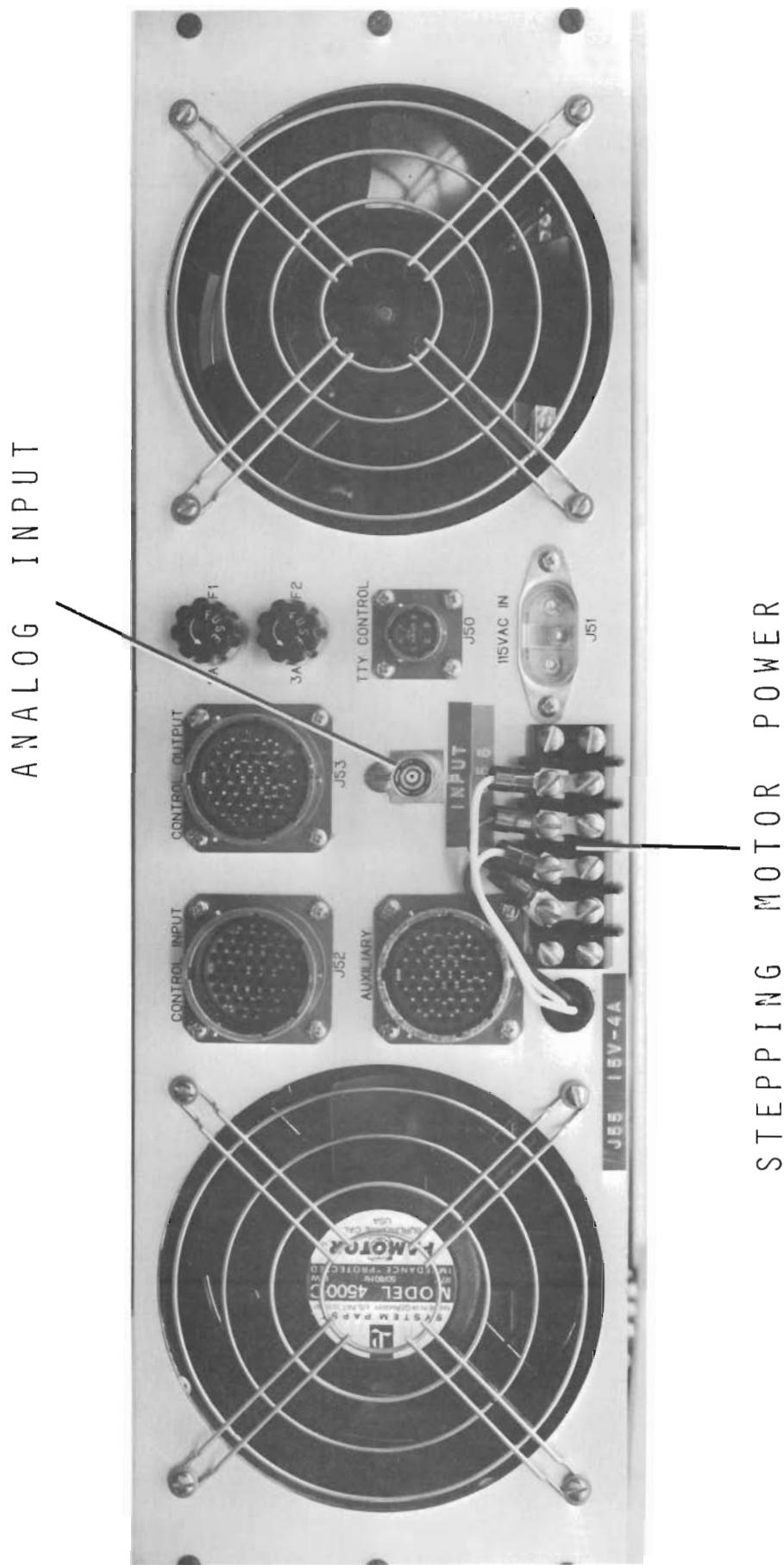


FIGURE 5. Input/output connectors

maintains the motors position by counting all output pulses, until heat is to be shutoff following the braze melt. At this time initialization is repeated to assure no accumulating error. A limit switch is sensed by the program to prevent excessive rotation of the Variac.

OPERATING INSTRUCTIONSNormal Operation

When power is first applied to the controller it will be necessary to restart the unit by pressing the switch on the front panel. This will also initialize the control program and return the stepping motor to home position, so that in the event of an emergency automatic control can be shut off by pushing the restart switch.

Usually power will be on and the program running. Under these conditions the operator need only be concerned with the pushbutton switches on the remote control box. A brazing cycle is initiated by pressing the START switch. This commands the controller to raise the temperature up to the brazing point at a preset rate (see Adjustments section for discussion of this and other control settings). Once at the brazing temperature the controller will hold indefinitely at this temperature until the operator signals that melt has occurred by pressing the MELT switch. This causes the controller to continue holding for a pre-set time period, after which the heat is shut completely off.

Adjustments

Controller adjustments are located inside of the enclosure towards the front on the right hand side (see Fig. 6). Adjustments include three gain control potentiometers for the feedback compensation and two data entry switches for profile control. The parameters determined by the later two switches set the rate of rise (in minutes to reach brazing temperature) and the hold time following the braze melt (in tens of seconds) before heat shut-off. The hold time may *not* be set at zero, as the program will treat this situation incorrectly.

Control Response Adjustments

The gain constants associated with each of the three different control actions: proportional, integral, and differential, are set by the previously mentioned potentiometers. For satisfactory operation these controls must be set correctly, or either under-control or unstable response will result. Many references in the literature describe techniques

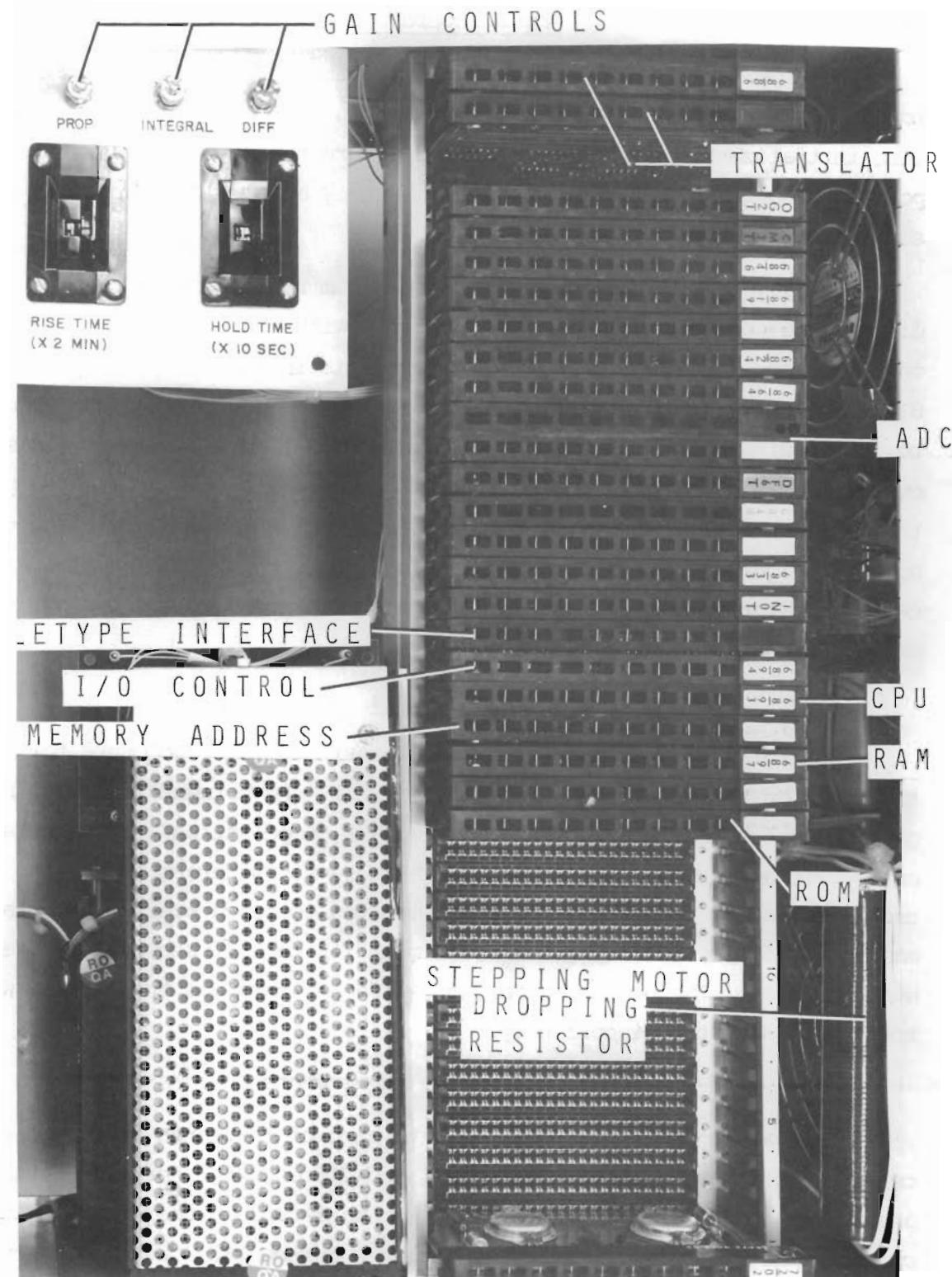


FIGURE 6. Controller internal view.

for setting these controls, but most assume detailed characterization of the controlled process. The method given here anticipates the absence of this knowledge, and only requires a strip chart recorder attached to the temperature feedback signal (full scale should be 50 mv).

One note of caution: the response of any particular brazing setup will be affected by the degree of coupling between the heating coil and the part. The control response should take this into account by being set on the conservative side. Otherwise a test part with adequate coupling may control well when a production part with poorer coupling is partially unstable. Strip chart records of the temperature profile should be maintained for the first few parts following an adjustment for this reason.

Proportional Gain. The bulk of the control response will undoubtedly be proportional, that is the control output (the amount of heat being applied to the part) will be proportional to the difference between the desired profile temperature and the actual (measured) temperature. The important thing to note is that there must be some temperature error to produce any proportional response. Thus for any temperature other than ambient with proportional response only, a steady state temperature offset will exist. Increasing proportional gain will decrease the amount of the offset, but can *never* fully eliminate it. At some point further increases in proportional gain will cause the system to go unstable and oscillate (this is called the ultimate proportional gain). A reasonable proportional gain setting is half this value. Fig. 7 represents the effects of increasing proportional gain. The third adjustment is the ultimate gain setting, and the process is in continuous oscillation at this point.

Integral Gain. The offset error that accompanies proportional-only control can be eliminated by the introduction of integral control. The control output in this mode is proportional to the integral of the control error. Thus even a small offset will integrate over some time period to a sizable control response. In fact, any degree of integral control has infinite gain for dc control errors. The integral gain merely determines the rate at which integral accumulates.

The infinite dc gain of integral (also known as reset) control allows it to reduce the steady state error to zero, but the 90 degree phase lag it adds tends to make the closed loop system more unstable. For this reason it should be used sparingly. After the proportional gain is set and the steady state error is known, the integral gain can be increased to observe its effects. This is illustrated by Fig. 8, where the cycle was allowed to reach the holding temperature before the integral gain was adjusted. This allows for a constant *setpoint* temperature, thus avoiding the introduction of another variable parameter during the adjustment. When the integral gain is first increased it will begin integrating the offset error which presently exists. This will increase the control output, causing the temperature to increase. When the temperature reaches the setpoint of the profile the error has gone to zero, but the integral may have accumulated more than necessary. To reduce the excessive integral the temperature must go *above* the profile to integrate in the opposite direction. The net effect of this is the damped oscillation indicated by Fig. 8. Further increases of integral gain will make the oscillations continuous and, then, unstable. The ideal integral gain (or integration rate) will match the response of the process such that little or no overshoot results from this adjustment.

Differential Gain. This control mode responds to the differential of the control error. Its primary use is to optimize the dynamic performance of the controller to fast changing setpoints and processes. This application does not require such performance so its use may not be necessary. Certainly until more operating experience is gained it should not be used because interaction of a third parameter makes adjustment more difficult. However, because differential control has a 90 degree phase lead it can, to some degree, counteract the instability of the integral control's phase lag, if this is necessary (it probably will not be).

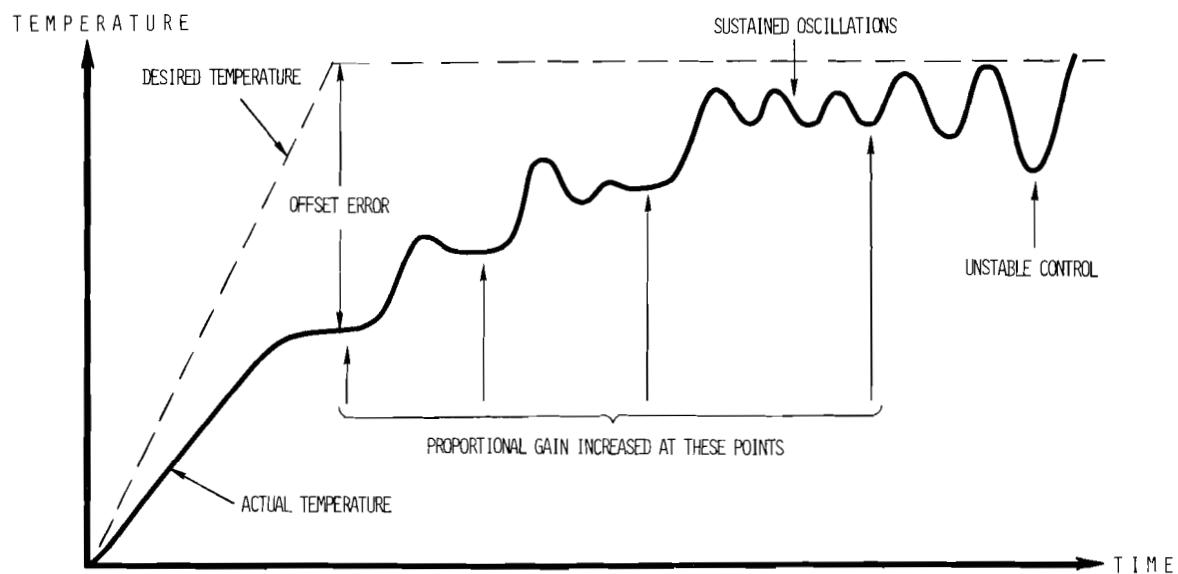


FIGURE 7. Effects of various proportional gain settings.

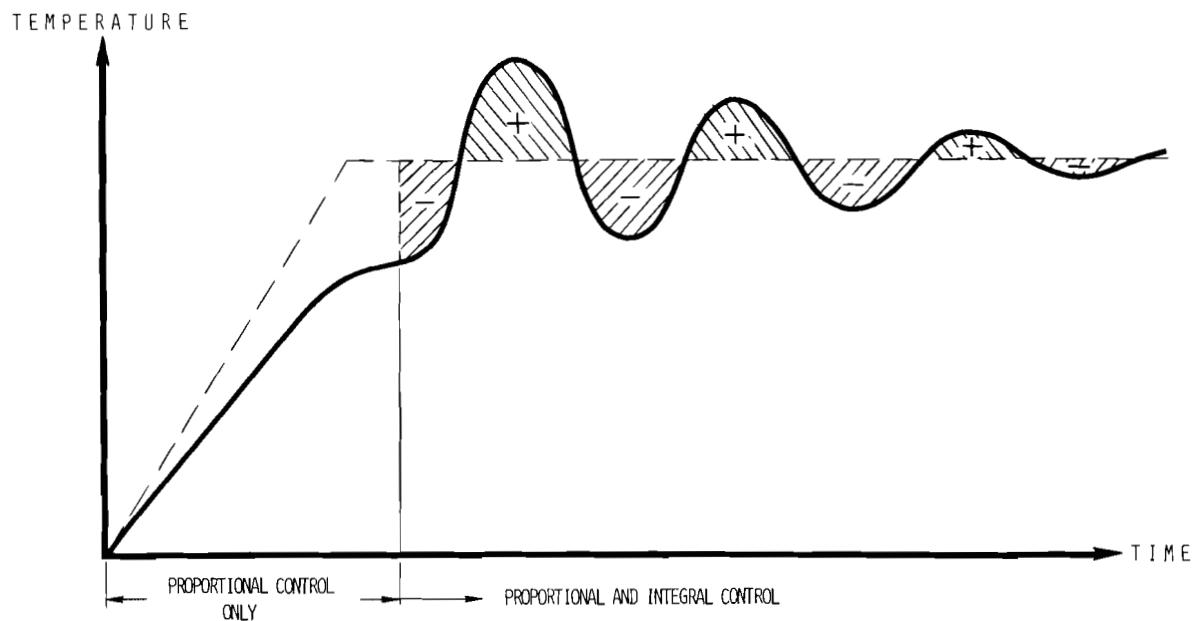


FIGURE 8. Adjusting integral control.

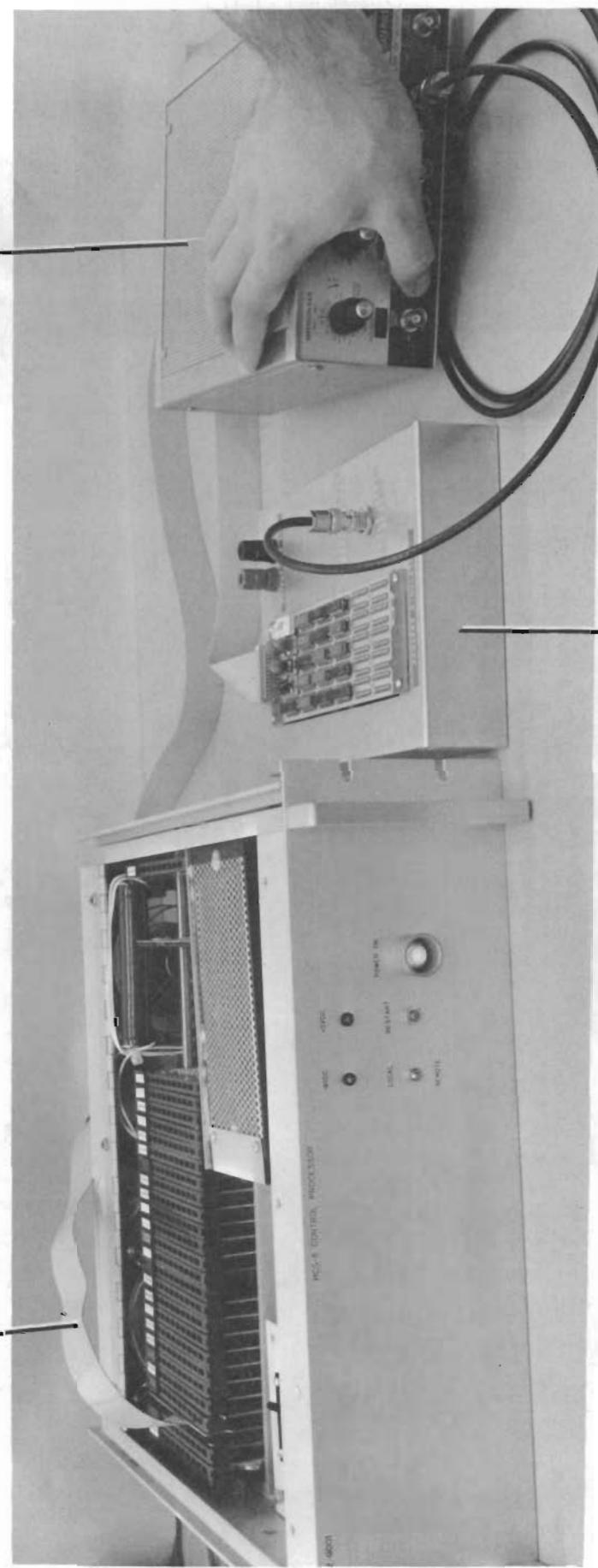
MAINTENANCE

The only periodic preventive maintenance which the controller requires is occasional oiling of the cooling fans and analog-to-digital converter calibration. All other maintenance will involve either "tuning" the control parameters (detailed in the Operating Instructions) or repairing a failure. Because the controller is considerably more sophisticated than it first appears a comprehensive set of procedures for verifying operating and detecting failures is included.

Digital Process Simulator

The immediate concern in the event of a malfunction is the positive isolation of the source of the difficulty. For this and other reasons a digital process simulation was designed and fabricated which permits most of the controller functions to be checked out independent of the other components in the system. While not intended to be foolproof, this technique can identify most controller failures.

Connection of the simulator is made through a cable card connector which plugs into card position 37 (Fig. 9) accessed through the top cover. It is necessary to turn the controller power off and disconnect the temperature input cable (J56). *The simulator should never be connected or disconnected with controller power on.* If it is necessary to disable the stepping motor for any reason, do so by turning off the translator power to terminal strip J55, and *not* by disconnecting only the motor.


The analog output (corresponding to temperature) of the simulator is made available by the two terminal posts on the simulator's box (Fig. 10), and varies between 0 and +10 volts. The best method for observing this signal is with a strip chart recorder.

Test Programs

The interface circuitry can be largely checked by utilizing the processor and a Teletype. This is done by using the Octal Debug Technique program (ODT) to enter short test programs into random access memory (RAM) from the Teletype and execute them. Fig. 11 shows the controller connected to a video terminal in place of a Teletype, along with instrumentation used during calibration.

INTERCONNECTING
CABLE

PULSE GENERATOR

PROCESS SIMULATOR

FIGURE 9. Process simulator connected to the controller.

CABLE CONNECTOR

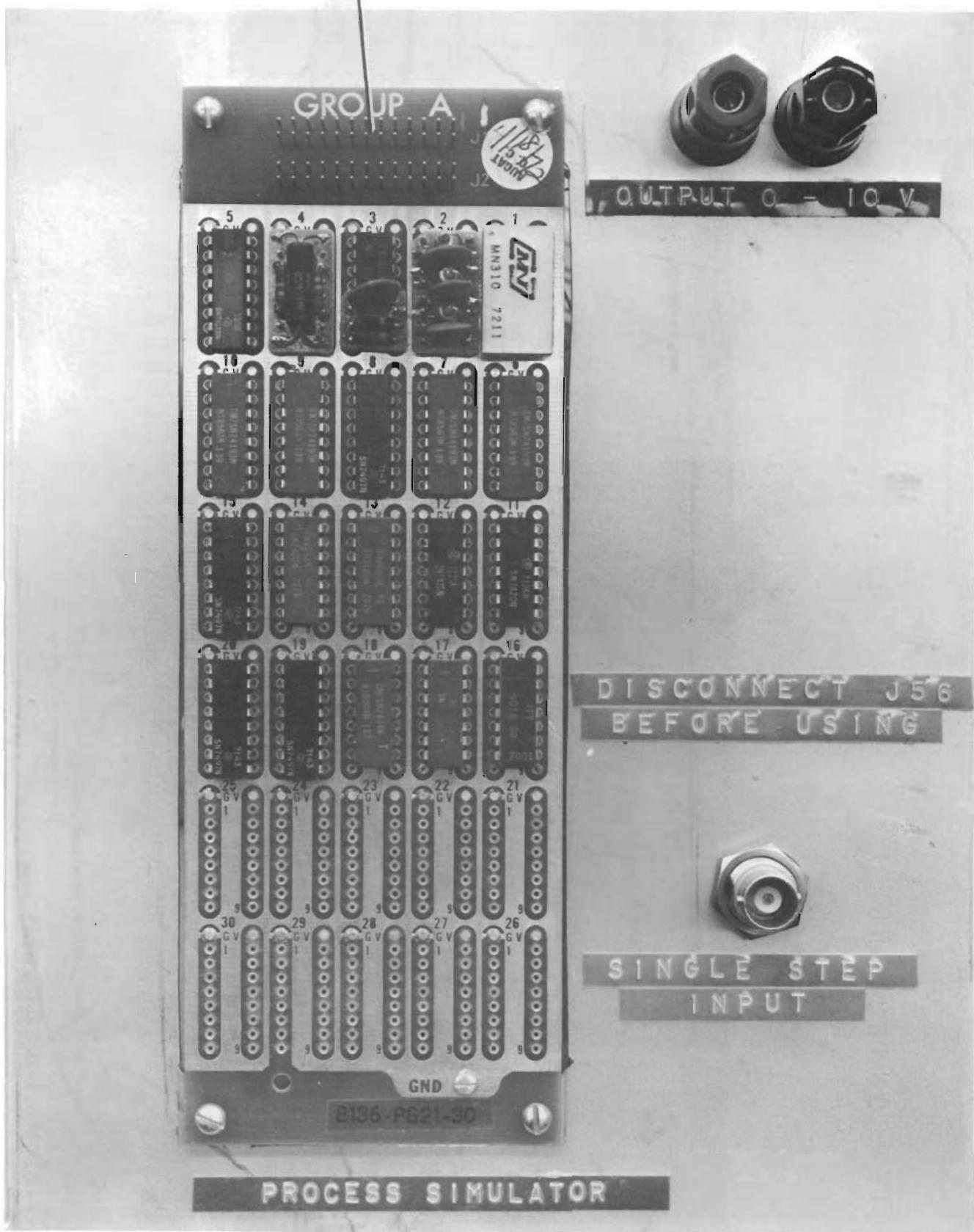


FIGURE 10. Process simulator.

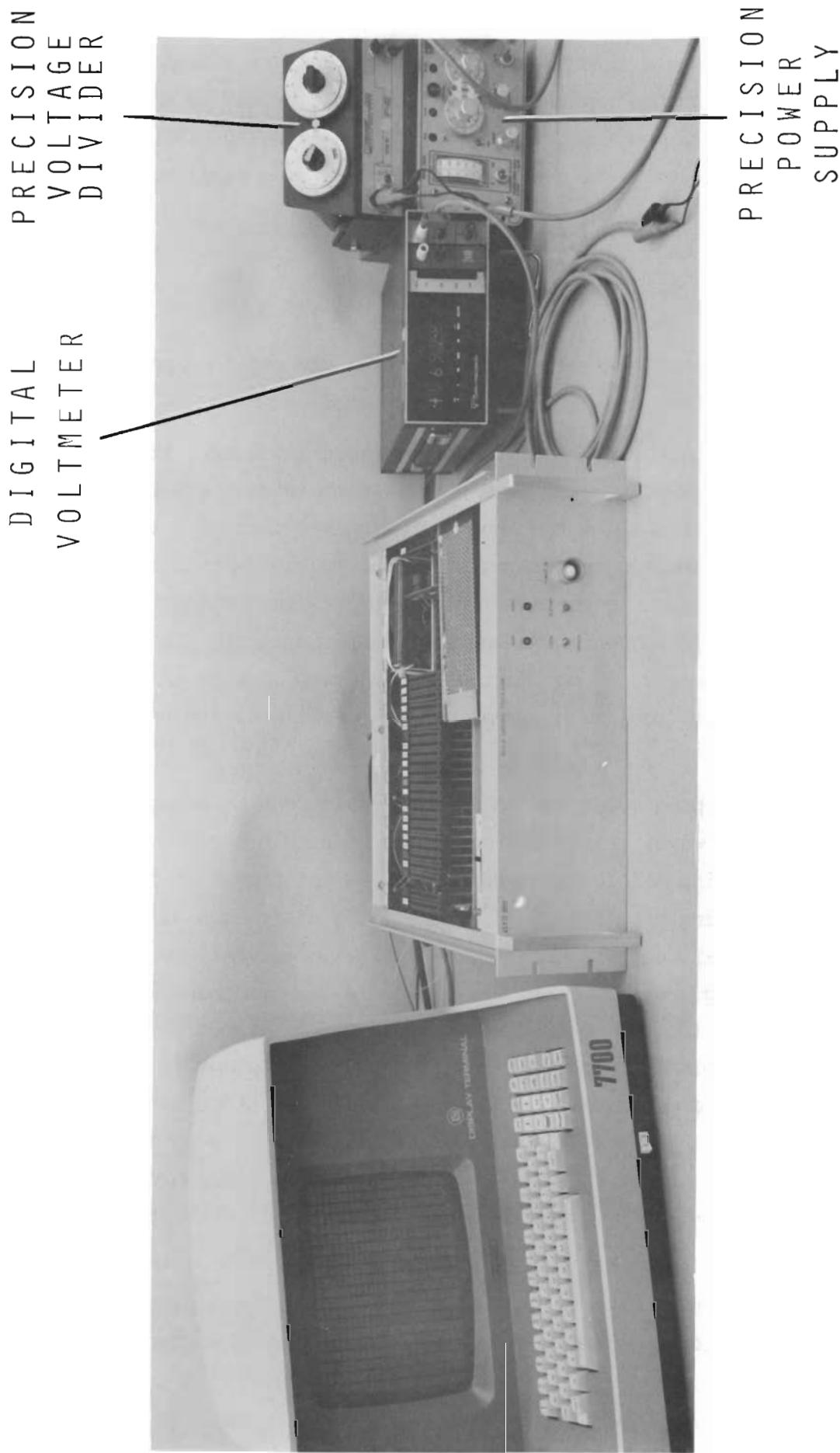


FIGURE 11. Controller setup for maintenance and calibration.

Testing of the input facilities is eased by use of the octal output routine, OCTALP, contained in the ODT program itself. This routine types a space and the value of the A register as a three digit octal number. It is executed by any subroutine call, such as

```
106      CAL OCTALP
307
000.
```

The BCD and control switches, for instance, are examined merely by inputting their setting and typing it out in octal.

Exercising the MUX-ADC is a little more involved. It requires setting the multiplexer and commanding a conversion. A BCD switch is conveniently used to select the input line (only 0 through 3 are used) by reading its value and outputting it to the multiplexer control register. The real-time clock is tested simultaneously with the ADC by waiting for it to set before commanding a conversion and resetting the clock flip-flop. A Teletype, however, is not fast enough to keep up with the clock rate (10 Hz), but the real time clock must be operational for any output to occur.

The stepping motor has no feedback which can be examined, but can be tested in two ways. First the motor can be single stepped in both directions by pushing "A" for CCW and "B" for CW rotation. It may be convenient to use a masking tape "pointer" on the motor shaft as a single step (1.6 degrees) is difficult to observe. A typical motor failure will involve a single winding (usually the power driver is the component which goes). In this situation the motor may continue to rotate, but in an erratic fashion. Single stepping will reveal this as two steps in one direction, one reversed, and one with no motion at all (four steps are required to complete a full sequence). The motor still turns because the net sum of motion will be in the commanded direction, but at one fourth the correct amount. Speed is also limited so that it may stall when operated at normal speeds.

Continuous motion is best checked with the motor disconnected from the load. Friction clamping can simulate the load's torque requirements,

but will not usually be necessary. The test program reads the Teletype input character (which is available until another is typed) and outputs it as a stepping command. As before an "A" causes CCW motion and a "B" CW motion, a "D" will stop all motion. The stepping rate, 200 Hz, is fixed by a software delay of slightly less than 5 milliseconds.

Calibration

To assure an accurate correlation between the thermocouple temperature and the internal digital representation the input amplifier and analog-digital converter need periodic calibration of approximately once a year. This task will require the following pieces of equipment (see Fig. 11):

Reference power supply, 0.01%
Precision divider, 0.01%
Digital voltmeter, 0.01%.

The reference voltage is divided by a suitable factor, such as ten to provide an input to the controller from zero to 40 millivolts in 0.1 millivolt steps. The digital voltmeter verifies the correct gain of the combined amplifiers with calibration data in Appendix D.

The analog input test program, with the amplifier input selected, is used to compare converted values with the above calibration data.

Since the amplifier gain is fixed the use of the digital voltmeter is an optional double check. Small variations from tabulated values can be compensated for by the analog-digital converted (ADC). Larger variations indicated a failure or a drift in a component value. In this case the particular amplifier at fault should be identified (the first amplifier has a gain of 10 and the second a gain of 25) and repaired.

The ADC has two adjustments, one for zero and one for full scale trimming (see LED 69-901184). These adjustments will affect only a few digits change in the data listed in the calibration table (only eight of the unit's twelve bits are tabulated because this is all that is used in the control program). Adjustments which are greater than this range cannot be made by these potentiometers and indicate a gross malfunction which should be repaired. Any adjustments which are made should utilize

the full twelve data bits to afford the longest term calibration (full scale of 42.38 ms can be assumed equal to 377.740₈ for this purpose).

Oscilloscope Waveforms

The general status digital and program logic can be determined from a few waveforms. Any oscilloscope with a dual trace feature can check this.

The real-time clock will always be running except for one second after a restart. This signal, at pin 26-R, is triggered by a ten Hertz clock on pin 26-N (see Fig. 12). The processor continually samples this signal, and once it is triggered the processor resets it (pin 26-L).

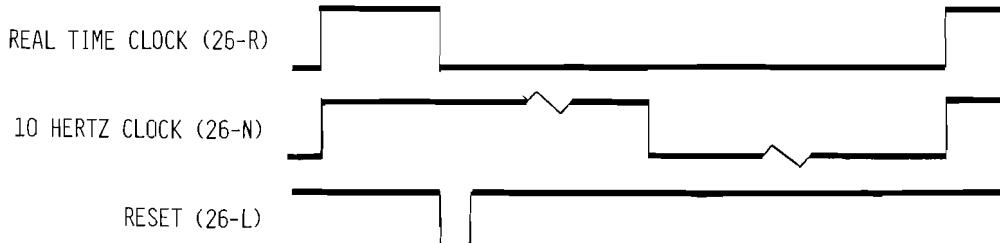


FIGURE 12. Real Time Clock Waveforms.

Much information about what the processor is doing and when is available from the input multiplexer control signals. To synchronize these signals with a particular point in the program the Real Time Clock signal (26-R) is used to trigger the oscilloscope. The signals in Fig. 13 are typical for a cycle after the push of the START button. About seven milliseconds after the resetting of the Real Time Clock the reset signal will pulse three times. This is the triggering of the ADC for each of the three control parameters for use in calculating the output response. Between 20 to 25 milliseconds after the start of the cycle output pulses to the stepping motor will appear (if there is a change in the control output). These pulses may be CW (38-B) or CCW (38-A) during any cycle, but will never be both. The pulses will be separated by 5 millisecond intervals, and can never exceed 175 total (an unlikely number, with a dozen or less being more typical). Once all output steps have been commanded the processor will resume sampling the Real Time Clock with

the status input signal (23-3). Since this signal is absent during the calculations the execution time during any cycle can be observed from it.

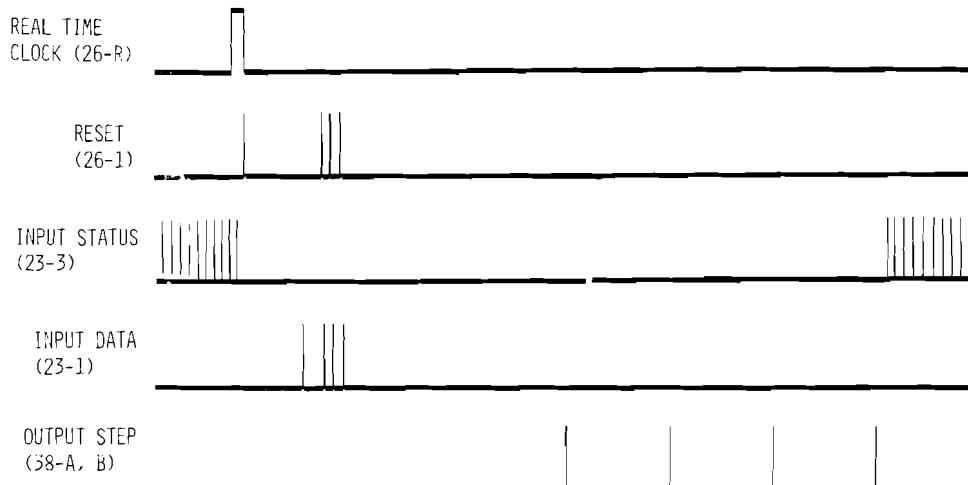


FIGURE 13. Data Multiplexer Waveforms.

Maintaining the Processor

Much of the previous maintenance depends upon the processor being operational so that at least the ODT program can be run. In the event that the processor is not operational procedures are needed for diagnosing and repairing the malfunction.

One simple technique is to replace all cards associated with the processor one at a time until the facility card is isolated. The nine cards in positions 18 through 26 are those which must be exchanged. This technique will only work if the failure is on one of these nine cards. If it is on another card, or if it is in the wiring (it is possible for the corner of a wire wrap pin to cut through the insulation of a wire held against it with excessive tension), this technique will only indicate that the problem is *not* on these cards, which is valuable information in itself.

While the particular problem may dictate the nature of the problem it is wise to ascertain the following items

1. Both power supplies, +5 and -9 volts, are within tolerance.

2. The two phase clocks are running and in tolerance (see MCS-8 manual or LEA 68-9068-94D)
3. The Sync signal (19-W) is running after pushing restart
4. The Ready line (19-19) is low.

Single Stepping - If the following procedures do not locate the problem it will be necessary to examine operation on a step-by-step basis. The processor can be single stepped by pulsing the READY line (19-19) with a low-true pulse. For this purpose the wire to ground was removed and wired to an inverter at 22-V. With the input disconnected the output will be low and the processor will run normally. With a pulse generator connected to the input on the digital simulator which generates a positive 3 to 5 volt 10 microsecond pulse the processor will execute one instruction cycle for each pulse (see Fig. 9 for the setup of this equipment). If the generator is set for single pulses the processor can be easily single stepped through a program. Also the program can be executed at the repetition rate of the generator. The effect of this is best observed by operating the ODT program at a slow speed with an operational processor.

Single stepping and slow speed execution by themselves are of little value without address and data display. LLL has available a card which plugs into one of the memory slots which displays the address and memory output data with light emitting diodes (LED's). But to be useful this information must be properly interpreted, for which a program listing and an MCS-8 manual are useful.

It must be remembered that the address information serves a multiple purpose. Not only is it used for the instruction address, but it also is used for I-O instruction decode and accumulator output data. Further for multiple cycle instructions data and address fetches may be required. The breakdown of each instruction on a sub-cycle basis is tabulated in the MCS-8 User's Manual. An instruction set summary is on the inside rear cover.

ODT - If the ODT program does not respond to input usually either the asynchronous receiver/transmitter is not functioning (card 21) or the input

multiplexer is not properly inputting status (card 23). If data available (21-2) do not go high after pushing a Teletype key check that serial data are actually being sent by examining both 21-W and 21-19 (refer to LEA 68-9068-99C). If the ODT program does not properly recognize the character check to see that the clock on 21-14 is 1760 Hz. If the clock rate is right, one of the data lines, either between the UART and the multiplexer or the multiplexer and processor, has been damaged. ODT may recognize some characters and not others, which will point to a particular data bit (for instance an open line will have the effect of a high signal, which will work for these characters that agree in this bit position).

Memory - If ODT, the processor, and the interface equipment function properly but the temperature control program fails in some manner the memory may be at fault. Memory consists of both random access (RAM) and programmable read-only (PROM) memory, so each must be checked separately.

RAM is checked easiest by replacing it (be sure that the three jumpers of the replacement are identical to the original). If this does not solve the problem, yet the RAM is known to be the problem (as can be determined by a test program which must be entered in *another* RAM), the next step is to check the address bits and the read-write control line. The latter must pulse high to write data, but also must stay low at all other times.

The PROM presents a more difficult situation, but has also demonstrated to be more reliable from the admittedly small sample size with which we have worked. The difficulty is that spare PROM's written with the control program (it takes four) may not be available for replacement. Assuming this to be the case, one of two techniques may be used to check the PROM out.

If a computer is available with a synchronous interface of suitable speed (at least 600 baud) a program in the host computer can do a word-for-word compare of the PROM to a program tape using ODT. Such a program has not been developed for this project, but one designed to link the MCS-8 to an SEL 840A could be readily adapted for this purpose.

If this is not practical, the slow speed execution technique may be used to detect hard program failures ('hard' is used to describe those changes in the program which cause a complete stoppage of execution, such as a jump to an unused page of memory). By restarting the program and allowing it to approach the point of failure slowly the approximate address of the failure can be determined. Although it is only necessary to determine the page in which the memory change is located the exact location can be deduced by close examination with ODT.

A 'soft' program failure is more difficult to identify since full operation is not defeated. Further it may be erratic since only certain number sizes may be affected, for example. The best bet here is to start execution and stop it periodically to examine the program variables in RAM with ODT. The program must be manually restarted at 4415_8 to avoid program initialization each time. Only experience and a thorough knowledge of the control program make this feasible, however, as these variables are only the effects, and not the causes, of the failure.

SPECIFICATIONSDimensions

Controller	7 x 19 x 15 in
Remote control box cable	10 ft
Stepping motor cable	10 ft
Analog input cable	15 ft

Power

A.C.: 120 v @
D.C.: 15 v @ 6 a

Analog Input

Bandwidth:	1 KHz
Impedance:	300 MΩ
CMRR:	100 db
Full scale Voltage:	42.38 mV
Connector:	Trumpeter PL-72

Stepping Motor

Type:	Superior Electric HS-50
Torque:	85 oz-in
Steps/revolution:	200
Control range:	180 degrees
Mounting:	Any position
Thermal:	55° C rise

Control Program

Control modes:	Proportional, integral, and differential
Digitation accuracy	+0.012%
Sampling rate:	10 Hz
Output resolution	
Nominal:	0.6%
Maximum:	0.0015%
Temperature profile	
Number of points:	256
Accuracy:	+0.012%
Advancement Rate:	Selectable, 0.6 to 5.4 sec/point, 0.6 sec increments
Hold delay:	Selectable, 1 to 9 min.

Teletypewriter Interface

Type:	Asynchronous, current loop
Level:	8
Code:	ASCII
Rate:	110 baud

SOFTWARE

As mentioned in the Introduction the largest effort in the controller development was software. Obviously the success or failure of a microprocessor application will depend greatly on the continuity and strength of all associated software. The general approach of using the same system to develop software which it will eventually run on, and relying on vendor supplied system software, will not be viable for microprocessors. For even if the system software exists, the microprocessor, by nature a small dedicated purpose machine, will not be adequate for this use. The software development, then, must be done on a larger system with the necessary hardware and software to support the development.

Support is of several different types. First, facilities must be available to assist in the conversion of a symbolically coded microprocessor program to the machine code of the microprocessor. This will consist of means of preparing the symbolic code, such as on punched cards, editing it, and storing it on a mass storage device such as magnetic tape. This code then must be converted to machine code by what the current programming jargon calls a "cross assembler." The designation "cross" refers to the generation of code for one type of machine on another. The assembler generates both the machine code (termed the "object code") and a program listing with both the machine code and the symbolic or "source" code.

An assembler is a mandatory aid in the software development. The only alternative to an assembler is to "hand" assemble the program. This is a lengthy and error prone procedure for a reasonably sized program, and must be repeated each time the program is changed (which, during development, is often).

The second type of system support is a *hardware simulator* program. The simulator must be capable of performing every function of the microprocessor. It executes the identical program code which the microprocessor executes. It also provides the operator with sophisticated debugging aids unavailable on the microprocessor. The use of the simulator speeds program development by a factor several times the rate using the

microprocessor alone. Further the simulator could be used to check out program changes before they are applied to an actual process. This is done by simulating the process as well as the microprocessor.

It should be stressed that the sole value of a simulator is the information it supplies the designer. For this reason the simulator must be highly interactive with the user, providing all pertinent information and full control of execution. Also, because information can be voluminous, the simulator should be capable of condensing it down to a useful form.

The third type of support involves mating the microprocessor to the larger system. With a data link between the two, the larger computer can assist in such tasks as program loading, program debugging, memory check-out, and microprocessor exercising.

Program loading is a typical chore during development. Because re-programming of several ROM's can be time consuming, much time can be lost making simple program changes. If RAM is used during this stage instead of ROM this time can be cut drastically. The key to the method is using the data link to pass the program code from the large computer to the microprocessor.

The data link itself is the RS232C serial asynchronous convention which is relatively commonplace. The controller is equipped with such an interface, but is designed for a Teletype at 110 baud (data elements per second). Each character requires eleven bits, which sets the character rate at ten per second. This is not satisfactory for an inter-computer link, since both devices can operate at a much higher rate, which necessitates modification of the interface for higher speeds (a straight-forward modification).

The host computer can be used for debugging by capturing information during program execution. The host will have facilities for storing, condensing, and outputting this information. Exercising the microprocessor can be written to return control to the host computer after execution. However the data link is used, for program loading or controller checkout,

there must exist a service routine in the controller to support its end of the data link. Such a program has been written for this purpose.

Octal Debug Technique

The octal debug technique (ODT) allows the operator to examine and change memory from a terminal such as a Teletype. Lawrence Livermore Lab's document LER 72-103402 describes the use of ODT for the purpose. The program given in the document has been modified in minor ways. Primarily the program loading command was altered to a more efficient binary format.

The host computer uses ODT by minimizing the operator's interaction, but at a much higher speed. Through ODT the host computer can examine and change memory, and transfer control to some other program. The capabilities of the MCS-8 ODT should not be confused with powerful debug programs written for the larger minicomputers. ODT, for practical reasons, is limited to 256 words (one page) of memory.

The program starts by typing a question mark and waiting for input. As each character is typed it is examined as to its type: command terminator, or digit. Legal octal digits are accumulated to form a number up to 255, anything greater is an error. The number typed is interpreted by ODT when a terminating command is entered, such as G for go. For example, 377G.

The terminator is decoded by successively subtracting the numerical difference between legal terminating characters. For instance, the difference between a line feed and a carriage return is 3. The program first subtracts octal 212 (the line feed code) from the terminator. If the result is not zero the character was not a line feed. It then subtracts 3 (for a total of octal 215, the carriage return code) and again tests for zero. In like manner all other legal terminators are tested.

Memory addressing must be done in two separate steps. The memory page is set by entering the page number in octal followed by S. The ODT page is selected by typing

ØS,

and the RAM page with

10S.

It must be remembered that the assembled address, as outputted in the program listing, is a complete octal number which is not separated by page numbers. Consequently page 10_8 , word 0 is equivalent to address 4000_8 .

Once the page has been set a particular location within that page can be examined by typing the octal word number (0 to 377_8), followed by a slask. ODT will respond by typing the contents of that location. If this location is in RAM the contents can be changed by typing the desired quantity followed by a line feed or carriage return. The contents are unchanged if no number is typed, or the location is a part of ROM.

A line feed automatically displays the next sequential location in the selected page. This command uses an output routine which converts an eight bit octal number to three octal digits preceded by a space. First typed is the page number, followed by the word number, completed with the contents of that address typed as three octal digits. It is up to the operator to interpret this octal number as either instruction code or program data. As with the slash terminator, the contents can be altered if a one to three digit octal number is typed by the operator.

Control can be transferred to another program from ODT by entering the starting address followed by G. The page number, as before, must have been set by the S command. ODT constructs a jump command in the last three words of page 10_8 (375, 376, and 377). For this reason these locations should not be used except as temporaries. It also requires a page of RAM at this page number.

A "bootstrap loader" is executed by the R command. It is not intended to be operated from the Teletype in as all data is in binary format (the host computer takes over at this point, having itself issued the "R" to begin program load). The program is loaded into RAM in contiguous pages, whether or not the program uses all of the pages for code. Load parameters consist of the starting page and the number of pages. The starting page is typed in octal preceding the R command. The first data

following the R are the number of pages to be loaded, beginning at word Ø of the starting page. The number of pages and the program code is in binary.

MCS-8 Instruction Set

The MCS-8 instruction set is divided into five classes:

- I. Index register instructions
- II. Accumulator group instructions
- III. Program counter and stack control instructions
- IV. Input-output instructions
- V. Halt instruction.

Index register instructions allow for the loading of registers from memory and other registers (a NOP is performed when an index register is loaded from itself). Also any register, except for A, can be incremented or decremented by one.

Accumulator group instructions use the A register as one of the operands for an arithmetic or logical operation. The source of the second operand, which can be an index register, memory, or data in the program code (immediate data), subdivides the accumulator group class three ways. A carry flip-flop provides the mechanism for propagating carries during multiple precision arithmetic operations.

In the third class of instructions are program jumps, and subroutine calls and returns. This class allows use of conditional testing where the programmer can specify which of the status flip-flops must be true or false for the instruction to be executed. While being quite useful it is also the only way in which the status flip-flops can be examined. Because the programmer has no access to the return address during a subroutine call, arguments must be passed via the general registers or predetermined memory locations.

Input-output instructions are the sole source of communication with the external world. Both use the A register for the destination and source of the transferred data, respectively.

The halt instruction is, literally, in a class by itself. Because of the dedicated type of application to which microprocessors will be put,

this instruction is not expected to be normally used in program code. It can catch the gross error of a jump to a memory address with no actual memory (the structure of the memory generates the code of a halt instruction if no valid decode occurs).

A serious deficiency of the MCS-8 instruction set is the lack of provisions for signed arithmetic. For instance there is no direct means to detect a signed overflow. If A and B are the operands and R is the condition for overflow is

$$\overline{(A_S + B)} \cdot (A_S + R_S)$$

Clearly this calculation by software means would be costly, so much so that it is as fast to do double precision arithmetic and not check overflow. This, in fact, is what the control program does. Enough dynamic range is allocated to contain a worst case set of inputs. The output of the program is limited to the maximum range of the controlled variable after the calculations have been done.

Control Program

The control program executes a discrete version of the three mode control algorithm and a first order digital filter. The term three mode refers to the three types of responses available with the controller: proportional, integral, and differential. The time response of this controller is

$$U(t) = k_1 e(t) + k_2 \int_0^t e(t) dt + k_3 de(t)/dt.$$

It also controls analog conversion, checks control limits, and generates a temperature profile. This code occupies four 256 word memory pages, with the profile requiring one of those pages.

Temperature profile data are stored in the table as eight bit unsigned integers, of the format

2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^0
-------	-------	-------	-------	-------	-------	-------	-------

This permits a resolution of 1 part in 256, or about $\pm 0.0125\%$. The value, or weight, assigned to the least significant bit is not in units of temperature and must be converted by multiplying by a constant. A correlation to temperature requires two conversions; first the temperature--voltage function of the thermocouple must be known, and second the voltage--digital factor of the analog-digital converter must be known. For a cromel-alumel thermocouple a temperature of 810° C produces a voltage of 32.91 mv corrected to an ambient temperature of 20° C . For this voltage the output of the converter is 305.34₈ (see Appendix for an ADC calibration data and a temperature-digital conversion table). This calculates to be approximately 4.09° C least significant bit (LSB) weight.

The control program is not aware of this factor. It merely compares converted input data to profile data, both of which are in the same units and need not be converted any further. The difference between the table entry and the measured temperature is known as the control error, $e(t)$. The control response calculation is based on this error.

Prior to making this calculation, however, the temperature data are operated on by a recursive digital filter. This filter has two purposes: first it reduces any signal noise that may be present, and secondly it minimizes the truncation effect of digitization (quantization). Both of these problems tend to be very disruptive to the derivative action. Even if noise were not a problem, quantization, or truncation error, would be. Quantization error is illustrated by Fig. 14, where continuous signals must be approximated both by sampling and by discrete levels. Although the continuous signal can usually be approximated adequately for most applications by quantizing, the computation of the derivative may not. If only two data are used it is easy enough to show that for any frequency the sampling rate can be increased to the point where the derivative is either one or zero. The addition of noise at this point greater than the quantization level will mean that the signal to noise ratio will be less than one, a disastrous control situation. The use of programmed filters, however, can circumvent this problem.

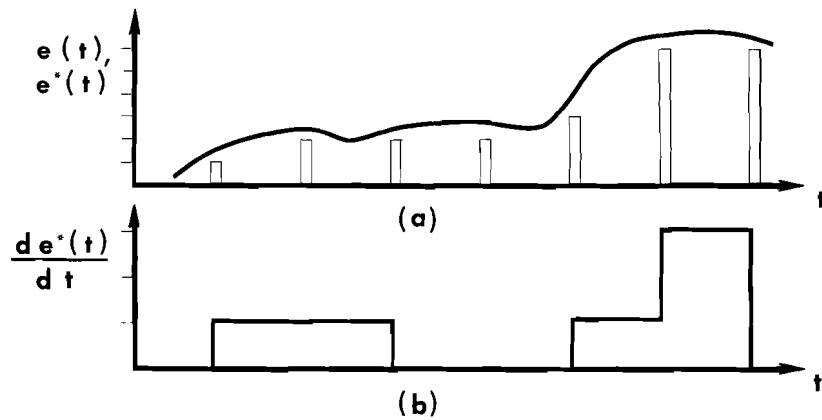


FIGURE 14. Quantization error. (a) Approximation of a continuous signal. (b) Discrete derivative.

Digital Filter

If the input to the filter is X and the output X' , the output at step n is

$$X'_n = aX_n + bX'_{n-1}.$$

The fact that X' appears on both sides of the equation makes it recursive, that is the result of any successive calculation depends upon all previous calculations. The output, X'_n , can be written as an infinite series

$$X'_n = a[X_n + bX_{n-1} + b^2X_{n-2} + \dots + b^k X_{n-k}]$$

It is evident from this that X'_n is a function of all previous inputs, X_n . If the difference is taken between two successive outputs, X'_n and X'_{n-1} (as the derivative does), the result will also contain differences between all successive inputs, as can be seen from

$$\begin{aligned} X'_n - X'_{n-1} = & a[(X_n - X_{n-1}) + b(X_{n-1} - X_{n-2}) + \\ & \dots + b^k(X_{n-k} - X_{n-k-1})] \end{aligned}$$

Control Algorithm

The error thus calculated is used as the input to the three mode control algorithm. The control response derived by this algorithm is calculated as follows:

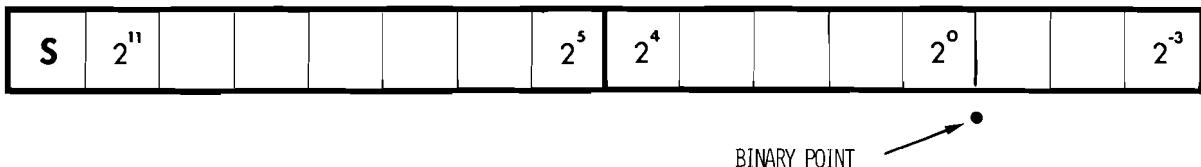
$$U_n = P e_n + I \sum_{i=0}^n e_i + D (e_n - e_{n-1})$$

where U_n is the control output at sampling interval n

e_n is the control error at sampling interval n

P is the proportional gain

I is the integral gain


D is the differential gain.

The proportional calculation uses the single precision value of the control error (which is scaled back down to regain the original weight). This is multiplied by the proportional gain, measured from a potentiometer, which is also a single precision number. If no further operation is done on the result choices of proportional gain would be limited to integral values. Since this would be insufficient resolution the proportional output is scaled down by a factor of one-sixteenth. This allows a proportional gain range of 0 to 7 15/16 units in 1/16 unit steps (1 part in 127).

The integral control is calculated in two steps: first the current control error is summed to the error integral, and then the integral is multiplied by the integral gain. If the integral were allowed to accumulate at 10 summations per second, the sampling rate of the controller, the integral would rapidly saturate if a significant error were present (even though the integral is maintained in double precision). Prescaling the error prior to summation is undesirable in as this creates a deadband for errors less than the minimum resolution of the scaled error. For instance, say the control error is scaled by four, then errors in the range of one to three units (approximately 4°C to 12°C) would appear as zero after scaling. Since this is the type of error which the integral response is to eliminate this is an unacceptable technique. A second approach is

to integrate at a slower rate, such as one-tenth the sampling frequency. This has the effect of scaling the integral by one-tenth without introducing deadband. It does, however, reduce the bandwidth of integral control and increases phase lag at frequencies near and greater than the summation rate. This is accomplished in the program via a timeout variable which is initialized to ten and is decremented at each calculation loop. Summation occurs only if it is zero, otherwise the control response is calculated from the previous integral without summing the current error. To do this the single precision equivalent is found from the double precision integrand, which is multiplied by the integral gain and then scaled down for the same reasons outlined in the proportional response discussion.

Differential response is found by differencing two successive control errors, and multiplying the difference by the differential gain. To avoid the truncation problem mentioned earlier the scaled double precision error is used in the difference calculation. These data have the two word format

It is mandatory, however, that the multiplication routine be entered with two single precision numbers. Thus if the greater resolution (2^{-3}) is to be maintained some magnitude restrictions on the error difference must be made. What this means is that the largest positive error difference recordable is $7\frac{5}{8}$ units and the negative bound is -8 units. This would only happen if the set point changed by an amount greater than this in two successive steps, which it does not. As before, the double precision value generated by multiplication is scaled down.

After all three control responses have been calculated a signed double precision value represents the control variable. This must be translated to some physical quantity capable of controlling the process. This is the purpose of the stepping motor, which, when connected to some suitable device as a Variac, can regulate the energy inputted to the process. Some limitations are applied to the control variable. First

only positive energy is meaningful so all negative control values are limited to zero. Secondly, the Variac has a travel limit which must not be exceeded. Since the motor is directly coupled to the Variac shaft, and the motor makes one revolution with 200 steps, maximum clockwise actuation is limited to 185 steps (310 degrees). The program keeps the motor position equal to the control variable by stepping it in the appropriate direction (clockwise for positive differences and counterclockwise for negative) one step for each unit difference up to the travel limit (0 and 175). Because there is no position feedback from the stepping motor the controller keeps track of it by storing its current position in memory. Further, the motor has certain dynamic restrictions which limit the maximum synchronous stepping rate. A delay variable in the output stepping program loop sets this rate at 200 Hz.

Sequential Control

The remainder of the control program is related to sequence control. Facets of the program which come under this category are program initialization, cycle start, temperature ramping, braze melt, and cycle completion. The decision logic of this part of the program is regulated by a table controlled routine known as a *finite state automation* (FSA). Process control is exercised by which of the several states the FSA is in. It advances from one state to the next on the basis of control inputs and the particular state it happens to be in at the time. The FSA for the control program has four states, which have the following functions:

1. Initialization - Reset stepping motor position, input data switches and initialize other control variables.
2. Wait - Wait for the start of a cycle.
3. Cycle - Advance process through a temperature cycle.
4. Melt - Hold process at plateau temperature for specified delay, then return to initialization.

Inputs to the FSA include the two control pushbuttons and an internally generated advance and reset command. The decision of what the next state the process will transfer to is made by a table containing all the possible

combinations of possible states and inputs (4 states x 4 inputs = 16 entries). An example is if the FSA is in state 2 and the Start button is pressed the FSA is advanced to state 3. If the Melt pushbutton is pressed in state 2 the next state is also state 2. In effect the Melt pushbutton is ignored at this time. If it is pushed when the FSA is in state 3, however, the FSA will change to state 4.

The switches are scanned at the sampling rate, 10 times per second, to test for activation. If one is pushed the FSA is executed to determine the next state, otherwise the current state is decoded in order to execute the appropriate routine. The other two inputs are generated by the program itself, as in the initialization routine which is to be executed only once. It causes the FSA to advance to state 2, the Wait state. The other instance is in the Melt state following the hold delay, at which time the FSA is to be triggered into the Initialization state to shut power off and re-initialize.

The Cycle state executes the three mode control algorithm, and advances a pointer through the temperature profile table. The table contains 256 entries, which are sequenced at a rate of 0.6 second times the rise time setting per entry. For instance, if the switch is set at one (for a two minute rise time) the pointer will be incremented once every six program loops. The pointer will reach the two hundredth entry after 120 seconds, or two minutes. The profile stored in the table is set such that the brazing temperature is reached at this entry. The remaining 56 entries also are this value, which corresponds to the temperature plateau. If the cycle is not completed by the end of the table the program automatically halts advancing the pointer at the last entry.

The Melt routine decrements the hold time out, which is the setting of the hold delay switch times 60 seconds. Since the loop is executed at 10 Hz the setting is multiplied by 600. The hold delay switch is read during initialization, so if it is changed *after* initialization the processor must be restarted to reflect that change for the next cycle. All the time the hold delay is being executed the three mode control algorithm is being executed to maintain temperature control right up to the moment when the power is shut off.

THEORY OF OPERATION

The hardware discussion is separated into two sections. The first section deals with the processor itself and compares it with the MCS-4. Explained are both the internal and external organization of the MCS-8. The second section goes into the interface equipment and its theory of operation.

Intel Micro Computer Set

Intel pioneered the advent of large scale integrated (LSI) digital processors with the MCS-4 (which stands for Micro Computer Set) and the MCS-8. The MCS-4 is a four bit parallel organized processor, with a total of 45 instructions. It has a maximum program size of 4096 words. The MCS-8 is an eight bit parallel processor with a maximum memory addressing of 16,384 words. It has 48 instruction set repertoire. The MCS-4 has a 10.8 μ sec instruction cycle, compared to 20 μ sec for the MCS-8.

MCS-4

The MCS-4 communicates with external circuitry over a four bit data path. This bus is shared for both input and output transfers. Four data transfers consisting of more than four bits the transfer must be done during several subcycles, with a four bit "slice" being transferred during each subcycle. For instance, program addresses are twelve bits and require three subcycles to complete the transfer.

Most computers store their program code in read/write memory. It is becoming increasingly more common to find well used programs stored in read only memory. This assures that the program is not accidentally altered or erased. In the situation where the read/write memory is *volatile* (the contents are lost if the power is shut off) the use of ROM is especially useful. The MCS-4 has gone beyond this, requiring all program code to be stored in ROM. The processor distinguishes between the writeable memory (RAM) and the program store (ROM). For programs which are being changed regularly, as they are during development, this can be an awkward arrangement.

The MCS-4 has the simplified internal organization of the block diagram in Fig. 15. A four level, twelve bit stack stores all program addresses, the top of the stack being the address of the current instruction (the program counter). Subroutine calls cause the specified address to be "pushed" onto the stack. Returning from a subroutine reverses this process, "popping" the stack up one level. The four level stack permits subroutine nesting of three levels. The address is incremented as it is gated out onto the data bus four bits at a time. The incremented four bit slices are rewritten into the stack register after each of the first three subcycles.

Internal working registers consist of 16 four bit index registers. One of these is used as the accumulator during arithmetic operations. There is also a carry flip-flop, which can be used to propagate carries during multiple precision arithmetic or shift operations.

A series of special purpose instructions enable the addressing of the read-write storage. This cannot be considered as a general memory array, addressable by a single operation. Each RAM has four sections, each with two types of storage - four "status" words (or four bits each) and sixteen other storage locations. Four *separate* instructions permit the accessing of the status words. The general locations, however, must be selected by first setting up their location in two of the index registers (by a two word instruction), outputting these registers by a second instruction, and finally reading the location with a third instruction. And then the RAM must be in the currently active "bank" (a bank consists of 4 RAM's). The same procedure must be used to write data into the RAM's. Use of the read/write storage is artfully complex.

Constants can be accessed from the ROM memory in a considerably more straight forward manner. Since each ROM consists of 256 words, eight bits are required to address all locations. This is done indirectly by a pair of index registers which are initialized prior to reading. The ROM is selected by virtue of being the one in which the program is currently executing. Of course this means that any ROM cannot be totally filled with program constants, but must have some program instruction code besides.

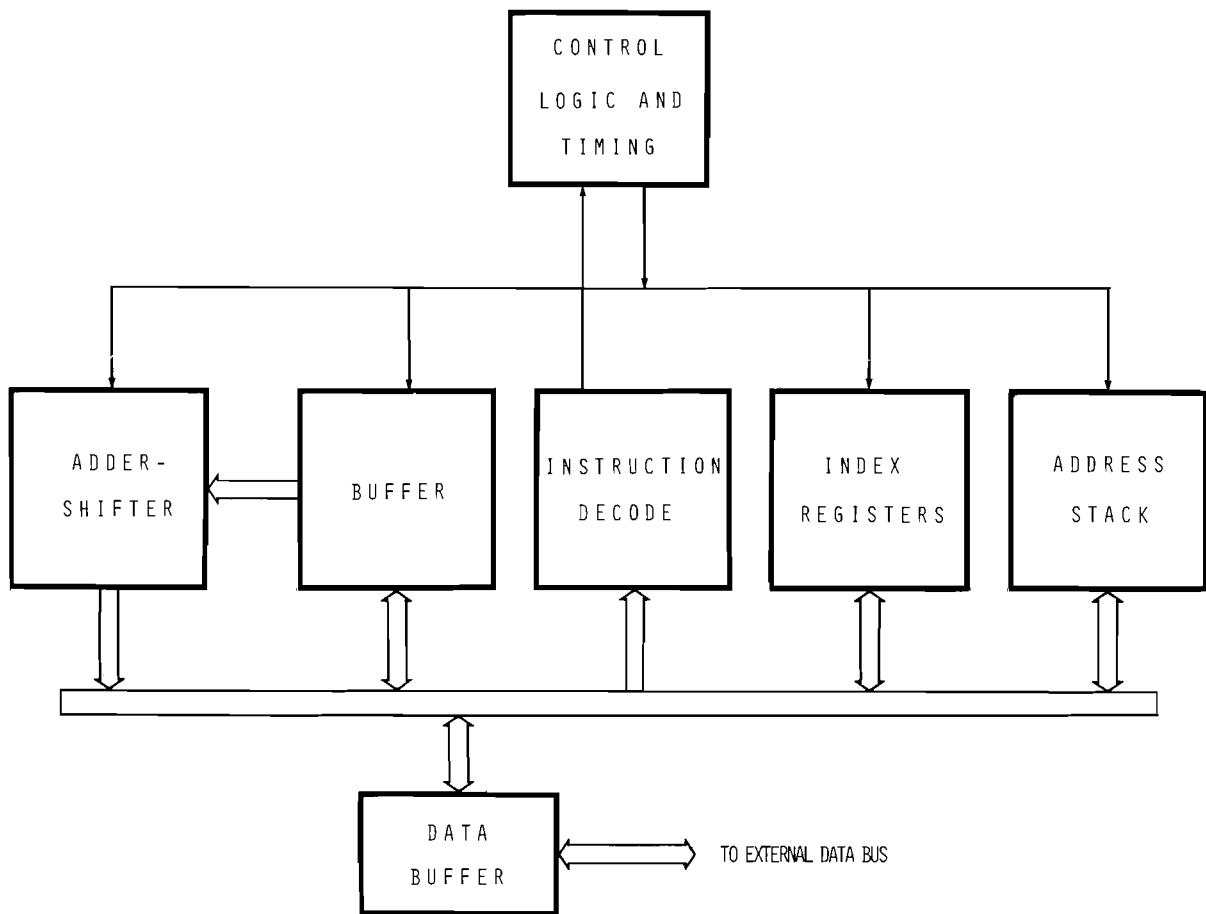


FIGURE 15. 4004 CPU block Diagram

MCS-8

Conservation of chip area and package interconnections dictated the use of a single eight bit data bus (see Fig. 16). The 48 instructions are divided into subcycles to share control of the data bus. But because all data transfers must take place on this bus a considerable number of subcycles are required for each instruction. Take for instance memory addresses which must select one of 16,384 locations. This corresponds to 14 bits, six more than can be transferred at one time. Thus two subcycles are used to transfer just memory addresses.

Addresses are used for referencing two types of memory contents--instruction code and program data. While program data can be fetched or stored, instruction code can only be fetched, and is stored in a register within the instruction decode logic. Program data are stored in one of seven general registers (referred to as A, B, C, D, E, H, and L). One of the registers, A, is used as an accumulator. The A register is used as one operand in all arithmetic and logical instructions, and is also the destination of the result.

Instructions cannot access memory directly. That is, no data addresses, in any form, are combined with any instruction. Instead, memory is referenced indirectly using registers H and L. Two registers are required because 14 address bits must be assembled for each memory access. The L register contains the least significant eight bits, and the six most significant bits are in the H register.

Program addresses are maintained in an eight register stack of 14 bits each. One of these is the program counter, which is incremented after each instruction fetch. As with the MCS-4, subroutine calls and returns are linked by saving the program counter in one of the other seven registers. A three bit counter designates the location of the program counter (the present address). A subroutine call causes this counter to be incremented and the subroutine address to be stored in that address register. This register is now the program counter and execution continues from this point. A subroutine return reverses this process,

decrementing the stack pointer so that it now uses the previous register as the program counter. An eight level stack permits nesting of subroutines to seven levels.

Some computers use a location in the subroutine to save the return linkage address. For microprocessors this technique poses the problem of having to use writeable storage for the subroutine instead of ROM. Address stacking solves this drawback, but as designed the address stack is not accessible to the program.

The Arithmetic/Logic Unit (ALU) executes arithmetic and logical instructions. It is capable of two's complement addition and subtraction, and can perform AND, inclusive OR, and exclusive OR. Four flip flops store certain conditions resulting from an ALU instruction. These conditions are

- A carry out of the most significant bit
- Whether or not the result was zero
- The sign of the result
- The parity of the result.

Two temporary registers a and b store operands for ALU operations. They are also used for data storage during transfers of data both within and without the processor.

The MCS-8 has eight subcycles as does the MCS-4, but all subcycles are not entered during any particular instruction. The MCS-8 has state control logic (see Fig. 17 for the state diagram) implemented by a five stage feedback shift register. This eliminates unnecessary execution states for multiple word instructions such as JMP but allows longer cycle times for multiple word instructions. Also some instructions require different numbers of cycles if a condition tested was true or false.

A register indicates which instruction cycle a particular instruction is in. The output of this register is one of three possible states: C1, C2, or C3. Note that most transitions of the state diagram include a term from the cycle register. All transitions back to state T1 cause the cycle register to be updated. The operation is discussed in more detail later for typical one, two, and three word instructions.

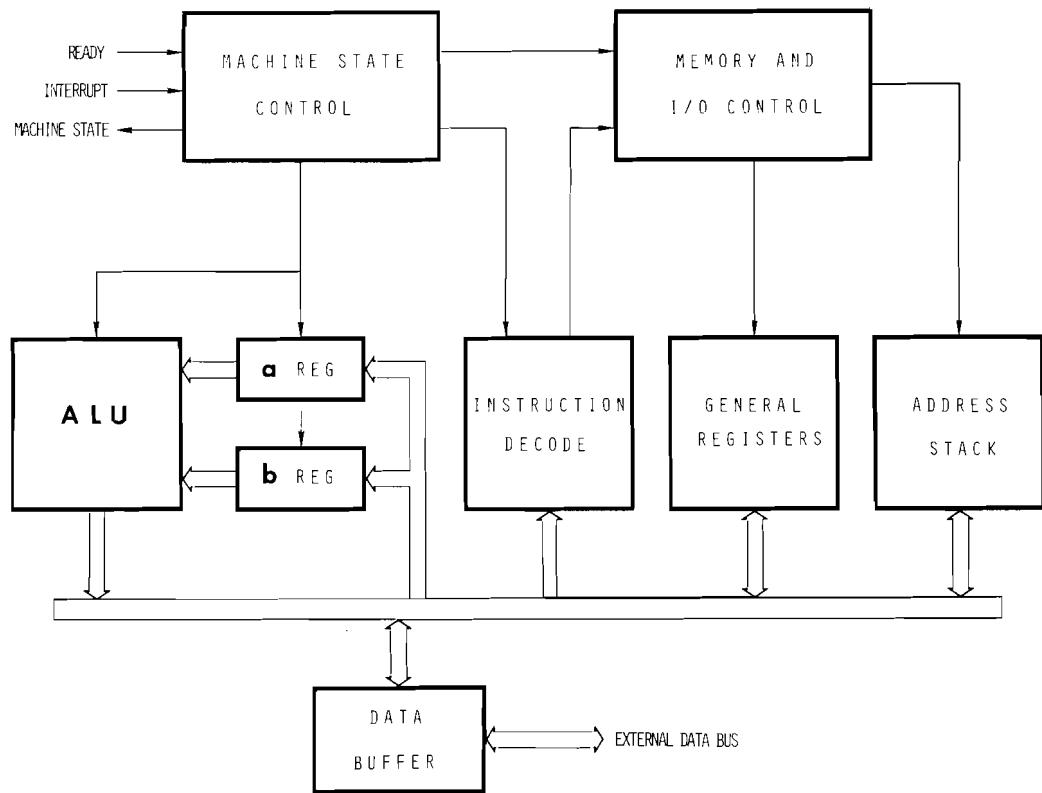
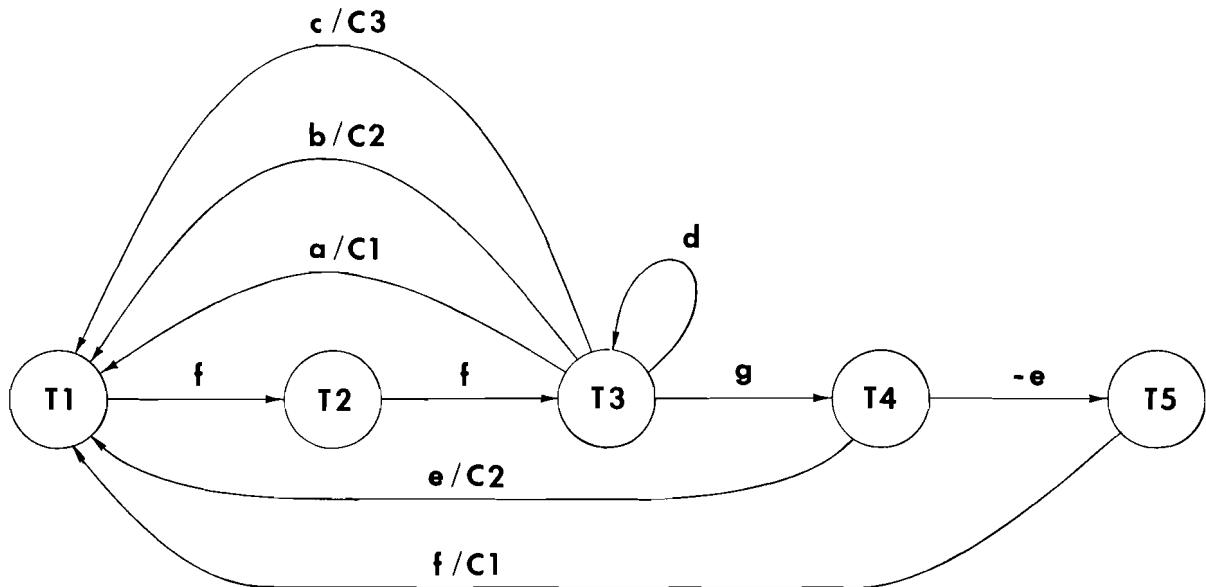



FIGURE 16. 8008 CPU block diagram

The subcycles T1 through T5 are used by the MCS-8 for the following purposes:

- T1 Send lower eight bits of memory address
- T2 Send higher six bits of memory address
- T3 Memory data fetch
- T4 and T5 Instruction execution.

Operation is probably best explained through examples. Consider, first, a single word instruction such as an intra-register data transfer, Lr_1r_2 (load register r_1 with the contents of r_2). Subcycles T1, T2, and T3 are used to send the program counter out and fetch the instruction. At T4 the source register, r_2 , is gated onto the internal data bus, and the data bus is strobed into register b (not to be confused with general register B). At T5 register b is transferred, by the internal data bus, to the destination register, r_1 . Initially the processor is in state T1 of the

$$\begin{aligned}
 a &= C1 \cdot (HLT \cdot INT^4 + RETURN^1) + C2 \cdot (\emptyset OUT + LMr) \\
 &\quad + C3 \cdot (LMI + JUMP^1 + CALL^1)
 \end{aligned}$$

$$b = C1 \cdot (LrM + ALUM^2 + ALUI^2 + INP + OUT + LrI + JUMP + CALL)$$

$$c = C2 \cdot (LMI + JUMP + CALL)$$

$$d = C1 \cdot (HLT \cdot \overline{INT}^4) + \overline{RDY}^3$$

$$e = C1 \cdot (LMr)$$

$$f = \text{automatic transition.}^5$$

$$g = -a--b--c--d$$

FIGURE 17. MCS-8 state diagram

1 These conditions are true only if the condition tested failed, or if no condition was specified.

2 These instructions include all immediate and memory reference ALU instructions (add, subtract, AND, OR, compare, exclusive OR).

3 This is the ready signal originated external to the CPU.

4 This is the interrupt signal originated external to the CPU.

5 Transition occurs on next clock and is not dependent on any other condition.

first instruction cycle (C_1 is true, and C_2 and C_3 are false). The lower address bits are sent out the data bus during this subcycle and the state changes to T_2 . The higher six bits are transferred at this point (along with two additional bits which signal the memory that an instruction fetch is in process). The state advances to T_3 during which the memory data are strobed into the instruction register. This state has five possible output transitions to itself, state T_1 and state T_4 . Equations a , b , and c are not true because the particular instruction, Lr_1r_2 , does not appear in any, leaving paths d or g . Because a , b , and c are false g will be equal to the inverse of d . Path d allows the processor to wait for the memory if the processor's subcycle was shorter than the access time of the memory. This is indicated by the Ready line being true. In this case the state changes to T_4 , where the source register is transferred to the temporary register. Because equation e is false state T_5 is entered, where the temporary register is transferred to the destination register. Following this control changes to state T_1 . The cycle register is set to the first instruction cycle, C_1 , even though it is still in the first cycle. This completes the instruction execution and the processor is ready to execute the next instruction.

A typical two word instruction is add the contents of the accumulator with the data immediately following (add immediate, ADI). Two memory fetches are required, one to get the instruction and the other to get the data. The ADI instruction falls in the ALU immediate class, ALUI, which bypasses the unnecessary execution phase, T_4 and T_5 , of the first instruction cycle. This occurs by transition path b at state T_3 . During the first cycle C_1 is true, and ALUI is true. This transition changes the cycle register to the second cycle, making C_2 true and C_1 false. The second cycle fetches the word following the instruction, which will be added to the A register. This time path g is followed to state T_4 and, hence, to T_5 . T_4 and T_5 add and store the result back into the A register. As before, the transition from T_5 to T_1 resets the cycle to C_1 , completing instruction execution.

All three word instructions are either program jumps or subroutine calls, which include the full memory address of the operation. Two successive words contain the address, the lower order eight bits are stored in the first word and the higher order six bits in the second. Both instructions have the option of specifying a condition which must be met before the instruction is executed. Otherwise the next sequential instruction is executed. The conditions tested are status flip-flops set according to the result of a previous ALU instruction, and indicate whether the result generated a high order carry, was zero, had even parity, or if the most significant bit was true. Execution begins by fetching the instruction. T4 and T5 are avoided through path b, and the second cycle begins. The lower order address of the jump or call is fetched next, and is stored in register b. Transition path c sets the third cycle of the instruction and initiates fetching of the higher part of the jump or call address. States T4 and T5 are used to set the high and low part of the program counter to the new address, respectively. If a condition was specified and failed, the jump or call is defeated through path a of the third cycle.

A halt instruction, or a low level on the Ready input, causes a continued looping at state T3 by path d. The MCS-8 cannot actually stop since the contents of its dynamic memories would be lost. Instead T3 is used to refresh these memories. The Ready line coming true again will initiate execution, but only an interrupt can bring the MCS-8 out of a halted condition.

The interrupt signal (INT), except in the halted condition, is recognized in state T1 of the first cycle. The presence of the interrupt signal inhibits normal incrementing of the program counter. This allows the substitution of an interrupt instruction in place of the normal memory instruction. This is not done by the 8008 and must be built into the peripheral MCS-8 logic.

The processor signals the external logic that the interrupt has been recognized. At state T3 the external multiplexer selects a hardwired interrupt instruction instead of the memory. The instruction used may be any in the instruction set, but is usually the Restart instruction. A Restart

instruction is used because it is a single word subroutine call in page zero (multiple word instructions can be used, but a penalty is paid by the additional multiplexing required to implement it).

While this forms the skeleton of an interrupt structure the MCS-8 is not capable of a true interrupt. The reason for this deficiency is that memory referencing can only be done through the H and L general registers. It is not possible to save registers after an interrupt without losing the contents of at least one of them. The one alternative is to dedicate one or two registers for interrupt temporary storage so the H and L registers can be saved while the interrupt storage is being set up. If only one page (256 words) is referenced by *all* programs only the L register need be saved. It should hardly be necessary to emphasize the reluctance with which the loss of one or two general registers (out of seven, two of which must be dedicated to memory referencing) is treated. The only other alternative is to build special purpose logic to handle this situation, which is even less desirable than the first alternative. Besides this, status-flip-flops can be tested only through condition jumps or subroutine calls, making the saving and restoring of status cumbersome.

A side-by-side comparison of the MCS-4 and the MCS-8 demonstrates the MCS-8 to be considerably more powerful, as one would expect. Besides the obvious advantage of a larger word size the MCS-8 has a more flexible memory referencing scheme. Constants in the MCS-8 can, for the most part, be accessed through immediate data instructions. The MCS-4 has to fetch immediate data with a separate instruction. The eight level address stack of the MCS-8 has immense advantage over the four level stack of the MCS-4, since this is an absolute limit to subroutine nesting. While the MCS-4 must commit its program code to ROM, the MCS-8 can intermix ROM and RAM for this purpose. This permits checked out code to be stored in a non-volatile ROM, while new programs are being debugged in RAM. The allocation of memory is left solely up to the designer.

It is perhaps simpler to point out the MCS-4's few advantages over the MCS-8 than vice versa. The MCS-8 requires considerably more peripheral logic than does the MCS-4, when the MCS-4 is used with its custom designed

ROM and RAM, the 4001 and 4002, respectively. The 4001 and 4002 require no peripheral circuitry allowing the minimum system package count and, hence, cost. Also it has a few decimal arithmetic instructions that MCS-8 does not, but has none of the logical instructions (such as logical AND and inclusive OR) that the MCS-8 has.

MCS-8 Basic System

Fig. 18 shows the minimum logic required to form an operational MCS-8 system. The bi-directional data bus accommodates instruction and I/O input data as well as memory and I/O output data, but buffering is necessary for TTL compatibility. The 8008 requires a two-phase, non-overlapping dock with the timing diagram of Fig. 19.

The basic processor is contained on three 3 1/2 by 4 inch printed circuit cards, which exclude most of the memory and the data multiplexers. These cards and their Livermore stock numbers are

Central processor	LEA68-9068-93
Input-output control	LEA68-9068-94
Memory address	LEA68-9068-95

The processor card, besides the Intel 8008 CPU, contains the data bus input and output buffers, and the state decode. The state of the 8008 is encoded on three output signals from the 8008, which is decoded to eight separate signals for the input-output control card. This card generates all the necessary control signals for the remainder of the logic, for instance signaling the input multiplexer when to gate memory output data onto the 8008 data lines. This card also contains the two phase clock generator, and its trimming adjustments. The memory address card has a sixteen bit register for storing the current memory address sent during two subcycles. It also contains one 256 word PROM.

Memory for the processor is on two card types, one for semiconductor RAM (LEA68-9068-97) and another for PROM (LEA68-9068-96). The RAM card has storage for 256 words, while the PROM card has a total of 512. Both types of semiconductors internally decode the least significant eight bits of the memory address, with the remaining six bits being decoded by a

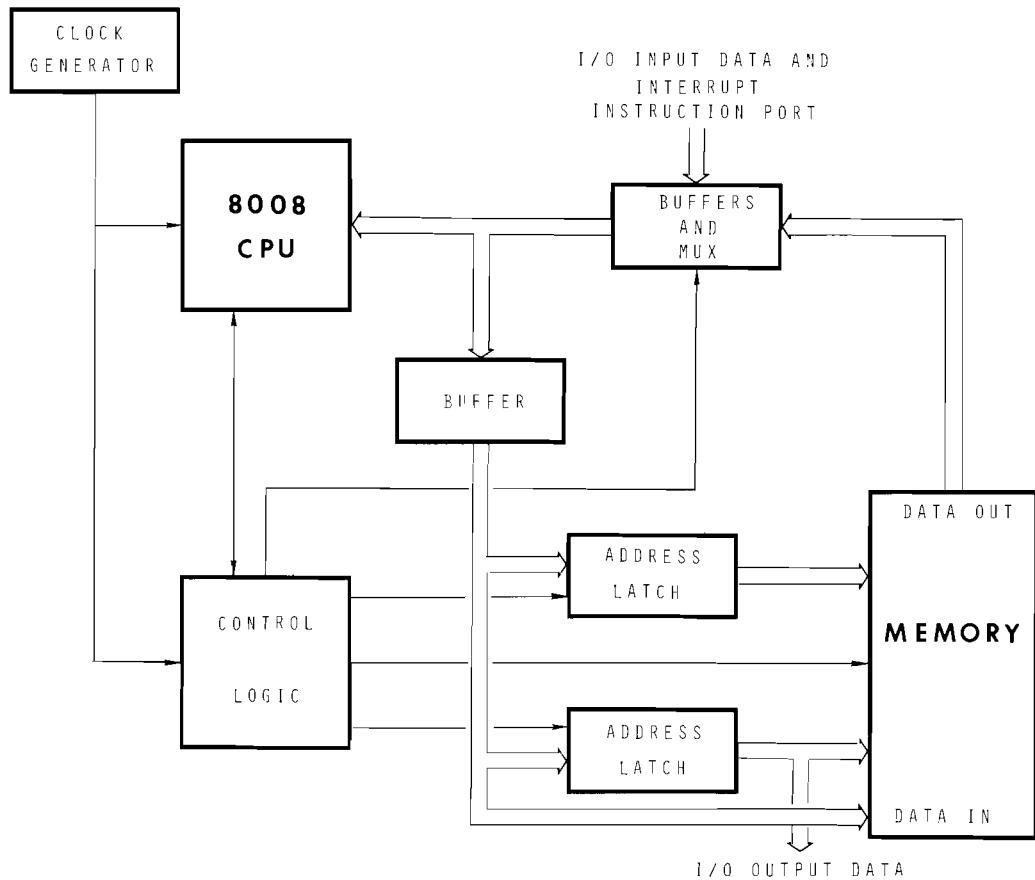


FIGURE 18. MCS-8 system block diagram

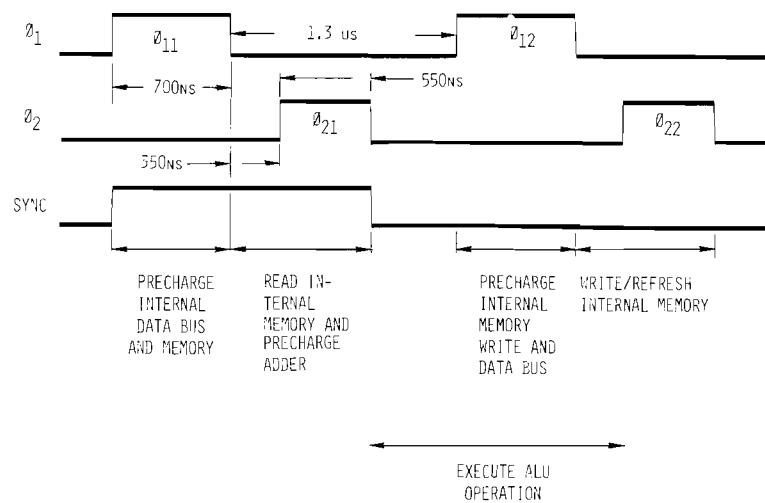


FIGURE 19. Clock timing diagram

combination of two jumpers and a one-of-sixteen decoder IC. Sixteen card positions are dedicated for memory use, with all interconnected by the bussing of fourteen address lines, eight data input lines, eight data output lines, and one control line. Since decoding is done completely on the memory card, the card may be inserted in any of the sixteen slots.

Interface Logic

The controller must be capable of accurately measuring millivolt signals, provided multi-phase current drive for a stepping motor, sense switch and potentiometer settings, and provide the correct asynchronous serial pulses to communicate to a teletypewriter. All of these functions fall under the category of the interface logic, although they may bear little resemblance to each other. This equipment is outlined by the block diagram of Fig. 20. Except for the serial interface this logic is Battelle-designed, utilizing unused card slots in the processor. Schematics of this part of the processor is in Appendix BNWL

The input circuitry must transform a 50 millivolt peak signal to a minimum eight bit digital number, and be as immune as possible to process electrical noise. The input signal is carried to the processor on a shielded twisted pair cable, connected by a triaxial shielded connector (manufactured by Trumpeter Electronics). This signal is far too small for the analog-digital converter, which requires a 10 volt full-scale input, necessitating amplification by a factor of 189. The output of the amplifier is connected to a multiplexer (LEA68-9068-64) as are the gain control potentiometers. This multiplexer is controlled by a register loaded under program control, and its output is the input of the analog-digital converter (LEA68-9068-89). This converter is capable of twelve bit accuracy, although only eight are used. The eight most significant bits are wired to one of the ports of the data multiplexer made up of two four-bit multiplexers (LEA68-9068-33). The four least significant bits are transferred to the processor with the use of a multiplexer expander (LEA68-9068-37) since the unused bits of the supplied multiplexer were inadequate.

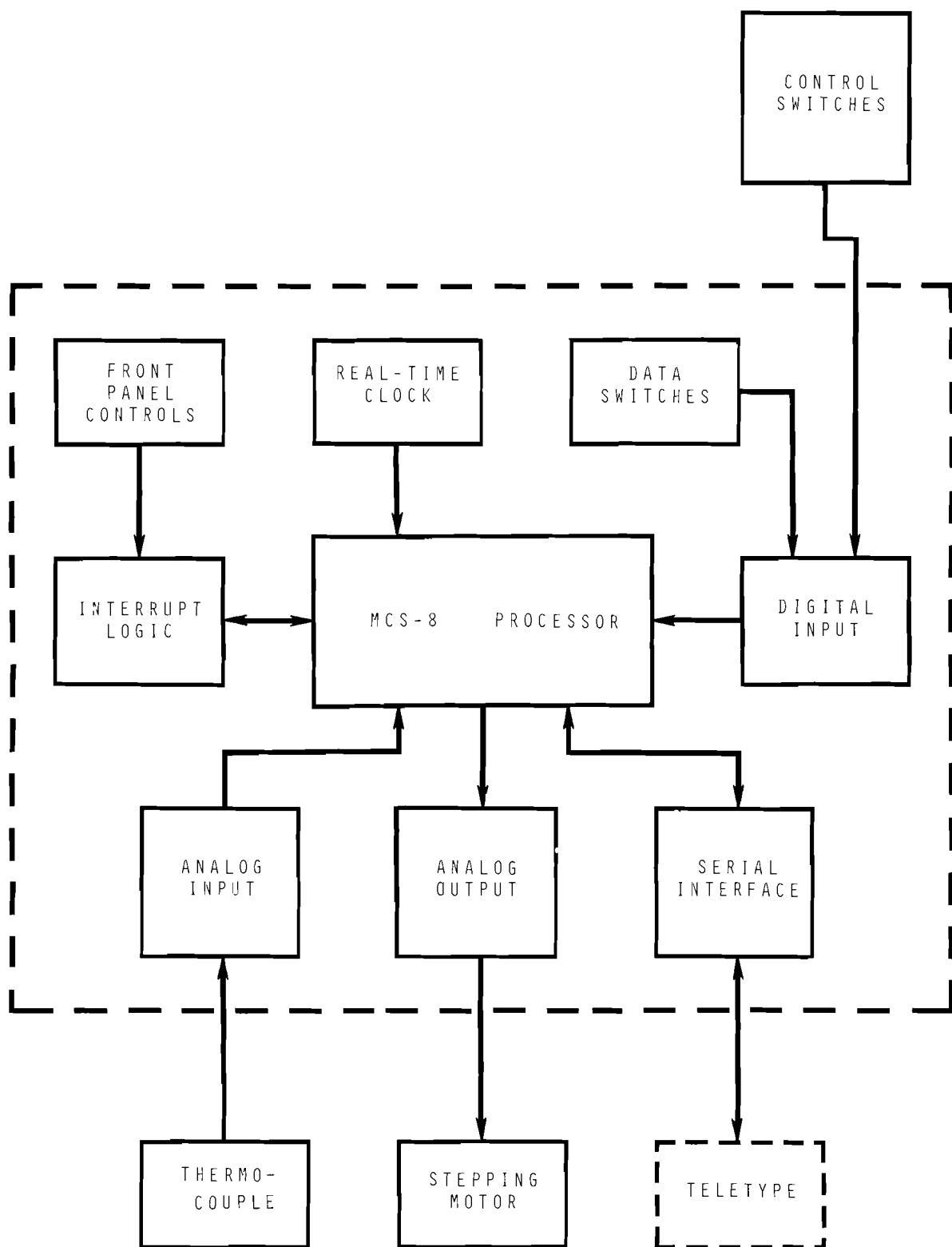


FIGURE 20. Detailed control system block diagram

A stepping motor was chosen as the output device as it offered the greatest number of alternatives for the user. It is a true digital transducer in that a motion command is translated into a discrete motion. Further the error involved in each "step" is nonaccumulative, which means that its long term repeatability is excellent, as is its capability for making accurate long distance movements (which is important if it is connected to a lead screw of a machine for numerical control). The stepping motors driving electronics are also considerably simpler than those for an equivalent dc servo motor. The main disadvantage of the stepping motor, besides its inferior dynamic performance, is that it dissipates as much energy, and, hence, heat, in the standby mode as in the operating mode.

The electronics for the stepping motor, with the exception of the power supply, are entirely self-contained by the controller. This is contained on two p.c. cards (LEA68-9068-85 and LEA68-9068-86) and two power dropping resistors, which are collectively called the stepping motor translator (translate as used in the sense that it "translates" digital stepping commands into rotary motion). The motor is of the variable reluctance type with four windings. Those windings must be activated in a specific sequence to induce motion. Fig. 21 is a simplified version of the translator. The heart of the translator is a two stage counter which generates the correct drive signals for the power drivers. This sequence is specified by the following state transition table. From this table the

Present State		Next State	
A B		Forward	Reverse
0	0	0 1	1 0
0	1	1 1	0 0
1	0	0 0	1 1
1	1	1 0	0 1

sequence for several forward commands can be derived as

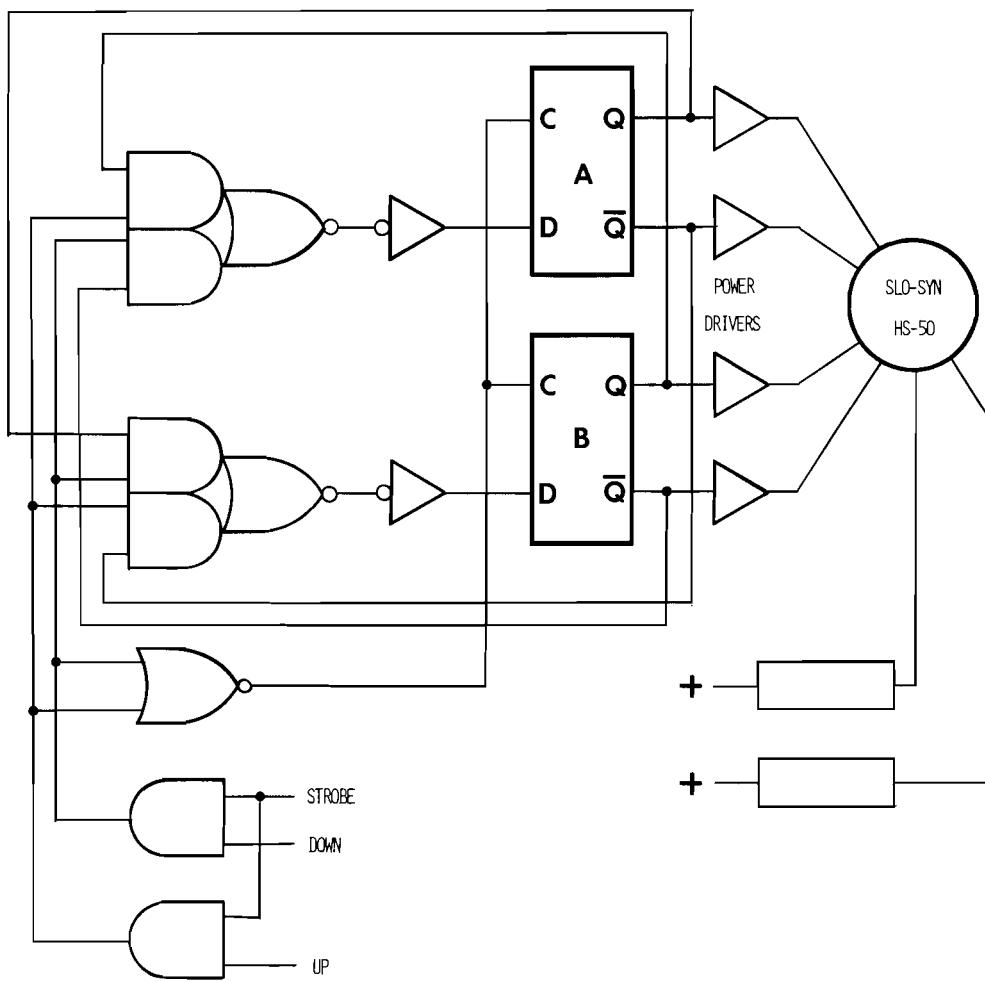


FIGURE 21. Stepping motor translator

Step	A	B
1	0	0
2	0	1
3	1	1
4	1	0
5	0	0

This corresponds to the timing diagram of Fig. 22.

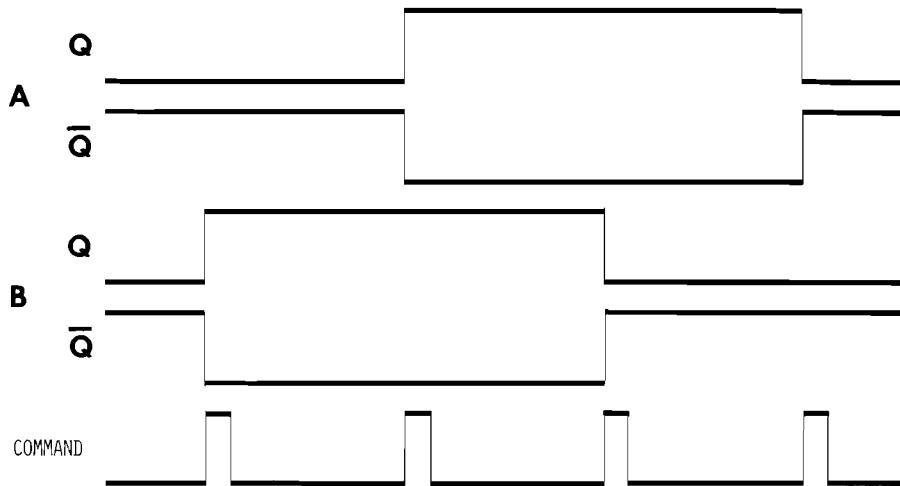


FIGURE 22. *Translator output*

Note that all four windings are being actuated at a frequency which is one fourth the stepping frequency. It is this lower frequency which is the ultimate limit to the stepping rate of the motor, as the motor will step no faster than the rate at which the windings can be turned on and off. This, in turn, is limited by the inductance/resistance ratio of the windings, which is reduced by the use of external dropping resistors. The tradeoff here is the power which must be dissipated by the dropping resistors.

Turning the windings on and off also generates transient voltage spikes. These are undesirable, and will adversely affect the digital logic. To minimize these spikes clamp diodes were installed at the motor to bypass them back to the power supply. The driver card has its own diodes, but were not used in favor of clamping the spikes as close as possible to the source, and as far as possible from the logic.

Provision was made for the use of a dual power supply for the stepping motor, connected at terminal strip J55, instead of a single, but is not so restricted. Either a 15 volt 6 amp, or dual 15 volt 3 amp, supply is required.

Digital inputs, which include the control switches on the remote control box and the data selector switches inside the cabinet, are connected directly to the data multiplexers used to input data to the MCS-8. The START pushbutton switch serves a dual purpose. Besides being available as data to the processor it is also wired to one of the bits of the interrupt instruction. In this way it can influence what happens when the RESTART pushbutton is pressed, which causes the hard-wired interrupt instruction to be executed. The two interrupt instructions which can be executed are restart to location 0 or 10_8 , depending on whether the START switch is or is not depressed when the RESTART button is pressed. The former causes ODT to be executed, while the latter causes the control program to be executed. Normally the control program will be started so extra effort is required to start ODT.

The serial interface permits communication with input-output terminals such as Teletypes. The logic of this interface is mostly contained on a single large scale integrated circuit. This circuit converts both parallel data to serial and serial data to parallel, as well as adding "start" and "stop" bits. Because Teletypes provide only contact outputs a modification must be made to generate a 0 to +10 volt signal. A positive supply voltage must also be provided for the printer for use as a current source. The interface transmits to the Teletype by sinking this current, or not sinking it.

Digital Simulator

A digital simulation of the braze process was designed and built to "close the loop" during development, and as a maintenance tool during installation and repair. It allows the processor to be exercised independent of the process. The digital simulator, however, is not meant to be equivalent to the process in response, only representative.

Basically it is a first order digital filter, exhibiting the transfer characteristic

$$d(z) = \frac{a}{b - c z^{-1}}$$

This is realized by an integrator (counter) whose output (value) is fed back to the input (see Fig. 23).

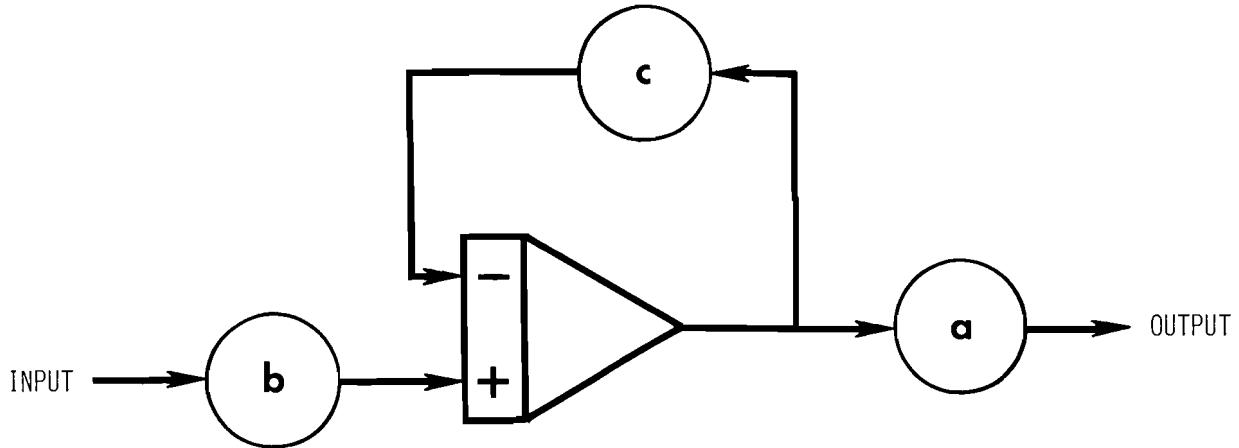


FIGURE 23. Block diagram of the digital simulator.

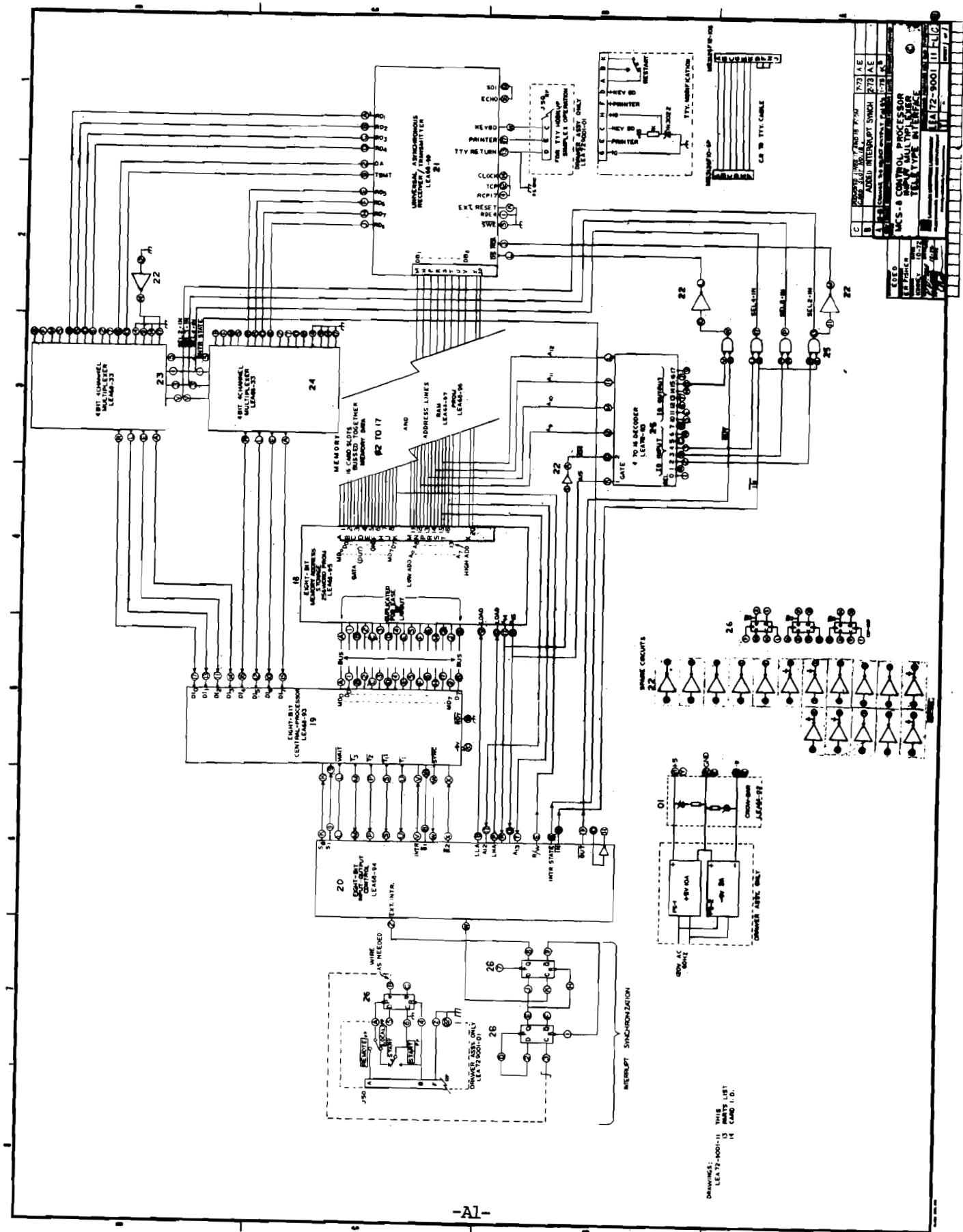
The multipliers b and c are implemented with digital frequency multipliers (SN7497). The integrator is a cascaded up/down counter. The counter is controlled by logic which prevents it from over or underflowing.

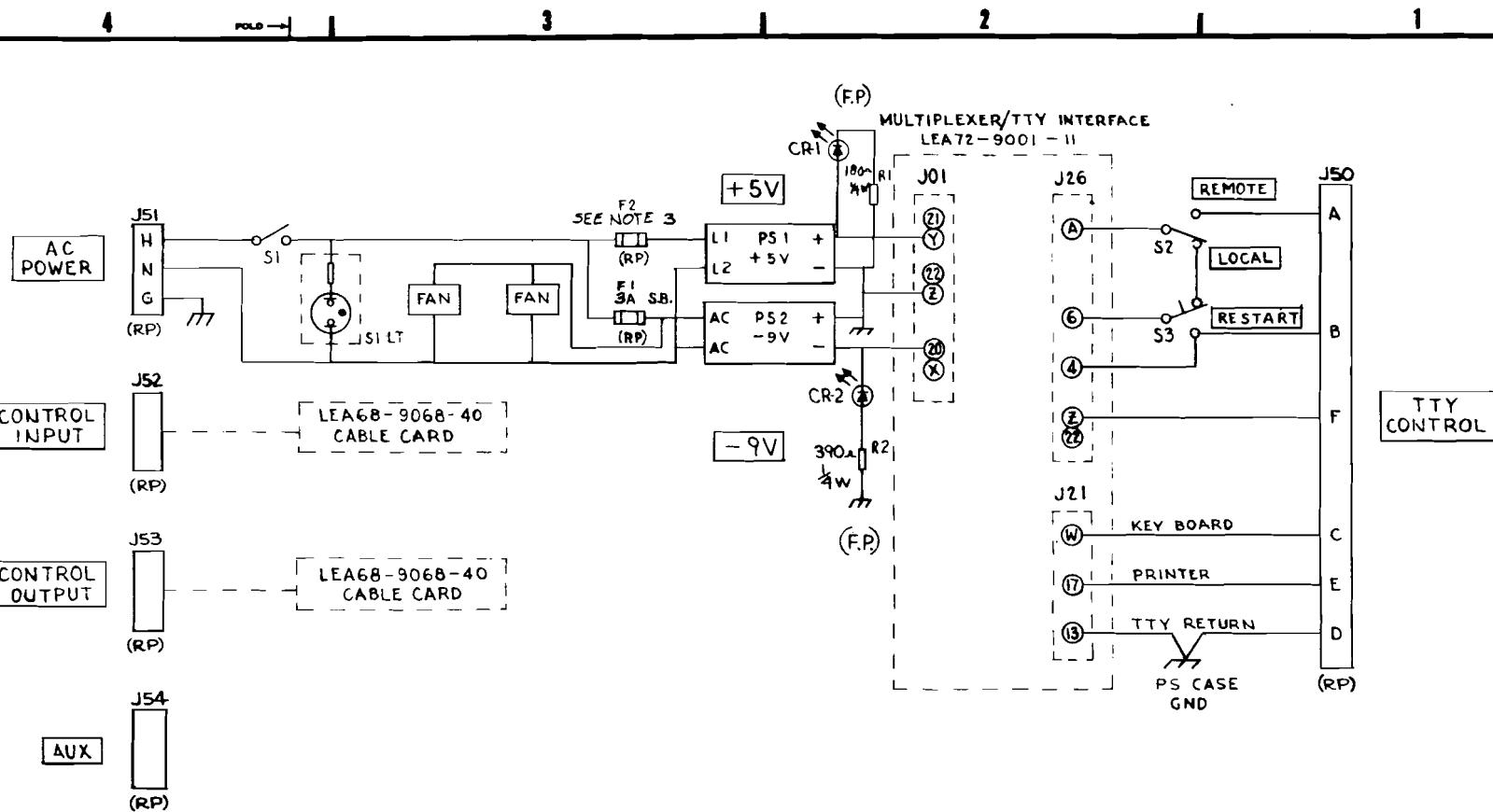
Because the output of the controller is pulsed to a stepping motor the simulator has an up/down counter to accumulate the output pulses and produce a parallel binary value equivalent to the stepping motor position. A frequency multiplier (represented by multiplier b) converts this to the frequency domain. This pulse stream is applied to the up clock of the integrator.

A digital/analog converter changes the process "temperature" to voltage form. The 0 - 10v output is inverted by an amplifier, and scaled by a voltage divider to 0 to +50 mv. This signal is returned to the controller and applied to the input amplifier.

The clock for the simulator comes from the real time clock. This must be running for the simulator to run. Changing the clock rate (say it were connected to a pulse generator instead) would change the time scale of the simulation. Heating and cooling time constants are altered by changing b and c, respectively. At present no provision has been made in the simulator to do this.

ACKNOWLEDGMENT


The author gratefully acknowledges the assistance of George McFarland of Lawrence Livermore Laboratory without whom this project would not have been possible.

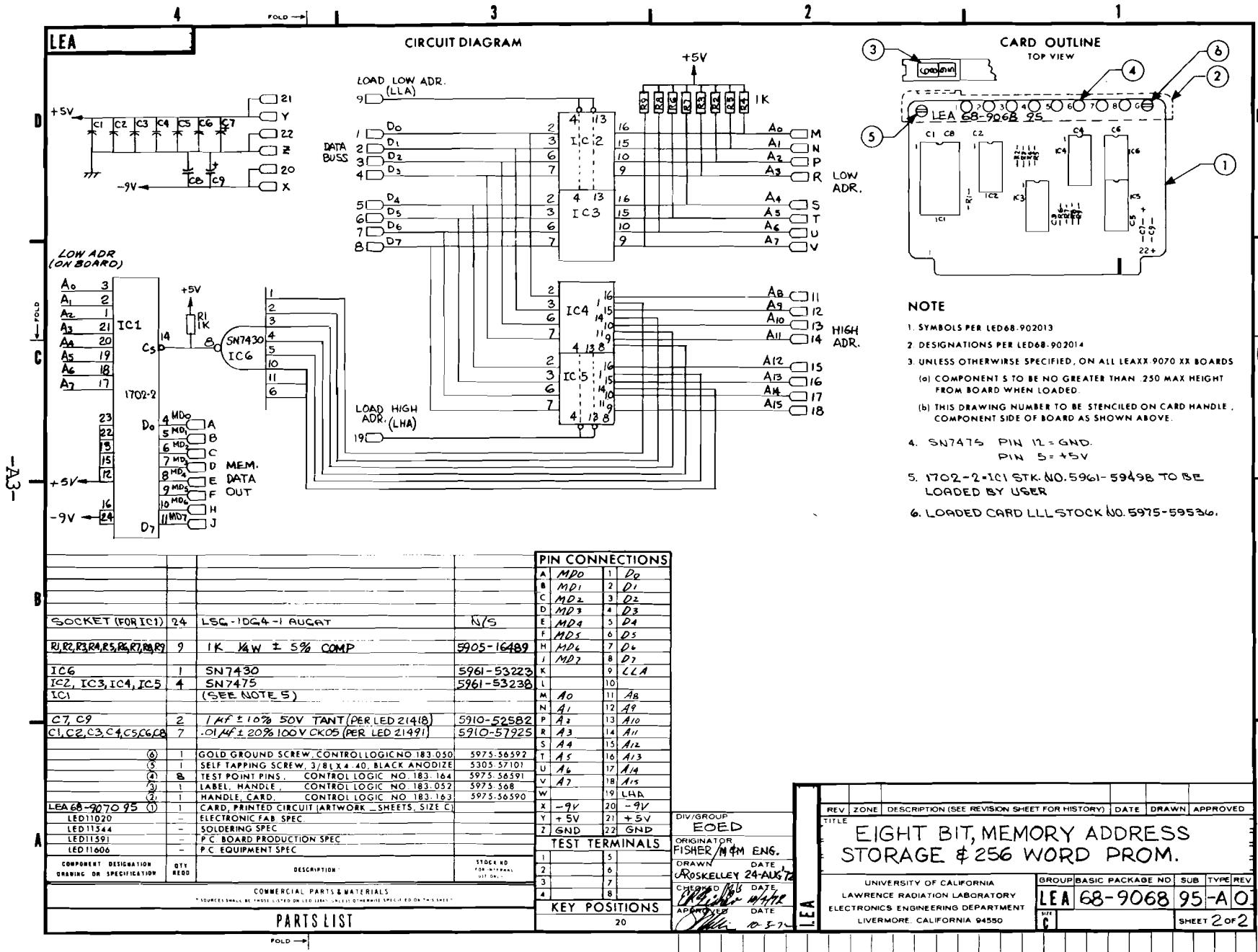

BIBLIOGRAPHY

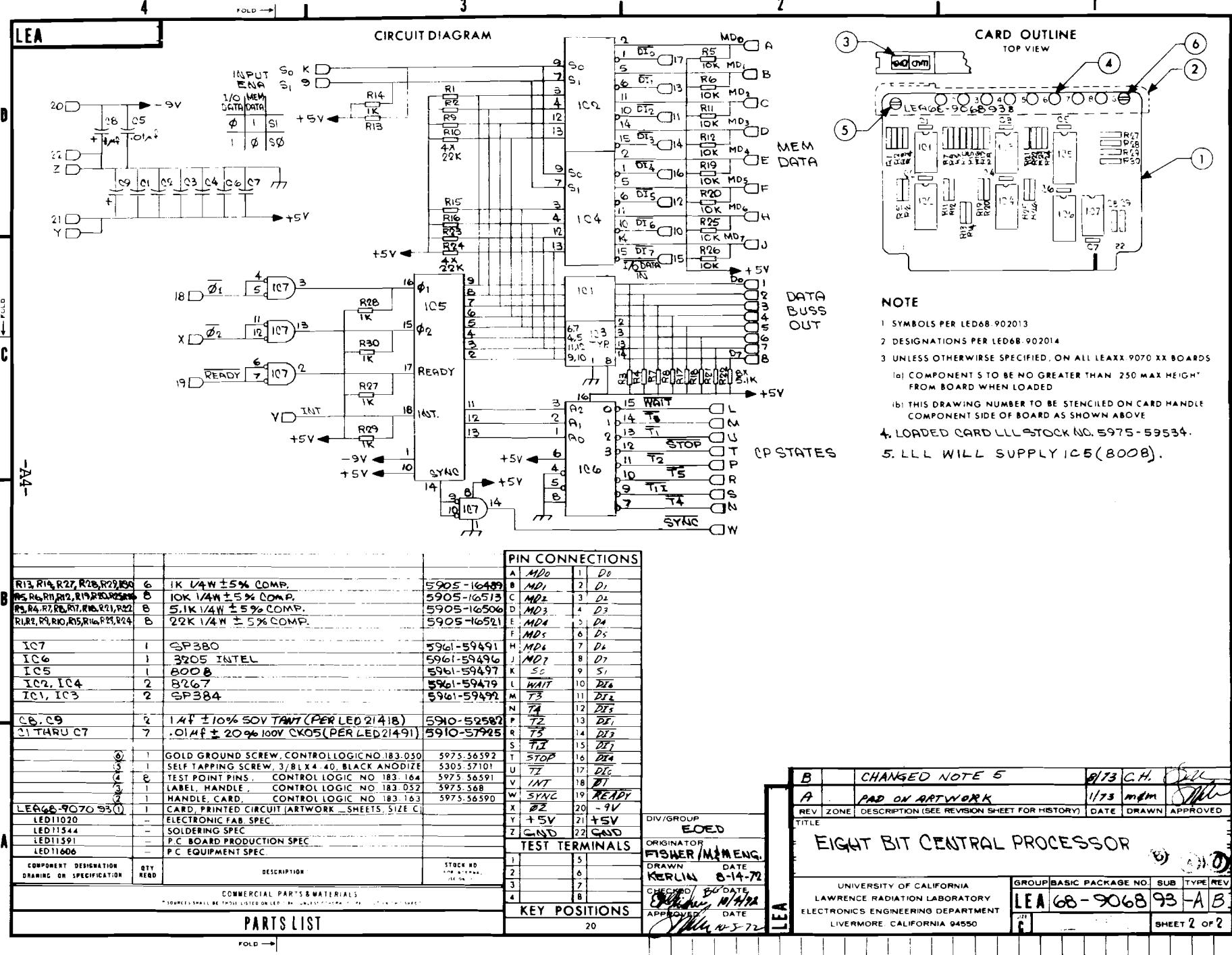
1. Cadzow, J. A., Discrete Time Systems, Prentice-Hall, Englewood Cliffs, NJ, 1973.
2. Gorman, Ken, P. Kaufman, "Low Cost Minicomputer Opens Up Many New System Opportunities", Electronics, June 7, 1973, Vol. 46, pp. 109-115.
3. Kuo, B. C., Analysis and Synthesis of Sampled Data Control Systems, Prentice-Hall, Englewood Cliffs, NJ, 1963.
4. Langill, A. W., "Digital Brain for a Digital Valve," Control Engineering, Dec. 1972, pp. 44-46.
5. Lapidus, A., "MOS/LSI Launches the Low Cost Processor," IEEE Spectrum, Nov. 1972, pp. 33-40.
6. Lewis, D. R., W. R. Siena, "Microprocessor or Random Logic?," Electronic Design, Sept. 1, 1973, Vol. 21 no. 18, pp. 106-110.
7. Lewis, D. R., and W. R. Siena, "How to Build a Microcomputer," Electronic Design, Vol. 21 no. 19, pp. 60-65.
8. Lewis, D. R. and W. R. Siena, "Clear the Hurdles of Microprocessors," Electronic Design, Sept. 27, 1973, Vol. 21, no. 20, pp. 76-80.
9. MCS-8 Users Manual, Revision 3, March 1973.
10. Wickes, William E., "A Compatible MOS/LSI Microprocessor Device Family," Computer Design, July 1973, Vol. 12, pp. 75-81.

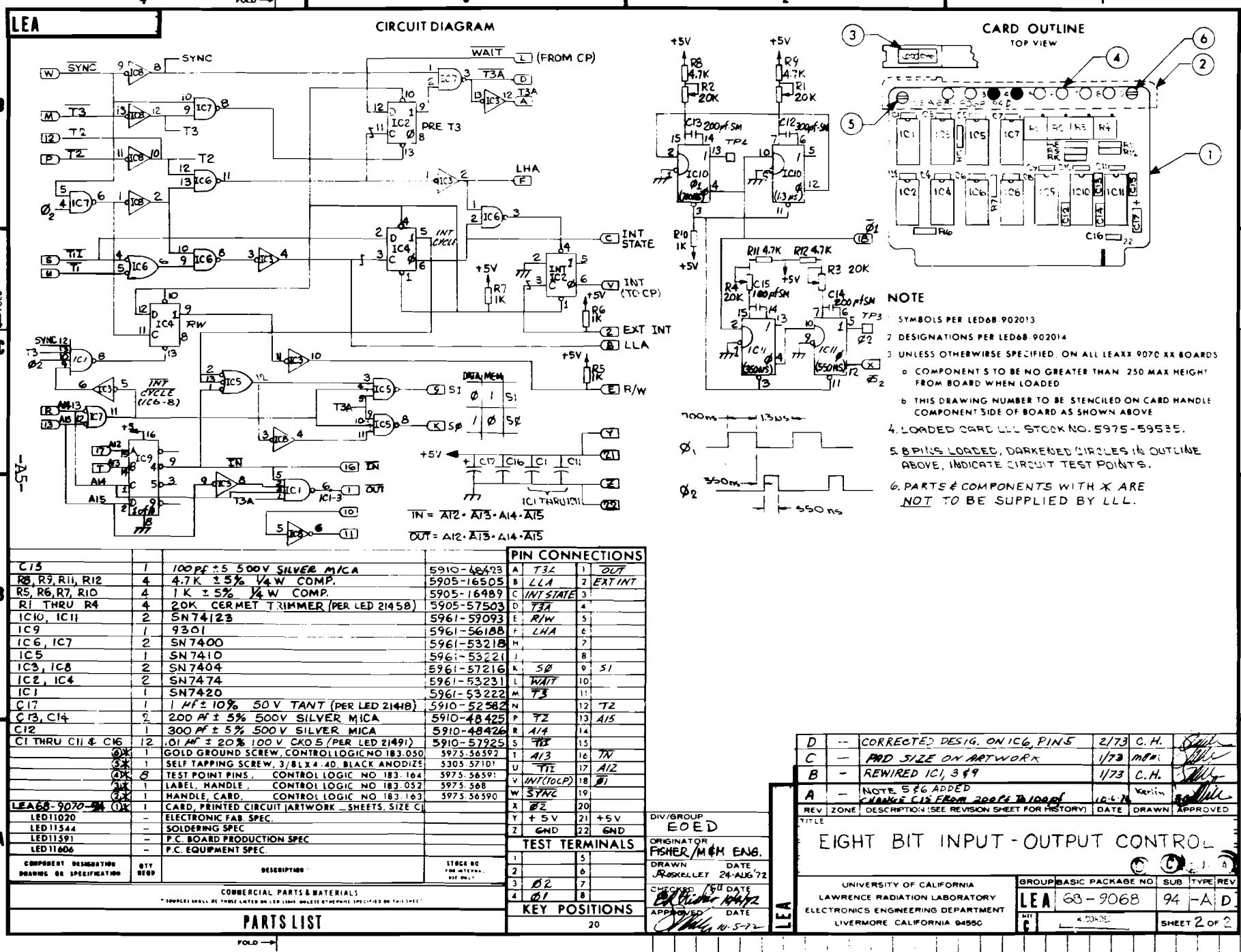
BNWL-1795

APPENDIX A

DRAWINGS/ASSEMBLIES REQUIRED:

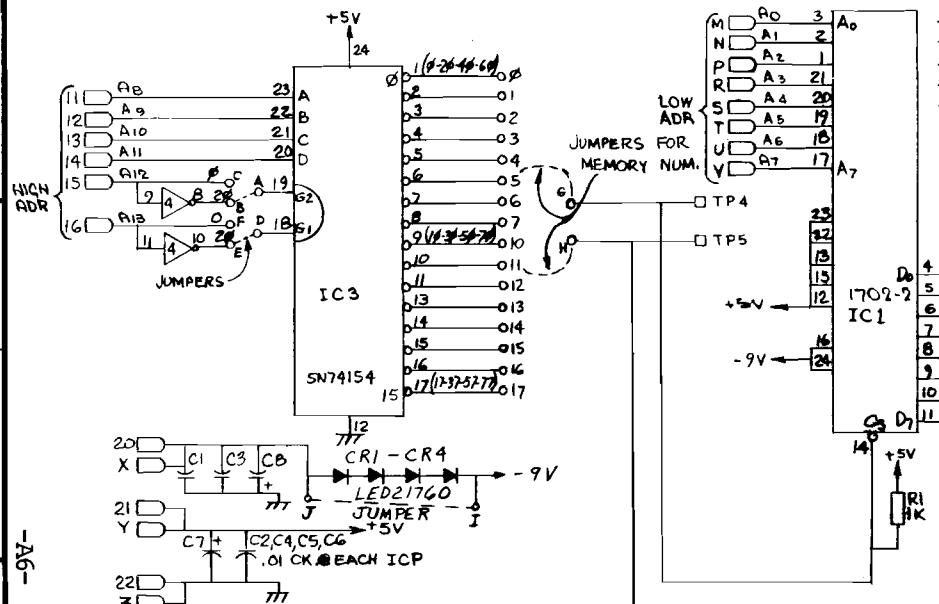

- LEA72-9001-01 THIS DWG.
- 03 PARTS LIST.
- 04 P.S. BRACKET.
- 06 FRONT PANEL TEMPLATE.
- 07 FRONT PANEL SILK SCREEN.
- 08 REAR PANEL TEMPLATE.
- 09 REAR PANEL SILK SCREEN.
- 11 MULTIPLEXER/TTY INTERFACE-ASSEMBLY.
- 13 PARTS LIST FOR -11.
- 14 CARD I.D. FOR -11.
- 15 TERMINAL COVER FOR RO 210
- 16 " " " RO 106


NOTES:


1. FOR TTY OPTION SEE LEA72-9001-11.
2. REMOVE FRAME NEAREST FRONT PANEL.
3. IF PS1 IS LED21559 FUSE WITH 2A;
IF PS1 IS LED 21686 FUSE WITH 3A.

DRAWING	ED
ORIGINATOR	LININGER
DRAWN	DATE
D. GRINDAHL 11-14-72	
CHANGED	DATE
M. DATE	

C	ADDED NOTE 3	8/73	C. H.
B	ADDED R1+R2, CH S3 LABEL	9-19-72	LAL
A	ADDED CRI&CR2	2-87	EDWARD
REV. ZONE		DESCRIPTION	DATE DRAWN APPROVED
TITLE		MCS8 CONTROL PROCESSER	
		DRAWER ASSEMBLY	
UNIVERSITY OF CALIFORNIA		INQUIRIES	PACKAGEN. SUB TYPE REV.
LAWRENCE RADIATION LABORATORY		LEA	72-9001 01-SC A
ELECTRONICS ENGINEERING DEPARTMENT			
LIVERMORE, CALIFORNIA 94550			
		SHEET 1 OF 1	



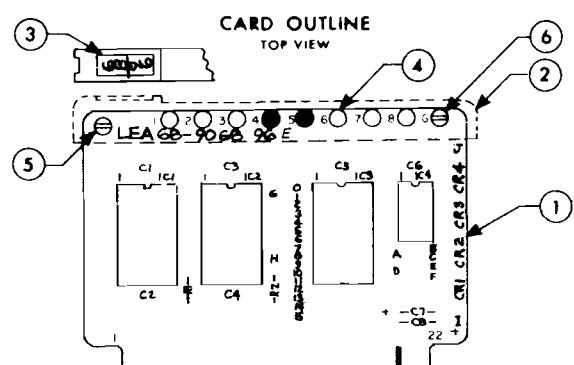
LEA

CIRCUIT DIAGRAM

PIN CONNECTIONS		
A	MD ₀	1
B	MD ₁	2
C	MD ₂	3
D	MD ₃	4
E	MD ₄	5
F	MD ₅	6
G	MD ₆	7
H	MD ₇	8
I	MD ₈	9
J	MD ₉	10
K	MD ₁₀	11
L	MD ₁₁	12
M	MD ₁₂	13
N	MD ₁₃	14
O	MD ₁₄	15
P	MD ₁₅	16
Q	MD ₁₆	17
R	MD ₁₇	18
S	MD ₁₈	19
T	MD ₁₉	20
U	MD ₂₀	21
V	MD ₂₁	22
W	MD ₂₂	23
X	-9V	24
Y	+5V	25
Z	+5V	26

COMPONENT DESIGNATION
DRAWING OR SPECIFICATIONQTY
REQD

DESCRIPTION


STOCK NO.
FOR INTERNAL
USE ONLYCOMMERCIAL PARTS & MATERIALS
* SOURCES SHALL BE THOSE LISTED OR LED 11544 UNLESS OTHERWISE SPECIFIED ON THIS SHEET

PARTS LIST

FOLD →

KEY POSITIONS

20

DIV/GROUP
EOEDORIGINATOR
FISHER/NFM ENGS.DRAWN BY
J. BURLEY 24 AUG 72CHECKED BY
A. J. BURLEY 24 AUG 72APPROVED BY
J. BURLEY 24 AUG 72UNIVERSITY OF CALIFORNIA
LAWRENCE RADIATION LABORATORY
ELECTRONICS ENGINEERING DEPARTMENT
LIVERMORE, CALIFORNIA 94550GROUP BASIC PACKAGE NO. SUB TYPE REV
LEA 68-9068 96-A E
SHEET 2 OF 2

NOTE

1. SYMBOLS PER LED68-902013

2. DESIGNATIONS PER LED68-902014

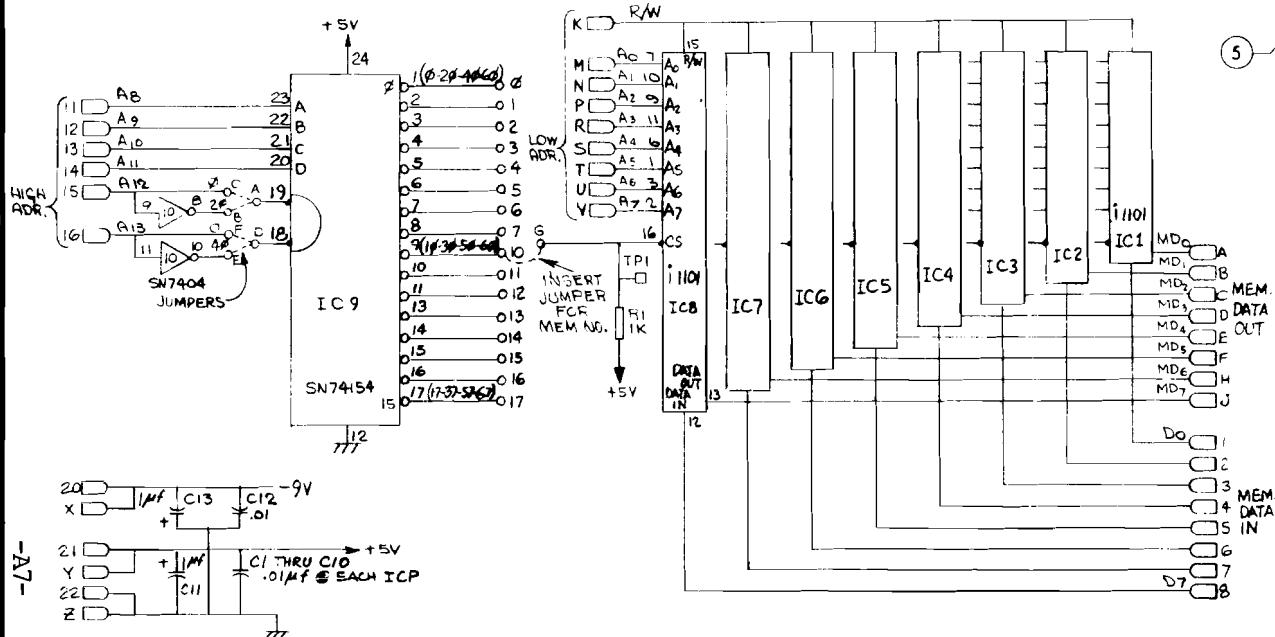
3. UNLESS OTHERWISE SPECIFIED, ON ALL LEAXX-9070 XX BOARDS
(a) COMPONENTS TO BE NO GREATER THAN .250 MAX HEIGHT
FROM BOARD WHEN LOADED.4. (b) THIS DRAWING NUMBER TO BE STENCILED ON CARD HANDLE.
COMPONENT SIDE OF BOARD AS SHOWN ABOVE.

5. LOADED CARD LLL STOCK NO. 5975-59537.

6. (b) TEST PINS LOADED; DARKENED CIRCLES IN
OUTLINE ABOVE INDICATE CIRCUIT TEST POINTS.7. ALL JUMPERS TO BE INSTALLED
BY USER.8. PARTS & COMPONENTS WITH * ARE
NOT TO BE SUPPLIED BY LLL.9. INSTALL JUMPER WHEN -9V
SUPPLY IS USED

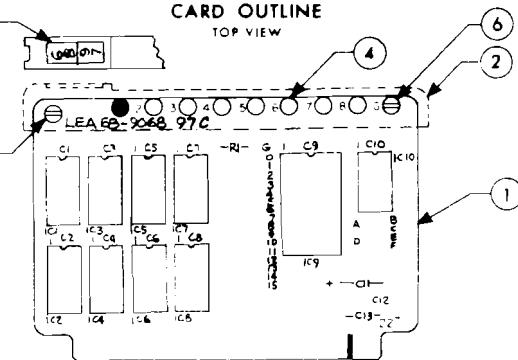
E	-	REMOVED FORKED TERMINALS	6/73	C.H.
D	-	ADDED CRI THRU CR2	4/79	C.H.
C	-	PAD SIZE ON ARTWORK	1/73	M.D.M.
B	-	ADDED STR. NO. ON IC SOCKET	1/73	C.H.
A	-	TP4, TPS & NOTE 6, 7 & 8 ADDED	10-19-72	O.G.G.

REV	ZONE	DESCRIPTION (SEE REVISION SHEET FOR HISTORY)	DATE DRAWN	APPROVED


EIGHT BIT, 512 WORD PROM (E) B

D C A

D C A


LEA

CIRCUIT DIAGRAM

CARD OUTLINE

TOP VIEW

NOTE

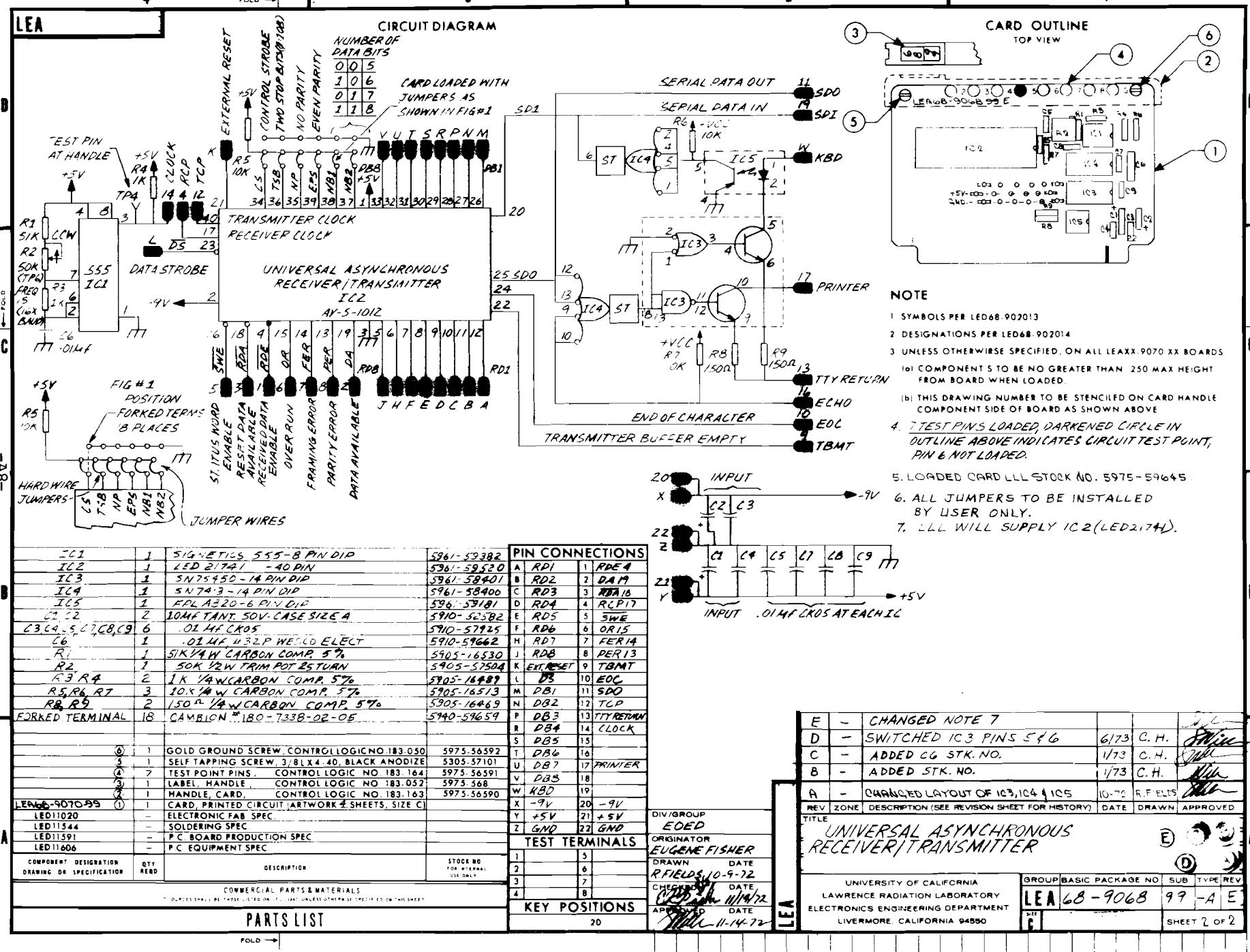
- 1 SYMBOLS PER LED68 902013
- 2 DESIGNATIONS PER LED68.902014
- 3 UNLESS OTHERWISE SPECIFIED ON ALL LEAXX-9070 XX BOARDS
 - a COMPONENTS TO BE NO GREATER THAN 250 MAX HEIGHT FROM BOARD WHEN LOADED
 - b THIS DRAWING NUMBER TO BE STENCILED ON CARD HANDLE COMPONENT SIDE OF BOARD AS SHOWN ABOVE
- 4 LOADED CARD LLL STOCK NO. 5975-5953B.
5. 1101 PIN 5 = +5V
PIN 4,8 = -9V
PIN 14 = NC
6. 8 TEST PINS LOADED; DARKENED CIRCLE IN OUTLINE ABOVE INDICATES CIRCUIT TEST POINT.
7. ALL JUMPERS TO BE INSTALLED BY USER ONLY.
8. LLL WILL SUPPLY IC/THRU IC8(1101A)

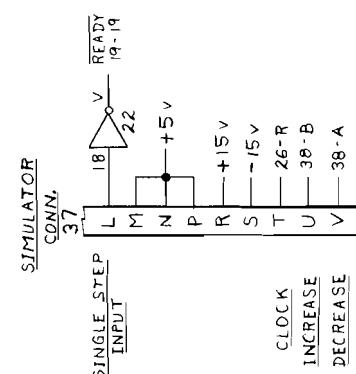
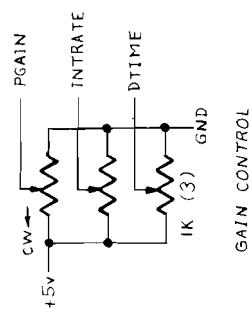
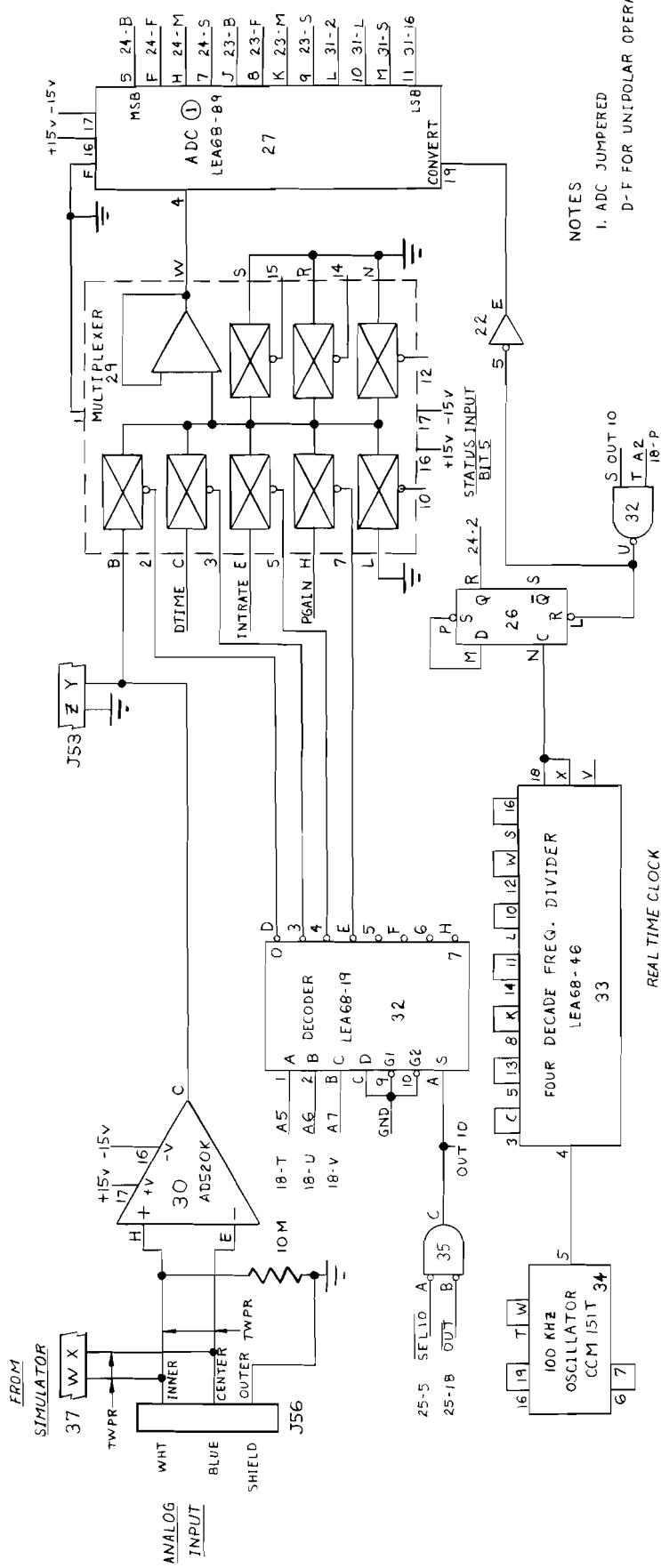
COMMERCIAL PARTS & MATERIALS			
COMPONENT DESIGNATION DRAWING OR SPECIFICATION	QTY REQD	DESCRIPTION	MANUFACTURER
RI	1	1K $\frac{1}{4}$ W $\pm 5\%$ COMP	
IC10	1	SN 7404	
IC9	1	SN 74154	
IC1 THRU IC8	8	1101A	
CH1, C1 ^a	2	1 MF $\pm 10\%$ 50V TANT (PER LED 2141B)	
C1 THRU C10, C12	11	0.1 MF $\pm 20\%$ 100V CKOS (PER LED 21491)	
LEA68-907C 97	1	GOLD GROUND SCREW, CONTROL LOGIC NO 183 050	
LED11020	1	SELF TAPPING SCREW, 3.8LX4.40, BLACK ANODIZED	
LED11544	1	TEST POINT PINS, CONTROL LOGIC NO 183 164	
LED11591	1	LABEL, HANDLE, CONTROL LOGIC NO 183 051	
LED11606	1	HANDLE, CARD, CONTROL LOGIC NO 183 163	
	1	CARD, PRINTED CIRCUIT ARTWORK, SHEETS, SIZE C	
	1	ELECTRONIC FAB. SPEC	
	1	SOLDERING SPEC	
	1	PC BOARD PRODUCTION SPEC	
	1	PC EQUIPMENT SPEC	

PIN CONNECTIONS	
A	MDO
B	MD1
C	MD2
D	MD3
E	MD4
F	MD5
G	MD6
H	MD7
I	MD8
J	R/W
K	
L	
M	A0
N	A1
P	A2
R	A3
S	A4
T	A5
U	A6
V	A7
W	
X	-9V
Y	+5V
Z	GND
	1 D0
	2 D1
	3 D2
	4 D3
	5 D4
	6 D5
	7 D6
	8 D7
	9
	10
	11 A8
	12 A9
	13 A10
	14 A11
	15 A12
	16 A13
	17
	18
	19
	20 -9V
	21 +5V
	22 GND
TEST TERMINALS	

C	CHANGED NOTE 8	8/73	C. H.	SH
B	PAD SIZE ON ART WORK	1/73	mdm	SH
A	TP1 & NOTE 6,7,8 ADDED	10-19-72	D.G.G	SH
REV	ZONE	DESCRIPTION (SEE REVISION SHEET FOR HISTORY)	DATE	DRAWN
				APPROVE

EIGHT BIT, 256 WORD RAM

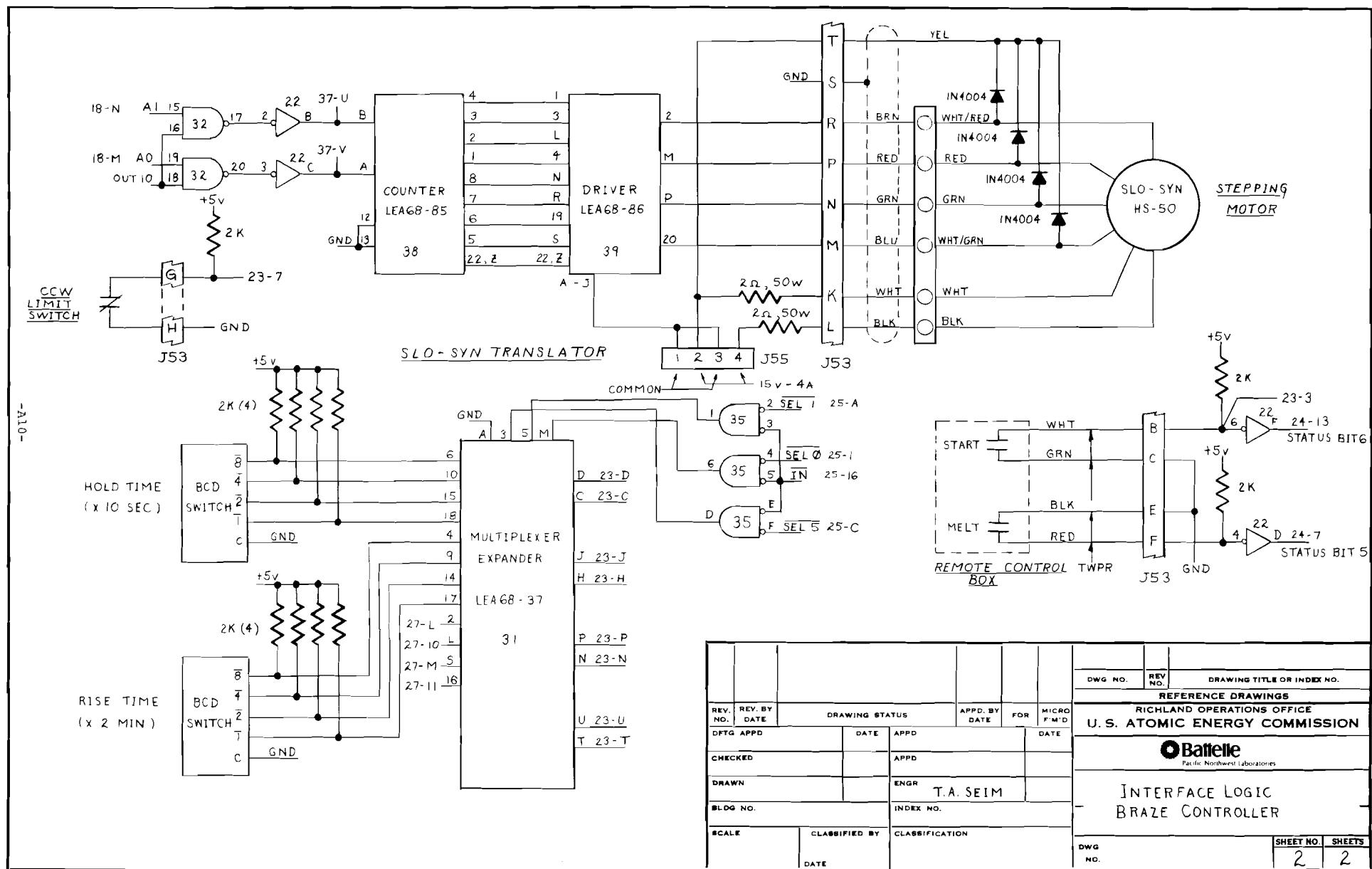

UNIVERSITY OF CALIFORNIA
LAWRENCE RADIATION LABORATORY
ELECTRONICS ENGINEERING DEPARTMENT
LIVERMORE CALIFORNIA 94580

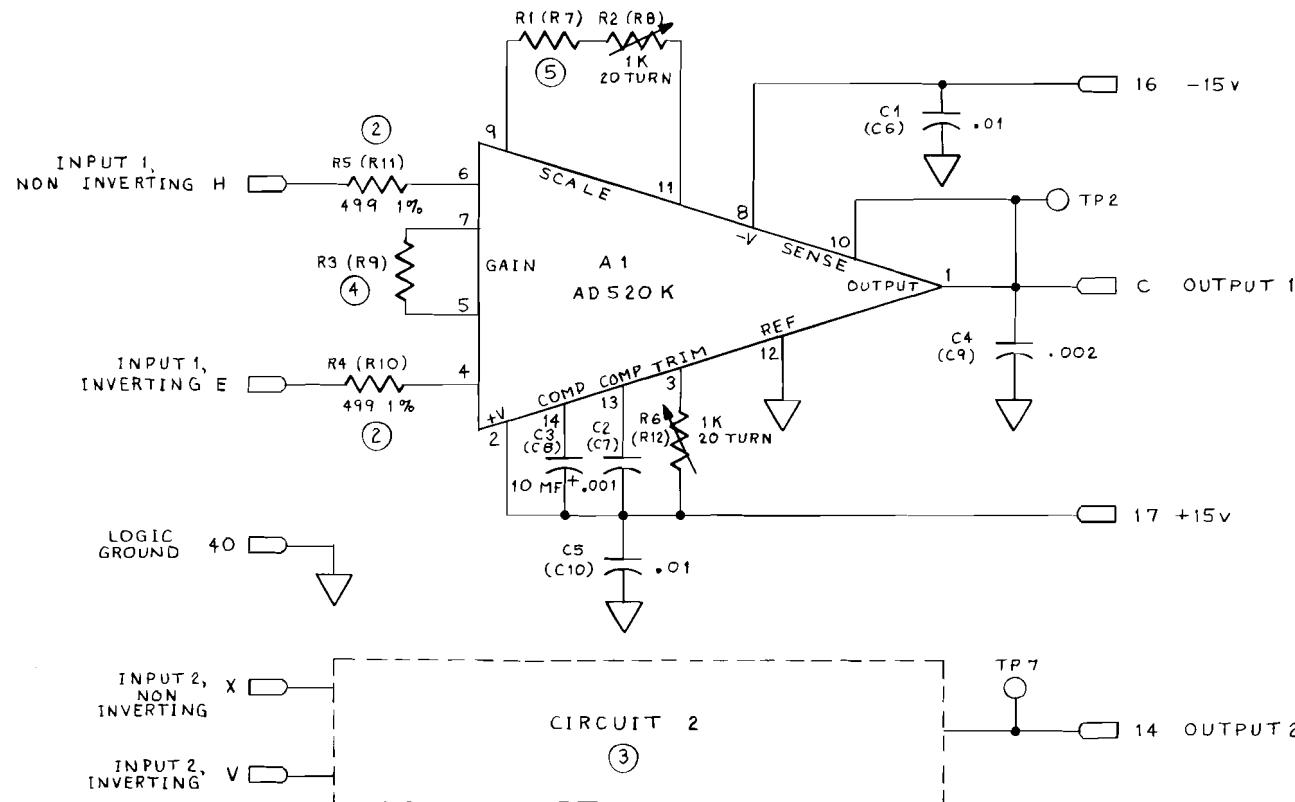



GROUP	BASIC PACKAGE NO.	SUB	TYPE	RE
LEA	68-9068	97	-A	
SHEET	2	OF		

PARTS LIST

POSITIONS

11





NOTES
I. ADC JUMPERED
D-F FOR UNIPOLAR OPERATION.

NOTES
I. ADC JUMPER
D-F FOR UNIP

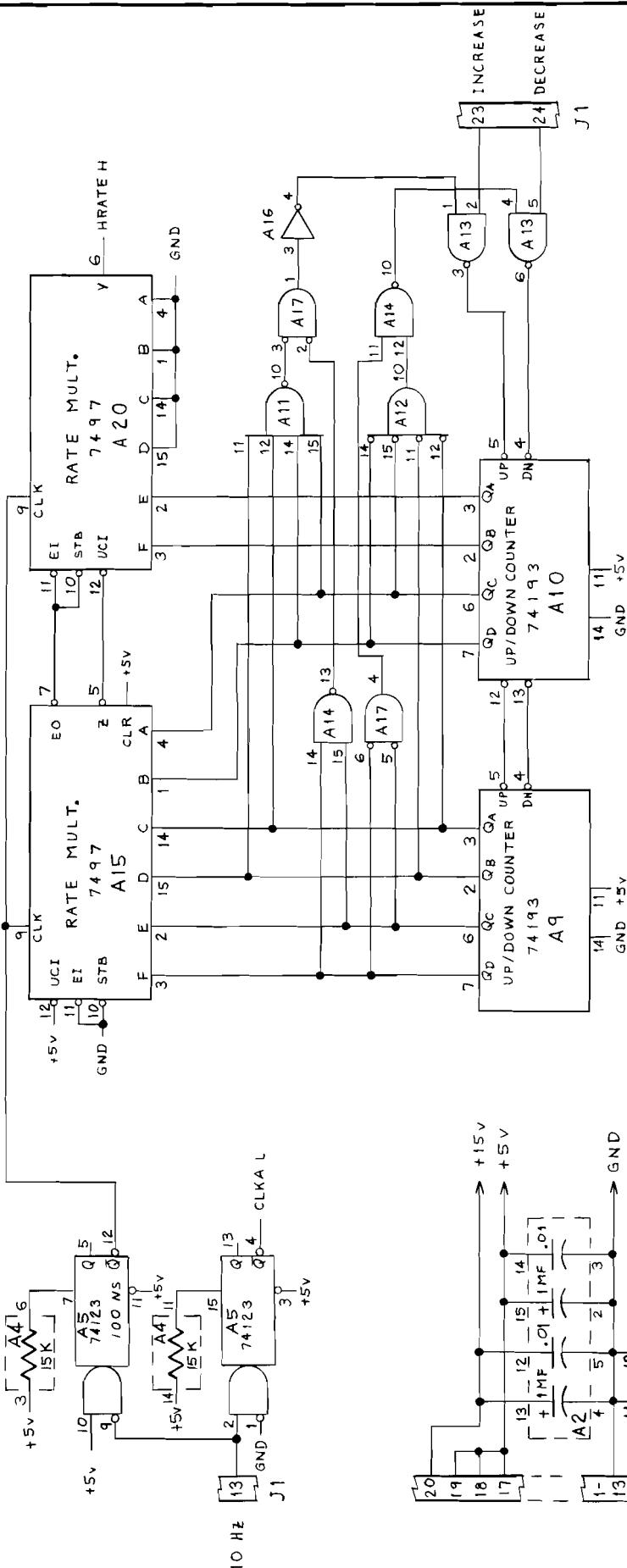
NOTES
1. ADC
D-F

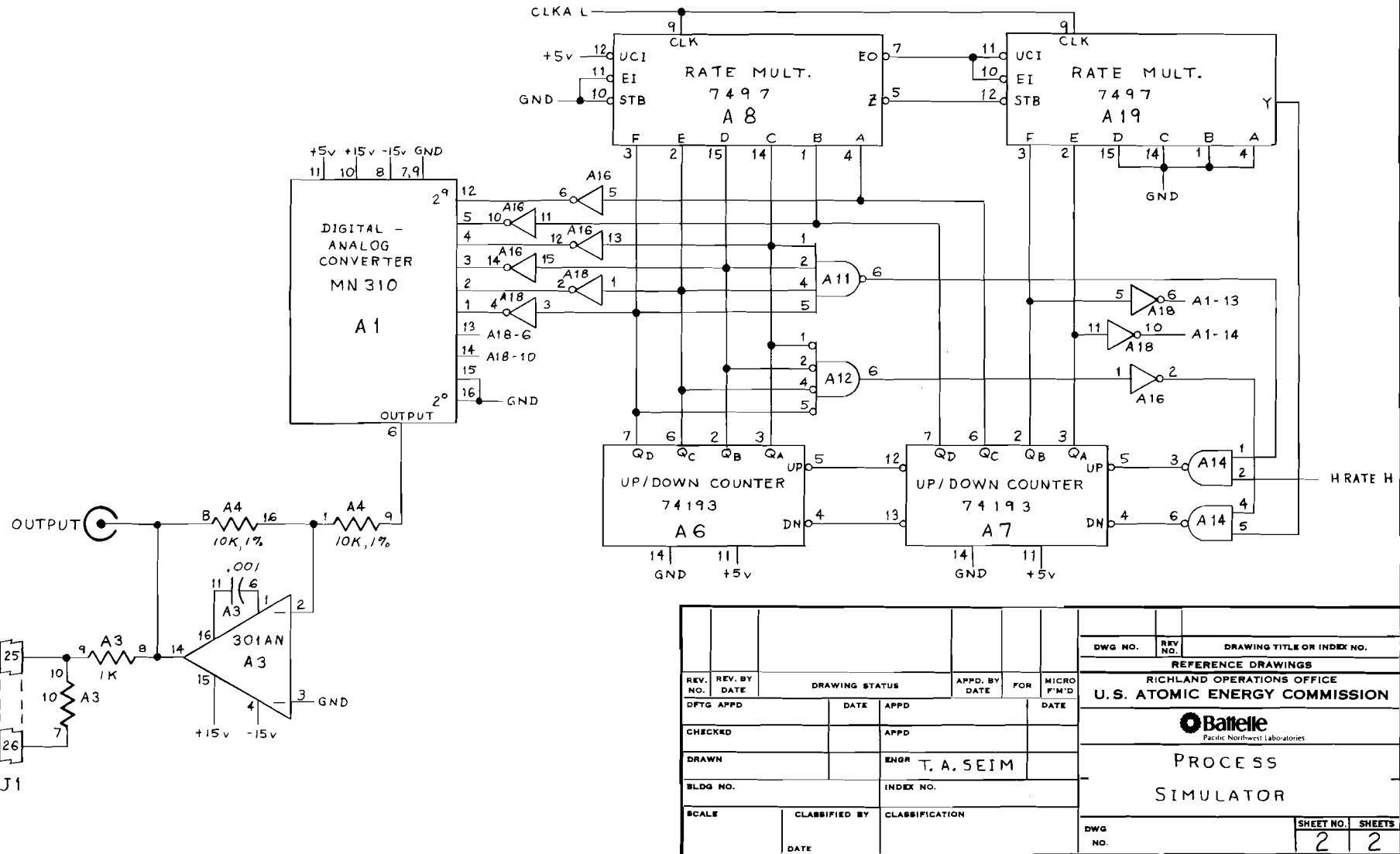
		DRAWING STATUS			APPD. BY	MICRO	
REV. NO.	REV. BY DATE	DATE	APPD.	FOR	F/M'D	DATE	
DFTG APPD							
CHECKED			APPD				
DRAWN			ENGR	T. A. SEIM			
BLDG NO.			INDEX NO.				
SCALE	CLASSIFIED BY	CLASSIFICATION					
		DATE					
DWG NO.		SHEET NO.		SHEETS			
1		1		1			

DWG NO. REV. NO. DRAWING TITLE OR INDEX NO.

REFERENCE DRAWINGS

RICHLAND OPERATIONS OFFICE


U. S. ATOMIC ENERGY COMMISSION


Battelle

Pacific Northwest Laboratories

DUAL DIFFERENTIAL AMPLIFIER

4001 BNW

BNWL-1795

APPENDIX B

CARD ASSIGNMENTS

<u>POSITION</u>	<u>FUNCTION</u>	<u>LLL STOCK NUMBER</u>	<u>IDENTIFICATION</u>
1	Crow-Bar Protection	5975-59644	72-02
15	PROM Memory	5975-59537	68-96
16	PROM Memory	5975-59537	68-96
17	RAM Memory	5975-59538	68-97
18	Memory Address Storage	5975-59536	68-95
19	Central Processor	5975-59534	68-93
20	Input-Output Control	5975-59535	68-94
21	Serial Interface	5975-59645	68-99
22	Inverters	5975-56521	IN-OT
23	Digital Multiplexer	5975-58407	68-33
24	Digital Multiplexer	5975-58407	68-33
25	4 to 16 Decoder	5975-59650	72-03
26	'D' Flip-Flops	5975-57276	DF-6T
27	Analog-Digital Converter	5975-59210	68-89
28	-		
29	Analog Multiplexer	5975-59020	68-64
30	Differential Amplifier	4001 BNW ¹	-
31	Multiplexer Expander	5975-58237	68-37
32	2-Input NAND Gates	5975-56517	NG-2T
33	Frequency Divider	5975-58250	68-46
34	Oscillator	5975-56523	CM-IT
35	2-Input NOR Gates	5975-56966	OG-2T
36	-		
37	Simulator Connector	5975-58215	-
38	Translator	5975-59202	68-85
39	Power Driver	5975-59203	68-86
40	-		

¹Designed and built by BNW.

INPUT-OUTPUT ASSIGNMENTS

INPUT

I-O PORT	INSTRUCTION CODE ¹	DATA FIELD	FUNCTION
		MSB LSB	
0	101	3 - 0	HOLD TIME Switch
2	103	3 - 0	RISE TIME Switch
4	105	7 - 0	UART, Receive Data
6	107		STATUS
		0	UART, Data Ready
		1	UART, XMT Ready
		2	CCW Limit Switch
		5	MELT Switch
		6	START Switch
		7	Real Time Clock
10	111	7 - 0	ADC, most significant bits
12	113	3 - 0	ADC, least significant bits

OUTPUT

20	121		Control Output
		0	Step, CCW
		1	Step, CW
		2	Reset Clock, Convert
		7 - 5	Analog Multiplexer
		7 6 5	
		0 0 0	Input Amplifier
		0 0 1	Derivative Gain
		0 1 0	Integral Gain
		0 1 1	Proportional Gain
32	133	7 - 0	UART, Transmit Data

CONTROL OUTPUT CONNECTOR WIRING, J53

<u>J53</u>	<u>CONTROLLER</u>	<u>DESTINATION</u>	<u>COLOR</u>
B	22-6, 23-3	Remote Control Box, START p.b. N.O.	WHT
C	GROUND	Remote Control Box, START p.b. common	GRN
E	22-4	Remote Control Box, MELT p.b. N.O.	BLK
F	GROUND	Remote Control Box, MELT p.b. common	RED
G	23-7	Stepping Motor CCW Limit Switch, N.C.	
H	GROUND	Stepping Motor CCW Limit Switch, common	
K	Dropping Resistor	Stepping Motor Common, A	WHT
L	Dropping Resistor	Stepping Motor Common, B	BLK
M	39-20	Stepping Motor Phase 1	BLU
N	39-P	2	GRN
P	39-M	3	RED
R	39-2	4	BRN
S	GROUND	Stepping Motor Cable Shield	
T	J55-2	Clamping Diodes	YEL
Y	30-C, 29-B	Analog Out	
Z	GROUND	Analog Ground	

SIMULATOR CONNECTOR WIRING

SIMULATOR CONNECTOR J1	CONTROLLER CARD CONNECTOR 37	DESTINATION PIN	SIGNAL
1 to 13	40		GROUND
14	J		Unused
15	K		Unused
16	L		Unused
17	M	37 - 21	+5v
18	N	37 - 21	+5v
19	P	37 - 21	+5v
20	R	30 - 16	+15v
21	S	30 - 17	-15v
22	T	26-R	10 Hz CLOCK
23	U	38-B	OUTPUT, INCREASE
24	V	38-A	OUTPUT, DECREASE
25	W	30-H	ANALOG INPUT
26	X	30-E	ANALOG GROUND

APPENDIX C

```

0001      *      TEST PROGRAMS
0002      *      ASSEMBLY LISTING STARTS AT LOCATION 100 OF THE RAM
0003      *      THIS IS PAST THE AREA USED (AND CLEARED) BY THE
0004      *      CONTROL PROGRAM
0005      *      THESE PROGRAMS MUST BE ENTERED WITH ODT
0006      *
0007      04100      ORG  '4100
0010      *
0011      *      EXERCISES MUX-ADC AND REAL TIME CLOCK
0012      *
0013      *      HOLD TIME SWITCH SELECTS MUX CHANNEL
0014      *          0 -- ANALOG INPUT
0015      *          1 -- DERIVATIVE GAIN
0016      *          2 -- INTEGRAL GAIN
0017      *          3 -- PROPORTIONAL GAIN
0020      *
0021      00050      SEND EQU  '50      TELETYPE OUTPUT ROUTINE
0022      00060      READ EQU  '60      TELETYPE INPUT ROUTINE
0023      00070      CRLF EQU  '70      TYPES A CARRIAGE RETURN-LINE FEED
0024      00006      FLAG EQU  6      STATUS DATA
0025      00000      HOLD EQU  0      HOLD TIME SWITCH
0026      00020      CMAND EQU  '20      CONTROL OUTPUT
0027      00010      DATA EQU  '10      ADC DATA, MOST SIG
0030      00012      LSDATA EQU  '12      ADC DATA, LEAST SIG
0031      00307      OCTALP EQU  '307      ODT OCTAL OUTPUT ROUTINE ADDRESS
0032      *
0033      04100  107  MX1  INP  FLAG      TEST IF THE CLOCK IS SET
0034      04101  074  CPI  0      BIT 7 MUST BE ON
004102  000
0035      04103  120
004104  100
004105  010
0036      04106  101  INP  HOLD      USE HOLD TIME SWITCH TO
0037      04107  012  RRC      SELECT THE MUX CHANNEL
0040      04110  012  RRC      POSITION BITS 0 - 3 TO 5 - 7
0041      04111  012  RRC
0042      04112  064  ORI  4      SET CONVERT BIT
0043      04113  004
0044      04114  121  OUT  CMAND      COMMAND CONVERSION
0045      04115  111  INP  DATA      GET CONVERTED DATA
0046      04116  106  CAL  OCTALP      TYPE IT OUT
0047      04117  307
0048      04120  000
0049      04121  075  RST  CRLF      CARRIAGE RETURN
0050      04122  104  JMP  MX1
0051      04123  100
0052      04124  010
0053      *
0054      *      FULL PRECISION ADC OUTPUT ROUTINE
0055      *
0056      *      OUTPUT APPEARS AS TWO OCTAL NUMBERS
0057      *      THE FIRST NUMBER CONTAINS THE FIRST 8 SIG BITS
0058      *      THE SECOND NUMBER CONTAINS THE 4 LEAST SIG BITS
0059      *      THE FIRST DIGIT OF THE SECOND NUMBER IS NOT USED
0060      *      EXAMPLE--FULL SCALE 7777 IS TYPED AS 377 074
0061      04125  006  ADC  LAI  4      CONVERT ANALOG INPUT
0062      04126  004
0063      04127  121  OUT  CMAND

```

0063	04130	111	INP	DATA	GET MOST SIGNIFICANT DATA	
0064	04131	106	CAL	OCTALP	OUTPUT	
	04132	307				
	04133	000				
0065	04134	113	INP	LSDATA	GET LEAST SIG DATA	
0066	04135	012	RRC			
0067	04136	012	RRC			
0070	04137	106	CAL	OCTALP	OUTPUT	
	04140	307				
	04141	000				
0071	04142	106	CAL	CRLF		
	04143	070				
	04144	000				
0072	04145	104	JMP	ADC		
	04146	125				
	04147	010				
0073		*				
0074		*			SINGLE STEP MOTOR TEST	
0075		*				
0076		*			TELETYPE 1A1 = CCW STEP	
0077		*			1B1 = CW STEP	
0100		*				
0101	04150	065	STEP	RST	READ	WAIT FOR INPUT
0102	04151	121		OUT	COMMAND	USE CHARACTER AS COMMAND DATA
0103	04152	104		JMP	STEP	
	04153	150				
	04154	010				
0104		*				
0105		*			DYNAMIC MOTOR TEST	
0106		*				
0107		*			TYPING A CHARACTER CAUSES THE MOTOR TO MOVE 180	
0110		*			DEGREES, THE DIRECTION DEPENDENT UPON THE CHARACTER	
0111		*			TYPED (SEE ABOVE)	
0112		*				
0113	00144		DELTA	EQU	100	NO. OF STEPS MOVED
0114	00100		RATE	EQU	64	STEPPING RATE (64 USEC PER DIGIT)
0115		*				
0116	04155	026	S1	LCI	DELTA	
	04156	144				
0117	04157	065		RST	READ	WAIT FOR COMMAND
0120	04160	016	S2	LBI	RATE	
	04161	100				
0121	04162	011	S3	DCB		DECREMENT RATE UNTIL ZERO
0122	04163	110		JFZ	S3	TEST IF ZERO
	04164	162				
	04165	010				
0123	04166	121		OUT	COMMAND	STEP MOTOR
0124	04167	021		DCE		DECREMENT STEP LENGTH
0125	04170	110		JFZ	S2	
	04171	160				
	04172	010				
0126	04173	104	JMP	S1		
	04174	155				
	04175	010				

```

0001      *      BRAZE CONTROL PROGRAM -- TAS
0002      *
0003      *
0004      00010  RAM   EQU   '10      VARIABLE PARAMETER STORAGE
0005      00011  TBPAGE EQU   '11      STATE TABLE PAGE (STARTING PAGE)
0006      00012  CONST  EQU   '12      MATH SUBROUTINE CONSTANTS
0007      00014  ROM   EQU   '14      PROFILE TABLE PAGE
0010      00000  HTSW   EQU   0       HOLD TIME SWITCH
0011      00002  RTSW   EQU   2       RISE TIME SWITCH
0012      00006  FLAG   EQU   6       STATUS BITS
0013      00010  DATA   EQU   '10      ADC PORT
0014      00020  STEP   EQU   '20      COMMAND INSTRUCTION
0015      00004  SCALE   EQU   4       SCALE FACTOR (POWER OF 2)
0016      00006  DSCALE  EQU   6       DERIVATIVE SCALE FACTOR
0017      00062  DELAY   EQU   50      STEPPING MOTOR RATE FACTOR
0020      04000  ORG   '4000
0021      04000  000  DTIME  D   0      CURRENT DIFFERENTIAL GAIN
0022      04001  000  IRATE  D   0      CURRENT INTEGRATION RATE
0023      04002  000  PGAIN  D   0      CURRENT PROPORTIONAL GAIN
0024      04003  000  SIGMA  D   0
0025      04004  000  D
0026      04005  000  PDINT  D   0      POINTER TO TEMP PROFILE
0027      04006  000  U(N)   D   0      CONTROLLER OUTPUT
0030      04007  000  D
0031      04010  000  S
0032      04011  000  MN
0033      04012  000  D
0034      04013  000  MN1   D   0      PREVIOUS MEASURED VALUE
0035      04014  000  D
0036      04015  000  MN2   D   0
0037      04016  000  D
0040      04017  000  E
0041      04020  000  D
0042      04021  000  E1
0043      04022  000  D
0044      04023  000  E2
0045      04024  000  D
0046      04025  000  SLOPOS D   0      SLO-SYN POSITION
0047      04026  000  D
0050      04027  000  SP1   D   0      PREVIOUS SETPOINT
0051      04030  000  ICLK   D   0
0052      04031  000  ICAND  D   0      MULTIPLICAND REGISTER
0053      04032  000  MT1   D   0      MATH SUBR. TEMPORARIES
0054      04033  000  MT2   D   0
0055      04034  000  HOLD   D   0      TEMPERATURE HOLD TIMEOUT
0056      04035  000  D
0057      04036  000  RISE   D   0
0060      *
0061      04400  ORG   '4400
0062      04400  056  START  LHI  RAM
04401  010
0063      04402  066  LLI   S       SET TO PRESENT STATE
04403  010
0064      04404  250  XRA
0065      04405  370  LMA
0066      04406  066  LLI   ICLK
04407  030
0067      04410  076  LMI   10
04411  012

```

0070	04412	104	JMP	INIT	INITIALIZE CONTROLLER
	04413	145			
	04414	011			
0071	04415	016	CLOCK	LBI 0	INITIALIZE SWITCH STATUS
	04416	000			
0072	04417	107	CLK1	INP FLAG	WAIT FOR REAL TIME CLOCK
0073	04420	261		ORB	
0074	04421	310		LBA	
0075	04422	002		RLC	SAVE STATUS FOR SWITCH TEST
0076	04423	100		JFC CLK1	
	04424	017			
	04425	011			
0077	04426	006		LAI 4	
	04427	004			
0100	04430	121		OUT STEP	RESET REAL TIME CLOCK
0101	04431	301		LAB	TEST CONTROL SWITCHES
0102	04432	064		ORI 110	
	04433	010			
0103	04434	016		LBI 0	
	04435	000			
0104	04436	002		RLC	BYPASS REAL TIME CLOCK BIT
0105	04437	010		SWITCH INB	
0106	04440	002		RLC	
0107	04441	100		JFC SWITCH	
	04442	037			
	04443	011			
0110	04444	301		LAB	
0111	04445	106		CAL STAT	EXECUTE STATE CONTROL
	04446	074			
	04447	011			
0112	04450	010		INB	PRIME STATE FOR TEST
0113	04451	011		DCB	
0114	04452	150		JTZ INIT	
	04453	145			
	04454	011			
0115	04455	011		DCB	
0116	04456	150		JTZ WAIT	WAIT FOR START
	04457	232			
	04460	011			
0117	04461	011		DCB	
0120	04462	150		JTZ CYCLE	EXECUTE TEMPERATURE CYCLE
	04463	235			
	04464	011			
0121	04465	011		DCB	
0122	04466	150		JTZ MELT	
	04467	032			
	04470	012			
0123	04471	104		JMP CLOCK	WAIT FOR NEXT SAMPLING PERIOD
	04472	015			
	04473	011			
0124	*				
0125	*				STATE TABLE EXECUTION ROUTINE
0126	*				A = INPUT TOKEN (0 = 3)
0127	*				
0130	04474	074	STAT	CPI 4	TEST RANGE OF INPUT TOKEN
	04475	004			
0131	04476	320		LCA	
0132	04477	056		LHI RAM	
	04500	010			
0133	04501	066		LLI S	

0134	04502	010			
0135	04503	317	LBM	GET PRESENT STATE	
0136	04504	301	LAB		
0137	04505	003	RFC	IGNORE IF OUT OF RANGE	
0138	04506	002	RLC	MULT. BY 4 (4 ENTRIES PER STATE)	
0140	04507	002	RLC		
0141	04510	202	ADC	ADD TOKEN DISPLACEMENT	
0142	04511	004	ADI	TABLE COMPUTE FULL ADDRESS	
	04512	125			
0143	04513	056	LHI	TBPAGE	
	04514	011			
0144	04515	360	LLA		
0145	04516	317	LBM	GET NEXT STATE	
0146	04517	066	LLI	S	
	04520	010			
0147	04521	056	LHI	RAM	
	04522	010			
0150	04523	371	LMB	SET PRESENT STATE TO NEXT STATE	
0151	04524	007	RET		
0152	*		TRANSITION TABLE--FOUR ENTRIES PER STATE		
0153	*				
0154	04525	001	TABLE	D 1	
0155	04526	000		D 0	
0156	04527	000		D 0	
0157	04530	000		D 0	
0160	04531	001		D 1	
0161	04532	002		D 2	
0162	04533	001		D 1	
0163	04534	000		D 0	
0164	04535	002		D 2	
0165	04536	002		D 2	
0166	04537	003		D 3	
0167	04540	000		D 0	
0170	04541	003		D 3	
0171	04542	003		D 3	
0172	04543	003		D 3	
0173	04544	000		D 0	
0174	*				
0175	*		INITIALIZATION ROUTINE		
0176	*				
0177	04545	056	INIT	LHI RAM	
	04546	010			
0200	04547	250	XRA	CLEAR A	
0201	04550	360	LLA		
0202	04551	016	LBI	40	
	04552	050			
0203	04553	370	NT1	LMA	
0204	04554	060		INL	CLEAR RAM MEMORY
0205	04555	011		DCB	ADVANCE ADDRESS
0206	04556	110		JFZ	NT1
	04557	153			
	04560	011			
0207	*		FIRST RESET SLO-SYN POSITION		
0210	04561	026	LCI	200	MAX. NO. OF STEPS
	04562	310			
0211	04563	016	L02	LBI	90
	04564	132			
0212	04565	011	L01	DCB	
0213	04566	110		JFZ	L01
	04567	165			

04570	011					
0214	04571	107	INP	FLAG	GET STATUS BITS	
0215	04572	012	RRC		POSITION LIMIT SWITCH IN CARRY FF	
0216	04573	012	RRC			
0217	04574	012	RRC			
0220	04575	140	JTC	L03	STOP MOTION IF LIMIT REACHED	
	04576	207				
	04577	011				
0221	04600	006	LAI	1		
	04601	001				
0222	04602	121	OUT	STEP	OUTPUT STEP COMMAND	
0223	04603	021	DCC			
0224	04604	110	JFZ	L02		
	04605	163				
	04606	011				
0225	04607	106	L03	CAL	TTO	
	04610	063				
	04611	012				
0226	*				INITIALIZE HOLD TIME DELAY	
0227	04612	066	LLI	HOLD		
	04613	034				
0230	04614	076	LMI	100	10 SEC DELAY	
	04615	144				
0231	04616	101	INP	HTSW	GET HOLD SWITCH SETTING	
0232	04617	060	INL			
0233	04620	106	CAL	TTO1	MULTIPLY BY SIX	
	04621	066				
	04622	012				
0234	04623	250	XRA			
0235	04624	106	CAL	STAT	ADVANCE STATE TO WAIT STATE	
	04625	074				
	04626	011				
0236	04627	104	JMP	CLOCK		
	04630	015				
	04631	011				
0237	*					
0240	04632	104	WAIT	JMP	CLOCK	NO OPERATION--WAIT FOR START OF CYCLE
	04633	015				
	04634	011				
0241	*					
0242	*					
0243	*					
0244	04635	066	CYCLE	LLI	RISE	GET RISE TIME VARIABLE
	04636	036				
0245	04637	317	LBM			
0246	04640	011	DCB			DECREMENT TIMEOUT (INITIAL VALUE DETERMINES RATE
0247	04641	371	LMB			OF RISE)
0250	04642	110	JFZ	L20		
	04643	262				
	04644	011				
0251	04645	066	LLI	POINT		ADVANCE PROFILE TABLE POINTER
	04646	005				
0252	04647	317	LBM			
0253	04650	010	INB			
0254	04651	371	LMB			
0255	04652	110	JFZ	CY1		TEST FOR POINTER OVERFLOW
	04653	257				
	04654	011				
0256	04655	076	LMI	255		DO NOT ALLOW TO OVERFLOW
	04656	377				

0257	04657	106	CY1	CAL	TTO	RE-INITIALIZE RISE RATE TIMEOUT
	04660	063				
	04661	012				
0260		*				
0261		*				CONTROL RESPONSE CALCULATION
0262		*				
0263		*				CONTROL IS A COMBINED PROPORTIONAL-INTTEGRAL (PI) ACTION
0264		*				
0265	04662	106	L20	CAL	FILTER	DIGITAL FILTERING ROUTINE
	04663	265				
	04664	012				
0266	04665	066		LLI	DTIME	
	04666	000				
0267	04667	006		LAI	144	FIND DIFF. GAIN SETTING BY CONVERTING
	04670	044				
0270	04671	121		OUT	STEP	POTENTIOMETER SETTING
0271	04672	111		INP	DATA	
0272	04673	370		LMA		
0273	04674	060		INL		
0274	04675	006		LAI	1104	FIND INTEGRATION RATE
	04676	104				
0275	04677	121		OUT	STEP	
0276	04700	111		INP	DATA	
0277	04701	370		LMA		
0300	04702	060		INL		
0301	04703	006		LAI	1144	FIND PROPORTIONAL GAIN
	04704	144				
0302	04705	121		OUT	STEP	
0303	04706	111		INP	DATA	
0304	04707	370		LMA		
0305	04710	106		CAL	PROP	PROPORTIONAL RESPONSE CALCULATION
	04711	074				
	04712	012				
0306	04713	106		CAL	INT	INTEGRAL RESPONSE CALCULATION
	04714	120				
	04715	012				
0307	04716	106		CAL	DIFF	DERIVATIVE RESPONSE CALCULATION
	04717	224				
	04720	012				
0310	04721	066		LLI	U(N)	GET CONTROL RESPONSE
	04722	006				
0311	04723	317		LBM		
0312	04724	060		INL		
0313	04725	327		LCM		
0314	04726	066		LLI	MAX	
	04727	220				
0315	04730	056		LHI	CONST	
	04731	012				
0316	04732	106		CAL	LIMIT	CHECK BOUNDS ON CONTROL
	04733	275				
	04734	013				
0317	04735	056		LHI	RAM	
	04736	010				
0320	04737	066		LLI	U(N)	
	04740	006				
0321	04741	371		LMB		
0322	04742	060		INL		
0323	04743	372		LCM		
0324	04744	066		LLI	SLOPOS	
	04745	025				

0325	04746	317		LBM	GET PRESENT SLO-SYN POSITION
0326	04747	060		INL	
0327	04750	327		LCM	
0330	04751	066	L22	LLI	U(N)
	04752	006			
0331	04753	106		CAL	DCPM
	04754	315			COMPARE WITH COMMANDED POSITION
	04755	013			
0332	04756	150		JTZ	L28
	04757	022			EQUAL
	04760	012			
0333	04761	160		JTS	L24
	04762	001			LESS THAN, STEP UP
	04763	012			
0334	04764	021		DCC	GREATER THAN, STEP DOWN
0335	04765	020		INC	TEST IF C = 0 (DECR. WILL CAUSE A BORROW)
0336	04766	110		JFZ	L23
	04767	372			
	04770	011			
0337	04771	011		DCB	PASS CARRY INTO MS HALF
0340	04772	021	L23	DCC	DECREMENT LEAST SIG HALF
0341	04773	006		LAI	STEP DOWN
	04774	001			
0342	04775	121		OUT	OUTPUT STEP COMMAND
0343	04776	104		JMP	L26
	04777	011			
	05000	012			
0344	05001	020	L24	INC	
0345	05002	110		JFZ	L25
	05003	006			
	05004	012			
0346	05005	010		INB	PASS OVERFLOW INTO MS HALF
0347	05006	006	L25	LAI	STEP UP
	05007	002			
0350	05010	121		OUT	OUTPUT STEP COMMAND
0351	05011	036	L26	LDI	DELAY
	05012	062			
0352	05013	031	L27	DCD	
0353	05014	110		JFZ	L27
	05015	013			
	05016	012			
0354	05017	104		JMP	L22
	05020	351			
	05021	011			
0355	05022	066	L28	LLI	SLOPOS
	05023	025			SET NEW SLO-SYN POSITION
	05024	371		LMB	
0356	05025	060		INL	
0357	05026	372		LMC	
0361	05027	104		JMP	CLOCK
	05030	015			
	05031	011			
0362	*				
0363	*				HOLDS AT CURRENT TEMPERATURE FOR SPECIFIED DELAY AFTER MELT OCCURS
0364	*				
0365	05032	066	MELT	LLI	HOLD
	05033	034			
0366	05034	317		LBM	GET TIME OUT (HOLD)
0367	05035	011		DCB	
0370	05036	371		LMB	

0371	05037	110	JFZ	L20	TEST IF TIMED OUT
05040	262				
05041	011				
0372	05042	076	LMI	100	10 SEC DELAY
05043	144				
0373	05044	060	INL		
0374	05045	317	LBM		GET HOLD TIMER
0375	05046	011	DCB		
0376	05047	371	LMB		
0377	05050	110	JFZ	L20	
05051	262				
05052	011				
0400	05053	006	LAI	3	TIMED OUT--RESET STATE
05054	003				
0401	05055	106	CAL	STAT	
05056	074				
05057	011				
0402	05060	104	JMP	CLOCK	
05061	015				
05062	011				
0403		*			
0404		*			
0405	05063	066	TTD	LLI	CALCULATES TEMP, TIME OUT
05064	036				
0406	05065	103	TTD1	INP	RTSW
0407	05066	310		LBA	GET RISE TIME SWITCH SETTING
0410	05067	002		RLC	ENTRY FOR HOLD TIME CALCULATION
0411	05070	201		ADB	
0412	05071	002		RLC	MULT BY SIX
0413	05072	370		LMA	
0414	05073	007		RET	
0415		*			
0416		*			
0417		*			
0420		*			
0421		*			
0422	05074	066	PROP	LLI	E
05075	017				
0423	05076	317		LBM	GET CONTROL ERROR
0424	05077	066		LLI	PGAIN
05100	002				GET PROPORTIONAL GAIN
0425	05101	327		LCM	
0426	05102	106		CAL	MULS
05103	126				
05104	013				
0427	05105	006		LAI	SCALE
05106	004				
0430	05107	106		CAL	DSRA
05110	051				SCALE PROPORTIONAL OUTPUT
05111	013				
0431	05112	066		LLI	U(N)
05113	006				
0432	05114	371		LMB	
0433	05115	060		INL	
0434	05116	372		LMC	
0435	05117	007		RET	
0436		*			
0437		*			
0440		*			
0441	05120	066	INT	LLI	ICLK
					GET TIMEOUT

0442	05121	030			
0443	05122	317	LBM		
0444	05123	011	DCB		
0445	05124	371	LMB		
0446	05125	150	JTZ	INT1	CONTINUE INTEGRATING
	05126	140			
	05127	012			
0447	05130	066	LLI	SIGMA	
	05131	003			
0450	05132	317	LBM		
0451	05133	060	INL		
0452	05134	327	LCM		
0453	05135	104	JMP	INT2	OUTPUT INTEGRAL CONTROL
	05136	176			
	05137	012			
0454	05140	076	INT1	LMI	10
	05141	012			
0455	05142	066	LLI	E	
	05143	017			
0456	05144	317	LBM		GET CONTROL ERROR
0457	05145	066	LLI	IRATE	GET INTEGRATION RATE
	05146	001			
0458	05147	327	LCM		
0459	05150	106	CAL	MULS	
	05151	126			
	05152	013			
0460	05153	066	LLI	SIGMA	
	05154	003			
0461	05155	106	CAL	DADD	ADD TO PREVIOUS INTEGRAL
	05156	104			
	05157	013			
0462	05160	066	LLI	IMAX	TEST FOR SATURATION
	05161	214			
0463	05162	056	LHI	CONST	
	05163	012			
0464	05164	106	CAL	LIMIT	OUTPUT COMPARED WITH 2 SUCCESSIVE LIMITS
	05165	275			
	05166	013			
0465	05167	056	LHI	RAM	
	05168	010			
0466	05169	066	LLI	SIGMA	
	05170	003			
0467	05171	066	LLI	SIGMA	
	05172	003			
0468	05173	371	LMB		SAVE RESULT
	05174	060	INL		
0469	05175	372	LMC		
0470	05176	006	INT2	LAI	8
	05177	010			
0471	05200	106	CAL	DSRA	
	05201	051			
	05202	013			
0472	05203	066	LLI	U(N)	
	05204	006			
0473	05205	106	CAL	DADD	COMBINE CONTROL ACTIONS
	05206	104			
	05207	013			
0474	05210	371	LMB		
0475	05211	060	INL		
0476	05212	372	LMC		
0477	05213	007	RET		
0478	05214	077	IMAX	D	177
					UPPER INTEGRATOR LIMIT

0504	05215	377	D	1777	
0505	05216	000	IMIN	D	0 LOWER INTEGRATOR LIMIT
0506	05217	000		D	0
0507	05220	000	MAX	D	0 CONTROLLER OUTPUT LIMIT
0510	05221	144		D	100 180 DEGREES (100 STEPS)
0511	05222	000	MIN	D	0 MIN = 0
0512	05223	000		D	0
0513		*			
0514		*			DERIVATIVE RESPONSE ROUTINE
0515		*			
0516	05224	066	DIFF	LLI	E1 GET CURRENT ERROR
05225		021			
0517	05226	317		LBM	
0520	05227	060		INL	
0521	05230	327		LCM	
0522	05231	060		INL	ADDRESS NOW AT PREVIOUS ERROR
0523	05232	106		CAL	DSUB (E(N) = E(N-1))*8
	05233	115			
	05234	013			
0524	05235	106		CAL	CDSI
	05236	220			
	05237	013			
0525	05240	310		LBA	
0526	05241	066		LLI	DTIME GET DIFFERENTIAL GAIN
	05242	000			
0527	05243	327		LCM	
0530	05244	106		CAL	MULS K(D)*(E(N) - (N-1))*8
	05245	126			
	05246	013			
0531	05247	006		LAI	DSCALE
	05250	006			
0532	05251	106		CAL	DSRA SCALE RESULT
	05252	051			
	05253	013			
0533	05254	066		LLI	U(N)
	05255	006			
0534	05256	106		CAL	DADD COMBINE WITH OTHER CONTROL ACTIONS
	05257	104			
	05260	013			
0535	05261	371		LMB	
0536	05262	060		INL	
0537	05263	372		LCM	
0540	05264	007		RET	
0541		*			
0542		*			DIGITAL FILTERING ROUTINE
0543		*			M(N) = K1*M(N) + K2*M(N-1)
0544		*			K1 = 1/8 K2 = 7/8
0545		*			CUTOFF FREQ, = .199 HZ
0546		*			
0547	05265	066	FILTER	LLI	E1
	05266	021			
0550	05267	317		LBM	
0551	05270	060		INL	
0552	05271	327		LCM	
0553	05272	060		INL	
0554	05273	371		LMB	REPLACE E(N=2) WITH E(N=1)
0555	05274	060		INL	
0556	05275	372		LCM	
0557	05276	066		LLI	MN
	05277	011			

0560	05300	317	LBM		
0561	05301	060	INL		
0562	05302	327	LCM		
0563	05303	060	INL		
0564	05304	371	LMB	SET M(N-1) = M(N)	
0565	05305	060	INL		
0566	05306	372	LCM		
0567	05307	061	DCL		
0570	05310	006	LAI	3	
	05311	003			
0571	05312	106	CAL	DSRA	MULT BY 1/8
	05313	051			
	05314	013			
0572		*		M(N) IS SCALED BY 8	
0573	05315	106	CAL	DSUB	=K2*M(N-1)
	05316	115			
	05317	013			
0574	05320	106	CAL	DCMP	
	05321	006			
	05322	013			
0575	05323	250	XRA		
0576	05324	066	LLI	MN	
	05325	011			
0577	05326	370	LMA		
0600	05327	111	INP	DATA	SET M(N) = TEMP IN DOUBLE PRECISION FORMAT
0601	05330	060	INL		
0602	05331	370	LMA		
0603	05332	061	DCL		
0604	05333	106	CAL	DADD	M(N) = K1*M(N) + K2*M(N-1)
	05334	104			
	05335	013			
0605		*		K1*M(N) IS AUTO, DONE BECAUSE OF SCALING ON M(N-1)	
0606	05336	371	LMB		
0607	05337	060	INL		
0610	05340	372	LCM		
0611	05341	066	LLI	POINT	GET CURRENT SETPOINT
	05342	005			
0612	05343	367	LLM		
0613	05344	056	LHI	ROM	
	05345	014			
0614	05346	327	LCM		
0615	05347	016	LBI	0	SET UP AS DOUBLE PRECISION VALUE
	05350	000			
0616	05351	006	LAI	3	
	05352	003			
0617	05353	106	CAL	DSLL	SCALE BY 8
	05354	255			
	05355	013			
0620	05356	056	LHI	RAM	
	05357	010			
0621	05360	066	LLI	MN	
	05361	011			
0622	05362	106	CAL	DSUB	ERROR = SETPOINT - M(N)
	05363	115			
	05364	013			
0623	05365	066	LLI	E1	SAVE SCALED ERROR
	05366	021			
0624	05367	371	LMB		
0625	05370	060	INL		
0626	05371	372	LCM		

0627	05372	006	LAI	3		
	05373	003				
0630	05374	106	CAL	DSRA	RESTORE NO. WEIGHT OF 1	
	05375	051				
	05376	013				
0631	05377	106	CAL	CDSI	CONVERT TO SINGLE PRECISION	
	05400	220				
	05401	013				
0632	05402	066	LLI	E		
	05403	017				
0633	05404	370	LMA			
0634	05405	007	RET			
0635		*				
0636		*			COMPLEMENTS DOUBLE PRECISION INTEGER	
0637		*				
0640	05406	250	DCMP	XRA		
0641	05407	222		SUC		
0642	05410	320		LCA		
0643	05411	006	LAI	0		
	05412	000				
0644	05413	231		SBB		
0645	05414	310		LBA		
0646	05415	007	RET			
0647		*				
0650		*			DOUBLE LENGTH SHIFT RIGHT	
0651		*			LEFT HALF IN B	
0652		*			RIGHT HALF IN C	
0653		*			NO OF SHIFTS IN A	
0654		*				
0655	05416	074	DLSR	CPI	16	COMPARE FOR MAX NO OF SHIFTS
	05417	020				
0656	05420	140	JTC	DLS1		
	05421	027				
	05422	013				
0657	05423	016	LBI	0		CLEAR BOTH
	05424	000				
0660	05425	321		LCB		
0661	05426	007		RET		
0662	05427	056	DLS1	LHI	RAM	
	05430	010				
0663	05431	074		CPI	0	
	05432	000				
0664	05433	053		RTZ		
0665	05434	330		LDA		
0666	05435	250	DLS2	XRA		CLEAR CARRY FF
0667	05436	301		LAB		
0670	05437	032		RAR		SHIFT LEFT HALF RIGHT
0671	05440	310		LBA		
0672	05441	302		LAC		
0673	05442	032		RAR		SHIFT RIGHT HALF
0674	05443	320		LCA		
0675	05444	031		DCD		
0676	05445	110	JFZ	DLS2		EXECUTE INDEX
	05446	035				TEST INDEX
	05447	013				
0677	05450	007		RET		
0700		*				
0701		*				ARITHMETIC DOUBLE SHIFT RIGHT
0702		*				ARGUMENT IS IN B AND C
0703		*				NO OF SHIFTS IN A

0704	*					
0705	05451	330	DSRA	LDA		NO OF SHIFTS
0706	05452	074		CPI	0	
	05453	000				
0707	05454	053		RTZ		
0710	05455	301		LAB		
0711	05456	054		XRI	1200	INVERT SIGN FOR ARITH, SHIFT PURPOSES
	05457	200				
0712	05460	310		LBA		
0713	05461	301	DSR1	LAB		
0714	05462	054		XRI	1200	CORRECT SIGN FROM PREVIOUS SHIFT
	05463	200				
0715	05464	074		CPI	1200	SET CARRY TO INVERSE OF SIGN
	05465	200				
0716	05466	032		RAR		SHIFT MOST SIG HALF
0717	05467	310		LBA		
0720	05470	302		LAC		GET RIGHT HALF AND SHIFT
0721	05471	032		RAR		
0722	05472	320		LCA		
0723	05473	031		DCD		ADVANCE INDEX
0724	05474	110		JFZ	DSR1	TEST FOR COMPLETION
	05475	061				
	05476	013				
0725	05477	301		LAB		
0726	05500	054		XRI	1200	MAKE FINAL CORRECTION
	05501	200				
0727	05502	310		LBA		
0730	05503	007		RET		
0731	*					
0732	*					DOUBLE PRECISION ADDITION SUBR
0733	*					B = MOST SIG HALF OF ADDEND
0734	*					C = LEAST SIG HALF
0735	*					M = ADDER
0736	*					SUM IS LEFT IN B AND C
0737	*					
0740	05504	060	DADD	INL		
0741	05505	302		LAC		GET LOWER HALF
0742	05506	207		ADM		COMPUTE LEAST SIG SUM
0743	05507	320		LCA		SAVE RESULT
0744	05510	061		DCL		
0745	05511	301		LAB		
0746	05512	217		ACM		COMPUTE MOST SIGNIFICANT SUM
0747	05513	310		LBA		
0750	05514	007		RET		
0751	*					
0752	*					DOUBLE PRECISION SUBTRACTION
0753	*					CONTENTS OF MEMORY ARE SUBTRACTED FROM DP INTEGER STORED
0754	*					IN B AND C
0755	*					
0756	05515	060	DSUB	INL		
0757	05516	302		LAC		GET RIGHT HALF
0760	05517	227		SUM		
0761	05520	320		LCA		
0762	05521	061		DCL		
0763	05522	301		LAB		
0764	05523	237		SBM		SUBTRACT WITH BORROW
0765	05524	310		LBA		
0766	05525	007		RET		
0767	*					
0770	*					SINGLE PRECISION SIGNED MULTIPLY ROUTINE

0771	*			
0772	*	TIME-- 1074 TO 1490 MICROSECONDS		
0773	05526	250	MULS	XRA
0774	05527	331		LDB
0775	05530	340		LEA
0776	05531	222		SUC
0777	05532	160	JTS	ML0
	05533	142		
	05534	013		
1000	05535	150	JTZ	ML0
	05536	142		
	05537	013		
1001	05540	320		LCA
1002	05541	040		INE
1003	05542	250	ML0	XRA
1004	05543	223		SUD
1005	05544	160	JTS	ML1
	05545	154		
	05546	013		
1006	05547	150	JTZ	ML1
	05550	154		
	05551	013		
1007	05552	330		LDA
1010	05553	040		INE
1011	05554	304	ML1	LAE
	05555	032		SET CARRY EQUAL TO MOD 2 SUM OF SIGN BITS
1012	05556	106		RAR
1013	05557	165	CAL	UMUL
	05560	013		MULTIPLY POSITIVE ARG'S
1014	05561	142		CTC DCMP
	05562	006		COMPLEMENT IF RESULT IS NEGATIVE
	05563	013		
1015	05564	007		RET
1016	*			
1017	*	UNSIGNED MULTIPLY		
1020	*	ARG'S IN C AND D		
1021	*	RESULT IN B AND C		
1022	*	REG'S--A,B,L, AND FLAGS EXCEPT CARRY		
1023	*	UMLS--MULTI-PRECISION ENTRY		
1024	*	(B,C) * C * D + B		
1025	05565	016	UMUL	LBI 0
	05566	000		
1026	05567	046	UMLS	LEI 9
	05570	011		
1027	05571	302	UML0	LAC
1030	05572	032		RAR
1031	05573	320		LCA
1032	05574	041		DCE
1033	05575	053		RTZ
1034	05576	301		LAB
1035	05577	100	JFC	UML1
	05600	203		IF CARRY ADD MULTIPLICAND TO PRODUCT
	05601	013		
1036	05602	203		ADD
1037	05603	032	UML1	RAR
	05604	310		ROTATE LSB INTO CARRY
1040	05605	104		LBA
1041	05606	171	JMP	UML0
	05607	013		
1042	*			

```

1043      *      CONVERTS SINGLE PRECISION INTEGERS TO DOUBLE PRECISION
1044      *      RESULT IN B AND C
1045      *      ARGUMENT IS IN A
1046      *
1047 05610 320  CSDI  LCA
1050 05611 016  LBI  0      INITIALIZE HI ORDER HALF
1051 05612 000
1051 05613 271  CPB      TEST SIGN OF ARGUMENT
1052 05614 023  RFS      RETURN IF POSITIVE
1053 05615 016  LBI  1377  MAKE MOST SIG HALF NEG
1054 05616 377
1054 05617 007  RET
1055      *
1056      *      CONVERTS DOUBLE PRECISION INTEGERS TO SINGLE PRECISION
1057      *      ARGUMENT IS IN B AND C
1060      *      RESULT IS LEFT IN A
1061      *
1062 05620 301  CDSI  LAB
1063 05621 074  CPT  0      TEST SIGN
10622 000
1064 05623 120  JFS  CDSI
10624 243
10625 013
1065 05626 054  XRI  1377  INVERT MOST SIG BITS
10627 377
1066 05630 006  LAI  -127  INITIALIZE RESULT TO LOWER BOUND
10631 201
1067 05632 013  RFZ      RETURN IF LESS THAN -256
1070 05633 302  LAC      TEST RANGE OF LOWER HALF
1071 05634 074  CPI  -127  LOWER BOUND IS -127
10635 201
1072 05636 006  LAI  -127  INITIALIZE RESULT TO LOWER BOUND
10637 201
1073 05640 043  RTC      RETURN IF INPUT IS ALGEBRAICALLY LESS THAN -127
1074 05641 302  LAC      WITHIN ALLOWABLE RANGE--USE INPUT
1075 05642 007  RET
1076 05643 006  CDSI  LAI  1177  INITIALIZE RESULT
10644 177
1077 05645 013  RFZ      RETURN IF GREATER THAN 255 (RESULT = 255)
1100 05646 302  LAC      GET LOWER HALF
1101 05647 271  CPB      COMPARE WITH ZERO
1102 05650 006  LAI  1177
10651 177
1103 05652 063  RTS      RETURN WITH 127 IF GREATER
1104 05653 302  LAC      IF LESS THAN, USE IT
1105 05654 007  RET
1106      *
1107      *      DOUBLE LENGTH SHIFT LEFT
1110      *      ARGUMENT IS IN B AND C
1111      *      SHIFT LENGTH IS AN A
1112      *
1113 05655 330  DSLL  LDA      USE D REG FOR INDEX
1114 05656 074  CPI  0
10657 000
1115 05660 053  RTZ
1116 05661 250  DSL1  XRA      CLEAR CARRY
1117 05662 302  LAC
1120 05663 022  RAL      SHIFT THRU CARRY
1121 05664 320  LCA
1122 05665 301  LAB

```

1123	05666	022	RAL	SHIFT LEFT HALF WITH CARRY	
1124	05667	310	LBA		
1125	05670	031	DCD		
1126	05671	110	JFZ	DECREMENT INDEX AND TEST	
	05672	261			
	05673	013			
1127	05674	007	DSL1		
1130	*		RET		
1131	*			MAINTAINS CONTROL OUTPUT WITHIN SPECIFIED MAXIMUM AND	
1132	*			MINIMUM LIMITS	
1133	*			H AND L POINT TO 2 CONSECUTIVE LIMIT VALUES, MAX FIRST (DP FORMAT)	
1134	*				
1135	05675	106	LIMIT CAL	DCPM	COMPARE WITH UPPER LIMIT
	05676	315			
	05677	013			
1136	05700	120	JFS	LMT2	GREATER THAN= USE 4AX 3I4IT
	05701	311			
	05702	013			
1137	05703	060	LMT1	INL	CHANGE ADDRESS TO MIN
1140	05704	060		INL	
1141	05705	106	CAL	DCPM	COMPARE WITH LOWER LIMIT
	05706	315			
	05707	013			
1142	05710	023	RFS		RETURN IF WITHIN LIMITS
1143	05711	317	LMT2	LBM	USE LIMIT VALUE
1144	05712	060		INL	
1145	05713	327		LCM	
1146	05714	007		RET	
1147	*				
1150	*				DOUBLE PRECISION COMPARE
1151	*				CONDITION FLAGS S AND Z CONTAIN RESULT
1152	*				S Z
1153	*				GREATER THAN 0 0
1154	*				EQUAL 0 1
1155	*				LESS THAN 1 0
1156	*				
1157	05715	301	DCPM	LAB	
1160	05716	257		XRM	COMPARE SIGNS
1161	05717	160	JTS	DCP2	DIFFERENT--TEST SIGN OF ARGUMENT
	05720	347			
	05721	013			
1162	05722	331		LDB	SAVE ARGUMENT
1163	05723	342		LEC	
1164	05724	106	CAL	DSUB	CHECK DIFFERENCE
	05725	115			
	05726	013			
1165	05727	110	JFZ	DCP1	TEST IF EQUAL
	05730	344			
	05731	013			
1166	05732	302		LAC	GET LS HALF
1167	05733	074		CPI	TEST FOR EQUALITY
	05734	000			
1170	05735	150	JTZ	DCP1	EQUAL--EXIT
	05736	344			
	05737	013			
1171	05740	044	NDI	177	SET SIGN = 0
	05741	177			
1172	05742	064	ORI	1	SET Z = 0 (FOR GREATER THAN)
	05743	001			
1173	05744	313	DCP1	LBD	RESTORE ARGUMENT

1174	05745	324	LCE					
1175	05746	007	RET					
1176	05747	301	DCP2	LAR				
1177	05750	064	ORI	1				
1178	05751	001						
1200	05752	007	RET					
1201	06000		ORG	'6000				
1202	06000	001	D	1				
1203	06001	002	D	2				
1204	06002	002	D	2				
1205	06003	003	D	3	1267	06065	053	D 43
1206	06004	004	D	4	1270	06066	053	D 43
1207	06005	005	D	5	1271	06067	054	D 44
1210	06006	006	D	6	1272	06070	055	D 45
1211	06007	006	D	6	1273	06071	056	D 46
1212	06010	007	D	7	1274	06072	057	D 47
1213	06011	010	D	8	1275	06073	057	D 47
1214	06012	011	D	9	1276	06074	060	D 48
1215	06013	011	D	9	1277	06075	061	D 49
1216	06014	012	D	10	1300	06076	062	D 50
1217	06015	013	D	11	1301	06077	063	D 51
1220	06016	014	D	12	1302	06100	063	D 51
1221	06017	015	D	13	1303	06101	064	D 52
1222	06020	015	D	13	1304	06102	065	D 53
1223	06021	016	D	14	1305	06103	066	D 54
1224	06022	017	D	15	1306	06104	066	D 54
1225	06023	020	D	16	1307	06105	067	D 55
1226	06024	021	D	17	1310	06106	070	D 56
1227	06025	021	D	17	1311	06107	071	D 57
1230	06026	022	D	18	1312	06110	072	D 58
1231	06027	023	D	19	1313	06111	072	D 58
1232	06030	024	D	20	1314	06112	073	D 59
1233	06031	025	D	21	1315	06113	074	D 60
1234	06032	025	D	21	1316	06114	075	D 61
1235	06033	026	D	22	1317	06115	076	D 62
1236	06034	027	D	23	1320	06116	076	D 62
1237	06035	030	D	24	1321	06117	077	D 63
1240	06036	030	D	24	1322	06120	100	D 64
1241	06037	031	D	25	1323	06121	101	D 65
1242	06040	032	D	26	1324	06122	102	D 66
1243	06041	033	D	27	1325	06123	102	D 66
1244	06042	034	D	28	1326	06124	103	D 67
1245	06043	034	D	28	1327	06125	104	D 68
1246	06044	035	D	29	1330	06126	105	D 69
1247	06045	036	D	30	1331	06127	105	D 69
1250	06046	037	D	31	1332	06130	106	D 70
1251	06047	040	D	32	1333	06131	107	D 71
1252	06050	040	D	32	1334	06132	110	D 72
1253	06051	041	D	33	1335	06133	111	D 73
1254	06052	042	D	34	1336	06134	111	D 73
1255	06053	043	D	35	1337	06135	112	D 74
1256	06054	044	D	36	1340	06136	113	D 75
1257	06055	044	D	36	1341	06137	114	D 76
1260	06056	045	D	37	1342	06140	115	D 77
1261	06057	046	D	38	1343	06141	115	D 77
1262	06060	047	D	39	1344	06142	116	D 78
1263	06061	047	D	39	1345	06143	117	D 79
1264	06062	050	D	40	1346	06144	120	D 80
1265	06063	051	D	41	1347	06145	121	D 81
1266	06064	052	D	42	1350	06146	121	D 81
					1351	06147	122	D 82
					1352	06150	123	D 83
					1353	06151	124	D 84
					1354	06152	124	D 84
					1355	06153	125	D 85
					1356	06154	126	D 86
					1357	06155	127	D 87
					1360	06156	130	D 88
					1361	06157	130	D 88
					1362	06160	131	D 89

1363	06161	132	0	90	1457	06255	211	0	137
1364	06162	133	0	91	1460	06256	212	0	138
1365	06163	134	0	92	1461	06257	213	0	139
1366	06164	134	0	92	1462	06260	214	0	140
1367	06165	135	0	93	1463	06261	215	0	141
1370	06166	136	0	94	1464	06262	215	0	141
1371	06167	137	0	95	1465	06263	216	0	142
1372	06170	140	0	96	1466	06264	217	0	143
1373	06171	140	0	96	1467	06265	220	0	144
1374	06172	141	0	97	1470	06266	220	0	144
1375	06173	142	0	98	1471	06267	221	0	145
1376	06174	143	0	99	1472	06270	222	0	146
1377	06175	143	0	99	1473	06271	223	0	147
1400	06176	144	0	100	1474	06272	224	0	148
1401	06177	145	0	101	1475	06273	224	0	148
1402	06200	146	0	102	1476	06274	225	0	149
1403	06201	147	0	103	1477	06275	226	0	150
1404	06202	147	0	103	1500	06276	227	0	151
1405	06203	150	0	104	1501	06277	230	0	152
1406	06204	151	0	105	1502	06300	230	0	152
1407	06205	152	0	106	1503	06301	231	0	153
1410	06206	153	0	107	1504	06302	232	0	154
1411	06207	153	0	107	1505	06303	233	0	155
1412	06210	154	0	108	1506	06304	234	0	156
1413	06211	155	0	109	1507	06305	234	0	156
1414	06212	156	0	110	1510	06306	235	0	157
1415	06213	157	0	111	1511	06307	236	0	158
1416	06214	157	0	111	1512	06310	236	0	158
1417	06215	160	0	112	1513	06311	236	0	158
1420	06216	161	0	113	1514	06312	236	0	158
1421	06217	162	0	114	1515	06313	236	0	158
1422	06220	162	0	114	1516	06314	236	0	158
1423	06221	163	0	115	1517	06315	236	0	158
1424	06222	164	0	116	1520	06316	236	0	158
1425	06223	165	0	117	1521	06317	236	0	158
1426	06224	166	0	118	1522	06320	236	0	158
1427	06225	166	0	118	1523	06321	236	0	158
1430	06226	167	0	119	1524	06322	236	0	158
1431	06227	170	0	120	1525	06323	236	0	158
1432	06230	171	0	121	1526	06324	236	0	158
1433	06231	172	0	122	1527	06325	236	0	158
1434	06232	172	0	122	1530	06326	236	0	158
1435	06233	173	0	123	1531	06327	236	0	158
1436	06234	174	0	124	1532	06330	236	0	158
1437	06235	175	0	125	1533	06331	236	0	158
1440	06236	176	0	126	1534	06332	236	0	158
1441	06237	176	0	126	1535	06333	236	0	158
1442	06240	177	0	127	1536	06334	236	0	158
1443	06241	200	0	128	1537	06335	236	0	158
1444	06242	201	0	129	1540	06336	236	0	158
1445	06243	201	0	129	1541	06337	236	0	158
1446	06244	202	0	130	1542	06340	236	0	158
1447	06245	203	0	131	1543	06341	236	0	158
1450	06246	204	0	132	1544	06342	236	0	158
1451	06247	205	0	133	1545	06343	236	0	158
1452	06250	205	0	133	1546	06344	236	0	158
1453	06251	206	0	134	1547	06345	236	0	158
1454	06252	207	0	135	1550	06346	236	0	158
1455	06253	210	0	136	1551	06347	236	0	158
1456	06254	211	0	137	1552	06350	236	0	158
					1553	06351	236	0	158
					1554	06352	236	0	158
					1555	06353	236	0	158
					1556	06354	236	0	158
					1557	06355	236	0	158
					1560	06356	236	0	158
					1561	06357	236	0	158
					1562	06360	236	0	158
					1563	06361	236	0	158
					1564	06362	236	0	158
					1565	06363	236	0	158
					1566	06364	236	0	158
					1567	06365	236	0	158
					1570	06366	236	0	158
					1571	06367	236	0	158
					1572	06370	236	0	158
					1573	06371	236	0	158
					1574	06372	236	0	158
					1575	06373	236	0	158
					1576	06374	236	0	158
					1577	06375	236	0	158
					1600	06376	236	0	158
					1601	06377	236	0	158

APPENDIX D

APPENDIX D

CALIBRATION TABLE

Temperature (°)	Thermocouple, Cromel-Alumel (mv)	Amplifier Output (v)	Octal Reading
100	3.3	0.624	16 64
200	7.3	1.380	47 54
300	11.4	2.155	100 64
400	15.6	2.948	132 50
450	17.7	3.345	147 60
500	19.8	3.742	164 70
550	22.0	4.158	202 00
600	24.1	4.555	217 14
650	26.2	4.952	234 20
700	28.3	5.349	251 20
750	30.4	5.746	266 10
800	32.5	6.142	302 70
810	32.9	6.218	305 34
820	33.3	6.294	307 74
830	33.7	6.369	312 40
900	36.6	6.917	333 74

Special Distribution
UC-32DISTRIBUTIONNo. of
CopiesOffsite

1 AEC Chicago Patent Group
 A. A. Churm

3 AEC Technical Information Center

16 Dow Chemical Corporation/Rocky Flats
 D. Livesay (12)
 P. H. Healy (2)
 D. Henry
 J. Skufka

13 Lawrence Livermore Laboratory
 D. F. Cruff
 R. Eckard
 R. A. Goodman
 G. McFarland (10)

Onsite

1 AEC/RL Patent Attorney
 R. M. Poteat

2 AEC/RL - RDT Sr. Site Representative, PNP
 F. R. Standerfer

29 Battelle-Pacific Northwest Laboratory
 K. M. Business
 M. R. Compton
 V. L. Crow
 P. J. Dionne
 G. E. Driver
 M. D. Erickson (10)
 R. E. Falkoski
 J. C. Fox
 P. J. Hof
 R. R. King
 R. E. Mahan
 T. A. Seim (5)
 R. W. Stewart
 Technical Information Files (3)