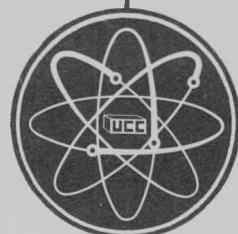


325
UNCLASSIFIED


K-1365

AEC RESEARCH AND DEVELOPMENT REPORT

MEASUREMENT OF IMPURITY EFFECTS IN THE MASS
SPECTROMETER ISOTOPIC ANALYSIS OF
URANIUM HEXAFLUORIDE

AUTHOR:

J. C. Horton

OAK RIDGE GASEOUS DIFFUSION PLANT

Operated by

UNION CARBIDE NUCLEAR COMPANY
DIVISION OF UNION CARBIDE CORPORATION

for the Atomic Energy Commission

Acting Under U. S. Government Contract W7405 eng 26

UNCLASSIFIED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Printed in USA. Price 0.50 cents. Available from the

Office of Technical Services
U. S. Department of Commerce
Washington 25, D. C.

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.

Date of Issue: June 24, 1958 Report Number: K-1365

Subject Category: CHEMISTRY - GENERAL
TID-4500 (13th Ed. Rev.)

MEASUREMENT OF IMPURITY EFFECTS IN THE MASS SPECTROMETER
ISOTOPIC ANALYSIS OF URANIUM HEXAFLUORIDE

J. C. Horton

Technical Division
D. M. Lang, Superintendent

UNION CARBIDE NUCLEAR COMPANY
DIVISION OF UNION CARBIDE CORPORATION
Oak Ridge Gaseous Diffusion Plant
Oak Ridge, Tennessee

Report Number: K-1365

Subject Category: CHEMISTRY - GENERAL

Date of Issue: June 24, 1958

Title: MEASUREMENT OF IMPURITY EFFECTS
IN THE MASS SPECTROMETER ISOTOPIC
ANALYSIS OF URANIUM HEXAFLUORIDE

Author: J. C. Horton

A B S T R A C T

Tests to determine the extent of the isotopic analysis errors resulting from ion beam distortion by gaseous impurities in uranium hexafluoride samples were run on several mass spectrometers. Mixtures of uranium hexafluoride with five other gases were compared to pure uranium hexafluoride of identical isotopic composition, noting the bias of the measured ratios of mole ratios from unity.

Nitrogen caused a greater bias than the other gases tested; ten per cent nitrogen can cause a bias of more than one per cent in the ratio of pure to impure sample mole ratios.

MEASUREMENT OF IMPURITY EFFECTS IN THE MASS SPECTROMETER
ISOTOPIC ANALYSIS OF URANIUM HEXAFLUORIDE

INTRODUCTION

The presence of gaseous impurities can affect the accuracy of the isotopic analysis of uranium hexafluoride with the mass spectrometer. This phenomenon is well known (1), but detailed information is not available. Experiments are described in this report in which the extent of the bias was determined when known levels of impurities were present.

The exact mechanism by which the effect functions is uncertain. However, when a beam of positive ions moves through a column of gas, a number of different processes of interaction between ions and gas molecules may occur: neutralization of the ions, either from the capture of a free electron or an ionization of the gas molecule; spreading of the ion beam by multiple scattering with gas molecules; or retardation of the ion beam due to collision energy loss. A space charge effect, if present, results in a shift of the position at which focus occurs. Another report (3) treats these processes in greater detail.

This study is primarily of interest in monitoring gas streams where impurities cannot be removed, as routine sample purification is practiced in the isotopic analysis laboratory. Some impurities (such as some of the fluorocarbons) are difficult to remove completely, and small inleakage of air may occur at any time, however.

PROCEDURE

Mixtures of uranium hexafluoride and five other gases, simulating impurities, were prepared by a partial pressure method, using a 0 - 100 mm. Hg Pressure Blind Multiplier (Taylor Instrument Co.) attached to the spectrometer manifold (2).

Samples of these gas mixtures were then compared with other samples having identical isotopic composition but no impurity, using routine isotopic analytical methods with the exception that sample purification steps were omitted. Thus, any apparent difference in observed isotopic content was attributed to the presence of the impurity.

Various blends of nitrogen and uranium hexafluoride were analyzed in different types and modifications of spectrometers to compare individual instrument characteristics.

All tests were made using uranium of natural or near-natural isotopic

composition, except for one test in which uranium enriched in U^{235} was used.

RESULTS AND DISCUSSION

Bias

Figure 1 shows that 10 per cent nitrogen can cause a bias of more than 1 per cent in the ratio of mole ratios* of the two samples. Figure 2 displays the effects of other impurities and demonstrates that the presence of any foreign gas is undesirable.

The minimum amounts of these impurities required to raise the spectrometer ion gage reading 0.1×10^{-7} mm. Hg, and thus be detectable, range from 0.1 to 0.3 mole per cent. Quantities larger than these are usually removed before routine analyses are made, of course.

It has generally been assumed that the presence of impurities spreads the ion beams symmetrically so that the larger beam adds to the smaller one, as a net effect. Figure 2 shows that an effect opposite to this assumption occurs when measuring highly enriched uranium (93 per cent U^{235}). In this case, the large U^{235} peak does not add to the U^{238} ; rather the U^{235}/U^{238} ratio is increased by the presence of impurities. This indicates that symmetrical spreading of the ion beam is not always the predominant factor. Figure 4 illustrates one possible explanation of these two conditions.

Variations Between Spectrometer Types

It has been noted that the bias effect is somewhat dependent on the exact focus condition of the spectrometer. The data in table 1 were secured with the focus used for routine analyses; this focus must frequently be a compromise between sensitivity and resolution requirements.

*	$\left(\frac{U^{235}}{1-U^{235}} \right)$	Sample Plus
	$\left(\frac{U^{235}}{1-U^{235}} \right)$	Impurity
This ratio measured by the spectrometer is	<hr/>	
	$\left(\frac{U^{235}}{1-U^{235}} \right)$	Pure Sample

when the U^{238} isotope is predominant. But since the dual collector-amplifier arrangement of the spectrometer requires passing the less abundant of two isotopes through the resolving slit, the ratio

measured is	$\left(\frac{U^{238}}{1-U^{238}} \right)$	Sample Plus
	$\left(\frac{U^{238}}{1-U^{238}} \right)$	Impurity
	$\left(\frac{U^{238}}{1-U^{238}} \right)$	when the U^{235} isotope is the Pure Sample

more abundant.

With the ion source of the Consolidated 21-221 spectrometer (entry 2 in table 1) immersed in the main magnetic field, it was thought that any isotope separation in the source itself might result in selective removal of ions by the second collimator slit, if its position were not perfectly centered in the beam. Consequently, this collimator was removed, and the data in entry 3 of table 1 were secured. A slight improvement is indicated from a comparison of the two tests, but further extensive measurements would be necessary to establish a significant difference of this magnitude.

The data from both 21-320A spectrometers were secured when dry ice was used for cooling the cold traps, and the analyzer pressures were about 10^{-6} mm. Hg. In all other tests liquid nitrogen was used as the coolant and base pressures were in the 10^{-7} mm. region.

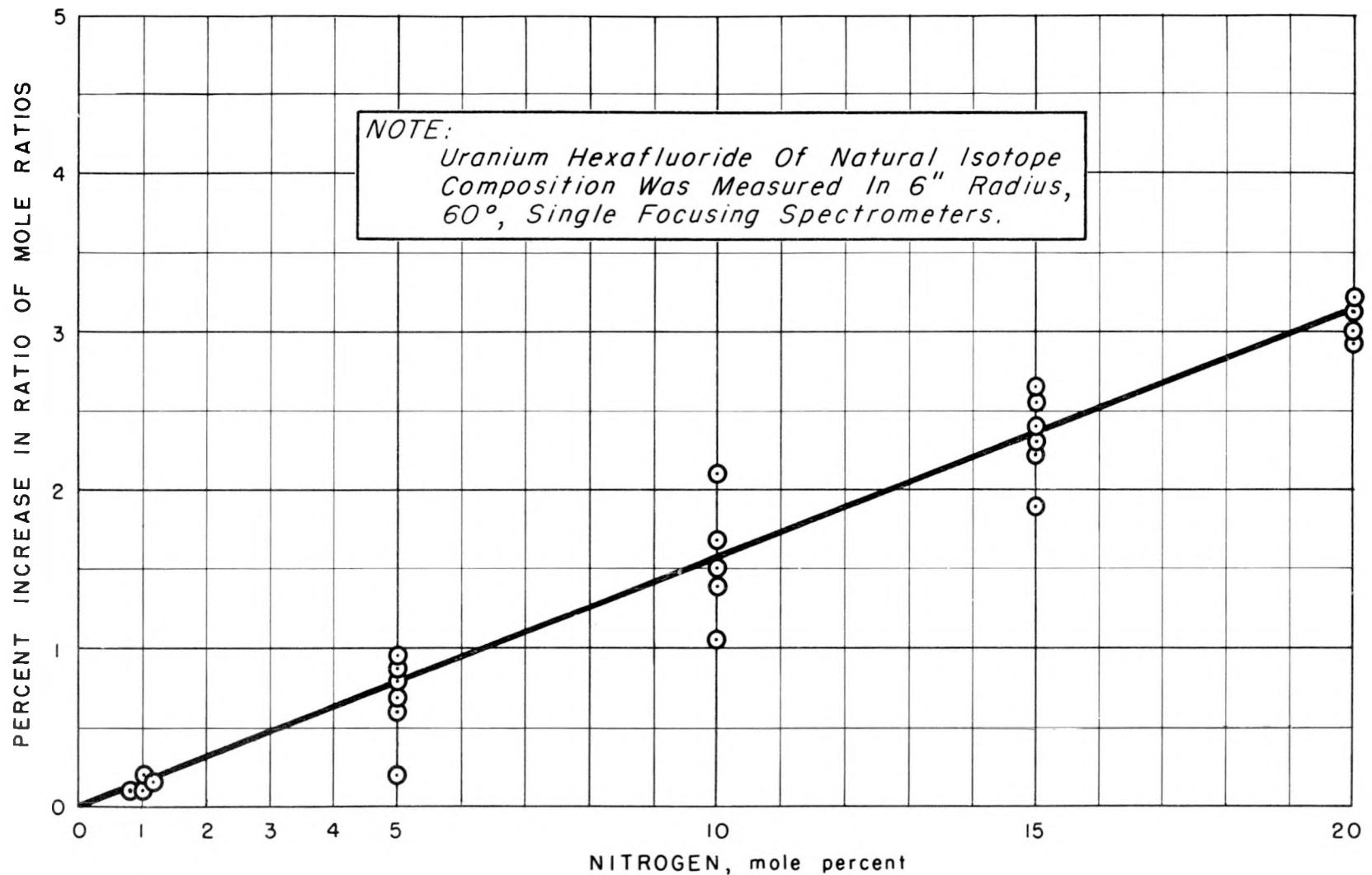
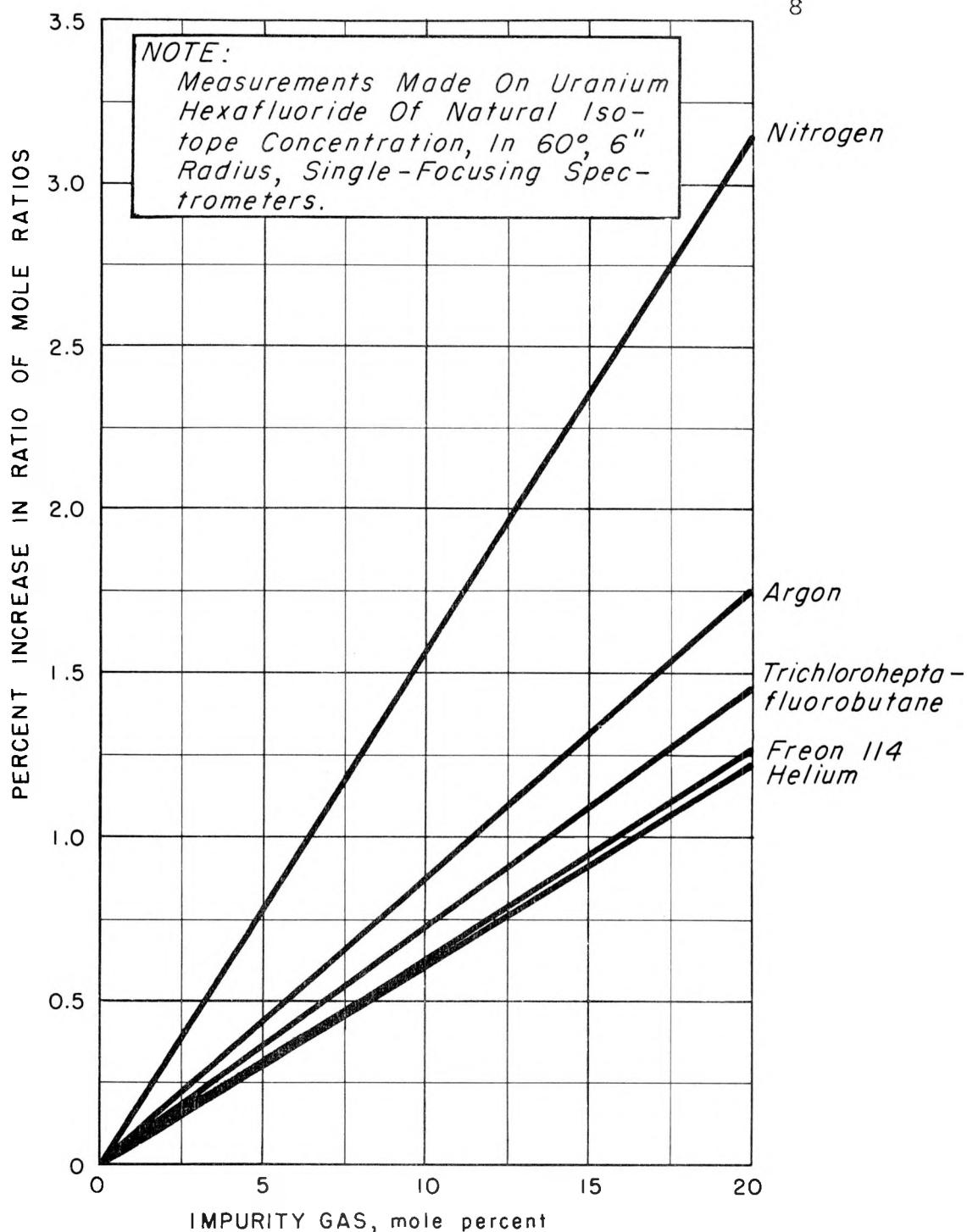

The twelve-inch radius spectrometer constructed in this laboratory exhibits less bias from impurities than the other types available for the comparison, as shown in table 1. This is not surprising, in view of the greater dispersion, higher resolving power, and differential pumping system of the larger instrument.

TABLE 1
COMPARISON OF THE IMPURITY EFFECT IN DIFFERENT SPECTROMETER TYPES

<u>Spectrometer Type</u>	<u>Number of Determinations</u>	<u>Mole Per Cent Nitrogen</u>	<u>Observed Ratio of Ratios</u>
1. G. E. 60° Nier Type	13	10	1.015
	5	20	1.031
2. Consolidated 21-221	2	10	1.006
	2	20	1.013
3. Consolidated 21-221 with Lower Source Plate Removed	2	10	1.005
	2	20	1.009
4. Consolidated 21-320A (Spectrometer No. 1)	3	10	1.009
5. Consolidated 21-320A (Spectrometer No. 2)	2	10	1.003
	2	20	1.008
6. 12" Radius, 60°	8	10	1.0004
	8	20	1.0012

BIBLIOGRAPHY


1. Hart, W. G., and Smith, L. A., Experimental Evaluation of Sources of Variance in Spectrometer Measurements, Union Carbide Nuclear Company, Oak Ridge Gaseous Diffusion Plant, December 21, 1955, (KLI-3662).
2. Skvarla, J. E., A Gas Analysis Mass Spectrometer, Union Carbide Nuclear Company, Oak Ridge Gaseous Diffusion Plant, January 5, 1954, (K-1049).
3. Warren, V. L. and Horton, J. C., Studies of Isotope Ratio Measurement Errors Caused by Ion Reactions with Impurity Molecules, Union Carbide Nuclear Company, Oak Ridge Gaseous Diffusion Plant, (To be published).

K-1365

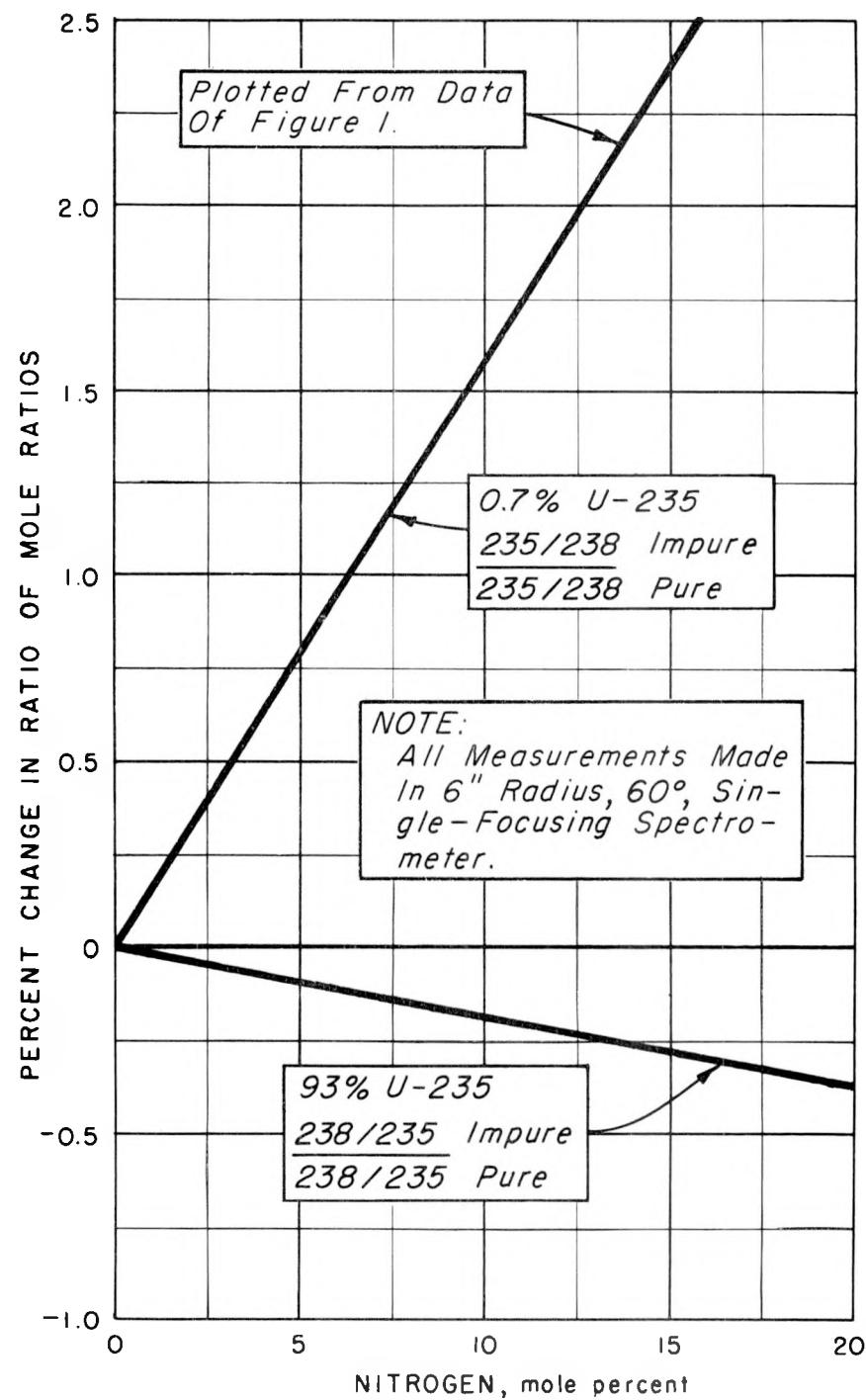
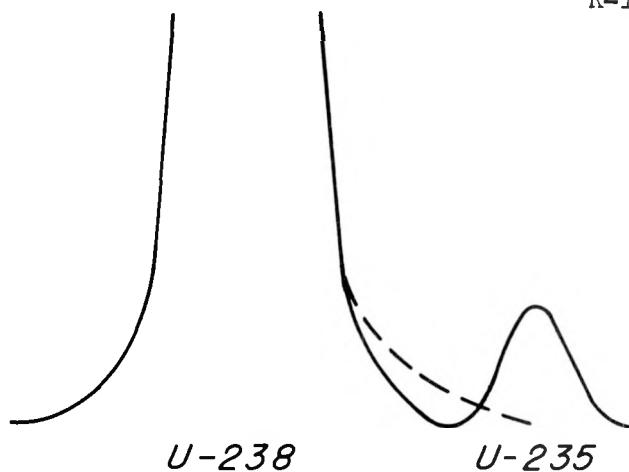

THE EFFECT OF NITROGEN ON RATIO OF RATIO MEASUREMENTS

FIGURE 1

THE EFFECT OF VARIOUS GASES ON ISOTOPIC RATIO OF RATIO MEASUREMENTS


FIGURE 2

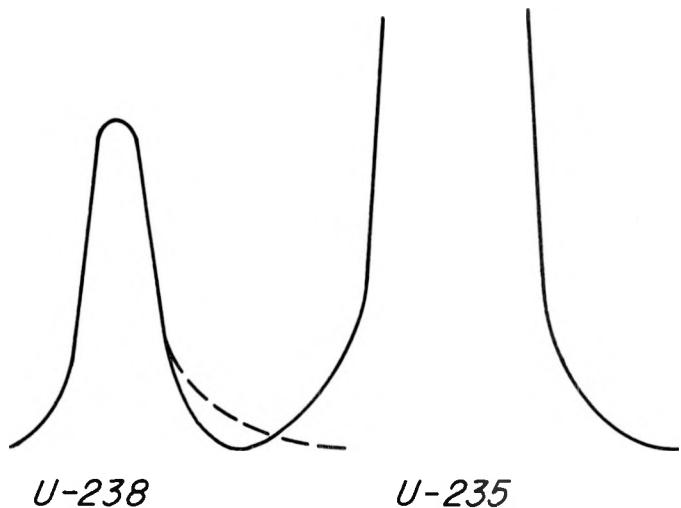

THE EFFECT OF NITROGEN ON ISOTOPIC RATIO OF RATIO MEASUREMENTS OF NATURAL VS ENRICHED URANIUM HEXAFLUORIDE

FIGURE 3

K-1365
10

Dotted Line Shows Probable Condition When Impurities Are Present In The Natural Uranium. The Toe Of The U-238 Peak Contributes To The U-235 Peak.

Dotted Line Shows Possible Condition When Impurities Are Present In Enriched Uranium. The Toe Of The U-238 Peak Contributes To The U-235 Peak.

THE EFFECT OF IMPURITIES ON PEAK SHAPE

FIGURE 4