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Abstract

We describe an algorithm for the monotone linear complementarity problem (LCP)
that converges from any positive, not necessarily feasible, starting point and exhibits
polynomial complexity if some additional assumptions are made on the starting point.
H the problem has a strictly complementary solution, the method converges sub-
quadratically. We show that the algorithm and its convergence properties extend
readily to the mixed monotone linear complementarity problem and, hence, to all
the usual formulations of the linear programming and convex quadratic programming
problems.

1 Introduction

The monotone linear complementarity problem (LCP) is to find a vector pair (x.y) € R*xR"
such that ‘ ‘
y=Mr+q.  (2,9)20, Ty=0, : (1)

where ¢ € R™ and M is an n x n positive semidefinite (p.s.d.) matrix. The mired monotone
linear complementarity problem (MLCP) is to find a vector triple (z,y.z) € R™ x R" x R™

such that

Y - ."'In ."'112 r T 5

[ 0 } - [ 11/[21 .‘\’[22 z + q2 (“a‘)
(xsy)?_ov ITy:O,

where

‘\/[ 11 A/I 12
M=
[ Mz, M. 22 ]
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is p.s.d. All conventional formulations of the linear programming (LP) and convex quadratic
programming (QP) problems can be posed in the form (2) by writing out their conditions
for optimality. For instance, consider the QP problem given by

min, 3wl Qu+clw 3)

subject to

%Zl; (iE,CC{l,"',P}), w; < ug (iEuC{l,"',P}),
Cw>d, Aw=2b, (4)

where @) is symmetric p.s.d., C € R™*" A € R™E*X" and so on. If we define
Ec=lellieccy,  Eu=[ellieu,
where e; is the ¢-th unit vector from the standard basis, and
= [l]iec, u = [uiieu,
then we can state the optimality conditions for (3),(4) in the form (2) by defining

n=|Ll+Ul+m;, m=p+mpg,

and
E 0
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In this paper, we focus on an algorithm for (1) and its convergence properties. We
then show, using recent work involving the relationship between problems (1) and (2), that
this algorithm can be extended painlessly to (2) and, hence, to all the usual LP and QP
formulations. Little loss of efficiency is involved in solving LPs and QPs by embedding them
in algorithms for (2), provided the linear algebra takes account of the particular structure
of each problem. Hence we feel that the linear complementarity formulation is the best one
to consider because of its generality, simplicity of notation, and practical efficiency of the
algorithms on all its special cases.

In two recent papers [9, 10], we have presented algorithms for (1) that are globally
convergent, have polynomial complexity when the starting point (z°,y°) satisfies certain as-
sumptions, and exhibit superlinear convergence of the complementarity gap uy = (£*)Ty*/n
to zero with Q-order two. Neither the starting point nor the iterates are feasible in general.
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In both algorithms, most of the work at each iteration consists of a matrix factorization and
between one and three triangular solves with the computed factors. The local analysis in
[9] requires existence of a strictly feasible point (Z,¥) such that § = MZ + ¢, (£,5) > 0, as
well as existence of a strictly complementary solution, that is, (z*,y") solving (1) such that
z* 4+ y* > 0. (The latter property is usually referred to as nondegeneracy; see, for example,
Mangasarian [3].) The strict feasibility assumption is undesirable because it is usually not
satisfied by large practical problems. The analysis of [10] requires nondegeneracy but not
strict feasibility, giving it a significant advantage over [9].

In this report; we present an algorithm that is simpler than either of those discussed above
and requires only the nondegeneracy assumption to attain the convergence properties of
both algorithms. Monteiro and Wright [6] have showed that we cannot drop this assumption
without giving up the possibility of superlinear convergence for Newton-based primal-dual
algorithms, so in this sense our local convergence results are sharp.

Our algorithm is specified in Section 2. In Section 3 we prove global linear convergence
and polynomial complexity. Some technical results are proved in Section 4; these are used
to prove superlinear convergence in Section 5. Section 6 shows that the algorithm and
its convergence properties can be extended to the mixed problem (2) because (2) can be
- reformulated as (1). We stress at the outset that this reformulation need not be performed
explicitly; it suffices to observe that the (z,y) iterates generated by our extended algorithm
are the same as those that would be obtained by reformulating the problem as (1) and
applying the algorithm of Section 2 directly, except possibly for some swapping of components
to be discussed later. _

Unless otherwise specified, || - || denotes the Euclidean norm of a vector. Iteration num-
bers appear as superscripts on vectors and matrices and as subscripts on scalars. To avoid
notational clutter in Sections 3, 4, and 5, we drop the iteration index & from vector and
matrix quantities in the proofs. It is retained explicitly in the statement of each result.

We denote the solution set and strictly complementary solution set by

S={(z%y")|(z",y7) solves (1)}, S ={(«"y") €S|z"+y™ >0},

respectively. The range space of a matrix is denoted by R(-).

2 The Algorithm

The algorithm generates a sequence of strictly positive iterates (¥, y*). To describe the step
between successive iterates, we define

/'Lk:(xk)’ryk/na rk:yk—‘/\/[l‘k—qv 6=([,l,-",l)T,

4X/C = dl'dg(f;f»flz" e wk)a Yk = dla‘g(yf’ yéﬁ R %kz)

3 n

We refer to yy as the complementarity gap and to r* as the residual. Each step is calculated
as follows.




Given 7 € (0,1), B €[0,1), & € [0,1), solve

M -] u’° - rk
YF X* v* | T | =X*YFRe 4+ Gure | (5)
Choose
N
& =arg min pe(@) 2 (z* + o) (¥ + ¥/, (6)

where & is the largest number in [0, 1] such that the following inequalities are satisfied
for all @ € [0, &):

-~

(e" + o) (¥" + av®) 2 (1=-B)(1 - e)(=)Ty%, i r* £, (7a)
(e +oud) (i + avf) 2 (/n)(a" + )T (¥* +avt),  i=1-n (7b)

The search direction obtained from (5) is simply the Newton step for the system of
nonlinear equations
Mz—-y+gq 0 ‘
F(‘an) - [ XYC - &er y
from the point (¥, y*).

The inequality (7b), usually referred to as a centering condition, ensures that the iterates
do not approach the boundary of the nonnegative orthant too closely. Because we restrict ¥
to the range [Yimin, Ymax) for 0 < Ymin < Ymax < 1/2, (7b) implies that

TiYi 2 Yebk = Yminkk, Vk. (8)

The condition (7a) is used to ensure that improvement in the complementarity gap px does
not outstrip improvement in the infeasibility ||r¥|| by too much; a vector pair (z,y) that is
complementary but not feasible is of no interest. Note that we need not enforce condition
(7Ta) if the current point is already feasible.

We can now state our algorithm.

Given 7€ (07 1/2)7 “min and Ynax with 0 < Ymin < Ymax < 1/2, o€ (07 1/2)9
p € (0,%), & € (0,1], and (°, yo) with 1’?1’/? 2 Ymaxko > 0;

to & 1, Y0 < Yinax;




if pe =10 then stop;

(* attempt a fast step *)
Solve (5)~(7) with 6 =0, 8 =%, % = Ymin + ¥* (Ymax — Vinin);
if (24 &) (y* + @) /n < pus
then o «— &, B¢ — B, Ok — Ty Yet1 — 7;
tepr — e+ L5
(;’L‘l‘ﬂ,yk“) — (;c",yk) + ak(uk,vk);
go to next k;
end if

(* revert to a safe step *)

Solve (5)—(7) with & € [5,1/2], B =10, ¥ = ~;
Qe "—&’ ﬂk*"'oa O & 6-, Y41 (_':7'1

tegr — Bis

(@, ™) = (2, %) + an(u®, 0%);

go to next k;

end for.

The algorithm can be motivated in a few sentences. We begin each major iteration by
trying to take a fast step, which uses an affine sca,liqg search direction. To encourage longer
steps to be taken we use a strictly positive value of 3 and a value 4 smaller than the current
vk. The fast steps are accepted only if they produce a reduction in pu of at least a factor of
p. Otherwise, the algorithm reverts to taking a safe step, whose major distinguishing feature
is its use of a strictly positive value & > & of the centering parameter.

Safe steps tend to be taken on early iterations, while fast steps are taken toward the
tail of the sequence. There may be a gray area in which both safe and fast steps are taken.
The algorithm can be modified to try fast steps only when there is some reasonable hope
that they will be accepted. (Earlier versions of the algorithm used a threshold criterion
e < fi, with i a user-defined parameter, to decide whether to calculate the safe step.) For
the sake of simplicity, we do not consider such modifications here, but note simply that the
superlinear convergence properties of the algorithm will hold provided that the fast step is
eventually tried on every iteration. Besides omitting the threshold z, the algorithm above
differs from the one described in [9] in that the duality gap p is used directly in place of the
merit function ¢, and the particular choices ynin = 7 and ymax = 27 are relaxed.

3 Global Convergence and Polynomial Complexity

In this section, we show that the algorithm converges globally to the solution set of (1)
from any starting point (z° y°) > 0. When the algorithm is initialized in a certain way, the
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number of iterations is quadratic in the problem dimension n. Throughout the section, we
make the following assumption.

Assumption 1 The LCP (1) is feasible; that is, there is a pair (z,y) such thaty = Mz +q
and (z,y) > 0.

Assumption 1 implies that S # 0 (see, for example, [1, Theorem 3.1.2]).
If we define the monotonically decreasing sequence {vx} by
~ vo =0, Vi1 = (1 — o)y,

it is easy to see that r* = v;r°. We have the following simple result, whose proof follows

that of [10, Lemma 3.1].
Lemma 3.1 The constant (3 defined by

tE kf_o[(l —B) > kﬁ(l -7

is strictly positive, and we have for all k > 0 that

g > Bupo. (9)

We can also show that all iterates remain strictly positive, except when finite termination -
occurs.

Lemma 3.2 For all iterates generated by the algorithm, we have either (z*,y*¥) > 0 or
Kk = 0.

Proof. We prove the result by induction. Note first that the assertion is trivially satisfied
by the initial iterate (z° 3°) > 0. If u = 0, the algorithm terminates at the k-th iterate. For
the remainder of the proof, we assume that (z*,y*) > 0 and prove that either (z*+!, y*+1) > 0
or prs1 = 0. We consider the cases r* # 0 and r* = 0 separately.

If r* # 0, the constraint (7a) is applied to the choice of ax. Hence, combining (7a) and
(7Tb), we have that

(F + aub)(yF + avf) 2 (3/n)(1 = B)(1 — a)(e*Ty¥),  Vae[0,).

Since o < 1,4 > 0, ’§ € [0,1), and kayk > 0, the right-hand side of this expression is
strictly positive for all & € [0, ay). Since (¥, %) > 0, it follows that (¥ + au®,y* +avf) > 0
for all @ € [0, ). If 2F + yuf = 0 or y¥ + auvF = 0 for some index i, we have from (7b)
that

prrr = (2F + )T (y* + agv®)/n = 0.

The alternative case is

(51, 55) = (2" + a, ¥ + awo¥) > 0,
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so our claim holds.
Consider now the remaining case r* = 0, for which (7a) is not enforced. Suppose first
that there exist « values in the range [0, o] such that

f+auf =0 or y¥ + avf =0, (10)

for some index 7 = 1,---,n, and let & be the infimum of these values. It follows from (7b)
that

\ (;I:k + o’zkuk)T(yk + C—kak) = 0. (11)
Since r* = 0, equation (5) implies that v* = Mu*. Hence, by positive semidefiniteness of
M, we have utTvk > 0. Using the second part of (5), we find that

(2% + auh)T (1 + av*) = (27 y*)(1 = a1 — ) + ot ok > (& yF)(1 — a(l - 5)). (12)

Now since @ € [0,ax] C [0, 1], the relations (11) and (12) can be satisfied simultaneously
for « = @ only if & = 0 and & = or = 1. Hence we are left with two possibilities.
Either ar = ax = 1 and pg41 = 0, or there are no o € [0, ] with the property (10), so
(zF+1, y*+1) > 0. Therefore our claim holds again for the case of r* = 0, and we are done. m

Finite termination of the algorithm with g, = 0 and r* = 0 is, of course, the simple
case. Throughout the remainder of the paper, we make the implicit assumption that finite
termination does not occur and that the algorithm generates an infinite sequence of iterates
{(xkv yk)}, k=0,1,---

The next lemma contains an inequality that is used in a number of places in the analysis.
Similar results appear in Potra [8, Lemma 4.1], Mizuno [5, Lemma 3.3}, and Wright [10,
Lemma 3.2].

Lemma 3.3 Let (z*,y") € S. Then for all k > 0 there is a constant Cy such that
Hy"lﬁ +{l=8lle < Culuo + pef/wic + ly™l + ™[] - (13)
When the initial point satisfies
2 =Ee, Yy’ =g, (14)
Jor some positive &, and &,, we have
Elly s + &Izl < npo + nae/ve + Elly™Ih + &l (15)

Proof. As in the proof of [10, Lemma 3.2] we obtain the inequalities

0 < 2Ty + (1 — w)i (=) Ty + 2Ty + (1 — ve)((2°)Ty™ + (7)7y°)
— (%) Ty + () ) — (1 = ) (z") Ty + 2Ty") (16)

and
u((22)Ty + (1°)Tx) < (") Ty + 2Ty + (1 — ) () Ty + (3°) ™). (17)

-




By defining

Cy = z_ml,mn min(z?,y?),

and noting that 1 — v < 1, we have

lylls + izl < C7* [vensto + npsi/ve + 12 loolly*ll1 + 19 lleo |11 ,

which implies (13) for appropriately defined Cy. The other inequality (15) follows trivially
from (14) and .(17). n

For purposés of polynomial complexity, we assume that the initial point is defined by
(14), where &; and &, satisfy the following assumptions:

=" lloo < &, Ny lleo < &, & 2 |llle, & = [|Melloés = ”M"EOHOO- (18)
We also find the diagonal matrix DF defined by
Dk — (Xk)—l/Z(Yk)l/2

useful in the subsequent analysis. The next lemma allows us to bound quantities involving
the steps ©* and v*.

Lemma 3.4 For all k > 0, there is a constant w such that
D% |12 + [(DF) M ? < wpas. (19)

If the initial step is chosen according to (1) and (18), then

92 2
w= 2" (5+2) , (20)

Ymin fo}
and so w = O(n?).
Proof. 1t is easy to see that the step (u,v) can be partitioned as

(u,v) = (u,0) + (4,9),

M -] 0 |
[ y X } [ ] N l —XYe—%-akpke] (21)

¥ )3+

(Because of nonsingularity of the coefficient matrix in (21) and (22), both (@,s) and (4, )
are well defined.) As in [10, Lemma 3.3, we can show that

where

[ ]

and

S £

Zn,uk/ - Zn,u‘/2
— 107l s

min min

| Dajl <




For the other component (&, %), we have from the second part of (22) that
Di+D7'9=0 = o=-D%,
Hence from the first part of (22) and positive semidefiniteness of M, we have
Mi—-b=r = (M+D)a=r = aTD* <aTr

Therefore

™~ |1 Dalf* < || Da|||| D~ rl.
Using (8) together with Lemmas 3.1 and 3.3, we have that

= Z(xiyi)"l/2ink|lrolloo
1

17°llo
< Smanvlzlh
minfk
s : :
177 1721 vipo + pk + velly ”1 + Vk”l' ”1]

mintk

ad [ .
e e [1+ (o + ™l + lls™ 1)/ (Bio)]

minfk

1/2
" - Z;
103l < 1071 < 5 (Z) el

IA

IA

for some appropriately defined constant C,. Since || Da|| = || D719||, we therefore have
—1a . 1/2 : ‘
ID™"5]| = || Dal| < Cap’™. : (25)
By combining (23) and (25), we obtain

I Dulf* + ]| D~ olf?
< (I Dalf + |Dal))* + (HQD”T)H +[D7'aY)

‘ 2"#/1:/2 1/2
2 172 + Capy

min

IA

< wp,

where w is defined in an obvious way.
The special result (20) is proved by analysis similar to that of Lemma 3.4 in Wright [10].
n

The key theorem of this section shows that there is a uniform lower bound on the step
length a4 on each safe step.




Theorem 3.5 If a safe step is taken at iteration k, then

Qg 2 U(l - '7max),
2w

where w is as defined in Lemma 3.4.

Proof. We prove the result by showing that the conditions (7a) and (7b) hold for all a

i the range
';\ 5'(]' - 71118’()
{0, e (26)

We further show that the complementarity gap pi(«) defined in (6) is decreasing on the
interval (26). These observations are sufficient to prove the result.
Because of (5), we have that (7a) is satisfied if

(z+ o) (y+aw) 2 (1-a)Ty
& zTy(l —a+aoy) +uTv > (1 -a)zTy
& oxfy+auv > 0. (27)
From Lemma 3.4 we have
[uTo| < | Dull|| D7 o] < wp. (28)
Since o > & and « is in the range (26), we have
oty +auTv > 5Ty — afu’v|
- 5’(1 - '7max)
> Grly — ——max
2 ory 5% WL
- 1 - “ua }
T x
= ' ] — ———f .
Ty 1=,
> 0.

Therefore (27) and hence (7a) are satisfied for « in the range (26).
By using (5), we note that (7b) is satisfied if

(s + cwi)(yi + avs) > (e + au)T(y + av)/n
& iyl — ) + aogur + Fue; > (/n) [;va(l —a+opa) + azuTU] . (29)

Because of (8), (29) is true provided that

Ye(l — @) pg + aoppy + o ugv; Y [(1 —a+ ora)pr + azuTv/n]

>
& o;.-(l — Y )k + a(uiv,- — 7kuTv/n) > 0.
Now from (28) and

[uivi| = | Diui| | D vil < |[Dull|| D7 vl € wp,
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we have
ok(1 =) + a(uivi — uTv/n) > on(1 — i) — a(wps +wpr/n) > 5(1 — 1)k — 2045
Since « lies in the range (26) and ¥4 € [Ymin, Ymax), We have

_ _ {1 — Yma
(1 — yi)pr — 2cwpp > (1 — ve)pex — QwJ—-EEZE—Q

Therefore (29).and hence (7b) hold for the interval in question.
Finally, from (6), (28), and (26), we have

pr 2> 0.

(zTv + yTu) + 2auTv

(0% — DaTy + 20w

(0% = V)nux + (1 — Ymax)B&
(o +0/n — )ny;

0,

()

AN INTA

since oy € [7,1/2]. Hence the minimizer of pi(c) subject to the conditions (7a) and (7b)
lies beyond the interval (26), and we have the result. ]
We can now show that x4 decreases by a factor strictly less than one on each safe iteration.

Theorem 3.6 If a safe step is taken at iteration k, then

6’ 1 - ax .

Br+1 S ik [1 - ‘-(—é‘lm——)} ; (30)
w

where w s as defined in Lemma 3.4.

Proof. By Theorem 3.5, pr(a) is decreasing for
o(l — max
o € [0’ 1(__71__2} ,

2w

and « lies beyond this interval. Because of (28), we have

pe(a) = el —a(l = ap)] + *ulv/n
&([ - 7max) &2(1 - A/ma.x).‘2
< . —_—— (] - oy ——— e W e
= {1 2w (I =ow)| + 4w Wk

Since | — oy > 1/2, 0 € (0,1/2), | — ymax < 1, and n > 1, we have

&(1 - 7max) &(1 - '7max) 6'(1 - 7max)
- - | — — fmax/i
1 4w ] + Sw e = Fk Bw

pr(a) < pe {
giving the desired result. _ =

11




If we take fast iterations into account, we find that

a(l —

Kikyr < e max (1 - —(———Eﬁ,p) ) (31)
8w

so we have geometric convergence of {¢x} to zero from any starting point (z° 4°) > 0. For

the special choice of starting point (14), (18), we have the following polynomial complexity
result.

Corollary 3.7 Let e > 0 be given. Suppose that the starting point is defined by (14), (18)
where po = €, < 1/€ for some constant 7 > 0 independent of n. Then there is an integer
K, with

K. = O(n?log(1/¢€))
such that yy < € forallk > K,.

Proof. From (30) and the fact that w = O(n?) (Lemma 3.4), we find that there is a
constant é independent of n such that

et S (1 =8/ (32)

when a safe step is taken on iteration k. By adjusting & if necessary, the inequality (32) also
holds for fast steps. The result follows from this inequality by a standard argument (see, for
example, Zhang [14, Theorem 7.2}). ]

4 Bounds for the Fast-Step Components

In this section we show that when o = 0, the step norms |[u¥|| and |[v¥]| are both O(u) for
all sufficiently large k. This result is essential to the local convergence analysis of the next
section. For notational convenience, we use u§ to denote the vector whose components are
uf for i € B, u¥; as the subvector made up of u¥, i € N, and so on.

We make the following assumption throughout the remainder of this section.

Assumption 2 S # 0.
(Given any strictly complementary solution (z*,y*), we can define the partition
{1,2,---,n} = NUB,

where

B={i]z; >0}, N={i|y >0} (33)

(It is well known that B and N are independent of the particular choice of (z*,y").)
We start by showing that z% and y§ can be bounded in terms of .

12




Lemma 4.1 Let Kyj; be the smallest integer such that v < 1/2 for all k > Kyj. Then
there is a constant Cy > 0 such that

0 < zf < Capr, Vi€ N; 0 <yf <Cuus, VieB. (34)

Proof. Note that K, is well defined, by the results of Section 3 and the fact that {v;}
is a decreasing sequence. Let (z*,y*) be a strictly complementary solution. By rearranging
(16) and noting that
| )Ty +2Ty" >0,  (9)7y" =0,

.‘\c
we have

2

T T = Vi Nk T * «\T, 0
2Ty +yTet < o+ o e ()T + (2)T)

< 2inpg + 2npy + v ((-’EO)T?/* + (z*)Tyo) .

By (9), we can therefore define a constant Cy > 0 such that
2Ty" + (z°)7y < Caps-
Since (z,y) > 0 and (z*,y*) > 0 we have

6’4/“:
: ~ C
t€B = rjyi<Cu = %< ’4'11 .

ieEN = zy! <Cau = ;<

The result (34) follows when we define -

~ 1 1
Cy = Cymax | max —, max — | .
ieB I; iEN Y;

The next result gives the required bounds on half the components of the vector pair
(u¥, v*).

Lemma 4.2 Let Ky be as defined in Lemma 4.1. Then there is a constant Cs > 0 such
that for all k > K/, we have

ubll < Cspe,  Hvgll < Cspas (35)
Proof. For 1 € N we have from (19) that

% (w)? = | Digwal? < || Dulf? < wpse.
=

T
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Hence from (34) and (3), we have

(we)? < WpkT: _ wpEz? < wprC2ul _ wC’jf'u.i.
Yi ZiY: “Yrainfbk Ymin
Therefore
nw \ /?
lun| < ( : ) Capk,
» nmun
giving the first inequality in (35). The proof of the second inequality is similar. -

To obtain beunds on the remaining components of (z*,v*), we need the following two
lemmas. The first is merely technical.

Lemma 4.3 (Monteiro and Wright [7, Lemma 2.2].) Let f € R? and H € R?*? be given.
Then there exists a nonnegative constant L = L(f, H) with the property that for any diagonal
matriz S > 0 and any vector h € Range(H), the (unique) optimal solution © = w(S, k) of

min fTw+ —i— |Sw||?, subject to Hw = h, (36)
satisfies
| 5]l < L {1F7@]| + Ihlloo} -

The second technical lemma identifies the components uf and v% as the solution of a
quadratic program. It is an extension of a result of Ye and Anstreicher [12, Lemma 3.5
and is proved in Wright [9]. We use D% to denote the diagonal submatrix composed of the

' elements DY for i € B, and so on.

Lemma 4.4 (Wright [9, Lemma 5.2]) The vector pair (ufy,v§;) solves the convezr quadratic

program
min 4| D wll* = oumel(XE)w + (D)2 ok (V) 1z, ()
subject to .‘
Mggw = 7'f§} - zV[BNus + vg, (38a)
Mypw —z = 1% — Myyub. (38b)

The main result of this section is as follows.

Theorem 4.5 Let Ky, be as defined in Lemma 4.1. Then if o, = 0, there is a constant
' Cs > 0 such that
|u¥]l < Cep, ,, |lo*]| < Ceps.

Proof. It follows from Lemmas 4.3 and 4.4 and the inequality (9) that there is a constant
L > 0 such that

(i, il < LA+ lull + bl < LOualir®) + 2Cs ) < L (1r0)/(Bpo) + 2Cs) .

By combining this inequality with (35), we obtain the result. u
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5 Local Superlinear Convergence

In this section, we show that for all k£ sufficiently large, step k is a fast step and that
consequently the sequence {ux} converges subquadratically to zero. The treatment in this
section follows that of Wright [9, Section 6] and [10, Section 6].
Throughout the analysis, we will make use of the constant C; defined by
| Cr £ max (1,2C2) . (39)
We start with a simple technical result.

Lemma 5.1 For all k > 0, we have

ferr B
71:-(-1 7&
where
(1 —
77 = max (1 - 9-(——8—729,@) <1,
, w v

and so the sequence

i
yte
converges monotonically and geometrically to zero.

Proof. When a safe step is taken, we have from (30) and t; = t;4, that

HE+1 < |1 - 6(1 - ‘Yma.x) &
:yh.--u - Rw —‘}(tk'

For a fast step, we have g1 < pux and tey; = tx + 1 and so

Ay
g = \F) 7%

The result follows immediately from these two bounds. =
We now show that fast steps are taken for all & sufficiently large.

Theorem 5.2 Define K to be the smallest index such that

. < L (40)
’Ytk (7max - ’Ymin) 207

for all k > K. Then a fast step is taken on iteration k, with step length oy satisfying

120 21— Crmr—tt : (41)
8 k("/max - 7min)

Moreover, we have
9.

A

Pt < = uh < pp. (42)

7tk(7|11ax - A/miu)




Proof. The proof is structured like that of Theorem 3.5, in that we show that the
conditions (7a) and (7b) hold for all « satisfying

£k
€ 10,1 — Cy7— 43
l: 77tk(7max - ')’min) ( )

and then show that ug(«) is decreasing on this interval.
We start with condition (7a). Note from Theorem 4.5, (39), and « € (0, 1], we have

. o
(z ¥ au)T(y + av)/n = (1 — s + *uTv/n > (1 — a)ps — éﬂﬁ (44)
Now for « in the interval (43), we have
1273 C?ﬂk _¢t;, Jmax — Ymin .t
<1l- < (1 — a)yte Tmax — Tmin 1 yate
*= C7:7tk(7max - '7min) = 2 - (1 CY)")’ 2 - ( a)’y
Therefore
Criuk —th <t
(1—-a)pe— pe 2 (1—a)pe =74 (1 - = (1 =7*) (1 —eps = (1= Be) (1 — )k, (45)

since 8 = % for a fast step. Relation (7a) follows from (44) and (45).
For (7b), we again use Theorem 4.5, (5), (39), and (8) to derive

Cr

(it o) (yi+avi) = wiyi1— ) +a’uww; 2 (1 —e)pe—lfulllloll > v(1—a)p— 5 pi- (46)

Meanwhile, assuming that a fast step is computed, we have

. . Cr .
Year (2 + o) (g + av)/n = Y (1 = adus + @*uTv/n < pena (L~ Qe + g (47)

Combining (46) and (47), we find that (7b) is satisfied if

(76 = e41)(1 — @) 2 Crpige. (48)
Now, since ¥ € (0.1/2], we have
Pe=Ter1 = 77 Yonax = Ymin) =7 (Fnax = Ymin) = 7L =7) (Ymax—Yain) = T (Fmax — Fonin)-
Therefore (48) is satisfied if
7% (Ymax — Ymin)(1 — @) = Crp. (49)

But (49) is clearly satisfied for all « in the interval (43), so we deduce that (7b) holds.
Finally, we examine pg(a) from (6). For « € [0, 1] we have

pi(e) = —pe + 200" v/n < —pp + Cop = —(1 = Crpe) pe.
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Now from (40), we clearly have Cru < 1, and therefore p(c) < 0. Hence the complemen-
tarity gap is certainly decreasing on the interval (43). We deduce that the step length oy
lies above the upper bound of the interval (43), so the proof of (41) is complete.

For (42), we use (41) to obtain

prr1 = (24 apu)(y + awv)/n
= (1 — ap)ur + 2ulv/n
Cr 5, Cr .
i T 3%(Ymax = Yemin) He 2 e
2C .
< d 2 (50)

:7tk (7max - '7min)'uk,

giving the first inequality in (42). The second inequality is an immediate consequence of
(40). =
We can now state our asymptotic rate-of-convergence result.

Theorem 5.3 The sequence {ui} converges superlinearly to zero with Q-order 2.

Proof. See [9, Theorem 6.3 (ii)]. =

So far, we have used the term “convergence” to denote convergence of u; and ||r¥|| to
zero. Convergence of the actual iterates (z*,y*) to the solution set follows from a result of
Mangasarian [3], as we now show.

Theorem 5.4 Suppose that Assumption 2 holds. Then there is a constant C3 such that

G NGy = @yl < Cope

Proof. Note first that for any (z*,y*) € S, we have ’
y—y" =Mz+q+r)—(Mz"+q)=M(z—z")+r,

and so from Lemma 3.1

(L+ 1M lloo)llz = 2™ floo + vallrlloe
(1 + Mol = 27)loo + pallr®ll o/ (Bro). (51)

!‘(xv;y)f(z*’yx)}"m S
<

Now from Mangasarian [3, Theorem 2.6}, we have that there is a constant C; such that

min lzx — 2l < Cs ”(——Ma: -q, ——x,mT(!\/I;z + q))+H

(z*,Mz*+q)€S 2

< Cali(r—y,2T(y - 7'))+“2
< C?s(nrllz + Ty + izl lrlleo)
< Ca(wellr®llz + e + viellzlli||7°llo)-
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If we substitute from (13) and (9), we obtain from the last inequality that there is a constant
C’ such that

—r* < A
(z‘,Mn;ligq)es llz = 2o < Capts. (52)

The result follows by combining (51) with (52). n

Corollary 5.5 Under Assumption 2, the sequence {(z*,y*)} converges superlinearly to the
solution set S of (1) with Q-order 2.

6 Extension to MLCP, LP, and QP

We conclude by showing that the algorithm of this paper can be extended to the mixed LCP
(2) and, hence, to all the usual formulations of linear and convex quadratic programming
problems. The crucial result here is due to Giiler [2], who showed that any generalized linear
complementarity problem involving a maximal monotone operator can be reformulated as
a standard LCP (1). The analysis in this section shows that the operator represented by
(2a) is in fact maximal monotone and, hence, satisfies the assumptions of Theorem 3.2 in
[2]. The following extension of Assumption 1 is essential to our analysis.

Assumption 3 The MLCP (2) is feasible; that is, there is a vector triple (z,y,z) with
(x,y) 2 0 satisfying (2a).

We define T to be a multivalued mapping from R™ to subsets of R™ such that y € T'(z)
whenever there exists a = € R™ such that (z,y, z) satisfies (2a). The graph of T is given by

G(T)={(z,y) |y = Myjx + Myuz+q, 0= Myxz+ Myz+ ¢, some z€ R} (53)

Because of Assumption 3, -we have G(T') # 0. It is easy to check that T is monotone, that is,
for all (x,y) € G(T) and (£,7) € G(T), we have (z — %)T(y — ) > 0. In Theorem 6.3 below,
we show that T is in fact mazimal monotone, that is, there is no other monotone operator
T : R® — R™ such that G(T) is strictly contained in G(T). The following two technical
lemmas lay the foundation for this theorem.

Lemma 6.1 Suppose M is positive semidefinite. Then Mu = 0< MTu=0.

Proof.
Mu=0 = u"Mu=0 = «T(M+M")u=0,

and so u is a minimizer of the convex quadratic function f(u) = u7(M + MT)u. Therefore
Viuw=0 = (M+MHu=0 = M u=0,

and the forward implication is proved. The converse is similar. =

18




Lemma 6.2 Let the p.s.d. matriz M be partitioned as

My My,
M=
[ Mxn Mg ]

where My, and My, are square and

has full column sank. Then if D is a diagonal matriz with strictly positive diagonal entries,

then
Mu+D M,
My My,

is nonsingular.

Proof. Let (z,z) be a vector pair such that

Mt el 21-15) *

Then, using the p.s.d. property of M, we have

Mnw+D M z
2T T 1n 12 _
[ 2]

= [IT ]M[ ]-i—;z:TDa::O = zTDz <0 = z=0.

From (54) we have M.,z = 0, and thus = = 0 by the full rank assumption. Hence (54) is

E4

satisfied only by (z,2) = (0,0), and the result is proved. T =
Our main result is the following. '

Theorem 6.3 Suppose that Assumption 3 holds. Then the mapping T whose graph is given
by (53) is mazimal monotone.

Proof. We prove the result by appealing to a theorem of Minty [4], which states that T
is maximal monotone if and only if R(/ +T) = R"™. In the remainder of the proof, we show
that for any w € R™, there is an (z,y) € G(T) such that £ +y = w, and hence w € R(/+T).
In other words, for any w the following linear system must have a solution triple (z,y, z):

My M, S y-__ —q ' o .
{1‘/121 M-22J[z] [D__l:—(h}, £+y—w (')))

We show first that solutions to (55) can be obtained from solutions to the folloWiug system:

Af[n /‘Z]rz -1 ] —h
My M,y O =] —q |, (56)
h w

{ 0 I
| R

C=JN TR 1
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where Z € R™, and @ € R™ and the matrices My, My, My are quantities to be defined,
with the crucial property that the submatrix

_ My, N
M, = IR(n+m)xm
EdE 67)

has full column rank.
Let v € R™ be any vector such that M,v = 0, where M, is defined as in Lemma 6.2.

Then ,
SR
v
and hence, by Lemma 6.1,
|0 _ MI _
M [v}—O = [Msz v=0. (58)
Let V2 € R™¢ (0 < d < m) be the matrix whose columns form a basis for the subspace

with the property M, v = 0, and define V; € R™*(™~9 55 that the columns of V; are a basis
for R(V;)*. Then, defining the nonsingular matrix V = [V, | V3], we have

A’[]] iW12 X — y—(h
1W21 1‘422 z —q2
o (1 0 My M [ oI o ] [ y—a
LO VT IM21 Mz-g 0 ] 0 ‘/-_1 z - —VT(]-Z
2 [ v — ¢
- - 1T(I2 ’ (59)
-1 T
[ —Vy G2

.-“f[n AZII'Z 0
& My, My, (V

<o

7)
2
.
z

0 0 (V72)

where ) : ) )
My = MW, My = V1TM22V17 My = VlTM'zi

In order for (59) to be consistent, it is necessary that V;T¢, = 0. This follows, however, from
Assumption 3 and (38), since

(12 e R([z“/]“ I jw22]) = VZT(I'Z — D.

Defining m = m — d and

= (V7izh (first ™ components of V~'z),
¢ o= (V7zh (last m — m components of V~1z),
(72 = ‘/1Tq27

we find that any solution (ir,v, ) of (56) can be transformed into a solution (z,y, z) of (553)

1l

=~
““
z=V
~ ~
~
el

by setting




where Z is chosen arbitrarily.
It remains to show that (56) does in fact have a solution. By adding the third block row
in (56) to the first block row, we obtain the equivalent system

Mll + 1 f\_—’_ﬁz 0 z —-q1+w
My My O zZ | = —q2 . (60)
1 0 I ] w

Since, by our choice of transformations V; and V;, we clearly have that

y My My,
M= - >
[ Mn Ms, ]

is p.s.d., while M., has full rank, it follows from Lemma 6.2 that the upper left 2 x 2 block

in the coefficient matrix of (60) is nonsingular and, hence, that (60) has a unique solution

triple (z,y,2). Hence we have identified (z,y) € G(T) with z + y = w, and our proof is

complete. =
Because of (59), the graph of T can be restated as '

G(T) = {(z,y) |y = Miyx + M2+ q1, 0= Mpz+ Mz + G2, some z € R™},

with M., full_ra.nk. If we define a rﬁatrix W e RPH%% siuch that the columns of W form a
basis for R(M;)*, we can eliminate # from the definition of G(T) altogether and write

G(T) = {(z,y)| Fxr — Gy = a}, (61)

F=WT[M”], G:WT[[], (L=WT["{1}.

where

My 0 —q2

The form (61) is the canonical form used by Giiler. It is not difficult to verify that a condition
used by Giiler to prove maximal monotonicity of T—namely, nonsingularity of £ + G—is
satisfied by (61). As shown in [2, Theorem 3.2] conversion of (61) to the form (1) can now be
achieved by premultiplying Fz — Gy = a by a nonsingular operator and possibly swapping
some components of £ and y. As Giiler notes, this reformulation process need not actually
be carried out to apply the algorithm of Section 2 to the problem (2). Instead, we can
extend our algorithm to (2) and note that the sequence of (x*,y*) iterates generated by
the extended algorithm is the same as the sequence that would be generated by the basic
algorithm applied to the LCP reformulation, subject possibly to the swapping of components -
between z* and y* just mentioned.

The extension of our algorithm to (2) is fairly obvious, so we omit the details, noting

simply that the linear system to be solved at each iteration is

My My -1 uk ] y*¥ — Mpxk — Mpzf — ¢
My My O w* | = ~MayzF — Myp2* — ¢y |, (62)
Yk 0 Xk 'Uk —Xkyrke-l-&‘uke
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which is a generalization of (5). Existence of a solution to (62) follows from the same
reasoning as in the proof of Theorem 6.3. We need to note that when (2) is feasible, we have

—Mayz* — Myz* — qo € R([My; | M)

and, hence,
VzT["M-zlxk — Mpy2* — 2] = 0.

Also, we need to apply Lemma (6.2) with D = (X*)~1Y*. Although the step components u*
and v* are uniquely determined by (62), the w* components are not, unless the submatrix
M, has full rank.

Finally, we note that our analysis depends crucially on the existence of feasible points
for (1) and (2). When (2) arises from an LP or QP, a feasible primal-dual point must
exist. This requirement is a little troubling, since in practice many LPs are either primal or
dual infeasible. Ye, Todd, and Mizuno [13] and Xu, Hung, and Ye [11] have alleviated this
difficulty in the case of linear programming by describing augmentation/reformulation of an
LP in standard form, which has the property that the resulting mixed LCP possesses both a
feasible point and a strictly complementary solution. Since all the assumptions of this paper
are satisfied by these reformulations, our algorithm can be applied with confidence.
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