

~~CONFIDENTIAL~~

AEC RESEARCH AND DEVELOPMENT REPORT

HW-84556

~~UNCLASSIFIED~~

MASTER

**QUARTERLY PROGRESS REPORT
ROVER GRAPHITE STUDIES
JULY, AUGUST, SEPTEMBER, 1964**

THE STAFF OF REACTOR AND FUELS LABORATORY

HANFORD LABORATORIES

CLASSIFICATION CANCELLED
AUG 28 1973

OCTOBER 15, 1964

For The Atomic Energy Commission

Bram C. Feldman

Bram C. Feldman
Chief, Reactor, Space and Technology Branch
Division of Classification

Exempt from CCRP Re-review Requirements
AK 103/05
(per 7/22/82 Duff/Caudle memorandum)

**HANFORD ATOMIC PRODUCTS OPERATION
RICHLAND, WASHINGTON**

GENERAL ELECTRIC

RESTRICTED DATA

THIS DOCUMENT CONTAINS RESTRICTED DATA AS DEFINED
IN THE ATOMIC ENERGY ACT OF 1954. THE INFORMATION
RELATES TO THE CIVILIAN APPLICATIONS OF ATOMIC ENER-
GY. ITS TRANSMITTAL OR THE DISCLOSURE OF ITS CON-
TENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS
PROHIBITED.

~~CONFIDENTIAL~~

~~CONFIDENTIAL~~

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

UNCLASSIFIED

HW-84556

**C-91, Nuclear Reactors
for Rocket Propulsion
(M-3679, 38th Ed.)**

**QUARTERLY PROGRESS REPORT
ROVER GRAPHITE STUDIES
JULY, AUGUST, SEPTEMBER, 1964**

By
The Staff of Reactor and Fuels Laboratory

October 15, 1964

**HANFORD ATOMIC PRODUCTS OPERATION
RICHLAND, WASHINGTON**

Work performed under Contract No. AT(45-1)-1350 between
the Atomic Energy Commission and General Electric Company

RESTRICTED DATA

This document contains Restricted Data as defined in the Atomic Energy Act of 1954. The information relates to the civilian applications of atomic energy. Its transmittal or disclosure of its contents in any manner to an unauthorized person is prohibited.

Printed in the USA. Charge \$0.35. Available from the U. S. Atomic Energy Commission, Division of Technical Information Extension, P. O. Box 1001, Oak Ridge, Tennessee. Please direct to the same address inquiries covering the procurement of other classified AEC reports.

UNCLASSIFIED

NOTICE
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

~~CONFIDENTIAL~~

~~UNCLASSIFIED~~

HW-84556

QUARTERLY PROGRESS REPORT
ROVER GRAPHITE STUDIES
JULY, AUGUST, SEPTEMBER, 1964

Migration Studies of Uranium Through Pyrolytic Carbon - C. E. McNeilly

The investigation of uranium migration through pyrolytic carbon coatings on uranium dicarbide particles has been continued using hot stage reflection electron microscopy. In order to overcome the problem of loss of image quality in the microscope due to evaporation of the graphite matrix, several specimens were prepared by pneumatically impacting a dispersion of coated particles in various refractory metal powders. The particles in the tungsten matrix cracked on impact; however, those in the tantalum, niobium, and rhenium matrices appeared to be intact.

Because of the severe work hardening of rhenium during polishing, it has been impossible to obtain a satisfactory sample for examination. Time lapse motion pictures have, however, been obtained for tantalum and niobium matrix samples.

No reaction between UC_2 and the PyC coating was observed in either case, although it was quite apparent that the PyC coating on the particles in the niobium matrix evaporated at a much faster rate than those in a tantalum matrix.

The most recent work has been directed towards a better understanding of the formation and adherence of the NbC coating used on the Rover graphite materials. Since coatings can be successfully applied to unfueled, but not fueled graphite, hot stage microscopy is being used to detect any difference in the two materials. Time lapse motion pictures of fueled and unfueled specimens containing a transparent niobium coating, have been taken and do show some differences. Similar pictures are being obtained on uncoated samples and comparisons between the four films will be made.

~~CONFIDENTIAL~~

~~CONFIDENTIAL~~~~UNCLASSIFIED~~

-3-

HW-84556

Niobium Carbide Coated Graphite StudiesX-ray Investigation - L. D. Johnson

This X-ray investigation consisted of a crystallite orientation study of the fueled and unfueled graphites (Samples 45-2181 and 01-1685-105, respectively) and an examination of the diffraction patterns of the NbC coatings on the graphite.

The crystallite orientations were found by X-ray transmission using the Norelco type 52495 pole figure device. The average crystallite orientation, θ , was calculated from the dependences of the (002) diffraction line intensity on sample position and orientation. The two transverse directions were assumed to have equal concentrations of c axes. The relative crystallite orientation is 0.22 and 0.28, for the unfueled and fueled graphites, respectively. The unfueled sample was therefore significantly more anisotropic than the fueled graphite.

An attempt was made to determine the particle orientations in the NbC coatings by X-ray reflection, but the rough surface texture and high X-ray absorption cross-section of the coatings made this analysis unfeasible.

Reactor Rates - R. L. Gibby

A study of the reaction between niobium and graphite has been initiated to determine why high quality niobium carbide coatings can be routinely applied to reactor grade graphite and not to graphite containing PyC coated UC_2 fuel particles.

Experimental techniques are:

1. press fitting a small niobium pin into a graphite sleeve (fueled or unfueled) forming a diffusion couple
2. soaking the couple at an elevated temperature for a measured time
3. examining the reaction zone with X-ray diffraction, metallography and microhardness measurements

~~CONFIDENTIAL~~

~~CONFIDENTIAL~~

-4-

HW-84556

At present, four samples have been reacted at two different temperatures. Two samples were heated for 4 hr at 1600 C, while two other samples were heated 4 hr at 1900 C. In each case, one sample contained fueled graphite so that a comparison could be made between the reaction rates of niobium and fueled and unfueled graphite.

Reactions occurred in all four specimens but were more limited at the lower temperature. At the circumference of the niobium pins two distinct reaction products were observed (Figure 1). Microhardness measurements, with a Knoop indentor and a 50 g load, indicated that both phases had essentially the same hardness, with values between 1350 and 1780. The niobium metal, on the other hand, tested under identical conditions, had a Knoop Hardness of 96. In some cases, reaction products were located at niobium grain boundaries (Figure 2). Knoop hardness measurements gave values of 1350 to 1780 for these reaction products.

At both temperatures there appeared to be no apparent difference in the reaction rates of niobium with fueled and unfueled graphite. Although the reaction products have not yet been identified, it is highly probable that they are Nb_2C and NbC , since these are the only reported carbides of niobium.

In continuing envestigations a polished flat diffusion couple is to be used in conjunction with inert boundary markers.

UNCLASSIFIED

~~CONFIDENTIAL~~

~~CONFIDENTIAL~~

-5-

HW-84556

~~UNCLASSIFIED~~

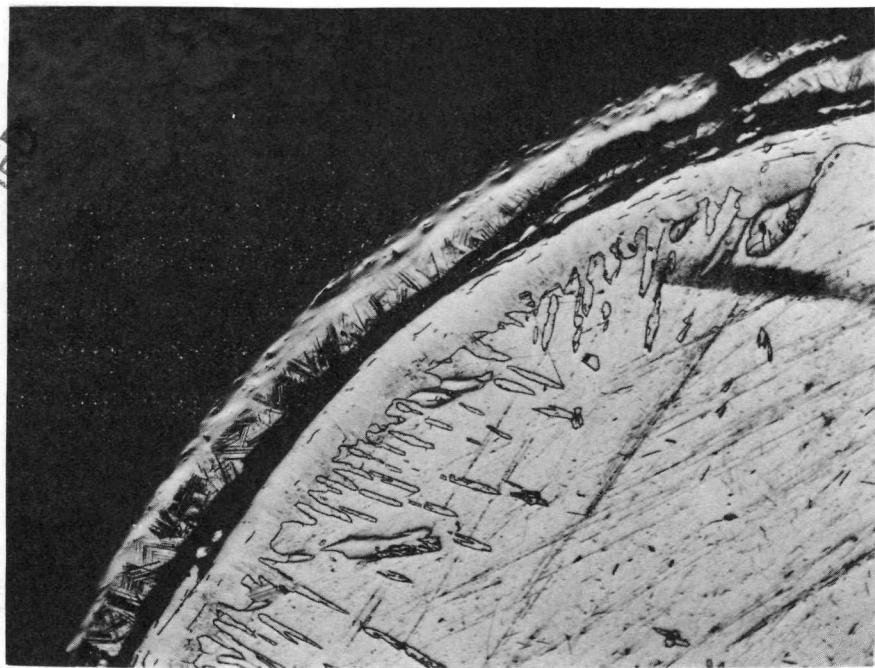


FIGURE 1

100X

Reaction Zone at Circumference
of Niobium Pin Heated 4 hr at 1900 C

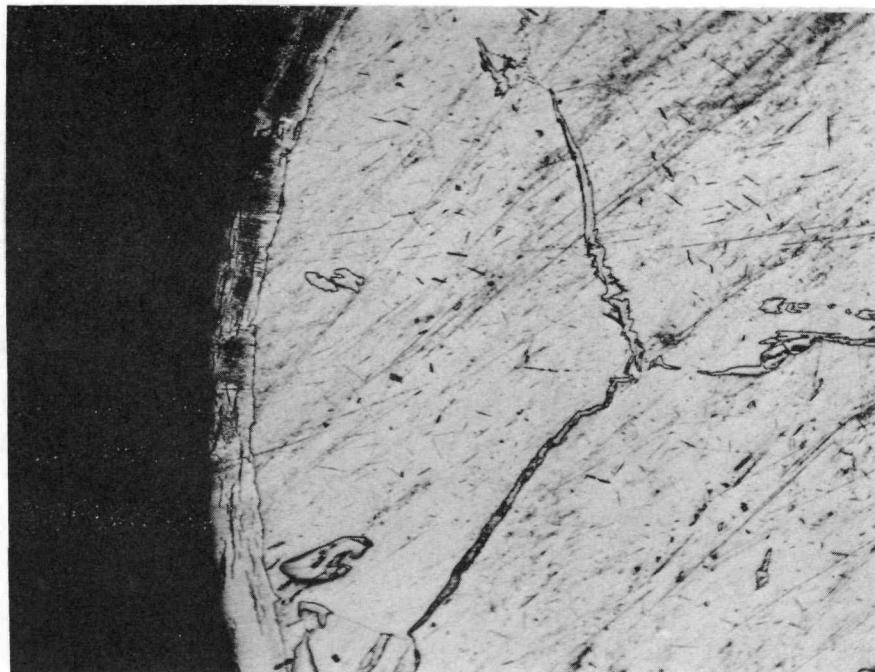


FIGURE 2

100X

Reaction Products in Niobium
Grain Boundaries After 4 hr at 1900 C

Neg. 441, 442

~~CONFIDENTIAL~~

~~CONFIDENTIAL~~

~~UNCLASSIFIED~~

- 6 -

HW-84556

Magnetic Force Welding of Graphite⁽¹⁾ - C. H. Shaw

Feasibility studies on magnetic force welding of fueled to unfueled NASA Rover graphite elements have shown that at least partial bonding can be accomplished. Figure 3 is illustrative of the maximum bonding achieved to date.

Evaluation of most joints produced to date has been by metallographic techniques using the sensitive-tint photographic process on those joints of particular interest. Physical testing (tensile strength) of joints has been limited to only a few samples. The samples tested ranged in strength from 100 to 200 psi (based on total joint area). Metallographic examination of tensile samples after fracture, however, showed that the actual diffusion bond areas were quite small (less than 30%) or nonexistent.

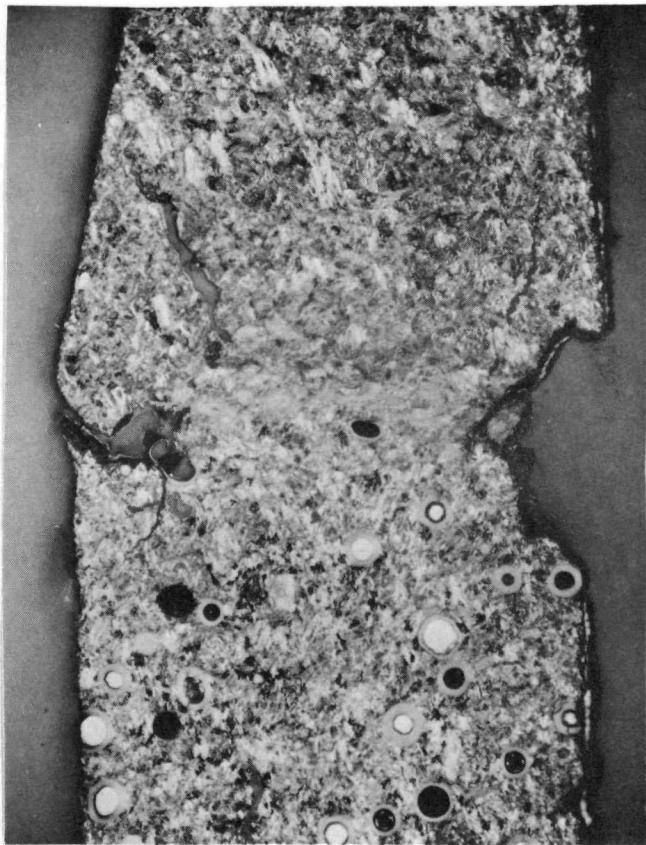


FIGURE 3
NASA Graphite Weld Test Sample

1. Progress Report: Fueled Graphite Studies, April, May, June, 1964,
HW-83980. ~~(Confidential)~~

~~CONFIDENTIAL~~

INTERNAL DISTRIBUTION

Copy Number

1	F. W. Albaugh
2	E. R. Astley
3	J. J. Cadwell
4	J. L. Daniel
5	D. R. de Halas
6	K. Drumheller
7	R. L. Gibby
8	H. Harty
9	L. D. Johnson
10	C. E. McNeilly
11	R. E. Nightingale
12	W. E. Roake
13	C. H. Shaw
14	O. J. Wick
15	E. M. Woodruff
16	H. H. Yoshikawa
17	300 File Copy
18	Record Center
19-23	Extra
24	Richland Operations Office Attn: P. G. Holsted

EXTERNAL DISTRIBUTION

25	ACF Industries, Inc.
26-27	Aerojet-General Corporation (NASA)
28	Aerojet-General Corporation, Sacramento
29	Aerojet-General Nucleonics
30-31	Aeronautical Systems Division
32	Aerospace Corporation
33	Air Defense Command
34	Air Force Rocket Propulsion Laboratory
35	Air Force Surgeon General
36-37	Air Force Weapons Laboratory
38	Air University Library
39-40	Albuquerque Operations Office
41	Argonne National Laboratory
42	Army Ballistic Research Laboratories
43	Army Materials Research Agency
44	Army Missile Command
45	Army Nuclear Defense Laboratory
46	Aro, Inc.

EXTERNAL DISTRIBUTION (contd)Copy Number

47	AEC-NASA Space Nuclear Propulsion Office, Nevada
48-57	Atomic Energy Commission, Washington
58	Atomics International
59	Avco Corporation
60	Battelle Memorial Institute
61	Bendix Corporation (AF)
62	Braun (C. F.) and Company
63	Brookhaven National Laboratory
64-65	Bureau of Naval Weapons
66	Bureau of Naval Weapons (SPO)
67	Bureau of Ships
68	Central Intelligence Agency
69	Defense Atomic Support Agency, Sandia
70	Department of the Army
71	Director of Defense Research and Engineering (OSD)
72	du Pont Company, Aiken
73	Edgerton, Germeshausen and Grier, Inc., Goleta
74	Edgerton, Germeshausen and Grier, Inc., Las Vegas
75	Foreign Technology Division (AFSC)
76	General Atomic Division
77	General Dynamics/Fort Worth
78	General Electric Company, Cincinnati
79	General Electric Company (FPD)
80	Institute for Defense Analyses
81	Jet Propulsion Laboratory
82	Johns Hopkins University (APL)
83	Lockheed Missiles and Space Company
84	Lockheed Missiles and Space Company (NASA)
85-86	Los Alamos Scientific Laboratory
87-89	Los Alamos Scientific Laboratory
	Attn: J. F. Cully
	H. Hessing
	D. P. McMillan
90	M and C Nuclear, Inc.
91	Marquardt Corporation
92	Martin-Marietta Corporation, Denver
93	Massachusetts Institute of Technology (Evans)
94	NASA Ames Research Center
95-96	NASA Goddard Space Flight Center
97	NASA Langley Research Center
98-103	NASA Lewis Research Center
104	NASA Manned Spacecraft Center

EXTERNAL DISTRIBUTION (contd)

Copy Number

105-108	NASA Marshall Space Flight Center
109-111	NASA Scientific and Technical Information Facility
112	NASA Western Operations Office
113	Naval Missile Center
114	Naval Ordnance Test Station
115	Naval Postgraduate School
116	Naval Radiological Defense Laboratory
117	Nevada Operations Office
118	Nuclear Metals, Inc.
119	Nuclear Weapons Training Center Pacific
120	Oak Ridge Operations Office
121	Office of the Assistant General Counsel for Patents (AEC)
122	Office of the Chief of Naval Operations
123-124	Office of the Chief of Naval Operations (OP-03EG)
125	Office of the Chief of Transportation
126-129	Phillips Petroleum Company (NRTS)
130	Pratt and Whitney Aircraft Division
131	Pratt and Whitney Aircraft Division (NASA)
132	Rand Corporation
133	Rocketdyne
134	Sandia Corporation
135	School of Aerospace Medicine
136	Strategic Air Command
137	TRW Space Technology Laboratories
138	Union Carbide Corporation
139	Union Carbide Corporation, Lawrenceburg
140-144	Union Carbide Corporation (ORNL)
145	United Nuclear Corporation (NDA)
146	USAF Headquarters
147	USAF Headquarters (DCS/O)
148-149	University of California, Livermore
150	Westinghouse Electric Corporation (NASA)
151-152	White Sands Missile Range
153-192	Division of Technical Information Extension
193	Division of Technical Information Extension for retransmittal to: AEC-NASA Space Nuclear Propulsion Office Washington, D. C. Attn: J. F. Morrissey