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INTRODUCTION

As pointed out by the MURA group, 1) the method of achieving very high
energy collisions between elementary particles by means of colliding beams
appears highly promising if the potential high intensity of the FFAG accel-
erators is realized. As first envisaged, a colliding beam accelerator would
consist of two FFAG accelerators tangent to one another. An alternative

(2), (3)

method employing a pulsed accelerator and storage rings has been pro-
posed by D. Lichtenberg and G.K. O'Neill.

This report concerns the proposed new colliding beam method, (4), (5)
where both beams are in the same accelerator, circulating in opposite direc-
tions. Since this method employs a single accelerator, the troublesome
problems in the other methods, such as target sections having inherently non-
scaling features and beam transfer (usually not too efficient), can be avoided.

The machine is essentially a radial sector FFAG machine and has a
fairly large circumference factor. However the simple structure of the
magnets compared to two spiral machines, the many intersections of beams

for experiments and the feasibility of changing the reaction energy make the

machine an interesting possibility.
) D.W. Kerst et al Phy. Rev. 102 No. 2, 1956

@) D. Lichtenberg et al MURA-DBL/RAN/HMR-1

(3) G.K. O'Neill Phy. Rev. 102 1418 (1956)
4) 7. Onkawa, MURA-124

(5) L.W,. Jones, MURA-134
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GENERAL DESCRIPTION OF THE MAGNETIC FIELD

In the magnetic fields of FFAG accelerators, there exist an'infinite number
of equilibrium orbits due to the nonlinearity of the field. However these orbits
have extremely large circumference factors, except two orbits which are clock-
wise and anticlockwise respectively in a radial sector machine. These two
orbits generally have different properties, such as the circumference factor and
the tunesof the betatron oscillations. The one which is not used in an ordinary
radial éector machine is usually unstable. We are interested here in making
these two orbits cross each other at an equal energy of particles and work at
the same point on the tune diagram. This can be achieved by using a magnetic
field having a certain symmetry property.

We write the median plane field as

k
et e N B W

where

f(Np+27) = FNS)

The Liagrangian for the motion in the median plane is given by

%
L=z2p)r+r? e S 2)
where r/"”f'z (3)
e / .
-CC—’—- y’/-}&o == - Z’/"/o E:_Z- R ';(’\/‘9‘) &

primes denote derivatives with respect to 8 and T is chosen depending on the

direction of rotation.
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It is obvious from the Lagrangian (1) that the condition for obtaining the

identical two-way orbits is to make 5— (N 8) an odd function of N9, i.e.
§(~N©) = — 3£ (N&) (4)

because the equation of motion is identical for both directions if f (o)
satisfies (4).

By rewriting 3L (N 0) in Fourier series form

fNBY = 3 ( GuosNe + L AhNE)

1

(4) implies

(771; ¢ f‘” all m (6)

Customarily we put NO =0 at the middle of the ""positive magnet' and (5)

2ind (B) become

f_(‘,\j@;) == élc&a NS—]{; A 2NB + jsemBrJS— R R

by putting Ne — N + -g—

Especially if all even :)['s vanish, (7) becomes

( ” , (8)

zj-\—l
and we have an additional symmetry around the middle of the positive magnet.
From the results of rough estimate of the orbits and the betatron oscil-

lations around them, it is realized that the contributions from higher harmonics

il
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2
of the field depend on a quantity _:{%__ except for the axial focusing,
J
which depends also on P )L],z In actual fields, the higher harmonic

t ! ; ’ el - .
content is not very high. For example, ﬁj'f/ is given by 57——-_'_/ for a rec-
tangular-shaped field. Therefore, to understand the behavior of the machine,

a pure sinusoidal field is not a poor choice.

ORBITS

The L.agrangian (2) gives the equation of motion in the median plane

}_/ / R+
) 4 ot Bl il e s 9)
( [ rZ 4+ yr2 /),_z_,_),,z C/b rok'
: 7 M
By putting o Z ” (9) becomes

Z/ / / o 7, e—__Ho r/e‘f'/ (/e.,\./)f
( — ) e, T g P r’,é € j((/\/él) (10)
ol el V o+ Z'Z 0

where J; is chosen as the average radius of the equilibrium orbits so that
77
/ ? d(N&) = O
==

From (9), we get

"/ 2 ‘}2/ g
(1= =)0+ 7" = _a fw) W



MURA-318

here &t/ 12
where i ﬁ/_L_/o ),/é (12)
b &

To obtain an approximate solution for ? : the left-hand side of (11) is expanded
in power series in Z and the coefficients of f in Fourier series evaluated
by harmonic balance.

By using

) 2

" 2 \}3 /
(= 0% Wwp = =1+ " + £(1-35")

(13)
3 ,4‘ ‘i e
wlle1)
e Z = e (eRRg (4-_’*1)222_ L

o (14)

and G S \
i = Z Z Sod g NE- (15)

J
the left-hand side of (11) becomes
=% {ket1) 7

C=7°=7)0+¢2) e 2 G e N ae)
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where o
o e 1 (Ia:zr’))l\l2 i,z% |+ z(hl,) o j\,—: }
P2 g1+ gl - S
5 EV.NZ(IH;)Z;} /—*rz',;'_;fj) =4 ﬁf i
+ (e g5 4 & - ZP0 )
i RHRL, a /W/ —m U

Tk §12N40<+») — 4Nk — INE(hrry

SR ) 7 v (’“U — 3 N3k+1) - —/\/lﬁé B }

i 23 g (k1) - 9/V</‘___ —3:/\/?7(-;#/) e /\//i’+/j}]

—+ ‘iz [i 2 (iej‘/)—f‘ "’S:/Vz(/&/'/)}'}‘ ? %3/\/- (kﬁj IS 20("‘/)}

<l

7. Zs Zs (R+') o Nl(h-u)(aa-nr) 8]
Z

-3

(e z;[ (kr1)— 4 N+ ?/2;3/\/5‘_, %{n+/)?_£—-m?k+/)z+ _‘BN?(/?#/)}

A T e N e S AR O?U W ke &)

|2

4 2; % 13_-5'/\/5‘-, (E—;;Q - _/;f//z-f/)( Yet/3) }J

2

* oL S S e G ]



MURA-318

SEy
C3= {luemd~GN+ 1% %oty %ﬁf_ NAk+1) — = At13 §

(. 3
e i;{27’\ﬂ+ \%'tl)“ —2"‘:/\/2(/1"’“/) o2 é‘.g/\jz(k-r/)&}

t 1] Y B - S e S ]
12, [ g4 =nN= " Encen f

ap i kty) 3 N®
v gt 3t S Lo §

3 ’/" .,' 3 1 <
=P z: § 6N {_,%ZO __ m__g?(};enh)ék-,B)j ]

For a pure sinusoidal field ( f(NG):cos N@ ), we have
Co = o

c, ==« (18)

i

Cs o

From (17) and (18), by neglecting ‘E';:} and f/-:/ compared to
unity and also cubic terms of the g fo , wWe obtain

9 S S 19
8~ S (19)

g a5 e _ / }
LR i~y R VN 2V /2lkt1)

e %ZE-: N
et !
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Inserting the above values in the higher order terms in (17) and

k+7\*
:/

: Sl e il
neglecting (M+/) 4 v and (//\/

compared to unity,

the Z 's are given by

[l it 30 E
i Vieri N 3 e ] (20)
p ! / 3R
7: o },iN‘z }/ /+ /{-fv‘/ ()" /\/2‘ J

d:\»/?:f\/;/— fﬁﬁ_éif_,}

kRl

~

The circumference factor C is given by

k-+/

~ & (/+ 9 3 %o

C Ll e 5}) (21)
. = kt/
N Lo S Oud S
i ol & =l T

The above estimate of the ‘Z 's and A agrees well with the results obtained
from the digital computer. Since the betatron oscillations are a more sen-
sitive check on the orbit estimates, direct comparisons of ? 's and
are not shown.

The circumference factors obtained by (21) are compared with the

computer results in Table 1.
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TABLE I - Circumference Factor

N k+1 C anal C dig_il:al
64 200 8.7 8.6—
64 160 9.4 9.3
64 120 10.4 10.4
24 25 8.5 8.8
24 18 9.5 . 9.8
18 13 8.4 8.8
18 12 8.7 9.1
18 10 9.2 9.6

BETATRON OSCILLATION

To obtain the equations for linear betatron oscillations around the
oribts, the "'soft-edge equations"(a) are used, because the large scalloping
of the orbits makes the method of expansion (7) used for the spiral sector
machine troublesome.

(8)
In the soft-edge equations,

L Y4 M, oy F . & i
CIZ)( 4 [ / 2{ ) s ly F(,{ ) =0 + — !_.f: f&{,,,.¢j X = (®,
2 o 2 P

aAA= fp‘: /g /{‘ FO c
o SRR ik 1 SRSV i o I , 1 (22)
&L/A"j_ L f() 2 F{ 3 ) ?: ~- _Fo"— :{3—— ‘/[L > ¢‘ ] Z =0

6) F.T. Cole et al R.S.I. 28403 (1957)
(7)

\ ¢/

F.T. Cole, MURA-F.T.C-3

(8)

The same notations in reference (6) are used.
- 10 =

s S —



we have

I

Flo>

Al,_)/_f _
i

for our case.

K.
(-)%) f(N8)

Z ZJ' CGDJ\/\/B—

(22) and (23) give
/ 2k h(We)
72 [ e 2

(k=1)A |NS)
-+ A €

de
Mz.

dzg (R—I)A(N@)

MZ

ANe )

A Y o

By using (23) and (20), _A is given by

A— Ao g

-1l =

MURA-318

(23)

= AlNo)

; %
{ kfwod= K'tve)£tlue) FCi+ k' %ve) ]x =0  (24)

I 2 4
— 75 [ % fldws)-hn) vy (14 Kweyy” 12 = o

, VI+kwp) o&

(25)

/ 3 ‘
Y, [ & 1+ =)t W\/%A“M@*‘"J (26)
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Defining (7 by

B = (27)
/
V/(/’*‘M)
and assuming
@ > &
the equations (24) become
P o el gy K(NB)
o () [ ¢ Joe
(R-HK(ND) . (28)
T e rfne- k(NU)§(NO)?(l+L'2fN/‘)) Jx =0
d°z (k- fm M)
a@e M)> (of S 4N - KN F @y U+ R (\JU)) “la=o

All terms depending on @ in the above equations are evaluated in

Fourier series form

(k=1)h N () -5
C (RN = 2 o s

(29)

J
k(0B — A' W) W)= 2Ty ew gN O

2k b (M) " :
~{— We) =2 % GQJ'/V@

- 18 =
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where
T j:f (ke —1)" Nz} ot —&zf(;z”)z |
0 ; 4 f PP : i
£ e

NZ s 3 i
g} [(lz~/)-+ —;—/k'/) f— 3'“‘*2;#2 Z,Z‘ ZS‘

—p? .
—+fz[2,{"/\/2“"‘ Qq‘fl)} i 23{“'3/\12”*( -

6,8 §]
2 3 A
il B

GC= (kNg _gzzf/vi(/eﬂﬁ} + fg_isf k~0-34"

N R O B et

e R e
z"'4?3—*7_—‘14}-

D= -ty
D/ = R— TN
NZ
Dz = 7(?}“723)
D; = /\/2&
< _/_+ ﬁ_?z k2 9 2
Bi e m o fipig 2Rl fa 2,7,
- J
Gl LRl el b
263
£, =

= & /322 -y /(,’}/52_} Z, 23 22& 7232 }

e—
=2 b 1

£E;= k(f,f&,) ~,Lf'ia(-22f2~+gi)
! Z_,)

-13 -



By using (20) in (29), we obtain

/ i b+ /
2 (ki) 2 N*

e, ~ \/2(}“;)[ s 1/ e k-/-/]

N G tet1) 2N%
/ SLih+ )
e e Ve e
g olkry),
i ECIR e
¢z = N /2(let 1) T /fvzj[/ 4/,Hf)
Y .
B . el B = 3(/&7‘/
20k+1) ~ ¢ /Ar/«/) _)
~ g
Q X (R+)) { /— m }
V2 (lk+1) Tane |
' /<+/
> PR NPT 8 | sl % AR
: 2 U+ %7 T = )
—_— /3 )
~ 4 L
Epiii = i R M=%
T e T
Z:/ N /\/W) { / 1P(RF1) Zs AL %
bt/
B, / 7
&g —g)j I+ 2 N2 ;
YE(Z/N ¢ LA i
£3 > A/ | T St T TE ae }

-14 -
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3(/z+/)
N

J

(30)
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Using above values, the equations (28) become

dO

d*Z

..._.———-

d @

orbing

[Axo"' /‘\Mc’m N@ AXZC‘OZ'\}O : ; Ax3 Cﬂ:}l\/(,] X =0

(31)
+ [Azo*Az» ON @1 A0 2NQ + /‘\%3”’33’\]@] ol
f ~e | L S 7
/‘\)(0 v (i - I> % l 4.{}_2..“) }
3 k¥
A 2 \/z;i_}z.‘H) N { e & 7\71 /L
, - 5 k—+/ 2A/4 )
Ay D5 R [N w8 /<-r/7{ = g |
e - 49 . A5 .’iti'{, D Valkr)) (k+1)
i > [ R a5 Gty g
- ’ 1, \ 7 i_ /\/Z
Aw > —(r+)(1 =55 ) + 55 e
A, ~ _ [SToT— i, LR o
R - 2(kR+7/) N{ / Yo 5 & /\/2 é
) s 23 L
A‘éz e ﬂhf‘/) g fone L/~H) E A2 } /e+/ Z( ¢ 'Q*/
5 /7 /€+/[( 3 v 2fk+)
< it SRR e 4 )
= \/zﬁ—/ { Jet 1 25 N2 s o

- 1§ »
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To calculate the betatron oscillation frequencies from the equations (31),

(9)
Vogt-Nilsen's formulas are used.

R ! 27‘T A}ta <
e B T e M" 7 A [ AX/
X = e ST s T
N b vV Axo NZ4Axo
A 5 2
2 L i 3 Axi” Axa ]
‘;""!A\J L* 4‘*—/&{ o \I/ AI/ %"" 4A)< ) f‘\‘{/'4/\/§‘ 4AXL)
[ \ 277\/22‘;
il o g iy I A “A 'z? e @ 2
AHIVg = C/u«s[‘. 7.\./_;6.50_ 77 ‘WM [ Axl
V 2N =R N 4Aa, (32)

;—t- ‘ . +

4 N~ 4‘/\,5 s ( Nl— 4 A‘7 0 ;{4)\1 = /4‘/1\?{\)

& 2
Azs = A?, Az ]

The calculated G4 for various machine parameters are shown in

Table 2 compared with the results obtained by digital computation.,

(9) N. Vogt-Nilsen, MURA-118

- 18 =
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TABLE - 2

N | k+1 I.%—- anal ’%? digit % anal '{7«? digit
200 .765 .764 .134 ‘ .109

64 | 160 .639 .641 .158 .143
120 .529 .531 .186 179

af 26 .699 .743 . 422 . 412
18 .563 . 595 . 485 . 487

2 12 . 644 .710 .596 .605
10 .580 .636 .641 666

In large N machines, the Q7 , agree well and the apparent larger errors

: o I} . 3
in \g [» are aue to the fact that a small error in cos G~ causes a large error

in g~ because ¢ is small. For small N machine correction terms of order

|

—-1; get larger and make agreement poorer.

The smooth approximation may be used for estimating  roughly. The

equations (31) are approximately

YAV . 2 4 )
¥ " } ) e T . AL €7 f\,/ (A P .
__,...-.- + / {/;‘; +/ ) '-““(«'.X;/,kf +/) /\_/ CIN @/ —+ E\,k.g’«,t/ e '/::‘:'/‘A”‘/. C )ZN@) { )< N O

(33)

2

/

CeoN {}_; {)-1 et = 7,‘;_;;“/ ;;3—)_7 N Ujl T

S 2
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The (T‘: are given by

(34)
2
N o
7 V K T/

o ) { S et B8l
m i N

For a working point in the first stable region, (35) should be less than unity and it
indicates that there is a lower limit on N to obtain stable motions.
In Fig.1  Of 1is plotted against OF

From (21) and (34), the circumference factor C is roughly given by

s 7 1>,
L’\ N\ -/;-€::"" s A.// (3 6 )
%)

and this shows the minimum circumference factor for a sinusoidal field is -+ &
For a rectangular field this figure would be reduced by a factor 1/':”2“ X
Since we would rather use TX between (Z/B)Tand 77 to make the cir-

cumference factor as small as possible, the smooth approximation always under-

R/

estimates 0, . If we plot v~ against , it looks more like a straight

X
line than the parabola expected by the smooth approximation.
o : . R+33" . :
Furthermore, if 0% is plotted against A2 all points lie
'V

approximately on a straight line independent of N , as shown in Fig. 2. So we

have a handy empirical formula for GF

- 18 -
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:\/’A

i

T

Similarly

i A

‘g is plotted against

T Wi o
7&\//

VR+/

2

e 08 L T8
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which the smooth approximation

predicts in Fig. 3 and we obtain a handy formula for

i

The 5‘*{ obtained by (37) and (38) are compared with the computer results in

Table 3 and Table 4.

I oS (,V “;:‘,7"’

—_— O

’

Tz

53)

TABLE - 3
N k+ 1 (%X emp. form. VA digit
/ 7T

200 . 763 .764
64 160 .646 .641

120 .531 .531
36 40 .565 .563

25 .743 .743
24

18 .599 .595

13 .1744 . 130
18

12 .708 .710

10 .634 .636
16 9.5 .133 741

- 19
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TABLE - 4
N k+1 %%— emp. Form ’OT-T‘E’ digit
13 .580 .580 c
. 12 .605 .605
10 .666 .666
25 .409 . 412
24
18 .488 .488
200 .123 .109
n 160 .142 .143
120 .169 118

HIGHER HARMONICS

The magnetic fields in actual machines contain higher harmonics which are
usually smaller than those of rectangular fields. The effects of the j -th harmonic

on the orbits and the gradient focusing are reduced by a factor 7-/‘-,_— and very

AN

little change in U7  is expected by adding harmonics. Table 5 shows the 0O} 2

hardly change by adding third harmonics.

- 20 -

- =
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TABLE - 5 Harmonics and

ird
N k+1 Sim?j—{l 72; al h:?;;onic O—%
content

18 12 fed -25% |

18 10 .64 -25% .64
24 25 .74 -30% .74
24 18 .60 -33% .60
64 200 .76 -33% .15

The circumference factor is reduced by adding harmonics, since the orbits
are almost unaffected and the peak field is reduced. When the harmonic content
ie smaller than that of a rectangular field the circumference factor ic approximately

given by

C s < ‘ Z }22-’:'— /
L At ‘ (39)
7,

where C sin: circumference factor of sinusoidal field and the field is assumed

to have the form (8).

According to the smooth approximation, 0% 1is given by
_ 2 i, 0 :
XY s ] — A
N P L P i
| (——
\ T]/ ) ﬁ’ N (40)
where
(Sz) (,E) for sinusoidal field
\ 77 /sv'm T
b
l Z_J’—f-/

/L e ”_2_

/
-92] -
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( “E)s (E/ 3 is plotted against F> in Fig. 4. It is clear in the figure that the
\Tr TT /S
increment of 7: is more than that given by the smooth approximation. Iz is

given very roughly by

E) (AL P /T A4 ] i

SPIRALLING

In a large N machine, say N 100, spiralling might be necessary to
obtain a comfortable Tz . The orbits and the radial tunes change very little.
The smooth approximation formula for the axial tune is given by

yd

03 /z P - [ 1+ — 2 J (42)
T k+/ AW

Stability limits would be decreased by spiralling due to the additional non-

linearity of the fields.

STABILITY LIMITS

10)

According to G. Parzen's( formula for stability limit due to non-linear
resonance lines, there are no remarkable differences from the ordinary radial
sector machine, except that the Walkinshaw's line ( Ux—2T3 = 0 )

10
is almost forbidden in this machine.( )

(10) G. Parzen, MURA-300

- 29 -
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The stability limit amplitude of the radial motion due to the SR = (?/é / T

resonance line is given by

2 % (¢ f=i2
A PVE /{/2’7%/ s / (43)

ol [y )2 28(k+1)
ToE T i | e /
M 4- v‘;/‘/‘ ( MN* )

The above formula is compared with the results from the computer in the

following table.

N k71 A anal A digit
20 16.1 1.9 x 1072 1.3 x 1072
36 58 5.0 x 1073 3.9x1073
For the sum resonance line b",’\—#-z’j‘:" =277 the stability limit amp-

(10)

litudes are given by

A= | (- (S

(44)

v}"{\,{/\ﬂ

&
L g

A and B depend on the tunes T, and U at the stability boundary to which

()70 and “\‘;O are driven. It takes long series of computer runs to obtain

0 .
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A and B as a function of initial values of x and z, This survey has not been done.
However, few values of A and B obtained so far indicate fair agreements with

(44).

TWO-BEAM - ONE-BEAM TUNING

Since the symmetric machine is a special case of the radial sector FFAG
machine, the machine can be used as a one-beam radial sector machine by
changing the magnitude of the magnetic fields in the positive and the negative
magnets.

If (‘ (NG) is given by

) \
e 45
{'; NG ) = & —+ Ceor A& 8
the smooth approximation gives
T LLll+1) X/ (4 (
[S2)" o HERNS T
\77 / A ahie 2z (46)
. 2 7 2
U2) A WR E ' "(R#/) k=t /. |
< } \- - e ~ — —
—— 7 = :‘/z 2 /\‘//‘7‘ “/(’, /
i) ,
where ) / A W SR , .
T B ==
Lt/ il
N P4
/ / \ ™~ ) \ \
(11) X is L/g l\,‘ ¥ O, ravzens notateon s
repoyt MURA =273
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By eliminating ! in (46), we obtain
(”7 LT Wt s 8 v o U3 Flk+1)
i ] / Nz} Y
S S (let/)" &t/ N2 (47)

This shows the working points mowe along a hyperbola by changing the magnets
excitation. It must be noted that this is the smooth approximation result and

shows only rough behavior of the working points, especially for high a5,

EXAMPLES OF DESIGN PARAMETERS

In the following, typical sets of parameters for rather small size machines
are discussed.

Unfortunately direct Forog/l-Formesh calculation can not be used with
vanishing average value of the magnetic field. The calculations are done as
follows. In the magnet configurations of Forocylagenda, a finite value of
potential on the positive (negative) magnet and zero on the negative (positive)
magnet are given. The configurations have the symmetry around the centers of
the positive magnets and also around that of the negative magnets. By picking
up only odd Fourier coefficients of the median plane fields in the output of
Forogyl, we have the median plane field when both positive and negative magnets
are energized. This field can be used to calculate dynamics by the Well
Tempered Five program. (The alternative is to feed this field in Tempermesh

)(12)

and use Formesh for dynamics It must be noted that all field coefficients

are normalized to g = |/ andihen multiplied by ¢X"to run dynamics to keep

(12) This procedure is being used for New Model by A. Sessler and F.T. Cole.

.
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N for small size (electron) machine might range 14 ~~24 considering
the magnet gaps and straight sections. In this range N-= 18 must be discarded
because the working points stay always too close to the l.ine ™x+2Tg=aTT

which i1s an essential and dangerous line.

EXAMPLE 1.

N =20 k =15.1
The configuration of magnets is shown in Fig. 5.

Fourier components of median plane fields

1st 1.000000
3rd -0.228407
5th 0.054433
7th 0.004272
9th -0.017548
11th 0.014469
13th - 0.008186
Circumference factor 4.2
0%y == 0.727 V24 o 0.547

Phase plots of x and z motion are shown in Fig. 8 and Fig. 9.

Radius at injection 200 cm
at output 275 cm
Energy at injection 100 Kev
at output 50 Mev
Hoax 4300 gausses
EXAMPLE 2.
N = 16 k =8.5

The magnet configuration is shown in Fig. 6.

Fourier components of the median plane fields
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1st 1.000000
3rd - 0.228394
5th 0.0543091
Tth 0.004341
9th - 0.017617
11th 0.014520
13th - 0.008215
Circumference factor 7.2
U,?/W ~ 0,746 0% . 0.739
Radius at injection 200 cim
at output 340 cm
Energy at injection 100 Kev
at output 50 Mev
Hmax 3500 gausses
EXAMPLE 3.
N = 36 k = 57

The magnet configuration is shown in Fig. 7.

Fourier components of the median plane fields

1st 1.000000
3rd -0.264663
5th 0.092525
Tth - 0.017268
9th - 0.015356
11th 0.024919
13th -0.022792
15th 0.016176
Gre o .m8 Vg4 2 215
Circumference factor 7.07
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MURA-318

Radius at injection 890 cm

at output 1000 cm
Energy at injection 100 Kev

at output 300 Mev
Hmax 7000 gausses

OTHER PROBLEMS

Since the machine is different from the ordinary FFAG accelerator only
in the particle dynamics, the problems such as, acceleration, injection,
stacking, space charge effects and so on, are the same as in the ordinary FFAG
machine. The discussions of these problems can be found in numerous MURA

reports.

- 98 -



- e

1s.0

/18
24
64




-/.0

&

X

._2

0 .02 04 . . .06 .98
Fig.2 i—/’fz—{ T



) —— i,

( /.0

(o] N =/8
x N =14
) N= éq




v

o N =/8
x N =24

] = 5(\
(63‘ N =69 o)

2
J
T /5in /.2 ' \‘b 0

—

1]




A 4

JITSR

A

0628R : /2R ¥ L0628R
W 7 R L kT AT
! 0357 OISR N7
5
median plane
g -5
.393R >
4
0785R ” IS TR ; . 0785R
W A R I A A
| <039~ 0196k <.039R”
/
median plane
Fig.®6
< A 7Y5R >
T 0364R ; 0727R K )
28/ /////////+///] /L= LT [T A eesarV /7 [/ ]/ ]
i “orvsR J.005454 <oIWER

Ve

median plane

Fig.7




Fig.8 2



L 4./

=4./

dh
\[/

T 0

.o/
1

Fig.9




