

UNCLASSIFIED

X-822

OAK RIDGE NATIONAL LABORATORY

Operated By
UNION CARBIDE NUCLEAR COMPANY

UCC

POST OFFICE BOX P
OAK RIDGE, TENNESSEE

External Transmittal
Authorized

ORNL
CENTRAL FILES NUMBER

CF-57-7-113

DATE: July 30, 1957

COPY NO. 81

SUBJECT: HRT-CP: Results of Solids Dissolution Tests

TO: W. D. Burch
FROM: W. L. Albrecht

Distribution

1. HRP Director's Office	31. J. O. Kolb
2. G. M. Adamson	32. R. B. Korsmeyer
3. W. L. Albrecht	33. K. A. Kraus
4. H. F. Bauman	34. N. A. Krohn
5. S. E. Beall	35. J. A. Lane
6. E. G. Bohlmann	36. R. E. Leuze
7. N. C. Bradley	37. R. B. Lindauer
8. N. A. Brown	38. M. I. Lundin
9. F. R. Bruce	39. R. N. Lyon
10. J. R. Buchanan	40. E. A. Mason
11. W. D. Burch	41. J. P. McBride
12. R. D. Cheverton	42. H. F. McDuffie
13. E. L. Compere	43. H. M. McLeod, Jr.
14. J. S. Culver	44. R. A. McNees
15. J. R. Engel	45. E. C. Miller
16. D. E. Ferguson	46. L. F. Parsly
17. J. D. Flynn	47. D. M. Richardson
18. D. F. Frech	48. G. W. Rivenbark
19. C. H. Gabbard	49. R. C. Robertson
20. W. R. Gall	50. A. M. Rom
21. T. H. Gladney	51. H. C. Savage
22. J. C. Griess	52. H. K. Search
23. R. H. Guymon	53. C. L. Segaser
24. P. A. Haas	54. J. W. Snider
25. P. H. Harley	55. I. Spiewak
26. P. N. Haubenreich	56. R. W. Stoughton
27. J. W. Hill	57. J. A. Swartout
28. G. H. Jenks	58. E. H. Taylor
29. S. I. Kaplan	59. D. G. Thomas
30. P. R. Kasten	60. D. S. Toomb

NOTICE

(Continued on page 1a)

This document contains information of a preliminary nature and was prepared primarily for internal use at the Oak Ridge National Laboratory. It is subject to revision or correction and therefore does not represent a final report.

UNCLASSIFIED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report; or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.

UNCLASSIFIED

1a

DISTRIBUTION (continued from page 1)

- 61. W. E. Unger
- 62. R. Van Winkle
- 63. R. H. Winget
- 64. C. E. Winters
- 65. F. C. Zapp
- 66. ORNL Document Reference Library, Y-12
- 67. Central Research Library
- 68-69. REED Library
- 70-72. Laboratory Records - 1 cy for M. J. Skinner

EXTERNAL DISTRIBUTION

- 73. F. C. Moesel, AEC
- 74-80. Westinghouse PAR Project
- 81-95. TISE-AEC

UNCLASSIFIED

HRT-CP: RESULTS OF SOLIDS DISSOLUTION TESTS

Summary

A dissolution cycle in the chemical plant consists of refluxing with 10.8 M sulfuric acid for 4 hours followed by refluxing for a like period with 4 M acid. In each of 3 tests in which 370-gram batches of simulated corrosion product solids were subjected to two dissolution cycles using 820 per cent excess acid, more than 99.6 per cent of the solid material was dissolved (based on the amount of undissolved material collected). In another test, using one dissolution cycle and 820 per cent excess acid, 99.5 per cent of the solids material was dissolved. In the final test in which a 530-gram batch of solids was subjected to two dissolution cycles using 540 per cent excess acid, only 91.7 per cent of the solid material was dissolved.

The corrosion rate of a specimen of Carpenter 20 suspended in the vapor space of the dissolver during these tests was 0.01 mil per year.

Procedure and Results

A series of five solids-dissolution tests was carried out in accordance with a procedure similar to that to be followed in actual operation of the chemical plant. Briefly, this procedure involved (a) charging a batch of simulated solids and uranyl sulfate solution to the dissolver, (b) evaporating to dryness, (c) charging 4 M sulfuric acid to the dissolver, (d) concentrating to 10.8 M acid and refluxing for 4 hours, (e) diluting to 4 M and refluxing for 4 hours, (f) repeating steps d and e (except in one test), (g) transferring the solution from the dissolver and sampling, and (h) rinsing the dissolver.

The simulated solids used in the tests contained about 47 per cent ZrO_2 , 40 per cent Fe_2O_3 , and 13% Cr_2O_3 . The solids were suspended in a uranyl sulfate solution.

The results of the dissolution tests are presented in Table I.

Table I. Results of Dissolution Tests

Test No.	Wt of Solids, g	Excess Acid, %	No. Dissolution Cycles	Solids Dissolved, a/ %
1	370	820	2	99.7
2	370	820	2	99.9
3	370	820	2	99.6
4	370	820	1	99.5
5	530	540	2	91.7

a/ Determined by weighing the undissolved solids in the dissolver solution and rinse solutions.

Dissolution of solids was substantially complete when the amount of excess acid was about 820 per cent, even when only one dissolution cycle was employed. In the test in which the amount of excess acid was 540 per cent, the proportion of solids dissolved was considerably lower. This result is not in agreement with those of similar experiments carried out by the development groups. No reason for the disparity is evident. It is anticipated that in actual operation, less than 400 grams of solids will be handled in a dissolution. With this amount of solids, sufficient acid can be employed to obtain complete dissolution.

Material balances for H_2SO_4 , Cr, Fe, U, and Zr are shown in Table II.

Table II. Material Balances for

 H_2SO_4 , Cr, Fe, U, and Zr

	Run Number				
	1	2	3 b/	4	5
H_2SO_4	97%	100%	111	95%	98%
Cr a/	115	87	85	97	97
Fe a/	101	104	130	107	133
U a/	110	120	99	120	99
Zr a/	64	81	82	86	96

It is apparent that the balances are poor; no conclusions can be drawn from them.

Analyses of dissolver solutions are shown in Table III. Spectrographic analyses of undissolved solids from runs 3 and 4 are shown in Table IV.

Table III. Analyses of Dissolver Solutions

Constituent	Run Number				
	1	2	3	4	5
H ₂ SO ₄ , N	7.3	7.6	7.4	7.2	7.5
U, mg/ml	7.1	6.1	6.3	6.1	7.0
Fe, mg/ml	6.9	7.3	8.1	7.4	9.2
Cr, mg/ml	2.0	1.7	1.5	1.9	1.7
Zr, mg/ml	5.4	6.8	6.9	7.2	5.6
Cu, ppm	48	21	-	-	-
Ni, ppm	225	25	112	18	180
Cl, ppm	2	0	-	3	-

Table IV. Average Spectrographic Analyses^{a/}
of Undissolver Solids

Constituent	%	Constituent	%
Al	0.1 - 1	Ni	10 - 100
Cr	10 - 100	Pb	0.01 - 0.1
Cu	0.01 - 0.1	Si	0.1 - 10
Fe	10 - 100	Ti	0.01 - 0.1
Mn	0.01 - 1	Zr	0.1 - 10

^{a/} Includes only those constituents present in amount greater than 0.01%.

The nickel content of the dissolver solutions appears to show that corrosion had taken place at a rate of 5 mils per year on the Carpenter 20 lines connected to the tantalum-lined dissolver. It is more likely, however, that the nickel resulted from corrosion of the equipment in which the solids were prepared. Although analyses of the slurries charged in these tests were not made, slurries prepared in the same manner contained enough nickel to account for that found in the

dissolver and rinse solutions. The results of a corrosion test bear out the belief that there was little corrosion of the piping adjacent to the dissolver.

Prior to the dissolution tests, a 2-inch-long piece of 1/2-inch Carpenter 20 tubing was suspended in the vapor space of the dissolver near the top flange. This specimen was exposed during 52 hours of refluxing at 4 M acid concentration, 18 hours of concentration to 10.8 M, and 66 hours of refluxing at 10.8 M, or a total of 136 hours. The weight loss of the specimen was 1.1 mg, corresponding to a penetration of 0.01 mils per year, based on 52 runs of 20 hours each per year.

W. L. Albrecht

WLA

WLA:ms