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ABSTRACT : {

The Selengut-Goertzel and the P, -approximations to the-

Boltzmann equation for the neutron»Sléwiné down process in a
medium of fiﬁite extent are rewritten as ihtegral equations
éver Placzek.functions. In this form, the'equations can be

. éolved by ‘iteration; also;.in the asymptotic case, they per-
mit the corresponding age equations to béhread off directly.
The first order non-asymptotic‘deviatiohs of the flux from
the age theoretical expressions are calculated. Their effect
on the critical size of a reactor which consists of a material

with many closely spaced resonances. will be given in a later

? ~ report. ‘ ‘ o ’
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A TEST OF THE AGE THEORY

PART T

1. Because of the approximations made in the derivation of the age theory it seems
unlikely that this method would give accurate results for media with strong andvclose-
ly spaced resonances. Furthermore, there has been some argument in the past as to

the most appropriate expression for the slowing down density in this case. In order
to assess the value of the age approximation for'reactpr analysis, we propose to

carry out criticality calculations, employing an approximation to the Boltzmann ec_r;_ua.u.=
tion which is not as sweeping as age theory on one hand, ana on the other the age
theoretical expression which can be derived from the more rigoroﬁs theory by further

approximations.

. zh This comparison is greatly facilitated if the Boltzmann equation for a capturing

medium is first rewritten in such a way that it indicates directly how the effects

1,2)

of sources and sinks on the neutron flux are propagated upward on the lethargy scale.
‘ -For én infinite homogeneous medium with uniformly distributed isotropic sources the

3)

Boltzmann equation is

5_5 (“l)

U
w

F(u’) + S (\A)

(1) Flw) - S’“”I o (w-w)

. 1) Weinberg, A. M., and E. P. Wigner, Theory of Neutron Chain Reactions, Chs. 10 and
11, Chicago U. Press, 1958. Our treatment of the infinite medium case, while

somewhat more elaborate, follows the presentation in this book quite closely.

2) Corngold, N., Proc. Phys. Soc. A 70, 793 (1957).

3) Marshak, R. E., Rev. Mod. Pﬁysu 19, 186 (19#7);
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(!
where %‘C‘% =c(w) is the average number of secondaries; Flw) = ZW) Pu) the

collision density; SGW) the source density; and

x-! e~ 0fwct = WA *
2) ) = { | : | ; o NCT
0 S<w<o¢ ge_,(”v_l_-\_:;—

‘Tt is convenient to separate the contributions of the collided and the virgin

neutron.s to thé collision density:

(3) Flw) = Y uy + SCw .

Then eq. (1) takes the form

A

(la) ) ""C\A—) .= S AM’ t‘,(v\-v\.') k'"(,\a') + & &M, ‘CO(H-"W’) {— (‘\4—C(\~'))\H°~l) 4 c(u) S(“‘)]-

This equation will be 'so_lved in two steps. First we assume a non-cepturing medium,

c=1, and & & -function source in energy at men' 3 then (la) becomes

AA

(k) 20(“” Wy o= de\v' \Co(u—u') Xo(t.{,l—u") -+ \Co(u.-u") .

Q

"The srgument of Xo in this equation was written in the displacement form to indicate
explicitly that in a medium without capture the value of the collision density depends
only on the distance in lethargy from the source, and not on the absolute value of ‘the

lethargy.

Yoluuw) can be calculated from the integral equation (%) by a series of successive
elementary integr’ationsou) It is found to vary quite rapidiy in the interval directly
above the source lethargy ™ , but then it smoothes out very quickly, assuming its con=

-4 :
stant asymptotic value X, n l; = {1 +o! (\-u) &«,(\-uﬂ about 3% above source lethargy.
. ' [}

The Placzek function expresses the effect of a ) -function disturbance on the

collision density at higher lethargies. The effect of sources or sinks which have

4) Placzek, G., Phys. Rev. 69, 423 (1946).



T
a continuous distribution in lethargy, as in equation (1a), can therefore be written
as a superposition of solutions of (4), so that Ynobd)is,ﬁhe Green's function of the’
integral equation (la). There, at um-w’' the effective loss is O—°033‘V0W3 , the
effective gain ¢(W) S(u“) ;‘ so if we multiply (4) by the difference of the two and inte-

grate over W , we find by comparison with (la) that

~

" .
W (-\ A" ]
(5) $w) = - ( au X (w-u') (1 - ¢(u) 4-(\4") * g A X (u-u) ey Slw) .
Y , Y
This is again an integral equation for $(») . It is, however, superior for computation-

al purposes to(la), for there the kernel vanished in most of the interval of integra-

tion, whereas in (5) the kernel is non-zero, and rather constant over most of the range,

so that all values: of +Gﬁ)between 0 and w contribute almost evenly to the integral:

therefore, the form (5) is particularly suited for evaluation by iterative techniques.

(\
The age equation is obtained from (5) if X, is approximated throughout its entire
range of integration by its constant asymptotic value. Then the integral equation (5)
can be differenﬁiated, yiélding a differential equation:

Ay (W
(6) A

= - ‘E,J( | - c(w)) LLAO"") + ‘gofv()ﬂ) S(uw) |

and.for the'collision density

(6a) ' My 4 (1 —Acm) ol = S
Ban
or
A&
%) ﬁﬁ bR ) = S

with a slowing down density
(Ta) a6y = .k - g5, (TR - sw).

It is instructive to compare expressions (7) and (7a) with another one which is

often seen in the literature; and which we shall call fheAFermi age equation:
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(8) L (e34) +5.% - 5,

This can be derived in the following way: in an équilibrium state, the number of
.neutrons removed at J.etha.rgy » by scattering and aﬁsorption, (i‘b)w, must be equal to
the neutrons born at that lethargy, (), and those scattered at lethargy m-2, (354’),“’3,

where § is the average lethargy gain per collision. The balance equation

. (z¢)~\ - (25¢)M-§ - (S)«-\. < O
can be expanded about w, up to first order in g , to yield eq. (8); if, on the other

hand, the expansion is performed about m-§, we find (7) and (7a). Our more elaborate
derivation ‘invdic_:ates » however, that although (7) and.(é) are equal to first order in

%, the form (7) is to be preferred.

It is also possible to write down a differential equation for the first-order

deviation 3%Wof the age soluticn %,(“) from the exact MW . With &X, =X, - T Ve find
87 4 .

from (5) Lo
8\(/(@) = - 'g g dud (l - C(u”))s\"(u’)
(9) ‘ e |
-+ g dul & %o (u-u) { - (v~ C(u')) “&Ct—d) +elw) S('u.')])

where a term in ?'Xa' ?4‘ has been neglected. The last integral is completeiy known:

(10)  T@y - S a8, (uru') {_ (1- c(u'))h(w) + elw) 5(,_3)] = &, Sm’&\zo(u-w') :TL \é;u).

Q

Differentiating (9), we obtain an age equation for &¥(u) which is very similar to (&):

ATl
Y
which indicates that a good approximation to 4—@ will be given by the solution of the

(11) | ﬁ(%o&“"t\*)) + (_"\'cm) sty = &

equation

(12) o (a¥e) « (1-ca) bw) = ey S+ §, g gw DX (-5 & L),
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3. Next, we turn to the problem of .a finite bare reactor with spacially constant
cross sections. If it consists of atoms of one type only, the Pl-approximation to

the lethargy pa.rt of the Boltzmann equation reads

\ 1 S(\"‘.) —
G :<'> |
iy T e gaw K, (w»)ﬁ———)— (v - & 5
vith Fu) = ) ), 6W) = T T v ;~—A , aamd
Lo okt Y Al oxw v
W () YL“F( = T X * > oS
o ‘ : A ES ‘.

Equations(13) will be treated rigorously in the next paragraph; for the present, we

wiJ.l let the first equation of (13) stand, but in the second equation we set approximately

ZS(V Z (“)
‘E:{Z_,')_ &( ') % @(«). This is the Selengut-Goertzel approximation; the integral
“ o : )

over \cl can now be evaluated, and one obtains Fick's relation between the flux and the

current: )
. v 6 (\A—) _ .4 P ( M\ ;
(14) T ) v(BD‘. S () '
with ‘ .- \
D = WZ - %)

In this approximation, it will turn out that we shall be lead back to eqs. (5) and (6a),
- with an appropriate expression for c(W) s the average number of secondaries after a

collision that are available for the next collision.

We can eliminate the current now, so that (13) goes over into

i (\43 ’ ' s: &Wl) .
| -— &5' - d.M K cu’ _— F ul - S(
(15) T | o (wew) ST T - BG4 D

)
Again, _it is convenient to write fFLw as a sum of two terms:

(16) Py = D) | HW) ¢ S ]
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where Y(W), the non-leakage probability, is found by direct substitution into (15) to

be \
Q(\A) . < — et . 5t

(17) ' M, R ,
o T B |

while 4’(\‘) is seen to satisfy our fundamental integral equations (1a) and (5), with
! A T—sl(u') ' ,

18 . I o '

( ) C(.\A) S (9 (M)

Substituting this c(w) into the age equation (6a) ,’ we obtain

¢ (19) : ;ﬂ.‘; +~ B*D (w) #(U’) + Eq_(““) Ch(V') = S(»\.) )
with '
(19a) 00 = &, [ (2 + B 2) $0) - sm],

This  expression for ﬂ(u)is to be compared with the Fermi slowing down density ﬂ(v»)- gZS 4’
(19a) prescribes that instead of just the scattering cross section, we have to use the

total cross section, plﬁs a leakage term, but minus the. effect of the virgin neutrons.

Let us treat now the case of a mixture of a light (I) and an infinitely heavy (II)
scatterer and absorber. If Z denotes the combined total cross section, the lethargy

part of the Boltzmann equation becomes, in our approximation,

. (7d M
o L R* £l ’ et >0 ' s( )
(17) Flw) + B8*Dw) S6) dan K. (M-M()E—(——:) 'FCu) + g ! \<c (u-u) -"'——“F(m )« S(v)
. ' ' - £7 ) ¢ () 7
with ‘
~ - \ o
(172) _ D) = : : ;
| | BEIC rE
- -Since for an. infinitely. heavy nucleus .f=o0, ¢ wol , the second integral can be evaluated
PRI .
immediately and gives. ;:L 3 f) . Eqg. (17) can again be brought into the form (1la),
where now ' | '
. : P
(18) ' Cluw) =

Z - is-m *+ BlD
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The age equation (6a) becomes
1 ' .
(19) 73 = B¥D (W) b(uw) A {i,}m + SE(\A)J C’P(u) = S
with . '
(19a) ‘ °‘¢ 'zz' {.(Z.—ISI-Q»B?'D)‘& -SK)

. |
contrasted with the Fermi slowing down density 1:21§‘ﬁ Since nc slowing down takes
place in scattering on the iﬁfinitely heavy nucleué,.the scattering cross section 'ig[

does not appear directly in either expression for the slowing down density.

41. In the consistent Pl-approximation, no approximations at éll are made in the
system of integral equatidns (13)s  Again we shall try to transform the equations

into equivalent integral equations with Placzek-function kernels.

As a flrst step, we perform a linear transformation which separates out the virgin

neutrons, and at the same time casts the system of equations into a standard form:

(20) F - P J—,;* - 3% +P s 1
n . \,C—i 2P 4/' + 'P‘ HLL_ + ® S
wi :

o L | . 4%
(208.) fPl = — 5 F‘E’ = — |

The system of integral equatiohsu(l3) reads now

: 2'5 w') o | | '
¢ - g&ka(u-u) (C)~_(P,+.‘-'3PL4_.+ ﬁs)
(21) N g a \,;\( -u') -Ezz—cc;il (@L_Jr‘ £ P, o+ PS)

- The first equation, with a kernel K, , can be transformed as before by the use

of the Placzek function §§° « In an entirely analogous way we define a Placzek function

GZ\ for the kernel X, as the solution of the equation
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: A
f-’
(22) () = Q d W (u-W) B L) 4 W),
3 ' ,
As we shall show in the Appgndix, it is important to include the factor ‘/F in

(o) .
the kernel K\, for only then will X,be asymptotically constant:

~ | by -
(22a) X, (w)y ~ '?' = ( § dun an K,(u)}
i 0 .
Using these functions and employing the same argument that led to eq. (5), we
obtain the following system of integral equations which are equivalent to (21):
. i s ' A Zs
S - /
$w - gw Ko (amd [ 6= 2% - 3R]+ (R F RS,
(23) .
\*,( N .) VA 5; .p\L P2 ;? 'E_{s_@
T w) -~ - ).M,)_('\(v\—u kﬁ‘ L—g ('\5&41-» , ,,) + SM_((U-M 5 =S,
. Q
These equations can now be solved by iteration. Finélly, an improved age equation is
-obtained if both‘? and X, are approximated by their asymptotlc values over the whole
range of integration; (23) can then be differentiated, and a system of first-order

differential equations results.
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Appendix

The Placzek function belonging to the kernel k;bﬂ is constant for large values
of the argument;

o8

SR w) ~ 8 '= [ SMM \(b(u)]‘l - <y

We ask for the conditions that a kernel W.(v) must satisfy so that ?ﬁ“(m) ~ const.,

and endeavor to find the value of that constant.

X, (w) satisfies the integral equation

—
X.m(“\
Taking Laplace transforms, we get

(% o (weu) T () & (),

~y

~
N ~ X Con
. Tow Gt v G, e T
and reinverting .
: Cd—\"w ~
- ! ‘ o Yo (V)
Xonlw) = 7= g'dv ' 2e = :
» C-Lob L - k.0
~
The asymptotic behavior of ?;“(u) is determined by that root of the equation L N (™))

which has the largest real part. 'This must be zero if ‘Z~w(u\ is to be asymptoti-
cally constant.” We therefore expand

oQ

¢ N .
A O R LSV AN O S

Q

\ - KZw~(~\ = A - §

and see that we must have
3
then ©

In particular, for

VC‘(MS =
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M
we have  dm ¥ (w)e 4, and -
[} _ ‘

e - < v 3 A_-_!'A-
iu = (o MM‘(OC"‘) = "'A + 3r + (A -’SA-"J’)M 44—')

For hydrogen, A = 1, the Placzek function 'Z.(ﬂ is constant for all values of 4.

Graphs of 'Zl(w} for different values of & will be given in a forthcoming report.
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