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ABSTRACT

We review and further motivate the need of absorption in 

simple multiperipheral-like models and present a general formal­

ism for multiparticle production with absorption. With this for­

malism, we reproduce the well-known unitarity relation and derive 

new expressions for inclusive momentum distributions. We demon­

strate that the parameter-free predictions based on our earlier 

solution to the elastic data reproduce the gross feature of the 

inclusive pT ~data of high energy pp collisions.
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!. Introduction

This is a s«Quel to an earlier work (hereafter referred 

to u* II on the absorbed aultiperipheral*like (KP-like) node2.

The Ml*-like models are these mode Is of multiparticle production 

which Have the following throe features:

(e) particles in the final state have sharp transverse 

momentum cutoff;

(b) the taultiplicitv distribution is a Poisson (or Poisson 

like:) distributive with a logarithmic increase in s 

for the average panicle multiplicity; and

(c) the inelastic production cross section increases with

c
a power law i» i, $ ,

Theoretical models such as ASFST stodel,2 multi-Regge model and 

their variations,5 the uncorrelated jet model*4 and the inde­

pendent emission aedel^ have all Cor most) of these features.

The data are compatible with these properties except pethaps (c), 

since c>S tilled by the rising total cross section would lead to 

the violation of Froissart bound. #* shall return to this point 

below.

In connection with property (a), the sharp p^-cutoff, thsre 

are «*inly two proposals. On the one hand, among the various Mf* 

models* this cutoff is achieved by having factorixable cutoff 

functions for the m&mnttm-transfer dependence of the I to n+l

i

2

amplitude. In particular,

n+1

Tn*2,2 * il, ftti5 -

where t̂  i$ the momentum-transfer*square of the ith rung along 

the muifipcripheral chain and the f(t^) is the corresponding 

cutoff function. On the other hand, in the uncorrelated jet model 

or the independent emission model, particle emission is assumed 

to be essentially uncorrelated except for the constraints due to 

conservation laws such as the conservation of four momentum and 

the conservation of charge. In this class of models, the p^- 

cutoff is built-in directly. Typically, one has

n*l

T».2,2 * A  f(PiT) •

In I, the first parameteristation is referred to as the MP case, 

and the second is referred to as the IE case.

The need of absorption for the MP-like amplitude is based 

on phenomenological considerations and some intuitive arguments. 

There are essentially three points.

(1) If one were to assume that the observed rise of pp total 

cross section in the 158 region is a manifestation of the asymp­

totic behavior of ths HP-like model, as mentioned it would imply 

e»ft, in violation of Froissart bound. However, with the absorp­

tion effect included, the positive power behavior will be sup­

pressed to a Ins or ins* behavior.6
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(’) in I, it is «k»ottstrete4 that hoth the IE- and MP- partm- 

cicr ismions tor cutoff function are consistent with the elastic 

data. However* for the MP case* it is well known one cannot

simultaneously explain the slope of the diffractive peak and
7 ft a

Inclusive {^-distribution. * * On the other hand, we shall show 

that for the It case in the presence of absorption this simultane­

ous description is possible. It turns out that without absorption 

for the IE case, the slope parameter of the diffractive peak would 

essentially be independent of energy. Absorption effect toother 

with c>0 is needed to provide an energy dependence for this param­

eter to agree with the ISR data*

(5) In section 2, we will argue that the inclusion of absorp­

tion is one of the key steps to systematically account for the non­

productive type interactions during the process of multiparticle 

production.

Our aim in the present paper is two-fold. First, we review 

and motivate the need of absorption. In a manner similar to 

llenyey's approach,* we present a general formalism for multi* 

particle production with absorption. Secondly we apply this for­

malism to derive formulae quoted in I, and present the absorbed 

inclusive distribution predicted by the IE solution of I. Our 

plan of the remaining paper is as follows: In section 2, motiva­

tions for the introduction of the absorption mechanism are dis- 

, cussed. Is section 3, we present a general formalism of absorption

4

J s for multi particle production which partly makes use of a 

hclicity state formaJism developed earlier by one of us.*® In 

flic context of the absorption models, the unitarity relation for 

the elastic amplitude and general formulae for inclusive momentum 

tlifii rihut ions are derived. In soction 4, expressions for the in­

clusive transverse momentum distribution with the transverse 

momentum cutoff function of I are derived. Finally, in the 

same sect ion, we also demonstrate that the parameter-free pre­

dictions of the pion- and the nucleon- inclusive pT-distributions 

do indeed reproduce the gross features of the data.
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Absorption--One of the nonproductive type interactions.

The application of absorption to a simple multiparticle- 

production amplitude is an old idea. It was first suggested by 

Caneschi11 in the context of getting the sign of the pomeron- 

pomcron cut to be opposite to that obtained by the unitarity- 

rcscattering correction. The importance of the inclusion of ab­

sorption effect was also recognized by Cheng and Wu in a differ­

ent context.1^ Within their "QED model,” this effect corresponds 

to including those "closed ladder" contributions in the multi 

particle production amplitude. This is a crucial step, which 

eventually leads them to predict the indefinite rise of the total 

cross scction and at the same time assures the Froissart bound.

Subsequently, absorption effects were further elaborated in the

13
context of the eikonal model based on perturbation theory and

expounded by Finkelstein and Zachariasen and others in the con-

i A
text of absorbed MP models."' The basic idea amounts to that, 

analogous to the situation in two-body inelastic scattering, the 

physical multiparticle production amplitude should be described 

by the product of some simple unabsorbed amplitude and the elastic

]c
S-matrix S22f or S22» depending on respectively, whether both the 

initial and final state interactions or only the initial state 

interaction between the two nucleons are included.

6

We share the basic contention of these authors. In fact, 

we consider absorption to be one of the three basic nonproductive 

types of interactions in the multipartlcle productions, which 

should all be taken into account. In particular, the high energy 

pion productions are described by the collective effects of the 

following two processes: a direct production process via some 

MP-1 ike mcchanism, and some remaining nonproductive-type processes. 

For the latter, there are those further interactions:

f. among these pions produced,

'}. between pions and each of the nuclcons, and 

III. between the two nucleon-systems.

For interaction I, among the pions the interaction is expected to 

be most pronounced for those cases where the energies of subsys­

tems of pions are low and the subsystems have the appropriate 

quantum numbers, so that meson-resonances can be formed. To take 

into account this effect, many authors have already suggested, to

alter the original proposal, allowing meson resonances in addition

IS 16to pions to be directly produced. * Similarly, the interaction

II can also be approximately accounted for by allowing the pres­

ence of the nucleon resonances (or clusters). Some effects here 

have also been considered by various authors. For instance, the 

diffractive dissociation events could be identified as the type II 

events, in which pions tend to cluster with the nucleons forming a ,



relatively low invariant mass system(s). Presumably, at higher

energies, there could also be events with diffractive dissociation

17
plus fireball productions, etc. The type III interaction is 

related to those absorption ideas mentioned above. Up to this 

date, the details of absorption assumed still vary from author 

to author. For instance, in ref, 14, only the initial state in­

teraction has been considered. On the other hand, it was suggested 

that various functions of S^2 could be used for the absorption fac­

tor.6 Below we discuss some kinematics, arguing in effect that 

both the initial and final state interactions should be included, 

and suggesting that the absorption fo* multiparticle production has 

the form of Eq. (4) below.

18 19We take a geometric picture * for hadron collisions. For 

definiteness, let us first look at an n-pion production process, 

i.e., pp ♦ pp ♦ rnr. The two nucleons and the pions are labelled

by o, »*i, and i»l,2..... respectively. In the c.m. frame, two

protons with extended structure are passing through each other. 

Initially they are at some relative impact parameter b and c.m. 

longitudinal momentum q, c.m. energy squared s. After the pas­

sage, they emerge with c.m. longitudinal momentum poL and Pn+ĵ » 

their relative impact parameter b* * i>o’~n+l and energy-square of 

the two nucleons, s*. High energy data show that on the average, 

p . and p sre not too different from q owing to the leading
O L  A+XIrf

particle effect. For example at 102 GeV/c, the mean value

7
8

,1/3 * I/q % O.T. (For definiteness, the zero-th
N OL fi+iL

particle is associated with x > 0, while the (n+l)-th is associ­

ated with x < 0.)

In the context of impact parameter formalism, denote the 

transverse coordinates of pions by b^ and the corresponding 

fraction of c.m. longitudinal momentum p.^ by x^ ■ P^j/^*

i « l,...n« After a 90 degree rotation around the positive z-

g
axis, conservation of angular momentum leads to

b * i i  x i b i  * *ob-o + V i 5„ . i  • < «

where we have neglected the terms involving transverse momenta of 

pions and the two nucleons which aTe small compared to q. After 

averaging over the longitudinal distributions, this expression 

becomes

n

In the averaging process for pions, due to the random phases of

b.'s, the signs of x-̂ 's are absorbed into b^’s, |x̂ | * xff. At

high energies, x^ is in general very small. For example, we

1
have estimated that x^ * 0.08 at 102 GeV/c. In the summation

of Eq. (2), typical values of b^'s are bounded by the radius of

the cutoff function which is smaller than that of b (see Eqs. (55)

20and (70)). The average pion multiplicity is about 6.6 at 102 

GeV/c. Note that 5c., 0.7, x is small, and the phases of b.*s
IHr o 1
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are random. These factors together with the bounded properties 

of h.’s imply that fa* does not deviate substantially from b.

Hfc assume that the phase shift due to the interaction be­

tween the two nucIcon-systems, in the presence of production, is 

essentially the same as that for elastic scattering. In particu­

lar, for a given impact parameter b and energy s,

S£j}(b»,s*) a S22(b',s') s S22(b,s) . (3)

For the approximation of the last step, we have used the experi­

mental fact that the elastic S-matrix varies slowly as a function 

of energy and the fact that b - b’. This approximation is ex­

pected to be better in the intermediate stages of the production.

Taking into account the phase shift due to the interaction 

of the two nucleon-systems, we propose that the multiparticle 

production amplitude takes the form

W * C W  '  S 2 2 C b ) ’  { 4 )

„ f i

where Tn+2 2 ^ )  is the unabsorbed production amplitude to be 

specified later. In the arguments of Tn+2 2 ^ )  and ^n+2 2 ^)» 

the energy dependence and detail specifications of the n+2 

particlcs in the final state are suppressed. It turns out that 

the absorption effect is most relevant in the small b region. In 

this region, §22(b) varies slowly with b. This provides a further 

justification for our approximation in the last step of Eq. (3).

10

We stress that for the specific choice of Eq. (4), in addition

to the assumption that the effect of the "remaining interaction"

of the two nucleon-systems in the presence of production is the

same as that in the absence of the production, we also relied on

the following four features of the data: (1) the smallness of

x , (2) the finite radius of the pion cutoff function, (3) the 
n r

weak energy dependence of the elastic amplitude at high energies,

and (4) the slowly-varying dependence for the elastic amplitude

in the small b region. The absorption scheme discussed here is

illustrated in Fig. la. All the vertical lines in Fig. la and

all other figures in this paper are particles on mass shell. The

scheme here is in reminiscence of the absorption models for two-

18 21
body scattering * which are depicted in Fig. lb. The absorp­

tion mechanism specified in Fig. la is also a feature of those

12 13models based on perturbation theory, * where typically the 

diffractive amplitude can be cast in the eikonal-model form (or 

the impact picture form). In these models, the unabsorbed multi- 

particlc production amplitude is the s-channel iteration of the 

MP-like amplitude or its analog. The unabsorbed overlap function 

has the form (e^sC - 1), where f is independent of s, to be 

compared to the present case, which has a power behavior, s for 

the corresponding function.



Ij\ the next section, we shall develop a general formalism 

applicable for any type of unabsorbed amplitude. Our formalism 

reproduces the well-known absorption form of the unitarity rela­

tions, Hq. (37) below, and it provides the framework for the cal­

culation of the one-particle and multiparticle inclusive cross 

sections. The expressions for the one-particle inclusive cross 

section are detailed in Eqs. (48), (49), and (50). The reader 

who is not interested in the detail derivations could pick up a 

few defining formulae and the key results mentioned above, and 

move on to Sec. 4.

3. General Formalism

The schematic diagram of Fig. la is either in the impact

parameter space or in the momentum space. It is advantageous, as

we shall do, to introduce production amplitudes in the momentum

space, since for this case formalisms for multiparticle production

have been well investigated. We shall formulate the absorption

model of multiparticle production in the helicity state formal- 

10 22
ism. * For simplicity, we shall deal with scalar nucleons and 

other scalar particles. It is easy to generalize the treatment 

here to cases of particles with spin.

As we shall see later, according to Eq. (4), the absorbed 

amplitude Tn+2 2^pi’pa ,pb^ ^or tlie Pro<*uction process, pa + pfa ■+

Pq + ... Pn+i» *s expressed in terms of the unabsorbed amplitude
n

T . „ and the elastic S-matrix element S„«: 
n+2,2 22

Tn+2,2(pi;pa'pb) " ^ d*2b'rn+2,2(pi ;ka‘kb)S22(ka ,kb ;pa,pb) * (5)

with

5  < v k b l s l w  *  ( 6 )

Tn+2,2^pi;pa,pb)<S ^ pi'pa’pb^ S <p0» * * * ,pn+l ̂ T p̂a ,pb> *

Tin-2,2(pi;ka’ V 6 (?pi'ka " V  S <p0* * ‘ * ,pn+l JxBJka»kb> * 

where the scattering operator S is related to the T operator by

S » 1 + iT (9)

12



and the two-particle phase space volume element is given by

= d4ka« t ^ - ^ ) d \ 8 ( k ^ - ^ ) « 4(ka»kb -pa -pb) . (10)

We have suppressed and will suppress in phase space volume ele­

ments the step functions which ensure the positivity of the energy 

of particles.

The helicity state of a spinless particle is normalized with

<S(p2-m2) <p |p' > = <SU(p-p') . (11)

/ d\ ' S<ka'n’a )d‘,kb'5<kb'mb )|l<a ,kb><ka*kb l * 1 * <l2)

Bwhore I is the relevant identity operator. It follows that T S i T.

10 2 3In the two-particle subspace, we have a useful relation *

/d^k <5(k"-mf)d4k 6(k2-m2) |k .k ><k ,k | = I /d4Q |Q£m><Q&n | , (13)
cL d  a  D  D O  a  D  cl D  A

-cm

where the twc-particle angular momentum state is normalized bT

<Q,£'m,|Q£m> =  ̂ * C14)

The angular momentum state is defined for an arbitrary four- 

momentum corresponding to the sum of the four-momenta of the two 

particles involved, not restricted to their c.m. system. Substi­

tuting Eqs. (6)-(9), and (13) into Eq. (5), we have

s £ < P a ,Pb» V p a-Pb > = <Q£m|S |PaPb > • (17)

i

In the c.m. frame, we have

i S22(pa >Pb )6l|(Q'Pa"?b ) =r ^ f / dV  <Q£m|S |Q'rm’̂ Q ' r m ’|Pa »Pb> (18)

■ • (19>
j

: 10>23 ,with
t
ti

S*^6H<Q-Q £ <Q£m jS |Q'£'m'> , (20)

<Q£m|pa ,pb> = ( ~ ) ,5(2^1)J56(Q-pa-pb)D^o(e,<}>) , (21)

D* (0,*> = e‘imV  (0) and d* (0) = 6 , (22)no mo m > o mo
jI

where w = +p^)2 = VsT^ q = |pa l> and e and <t> are the polar and

Iazimuthal angles of p^ respectively. The function dmQ as the

2i+
standard rotation matrix element. For convenience, we shall 

suppress throughout this paper the arguments which specify the
i

'energy-dependence of all quantities of interest. For example,

' S25f means S^(s). Note the difference between S ^ ( p a »pb) anc*
t

Similarly, one can show that the unabsorbed amplitude for the
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production process, Po+ * ’ *Pn+3 * ®^ven
space volume element is given by

JB
n+?,? *1 * a**'b

?2(V W Pb

_W)H 
ncl -dm

X

s.„(k,,kK ;p.,Ph> = £  .£ ,

(23)

(24)

d$
n+1 2 2 ,

n+2 = i?0 td Pi«<Pi-»i”« ' f P i ' W (28)

"<1 Im

where y and C are the polar and azimuthal angles of k^ respectively.

„B£m , x , 0£m 
From Eqs. (23) and (2*+), one can pro}ect out Tn+2j2 Pi a 22 *

However, we shall only project out Tn+2,2^Pi^ and S22* since

2(p.) and for m i 0 are not involved in final results of

interest. In the standard c.m. frame, where the momentum pa is 

along the positive z-axis (6=4>=0), one has

= <2**1>!i(l 6 ^ )’5 / d 008 Y dC Tn*2,2(«>ii,V W co> y)'

According to the absorption scheme discussed previously, as in Eq. 

(15), the amplitude Tn+2 2^pi*pa ,pb^ s u m  P r ° du c t s  of the

unabsorbed amplitude and the absorption f a c t o r .  The integration 

<>F the elastic part on the right-hand side of Eq. (27) c a n  be per­

formed explicitly, with the aid of the partial-wave expansion of 

the elastic amplitude, Eq. (24). From Eqs. (15) and (27), one 

l.as in the standard c.m. frame,

? lm T (A,0) = E(2£+l) |T*°|V (8)
<■ i Ttq ^ ' 2 2 1 00

00 
+ I ,(n) .•Cm*

S22 = f ^ / d COS Y S22<ka’W t,b)V OOS Y) ’

(25)

(26)

n-l l£ S22(pa»Pb)Himrm* S2,2 <pi»Pb> • <29) 
■eV

where

22

where d (y) = P-(cos y> and P. is the £th Legender function of
O O  4  * ~

the first kind.

From Eqs. (7) and (9), the unitarity relation of the scat­

tering operator (S+S = I) for the elastic scattering process 

P^ + P£ - Pa + Pb » implies

2I» T2J(Ai4-> = t /d*n„  TJ+Jj2<p.iPa,pi)>Tntj)2(p.ip;,p') , (27)

where T22(A,A*) = T22*pa,pb ipa*pb** A and A * aTe the tran8verse 

components of p and p’ respectively, and the (n+2)-particle phase

T̂ ° = +i(l-S^°) 
22 111 22

and

-Gn^’m’ ~ / *n+2 n+2,2(pi) n+2,2(pi' 

From Eq. (16), one can rewrite Eq. (30):

* fc'* A ' / j * < Q t o | T B |po ,...,pntl>

(30)

<Prt»---»Pn+1)TB |Q,i,m’> .(31)

The complete set of particle states can be replaced by^^ the



complete set of angular momentum states in the (n+2)-particle

subupaoe as in the case of the two-particle subspace (sec Fq.

(n)
(13)). Iho unabsorbed partial-wave overlap function is

thus diagonalized in angular momentum states. It follows from 

Eq. (31) that

^ml'm' = H*m 6U ' &mm' S 6U ,6nun,/d$n+2 ITn+2,2(pi) ̂ *

a statement of conservation of angular momentum. Substituting Eq. 

(32) into Eq. (30) and the resulting equation and Eq. (19) into 

Eq. (29), one has

2 Im T22(A,0) = ^  J o(2£H)C|T*°i2 ♦ 0) ,

co /  \
where H’ = r H • At high energies, it is customary to sepa-

io n=1 toco

rate the elastic scattering contribution to ImT22 into two pieces:

a piece which is a part cf the dynamical input and corresponds to

the contribution of , and the remaining piece which contains
to

all the shadow effects. The latter is referred to as the "diffrac 

tive piece.” And it is the dominating one. Its contribution to 

the elastic amplitude is predominantly imaginary. With this 

separation in mind, the parcial wave unitary relation can be ap­

proximately written as

2 Im T*J = |I. T*°|2 * S*fHtoS *  with . h ‘°> ♦ ,

where the diffractive contribution has been approximated as

17

(32)

(33)

(34)

■, ..fo.2
11m ! I , and 1S the total unabsorbed overlap function. The

unilarity relations in Eqs. (32) and (34) are valid for general

absorption models of multiparticle production.

It is well known that at high energies, the partial-wave

representation in small angle approximation can be transformed

2 5into the impact parameter representation by the following re­

placements :

•£U+1) -*• q2b2 , E( 2£+l) 2q2 f  bdb , (35)
1 0

2 r-L i."
p^ (cos 0) Jq( 6b), q J d cos 0 -*■ f 6d6 , ( 36>

where 0 , q and 6 are the polar angle, the magnitude and trans­

verse component of the proper momentum and i : q sin 0 'v q 0 .

The function Jq is the zero-th order Bessel function of the first 

kind. Defining T̂ °2)2(pi)dU(Q-Epi) = <Pq ,...,pn+1|T|Q£o>, one

e,in easily show from Eqs. (5), (13), (16) and (20) that T*° „(p.)
n + 2,2 *1

= ^n+2,2^Pi ^ 22’ ®ne i^ediately sees that in the impact parameter 

space the corresponding expression is just Eq. (4).

In the impact parameter space, denote the amplitudes 

^to and ^to ^  T22(b), and H(b) respectively. From

Eq. (34) the corresponding unitarity relation in the impact param­

eter space is given by

2 Im T22(b) = |lmT22(b)|2 + |l+i T22(b)|2H(b) . (37)

This is the starting point of I. At high energies, ImT22(b)



dominates over R e T ^ • Neglecting ReT22 in the last term, one 

can solve for ImT22(b). From Eq. (33), one has

Im T.„(b) = 1 - 1
22 Vl+H(b)

From Eqs. (26) and (36), the amplitude T22(A,0) (=T2 2 ^ a ,,cb*pa ,pb‘

is given by

T22(i-0) * V 1 <f22<W>A 5 T22(4) >

where ^ is the transverse component of k in the standard c.m.
*•

frame and the symbol "<>" designates a Fourier-Bessel transform

ij>(y) = <£-(x)>y = xdxJji(x)Jo(xy)

With the present convention, the optical theorem implies that the

26
total cross section is given by

2 2
°T 5 ^ 5  I*T22(o> = In Ii»<T22(b)>o .

The elastic differential cross section is given by

3t = ” 2 2 *T22(A)J = ff̂ ^ 22(b)>A^ *
W

2 2
where t = (p'-p ) 'v -A , in the small angle approximation.

From Eqs. (23) and (31), in the c.a. fraae, where is 

along the positive z-axis, one has

/d*n+2 Trt+2,2Cpiika*Jcb)Tn+2,2(pi;ki*kb)

E(2*+1)H*"V (y> • wq £ to oo

(38) 

)

(39)

(40)

(Ml)

(42)

(43)

Here, T , _(p.;k ,kK) is the unabsorbed amplitude for the process
ii"** £)  £  X d  D

+ -*• Po+,,,Pn+2 » anc* ^ ***e P°lar angle of the momentum k^.

In the impact parameter space, one has from Eqs. (35), (36) and 

(4.0,

20

g

<s/d
2wq nJ

= zp—  ifc 2wq n/d*n+2 > (“5)

uhere Tn*2,2(pii5) = Tn*2,2(piika’V >  Tn*2,2(pii0) = Tn+2)2(I>i;,t̂ )cb , 

and 6 is the transverse component of the momentum fc • From Eqs. (41),
Si

(42) and (44), one sees that the unabsorbed amplitude alone deter­

mines the elastic scattering amplitude completely. In I, the 

elastic amplitude T22 is complexified by imposing the condition of 

crossing symmetry. Since this complexification does not change 

the elastic differential cross sections and inclusive predictions 

significantly, for simplicity we will not carry out this step be­

low.

Multiparticle inclusive momentum distribution can also be 

calculated from the unabsorbed production amplitude. Undoing the 

phase space integral of the measured particle, one has from Eqs.

(19), (29), (30) and (41),

3 09
2E s H  1 n * 1 . (2£'*1)(2£+1)S*'0 (P)sf® , (46)

d3p q2 n=l I,I' 22 1 oto 22

where n' is the number of particles of the same species as the 

measured particle and

/



22
21

'f'ofo'P' 1 t<2f'*l)(2e*l>r,S /d*;tiT^j°*(Pi.P)T®“ i2(p.,p). C7)

I’ho energy of the measured particle is denoted by E. In Eqs. (>+6)

B't 0
.uni (47), the four-momentum p of the measured particle in Tn+2 2^P^»P) 

has been singled out from the set of p^'s. Also, the primed 

(n+1)-particle phase space volume element is obtained from

d‘i)ii+2 by removing the phase space volume element of the measured

i,.<n,(b«p,b'> . <T®t2)2(Pi>p ;i)><T®+2j2(pllPi6-)>
16uwq

11* (b;p;l>’) * 7. H 1 <n>(b;p;b') , 
n

b

(50)

p a r t i c l e .

,  (n)
In the impact parameter space, denoting H£, ^ (p) by

~,(n)(b.p.b,)) o n e  }^a s

where Tn+2,2(pi’p;~ ) 1 Tn+2,2(piika ,kb)’ Tn+2,2(pi,pi~ '} =

o(P>ik,»H'), and 5 and 6' are respectively the transverse 
n+^,/ l a b

f
components of the momenta k and k’. Here the symbol ”< >" denotes

~ cl 3

the modified "Fourier-Bes6el transform,"

, f2
<ip(y )> = /d yii»(jf)J-(xy), with x = |x|

~ x J
(51)

2 C ~ — = 8irq2 Z
d p  n = l '0 '0

/
CO f<X>

bdb J b'db' S* 0(b) H ,(n)(b;p;b’)
2,2

So.<b,) • 22
(48)

Note that it is a two-dimensional integration to be in contrast 

with the one-dimensional integral of Eq. (40). Substituting Eq. (50) 

into Eq. (48), one has

.2 OO /» /• r, t 2
2E

The schematic illustration of this expression is given in Fig. 3. 

l’rom Eqs. (25) and (47), one has

= n n  /d cos if* cos « T®*2,2<pi;ka’kb>p^'(cos T)

■ft cos y / a  cos 5 ' t®+2)2 (Pi»k^,k^)p£(cos y'), (49)

where y' and ? ' are the polar and azimuthal angles of the momentum 

k^* From Eqs. (35), (36), and (49), the expression corresponding 

to f.q. (49) in the impact parameter space is given by

d3a

d3p

2-it'
wq

jj n'/d»'tl|/bdb S22Cb)<T^2)2(p.,pi6)>| (52)

Note that positivity of each multiparticle contribution to the in­

clusive distribution is ensured.

To sum up, the dynamical input to our multiparticle absorption
jg

model is the unabsorbed production amplitude Tn+2 2^Pi;~^‘ 0nce 

this is given, quantities such as H(b) and H'(b;p;b*) can be cal­

culated from Eqs. (45) and (50). From Eq. (38) the unitarized 

elastic amplitude, and from Eq. (52) the inclusive distribution can 

be obtained. It is also straightforward to generalize our scheme 

to derive the expressions of multiparticle inclusive distributions. 

We will not detail them here.



({• • c.i ic~ions of the absorptive multiparticle production model.

In this section, from the unabsorbed amplitude specified in

1, wo derive the expressions of the diffractive amplitude and the 

•iu'iupive pT-distribution of pion and proton in pp collision, and 

compare them to the data. We will look at the case where the un­

absorbed amplitude is parameterized according to the independent 

emission parameterization for the cutoff function. In principle, 

here one should look at the case in which pions as well as meson 

resonances axe independently emitted. For the calculation of the 

elastic differential cross section and the inclusive distribution, 

it turns out, as we shall see more explicitly below, that it it 

noi important to identify these particles explicitly. Again, we 

:"■!>.si X continue to refer to the production process as p*p ♦ p * p * m . 

We ignore the effect of the type II interaction and defer the
*

consideration of this effect to future work*

The pT*-dependent part of the unabsorbed production amplitude

is giv*r, by

llore,- kaT * kbT = 0, p.. = fPifi * and Pi? is the transverse momen­

tum of the i-th particle. For convenience, we have suppressed the 

arguments which specify the longitudinal-momentum dependence in 

Kq. (53). We shall do so for other quantities also unless other­

wise :!ipt»cified. Recall That the two nucleons in the final state 

are the zero-th and the (nU)-th particles. The cutoff functions 

for nucleon and pion have been chosen to be the same. This is 

mainly for simplicity, although the data do show crude resemblance 

of the corresponding inclusive pT~distr5butions. The specific 

form for the cutoff function in Eq. (55) gives rise to a simple 

anabsorbed overlap function (see Eq. (70) below). The latter has 

a couple of nice properties* First, this overlap function has 

essentially a Gaussian shape in the small four-momentum transfer 

region and gradually turns into an exponential form. This 

crudely resembles the elastic data* Secondly, it possesses simple 

square-root branch point in t, which is expected from the t-channel 

unitarity. The position of the branch point there characterizes 

the long range nature of the exchange force involved, and it is 

responsible for the apparent break in the differential cross sec­

tion in the small Sti region at high energies.

It is iftportant to aaphasize that V 2 , 2 <FiT5kaT,kbT) **

Eq. (53) ia only definad in the standard e.a. fraaa. tfhen
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B
<S <= k _) is not zero, the amplitude T ) can be obtained

- ai n+e, t 11 -

by transforming it into the c.m. frame in which the transformed

‘onnervation of transverse momentum for the present case also 

.tumid not |*lay an important role for the shape of ft(b> and

momentum of k is along the positive z-axis. This transformation It* *,l*ip;h*) ♦ from Eqs, (**S> and (S?), one hasa

is a rotation along the direction perpendicular to both the 6 and

the z-axis, and with an angle (~y>. Recall that 5 * |£j s q sin y.

At high energies* the ratio 6/q is small* so y * <5/q, tinder this

0rotation, the following replacement should be made:

Pit ' Pit ‘ pit -i/<! = PiT * *i f • <ss>

where x. = p../q. At high energies, x. is the corresponding
2 liw X

Feynman scaling variable- The longitudinal component p., does notX £#
change significantly under this rotation ( p ^  *** - p^*4/q * 

p^L^t <JU* to **** fee* that the experimental average transverse 

momentum C*vO.SS GeV/c) is much smaller than q (e.g., 'v? 6e¥/c 

at 100 GeV/c). Rotational invariance of the amplitude gives

B & n4l
Tn*2,2(piT5* } S Tn+2,2(?iT**i~ i0)* Cs?)

When pion average multiplicity n is large, it can foe shown 

that for a Gaussian cutoff function, the constraint due to the

H(bS 2 t~“* < t 
*wq pa % f m n+2 Tn+?,2CfiTi! )Tn+2,2<PiTi0>>b ’

5! A itTwq t£s§

where the symbol M| designates the operation of integrating

over the longitudinal phase space and of summing over n. From 

Eqs. (S3) - CSSJ and CSSI, one has

tltb> * < lexpC~ \ * &  t - JU J jf, „ *
?wq | js§ * * 1 l | n h

!'»’!■ thtf derivation «tv £q. (S3), the following formulae w< r« used:

s0*lfy**«fk> * J ^ p ^ b i a ^ b )  * 2 t JnCp?fe}Jn«t>J cos ny,

f 1
«Cx~x*50 *

with y being the angle between p^ and f . the function J is the 

nth Vessel function of the first kind- Performing the integration

conservation of transverse momentum does not change the shape of over the longitudinal momentum phase space and summing over n, one

H(bip;b*> significantly. In fact, there is no change in H<b). 

Although our cutoff function is not exactly a Gaussian, with a 

general sharp cutoff shape ar.d the fact that the average pion 

multiplicity is large, we expect that the constraint of the

has approximately 

HCb) * fTc <e«pC-fS|
X T I ~ j  .

whei^r arid x# are the m e  x-moments of the normaliaed inclu&ive

CSS)

<s«>

<Sli

<62>



rapidity distributions for nucleon and pion respectively, n is 

the average pion multiplicity, and E is the lab energy of the 

incident nucleon. The parameters F and c are to be determined. 

The power behavior Ec is due tc the property (c) of the KP~like 

model. For completeness, we include the corresponding unabsorbed 

overlap function for the multiperipheral model cutoff function 

in ref. 27.

We proceed now to discuss the approximation involved in

2
arriving at Eq. (62). For small 6 , we expand the exponentials

2
in L*qs. (59) and (62) in power series of 6 , Comparing the cor-

2
responding coefficients of the 6 -powers* one gets for the first 

few terms

~  {lh % FEC , (63)
?wq L,n

r2-  ("l1 x?>. FEC(2xj? + n x h  , (6*0
2wq i - g  i  L,n w ir it

_ n+1 u n+1 o 2 c - 4 ___4
■r——■ {-3 I x“ ♦ A_B_( Z xf) )T * FE [-3(2xM ♦ n x )
2wq i-Q i 1 1  i=Q 1 L»n " * *

27

+ X1B1(2x^ + n^x^)^3 . (65)

2
The coefficients of the zero-th power of 6 relate the overall

B
factor to the unabsorbed total inelastxc cross section, o. =xn

2irFEc (see Eqs (39) and (41) for normalization). In Eq. (59)

2 2
the left-hand side reduces to {2x^ + nx^}^ n , since there are n 

identical pions and two identical nucleons. Hence, from the

n

»tci ituiî nn of and x̂ , the coefficients or the first 6 * -power 
ar*' I.

Ti in estimated1 from the data that at 102 6e¥/e,

x * 0.04 and 5L >
« rf

with nfl = 6.6. We then neglect the pion contribution on both 

sides of Eq. (65). Relation <6S) reduces to

2=? * W xo * 4l> V »  ' Wt6*-»♦»!»,>5* •

It is **ell known that high energy data show a leading particle 

effect. To the extent that one can ignore those events where the 

final nucleons are travelling along the same longitudinal direc­

tion in the c.*. system, and the fact that one can assume the two 

proton x-spectra are not strongly correlated, we can approximately 

write,

= • < « & . .  * *•» reC 3  *

*{*o)L,» = ‘ 2v"» 1x0 *JS ’

From Eqs. (67) - (69), the coefficients of the second S2power

2
are approximately equal. As $ increases, to get a reasonable 

approximation, more precise equalities of the corresponding co- 

efficients of higher 6 -powers are required. It is important to 

note that the exponents in Eqs. (59) and (62) are negative. The

(6?)

(68)

(69)



29

overestimate or underestimate of one moment may be balanced by

the discrepancies cf opposite sign of the alternate one. For the

—2 2 2 
pion contribution, since x 6 is always much smaller than X-. in

it 1
2 2 

the 6 -region of interest, we neglect the -dependence here. For

the nucleon contribution, higher moments are expected to be close

to the peaks of tr.e x-spectra near x = ±1. So the approximation

for the higher rocaents is better. In I, with our simple parametri-

zation, the differential cross section for high energy pp colli-

2
sions can only be fitted for -t $ 0.8 GeV . This could partly be

2
that the approximation is inadequate at around this fi value.

Ignoring the pion contribution, one has, from Eq. (62),

FEC t-(l + AVb2+b-) r-r---- T*
H(b) = ----- 5---- exp[-A( M b 2 + bf - b_)] , (70)

♦ b-)3/2 n n 
n

w i I h

A = Xl/*Ti aXld bn = 2B1*N ' (71)

The corresponding unabsorbed overlap function in the t-spa.ce is 

given by

H(t) - FEC exp[-b-( Vfi2n 2 - A)} . (62a)

The dependence of x̂ . on energy in high energy region is weak. We 

take to be a constant.

Thus far we have treated the production process of the type 

PP -* pp + nff, with all pions being directly emitted. Allowing

30

<;omo of the pions to be from the decay of meson resonances, the 

pion contribution to the exponent of Eq. (62) should be replaced 

!>v

-n B. ( V x V  ♦ X ̂ - A,> - - £ n B. (f̂ x? 
n l T u 1 1 .= 3 1 3

- i n .  B,(?x?52 ♦ Ju - A,>
3

with n = En.N., where N. is the number of decayed pions from the 
" 3 r  3

j-type resonance and rL the corresponding average multiplicity, 

iet us estimate the contribution of this term compared to the

nucleon contribution. For instance, from our previous study of

18
the multiplicity distribution, at 102 GeV/c, with the emission

of ir and an effective B meson, we found = 0.7. On the other

hand, for B with N. ~ H , we expect xB < N.x_ = 0.16. The ratio
J & 3 "

2
of the coefficients of the 6 -terra coming from the corresponding 

nucleon and B contributions is given by

sJ'vS ’1,0 •

So the t-dependence from the B is much weaker than that from the

2
nucleon, at least near 6 ~ 0. Thus the inclusion of the effects

from meson resonances essentially does not affect our approxima-

tion of Eq. (70).

In Eq. (62), the lower bound of the rms value given is

the mean value x.,. From the shape of the nucleon x-spectra, one
N

deduces > x^. In I, the mean value for nucleon was estimated 

from that for pion together with the asymptotic relation of
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eneiy.v wnservdtion. Trcm the two sharp peaks neai’ tin’ ends of 

the nucleon x-spectra, we estimated a ratio = 1.3, suggest­

ing

xN - 0.9

with Eqs. (38), (41), (42) and (70), in I it is shown that the

amplitude T22 in its complexified version together with an added

proper-Regge-pole term gives a reasonable description to the pp

2
elastic scattering data for P j ^  £ 10 GeV/c and -t < 0.8 GeV .

The elastic data included are the total cross section, the Re/Im 

ratio at t=0, the slope parameters of differential cross sections 

at various t values, and some sample differential cross sections 

at 12.8, 19.2 and 1500 GeV/c. A typical solution has the param­

eters

F = 24.3 GeV

b- = 2.97 ,

-2 X = 0.43 GeV

c = 0.09

From Eqs. (71) - (74), one deduces

X1 = 0.39 and B1 = 1.65.

The inclusive pT-distributions for pion and nucleon can be 

calculated from Eqs. (48) and (50). Consider first the nucleon 

inclusive p^-distribution. Ignoring again the constraint of the 

transverse aoaentua conservation and the pion contribution to the

6 -dependence, from Eqs. (48), (50) and (57), one arrives at 

H(b;pT ;b’> « <f*(!PT+Xjf6| )f*(I p^+X^S| )>

(72)
(76)

Using the relation

J (Ab)o

-iA* b (77)

>'iie Im :'

il'pj f*(|pT+;N«|)f(|pT*xN«'|> b|f(b)|zc

From Eqs. (76) and (78), it follows that

H(b;pT ;b») « / d Zbd2«d26 ̂ 0 (5b)J0(«bMf*( | | )f (| p^i^S * | )

(79)

(73)

<7*0

•e N |f(b)(

Substituting Eq. (79) into Eq. (48), after some calculations, we 

have for the nucleon inclusive momentum distribution,

(75)

2
« /d2b / d 2b«sj2(b>s22(bf) /d2bw| f(b)| 2f*( jbVXjj-b"| )

d PT (80

where from Eq. (38), S22<b) * 1/ Vl+H(b) . Under a similar ap­

proximation, the pion inclusive p,j,-distributicn is given by



« |f<pT)|2 / e 2b|s02(b)|2 /d2bjf(b)j2 jf(|b/xN-bj)|2 ,

u‘*t

« IrcpT> (2 * |/bdbf(b)jQ (pTb)|2 . C81)

This is the same as the unabsorbed nucleon p^,-distribution, owing 

to our assumption of universality of the unabsorbed p^,-cutoff

Junction for the different particles.

2 -> o
One can easily calculate do/dpT by integrating d~o/d p

ovt’t' tho azimuthal angle of pT * The expression in Eq. (80) is quite

involved. It needs at least a triple integration. In practice, one

may approximate the obtained S22(b) with its parameters given in

i'.qs. (72) - (74), by two Gaussian functions:

2 o
3 -d.jb 3 -d.bf (82)

S„(b> - 1 + I D. e 1 = i D. e .
22 is 2 1 i=l 1

The parameters dj_ and Dj[ are listed in Table I. The error is ^2%

for b2 < 30 GeV~2 and is ^8% for b2 i 150 GeV 2. We have also

checked that the inclusive p^-distribution obtained within this

approximation is not sensitive to the variation of §22(b) within

the range of errors quoted. Using the relation,

2 2
t -z?b2 i z_z«
Jbdb e * J (z b)J (z b) = — - expC----=— 3 I (----) , (83)

n n 6 2z^ 4z^ n 2z^

and substituting Eq. (82) into Eq. (80), one has after some

calculations,

r -> -(d.+d.)x2b2
«r /bdb|f(b){ £ t D-D.e 1 3 N (F*(x d . ;b)F (x d . ;b> 

dp£ i * j  1 3 o  n i  o n 3

33

Fn<xtl}b) = / b ,db,f(b,/x)Jn(kb,)In (2dxbb*) , (85)

where I is the n~th order Bessel function of the second kind. This 

expression needs a double integration. Furthermore, we approximate 

f(c) by three Gaussian functions:

3 o (86)
f(b) .£ C. exp(-c.b ) , 

i=l i —

where the parameters c.. and are also listed in Table I. The

o _ o
porventapo error is within '''H for b" < 20 GeV and %3% Cor 

“2
!*' i 150 r,eV . We have checked that this approximation of f(b)

gives an error of 14$ for the unabsorbed p̂ .“distribution which can

be directly calculated from Eq. (81). Substituting Eqs. (82) and

(86) into Eq. (80), and using Eq. (60) and the relation, exp(z) =
00

Ia(2 ) * 2  £ I (z), we have after some calculation, 
u n=l n

^-4- * .? D.D.C, C.C C aTiaT^L?^. .
xjk 1 3 k t m n ik j£ ljkimn

T tmn
2 —2

• expC~p_(M. .. m )/x„3 tan\T nk/mn nk/mn N (87) .

with

*k = ck ' V  aik 1 di + V V  aU m n  = °k + c/ * c« + cn* (88)

1 - * , - 1 2  . -1 2, 
ijktmn " ktmn " taikak aj«a£ ) <89)



” 1 “ 1 —I —1 2 2
^  | . P . . " f If _ ^ ̂  • 1 ' fl ) “ ll . * (i » * ( 3 <  n ) 1 /  4 L  , ,. n •

i iktmn M mn ik ik 3 * k x i 3 k*mn

N • • | « - a- a« / 2 a », a • « Lj«*.a 
a]Jccmn k I ik ]£ l^k^mn

We have used this expression for numerical calculations.

With the parameters of I, the pion and nucleon inclusive 

p^-distributions are calculated. The theoretical predictions and 

the data are shown in Fig. 3. Since the p^-distribution data in­

tegrated over all x are not available, we illustrate the data at 

somo fixed x-values. For proton, the experimental x-spectra peak 

d o s e  to x=l. We choose the data at x=0.8 (0.7 - 0.9) and from 

100 GeV/c up. For the pions, the x-spectra peak near x=0.

So the data are taken at x~0. The predicted proton-curve is shown 

as the solid curve. It is to be compared with the data points il­

lustrated. Notice that although in the small pT-region, the curve 

is somewhat sharper than the trend indicated by the datai in view 

of the fact that it is a parameter—free prediction, the curve does 

reproduce the gross feature of the data rather well. The pion 

distribution predicted from the assumed universal shape of the 

f(pT > function is shown as the dashed curve. It is to be compared 

with the data presented as the curve with crosses. The agreement 

here is reasonable.

In our calculation, as mentioned earlier, for simplicity we 

did not consider the "type II" nonproductive interactions which 

correspond to events of the type: pp-»-p*p + ... and pp -*• p*p* + ...

wlu'po p* could be the nucleon resonances and also the nucleon- 

I’lustoro (or fragmentations). If we identify these events as the 

diffractive dissociation events, the data show that they could be 

of the order of 15%, say at 100 GeV/c. It is conceivable that 

with the inclusion of these events the predicted inclusive distri­

bution could be altered, if the cutoff structure for these events

1 1 1 1 1 1 :,• out to be markedly different from what we considered here.

A I ;;<> in our calculations, so far as the longitudinal momentum in­

formation is concerned, only the moments x„ and x are included.
N 7T

Details of the longitudinal exclusive distribution have not been 

specified. Therefore, further formulation of the model -4\th the 

inclusion of the diffractive dissociation type of events and 

proper account for the exclusive p -distributions, etc., are still
Lj

needed to provide a more refined description of the data.

36
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Table I

l\irMmeters of Gaussian functions for the approximations of H(b) ri 
and f(b).

fl(b)

n. d .
i i

l. o.

-0.678 0.048

-0.033 . 0.016

f (b)

C. c .
1 x

0.423 0.246

0.138 0.050

0.043 0.013

I'ig.

rip.
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Tigure Captions

In. The production amplitude T _ n approximated as the

product of the unabsorbed production amplitude and the 

elastic S-matrix. This can either be in the impact 

parameter space or in the momentum space.

lb. A schematic illustration of 2 to 2 inelastic scattering 

amplitude, Tcd>ab(b) = iab(b)T®djab<b> •

2. Diagrammatic representation of inclusive momentum distri­

butions in the impact parameter space. The open line 

could be either pion or nucleon.

3. Pion and proton transverse momentum distributions. Solid 

curve is the predicted proton p^-distributions and the 

dashed curve is the predicted pion pT~distribution.

Data points of nucleon distribution at a mean value 

x = 0.8 (0.7 to 0.9):#NAL 303 GeV/c; x, 0, o are at 11.8 +

11.8, 15.4 + 15.4 and 22.5 + 22.5 GeV ISR energies by CHLM 

collaboration. The data points A and V are at 1060 

(’.eV/c and the x interval: 0.85 - 0.95, also by CHLM 

collaboration. The curve with crosses shows the experi­

mental pion inclusive p^-distribution at 23.2 +23.2 GeV 

ISR energy and x=0, from Saclay-Strasbourg collaboration. 

For the data, see Refs. 28 and 29.
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For completeness, we give here the derivation for the unabsorbed 

overlap function with the multiperipheral parameterization. De-

i Lne the momentum transfer dependence of the n-particle pro­

duction amplitude to be

„B n
Tn+2,2 * ilof(qiT)

i
where q^, = I P-s-j-* Following a formalism similar to Henyey's 

3=0 n+1
of ref. 8, we replace the transverse phase space n d p._

2 " 2 i=° lT
?iT-IcaT_}cbT^ by ^ qiT* The unabsorbed overlap function

is then given by

11(b) - I *{/f d2q.Tf(|q.T+v.6| )f(q.T )>, „ >, with v. = E x . .  
n 1 = 0 11 J'»n 5 x j- 0 j

Comparing this expression with Eq. (58) in the text, one sees 

that the only difference is the upper limit of i; the former 

is n and the latter n+1. In the MP case, the conservation of 

transverse momentum is automatically satisfied. Following the 

treatment leading to Eq. (62), one has

H(b) = FEC<exp[-2B (Vx26 2+A2 - A. )-(H -1) (Vv2<52+ -X )]
■‘■ N j. I T T  l l j j *

- . n-1
where v xs the rms value of E v./(n -1) over the longitudinali-1 x v

distributions. Note that v is bounded by x„; i.e., v>>x .
N N

This leads to, as mentioned in the introduction, the difficulty 

for the MP-parameterization (see refs. 7,8 and 9), not present 

in the IE case. For further discussion, see ref. 1.
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