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cThis paper is an extension of a previous one. (1). Tne two cases of tully
developed turbulent flow passing a flat plate at zero incidence, .and through a
tube are considered. The laminar sublayer whose thickness 1s usually ‘considered
as constant at a given Reynolds numbér is postulated,.in effect, to vary with
the heat flow. The effect of natural convection is taken into account, despite .
its minor importance in predicting the heat transfer by forced convection:in
the turbulent regime. A general formg}q,ofiyusgalt number 1s.obtained as a
.function of Prandtl, Reynolds, and Grashof number. The heat trarsfer uy natural
convection alone becomes only a particular case and the husselt number 1s readlly
found by dropping out the term containing the qunolds number.. ualculated re-
aultS’égree”eicellentlyfﬁiﬁh’eiﬁefiﬁénté aé"édndﬁcied"by prévious 1nvest1gator§.;a

GRS

g42 003



o

NOMENCLATURE

The following nomenclature is used in the paper:

A = a function of x |

a = maximum amplitude of wave, - ft: v

B = a function of x

c = specific heat at constant pressuré Btu/(1b) (deg. F)
d = dianeter of tube, £t

e = base of natural logarithms =~

F = force per unit mass. f/the)’

£ = frictioanactor,'"t/KP32/2) for'plété’”'

: grav1tat10nal acceleration ft/(hr)

/]
L]

g
.

Grashof number Hlth respect to x o

h - average film coeff1c1ent of heat transfer from a . plate,, Btu/(hr)(ft )(deg-F)
h, = local film coefficient of heat transfer from a plate, Btu/(hr)(ft )(deg F)

hy = film coefficient of heat transter from a tube Btu/(hr)(ftz)(deg\F)

= Cdlburn's factor of heat transfer
k = thermal conductivity, Btu/(hr)(ftz)(deg F/ft)
L = total length of the plate, ft
p = pressure, 1b/ft2
Pr = Prandtl number ‘
q - = rate of heat flow, Btu/(hr)(ftz)
St = Stanton number, Nu/(RePr)
T = temperature, deg. F
t = time, hr
u = turbulent velocity in x-direction, f£t./hr
maxiﬁum turbulent velocity in x-direction, ft/hr
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velocity of mean flow in x-direction, ft./hr

up * u , maxdmun instantaneous velocity in x-direction, ft/nr

corvective veloéity in x-direction, ttv./nr
free strean velocity in x-direction, ft/hr
mean velocity of flow throuzh tube ft/hr
velocity of mean flow in y-direction ft/nr
coordinates ‘

thermal diffusivity (ft)z/(hr)

thermal coefficient of expansion

velocity ratio

kinematic viscosity (ft)z/(hr)

dénsity, pef

temperature 6f difference, deg. T
ﬁhickness of boundary film, ft.

thickness of laminar sublayer, ft.

2.
shear stress at the boundary wall, 1lb/(ft")

~
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A THEORETICAL ANALYSIS OF HEAT TRANSFER

Bl

IN TURBULENT CONVECTION -

L A
Yan Po Chang

 INTRODUCTION

In a‘preQious papef, refetgn;e.(1); phe:concepﬁnof wavé,motiqn hgs.béen
used.for-the predictioﬁ o? theiheat’tra$s£er go;ffic;ent ofﬁngtural conyéction,
with and without boiling,.over a horizontal surface. In the present paper thisw
concept is extended in anﬁéptempt'to obté;n aAgéneral formula for heat transfer
for both natﬁral ané.f;rcéd‘éon#eétion in ihé turbulent regime.. A two-dimensional
flow over a smooth flat plate at Zero. 1nc;dence is con81dered and 1ts result
is extended inmedlately to flow through a smooth tube , ' ,

When fluid or1g1nallv at rest is neated fron below, Benard (2), Rayleigh
(3) and others have shown that a stable cellular wave exists in a layer ad-
Jacent to thn heating surface. Many researchers have con31dered that this
simple form of wave is also présent in a fluld heated from above (h) Ostrach
(5) opines that the cellular wave would represent gnly“the'second or final stage
of motion,de§elopment for flu;a he#ted from bglow._ With the first phase ofJ
motion‘deveiopmenﬁ stiil unknown? a(hydrg@ypgmic wave was'assumgd!in reference
(1), to represent this first phaée and a satisfactory result was ébtaiqed for
natﬁral convection'géé‘for boiling, |

In 1am1nar ilow at comparatlvelyvlow speed thls kind of cellular structure

has also been iound by experlments (6), (7)
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Turbulent flow in tubes has been examined experimcnpclly by Fage and Towneed
(8)s The maximum values, ul, vl, '1’ of u, v, w, the three components of the
turbulent velocity in axial (x), normal(y) and tangential (z) directions of the

tube were measured., It was found that though Uy, vi, “1 becoms zero at the

wall, yet ul/ﬁ, where u is the mean veloc{ty, tends to become constant, vl/ﬁ

decreases to zero and wl/ﬁ increases to a maximum as the wall surface is approached,

wWhile the flow tends to the laminar tyve at the wall, the motions of the particles
in the laminae are sinuous, No particle is seen to move in a rectilinear path.
The ccﬁciahcy of ul/ﬁ and che siﬂﬁocc motion of the particiec near the wall are
verytétriking features. Though it may ce'a good premise that a wave motich B

may exist in the so called laminar sublayer, its nature is still unkmown, and,

therefore, for comvenience it will be only referred as "vave motion" in the
following paragraphs | |

In viscous flow, vorticity must arse from the wall and sheets of vo*tlces
are formed, A vortex sheet, in fact, 'is unstable and will roll up in tbe manner'
shown in Flg. 1, as a result of the joint effects of the natural convectlon and
of the mean flow. - |

Theﬁuniversally accepted physical pictufe of heat cfcnsfef:in turbuleﬁi “
flow is that of pure conducticn in the laminar sublayéf;:cohduciicn’and con-:
vective mixing ih the transition zone and a prcdcﬁlﬁance ofhturbuiehtfcdn;
vective mixing in the turbulent core. In thié capcr tc;sncict&fe'is aiso:ac;”
cepted, except that in the laminar suciaver‘the motion is pcstuiated'tc ccnsict
of three parts, a mean part which is laminar, a tu"oulcnt part and a convective
part which are periodic, In the present analysis, the eiiectlve thlckness of
the laminar sublayer, which is usually assumed constant at a glven Reynolds num-
ber, will vary with the heat tlow, Thereiore, in the follow1ng paragraphs the
term "sublayer™ refers only to that of isothermal flow, while the etfective sub-
layer is called "boundafyfrilm“ and is designated by § . Inside this film and

~ CC7
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somewhere above it, a periodic motion is postulated to oxist. At 8 certain dis-
tance from the well thls matlon will be so much deformpd that rollslot vortéx
starts to form. The rPglon between this dlstance and the boundary fllm is hch
termed the “wave layer" and is denoted by a, Follew1nﬁ the same reasonlnv in
reference (1), the mag nltude of a should be aporox;mately'equal to that ofS’

The combined bcundary {ilm and wave layer is called the "zross boundary fllm".

The method of apnroacn used 1n this paper is a little different from that

in the previous one, although the fundamenta] concent femavns unaltered, Of
course, if the method used in the previous paper is followed, the 8ame results
can also be obtaineds The author feels, however, the present approach has the
following advantage: The analysis will be bhased simply on a Iayer of vortex
rolls in the wave layer and will riot require the postulation of a particular typs
of wave motion, In this mper only two-dimensicnsl flow at moderateuvelocity is
considered, and thus the effects of compressitility and the energy of dissipation
¢an be neglected, The model postulated may be sutmarized as'follows:

l, The motion of fluid near the wall is assumed as to follow a sequence of
developments laminar, sinudus, Vortex rolls and turbulent, ‘The heat
flow will destabilize the laminar motion and, thus, will shorten propor-
tionally the distance of this transitione To facilitate the analysis,
the sinuous motion as well as the vortex rolls are assumed as regularly,

" but not necessarily uniformly, distributed along the direction cf flowe

2 Thefrotating‘speed‘of'the‘vorﬁgx”rolls depends on the Vslocity gradiesnt
of the mean flow which is affected by the heat being transferreds The
higher this rotating speed, or the vorticity, ths higher will be the vel-
ocity gradient, and also the temperature drop across the boundary film.

- Thus, a direct portionality between the velocity'ahdithe‘temperaturé
drop at the boundary film will be established.’ -

It should ‘be ' noted that engiheéhiﬁg science so fér'has notvéchieVé& a’ com-

plete understanding of the mechanism of turbulent nmtlon, especially with
g42 00C8



heat tranoier, because of 1ts extremelv comphcated nature. A1l that car be
| done is to make plausib’e assumptions about tne veloc:.tv dletnbution in the
boundary film and thus to estimate 2 corresponding temperature dlqtnbutlon.
If the calculated results of heat transfer are comparable with experimental

data, the assumptions would be justified.

VELOCITY DISTRIBUTION ACROSS THE GROSS BOUNDAHY FILX

The von Karman universal velocity distritution for turbulent flow is
gererally considered as the best available today, but its validity in the sub-
- layer remains uncertain, especially when there is heat being transferred,

Lees and Lin (9) have fourd that if heat is being trarsferred from the
wall to the flﬁid, the stability of the laminar boundary layer in compressible
flow is decreased, that 1s, heat transfer has a destanilizing effect compared
with the case of no heat transfer. It can be takeﬁ for granted that this con-..
clusion applies also to incompressible flow., -

The von Karman velocity fields in the transition zone and in the laminar
sublayer are, respectively as follows:

3¢ =5 [1 + In(/5)]
6-:‘: e y#

where u* = u/4/( ‘Co/p) and y* = (y ﬁyﬁ )/¥ , with u denoting the mean
veloeity, to the shear stress at the wall, v the kinematic viscosity, and
P the dersity of the fluid,
-The mean flow in the laminar sublayer is by definition laminar ard u, ¥,
the components of velocity in the x-direction along the wall and in the y-directioh

normal to the wall will satisfy the-following equation, -since . P*&/ot*®

is negligibly small in comparison with 3“2/ 2y ~« In current practice
R 2a 2d
Vsgi=%35¢ * v ;
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the velocity gradient is.considered as constant, or, ih other words, the terms
in the right side of the above equation are omitted. This approximation gives
a discontimious point at the border between the laminar sublayer and the trans-
ition zone. Since a parabolic curve generally represents the velocity distri-
bufjon in laminar motion, a functien ofﬁi'maﬁ be assumed as a’substitute for
these non-linear terms. This assumption ie justified in view of the fact that
the velocity profiles at différent positions along x-direction are congruent
curves, Along this line of reasoning, the velocity distribution across the

laminar sublayer may be expressed by the form of
where A and B are functlons of x only gnd are to be determined by proper boundary
condltnons, The v31001t) gradient at y =Zdz w111 be

'aw] = /%
P

/ ,
29 y=25, - “Z

and at the boundary surface, tnat 1s at y s 0

_‘2&] -5 -
24 = PP (3)

Applying equations (2) and (3) to equatioﬁ (i); the -functions A aﬁd B are ob-

tained as follows:

A= Lo L e ] / e
A= e dBEE-E

substituting this into‘eqﬁation (l)'iields E - -
o L . [T, -5 I S W ey

By the basic assumpption 2, the componént ﬁi of the turbulent velocity in ‘the

sublayer shonld be of ‘similar form ‘as equation (5. ~Sirce, however, uy has to

vary with the heat transfer, .the effective thickness should be substituted by

( &% @), ‘the thickness of the gross boundary: -'fim-,* which will vary with the -
g2 010



heat flow and be determined later, Thérefore , at the upper surface of the. gross

boundary film where y » & + @ =2J" , the mean velocity may be written as

3 =Emse£E . e

and at the upper surface of the boundary film the Velociti,;é
Z| _» =7 3% ‘*LVF. | ,i»A -

Now, consider the convective motion due to the bouyant force, Since the
average thickness of the gross boundary film is represented by the distance
from the wave node to the wall, Figure 1, and since the velocity across the plane
perpendicular to the wall through thls point can be easily determined, the study
of motion is, therefore, centered in thiS“#ertical-piane. Following the same
reasoning as given in reference (1) and considering the wave ngde as a relative
singular point of m otion, the horizontallcémponent of cbnvective'veloéiﬁy at‘
y =Jd is given by | -

lyme =F2r = o e

where (6 denotes the thermal expansion coefficlient of the fluid at the mean
temperature of the transition zone and the gross boundary film, and 6‘;‘=‘T¢_—75

the mean temperature difference between these two regions.

THICKNESS OF BOUNDARY FIIM

The thickmess of the boundary film can be similarly obtained by following
the procedure given in reference (1), that is by adding equations (6).and (8)
to get the resultant relative velocity and equating it to the velocity of a -

fluid particle induced by the wave, if such a wave were assumed to eSrist.4 An

~42 (11



alternate method, however, is introduced here which is not only simpler buf. also
obviates the arguments in connec'gion with the exact type of wave Hmot,io\n, as men-
tioned previously, _ |

It is obvious that the heat flows into the gross bouﬁéar& film mainly by
conduction and then is transported by lumos of fluid, or the vortex rolls, to
the so called transition zones Therefore, the fluid is actually heated sudden—
ly and periodically within éach wave length, and detailed heat-flow in each’
wave length is at an unsteady condition, When the whole system is considered,
the average peéenetrating depth of heat by conduction will be a. defmite value for
a given get of heating and flow conditions, The size and the angular valocitjf '
of the vortex rolls must be of such mgnitudes‘ as to be just capabie of carry~ "’
ing away the heat transmitted by conduction through the boundary £ilm, This
statement will be true if“ the ’phermal cqr}duqtivity of the fluid is not so large
as the conduction heat would penetrate':be’ybhd- the layer of vortex rolls, Thus, |
it will not apply to the case of 1iquid metals which have very large thermal
conductiv:.t:.es. ' : ' '

By following the same procedure of reference (1), the time reéquired to

heat up the fluid to a depth of the groes boundary film at temperature T, is,

t“ééu

where K is the thermal diffusivity of the fluid at. the mean temperature of the

’

gross boundary film, This should be the time required to displace the heated
fluid 'i'nsidef the wave layer byt.he cooler fluid in the transition zone,

The vortex rolls would have to make a comﬁle"tfé' rotation within this pe'ric;d:
of éime. It ia obrious t.hat ths lumps of fluid will tend to t‘orm rolls around

the wave node downstrea.m.

942 012
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Then the angular velocity of the vertex rolls is = e T e T .

w = [2((4, 25 -Z 4) +u}] o : | (9)

R

vhere the sutscripts 24 and § indicate the positions of the 1eve1 .By;t?hg:
foregoing reasoning the time required for a complete circulation must. be equal
ams g*

(10) -

to the time given by equation (y). L L
| 204,y =& p)+u, ‘_""( . )
Substituting values of & 25, O s and uu,’d\ from equations (6), (7) and

. - s f . . . . . R . |
(8) into equation (10) yields an expression by which the thickness of the boundary |
film can be calculated. Equation (10), then, becomes

- _ Y o
+*‘¢/”>+zf—g P L

However, a simple expression for the thickness J° can not be obtéined ve_xfy" easiiy
from this cubic algebraic eqhgtion. ‘Assuvming the view that in the regime of
turbulent flow, the effect of convective motion is usual y 1nsignificant in .
compams’on with the steady motion, the second term in the denominator of the

left side of equation (11) may be temporarily disregarded, With this simpli-

fication, the thickness of the boundary fihn is obtained as
FYYG Pr ‘ (12)

The general praptice is to employ a 'dimensiqn,less quant.it,y, f, called the "Fanning"

frictmn fact,or, instead of usmg the wall shear stress. It represents the re- C
sistance force of the plate divided by the area of the <'urface and the dynamic

pressure of the flow, tnat is f = /(P(f'/z) Thus, equation (12) can be ex-

pressed altematively by

942 013




=‘¢r‘u_/_(’+f=r") o w

Now, by the aid of equations-(7) and (13)"the"wv"'e_l_ot_:itj‘g‘radient in the

R ]
boundary film can be obtained:with good approximation as

Uy I A L )
——— B e ?—-,b ! ( )

It is seen that the velocity gradient near the heated wall increases with an
increase of the Prandtl number. This result is very encouraging, because a
complete 31mllar1ty between the temperature and veloc1ty ratios may be obtalned ’
in the boundary flln as w111 be seen 1ater. |

mquatlons (12) and (13) were obtained under the condltlon that the conuect1ue
velocity can be neg]ected. This 31mp11f1cation, however, may lead to some excessxve
error when the tenperatu"e dlfxerence between the heatlng surface and the fluid
is very high and the Reyrolds number is not sufficiently large. If this is the
caseQAthe value of & may be conveiniently obtained from eQuation (11) by the
method of iteraticn. To show this procedure,'equatieu (11) is written in the

following form:

e
T - < _
7 R, 9B Bac ' o
ff( ’5 -z—:r‘") %f—r“ = - as)

To determine the value of 5\ an’ approxxmate velue of é‘ is vubsfltuted 1nto the
right s;de of equa tien (l;) ard the new value of é‘ is evaluated. Thls new value
of & is then substituted into equatlon (lg) ard the uroces° is repeated urtll
the valueq or"8 1A both sides of equatlon (15) do not change apprecmably. In
fact, 1f the value of J° 1in equation (13) is used as a flrst approxxmation ane’

inserted into the right side of equation (15) the calculated value of §

842 014
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should be quite close to the exact value, because of the minor role of the
convective velocity in turbulent flow. Thus-
J_’.

S - Cre )3 ,
2 jo)‘
[,,mm/ O
Nz

In the case of natural convection, the Reynolda number vanishes and equation

(18) reduces to tmnt given in reference (1),

- HEAT TRANSFFR COEFFICIENT

When the t} uckness of the boundary fi lm 13 knovm, the heat. t.ransfer rate
can be pmcu.cbed by c,onslder ing it as pure conduction hrough the bqqndary,f:;lm;'
for this film is very thin and, therei‘ore R the heat-Tlow throush it will change
py only a neg;l.ligible amount due to the fluid mﬁtion. Comnaring the Fourier's
equation of heat conduction and “Newton's Law of cooling" the local i‘ilm

coeft‘icient, dil_ be
b}-—iﬁu—» L e

where t.fxe subscripts s‘, and' a indicate the conditi@ns of free stream and of the
boundary film, respectively., Since the influence of heating has already been
taken into account in the determination of the velocity,y Y at the boundary film
it. would be advisible, by the basic assumption 2, to take Ooa/ss as equal to
s/, This can be evidenced by the fact that U;/;g is approximately
equal to @/ @esd as "iven by Martinelli (10) for conoiderable ‘ranges of Reynolds
and Prandtl mnnbers. Substitutmg ug/a £OT BoalBeg in €8s (17) will yield the -
local heat transfer coeff:.c:.ent for flow over a flat plate at. zero incidence with
a turbulent boundar-y layer,

g4z 010
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'F’Rvu ($+6 x//+an =S ) v w18y

and the local Nusselt rmumger is.

xhe _ £ po (3 _z_'" |
Na, Roo 2 (7' 1+ 22— S ¢ 2 A

For a sﬁooth plate the Blasius formla (11) for shear stress al the wall may

be used,

R vt
Reza l‘

T, -a 0275

Eq. (18) .and (19), then, become . -

0 00T

b= é“-(oozz/-r """" | o
SRS,

Nu, — (00224 —0:05995 08
L= (oot I RS
pr ETE - (21)

The average heat transfer coerfiqlent'fbr“afflat platé of Iengih’L-sbbuld be

dc*nrvwned as ioxlows

/1 (6,,,),,,ean = f—f /7 (6 NN

When the dall temperature is consfant however, tnﬁ verage heat transfbr
coefficient is obtained by 31mplj Ln*egxdtlng Eq. (20) w1tﬂ "e=pect to T and

dividing bv L

S-
= 74—’/‘ ?’h (22)
o
and the average Nusseib numb@r 13
. 0:00bl o8 . L
“Nu=(0:0273+ === el
257 L faa
/4 Pr _/ ) . e y '\._3,'



Eq. (21) and von Karman's equation (12) for a flat plate are plotted in

Fig. 2. They agree fairly well for Prandtl numbershfrom 1.0 to 10. ALl physical

properties are evaluated on the basis of the mean bulk temperature. of . the 'fluid,
except that the thermal diffusivity, o , is to be estimated according to the
mean film temperature; . .v l ) N - ~

Eq. (19) can be readlly adapted to flow tnrough tubes, However, in deallng
with heat transfer from tubes, it is generauly referred to the bulx temperature
of the flowing fluid while in Eq. (1Y) the temperature of the free stream corres=-
ponds to the temperature at the tube axis, Voreover, in practlcal problems the
Reynolds numbter is calculated generally in terms of mean:velocity, Uﬁ’ instead
of the axial velocity. This, however, ran be ea51l{ corrected by Lntroduclng

the velocity and temperature ratios as glven by the followxng relations
P=Umn/u; ; W =(T,=Tg) /(T ~T5)
Then the Nusselt number for tubes is

N“d'-"’%ﬁ“ a Y (T"'Z" /'—""‘/* | G
The velocity ratio, ¥ , is obtained from a logarithmic velocity distributionv
and theoretically equals L/5, referance (13). Experiments (14); however, show
that it is a function of Reynolds number and is reoresented by Fig. 3.

For constant wall tenperature, Boelter, Martinelli and Jonassen \i))
calculated the temne ature difference ratlo, 197 s and showed that it varies
very little with the Reynolds number but 1ncreases with an increase of Prandtl
number, as is reproduced in Fig. L.

Using values of ¢ and 4’ in Figss 3 and h, and taklng values ot f7 from
the friction factor chart, such as that glven by reference (16), the calculated
results of Eq. (2L) are shown ;neElg. 5.11Yon.Karman s equation-and Colburn's
formula (17 are also plotted for comparison. 'It is seen that Eq. (24) agrees

ga2 017
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oretty well with Colburn data for Prandtl numbers :rom 1,0 to U0, bqt(yiplds

a s};ghtky lower value of Stanton’s_number.‘ quever, furthér impréféméﬁt éf

Zq. (24) can be readily made, ‘ o | ,;.~ | v'j j
It should be recalled tﬁat.Eq. (2&) was;obﬁaingd frgﬁ Eﬁ.‘(15) ﬁhich was

a first apprOtha*lon in the detervdnation of the boundary film thickness by

neglecting the effect of natural convection., In order to get a closer approxi-

mation, Eq. (17) should be used. In the case of flow passing a flat plate, the

llusselt number is

3 4 4
ff@ l? _£ $ Eei //_+ / )+ 3-6,-}3/: 7
’ — - =3 B = —— ~
~#Eee S [E R g T
(25)

Imploying the cocffirients, ¢Z'andl‘ﬂ}'_will transform Eq. (25) into an equation

tor flow through tubes, A
2 I "1
3¢ £ __/_.. L. 2 ’19/?@4 / 3 3
Nug = 15 2/‘7" + (bm¥% By [/r\z-) 7o ‘ (’f/,,‘e_-ﬂ )+ F0g]°
pr (26)

If, now, Grashof's number =3 neglected in Eq. (26), a simple formla similar to

Colburn's (17) is obtained:
3 ) .
Ny = 3 57 U £ e, pr¥ @

where yU is a function of Prandtl number and is equal to

/ 0152 - / é- o
VJ (f&n_oa ( "/'/’;"'3:-_?;_/) ‘ : (28)

Using Colburn ,f factor of heat transfer, an alternative form of Eq. (29) is

where F is the friction factor for tubes and is defined, as usual; equzl to

§42 018



T/ (PU /&) ", and C =;—43'$0¢/t9-' . It is seen that C is not a constant

of unity as generally adopted in emﬁerical.fornmlas, bﬁt it varies fery Iittle‘
from unity in the practical ranges of Reynolds and Prnadtl numbers. The factor,
(W) /t¢0’) is pléttéd against;, Pr. in Fig. 6. Therefore, in practiéal”de-
sign Eq. (27) should be used in conjunction with Figs. 3 and 6. Predicted mag-
nitudes of Nusselt number from Eq. (29) are plotted agains+ experlmental magnitudes

of Eagle and Ferguson (18) in Flg. 7; they agree extremely well,

CONCLUSION

The present analysis has restricted the application of Eq. (27) and others
to fluids with Prandtl numbers within the range of 0.00 to LU, in comparison
with the Colburn's equatlon. Unfortunatuly, experlmental data are very limited
for higher Prandtl numbers, and it is, therefore, difficult to conclude definitely
the upper limit of application of Eq..(27).. ;

It is to be noted that as long as the thickness of the gross boundary film
is less than that of the hydrodynamic laminar sublayer, tne original postulated
model will hold true., In other words, the validity of the above énaiyéis applies
only for tluids whose Prandtl number is larger than a certain value which is |
calculated below:

When the condition that the thickness of the gross boundary film is to be

smaller than that of the laminar sublayer, the following inequality should hold,'

43.6( )1+ & - Rep, = g,

To make a rough estimation for the hydrodynamic laminar sublayer, the von Karman

seventh root law may be used, and dJ} 53"72)496;?.7 " (11) can be obtained for
a smooth plate. It follows, therelore, that the Prandtl number should not be

less than 0,6U, beyond which the ahove analysis will not apply.
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Calculation from Eq. (17) for.a Prandtl number of SO and a Reynolds number
of 10h will show that the boundary film has become too thin. ~Further decrease
| of this thickness will be intolerable to reality. It may be that the boundary
film thickness has reached the minimum magnitude at Prandtl numbers higher than
50. The increase of heat transfer with an increase of Reynolds numbdr is: prob-
ably due to the increase of angular velocity of the vortices, that is the assumption
of d=a would lose its generality at very high Prandtl numbers.,

Eq. (25) is a general formula of heat transfer in turbulent convection,

When there is no forcing flow, the term consisting of thefReynolds:numbef:will
vanish and Eq. (19) reduces to that of natural convection over a horizontal
plate as given in refcrence (1).-

This method of analysis has been extended to the solution of heat transfer
problems in forced convection with boiling. It was pointed out in reférence (1)
that heat tramsfer in film boiling can be readily solved through the application
of wave motion in the boundary surface of liquid and vapor, providedfan eQuivalehﬁ
thermal difiusivity is obtained., These, however, will not be discussed here and
will be presented by separate papers.

During the preparation of this paper for publication, Mr. S. de Soto of the
Univeroity of California, Los Angeles, has informed the author that he has wit-
nessed tests in North America Aviation Corporation involving high heat transfer
rates across tube walls which created a.very strong, high-frequency vibration,
"These vibrations were cormmon and occurred cpnsistantly when similar test con-
ditions were repeatéd over and ovef‘again. MThe fiuid flowing thfough the tubes
was a hydrocarbon tlowing at a pressure far above its critical pressures, and
hence tﬁe vibration phenomenon could not have been due to effects of lozal boiling.
Tﬁe vibrations occurred every time the heat flux was such that the tube wall
temperature (for this particular fluid) reached 8500 F or higher, Although the

cause of the vibration was not known in detail, it was definitely estatlished
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that it was not affected by the flow system and seemed to be a function .of the °
temperature and the type of fluid being heated., .Under prolonged exposure tb.tﬁése
vibrations,“tubes developed small longitudinal splits, Another fluid, which' was -
tested, produced these vibrations whenever the wall temperature reached 700° F..
When the velocity ot the fluid into the heated section was. changed, the vibrations -
occurred again at the same wall temperature but at a different value for'the heat:
flux,"

" While the author has not found time t§ follow up these‘testé and to in-
vaestigate them in detail,_he is inclined to believe that. this phenomenon of
strong vibration should be closely related to that of resonance, the natural-
frequency of the tube wall being the same as the average frequency of the oscil- -
lating, fluid in the boundary film. |

As a matter of interest, a rough calculétion‘of this frequency is made

here according to the limited data given by lir., de Soto: Measured frequency -is

© in the order of thousands cycles per second, from 2,000 to 8,000. Pr = 23 ~ 2,

L

Re = 5 x 10, C = 0,50 Btu/(16)(°F), k = 0.57 Btu/(hr)(£t%)(deg F/ft), T = 850° F,

o
TB = 150 F Sp, gravity = 0.81. If these data are used in Eq. (9) of this paper,
the calculated frequency will be in the order of LOOO ccycles per second, which- is

pretty close to the average value of the test data, .
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