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Abstract

The Generalized Likelihood Ratio Outlier Detection Technique for seismic event
identification is evaluated using synthetic test data and frequency-dependent P /L,
measurements from western China. For most seismic stations that are to be part of the
proposed International Monitoring System for the Comprehensive Test Ban Treaty, there
will be few or no nuclear explosions in the magnitude range of interest (e.g. m, < 4) on
which to base an event-identification system using traditional classification techniques.
Outlier detection is a reasonable alternative approach to the seismic discrimination problem
when no calibration explosions are available. Distance-corrected P /L, data in seven
different frequency bands ranging from 0.5 to 8 Hz from the Chinese Digital Seismic
Station WMQ are used to evaluate the technique. The data are collected from 157 known
earthquakes, 215 unknown events (presumed earthquakes and possibly some industrial
explosions), and 18 known nuclear explosions (1 from the Chinese Lop Nor test site and
17 from the East Kazakh test site). A feature selection technique is used to find the best
combination of discriminants to use for outlier detection. Good discrimination performance
is found by combining a low-frequency (0.5 to 1 Hz) P /L, ratio with high-frequency
ratios (e.g. 2 to 4 and 4 to 8 Hz). Although the low-frequency ratio does not discriminate
between earthquakes and nuclear explosions well by itself, it can be effectively combined
with the high-frequency discriminants. Based on the tests with real and synthetic data, the
outlier detection technique appears to be an effective approach to seismic monitoring in
uncalibrated regions.

Introduction

Recent work has shown the effectiveness of various regional discriminants in
western China such as P,/L, in different frequency bands (Hartse ef al., 1996). In the
study of Hartse et al, (1996), there was a limited dataset of known nuclear explosions,
most of which were at relatively high magnitudes. Thus, it was possible to measure
numerous seismic discriminants and qualitatively assess their efficacy by examining
earthquake versus nuclear explosion separation on discrimination plots. For a majority of
stations that are or will be part of the International Monitoring System (IMS) monitoring a

possible future Comprehensive Test Ban Treaty (CTBT), there will be few or no




magnitudes (e.g. m, <4). This is in stark contrast to previous discrimination studies in the
western United States which had numerous recordings of both earthquakes and NTS
explosions (e.g. Taylor, 1996). Thus, the event identification task in new regions having
little or no data from nuclear explosions becomes a problem in outlier detection rather than
event classification. In new regions, the majority of well-recorded events may be drawn
from a single population (e.g. earthquakes or industrial explosions). The problem will be
to identify a clandestine nuclear explosion that hopefully will have different characteristics
from the earthquakes and will therefore form a problem in outlier detection. The difference

between event classification and outlier detection is illustrated schematically in Figure 1.

Classification QOutlier Detection

Earthquake Distribution
s Explosion Distribution

X Unknown Event

Figure 1. Schematic illustration showing difference between event classification and outlier
detection. For event classification, the problem is to assign the unknown event “X” to
either the earthquake or explosion population each having known characteristics. In a
region having only data from known earthquakes, the problem of outlier detection is
determining whether or not unknown event “X” belongs to the earthquake population or
is from a different unknown population.

There are numerous multivariate event classification techniques ranging from
traditional maximum-likelithood Gaussian classifiers (e.g. Hand, 1981) to neural networks
(e.g. Haykin, 1993). The problem of outlier detection applied to seismic identification
problems has recently been formulated by Fisk er al., (1993) which 1s the technique that we
follow in this report. We wish to test the outlier detection technique at a station having
measurements from known nuclear explosions before applying it to stations having

measurements from no known nuclear explosions. In this report, we first apply the outlier




detection technique to synthetic test data having known statistical characteristics. We then
apply the technique to P /L, measurements at WMQ. We also employ a feature selection
technique based on a simple class separability metric in order to find an optimum subset of

discriminants to use in the outlier detection.

Generalized Likelihood Outlier Detection

The details of the Generalized Likelihood Outlier Detection Technique are given in
Fisk ef al, (1993; 1995) and Anderson (1984) and will be briefly reviewed in this section.
In the discussion, we will assume that we have a large set of measurements from a
population of Earthquakes (Q) and wish to use the outlier detection technique to identify
suspect events that may be Nuclear Explosions (X). We assume for earthquake i, we have
a set of discrimination measurements contained in vector v, for N events from the
earthquake population, Ty, [vl,v2,~ -V N] € 7L, We wish to test the hypothesis () that a
new unknown event with measurement vector, v,,, belongs to 7, versus the alternate
hypothesis (H,) that it does not (and hence belongs to some other unknown population).

Conceptually, the hypothesis test is given by

Hy: [viVy,,Vyalem,
versus (1)
H: [viVyvylen, vy, em,
and the Generalized Likelihood Ratio (GLR), 4, is given by
L(H,
A= (o) ()
L(H,)

Where L{H,) is the likelihood of accepting the null hypothesis, H,. A large value for A

suggests that we accept the null hypothesis that the new event belongs to population Q.
The main assumptions of the technique are that the data from each population are
multivariate normal with the same covariance matrix. ‘

The critical value for the GLR below which an event is declared an outlier is
difficult to determine since its probability distribution is unknown (except for the case of
normally and independently distributed measurements; Anderson, 1985). The critical value
of the GLR, 4, below which an event is declared an outlier is therefore determined by the

bootstrap technique at the o level of significance (e.g. Fisk ef al,-1993). Basically,
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random samples are selected from the known population a number of times from which a
histogram (probability distribution) of A is constructed. From this, the cumulative
probability distribution of A can be used to find the critical value A, at the « significance

level (false alarm rate).

Synthetic Test Case
In order to better understand the GLR Technique, we have conducted some simple
test cases using synthetic data. We constructed a population of 500 “earthquakes” and 5
“explosions” from which 5 discriminants were generated and placed into vector v, for event
i. The random data from each population are normally and independently distributed
having equal variance for each discriminant. The only difference is that the mean value for
each band is O for the “earthquakes” and progressively increases from 0 to 4 for the

“explosions™.

vf” — N(ﬂfj),O‘fj)) i=1,2,--.n?; i=X.0
cov(v? v’} =0 ixk
o) =0 =1 3)
9 =[0,0,0,0,0}; 19 =500
p¥=[0,1,2,34]; n¥=5

The mean and 2-sigma values for each of the 5 discriminants are shown for the two
populations in Figure 2. The separation between the “Explosions” and “Earthquakes”

progressively increases from discriminant 1 to 5.
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Figure 2. Illustration of mean and two sigma values for synthetic “Earthquake” and
“Explosion” discriminant data. Note that error bars for the “Explosion” data deviate
from the expected value of length 4 because of the small sample size (5).

As described above, the critical value for the GLR, A,, is computed using the
bootstrap technique such that the false alarm rate is fixed. For the bootstrap example
shown in Figure 3, we chose 100 random samples from the “earthquake” population and
computed the GLR for each event using a leave-one-out procedure. This was performed
100 times resulting in 10000 GLR values whose distribution is shown in the histogram in
the top portion of Figure 3. A, was then estimated from the cumulative frequency
distribution shown in the lower portion of Figure 3 for & = 0.05. Events with A < A, are
outliers and rejected as belonging to the “earthquake” population. ¢« is the significance
level of the test and 1000% of the “earthquakes” are falsely declared to be outliers. If a
smaller significance level is selected, there will be fewer false alarms, but the likelihood of
a missed violation is increased (i.e. falsely including an “explosion” in the “earthquake”
population). In this case the critical value was estimated to be 4, =-2.7.

n
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Figure 3. Histogram of the GLR, A, for bootstrapped samples extracted from synthetic test
data (top) and cumulative frequency distribution (bottom). Critical value for GLR is

shown for o = 0.05 significance level (4,4 = -2.7).
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The GLR was then computed for the 500 “earthquakes” (using the leave-one-out
technique) and the 5 “explosions”. The “explosions” were not included in the known set of
“earthquakes”. The results are illustrated in the top portion of Figure 4, where the GLR is
plotted versus the discriminant #5 (the best performing discriminant shown in Figure 2).
The critical value for the GLR is also shown (4,,,). The “explosions” all have a low GLR
well below A, ;. Approximately 5% of the “earthquakes” are also declared as outliers as
expected from selection of the false alarm rate o = 0.05. Note that the events with the
largest GLR value have a discriminant value very near the mean value (0) for the
“earthquake™ population. As events deviate from O in both the positive and negative

directions, the GLR typically decreases. This demonstrates that the GLR technique flags




both explosion-like earthquakes and “super” earthquakes. So in practice, a plot such as
that shown in the top portion of Figure 4 could be used to eliminate the “super” earthquakes
from further analysis, reducing the false alarm rate in half.

In the lower portion of Figure 4 we plot the GLR versus an estimate of the standard

n

deviation for each event, s = Z(V i V)z /(n —1), where n=5. It can be seen that there

i=1
1s a progressive decrease in the GLR with increasing s. Events having a larger s, have one
or more discriminant values that are far from zero and appear more like outliers.
Interestingly, “earthquake” #81 (identified in Figure 4), is declared an outlier, but has a
small s. Examination of v, show that, by random chance, all of the discriminant values
for this event are systematically high. Thus, it appears that the GLR outlier detection
technique holds promise for flagging suspect events in a region that have characteristics

different from a known population (e.g. earthquakes).
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Figure 4. Generalized Likelihood Ratio, A, versus discriminant #5 (see Figure 2) (top) and

individual event sigma (bottom). Critical value for A is shown for &= 0.05 significance
level. Event #81 is identified as an outlier not having a large sigma (see text for details).

Application of GLR Outlier Detection to P /L, Data from WMQ
In this section, we apply the GLR outlier detection technique to P /L, discrimination
data from western China recorded at the Chinese Digital Seismic Network (CDSN) station
WMQ in northwestern China. These tests are similar in many ways to the synthetic tests
described above in that we have P /L, in 7 different frequency bands for many earthquakes
and just a few nuclear explosions. Details of the discrimination measurements and distance
corrections are given in (Hartse ef al., 1996). For this dataset we had measurements from
156 known earthquakes (obtained from Prelirniriaxy Determination of Epicenter catalogs;
PDE), 215 unknown events (presumed earthquakes and possibly some industrial
explosions from Chinese State Seismological Bureau catalogs), and 18 known nuclear
explosions (1 from the Chinese Lop Nor test site and 17 from the East Kazakh test site). In
- the analysis performed below, we use the PDE events as the “known” population.
We first perform a simple feature selection procedure in order to find the best
combination of discriminants to use for the GLR outlier detection. Following Hand

(1981), we compute the class separability measure, J
J=trW'B @)

where W is the within class scatter matrix and B is the between class scatter matrix. Using
the metric J (which is proportional to the Mahalonobis Distance), we perform an exhaustive
search to find the best combination of discriminants. In other words, we first find the best
single discriminant, followed by the best two, etc., by examining J for all possible
combinations. A large value of J indicates large separation between the two populations
being examined and small scatter within each population. A step-forward search was also
performed that gave very similar results.

The WMQ dataset is incomplete in that there are missing measurements for many
events due to poor signal to noise ratios or other factors. For the feature selection
procedure, we included known earthquakes (92) and explosions (10) having complete
measurements. The best performance in terms of misclassification rates and percentage of

events having available measurements was the combination of a low-frequency P /L, ratio




(0.5 to 1 Hz) with 2 or 3 ratios between 2 and 8 Hz. This was unexpected because the 0.5
to 1 Hz ratio by itself typically is characterized by very poor discrimination performance.
However, because of the correlation structure, the low-frequency discriminant can be
effectively combined with a high-frequency discriminant.

The results of the feature selection search based on examination of the J metric are
shown in Figure 5. The filled circles indicate which band or bands were selected after each
of the 7 steps. For example, after the first step, the highest frequency P /L, band (4 to 8
Hz) was selected. This was expected, because it is well known that the P /L, discriminant
shows improved performance at higher frequencies (e.g. Hartse ef al., 1996). For step 2,
it was found that the combination of a low-frequency band (0.5 to 1 Hz) with a high-
frequency band (3 to 6 Hz) provided the largest J value (not significantly larger than the
combination of 0.5 to 1 Hz and 4 to 8 Hz). For step 3, the largest value of J was found by
combining the low frequency, with an intermediate- and high-frequency value. At this
point it can be seen from Figure 5 that the value of J appears to level off indicating no real
improvement in class separability. This is corroborated by calculation of an F statistic that
provides the basis for determining whether the addition of an extra variable improves
discrimination significantly (e.g. Hand, 1981; Figure 5). The rapid decrease in F and the
leveling off of J between steps 3 and 4 suggest that it is only necessary to include 3 or 4 of

the discriminants.
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Figure 5. Results from feature selection search using the P/L, ratio in 7 different
frequency bands at WMQ. Filled circles indicate which discriminants were selected after
each step. Also shown are the J and F values after each step (see text for details).

Using the 4 discriminants from step 4 (Figure 5), we computed the GLR for the
earthquakes, explosions, and unknown events. The earthquakes from the PDE catalogs
were assumed to be the known events for which the leave-one-out technique was used to
compute the GLR. For events with missing data, we chose a subset of known earthquakes
with measurements in at least the same bands and computed the GLR and recomputed the
critical value for o = 0.05. The results are illustrated in Figure 6, where the difference

between the GLR and the critical value (4, - A) for each event is shown plotted versus

event magnitude. We reject the hypothesis that an event belongs to the earthquake
population if A, - 1> 0 (i.e. an outlier is declared). The GLR technique appears to work

very well, in that all of the explosions except one are declared as outliers. The explosions
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with smaller values of 1, - A were all missing one or more measurements in the four
frequency bands included. The explosion with the very large 4, - A is the Lop Nor
explosion of September 29, 1988, which was characterized by a very large P /L, ratio.
Approximately 5% of the known earthquakes were declared to be outliers as expected by
the significance level of the test (= 0.05). The one earthquake having a large value of 1,
- A is actually the result of a processing error (due to a mislocation) and has a very small

P /L, ratio so is actually a “super earthquake”.
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Figure 6. Results from application of GLR outlier detection to P /L, ratio in 4 different
frequency bands at WMQ for nuclear explosions, known eartfglquakes, and suspected

earthquakes (unknown). The difference between the critical value for o = 0.05 and the

GLR, (4, - 4), is plotted versus event magnitude. If A,- A > 0 and event is declared an
outlier from the known earthquake population (see text for details).
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Finally, we performed the GLR outlier test on the discriminants for each of the
search steps from the feature selection procedure described above (Figure 5). We
computed the probability of including a nuclear explosion in the earthquake population,
P(QIX), for each step and the percentage of missing data for each of the three populations.
From this figure, it can be seen that there is a tradeoff between the number of missed
explosions and the percentage of events that could be processed. The best discriminant is
the P /L, ratio in the highest frequency band (Step 1) showing no missed explosions.
However, because of propagation effects at the higher frequencies, fewer measurements
were available (33% of the explosions had no measurement in this band due to poor signal
to noise). When three or four discriminants are included, a larger number of events can be
examined. However, as discussed above, some of these events were still incomplete and
were not correctly identified. P(QIX) appears to progressively increase as more
discriminants are added and is highest when all 7 bands are included, showing that it is not
useful to include many poor discriminants into the procedure. The progressive increase in
P(QIX) as more discriminants are added is partially due to the fact that some events at each

step have some missing values.
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Figure 7. Results from application of GLR outlier detection to P /L, ratios at WMQ for
nuclear explosions, known earthquakes, and suspected earthquakes. Search step
indicates which combination of amplitude ratios were used (from feature selection
procedure; Figure 5). P(QIX) are missed violations (i.e. nuclear explosions, X,
included in the earthquake, Q, population). The percentage of missing measurements is
indicated for each of the three populations (U - presumed earthquakes).
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Conclusions

The Generalized Likelihood Ratio Outlier detection technique is shown to be a
reasonable alternative to traditional seismic event classification methods when no calibration
information from nuclear explosions is available. A simple feature selection procedure
suggests that it is useful to combine a low-frequency (0.5 to 1 Hz) P /L, ratio with higher-
frequency ratios in order to improve outlier detection (or discrimination) capabilities. It is
expected that discrimination performance will improve as additional discriminants are added
(e.g. spectral ratios, n, - ., P /L, in higher frequency bands) which will be the subject of

future work.
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