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~~ ABSTRACT

A Decbyc-Hlckel-type Lheory is described for an assembly of completely
ionized atoms, the nuclei being treated classically and the electrons by
the Thomas-Fermi method. The thermodynamic functions are derived by con=-
sidering the Debye charging process, and the virial theorem is shown to
hold. Numerical results are given for hydrogen and iron near normal solid
densities, and are probably accurate only at high temperatures (kT > 5 ev

for hydrogen and kT > 100 ev for iron).
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1. INTRODUCTION

The temperature-dependent Thomas-fermi (TF)l and Thomas-Fermi-Dirac
(TFD)2 theories of the atom have been recently discussed in detail, and used
to calculate equations of state of the elements at high temperatures and
pressures. These theories involve a number of apprdximétions, amoﬁg which
are the following: (1) The properties of bulk material are approximated by
those of an isolated, spherically-symmetric atom whose nucleus is gt rest.
There are thus.no contributions due to nuclear motion nor to ;nteractions
between neighboring atoms. (2) Th§ electrbns are assumed to be quasi-frée,
and their distribution about the nucleus is calculated statisticaliy,-so‘that
the shell structure of the atom is in ﬁo way'reproduéed. The electron den-
sity at the nuéleus turns out fo be iﬂfinite, resulting in ebsolute binding
energies which are considerably too gréat in magnitude. (3) The electrons
are treated in the one-electron approximation, so that there are no cor-
relations in the motions of the electrons due to their mutual electrostatic
repulsion, though in the TFD theory, some correlation among electroms of
parallel spin results from effects of the Pauli exclusion principle.

The'ngye-Hﬂckel, Thomas-Fermi (DHTF) theory developed recently by
Plock and Kirkwobd3.}emoves to some extent sevéral of the above approxima-~
tions. Matter is tféated in bulk with aésociated nuclear effects and inter-
actions betweéh atoms, and electrostatic cor:elations among the electrons

are present. Exchange effects are not included. These can be incorporated

in a manner similar to that of the TFD theory (the principle change in the

equations given below is to replace % 93/211/2(n)'by the function G2(On,9)
defined in reference 2); however, this would introduce fairly serious -

numerical complicétions and would probably not greatly change the calculated
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results since at low densities, the correlation effects include most or all

of the exchange energy.u

2. 'THEORY

‘We consider an»infinite assembly of atoms (of one element) at uniform
temperature and density, such that all particles (bothlnuclei and electrons)
are free to move about under the influence of their mutual electfostatib
forces. In order to be able to,évaluate the thermodynamic functions for
this system by considering the Debye chéfging process, we sﬁpposé'each
particle to carry An arbitrary fraction A of its true physical charge,

the charge on each particle thus being N.e and -Ae for nuclei and electronms,

" respectively. The averhge densities of nuclei and eleétrpns will be denoted

+o.and n;o; for an electricelly neutrel system

Zn,_ =nm . (1)

A. Particle Distributions About a Nucleus

Singling out one particular nucleué, let the average electrostatic .

_potential (due to all particles, including the nucleus in question) and the

' average charge density about this nucleus be respectively w;(r) and

p+(;) = AZep++(r) - hen_;‘r), _ .' | | (2)

where n++‘and n_, are the average densities of nuclei and electrons at a

distance r from the givén nucleus., The potential and charge density are
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related through the Poisson equation

Aw‘+ = -,43“)4_ = -hnhe(Zn++ - n-+), ’ (3)

the boundary conditions being

lim =¥, (r) ' AZe

0 B _ ’
(&)

lim w+(r) = 0.

IO

We shall assume that the nuclei can be.tieated classically, so that

n,=mn. é-AZeW;/kT. E : i (5)

The electrons must, however, be described by Fermi-Dirac statistics. In the
. 5}: .

 Thomas-Fermi approximation, we have

2 .
n = i “/m P dp
+ p3 o 1+ exp [(pa/Qm - kew; -p)/kT]

3/2 . a -
N u“(zkah-g) 11/2(“+?{ . | ;~g~“(6)

. where

o0 % .
I (n) = f ' e ey, (7)
o}
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n, = (Ae¥, +u)/xT, - | (8)-

and the free-electron chemical potential u is such that

| 03/
n__ = bn(2mkTh )

n

o

- wpe. IR Y

For purposes of numerical calculation, it is convenient to introduce

the following units of.length and energy6

L, L ©

W '25/3 0.468479-103 -
" fos i
P, T emrce— = — cnm, :(11)
M iPmle? (128 2 173 . _,
and
9, = 32mhhehh-2 = 22.0532._};1* ev, . (12)
and also th64Quantitieé
x=r/r, , ©=k/0,, _ - (13)
e = (6/F28) = 0.8uT13084 2°/3, (1)
N =e oW m. (15)

b
=
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r




"

N

-6-

Combining all the above, the Poisson equation (3) reduces to

" ) ’ -z( "’1 ) : '
ACRE TORE [Il/a(’h) - I pplnge A ] ’ (16)
~with boundary.condifions ' ‘
¢+(°) ”I l.:' : -
- (17)

lim B (x) = x(f/x)_ = X¢'m-

X~p 0
For given temperature, bulk density of hatérial,and value of A, the
procedure is as follows:: n__ can be readily calculated from the bulk density,

@ found from (13), I, ,,(n,) from (9), and n_ from the tadbles and asymptotic

1/2 |
expansions for 11/2 given by McDougall and St.oner.7 The differential equation
(l6)‘cén then be integrated to give ﬁ+(x), and hence q+(x) from (15). The
distribution of particles about a given nucleus then follows from (6) end

the equivalent of (5)

-z(n,-,)
+
n++ =n e . (18)
The net charge surrounding the éi?en nucleus is
3 % | 2 -
q, = L rh~/'o (}.Zen++ - xen_+)x dx. (19)




~T=

- Using (6), (18), and the differentisl equation (16), this can be written

o
.

e
Q.= -KZe\/ﬁo ¢+xdx

= -NZe [xsﬂ; - ¢+] :D= -NZe, ~ (20)

from the boundary conditions (17). Thus q, is, as it should be, the négative

of the charge on the given nucleus. -

B, Particle Distributions About aniﬁlectron

Singling out a'specific electron, let fhé average electrostatic potential

Lol (due to all charges, including the electron in question) and the average charge

density about this electron be respectivelj W_(r) and

P (r) = AZen;_(r).- Xen__(r). ' o (21)

These quantities are :elated through the Poisson equation

A = -hap_ = ~bhe(Zn,_ -m__), (22)

with boundary conditions

lim r’lf_(r) = e
r+0

(23)

lim ¥ (r) = O.
roo
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For a peutral plasma, it fol;ows from symmetry considerations that the

 distribution of positive charge about an electron must be identical in form

to the distribution of negative charge about a nucleus. Thus from (6),

-1 -1 .2,3/2
n,_ =2 n_ = knz " (2mkTh™") 11/2(q+). (24)
| Letting
1= NV + w)/KT = Ne¥ /xT + 7, (25)
. ‘then analogously to (6)
2321 (). (26)
n__ = hx(emkTh™7) T1/2'0.7¢
Introducing a function ¢_(x) defined by
n_ = e H(ue)2(B_/x), (27)
‘the Poisson equation (22) becomes
B0 = 34e%03/x |1, 5(n.) - L) | | (28)

with boundary conditions

148

0

't
A¥)




¢_(°) = -1/2,
(29)°

lim P (x) = x(¢/xl” = X ¢; .

X> ™

With 11/2(q+) being a known function‘of X froq the solution of (16), (28)

can readily be integrated to give ¢_”£ndvq; a§ functions of x, thereby giving

the distribufion of pafticles about an electron from (24) and (26).
Similafiy'to'ﬁhe derivation of (20), the ‘net éharge about a givené

electron is

..co
q_ = knrik/“ (hZen+‘ - hen;_)xzdx
o :

- e [ - 8, Iz«e - (30)
which is just. the negative of the charge on the electron.

C. The Thermodynamic Functions

An expression for the Helmholtz free energy A(v,T) of our system will
be derived through the artiface of the Debye charging process, and we

accordingly write

A = Ai + Ae’ (31)

where A1 is the Helmholtz free energy of the uncharged (ideal) plasma, and

Ae is the contribution which arises during the charging process.




=10~
_— ’ The contribution of the nuclei to the ideal Helmholtz energy Ai (per

atom) is given by the classical expression

’ié: » f _ Ay

= kT 41 + 1n [ (2mm 1)/ 2/h3'n+°]} , 21 (32)

and the contribution of the electrons (per atom) is8

a,_ = 7 {n” L, )/Il/z(nm)} o o

-

i

The portion Ae of the Helmholtznenérgy is the electrical work done in

charging up the particles at constant temperature and volume, the parﬁicle

distributions at each'stage in the charging process being the equilibrimm
distributions for the corresponding value of A. Thus the contributioh of

each nucleus to Ae.is~

. . |
A, =f.e lim [? (r, A) - ]d().Ze)

0o r-0

32/3 f [¢ (o) - (é)] a(?), © (34)

and the contribution of Z electrons to A, is

O IsO

A,_=2Z f-.e lim [w_(r,l.:) + 2‘;?] A(-Le)

2/3
C ze® 2P Yoo (g B 2
= - "a'o‘_ (“3‘:?) fo L [;ﬁ_(o) - (")‘”]x a(n"), (35)
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- where the quantities Me/r and ;}e/r have beén subtracted from ¥, end ¥,
respectively, in order to remove the‘seLf-energies of the particlés, and where
ﬂ+(x) have been expanded in Taylor series about the origin (see Section 3), and
t;e bohndary conditions (17) and (29) employed. (ao = ‘ﬁe/me2 is the first
Bohr radius of hydrogen.) |

With the ﬁelmholtz‘free energy calculatedAin this manner, the pressure
and the internal energy per atom can then be obtained from the general‘

-relations

b= '(aA/aV)T,
s = -(aa/ar),, o (36)

E=A+TS,

Alternatively, the pressure or the energy can be found from (36) end the other
quantity found from the virial theorem,g which for Coulombic forces, has the

form
we3EB +3E, | (31)

where Ek and Ep'are respectively‘the kine@ic and»potential energies of the
system. The validiiy of the virial theorem in the case under consideration_
can be established as.follows:

The energy of the uncharged ges obtained from (32), (33), and (36) 1is
entirely kinetic, and it can be readily shown that pyv =‘§ Ei -~ using in

the case of A,_ the relation (9)
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w3/

1/2(n,) = constant, o B g€

. 7 .3 .

and also the relation dI3/2/ds“°° 5 11/2' Thus it is necessary to comsider
only the contribution of Ae to the pressure (pe) and the energy (Ee).' This
last quantity includes not only potential energy but also a change in ﬁhe

kinetic energy brought about by the charging process -- the potential énergy

" of the fully_charged'system being the result given by (34) and (35) if%the”

particle distributidhs are held fixed at their values for A = lflo
B a2 <?2i>2/3 ‘[¢'( ) é'( ) ]' \/“l a(A?) | (39)
2 enm— - : o] - [+] . .
P& EE * - N=1Y o .

We first noté froh (15)-(17) and“(27);(?9)'that (for given Z)-the

" solutions ¢+(x) and @_(x) do not depeﬁd on v, T, and A independently, but

only on the two quantities 7 and 6 -- orvfromA(38) and (13), only on
vi3/? ana A"t ST : (40)

Thus if vy and T, are some fixed volume (per atom) and temperature and if v

and T are quantities related to vy and Tl through a scale factor c suchAthat

v = c6vl and T = c'th, A : - (k1)

 then A, uay be written
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A(rT) =K [ z ¥ [B1to) - pror] a0

v, T,a
2
o4
ot [ (@) [ B:(0) - p;m] LA,
o S vy Ty s |

where K is the constant before the integral sign in (34). Differentiation_

. of this expression gives

(E;%)v 'ri a - ’{- A+ %K [¢,'f‘('o): - ¢,‘_(0)]

o . 10T . _ vl,Tl,c

L= - -'ci A, + %Kj:i[ﬁ;’(ﬁo)‘ : p_'(o)] .o - (42)

v,T,1

* But from (36) and (%1),

(dJM ) () (——) @,

- v T ‘ :
7'"6cpe+hcf$’e"' t (43)

and combining this with (42) and (39) gives
p v = %— (A, + T5,) - %— E,
(Lb)

2 1
“'3'(Ee'Ep)+'3'Ep’

~48 {3



-l

which completes the proof of (37). (In the singuler case T = 0, the proof
can be carried out in a manner entirely analogous to that which has been

given for a modified DHTF theory."’)

3. NUMERICAL METHODS

The differential equations (16) and (28) were integrated numerically N
with the -aid of IBM Type TOL digital computers, using numerical methods

similar to those employed eleewhere.a’h

A. Integration of the Equation for Q+“

For small x, it may be seen from (15) and (17) that 1, >> 1, so that
the second term in (16) is negligible compared with the first, the differential
equation thus reducing to that for the temperature-dependent TF atom. - The

solution can, therefore, be written in series form:
/2 o
400 = ) apxl?, (45)

the values of the first few coefficients beingll

8% =1 ’ 3 =0

a2‘ = ¢_;(;) = arbitrary, | 8= 4/3

8 =0 ’ ag = 2&2/5:
"63’%'""‘ , ’-:357=3a§/7o+o(1'2).

b
K
[#3]
o
ot
bt
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For & 2 T, the &, contain temperature-dependent terms, which however are of

i
no importance providéd (45) is used only to sufficiently small values of X. .
Using an osfimated value of ag,AintegratLon.of (16) was started with ..
the aid of (45), and then continued by a difference method. Because of the
boundary condition (17), at large x Eq. (16) oan be written with the aid

of Taylor series expansions and Eq. (15) in the form
gix) 23 [ 9, - x9x), ]

or
=K x

¢+(¥5'=‘x(5/x)m-+ pe T, 0 | (hé)f

vhere S

Kil’ 6691/2 { dIl/2(,])/dq + le/z(n)} . . (hf)
At some large x, then, the constant A was evaluated so as to match (h6) to
the numerical solution. and the slopes of thp two solutions were thcn
compared. The value of a, vas then modified, ond an iterapive procedure
carried out until thé two slopes were equal to the desired accuracy.

It may easily be seen that this solution:of (16)-(17) is a unique one
(varring solutions-oith singularities at finite x): For any integral of
(16), the cu?vdtﬁ?o*is positive for f_> ¥, aﬁd negative for 7, < My
if ¢1 and ¢E:a:ovtyo;integrals setisfying the boundary conditions at the
=origin with ¢]'_(o) > ¢2'(o), then for all x, ¢l(x) > ¢2(x), Ql'_(x) > ¢2'(x),
and ﬁ;(x)> ¢.£(x).”fThe solution (whioh sétisfies both boundary»conditioné)

has the properties ¢#(x) > % ¢a'>’ g1lx)< ¢o;), and ¢“;(x) > 0 for all x.
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As a check on the integration of the differential equation, the results
were used for a numerical evaluation of the integral (19); the value of q,
thus oﬁtained was geverally equal to -AZe within one-twentieth percent,
except at large 2 and low @ where the function (18) changes very rapidly

with x.

B. Integration of the Equation for ¢_

With 1, being a known function from the solution of (16)-(17), the
integration of (28) can be carried out in a similar manner. At small 2,

n_ << 0 from (27) and (29), and (28) reduces to

g0 = - § (36, (), 3 (48)

which is identical with the small-x form of (16) except for the change in

sign. The solution can therefore bve written

g1 = ) oyl - (49)

. where

o
.

‘]7/2"

b, = 0,

o
4

N g!(o) = arbitrary,

o
]

"“ai, 1 z 3a

PRVSS ¢
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At large x, (28) cen be written

B'(x) = KAS_ - 8,),

the solution to which is

)

| -1
$.(x) = x(@/x) , - K - K°) ReKox 4 poKox (50)

where

K = 6eat/2 [ ar sp(n)/an ]n . - (51)

00

The value of b, 1s iterated on until (50) matches the numerical solution

2
'both as to value and slope at some suitably large x.

The uniqueness of the solution can again be seen from a qualitative

‘ examinatioﬁ of the differential equation, though the situation is sémewhat
more complicated than before in that two qualitatively different forms of
the solution are possible: (1) @ (x) < x¢éo’ g'(x) > ¢éo’ and §"(x) <0
for all x; (2)‘¢_(x) not only crosses the line x¢éo, but also crosseé the
curve ¢+(x) at.some point x, with a slope such that ¢;(xl) < ¢:(xl) < ¢éo’

“with ¢:(x) < 0 for x < x, and ¢:(x) > 0 for x > xi. For Z = 1, only the

1

first type solution has been observed; for Z = 2, either type may ocecur,

" depending on the demsity and temperature; and for somewhat larger Z, only

" the second type has been found. The reason for this will be discussed in

: Sect1on kB,

It all cases, the numerical results checked Eq. (30) with about the

same accuracy as for Eq. (19).

b= b
hta
(@)

<
b
=3
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C. Evaluation of the Thermodynamic Functions

As pointed out earlier, the integrands of the expressions (34%) and
(35) for Ae can be-gbnsidered as Eunétiqns_qfhghly the two parameters vT?(? i
and T):h. However, Aé was actually computed by the more time consuming but
moré straightforward procedure12 of integrating the differential equations
for the desired v and T and for each of twelve values of A?, and evaluating
thelh? integrals with the aid of Simpson's rule.

" In order to evaluate p and E, calculationé were not actualiy done at .

the v 5 pL and T of interest but rather at [ 1+ O.l)D,T] and at [ 0,(1 + o.l)T],.
and p and 8 calcuiated from (36) by numerical differentiation.inla linear approx-
imation. The:aBSOciated errorAis roughly one percent, compared with which the
efrors in Siﬁpson's rule and in integrating the differential equationsfare'
negligible. | A | | ' A

In a few cases;'the pressure.was:alsd evaluated from the virial iheorem
(37). In each case, the result agreed with that obtained from (36) within the

one percent uncertainty in the latter.

L, RESULTS

A, Pressure

Some numerical results for the préssure are shown in Figures l-4, which

include for comparisoh curves showing the pressure of the uncharged ideal ga58

P,V = -v(BAi/by)T

= KT + 2 ZKTT, 1o (n )/, /() (52)

148 018
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(where v is volume per atom), and also curves showing the electronic pressure
as calculated from the TF theory of the atom.1

It may be seen, especially from Figure l,vthat at high temperatures, the
value of pv/kT for the DHTF theory is greater than tﬁat for the TF theofy by
approximately unity, as is to be expected since the one theoryvincludes the
nuclear contribution to the pressure whereas the other does not.

At low temperatures and densities, the DHTF curves differ qualitatively
from the corresponding TF curves, the fofmer possessing distinct plateaus in
Figures 3 and 4, This effect is strongly Z- (and density-) dependent, as
confirmed by numerical results (not shbwﬁ here) for Z = 6 and 92. It 1s.not
immediately obvious whether the large DHIF pressure calculated iﬁ the plateéu
region should be~considered physically meaningful. One might conjecture that
this reflects ionization resulting from collisions of neighboring atoms due
to the thermal motion of the nuclei, which is absent in the TF picture. How-
~ever, for reasons which will be discussed below, the authors feel that these
'large pressures may be spurious (at least in pﬁrt) and that the DHTF resulfé
‘shdpld not be given too much wéight at low temperatures and densitiés.‘

At sufficiently low demnsities, the zero—témperature pressure Bécomés
negative (Figures 1 and 4), unlike the TF theory where p becomes zero only
in the limit of zero deunsity. ‘This is probably related to the lowering of
energy due to éelectron correlation, which is not present in the TF theory.

" The DHTF preséure seems to become zero at a slightly higher density than in
the TFD theory; this is reasonable since at the low electron densities at
which corrélation effects are important, the correlation energy in the present
theory ié\greater than the exchange energy of the TFD theory (see reference.h

and Section 4C below);

Y
wa
N
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The high-temperature regions in which the DHIF results may be considered

reliable are pertinent to the following two problems, among others:

P

(1) Cﬁ?fent'éfforts at achieviﬂé tﬁermon;élear reactions are aimed at
producing temperatures well above 100 volts in deuterium at gaseous densities.
Since both high temperature and low density reduce the importance of electro-
_static intéractions between the nuclei and electrons, it is evidént ffom
Figure 1 that electrostatic effects are completely negligible under the

above conditions.

(2) In the early years of the Debyé—Hdckel theory, several attempts were
made to apply the theory (primarily in its linearized form and using Boltzmann
statistics for all particles) to the problemlof ionized maﬁerial in stellar
~ interiors. Thus-for iron at a density 156 g/cc ahd a temperature of 26.36 - 106°K
(kT = 2271 ev), Fowler and Guggenheiml3 calculated the electrostatic effects to
reduce the‘pressure by 21.9%, while Eddingtoniu‘corrected the theory in soﬁe
regpects and found an effect of only 6.8%. The present DHIF theory gives for
iron under these conditions pv/kT = 2#.0, and thus a pressure only h% less

than the perféct-gas value for the 24-fold ionized atoms assumed by Eddington.

. B.  Radial Distribution Functions

In Figures 5 and 6 are shown the radial distribution fuﬁctions (5), (24),
" and (26) for iron at normal density, A = 1, and kT = 100 and 1000 ev,

For small r, £he.density of electrons about_a nucleus,(n”+) becomes
"infipite as rf3/2, Just aé in the Thomas-Fermi theory of the atom. As a

' resultAof the high electron deﬁsityAnear a nucleus (of not-too-low Z), the

distribution of electrons about a typical electron (n__) shows a maximum

'r-AA
oy
@
o]
W)
(W)
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for relatively small r, and at some larger r, n__ even becomes greater thén
n,__. This behavior is particularly pronounced for low temperature and denéity
and for high Z. For Z =»l,wné maximum in a__ has been observed; this is to

be expected since in this case, there is only one electron per nucleus and
consegquently no strong bunching of several electrons about each nqcleus.'

The distribution of nuclei about a givenm nucleus (n++) is shown in
greater detail in Figures 7 to 9, which correspond to the cases pictured in
Figures.2 to 4, respectively. For a given density, the effect of an lncrease
“in temperature is qualitatively what one would expect -- an increase in n.,
at small r and a decrease at large r, However, at low density (Figure 9), the
effect is quantitatively sbnormal; on the scale of the figure, the only percep-
tible»change in n,_ on increaging kT from'lo to 100 ev is a decrease everyvhere,
_ This behavior is more pronounced the icwér the denusity and the higher the value.
of Z. It is ciosely related to‘the féét that in the zero-temperaturé limit,

B, tends Yo a step'function with the step at é radius Ty which is less than

ro ~=- this last being the radius of a_sphere vhose volume is the average' volume '

-l)

3.
per atom (hnr°/3 =n,

The reason vhy ry is less than T is easily seen., At zero temperature,

.-the normalization condition (19), (20) reduces to

" Bince a_, is everywhere greater than'the averqgé value o_» it follows that
the volume inside rl must be less than the average volume per atoﬁ and hence

r, < r_. Indeed, at T = 0, the differential equation (16) and boundaiy-.

1
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- conditions (17) reduce precisely to the Thomas-Fermi equations for an atom
of radius rl.5 In the case of iron with r, corresponding to ten times normal

density, the TF pressure for an atom of radius:rl is about %ive times that
for radius ro.l The fact that the DHTF pressure is only forty percent greater 's
than the TF value (low-temperature portion of Figure 7) shows that the DHTF ‘
theory compensates in large degree for the small value of . Nonetheless,'
it is felt that the DHTF results should be viewed with reservations up to
_temperatures at which the distribution function n++(r) begins to exhibit

some semblance of symmetry about the point r = ro.

'C. _Energy

In Figure 10, the energy difference E(T p) - E(Tao,p ) (where o, is the
normal dens1ty of the material) is plotted against T for normal density iron,
for both the DHTF and TF theories. The curves are similar to those of Figure 3
for the pressure - at high temperatures the DHTF curve lies close to the TF
one, but at low temperatures, the DHIF curve mey lie as much a&s a factor tvo
above the other.'; |

Rough values of the b;nding energonf some atoms are given in Table:I.‘
It wmay be seen that (exeept at low Z) the DHTF theory gives even greater-'_
. values for ]E(T=O ’ P ) than does ‘the TFD theory. This may be partly3ﬂ
"due to the correlation energy, which at low densities is greater (in magnitude)
than the exchange energy of the TFD theory;h probably it is also partly the
result of the contraction of the electrons around a nucleus (the fact thst:
ry < ros discussed above).

It may be noted that whereas the TFD theory gives greater binding and

lower specific heat than the TF theory,2 the DHTF theory gives about the‘

same Or even greater binding than the TFD theory but apparently a hlgher

specific heat than the TF theory.
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It should perhaps be pointed out that the DHTF theory as presented in.

Section 2 is incbnsistent in that the electron correlation energy is not
included in the exponent of the energy-distribution functions used in cal-
culating the electron densities; Eqs. (6), (24), and (26). It is also
thermodynamically inconsiétenﬁ in the manner of all ﬁon-linearized Debye~

Hilckel theories,15 but these points will not be considered in this paper.
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Table I. Atomic binding energy, E(T=0,p=0), ev/atom

z F*
1 -20.91
6 o .1368
. 26 41885
92 =799150

aRefe‘rence.Q.

-28.07
-1492
-43280
-810500

DHTF

-26.3
-1475
-43590
-824000

A
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and Liquids (John Wiley & Sons, Inc., New York, 1955;, Secs, 3.1b and i 6.20.,

oThis result can also be obtained by a straightforward evaluation of the
Coulomb integrals for A=1, o :

W1 1,1y [ et e~tar,
Ep 2‘/ (Ze)p+r dr + 3 ZU/\( e)o r “dr,

"where P, and P are defined in Eqs. (2) and (21), and the factors 1/2 must
be 1nc1uded to avoid counting pair interactions twice.

lReference 5, Sec. II.

This procedure is almost essential to insure consistent values of A for use
in evaluating the derivatives (5A /ov) and (aAefaT)

13R H. Fowler and E. A. Guggenheim, Monthly Notices Roy. Astron. Soc, _§,
939 (1925).

l&A. S. Eddington, Monthly Notices Roy. Astron.Soc 86, 2 (1926)

15R H. Fowler and E. A, Guggenheim, Statistical Thermodynamics (Cambr1dge
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FIGURE CAPTIONS

Veriation of:pressure with temperatnre éccording to the DHTF and TF
theories of the atom for deuterium at normel liquid density, pP= 0.17 g/cc
(or for hydrogen at P = 0.085 g/cc). p; is the pressure of a mixture

of uncharged (Boltzmann) nuclei and (quantum-degenerate) electrons.

Variation of pressure with temperature for iron at ten times normal
density (p =.78.5 g/ce).

Variation of pressure with temperature for iron at normal solid density

(p =17.85 gfce).

Variation of pressure with temperature for iron at one~-tenth nornal
density (P = 0.785 g/cc). ‘

The radial distribution functions for iron at normal demnsity, A =1,
and kT = 100 ev, |

The radial distribution functions for iron at normal density, M = l,
and kT = 1000 ev. The n__ curve lies above the n_, curve for r/r > 0. 892.

The distribution of nuclei about a given nucleus for ironm at ten times

normal density and A = 1.

The distribution of nuclei aﬁout a given nucleus for iron at normal
solid'density and N = 1, : B

The distribution of nuclei about a given nucleus for iron at one-tenth

normal density eand N = 1,

Temperature denendence of energy for iron at normal demsity (P = 7.85 g/cc).
The dotted curve is for a mixture of nuclei and electrons without electro-

‘static interactions.
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