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1. INTRODUCTION 

1 
The temperature-dependent Thomas-Fermi (TF) and Thomas-Fenni-Dirac 

2 
(TFI)) theories of the atom have been recently discussed in detail, and used 

to calculate equations of state of the elements at' high temperatures and 

pressures. These theories involve a number df approximations, among which 

are the following: (1) The properties of bulk material are approximated by 

those of an isolated, spherically-symmetric atom whose nucleus is ,at rest. 

There are thus no contributions due to nuclear motion nor to interactions 

between neighboring atoms. (2) The electrons are assumed to be quasi-free, 

and their distribution about the nucleus is calculated statistically, so 'that 

the shell structure of the atom is in no way reproduced. The electron den- 

;ity at the nucleus turns out to be infinite, resulting in absolute binding 

energies which are considerably too great in magnitude. (3) The electrons 

are treated in the one-electron approximation, so that there are no cor- 

relations in the motions of the electrons due to their mutual electrostatic 

repulsion, though in the TF'D theory, some correlation among electrons of 

parallel spin results from effects of the Pauli exclusion principle. 

The ' Debye-Hackel , Thomas-Fermi (DHTF) theory developed recently by 
3. .- 

Plock and Kirkwood removes to some extent several of the above approxima- 
, . 

tions. Matter is treated in bulk with associated nuclear effects and inter- 

actions between atoms, and electrostatic correlations among the electrons 
. . 

are present. Exchange effects are not included. These can be incorporated 
. . .  

.in,a manner similar to that of the TFD theory (the principle change in the 

1Q3/21 (?)by the function G ~ ( Q ~ , B )  equations given below is to replace 5 
1/2 

defined in reference 2) ; however, this would introduce fairly serious 

numericel complicat'ions and would probably not greatly change the calculated 



results since at low densities, the correlation effects include most or all 

4 of the exchange energy. . . 

2. 'THEORY 

. ., We consider an infinite assembly of atoms (of one element) at uniform . . 

temperature and density, such that all particles (both nuclei and electrons) 
, . 

,- . are free to move about under the influence of their mutual electrostatic 

forces. In order to be able to.eva1uate the thermodynamic functions for 

this .system by considering the Debye charging process, we suppose each 

particle to carry an arbitrary fraction A of its true physical charge, 

the charge on each particle thus being U e  and -he for nucleiand electrons, 

respecti.vely. The ayerage densities .of nuclei and electrons will be denoted 

by "+o .and n,,; f ~ r  an el.ectrically neutral system 

. .1 .: . . : , .. ,. . . 

A. P q t f  cle nZ ~ztributionc About a ~ilcle'us 

. . .  . 
Singling'out one particular nucleus, let the average electrostatic . . . .. , i '- i 

, potential (due to - a11 particles, inciuding the nucleus in question) an& the I 
< -  > 

average charge density about this nucleus be respectively \(r) and 

where n++ and n-+ are the average densities of nuclei and electrons at a 

distance r from the given nucleus. The potential and charge density are I 



related through the Poisson equation . 

the boundary conditions being 

lim &+(r) = U e  
r+o 

We shall assume that the nuclei.,can be.treated classically, so that 

.- . - . . 
. . 

. . . . 

I ' , . .  
, .  The electrons 'must, however, be described 'by Fermi-Dirac statistics. .In the 

5 ) '  Thomas-Fermi approximation,. we have .. 

i s .  . 

. where 

-1 
I )  = ym (1 + eY-') dy, 



and the free-electron chemical potential p is such that 
. .  . 

... L .  

, . For'purposes of numerical calcuiation, it is convenient'to introduce 

6 . . .  the following units of length and energy . . . . 

. . 
. . I . .  : . . . . .  ' . . 

.. , 

and 

4 4 -2 - 4 = 32mh e h = 22.0532. .:h; ev, 
. . 

,$z$?+ <..? ::, :; .< ;., :> ?.x, 
. . .: .::':. L . ... , . . , . 

..., , . . . 
: . : .  . 

and also the quantities 
. . 



Combining a l l  th above,. the  Poisson equation (3 )  reduces t o  

with boundary conditions 

. . . .  . . . .  .:. " . 
. . ., . 

For given temperature, bulk densi ty  of material,  and value of A, the  

procedure is  a s  fo l lows:  n-, can be read i ly  calculated from the  b u l k  density,  

b found from (13), I ~ / ~ ( L )  from (9), and rl_ from the tab les  and asymptotic 

expansions f o r  I given by McDougaJ.1 and s toner  .7 The d i f f e r e n t i a l  equation 
112 

(16) can then be integrated t o  give @+(x), and hence q+(x) from (15).  The 

d i s t r i bu t ion  of pa r t i c i e s  about a given nucleus then follows from ( 6 )  and 

the  equivalent of (5)  

The net  charge surrounding the  given nucleus i s  



Using ( 6 ) ,  (18), and the differential equation (16), this can be written 

from the boundary conditions (17). :~huo q+ is, as it should be, the t-&a.ative 

of the charge on the given nucleus. 

B, Particle Distributions About an'Electron 

Singling out a specific electron, .let the' average electrostatic .potential 

(due to all charges, including the electron in question) and the average charge 

density about this electron be respectively I l f  - (r) and 

These quantities are related through the Poisson equation 

with boundary conditions 

lim r* . (r) = -he 
r+o 

lim Ilr (r) = 0. - 
r+m 



For a neutral plasma, it follows from symmetry considerations that the 

distribution of positive charge about an electron must be identical in form 

to the distribution of negative charge about a nucleus. Thus from (6), 

. .  ., 
. .  . . . Letting 

. . I . .  _ . .:. :. ._ .. . . . . .. . . 
. .. 
. . 

. '. ;. . .  . . 
'then analogously to (6) 

. .. 

Introducing a function fl - (x) defined by 

rl- = e-l(4~)-"t~-lx), 

the Poisson equation (22) becomes 

with boundary conditions 



With I (2) being a known function of x from the solution of (16), (28) 
112 . . 

... . L .  . . can readily be integrated to give fl ' and as functions of x, thereby giving " .,; - . . 

the distribution of particles about an electron from (24) and (26). . 
, . .  .. r 

. . . . 
\ . . .  .. .. :. ' 

Similarly to the derivation of (20), the' !net charge about s given 

electron is 

. . 
. . 
. . 

- .. . . . .  = e - 1- b, 
.' . . I. 

. . . . . .  . . 
. . . . . . . .  % . ' . .  . .  . .. . . .  -- . . , . . .  . , . .. . 

which is just:: the, negative of the charge on the electron. 
.. . 

" i  . .. . . . I  I . . ,, . : . .  . . ,  
. . 

. . 
.:. . 

. . .. . .. . . . . . 

C . The Tbermodynami c Functions 
... . . .. . .< . . 

An expression for the Helmholtz free energy A(v,T) of our system will 

be derived through the artiface of the Debye charging process, and we 

accordingly write 

where Ai is the Helmholtz free energy of the uncharged (ideal) plasmn, and 

, e  A, is the contribution which arises during the. charging process. 



The contribution 'of the nuclei,to the ideal Helmholtz energy Ai (per 
, . 
..... , :.a:. ;:. .> 
: .: . . , ., . atom) is given by the 'classical expression 

. . 

. . 
. >  . and the contribution o.f the electrons: (per atom) is 

8 
.,I :, .. . . . . . .  -.:..... . ..<. :..;< : ' :  .). . ., , .' :, , : . 2 . .'., .: . . . . . 
...... 
' I 

.':: .'.. . ~ 
.<;' .! 

,:-.., . ... . . ...... The portion Ae of. the Helmholtz energy is the electrical work done in ..... : i . . . . .  _ . . , .  . .., _:. .'. . 
. . .  ... . . . ;.: . . I 

charging up the particles at constant temperature and volume, the particle 
* - 

distributions at each stage in the charging process being the eguilibriirm 
- - 

distributions for the corresponding value of A. Thus the contribution of 
. . .  - - each nucleus to Ae is 

. . . . . . ... . . . . .  . . . . .  , . . .  .;".'.. and the contribution of Z electrons to Ae is : . , . 



-u- 

where the quantities ?Ze/r and -k/r have been subtracted from @+ and @, 

respectively, in order to remove the self-energies of the particles, and where 

( x )  have been expanded in Taylor series about the origin (see Section 3), and - 
the boundary conditions (17) end (29) employed. (ao = .h2/me2 ie the f iist 

Bohr radius of hydrogen. ) 

With the Helmholtz' free energy calculated fn this manner, the preasure 

and the internal energy per atom can.then be obtained from the general 

relations 

$3 - -(&/a),, 
E = A + TS. 

Alternatively, the pressure or the energy can be found from (36) and the other 
quantity found from the vlrial theoremD9 vhich for Coulombic forces, has the 

whezk and E are respectively the kinetic and potentid energies of the 
P 

system. The validity of the virid theorem in the case under consideration 

can be established as follows: 

The energy of the uncharged gas obtained from (32), ( 3 3 ) ,  and (36) is 
Z 

entikly kinetic, and it can be readily shown that piv = -  E -- using in 3 i 
the case of At- the relation (9) 



v~312~1/2 (qm) = constant , 

7 3 and a l s o  the r e l a t i on  d1312/dqa = 5 Ill2* Thus it is necessary t o  consider 

only the contribution of Ae t o  the  pressure (pe) and the energy (Ee) . This 

l a s t  quant i ty  includes not only poten t ia l  energy but a l so  a  change i n  the  

k ine t ic  energy brought about by the charging process -- the po ten t ia l  energy 
. . 

,. , 

. . of the f u l l y  charged system being the  result given by (34) and (35) if i the 

10 
p a r t i c l e  distributions a r e  held f ixed a t  t h e i r  values f o r  X = 1: 

. . 

We fi rs t"not& from (15)-(17) and'(27')-(29)' . . t h a t  ( fo r  given 2) t h e  , 
. . 

- :  . . . . . . 

. . ' solutions #+(x) and #- (x) do not depend on v, T, and independently, but 

oaly on the  two quant i t i es  'I, and 9 -- or  from (38) and (13), only on 

322 -4 
, . and Th . 

. . . .. 

. . 
Thus if vl and TI are some fixed volume (per atom) and temperature and .,if v 

. . 

- .  and T are quant i t i es  re la ted  t o  vl and T1 through a  scale  f ac to r  c  such t h a t  

. . 
then he may be wri t ten 



where K is the constant before the integral sign in (34). Differentietion 

of this expression gives 

and combining this with (42) and (39) gives 
, , 

2 1 
Pev .3 (A* + TSe) - - 3 P 

2 1 - 3 (Ee - $1 + 5 $, 



which completes the proof of (37). (In the singular case T = 0, the proof 
. . .  . . .  

. . can be carried out, in a manner entirely a ~ o g o u s  to that which has been 

b 
given for a modified DHTP theory. ) 

3. NUMERICAL METHODS 

. . _. / ' . . , .  The differential equations (16) and. (28) were integrated numerically , . . . .  . 

with the .aid of IBM Srpe 704 digital .computers, usiq numerical methods 

similar to those employed elsewhere. 2,4 

A. Integration of the Equation for @+ 

For small x, it may be seen from (15) and (17) that \ >> 1, so that 

I - - -  the second term in (16) is negligible conlpared with the first, the differential 

equation thus reducing to that for the temperature-dependent TF atom. . The 

. . . . . . .  : .  . . . .  solution can, therefor&, be written in series form: 
. . .  ., .. 

. . .  . . : . 

. . . .  ;. . 

the values of the first few coefffcients being u 
. . .  . . . . . .  . . . .  . . . . . . . . .  ..:. . . . . . . . .  .. - 

, . .  . . .  . . 
. .a  . . . . .  , . . , .  , . . , 

. :  . . .  
; : ; .  . a - 1  8 - a  -0, 1 . . .  . . . .  0 ... 

, . .  , . 
. , - .  a = $(o) = arbitrary, 2 a3 = 413 .. - 

. . .  
. . 



For i 2 '7) the ai contain temperature-dependent terms, which however are of 
. ,  

no importance provided (45) is used only to sufficiently smal l  values of. x. ' .  . . .  

. . . . . . . .  .,. : . .  , . . Using an estimated value' of a2, integration of (16) was started with 

. . 
.- . ' the aid of (45), and then continued by a difference method. Because of the, . . .. . 

boundary condition (17), at large x Eq. (16) can be written with the aid 
... , . 7.2 . , ..I. 

of Taylor s6ries' 'expansions and Eq. (15) in the form . / ... 

where 

A t  some large x, then, the constant A was evaluated so as to match (46) to . , .  . 
. . >.i , :.' 
_>: .; ; ".'> . . . .  . . 
. . . . .  < . .  , . . . . . .  the numerical solution, and the slon,es. .of the two solutions were thcn ' .' . I . . 
;;. : .. 

3. ' . I  . . . .  
s:..: . '  , 

I !  

" f ,  compared. The value of a2 was then modified, and an iterative procedure 
I 

carried out until the two slopes were equal to the desired accuracy. ~ . . 

It may easily be seen that this solution' of (16)-(17) is a unique one * . .  
r :  ' . . .  . . . . 

. . . . .  
. .  . . . .  (barring solutions with singularities at finite x) : For any integral of . . ... . .: . . . . 

. . . .  
$. . -.,, ;.:<.::; -.: ". .; . . . . .  

, ,..! - . . . .  :., .>  .,, . .  (16), the c~rvatiake'is positive for . \  > t arid negative for \ < r l ~  . . .  
.c.. . . . . .  . . 

. . .  . ' -. 
if 4 and f12 are two integrals satisfying the boundary conditions at the 

. . .  : . . . . . .  
. . : origin with $(o) > (6;(0), then for all x, Z f12(x) r &(XI > @;(x) ,- ' ..:.. . : .  

. . . . . . . . . . . . . .  
and @i(x)> fl i(x) : ; The solution (which satisfies both boundary conditions) " :. .. 

. . . . .  . . .  . . 
. . 

has the properties @+(x) > x $2 @;('x) < and @i(x) > 0 for all x. 
. ." --" 



As a check on the 'integration of the differential equation, the results 

were used for a numerical evaluation of the integral (19); the value of q+ 

thus obtained was generally equal to -AZe within one-twentieth percent, 

except at large Z and low 9 where the function (18) changes very rapidly 

B. Integration of the Equation for fl- 

With il, being a k n m  function from the solution of (16) -(17), the 

integration of (28) can be carried out in a similar manner. At s d l  x, 

1 << 0 from (27) and (29), and (28) reduces to 

which is identical with the small-x form of (16) except for the change, in 

sign. The solution can therefore be written 
, . ... , ' . .  ' 

where 

. , 

b2 
= @:(o) = arbitrary, 



At large x, (28) can be written 

( 1  I I('(@- - #+I, 

the solution to which is 

where 

The value of b2 is iterated on until (50) matches the numerical solution 

both as to value and slope at some suitably large x. 

The uniqueness of the solution c'an again be seen from a qualitative 

examination of the differential equation, though the situation is somewhat 

more complicated than before in that two qualitatively different forms of 

the solution are possible: (1) @-(x) < d&, #:(x) > $;D, and $"(x) - < 0 

for all x; (2) 6 - (x) not 6hly crosees the line x#&, but also crosses the 

curve @+(x) at some point xl with a slope such' that $;(x1) < $:(%) < #&, 
with @"(x) - < 0 for x < xl and #"(x) - > 0 for x > 5. For Z = 1, only the 

first type solution has been observed; for Z = 2, either type may occur, 

depending on the density and tempqrature; and for somewhat larger 2, only 

the second type has been found. The reason' for this will be discussed in 

Section 4B. 

It all cases, the numerical results checked Eq. (30) with about the 

same accuracy as for Eq. (19). 



C.  Evaluation of the Thermodynamic Functions 

As pointed out earlier, the integrands of the expressions (34) and 

(35) for A can be considered as functions . of ;. . .. only :. the two parameters vT 312 
!.,. i- . . . e . . .. . . . . , .. . . 

and T C ~ ,  Rower, A= was actually computed by the more time consuming but 

. .. 
more straightforward of integrating the differential equstions ' 

2 for the desired v and T and for each of twelve values of h , and evaluating 
2 the A integrals with the aid of Simps'on's rule. 

. t In order to evaluate p aud E, cdculatfons were not actually done at 

the v = dl and T of interest but rather at [ (1 j:O.l)D,T] and at [ C,(1 2 0.1)~], 

and p and S calculated from (36) by numerical differentiation. in a linear approx- 

imation. The aseociated error is roughly one percent, compared with which the 

. . errors in Simpson's rule and in integrating the differential equations: are 
-..: . . .  . 

. '  . . . 
.. negl f gible . . , .. . . , . , :I . .  :. 

:'i . . 

. ' _ .  . I 

- .  In a fat casea, the pressure was. also evaluated from the virial theorem . ,  . . . . . 

(37).  1n each case, the result agreed with that obtained from (36) within the 

one percent uncertainty in the latter. 

4. RESULTS 

A. Pressure 

Some numerical results for the pressure are shown in Fflgures 1-4, which 
8 include for comparison curves showing the pressure of the uncharged ideal gas 



(where v is volume per atom), and also curves showing the electronic pressure 

as calculated from the TF theory of the atom. 1 

It may be seen, especially from Figure 1, that at high temperatures, the 

value of pv/ltT for the D m  theory is eater than that for the TF theory by 

approximately unity, as is to be expected since the one theory includes the 

nuclear contribution to the pressure whereas the other does not. 

At law temperatures and densitfes, the DHTF curves differ qualitatively 

from the corresponding lT curves, the former possessing distinct plateaus in 

Figures 3 and 4. This effect is strongly Z- (and density-) dependent, as 

confirmed by numerical results (not sh'm here) for Z = 6 and 92. It is not 

immediately obvious whether the large DHTF pressure calculated in the plateau 

region should be considered physically meaningful. One might congecture that 

. . this reflects f oni zation resulting from collf sions of nef ghboring atoms due 

- 0 
to the thermal motion of the nuclei, which is absent in the TF picture. How- 

ever, for reasons which will be discussed below, the authors feel that these 

large pressuree may be spurlous (at least in p&t) and that the DBTP results 

should not be given too much weight at low temperatures and densities. 

A t  suf f iciently low densities, the zero-temperature pressure becomes 

negative (~igures 1 and 4), unlike the TF theory where p becomes zero only 

in the limit of zero density. This is probably related to the lowering of 

energy due to electron correlation, which is not present in the TF theory. 
. .  . 

. . 
The DRTF pressure seems to become zero at a slightly higher density than in 

the TFD theory; this is reasonable since at the low electron densities at 

which correlation effects are important, the correlation energy in the present 
, 5 

theory i s greater than the exchange energy of the TFD theory (see reference 4 
. . 

and Sect ion 4~ below). 



The high-temperature regions in which the DHTF results may be considered 

.reliable are pertinent to the following two problems, among others: 
.,.;. . 
c ,  . .. ' * . .  : , " . . . . '. .F . . i '. 

(1) Current efforts at achieving thermonuclear reactions are aimed at 

producing temperatures well above 100 volts in deuterium at gaseous densities. 

Since both high temperature and low density reduce the importance of electro- 

.static interactions between the nuclei.and electrons, it 16 evident from 
. . . , 

, . , ; . . . . . . . . .  : ~igure 1 'thak electrostatic effects q e  completely negligible under the , . .  . 

above condi t f ons . 
(2) In the early years of the Debye-Hdckel theory, several attempts were 

made to apply the theory (primarily in its linearized form and using Boltzmann , 

statistics for all particles) to the problem of ionfzed material in stellar 

6 
interiors. Thus for iron at a density 156 g/cc and a temperature of 26.36 10 OK 

(kT = 2271 ev), Fowler and ~uggenheim~~ calculated the electrostatic effects to 

i 4  
- .  

reduce the pressure by 21.9$, while Eddington corrected the theory in some 

reipects and found an effect of only 6.844. The present D m  theory gives for 

iron under these conditions pv/kT = 24 .OD and thus a pressure only 4$ less 

than the perfect-gas value for the 24-fold ionized atoms assumed by Eddington. 

B. Radial Distribution Functions 

In Figures 5 and 6 are sham the radial distribution functions ( 5 ) ,  (24), 

and (26) for iron at normal density, h -9 1, and kT = 100 and 1000 ev. 

For small r, the density of electrons about a nucleus. (n-+) becomes 
.. . 
infipite as just as in the Thomas-Ferml theory of the atom. Asa 

result of the high electron density near a nucleus (of' not-too-low z), the 

distribution of electrons about a typical electron (n -- ) shows . . a maximum 



-21- 

for relatively,smaU r, and at some larger r, n even becomes greater than - - 
n+- This behavior is particularly pronounced for low temperature and density 

and for high Z . For Z a. 1, .... no maximum in n has been observed; this is to - - 
be expected since in this case, there is only one electron per nucleus'and 

consequently no strong bunching of several electrons about each nucleus. 

The distribution of nuclei about a given nucleus (n,) is shown in 

greater detail in Figures 7 to 9, which correspond to the cases pictured in 

Figures 2 to 4, respectively. For a given density, the effect of an increase 

'Ln temperature is qualitatively what one would expect -- an increase in n* 
. . at small r and a ,decrease at large r'. However, at low density (~fgure 9 )  , the 

effect is quantitatively abnormal; on the scale of the figure, the only percep- 
-. 

. . 
tible change in n++ on increasing KP from 10 to 100 ev'is a decrease everywhere. 

This bhawlor is more pronounced the l m r  the llsr~sity an8 the higher the value 

of 2. It is closely related to the fact that in the zero-temperature limit, 

"++ tends to a step function wit
h the step at a radius rl which is less than 

. ' 
r -- this last being the radius of a ,sphere whose volume is the average'volume 
0 

3 - 1 per atom (4rcr0/3 = n ). 
40 

The reason why rl is less than r is easily seen. At zero temperature, 
0 

.-.the normalization condition (19) , (20) reducee to 
, . 

:, . , .. . 
. . ' Since nd+ is everywhere water than the average value nmo, it follows that 

. . . . > .  . 
< .  the volume inbide r1 must be less than the average volume per atom' and hence 

r < ro. Indeed, at T = 0, the differential equation (16) and boundary 
1' 



-22- 

conditions (17) reduce precisely to the Thomas-Fermi equations for an atom 

of radius In the case of iron with ro corresponding to ten times normal . ' 

density, the TF pressure for an atom of radius rl is about five times that 

for radius rooL The fact that the DBTP pressure is only forty percent greater 

than the TF value (low-temperature portion of Figure 7) shows that the DXTF 

theory compensates in large degree for the small value of rl. Nonetheleee,, 
. . 

it is felt that the DHTF results should be viewed with reservations up to 
. . - .  . %  . . 

temperatur& at which the distribution function n++(r) begins to exhibit . ,  . 

some semblance of symmetry about the point r = ro. 

C. Energy 

In Figure 10, the energy difference E(T,'@) - E(T=Q,~~) (where po is the 
normal density of the material) is against T for normal density iron,. , .. ' ',, 

. . 

for both the DHTl? knd TF theories. The curves are similar to those of ~ i g u k  3 : . . . ; 

for the pressure --."at. high temperatures" the D F l F  curve lies close to' the !IT 

one, but at l o w  temperatures, the DATF curie may lie as much 8'6 a facto:rtwo .... . . 
! 

above the other. , , 

Rough values of the binding energy of some atoms are given in Table I. 

It may be seen that (except at low Z) the DHTF theory gives even greater . ' . .  ( .  

. . 
. . . .  _ ..., . 

. . .  
- . 

values for IE(TPO , P*=~.) 1 than does, the TFD theory.  his may be partly : .. . . . 
. . 

due to the correlatf bn energy, which at 'low densities i s greater ( in magnitude) . . ' ".. 
.. . : 

than the exchange energy of the TFD theory;4 probably it is also partly the 
. . ,: . . .. 

result of the .'contraction of the electrons around a nucleus (the fact that '. 

' . . 

< rO, discussed above). 

It may be noted that whereas the TFD theory gives greater binding and 

lower specific heat than the TF. theory,* the DBTF theory gives about the 

same or even greater binding than the TFD theory but apparently a higher 

specific heat than the TF theory. 
t 



It should perhaps be pointed out that the D W  theory as presented in 

Section 2 is inconsistent in that the , electroan .,:correlation energy is not 

included in the exponent of the energy-distribution functions used in cal- 

culating the electron densities, Eqs. (6), (24), and (26). It is also 

thermodynamically inconsistent in the. manner of all non-linearized Debye- 

HUckel theories,') but these points will not be considered in this paper. 
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FIGURE CAPTIONS 

Fig. 1. Variation of pressure with temperatbe &cording to the DHTF and TF 

theories of the atom for deuterium at normal liquid density, P= 0.17 g/cc 
(or for hydrogen at P = 0.085 g/cc). pi is the pressure of a mixture 

of uncharged ( ~ o l t z m ~ )  nuclei and ( quantum-degenerate) electrons . 
. . 

. . Fig. 2. Variation of'pressure with temperature for iron at ten times normal 

density (P = .78.5 g/cc) . . . . 

Fig. 3. Variation of pressure with temperature for iron at normal solid density 

I . . (P = 7.85 g/cc) . 
, . 

..' ,,I . " . . .  

: ! .  . ' . Fig. 4. Variation of pressure with temperature for iron at one-tenth no* 
. . .  

density (P P 0.785 g/cc). 

Fig. 5. The radial distribution functions for iron at normal density, h = 1, 

and kT =1 100 ev. 
-I' 

. . . . . . . . . . . . .  . . . .  , . . .  
. - :  : .  Fig. 6. The radial distribution functions for iron at normal density, h = 1, 
. ,  , . 
. . . . . .  . . . . 

~. .:.: - .  ;, , . . . . .  . , . . : '  5 

.:o ' ' 

and k!!! = 1000 ey. The n curve lies above the n-+ curve for r/ro > 0.892. - - 
1 

I 

Fig. 7. The distribution of nuclei about a given nucleus for iron at ten times 

normal density .and h = 1. 
. . . . . . 

. , I  ' .  . . 
* .  . . .  1 :: ,, 

~ i g  . 8. me distribuiion ~i nuclei abpui a given nucleus f6r iron at &ma1 
. . . . . .  ... . . . . .  . . .  :" . . . /  . solid ,density and = 1. . . . . . . . .  

. ;;. j : .* . . : .. 

~. :. ..;,: ;. :. . .: 
. . . .  

. . ! . Fig. 9. The distribution of nuclei about :a .given nucleus for iron at one-tenth . .  ..; .. . . .  
. < .... ' .  . normal 'density and A = 1. % ...... :. . . . . :  . . . . . . . . . .  . . , . '<. .'. , 

- ' , Fig. 10. Temperature dependence of energy for iron at normal density (P = 7.85 g/cc) . 
The dotted curve is for a mixture of nuclei and electrons without electro- 

. . 
.:.. , 
? . .  . . 

'static 'interactf ons . 
- : .  :. . . . .  

, . 
. . .  . . . . . . 

. . . .  
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