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Multigrid for Refined Triangle Meshes

Yair Shapira*

Abstract

A two-level preconditioning method for the solution of (locally) refined finite el-
ement schemes using triangle meshes is introduced. In the isotropic SPD case, it is
shown that the condition number of the preconditioned stiffness matrix is bounded
uniformly for all sufficiently regular triangulations. This is also verified numerically for
an isotropic diffusion problem with highly discontinuous coefficients.

1 Introduction

The Black Box Multigrid method of [4] is considered robust for diffusion problems with
possibly discontinuous coefficients on structured grids. More specifically, the application of
this method requires that the coefficient matrix has a 3%-coefficient stencil, where d is the
dimension of the problem. In the context of finite element schemes for elliptic second order
problems, this limits the use of black Box Multigrid to multilinear finite element schemes on
a logically cubic meshes. Thus, Black Box Multigrid is not applicable for more complicated
(e.g., unstructured) finite element schemes resulting from realistic engineering and applied
science problems. Furthermore, it is pointed out in [7] [8] that Black Box Multigrid stagnates
for certain diffusion problems with high diffusion areas separated by a thin strip. Surprisingly,
this stagnation occurs when the discontinuity curves are aligned with all the coarse grids,
case which can be handled easily by either standard multigrid or the method of {3]. The
AutoMUG method introduced there avoids this stagnation but diverges for other examples.
In {10] this stagnation is explained and a modified version of Black Box Multigrid which
avoids it is introduced. This version is related to the method of [5] and based on ‘throwing’
certain matrix elements to the main diagonal when constructing the prolongation operator
from coarse to fine grids. It is shown in [10] that this version is robust both theoretically
(for a certain class of problems) and numerically (for the above example and others).

In this work, a method in the spirit of the above version is applied to (locally refined)
triangular finite element schemes. The method can thus be considered as a generalization -
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of Black Box Multigrid for certain unstructured grids. Unlike in (3], it is not necessary to
assume neither for the implementation nor for the analysis that the curves of discontinuity in
the coefficients of the PDE are aligned with the coarse level elements. Also, it is not assumed
here that the domain is polygonal; for simplicity, however, we use polygonal domains in the
presentation. ‘

The contents of the paper are as follows. In Section 2 the framework and the method
are presented. In Section 3 an upper bound for the condition number of the preconditioned
coefficient matrix is derived. In Section 4 this result is used to show that the convergence is
independent of the mesh size for a certain class of problems. In Section 6 numerical results
confirming the analysis are presented. In Section 7 concluding remarks are made.

to the

2 Preliminaries

Consider the problem
find v € H such that a(u,v) = (f,v) Yv € H, (1)

where H is a Hilbert space, (f,-) is a bounded linear functional on H and a(-, -) is a bilinear
bounded form on H x H. Consider also the problem

find v € V such that a(u,v) = (f,v) Vv €V, (2)

where V is a subspace of H.

Let d be a fixed positive integer, 2 C R? a bounded domain and L an elliptic differential
operator of order 2 in 2, that is,

Lu=-V(DVu) + & - Vu+ fu, (3)

where D, £ and (3 are given functions (D is a d x d symmetric and uniformly positive definite
matrix and £ is a d-dimensional vector). Let Dirichlet boundary conditions be imposed on a
finite set of curves (or domains, if d > 2) I' C 9Q and other types of boundary conditions on
OQ\T. In our application, H = HE(2) (the Sobolev space of order 1 of functions defined on
and vanishing on '), (-, ) = [, --d€Q) is the L, inner product, f € Ly(Q) and a{u, v) = (Lu,v).

Assume further that () is piecewise linear. Let S be a triangulation of 2, that is, a set of
triangles whose interiors are disjoint to each other and whose union is equal to €2 (for d = 3,
the term triangle is replaced by tetrahedron, but the formulation is basically the same). Let
T be a refinement of S which is defined as follows. According to a certain rule (such as that
of [6]), some of the triangles in S are refined. If s € S is refined, then connect the midpoints
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Figure 1: A 2-d example for the refined triangulation T resulting from the coarse triangula-
tion S.

of its edges to each other and include all the resulting triangles in T'. If s € S is not refined
but has a neighbor (edge sharing) s; € S which is refined, then connect the midpoint of the
edge shared by s and s; to the node of s which is in front of it and include the resulting
triangles in T. If s € S is not refined and has no refined neighbors in S, then include it in
T. This refinement is illustrated for d = 2 in Figure 1 (other refinement strategies are also
possible, see [2] [6]).

Let V C H be the space of functions which are continuous in 2 and linear in each
triangle ¢ € T. For each node n of a triangle in 7', let ¢, denote the corresponding nodal
basis function in V. Let A be the stiffness matrix (a(¢;, ¢;)). Then (2) is equivalent to the
linear system

Az =b, (4)

where b is the vector with components (f, ¢;) and the unknowns in the vector z are the
coefficients of nodal basis functions in the representation of the unknown function u in (2).
It is assumed in the sequel that A is nonsingular.

Let ¢ denote the set of nodes of triangles in S and f the set of nodes of triangles in T
which do not belong to ¢. Hereafter we use this partitioning of nodes also to denote the
corresponding partitioning of nodal basis functions. This induces a block partitioning for A:

A A .
( Acf Acc ) ( )
and similarly for other matrices of the same order.
For any set g C cU f, let J, : la(cU f) — lo(g) denote the injection
(Jow); = wj, w€la(cUf), jEg.

For any matrix M, M = (m; j)1<i<k, 1<j<r, let |M| = (Jm;;|)1<i<k, 1<j<z and

: L
rs(M) = diag(z My )1<i<K-
=1
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Define the diagonal matrix G by -

o _ rsllAsD + rs(lAy)
' .

Define the matrices P (prolongation), R (restriction) and @ (coarse-grid coefficient matrix)

by '
-1 _ G Afc -1 _ G O . W O
P= ( o 1 )=\, 1) ™M@=y seary |

where W is some nonsingular diagonal matrix. Note that R, P, ¢} and A are of the same
order, but the complexity of inverting @) is much smaller than that of inverting A. For the
analysis in Section 3 to be valid, one may set W = I or, in the spirit of [4],

W = G"ldiag(Aff)G"l. (6)

It is assumed here that J.RAPJ! is nonsingular; this is guaranteed when A is SPD and
holds in most cases. It is also assumed that G is nonsingular. If G is singular, one may
replace its vanishing main diagonal elements by, say, 1. With (6), this choice is immaterial
to the two-level algorithm (7), since G is cancelled in the formal triple product PQ~'R.

The two-level method is defined by
TL(Tin, A b, Tout) © Towt = Tin + PQT'R(b — Azyy). (7)

Since P! and R™! are triangular with respect to the variable ordering (5), the application
of P and R is performed easily by back substitution and forward elimination, respectively.
Naturally, one would like to use the present algorithm recursively for the solution of the
coarse level problem Qe = R(b— Ax;,). Fortunately, J.RAPJ! has the same pattern as that
of a linear finite element discretization of (1) using S. Hence, the algorithm is suitable for
recursion and multi level implementation.

The method TL may be supplemented with relaxations before and after it in the spirit
of multigrid methods. Alternatively, a Lanczos type acceleration may be applied to the
basic TL iteration (7). For both approaches, the condition number of the preconditioned
system PQ 'RA is an important measure for the rate of convergence. In the following, this
condition number is estimated for symmetric positive definite (SPD) problems.

3 Analysis in the SPD Case

Here (-,-) denotes the usual inner product in l2(c U f) and || - || denotes the corresponding
vector and matrix norms. The following lemma is used in the proof of Theorem 1.




Lemma 1 Let M be a symmetric and positive semi-definite matric of the same order as A.
Then, for any vector z € la(cU f),

(z, M) < 2(z, (JoJ; MJE T + JEJMILT,)T).

Proof: Let & = J{Jpx — J.J.x. Then we have
0 < (2, Mz) = (z,(J;J M It Jy + JLIMI e )x) — (2, (Je T M I+ JEJ M J;Jg)).
The lemma follows from
(z,Mz) = (z,(JpJyM I Jp + JiJMILT)z) + (=, (Jp I M I + JJ.M TG Jf)x)
< 2z, (JEI M I s + LM T )z). O

Theorem 1 Assume that A is symmetric and (possibly weakly) diagonally dominant, G is
nonsingular and W is SPD. Then the condition number of the preconditioned coefficient
matriz PQ 'RA is bounded by

2 max(||W I RAPJY|, 1) (1 + 2| Plly/nllAll + | RAP| + n|| W),
where n = (/| Ars — Gl + /I All)? < 4]|A].

Proof: The proof is in the spirit of those of [10] [11]. Since A is symmetric, R = P*.
Since A is symmetric and diagonally dominant, it follows from Gershgorin’s theorem that it

is positive semi definite. Let z € lo(c U f) satisfy ||z|| = 1 and denote ¢ = (z, Az). Since
A is symmetric and positive semi-definite, x may be written as a linear combination of the
orthogonal eigenvectors of A. Consequently, ||Az|?> < ||Alle.

Note that As; —G and A— J¢(Afs — G)Jy are symmetric and diagonally dominant, hence
positive semi definite. Using the above argument, we obtain

17:(Ass = G)Jpzl® < ||Ass = GlI(T3(Ass — G) Tz, ) < ||Ags — Glle.
Consequently,

| pAzll = 1P~ ]| [P < Jp(A = PT)al* = [|(Afs — G)Jpal|* < [|Afs = Gle,

which implies that

;P el < /g, where n = (y/l|Azs — Gl + /AN

As a result, we have
(z, R7'QP'z) = (P'z,QP'z)
JiJ.x + J}JfP'lzr, QI ez + J;Js P z))

(
(
< (JiJex, RAP(J.J.x)) + nl|W e
(
(

P~z — JLJ P~ 2, RAP(P ¢ — JLJ;P~1a)) + || W le
1+ 2| Plly/nllAll + nl|RAP| + nllW))e,
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Figure 2: Vertices and angles of a triangle.

which implies that the function (z, R"'QP~'z)/(z, Az) is bounded. On the other hand, we
have from Lemma 1 that, for any y € l3(cU f),

(y, RAPy) < 2(y, (J;JyRAP T3 J; + JoJ.RAPTLJo)y) < 2max(||[W ™! JsRAP ], 1)(y, Qy),

which implies that the function (z, Az)/(z, R"'QP~'z) is bounded. O

4 Application to Isotropic Problems

Here we assume that a(-,-) is symmetric, which implies that £ = 0 in (3). Also, we assume
that L in (3) is isotropic, that is, D = §I, where J is a function on Q satisfying 6 > «, for
some constant o > 0. Assume also that § > 0 in (3). This implies that A is SPD.

In the sequel we use d = 2; the multi dimensional case is similar. Denote the vertices of
a triangle s by 2, js and k;. Denote the positive angles inside s, vertexed at 75, js and ks,
by Zis, Zjs and Lks, respectively (see Figure 2). Assume that

max max /n<§, (8)
$€S nefis,js kst

where 6 is a constant satisfying 7/3 < 8 < 7/2.

Let A(s) denote the area of the triangle s (or, if d > 2, the volume of the element s).
Define
Donin = I§l€1§1 A(s) and Dper = max A(s).
Assume that

Ama:r/Amin S r, (9)

where 7 is a constant. In the sequel, the triangulation S is unspecified apart from the fact
that (8) and (9) are satisfied for fixed ¢ and r. Assume that (4) is multiplied by AL

min > SO
that (using (9)) ||A|| and diag(A)~! are bounded independently of A,.

Assume that A, is so small that, for any pair ¢;, ¢; of nodal basis functions in V, the
sign of a(¢s, ¢;) is determined by that of [, dV¢; - V@,dS2. Let ¢, j and k be the vertices
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Figure 3: Fine level nodes participating in the two-step competition (11).

of a triangle t € T such that either ¢ or j are in f (see Figure 2). Note that from (8) and
Figure 1 /k < /2. Let £ = (k —1)/||k — i|| and = £* be a pair of orthonormal vectors in
R?. Let F be the 2 by 2 matrix whose first column is £ and second column is . Denote by
Vr = (0/0¢,8/0n)t the vector of derivative operators in directions £ and 7. We have

/ 5V - V,dQ = / SF*V ;- F*V;dQ)
t t

= /t5VF¢i - Vp¢;dQ2

S LICYACH ;s
= —(lk — il tan(2&)) " (|k — j| sin(2k))™" /tchQ
J; 6dQ2 o

= — < ——F. 10

2A(s)tan(Zk) — 2tan(Zk) (10)
This guarantees that the main diagonal elements of G are bounded away from zero, so that
IG™!|| (and hence ||P]| and ||W]|) are bounded independently of the specific triangulation S
used. Finally, assume that A is (possibly weakly) diagonally dominant.

Corollary 1 With the assumptions in this section, the condition number of the precondi-
tioned coefficient matrizc PQ 'RA 1is bounded, independently of the specific choice of the
triangulation S.

5 A Two-Step Algorithm

It is seen from Theorem 1 that a necessary condition for the boundedness of the condi-
tion number of PQ 'RA is the boundedness of ||G||. Reducing |G| might thus improve
the performance of the two-level algorithm (7). To achieve this, we suggest the following
modification of the TL method introduced in Section 2.

Split f into two sets as follows. Let 7, j and k be edge midpoints of a refined triangle s € S
(see Figure 3). Let G,;, G;; and G be the main diagonal elements of G corresponding to
t, 7 and k, respectively. If

GiifAi; > max} G/ (2AL), (11)

’ T T Ieligk
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then include 7 in f; otherwise, include it in f,. The same procedure is employed for j and k.
Clearly, f; and f; are disjoint and f = f; U fo. This induces the following block partitioning

of A:
Afzfz Afol Afzc
A= Af1f2 Af1f1 Aflc .
Acfg Acﬁ Acc
Define the diagonal matrices G; and G2 by

Gy = A LDy g, - Tl rolldipl) | roUAnnl) Frolld )
Define the matrices P, R and () by

. Go Af?fl Afzc . G 0 0 W 0
P = 0 G Ape |, R =| Anpp, G1 O and Q= ( " > ,
0o o0 I Aty Aepy I 0 JRAPJ

where W is some nonsingular matrix. For the analysis in Section 3 to be valid W should be

SPD. The reasonable choices are
W=1 (12)
or, in the spirit of [4],
W = Rysdiag(Ass)diag(Pyy). (13)
Although W in (13) is not SPD, it is spectrally equivalent to the SPD matrix diag(W).
Hence, the application of the proof of Theorem 1 (see below) is essentially unchanged.

The TL method (7) is implemented with the P, R and @ defined above. Note that
J.RAPJ! has a slightly wider pattern than that of a linear finite element discretization of
(1) using S. Indeed, (J.LRAPJ!); ; might be nonzero for vertices i € s and j € sy if s and s;
are in S and share a vertex. Nevertheless, when multi-level implementations are considered
this pattern may be resolved recursively by a similar approach, using some splitting of the
next fine grid f, C ¢ derived from c the same way f was derived from cU f. A reasonable
choice is to use the above splitting method also for f,; it is recommended to construct the next
prolongation and restriction operators P, : ¢ — cand R, : ¢ — ¢ not from J.RAPJ! but from
a modification of it, in which elements which are outside the pattern of the corresponding
linear finite element scheme are ‘thrown’ to the main diagonal (see [9] [10]). With this
implementation, the pattern of the coarse grid coefficient matrix is preserved also for the
next coarse level coefficient matrix, which results in an efficient multi-level implementation.

Theorem 1 applies also to the two-step algorithm, provided that nonsingularity of G,
and G, is assumed. There is only a slight change in the proof and the definition of 5. This
is described next.

Let

rs(lAgy s, DFrs(i47, 1 1)

5 Apg 0 Apfa — G
A = Ag g, App— Gy 0 and A, = 0 0 01}.
0 v 0 0 00

0




Since A;, A3, A— A, and A— A, are symmetric and diagonally dominant, it follows from Ger-
shgorin’s theorem that they are positive semi definite. Using the argument in the beginning
of the proof of Theorem 1, we obtain

[Anz|l* < 14nll(z, Anz) < [[Anlle, n=1,2.

Note that
JiAn=Jp (A=PY), n=12.

Consequently,
| s Az — || TP~ el |2 < [[Jp(A— P7h)z|f?

= > > (Anz)f?

n=1i€f,

Z_:l [4nz]® < ([ ALl] + [ 42])e,

AN

which implies that

17:P 2|l < /7, where 7= (/I 4il + | 4[| + /[ A])? < (V2 + 1[4l

The proof of Theorem 1 proceeds as before with the newly defined 1. Note that the original
proof of Theorem 1 is obtained from this modified proof by setting f; =@ or f» = 0 in the
two-step algorithm.

6 Numerical Experiments

Here we apply the TL method to a diffusion problem with discontinuous coefficient. As
a test problem we take the ‘staircase’ problem (Example IV in [1]). This is an isotropic
diffusion equation (see Section 4) whose diffusion coefficient is 1000 inside the staircase and
1 outside it. The domain is a square. Mixed (vacuum) boundary conditions are given on
two nonparallel edges of the domain and Neumann boundary conditions are given on the
other two edges. Although a finite volume discretization is used, it may be thought of as
a finite element scheme, using right angled triangles of which two edges are equal in length
and parallel to a Cartesian coordinate axis. Full refinement is used, namely, all the elements
are refined. This is equivalent to the standard Cartesian grid coarsening used in [1] [4]. The
grid size is N x N (N = 17 yields the example tested in [1]).

Since the triangles are right angled, it follows from (10) that the one step algorithm is
insufficient. Hence, the two-step algorithm is used. From (11), it follows that fine level nodes
which lie between two coarse level nodes in a Cartesian direction belong to f;, whereas fine




level nodes which lie between two coarse level nodes in an oblique direction belong to fs.
This yields the following grid partitioning:

far fie - A fa
fi- cx  fi- cx fi-
for H foo fio fao,
fi- cx f1- cx fi-
for A f A fa-

where points in ¢, f; and f, are denoted by ‘c *’, ‘f; -” and ‘f, -’, respectively. Hence, in the

interior of the domain the stencil of the coarse grid coefficient matrix is identical to that of
the method of [4].

The Conjugate Gradient Squared (CGS) method of [12] is used to accelerate the basic
TL iteration (7). This method is chosen because it does not use the transpose of the pre-
conditioner, which is not always available. The method is iterated until the I norm of the
residual is reduced by six orders of magnitude.

The results in Table 1 show the insensitivity of the rate of convergence to problem size
for both the implementations (12) and (13). This is as predicted by Theorem 1 (with the
version used in Section 5).

Table 1: Iteration numbers for the two-step algorithm (accelerated by CGS) for the ‘staircase’
problem on N x N grids.

N (1213
17 | 57 | 19
33 39 17
65 39 17
129 39 15

7 Conclusions

The present two-level algorithm for the solution of linear finite element discretizations of
elliptic second order boundary value problems is analyzed in the SPD case under the addi-
tional assumption that the stiffness matrix is diagonally dominant. For isotropic problems,
the bound derived for the condition number of the preconditioned stiffness matrix is uniform
for all sufficiently regular triangulations. It is verified numerically for an isotropic diffusion
problem with highly discontinuous coefficients that the rate of convergence is independent of
the size of the problem. Unlike in [3], it is not assumed here that the possible discontinuities
in the diffusion coefficient coincide with edges of finite elements. This makes the method
applicable to problems in which the location of these discontinuities is not known in advance.
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The pattern of the coarse level preconditioning matrix is preserved in further coarser
levels in multi-level implementations. However, the analysis is not always carried over to the
coarse system, which is not necessarily diagonally dominant. Hence, it is desirable that the
diagonal dominance assumption be removed. This is left to future research.
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