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UNITARY SYMMETRY, COMBINATORICS,
AND SPECIAL FUNCTIONS

(Lawrence C. Biedenharn, Jr. Memorial Lecture)

James D. Louck

Los Alamos National Laboratory, Theoretical Division
Los Alamos, New Mexico 87545, USA

Abstract. From 1967 to 1994, Larry Biedenharn and I collaborated on 35 papers on various
aspects of the general unitary group, especially its unitary irreducible representations and
Wigner-Clebsch-Gordan coefficients. In our studies to unveil comprehensible structures in
this subject, we discovered several nice results in special functions and combinatorics. The
more important of these will be presented and their present status reviewed.

1. Personal Remarks

The following remark taken from the Preface of Angular Momentum in Quantum
Physics [1], Vol. 8 characterizes, in my view, the spirit of Larry Biedenharn's approach to
physics. It was part of his "bag of tricks," and I personally saw it in action over and over
again, sparked by his great intuition for what was important.

"The art of doing mathematics," Hilbert has said. "consists in finding that special case
which contains all the germs . of generality." in our view, angular momentum theory plays
the role of that "special case" with symmetry--one of the most fruitful themes of modern
mathematics and physics--as the 'generality’." We would only amend Hilbert's phrase to
include physics as well as mathematics.

George Mackey's comments in Introduction to The Racah-Wigner Algebra in
Quantum Theory ([1], Vol.9) capture the essence of Biedenharn's emergence as a
prominent figure in theoretical physics.

"The year 1949 is a significant one in the history of the development of angular
momentum theory. First, it is the year in which Racah completed his celebrated series of
four papers on angular momentum theory in atomic spectroscopy. Second, it is the year
in which that same Racah, a chief advocate and developer or "purely algebraic" methods,
reintroduced group theory and did it with a vengeance. Third, it is the year in which
Racah's methods and concepts began to find applications to other parts of physics.
Finally, it is the year in which L. C. Biedenharn, the senior author of the present volume,
completed his doctorate and formally began his scientific career. "

"As mentioned above, Biedenharn, the senior author of this book, was just beginning
his scientific career when Racah's paper IV appeared. Its publication coincided with and
partly inspired a surge of interest in the theory and applications of Racah's methods.
Biedenharn soon became deeply involved, and he is now one of the leading experts on all
phases of angular momentum theory, ... "

"In searching for recursion relations for the Racah coefficients, Professor Biedenharn
discovered a remarkable new identity between such coefficients. It immediately implies
a useful recursion relation and was later found to have an elegant conceptual
intggpretation. This result was published in the Journal of Mathematics and Physics in
1953.




DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are

produced from the best available original
document.




DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or implied, or assumes any legal liabili-
ty or responsibility for the accuracy, completeness, or usefulness of any information, appa-
ratus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recomrmendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not necessar-
ily state or reflect those of the United States Government or any agency thereof.




2
For the next seven years or so, Professor Biedenharn concerned himself almost
exclusively with other parts of theoretical physics, but he returned to angular momentum
theory in 1961. He has been a prolific and steady contributor ever since."

To George Mackey's observations, I would add: Larry Biedenharn's search for and his
success in elucidating comprehensible structure in complex physical and mathematical
objects was a committment that continued throughout his extraordinarily productive
career.

The versatility of Biedenharn's talents is well-illustrated by the following:

" A fact is discovered, a theory is invented; ... " J. Bronowski, The Creative Process,
1958. (Cited from Scientific Genius and C reatzwty, Owen Gmgench Readings from
Scientific American, Freeman, New York, 1986.)-

Larry Biedenharn discovered:
W (acbB; cy)W (@abpB; Tv)
=" (2x+1)W (alacac) W (b)\E; Ec) %4 (’(i)\'yb; ab)

)

This is Eq. (25) from [2] , the famous identity mentioned by Mackey ( Ellliott [3]}
discovered this relation at about the same time; it is generally known as the Biedenharn-
Elliott identity). Who would have guessed that at the very time that the books cited in [1]
were being written Askey and Wilson ([4], [ 5]) were using this relation as a guide to
their comprehensive treatment of orthogonal polynomials? Who would have guessed that
this relation would have an important role in knot theory and 3-manifolds (Tureav [6]).

Larry Biedenharn invented:

The concept of a unit tensor operator in the general unitary group U(n)--a far-
reaching generalization of the Racah and Wigner SU(2) (angular momentum) theory.

1. Introduction

I wish to review Larry Biedenharn's contributions to the theory of the general unitary
group U(n), which includes its representation functions, its Wigner-Clebsch-Gordan
coefficients, its unit tensor operators, and the special functions that arise. This is because
it is this part of his many-faceted career with which I am most familiar. Combinatorial
aspects of the subject will be noted as well as some of the beautiful mathematics that has
emerged and that is still developing. I believe this characterizes aptly the depth and
impact of the scientific creativity of Lawrence C. Biedenharn, Jr., although his interests in
and contributions to basic physics problems goes well beyond this limited arena and | my
ability to review it.

In physical applications of symmetry, there are two basic problems to consider. Given
a Lie groups G, which is a symmetry group of a physical system:

L. Determine the unitary irreducible representations of G .
II. Determine the Clebsch-Gordan coefficients of G.

The first problem is important because the labels of these representations provide the
labels of the quantum states of the physical observables associated with the symmetry.
The second problem is important because it is the first step in building composite systems
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possessing the symmetry group G from elementary systems possessing the same
symmetry group G. We will restrict our attention here to the unitary group defined by

U(n)={U \U is nxn unitary,UU" = I}, + denotes Hermitian conjugation.(1)

As we shall see, however, many of the results extend to the general linear group
GL(n,C),indeed, to arbitrary matrix algebras.

Much of the work done by physicists in the development of group theory, with a view
to applications to quantal systems, is carried out in the context of the boson calculus.
This is because the creation-annihilation operator approach to the quantal states of a
complex system has a wide range of applicability across many areas of physics. and
chemistry. It is instructive to review briefly this algebra.

The main features of the boson operator calculus may be summarized as follows:

ebasic operator algebra (Heisenberg) algebra:

n commuting creation operators: (a1,a3,....ap) )
n commuting annihilation operators: (El ,52 ,...,Zn ) 3
commutation relations:

[ai,aj]=aiaj—aj i =6ij' (4)

sunitary group action:

Ucol(ay,ay,...,a,) = col(ai,aj,...,ap), eachU eU(n),

U'col@,.a,....a,)=col@,’,a, ....a,), eachlUeU(n). ®
invariance of commutation relations :
[¢,.a]1=a,aj -aja, =§;;. ©)
invan'anc_e of the operator: N = é‘,laiz ;= éla,-' ai . ¢
egroup action on the set of polynomials over the creation operators:
(TyPXay,ay,....ay) = P(a1,03,...,a,) = P(a],d5,....ap), ®

col(a{,a3,....ap) =U Tcol‘(al,az,...,a,, ), (T denotes matrix transposition). (9)

In general physical applications, N copies of the boson operator structure are used. For
the general representation theory of the unitary group U(n), it is suffcient to take »n such
copies. Each of the n copies then undergoes the same transformation under the action of

the unitary group U(n), but the problem of determining those polynomials over the n?
bosons that transform irreducibly under this action is far from trivial.
In the lecture today, I will outline this theory in an isomorphic form by making the
replacements
aj >z, ai->ad/dz , (10)
where the z; are taken to be indeterminates. The reasons for this are a committment
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to carrying forward the ideas of L.C. Biedenharn, the personal belief that combinatorics
has much to offer in this endeavor, and that what is already developed by physicists can
be best communicated to mathematicians in that field by the use of indeterminates.

2. Irreducible Unitary Representations of U(n)

2.1. Basic definitions

eHilbert space H: Ring of polynomials over the complex numbers in any number of
variables (indeterminates) z =(zy,23,... ) with inner product:

(P.P)=P*(3/3)P'(2),_y .P.P eH. an
ebasis polynomials:
A dd‘ n a--
Ba@=27/41 = NG)™ /@yt (12)
i,j=

where Z is an n X n matrix of (commuting) indeterminates, Z = (z,-j), i,j=12,...n,
and A is an nX n matrix of nonnegative integer exponents, A =(g;;), i,j=1,2,...n.
These polynomials are then orthogonal with respect to the inner product (11):

(Ba,Bar)= 84 4 (AN7L. (13)

egroup action in H: The following actions of the unitary group U(n) in the Hilbert
space H are important:

Left action: (LyPYZ)=PU TZ), each UeU(n),eachPeH. (14)
Right action: (RyP)XZ)=P(ZV),each VeU(n),each Pe H. (15)
These two actions commute: Ly Ry = RyLy.

sirreducible polynomials basis: The polynomial basis of H that transforms
irrreduciblly under the action of U(n) are given in terms of the polynomial basis (12) by

Iz = u A
P w(2)= (a.Ea’)Cm wA) 271 Al (16)
where the notations in this relation have the following definitions:
(1) partition:  p = (Uy, 2, 1p), P12 U 2.2 1y 20,

. 17)
each u; a nonnegative integer,




(2) Gel'fand-Zetlin pattern:

mpp mj n oo My n

(lrft) = m3 o mg3 M3 Wi =my). (18)
mp M)
™,

>

Each row in this triangular array of integers is itself a partition, one that fits "between"
the one above:

myj+l S jSmy i) SSmy i Smisg e (<j<n-1). (19)
This rule of "betweenness" expresses the well-known Weyl group-subgroup rule
that the irreducible representation of U(j+1) labeled by partition
(my j1,my ji1s+smjeq j41) Teduces on restriction to U(j) to a direct sum of those

irreducible representations of U(j) labeled by the partitions (my oMy, j), each

occurring once. _
(3) Double Gel'fand-Zetlin pattern:
m

(")and(“,), written as ( A ]or A (20)
m m m m m

In the three-rowed notation, the one pattern is ilivertcd over the other with the shared
partition label in the middle, as illustrated by

2| o ooy 1 @1)
2 11y .
) (1)
(4) The weight (also called a content) of the Gel"fand pattern (18) is the n-tuple defined
by
a=(aq,0p,,0&y),

a;= (sum of entries in row j) — (sum of entries in row j —1)

J j-1 22)
= Xmy ;= Xmyjp, (0 =myy).
i=1 i=1 7
(5) The coefficients
u
C* (A) 23)

may be considered as functions C,*  labeled by the same double Gel'fand patterns that

label the functions on the left-hand side in (16), which are defined over the elements of
the nXxn array A of exponents that occurs in (12 ), where the row and column sums of

this array are the weights a and «’of the Gel'fand patterns (f,") and (f,‘,)
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rowi: Y.a;=0;; column j: Ya;; = a}-. (24)
j i

J
The "discretized" functions are the elements of an orthogonal matrix that transforms the

orthogonal basis (12) of H to the new orthogonal (16) of H. This is discussed further
below,

(6) The summation
z (25)
(a:A:a’)
in (16) is over all nxn arrays A of nonnegative integers such that the row and column
sum restrictions (24) are satisfied.

(7) For fixed partition u, the Gel'fand patterns ({;) and (” ) enumerate rows and

ml
columns, respectively, as m and m’run over all values allowed by the betweenness
conditions, of the matrix, denoted

PH(2), (26)
of polynomials (16). In order to write out this matrix, we order the Gel'fand patterns by
the following rule: Associate with each Gel' fand pattern (18) the sequence W defined
by "stringing" together the rows:

W = (my 15 s My p-150 51,2, M2 25711 1)- 27
We order lexicographicaly the sequences W corresponding to the various Gel'fand
patterns having the same partition g, and then order the Gel'fand patterns by the rule:

(‘;1) > (‘nﬁ,), if W>Ww’ (28)

It is customary in physics to order the columns of the matrix (26) as read from left to
right by the greatest to the least pattern, and the rows as read from top to bottom by the
same rule. The dimension of the matrix (26) is given by the Weyl dimension formula:

dim P (Z) = dimpt = [y - + j - )/ 12L..(n =D)L (29)
i<j
2.2. Basic properties of the polynomials P Sl

We give here a partial list of important properties of the polynomials defined by (16).
A more complete list may be found in [7]. Itis, of course, the discretized functions (23)
that must be given unique definition. We list first properties of the polynomials:

ehomogeneity: The polynomialst"m,(Z) are homogeneous of degree ¢; in
(21,22, %jn),Of degree @ in (2,23 ,...,2yj),and of degre A1 + A3+...+4, inall

nzvariables.

e transposition and multiplication:
PEEy=(P* @),

(30)
PH(X)PH(Y) = PH(XY), X and Y arbitrary.




¢ inner product orthogonality:

PP =83 481y e MA) @31)
M) =TT+ 1=t [TIC = Aj+ j=D)! . | (32)
i i<j

egenerating-like functions:

n
H[det(XTZY)k]‘uk—#k“ = 2 melmax(X)Pmum’(Z)Prf;',max ¥)

k=1 mm’ (33)
n
Idet(X7 ), P Het =3P K (X)P K (D).
k=1 m
ereduction property:
Z 0
U n-1 — Hn 4
F '"’( 0 Znn] =Zmn Ov.v By g Zn-0),
m=(} @=(7) 34
e maximal polynomial:
n —
Pt max (Z) = TI(det Zp Y e+ g, g =0,
k=1 (35)

detZ, = k Xk principal minor of Z,
where ( nﬁ‘u) denotes the Gel'fand pattern of weight 4.

2.3 Basic properties of the discretized functions C m“ '

The coefficients Cm” o (4) entering into (16) are the primary objects. By definition,

they are taken to be zero unless the weights of the double Gel'fand pattern and the row
and column sums satisfy the restrictions (24). Some of their properties follow:

eexplicit orthogonality relations:

» )(A!)“cfe.(A)cm”m,(A)=5,1,‘,6[,,,,6[,,,,,,M(u), (36)
a:Aa’

SME)T T G (AC,HE, (A= 8y AL

psN 37

N = gy+...+a, = o +...+0p.




ereduction property:

(An—l 0

c k. 0 4 )=un!8V,V'CqVq,(A,,_1). (38)
n

9 ¢

This structure reflects the group-subgroup property of the Weyl U(n) 4 U(n —1) rule.

Formulas for these "discretized functions" version of the representation functions are
known , but are quite difficult [8],[9]. We also have given [7] an explicit recurrence
formula for them in which the coefficients at level n are constructed in terms of those at
level n-1, using property (38). This formula, in turn, is derived from a similar formula in
[8] giving the construction of the polynomials (16).

The nontrivial nature of these coefficients is already indicated by relation (35),
involving a product of powers of determinants (see [10] for the expansion of the power of
a determinant) and by the explicit result at level n= 2, which already is the WCG-

coefficient of SU(2):
C(J'1+J'2+J',J'1+J'2"J'(j1+m1 I _mIJ_
o : =

o itdm A\ amy  jp—my (39)

= [2) + DGy +m)!Gy =m)!p + mp)ip ~m)V2Ch 2 T

where the C-notation on the right for an SU(2) WCG-coefficients is used in [1].
Formulas for these coefficients for n= 3 can be found in [9].

2.4. The irreducible representations of U(n)

The irreducible representations functions of U(n) are just the functions (16) obtained
by setting Z=U e U(n):
j 4 - — A
plt =Pt W= 3 CF .(HU*/AL (40)
(a:A:x’) ;
Thus, we obtain the unitary irreducible representations of U(n) given by

{D“ W) |Ue U(n)} L an arbitrary partition of n. 1)

srepresentation properties:
D*U)D* (U= D* U,

(42)
D* U)Y(D* U))! = D* (1) =Igim s -

This gives all unitary irreducible representations, when multiplied by appropriate powers
of detU.

Under the right and left action of U(n) given by (14) and (15) the polynomials (16)
undergo the transformations:
LyP 2= Pm“m,(UTZ) =3D4 , U)PL (D),
ml’ (43)
H = = u
(RyP,, ,)2)= Pm“m, (ZU) = ;;;Dm‘,f wDOP H(2).




9
2.5. Combinatorial and special function aspects of representation functions

The result presented in Sections 2.1-2.3 abound with comblnatoncs We list some of
these connections:

(1) The set of Gel'fand patterns corresponding to a given partition { are one-to-one
with the set of standard Young tableaux corresponding to a Young frame of shape u
(see [1] and [11]). Objects having a definition in terms of Gel'fand patterns accordingly
have a definition in terms of standard tableaux and conversely. Two examples of this are
the classical Schur functions and the Yamanouchi orthogonal representations of the
symmetric group (see [8],[12],[13]):

0
2 P#, M(f)l"- 2 ): Sy (21225005205 (44)
m n

D} (1), Z =T1 = nx n permutation matrix,
A= (11,2.2,...,1,,0,...0), ll+...+lr = n,l,. >Q;
0 repeatedn —r times,n2r;
weight a of m=(1,1,...,1), weight &’ of m=(1,1,...,1)

(45)

(2) There is a close connection between the polynomials (16) and Rota's double
tableau polynomials (see {14 ] and [15 ]).

(3) The special case of the polynomials (16) corresponding to the totally symmetric
case with u = (k,0,-- 0) occur in MacMahon's master theorem (see [15]). The basic
result here is

1/det(l —XY) = Z tk py a*ﬂ'PB a(X)Paﬁ(Y) 46)
k=0 af
@)= 3 z4/4A,
aﬁ (a:A:B) @7

o= (01,0, 0B = (BB Br). Ty =3 =k

H 1
(4) The normalization factor M(A)in (32) is a "hook" function read off a standard
tableau (see [1] and [13]).
(5) One obtains the Gel'fand-Graev [16] (see also [8]) generalized beta function by the
specialization

a 0 - 0 0
: . :

P n , In"l 0 C u 0 vos q’l—l 0 ,

mm| g 25z, 1) MM O[040~ Oy O

(48)
n-1 al-a;
X;% Iz 77 o e — o)t
" =1

(6) The power of a determinant is an interesting combinatorial object giving rise to
mappings between n X n arrays A with fixed row and column sums and partitions [10 ].
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It is also well-known( [1], [17],[18]) that the power of a 3 X3 determinant is the
generating function for the SU(2) WCG-coefficients.

(7) The number of n X n arrays A with fixed row and column sums « and a’is
denoted M, (a,a’) and the number of Gel'fand patterns with partition ¢ having weight
a by K(u, ) (Kostka number). The fact that the coefficients in (16) constitute an
orthogonal transformation, hence square, between bases of the space H implies:

M, (a,a’y= KA, 0)K(A,a'). (49)
AN

This basic relation in combinatorics was proved by Knuth [19] in the context of double
standard tableaux.

(8) The coefficients Cm”m, (A) are "combinatorial” in every aspect of their labeling:

double standard tableaux and square arrays of nonnegative integers having fixed row and
column sume. A combinatorial interpretation and derivation would be major
accomplishments for mathematics and physics.

(9) Special function aspects of the SU(2) representation functions are well-known

from the work of Wigner [20] and others [21]- [22], involving Jacobi polynomials,
Gegenbauer polynomials, Laguerre polynomials, etc. Very little has been done along

these lines for general U(n).

3. Kronecker Products

Given two partitions u = (,l3,',}4,) and v = (v, Vp,:+,V,) labeling two
irreducible representations of U(n),the abstract Clebsch-Gordan series expressing the

decomposition of the Kronecker product into irreducibles and the explicit form of this
relation for the irreps (40) are given by

UXV= %guwll, (50)

cT(DEWUyx DY U))C = §e1agm,,11)'1 ). (51)

In (51), X denotes the Kronecker of direct product of matrices; @ the direct sum, and C
is a real orthogonal matrix whose elements are the WCG-coefficients of U(n). The
matrix C is of dimension given by:

dimC =dimp dimv=13%g, ; dimA. (52)
A

The number g,,,, is the Littlewood-Richardson number and gives the number of

occurrences of irreducible representation A in the Kronecker product 2 X v.

It is quite significant that (51) is valid when U is replaced by the arbitrary nXn
matrix Z of indeterminates:

cT(D*(zyxDY(Z))C = Eeaguw1 p*@). (53)
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3.1. Biedenharn's operator pattern
It was Biedenharn's great insight that led him to the discovery of a universal labeling
of the WCG-coefficients of U(n). He was lead to this discovery by considering the
extension of the Wigner-Racah defintion of a tensor operator in SU(2)to a unit tensor

operator in U(n). This is discussed in the next section. Here we introduce at the outset

this labeling directly into the symbol for a WCG-coefficient. The meaning of the
notation requires some discussion.

14
Notation for a WCG - coefficient; l:), u V} 5
) m

(54)

Y
;1 , ,‘,’1 are single Gel fand patterns; u is a double Gel' fand pattern.
m

The occurrence of these patterns is clear in that they enumerate the rows of C':
TOWS: all ‘nl, and ‘é patterns, dimy dim v labels. (55)

It is the patterns ,}' dimA in number, and the patterns ¥, dimy in number, that must
provide the column labels of C. This is effected in the following manner, which takes
into account two facts: The first fact is that for every partition A that occursin u x v,
written 4 € g X v, in the Clebsch-Gordan series (50), there exists a unique weight A of
the partition g such that A = v+ A; the second fact is that the maximum value of
8u,v,v+A 18 the Kostka number K(u,A). These results are proved in [23] (see also [11]

and Kostant [24]). Thus, tentatively, the columns of C are labeled by

columns: all jl patterns, dim A in number;
all y patterns such that A = v+ A,K(u,A) in number. (56)

While the maximum value K(i,A) of g, , v is achieved for a denumerable number of

partitions Vv, itis also true that g, . A<K(i,A) for a denumerable number of
partitions v. Thus, we have

dimp dimv=3g, , yiadim(v+A) S TK@A)dim(v+4). 7)
A A

In general, we have too many patterns ¥ in the symbol (54). This is not a fatal flaw. It
may be resolved as follows: Let us order the patterns ‘}f by the rule given in (28):

H H e u
(71)>(72)> >(?’dimp)' (58)
We now define the symbol (54) to be zero under the following conditions:
14 . . )
A u  v|=0, unless: 2.=pv+A, where A is a weight of u; (59)
e A=A r=1172 gy ea

By this definition, we now obtain the required number of WCG-coefficients. In the way
of nomenclature, the patterns y are referred to as operator patterns because of their role

in enumerating unit tensor operators, where all dimu patterns are essential, and the
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weight A is called a shift-weight because of its role in shifting from the partition v to the
partition A .

The rule (59) for general » is ad hoc. Its merit rests on two points: For n=2,3, the
concept of the characteristic null space of a unit tensor operator ( [1], [23], [25]-[28])
provides a natural ordering in agreement with (58); even if there is no natural ordering,
the patterns are universal in the sense that it is aways a subset of the full set, the full set
containing dimp patterns, that effects the labeling, and in denumerably many cases all
are required.

It was always Biedenharn's belief that there exists a natural definition of unit tensor
operators such that the zeros would fall into place automatically. It is my position that
even should this fail, the concept of operator pattern is the most important structural
notion introduced into the delineation of the WCG-coefficients of U(n). When it comes

to the definition of the Racah coefficients of U(n), operator patterns are indispensible.

The following structural result, known as the factorization lemma [1],[25], [29], is
among the most important general relations for U(n). The orthogonal matrix C is moved
to the right-hand side in (53) to obtain

r s

i
n v _
P w@DP) D= 3 [,}
2

3 ® 8

q
v :IPI @), (60)
q

where the square-bracket coefficient is a sum of double WCG-coefficients given by

r m ¢ 14 4
A u v|i=XA2 u vi|lA u v} 61)
I m ¢q YLI m qjl mw ¢

Using the inner product (11) gives:

ll m’ ql
PP P A=MAA 1 v . (62)
I m ¢

The left-hand side of this expression may be given in terms of the coefficients in the
expansion (16), hence, the right-hand side of (62) may be considered known. The basic
question is: Does there exist a natural structure, as discussed above, that allows one to
take "apart” the summation over operator patterns in (61) to obtain the WCG-coefficients
themselves? The answer is yes for n =2,3.

3.1. Combinatorial and special function aspects
(1) Relation (60) is referred to in the mathematical litertaure as hncanzatlon Use of
(44) gives the classical Schur function identity:

Sp (X)sy,(x) = Eg,,wlsl (x). (63)

(2) The thtlewood-Rlchardson numbers may be expressed in terms of the Kostka
numbers
in (57) by
Suvvia= L€KW, (V+A)omr—V), (64)
nes, ‘
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where Ais a shift-weight of g such that v+ A is a partition, and the action of 7 € S, on

an n-tuple a = (ay,ay,...,a,),denoted a o &, is defined by

acn=(ay ~mM+lag, —My+2,....ay — 7, +n),
" (65)
m:(L,2,...,n) = (71, 7y,..., TT,).

Relation (64) allows one to investigate the properties of the Littlewood-Richardson
numbers. It is known that

8u,v,v+a €1{0,1....K(1,A)}, each partition v. (66)
The determination of the set of all v such that g, ,, .4 =k, 0 Sk <K(u,A)}is very

important for the labeling problem of the WCG-coefficients of U(n),as discussed in
(56)-(59) above. Only partial progress has been made so far in [23] and in the important
work by Baclawski [30]. This is a fascinating problem in pure combinatorics.

(3) For SU(2), the combinatorial problems and special function aspects of WCG-
coeffcients and the associated 3n — j coefficients are almost boundless when one
considers the reduction into irreducibles of multiple Kronecker products. This leads to
the Biedenharn-Elliott identity, which inspired Askey and Wilson toward their synthesis
of orthogonal polynomials. One encounters here the fascinating relelationship between
3n - j coefficients, labeled binary trees, Cayley trivalents trees, cubic graphs, triangle
polynomials, and generating functions. There is no space here to discuss this, and we
refer to [7] and [9] for a recent accounting. For U(n),there is almost nothing known
about multiple Kronecker products.

5. Biedenharn's Abstract Theory of Unit Tensor Operators

Larry Biedenharn discovered many of the above facts, and used them to invent a
comprehensive theory of tensor operators. We take a quite pedestrian approach here and

regard the WCG-coefficients of U(n) as known, although this is not necessary.
Biedenharn recognized that while the Gel'fand patterns encode a Weyl group-subgroup
property, the patterns Yy encode an entirely different kind of information: these patterns
encode a shift action associated with a weight of partition u in going from partition Vv to
the partition A = v+ A € u X v. In order to give an operator formulation of this, we
assume as given a vector space H,, of dimH, =dimv, given by the Weyl dimension

formula (29), on which there is defined an action of U(n) such that
ro|3)=50,,03) @

where an orthonormal basis of H,, is given by the set of ket vectors

a,={ 2

These are, in fact, not assumptions, since one already has at hand many such vector
spaces as given by the normalized polyomials

(| ) = 2e ) @), (69)

on which one fixes ¢’ and chooses T, to be the left action Ly; (see (14), (40), and (43)).
One can interpret the right action in (43) similarly.

g runs over all Gel fand patterns } (68)
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In order that the shift action intrinsic to the shift-weight A of a pattern ¥ map a vector
space into a vector space, we introduce the model Hilbert space as a direct sum of
perpendicular spaces H,, each taken exactly once:

H=Y@®H,. (70)
v
We now define shift operators mappings of H into H as follows:
Y Y '
w )=z vamn w vV, (71
m 1 1 m q
It is then a consequence of the definition of the WCG-coeficients that:
Y Y
Ty( # JTg'=3D,* ,U){ u ). each pattem . (72)
m’ m m
A set of operators
Y
u m runs over all Gel' fand patterns (73)
m

with the transformation property (72) constitute what physicists call an irreducible tensor
operator of U(n). Each pattern ¥, dim u in number, gives a tensor operator (73) with
dim u components. The term unit tensor operator originates from the fact that the
WCG-coefficients in the definition (71) are elements of an orthogonal matrix, and an
arbitrary tensor operator with the transformation property (72) is a sum of such unit
tensor operators with coefficients that are invariants under the action of U(n).

It cannot be emphasized too strongly that all operator patterns ¥, dim i in number,
enter into definition (71), the seros of the WCG-coefficients being associated with entire
vector spaces lying in the null space of such an operator. It was this approach, through
tensor operators, that led Biedenharn to the introduction of operator patterns.

It is not my intention here to go further into the properties of U(n) WCG- coefficients,
except to note that all their properties flow from the definition (71). Some new ideas are
presented in [31]. In the mid-seventies, attention shifted to the detailed construction of
the U(3) WCG-coefficients[32]-[36], since the characteristic null space classification was
complete. It was at this point that Max Lohe joined the efforts and was instrumental in

advancing this subject. Here I will describe one small aspect of these difficult
calculations because of the richness of mathematical constructs that emerged from them.

6. Combinatorial Mathematics Originating from the Study of U(3) Unit Tensor
Operators

The flavor of the mathematics encountered in constructing the WCG-coefficients for
U(3), in both its difficulty and elegance, can be sensed by describing some of the
properties of a very special family of polynomials that arises from just one small piece of
the WCG problem for U(3). These are the Gfl (A1,A2,A3;x1,x2,%3) polynomials which

are defined for each nonnegative integer g and each ¢ =0,1,--,q. The quantity
A =(A(,Ap,A3) is the shift -weight of a U(3) unit tensor operator, and the real variables
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X =(x1,X9,Xx3) are arbitrary. The properties of these polynomials are developed in a
number of papers [32]-[36]. They have the astonishing property of vanishing on the
points of the general weight space associated with irrep (g —¢,0,—¢ +1) of U(3) with the
multiplicity of a given zero being equal to the multiplicity of the weight space point. Such

weight space points may be positioned in the Mébius plane (positive axes at 120° with
coordinates determined by perpendicular projection onto the three axes) by the
coordinates a = (a,ay,a3),

=A3—t+l-0p,ap =-Ay—A3+g-1-0p,a3=Ar -t +1- 03, (74)
obtained by letting & = (0, &y, 3) run over all weights of irrep (g —¢,0,—¢+1). The
multiplicity of the weight space point @ = {ay,a,,a3) is given by

My(A;a) = min(t,g -t + L1+ d,(a)), (75)

where d,(a)is the "distance” from the lattice point a to the nearest boundary of the

weight space diagram, measured along the appropriate coordinate axis (1 lattice spacing =
1 unit of distance). We then have that

Gy(A;a) =0, each point a of the weight space, (76)
where the multiplicity of the zero a is Mfl (A;a). The polynomial Gfl (A; x) also vanishes
at some lattice points obtained from the weight space diagram by symmetries, but at no
other lattice points in the Mdbius plane. Moreover, each polynomial G('I (Asx)is
irreducible in that it cannot be factored over the lattice points of the Mébius plane.

The polynomials G"I (A; x)have been given explicitly [32]-[36]. We mention this quite
difficult subject here because it was the "source” of some quite nice combinatorial-like

mathematics that arose from our studies of the symmetries and zeros of the G’ (A;x)

polynomials, which we now mention briefly.
¢ hypergeometric Schur functions: These functions combine certam hypergeometic
coefficients with the classical Schur functions s (x1,%2,"+*,Xp):

pSg@bix)= §< pSg(@b)| ) 53 (%), a7
where the hypergeometric coefficient depends on p numerator parameters
a=(ay,a3,-",ap) and q denominator parameters b = (by,by,:-,b,)and is defined by
L ﬁ ]_Ilpzl(al _S+1)'1s
A) 51 19y (5-s+D) A
in which (2); = z(z+1)---(z+ k -1),k =0,1,.-- with (2)g =1, denotes a rising factorial.

The functions 53;(a;b; x) were introduced in [37] (It turns out they has been discovered

in a completly different context by James [38]). These functions and their generalizations
(77) have been studied extensively [39 }-[41].
efactorial Schur functions: These functions arose from our studies of the symmetries

of the Gfl (A; x) polynomials, and some of their properties are presented in [42]-[45]. The

factorial Schur functions are polynomials in » indeterminates z =(z},23,::+,z,) and are
defined in terms of the set of Gel'fand patterns

{ p3qt@b)a)=47 (78)
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A
6 ={(3)
by the following formulas:

13(2)= Xty(2),

mEGl

all m satisfying the betweenness conditions } 79

noj (80)
(@)= T LGz =mij =S 1+ Do
In this last relation, we have A; = m; ,,. These functions may be written in a number of

alternative forms paralleling the standard Schur functions and have turned out to be quite
interesting for combinatorial mathematics [46]-[49].

7. Concluding Remarks

I have reviewed (rather too quickly, I fear) one small corner of the many-faceted
interests of Lawrence C. Biedenharn and tried to illustrate the unique viewpoints that he
brought to all of his research, viewpoints deeply rooted in an intuitive geometrical and
quantum world-view that guided him to the basic foundations of a subject, perspectives
that often eluded others.

I have not touched on his work, mostly in nuclear physics, prior to his moving into
the field of symmetry and its applications, nor have I mentioned the papers with Le
Blanc, Hecht, and Rowe, exploring the use of the coherent state approach to unitary
groups and WCG-coefficients, his work with Gustafson and Milne on a class of U(n)
generalizations, nor his work with Johndale Solem in gamma ray lasers, to mention a few
omissions.

I need also to remark that Larry, with the help of Max Lohe, and many colleagues
present here today, have made enormous advances in recent years in giving the g-
versions of much that I have mentioned in this lecture.

Finally, I apologize to the numerous investigators whose contributions to unitary
symmetry have been enormous, and whom I have not mentioned, since it was my
intention not to review the field, but to try to give a coherent picture of the Biedenharn
approach.

One of my own goals is to continue Larry's work by bringing a firm combinatorial
foundation to the subject that I have just reviewed.
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