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1.

Membrane and the Membrane Process — A concept

1.1
1.1.1

1.1.2

Background
The Membrane Concept

A membrane in a most general and broadest but rigid sense is: a region of discontinuity
interposed between two phases [?, page 2]. This region has thicknesses of less than 100 nm
to more than a centimeter. Some membrane processes such as the membrane contactors
(discussed later) use primarily an interface stabilized in a porous structure to separate two
immiscible fluids and transfer mass between the phases. However, this interface, though
sometimes visualized as a discrete jump in discontinuity from one phase to another, is in
reality a region of steeply or rapidly varying spacial differences between the properties of
one phase and another phase. Perhaps a more realistic definition of a membrane is given
by Lonsdale [?].

“ a membrane isn’t just an object in the abstract, but its definition must embody
its function. As the functions we ask membranes to carry out broaden, so must
our definition.”

Strathmann [?] and Noble and Way [?] elaborate and echo the definition of a synthetic
membrane as: a semi-permeable barrier which separates two phases and restricts the trans-
port of various chemical species in a rather specific manner. Strathmann, and Noble and
Way suggest that a membrane be defined by what it does, rather than what it is. This
statement is due to the properties that a membrane has, the contiguous parts that cause
a membrane to exist, and the membranes primary goal and physio/chemical methods and
laws by which it accomplishes this goal. In short a membrane is more of a process than a
distinct physical entity. The membrane process separates mixtures into components by dis-
criminating on the basis of a physical or chemical attribute, such as molecular size, charge
or solubility.

Historical Development of Membrane Process

The processes of separating components in a fluid using membranes is as old as life itself.
Mankinds use (or at least recorded use) of membrane technology, usually with little under-
standing of the process, to separate components in fluids have spanned hundreds of years.
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1.1 Background 3

Abbé Nollet in 1748 placed wine in a vessel sealed with an animal bladder and placed the
vessel in water. The bladder being more permeable to water than wine swelled and some-
times burst ([?], [?], Kirkothmer, vol 14 1967 p345, (?, p. 27-28]). Through the nineteenth
and twentieth centuries, membranes were not used commercially though laboratory use de-
veloped physical/chemical theories. van't Hoff developed his limit law using membranes.
Data published by Traube and Pfeffer for osmotic pressures of solutions led to understand-
ings of ideal dilute solutions. Maxwell and others used membranes to help develop the
kinetic theory of gases. Grahm in the mid 1800’s used membranes in the development of
theories on separations and gas mobilities and can be considered to of had a considerable
initial impact in the field of colloid science which is based in a large part on membrane
studies.

Commercial applications of synthetic membrane processes began in the early twentieth cen-
tury primarily stimulated by the advent of micro porous polymeric materials with graded
pore sizes. Later during World War II European water supplies were tested using filters
developed under sponsorship of the U. S. Army and later exploited by the Millipore Cor-
poration. In the early 1960’s the discovery of Loeb and Sourirajan process for the manu-
facturing of defect-free, high flux, ultra thin, selective surface films supported on a micro
porous support and the infusion of large research funds from the U. S. Department of Inte-
rior resulted in commercialization of reverse osmosis and the development of ultrafiltration
and micro-filtration {?, p 27-28].

Expanding the Loeb-Sourirajan membrane technology other process were developed for
making ultra thin, high-performance membranes. These process of interfacial polymeriza-
tion or multilayer composite casting and coating allow membranes as thin as 0.1 zm or less.
Packaging membranes into spiral wound, hollow-fiber, capillary, and plate-and-frame mod-
ules were developed. As a result commercial application of micro filtration, ultrafiltration,
reverse osmosis, and electrodialysis were all established and considered developed processes
in large plants around the world by the 1980’s 2, p 96-97).

There are currently seven types of commercialized membrane processes discussed in the
literature: micro filtration, ultrafiltration, reverse osmosis, electrodialysis, gas separation,
pervaporation, and liquid membranes (facilitated transport). The first four processes are
considered developed processes in that the technology is relatively understood and applied;
of these, the first three are related techniques and are pressure driven processes. The elec-
trodialysis process uses a charged membrane to remove or separate ions under an electrical
potential difference. Gas separation and pervaporation process are in a developing mode.
In this process the membrane is permeable to certain species of gas and not to others in
the gas stream. Pervaporation is a process that separates dissolved solvents. Transport
in pervaporation is induced by the difference in partial pressure between the liquid feed
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1.1.3

solution and permeate vapor on the one side of the membrane.

In the 1980’s and 1990’s gas-separation technology, pervaporation, and liquid membrane
process applications are evolving and expanding. The liquid membrane process particularly
facilitated transport is classified by Baker et al. as a “fo be developed” technology. Liquid
membranes (facilitated transport) differ from the other membrane types in that they involve
specific chemical reactions like those in extraction. Because of this the separation can be
very selective and custom tailored to specific separation operations.

The Liquid Membrane Process

Three types of liquid membranes are under study in the literature: immobilized liquid
membrane, emulsion liquid membranes, and membrane contactors.

Emulsion Liquid Membranes: Emulsion liquid membranes or ELMs,
whose development is credited to Li in 1968, are multi phase liquid systems
of concentric spheres where one phase (phase I) is a droplet encapsulated in
an outer immiscible phase (phase II). These concentric spheres or droplets are
dispersed in a continuous phase (phase IIT), immiscible to the outer phase of the
droplet. This third phase contains a chemical species to be extracted. Phase II
is usually an organic in which a chemically reactive agent or “carrier” is placed -
and is selectively reactive with a specific species in the continuous phase. A
species to be removed reacts with the carrier and the complex diffuses across
the membrane where it reacts again and diffuses into the inner phase I. The
advantage of this process is that the separations are very fast; but, the emulsion
manufacture, separation, and recovery of the mternal phase can be difficult and
involves a number of operations.

Immobilized liquid Membranes: These membranes are similar to the
emulsion membrane in that an organic phase with a carrier species is interposed
between two phases both immiscible to the organic phase. The difference lies in
that the organic “membrane” of the immobilized liquid membrane is immobilized
in the pores of a synthetic micro porous structure with sufficiently small pores to
be held there by capillary action. These ILMs are easily made and are normally
stable for periods of days, weeks, or maybe months but eventually decay (Cussler
in [?, p 244]).

Membrane Contactor: The membrane contactor is another method of
facilitated diffusion. This type of membrane basically separates the extraction
and stripping process into two units of operation, though variations can keep
the two interfaces in the same “module”. These variations give it more physical
similarity to the ILM. This membrane process uses a micro porous structure or
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element like the ILM, but the pores are not impregnated with the organic that
actually makes the membrane “active” per se. Two bulk phases immiscible in
each other flow on each side of the porous element. The species being extracted
are transferred from one phase to the other depending on the physio/chemical
properties of the two fluids. Phases are usually an aqueous phase and an organic
phase but do not have to be;however, the phases must be immiscible to each
other in all proportions for the process to work well. Depending on whether
the element is hydrophobic (water hating) or hydrophilic (water liking) deter-
mines whether the organic or aqueous phase invades the pores. The contactor
performs the same function as a packed tower or liquid/liquid extraction col-
umn or centrifugal contactor. Usually the process is counter-current and exhibit
the advantages of liquid membranes, but avoid the disadvantages of absorption
and extraction. A large area per volume is an advantage and provides for fast
separations. They are unaffected by loading, flooding, or by density differences
between feed and extract [7, p 248].

Liquid membrane processes are in a development stage and as has been stated in the brief
descriptions above they are selective, provide fast separations, but suffer from a major
problem of instability. Four main causes of this instability are (see Cussler in [?, p 246]):

Solvent Loss: Is when the solvent making up the active portion of the
membrane is lost due to solubility in the adjacent phases. Eventhough the
solvents are selected for their immiscible properties in the surrounding phases
all fluids are soluble in each other to some extent. Eventually the solvent is lost
and the capillary action is not as strong and the membrane ruptures. .

Carrier Loss: The solutes as they react with the carrier may make them
more soluble in the surrounding fluids and cause loss of the carrier.

Osmotic Imbalances : Facilitated transport can concentrate the solute in
the extracting phase or organic membrane sufficiently to cause a large difference
in the osmotic pressures causing rupturing or forcing the liquid membrane from
the polymer support. This is the chief cause of membrane instability.

Spontaneous Emulsification: The membrane extractants can extract to
a small extent the fluids and thus cause the membrane to change characteristics
and can cause channeling across the membrane when these fluids are stranded
in the membrane.

The membrane contactor avoids many if not all of the stability problems associated with
the membranes above. This is basically the result of separating the interfaces associated
with the membrane processes. The membrane contactor performances have been excellent
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in the laboratory; but, their performance under industrial conditions is only currently being
explored. The energy requirements have also to be illuminated.

This study is interested in the membrane process classed as a liquid membrane or facilitated
transport technology particularly the sub class category of membrane contactors. The mem-
brane contactor is, as Cussler points out: @ hybrid, combining aspects of both conventional
extraction and liguid membranes (Cussler in (7, page 248]).

1.2 Pufpose and Scope of This Study
The purpose of this study is threefold

1. To define mathematically the HFM (Hollow Fiber Membrane) contactor separation
process by fundamental theoretical laws of physics and chemistry of fuid and mass
transport

2. Based on this mathematical model a computer simulation is to be developed that al-
lows the contactor to be simulated under varying conditions with different extractants
and species transferred

3. Varify the model using literature and/or experimentally obtained data

The emphasis is primarily to model the extraction of the lantanide and actinide metal
compounds from an acid solution. However, the mathematical modeling and simulation
should readily extend to other specie extraction needs with input of limited information
about the fluids of the system. ,

1.3 The Membrane Contactor
1.3.1 Description of the Membrane Contactor

The membrane contactor consists of a bundle of small microporous filaments that separate
two immiscible phases but allow intimate contact in the porous structure. Analogous to a
small shell-and-tube heat exchanger, the HFM’s two fluids flow parallel on either side of the
filament or “tube” transfering mass instead of heat. Though the filaments are porous, the
process is designed such that there is no intentional convective transport through the pores.
Instead the porous material acts as a support to facilitate diffusive transfer by the contact
of the phases. Material of construction varies and is generally a polyolefin or cellulose ester
and is either hydrophobic or hydrophilic. This material property determines where the
interface of the two phasese will be located. For a hydrophylic membrane the interface will
be in the proximity of the pore entrance on the aqueous side of the membrane. Counter
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1.3.2

pressure on the aqueous side is used to keep the non-aqueous phase from flowing into the
aqueous phase.

The diagrams in figure 7?7 show a schematic of the module and also various configurations of
types of flow. Most flow configurations are parallel but there has been reports of crossflow
experimental work (cf. [?]). Flow is generally parallel for convenience and can be either
co-current or countercurrent. A variation of the membrane contactor is the “contained
membrane contactor” which emulates the immobilized liquid membrane discussed in section
1.1.3. Figure ?? illusrates the contained liquid membrane flow. Where the HFM contactor
only has a stripping or extraction stage the contained HFM has both in a single unit. The
disadvantage to this module is the difficulty its manufacture and current inablility to model
and verify the performance. Ideally the contained liquid membrane would qualitatively be
optimal. Once the model and simulator at the fundamental level is developed and working
the effort to extend it to the contained HFM may not be as intensive.

Modeling of the Membrane Contactor

The modeling and simulation of liquid membranes, be they emulsion, supported (immobi-
lized), or the membrane contactor are, from an indepth fundamental approach, complex.
Extraction of metal compounds from an aqueous phase into an organic phase creates chem-
ical and physical complexities. These complexities involve the formation of an interface
with chemical reactions occurring in both phases and at the interface simultaneously and

in parallel.

Coupling the reaction mechanism with the diffusion of species through three phases (i.e.
aqueous, pores in the membrane, and organic phase) with the mementum effects of the fluid
flow internally and externally to the hollow fiber and the characterization of the process
elevates in complexity. Because of the complexity at the fundamental level, many workers
have used simplified theory of the process and used empirical data to model and simulate
the process. Though, the procedures and theory these investigators used are sound they
allow only the study of a process for a specific extraction under simplified conditions and
only within range of the empirical data (see chapter 5) '

1.4 Organization of this Report

This report presents the details of the mathematical modeling as a precursor to the develop-
ment of a fundamental computer simulation of solvent extraction primarily that used in the
nuclear industry using a hollow fiber membrane contactor. Chapter 2 presents the chem-
istry of solvent and metal extraction with emphasis on the nuclear industry. A literature
discussion of the kinetics of metal extracts as it effects the transfer rates and explanations
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of experimental procedures and difficulties in determining kinetic and diffusional regimes is
presented in chapter 7?. Modeling of the membrane contactor in chapter 5 shows the intere-
lationship and critical coupling of the diffusional and (fluid motion) momentum equations
that define the membrane contactor model. The theoretical effects of packing or placement
of the fibers in a shell and the application of computational geometry concepts of Voronoi
diagrams and its theoretical dual the Delaunay Triangulation to the modeling of HFMs
are also presented in chapter 5. The concept from geometric computation are used here
to define the boundaries between the fibers. One of the most critical aspects of membrane
analysis is that of the interface and the theoretical equations that describe it ~— these are
discussed in chapter 6. Necessary data acquasition and possible theretical thermodynamic
methods to calculate the necessary input data are given in chapter 77. A summary of the
rigorous fundamental model equations and for comparison the simplified theoretical model
generally used is presented in chapter 77.




2.

METAL EXTACTION

2.1 CHEMISTRY of EXTRACTION

2.1.1

The mass transfer mechanism of the transfer of a metal through an interface of two immis-
cible fluids is dependent upon the kinetics of the complex formation between the metal and
the extractant. The interphase properties that control the transport of the metal species are
dependent on the reaction kinetics of metal with the extractant and where it occurs; presum-
ably at the interface if the Damkdéhler IT (Dajp) number is low, Dajy < 0.1 (at 2 Dayy < 0.1
the reaction rate is controlling while at a Daj; > 10 then the molecular diffusion rate is
much faster than the reaction rate) (H. J. Bart. Solvenat 1990 page 1229-1344). Between
these two values a mixed diffusion regime is evident. The Daj; number has been suggested
by Bart and Marr to be useful in determining the extraction process to be used (e.g. mixer
settlers or columns or perhaps membrane processes). The dominating regime may change
depending on the concentrations being delt with. Rogers, Thompson and Thornton (extrac-
tion 87 page 15) attribute this switching to interfacial phenomena of build up of complexed
species at the interface and the “aging of the interface” with less interfacial turbulence and
dependence on the metal species to diffuse to the interface, complex with fresh extractant,
and diffuse away. The diffusion of the complexed extractant away from the interface and
allowing fresh extractant to diffuse to the interface is an important operation. Thus the
reaction mechanism and kinetic analysis is vital to understanding and designing any process
for liquid liquid extraction process, particularly the membrane process. In the membrane
processes the reaction of the extractant with the metal is referred to as facilitated transport.

Literature Review

The literature is extensive in the area of solvent extraction. In the area of hydormetallurgical
and nuclear solvent extraction the literature is contradictory and massive. As we have found
out and other authors have stated most studies do not present kinetic or thermodynamic
data that is useful in chemical engineering practice and is needed for proper modeling,
simulation and design of processes needed for critical separations. Most of the information
published is in equilibrium form represented by distribution coefficients of the solute between
the organic and aqueous phases. Though this information demonstrates which extractant
is useful in certain situations it does not allow any rigorous or first principle design to
be formulated. The kinetic data is imperative to model from transient to steady state

9
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situations, upsets in the process, different process conditions such as change in tempeartures
and is vital to properly model the diffusion and reaction controlled regimes. Recently (ca.
1990’s) information has emerged form the Japanese and a few European laboratories on
reporting kinetic information in the extraction of metals. An attempt to obtain from the
literature an understanding and glean the scant and illusive and hidden data needed to
properly model the extraction of lanthanides and actinides from acidic media is recorded
below (albeit incomplete).

General Extraction Considerations

Tarasov and Yagadin (ISECC'88 International Solvent Extraction Conference July 18-24,
1988 Moscow page 8) discuss some results and problems associated with extraction kinetics.
Four key questions are brought out

1. What phenomena determine the extraction rate?

2. What peculiarities give the existence of two phases and the interfacial region when
chemical reactions proceed?

3. What information or knowledge can be yielded through the studies of extraction
kinetics ?

4. Is it possible to control the extraction rate not by adding energy but by using non-
traditional techniques?

Three parameters effect the extraction rate: Interfacial area, the driving force of the process,
and the resistance of the system to equilibrium. Incorrect consideration of these components
and there will be inconsistencies in the study. The resistance can be used to compare
different systems. The interface is of critical importance since the mass transfer coefficient is,
and the factors affecting it are, concentrated in this region; chemical reactions, accumulation
of insoluble products (microdrops, and solid particles) blocking the interface, adsorption and
desorption barriers of electric nature, spontaneous interfacial convection i.e. movement of
fluids along the interface caused by interfacial tension gradients during mass transfer. The
mass transfer coefficient lumps all of the above into one parameter.

Tarasov and Yagadin discuss several regimes and the connections to the transfer rates.
The measurement of interfacial properties such as interfacial tension, rheological, electrical
and optical properties is seen to be important to a topological scheme of the study of
surface reactions. The diffusion regime is important since most of the extractants react
almost instantaneously with the extractable substance. Other regimes needed to consider
for various systems are: transient regime, kinetic regime, surface reactions, acceleration of
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chemical reactions, microheterogeneity zone and condensed interface films, and spontaneous
interfacial convection.

Rod (ISECC'88 International Solvent Extraction Conference July 18-24, 1988 Moscow vol
2 page 8-1) discusses extraction kinetics and its chemical engineering application. His first
sentence states “Many papers on kinetics of metal extractions are controversial and do not
present the rate equations that could be applied in chemical engineering practice.” The
mechanistic explanation of the extraction plays a minor role. The following points are of
primary importance:

a. Kinetic model must intrinsically comprise a very precise description of the equilibrium
and reduce to it at zero extraction rate

b. the parameters of the model that depend on the geometrical arrangement and on
hydrodynamic conditions (mass transfer coefficients) must be distinguished from the
parameters specific to the given extraction system.

The requirement of equilibrium is very important since most mass transfer operations in
industrial countercurrent processes occur close to equilibrium. Thus the accurate descrip-
tion of the equilibrium in the kinetic equation is more important than a perfect fit to the
extraction rate in regions far from equilibrium. It is also desirable that the extraction and
stripping rate be described by the same kinetic model. The authors direct their discussion
to a system where extractant A reacts with the extracted component B to form one ex-
tractable complex E which is transferred to the organic phase and a component H which is
transferred into the aqueous phase (similar to HDEHP). The stoicheometry is vAA+B- E

+ vyH.

Industrial extractants usually have high extraction rates at very low solubility and the ex-
tractants of industrial interest occur in the fast reaction regime and the amount extracted
depends on the interfacial areas. The film theory is a useful albeit simplified understanding
of the mass transfer models for the extraction process. For fast reactions in the diffusional
film the relationships for the extraction rate are obtained by integration of the diffusion
equations with corresponding reaction terms over the thickness of the film. Physical equi-
librium at the interface and chemical equilibrium in the bulk of the phase is usually assumed.
The integration can be performed analytically only for simplest cases of reaction kinetics and
only under restriclive assumptions.

If the formation of the extractable complex is in the aqueous film and then transferred to
the organic phase the relations for the extraction rate are very complex, difficult to solve,
and validity restricted by the necessary simplifying assumptions. If the solubility of the
extractant is very low the reaction occurs in a very thin reaction zone at the interface
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the thickness of which is governed by the reaction rate constant (k,) and of the partition
coefficient (D) (i.e. thickness decreases with increasing values of the reaction constant).
In the limiting case where k, — o0 , D— o0, and % # 0 the reaction zone thickness
approaches zero and the concentration at the mterfa.ce approach equilibrium expressed by
the extraction equilibrium constant

cyi)vH :
cEl( H 1) (2.1)
cBi(cqs)™
and the model representing the rate equation for extraction accompanied by the equilibrium
reaction at the interface is

(ce+ &) (en+5587)

Iz, — LY
(CB kB) (c vAkA)

where A, B, E, H refers to components and ¢ to concentrations, J to extraction rate or
flux at the interface, k the mass transfer coefficient, over bar refers to organic phase,v
stoichiometric coefficient.

(2.2)

The authors contend that many works have used an erroneous analogy to homogeneous
kinetics where the effects of the reverse reaction on the extraction rate has been often
neglected with €g set equal to zero. The concentration at the interface governs the extraction
kinetics and the concentration at the interface of the extracted complex may be significant
even if the bulk organic phase is at zero concentration especially for high resistance to
diffusion in the organic phase.

DEHPA extractants and others have hydrolipophylic character surface activity and can
adsorb at the interface and lower the interfacial tension. These surface active agents cause
and increase in the rigidity of the interface, increase the viscosity and decrease diffusivity
in the vicinity of the phase boundary and decrease the mass transfer considerably. Two
models are referenced by the authors to model the interfacial resistance.

1. The barrier model of Whitaker and Pigford Chem. Eng. Res Des 1985 vol 63 p 89.
expresses the resistance by a set of adsorption and desorption constants.

2. The hydrodynamic model by Nguyan et al AICHE J 1979 vol 25 p 1015 assumes
the interface is of finite thickness with a capacity to accumulate the solute and that
equilibrium exist at its boundaries.

Both models imply resistance additivities and an effective mass transfer coefficient % defined
by 2 = -+ -L where k; is the interfacial resistance. When extraction is accompanied by a

reactlon mvolvmg ions the reaction takes place at the aqueous side of the interface and the
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transfer of the components crossing the interface is hindered by the interfacial resistance.
The authors give the kinetic model for this type of extraction as well as simplifying it
under certain circumstances (i.e. if the extractant is in excess, and when the interfacial
resistance of the complex is smaller than the mass transfer of the extractant then the
diffusion resistances in the aqueous phase can become negligible. Subsequently assuming
¢g = 0 and cg = 0 the extraction mimic rate control by chemical reaction with power
kinetics and the rate of re-extraction being dependent only on the concentration of the
extracted complex in the organic phase.

I Kulawik, J. Kulawik, Mikulski (ISECC '88 International Solvent Ertraction Conference
July 18-24, 1988 Moscow vol 2 page 3-20) discuss the kinetics of the molecular interactions
in some extraction systems. The physico-chemical phenomena of extraction is determined
by the state of the system inside the phase. The state of the interface is determined by
the “work” of the molecules passing across the interface, the orientation of the molecules
on the interface, and the formation and gathering of the charged surface active complex on
the interface. This interfacial state will influence the kinetics of the extraction process, the
equilibrium in the system, and the value of the partition coefficient of the extraction sub-
stance between the two phases. Measurements of the molecular interactions in the phases
and interactions across the interface are necessary to define the state of the system. These
authors measured the surface tension of each phase and interfacial tension using the drop
weight method and in some cases these parameters were measured as function of tempera-
ture to obtain values for entropy and surface energy of the system. The salts NaCl, CuCl,,
ZnCly, FeCls, InCl;, TiCl, and ThCly were extracted by TBP or acetylacetone from HCl

solutions.

Perez de Ortiz and Tatsis (ISECC '88 International Solvent Extraction Conference July
18-24, 1988 Moscow vol 2 page 8-27) Interfacial instabilities in Extractions with Chemical
Reaction. Linearized stability analysis is applied to an extractive system with an interfacial
chemical reaction. The system consists of two immiscible semi-infinite phases. Solute A in
the aqueous phase reacts with component B of the organic phase A+B- P and species A
and B are mutually insoluble in the others phase. Therefore the extraction of A takes place
only through a chemical reaction at the interface. The assumptions are that the system is
at steady state and the extractant B is in excess.

The mathematical procedure follows the linearized stability of Sternling and Scriven. A
perturbation of the form F(x,y,t)=f(x)exp(iay)exp(Bt) is imposed on the steady state ve-
locity and concentration profiles and dependence of the growth, 8, with the wave number,
a, obtained by simultaneous solution of the Navier-Stokes and diffusion equations. The
following boundary conditions at the interface are specific to this problem:
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(i) the interfacial tension,0o, may vary with concentration of both A and P:

oo 800 0Cy + 800 0C, 9.3
dy 0Cx 8y ' 8C, by (2.3)
(ii) the interfacial rate of transfer is governed by the reaction kinetics, i.e.
Na=ki1CsCp-k2C, ‘ (2.4)
and
DA-a-ag;ﬁﬁ—h(CfMCA)-—-O (2.5)
where

h = reverse reaction constant
k1= forward reaction constant
ko= reverse reaction constant
M = k;Cpke

The authors obtained a characteristic equation by the simultaneous solution of the Navier-
Stokes and diffusion equations. Three different cases of the forward reaction constant k; and
for the same wave number o showed the growth rate constant decreases for k; increasing.
Thus the reaction rate is a stabilizing factor. A plot of 8 with a at constant k; indicates
the fast reaction to be a stabilizing effect. For the wave number investigated, the growth
constant is always higher for the reacting system than for the diffusing system until the
reaction equilibrium is reached at the interface and the values given by the two models are
quite similar. Under similar conditions there may be cases when a system with an intrefacial
chemical reaction is more stable than a system with pure diffusion only.

Freiser (Rare Earths Ezxtraction, Preparation and Applications: Proceedings Las Vegas Nev.
Feb. 27-March 2, 1989 page 99) discuss the investigation of equilibrium extraction behavior
of a variety of chelating extractants. A select group of the tervalent lanthanides were studied
to elucidate the selectivity for separation purposes. The equilibrium extraction data (as log
K..) is linearily related to the ionic radius of the tervalent lanthanides ions. The role of
adduct formation, steric hindrance, as well as the nature of the bonding atom in the chelate
ring represent some of the factors affecting selectivity arising out of the authors database of
over 200 individual extraction systems. The separations of the lanthanides is recognized as
one of the most difficult inorganic separations. The tervalent lanthanides were used because
of their similar behavior and to possibly elucidate understanding of the related actinide ions.
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As Freiser has commented, literally hudreds of extractants have been used in liquid extrac-
tion processes; and, as time passes a seemingly boundless variation of extractants are being
proposed. Each extractant has its own spcificity and favorable properties depending on
the separation desired. The organo-phosphorous compounds have been the workhorses of
hydrometallurgical extraction industry and also the nuclear fuels reprocessing industry for
years. In particular tributal phophates (TBP), di(2-ethylhexyl) phosphoric acid (DEHPA),
and more recently the multifunctional dihexyl-N,N-diethylcarbamoylmethylphosphonate
(DHDECMP) and octyl(phenyl)—N,N—diisobutylcarbamoylmethylphosphine oxide (CMPO)
as well as crown ethers have been employed as extractants for the ferrous, non-ferrous pre-
cious metals, rare earths (lanthanide series) and the nuclear (actinide series) metals. This
study will emphasize the first three extractants TBP, DEHPA, and DHDECMP. The chem-
istry and kinetics as presented in the literature is reviewed for various metal extractions
to elucidate an understanding of the chemistry of the liquid or solvent extraction process
using these three extractants.

DEHPA-di(2-ethylhexyl) phosphoric acid

DEHPA extracts tetra and trivalent metal ions. The acid is a dimer and usually extracts
as:

MY 4+n. XH-HX - M(X-HX),+n-H*t (2.6)

and the extraction is usually proportional to the nth power of the dimer concentration and
inversely proportional to the nth power of the hydrogen ion concentration where n is the
valency of the metal (Healy, Radiochemica Acta page 52). DEHPA strongly extracts penta
and tetra valent metal species such as Zr, Nb, Ce(IV), Th, Pa and Pu(IV). The extraction
of the trivalents are extracted to a much smaller degree on the order of 10-S.

Kizim, Davidov and Larkov (ISECC ‘88 International Solvent Extraction Conference July
18-24, 1988 Moscow vol 2 page $-12) discuss the phenomena and kinetics of the extraction
of some rare earth and non-ferrous metals by organic acids. Kinetics of extraction discussed
in the literature in many cases do not reflect or consider the phenomena of interfacial con-
vection. The formation of condensed interfacial films has been shown to occur in processes
of metal extraction of Co, Ni by di-(2-ethylhexyl)phosphoric acid. The authors discuss re-
sults of research involving the interfacial phenomena and kinetics of the extraction of Co,
Ni, REE(Ce, Pr, Nd, Eu, Gd) by DEHPA in toluene.

The experimental results show the kinetics of accumulation of the main solute in the interfa-
cial layer. For the REE , the interface has a structure made up of emulsion, microemulsions,
particles of solid phase and gel metal-organic polymeric molecules. This causes additional
diffusional resistances which is higher than the bulk diffusion. Extraction is accompanied
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with intrefacial convection which causes a rising of the coeficient of mass-transfer in the
initial moment of time after the phases are contacted. As the interface forms the interfacial
convection dissipates.

Pichugin, Tarasov, Arutinuyan, Goryachev (ISECC '88 International Solvent Extraction
Conference July 18-24, 1988 Moscow vol 2 page 3-26) discuss the hydrodynamical insta-
bility in extraction of metals by di(2-ethyl-hexyl) phosphoric acid (D2EHPA). Chemical
reactions and mass transfer have a significant effect of the motion pattern of fluids in the
interfacial region during extraction of lanthanides and some actinides by D2EHPA. Only
under limited conditions, such as when the density and viscosity of medium are indepen-
dent of the concentration of the substance being transferred, and when capillary forces do
not make a significant contribution to the sum of the forces acting on the interface, can
the effects of spontaneous interfacial convection be ignored. This fluid motion associated
with spontaneous interfacial convection caused by the absence of the above restrictions are
closely related with the charge of an electric double layer and interfacial chemical reaction,
adsorption processes, surface association and formation of interfacial films. Spontaneous
convection has been shown to last long-time periods (~ 60 secs) after the instant of phase
contact. In this case the mass transfer coefficient reaches 8 x1072 22,

Occurrence of condensed interfacial film along with the spontaneous convection phenomena
causes hydrodynamical instability. Gradients of interfacial tension result in oscillatory mo-
tion of interface which give rise to convection in the interfacial region. During extraction
the convection die out and cease completely after formation at the interface of a continuous
condensed interfacial film. The “breakup” of a continuous interfacial film will cause the
spontaneous convection to reoccur and the process is periodic in time during extraction.
The kinetic curves of extraction verses time show this result (see figure 1 of these authors
paper). '

Spontaneous convection depend on the values of concentration of extractant and extractive
substances. A critical value of concentration exist. If the concentrations values are greater
than the critical values then the mass transfer gives rise to breaks of hydrodynamic stability
of the interface. The spontaneous convection regime and the rate of extraction is strongly
dependent on the ratio of the thickness of layers of contacting phases. A critical value of this
ratio occurs for every extraction system. If the value of ratio is equal to the critical value
the extremum of extraction rate occurs. If the value of the ratio of thickness is not equal
to the critical value spontaneous convection is in the form of circular cells with diameter
as high as 1 cm. The value of the Reynolds (Re) number can be as high 150-200. If the
ratio of thicknesses equals the critical ratio, hydrodynamical motion is vigorous erruptions.
The size of the motion can be as high as 2-3 cm and the minimal value of Re reaches 2000.
Drops furnish more hydrodynamical stability than planer interfaces. Thus mass transfer
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through plane interfaces was more intense. Additions of surface acting surfactant can give
rise to a break of hydrodynamical stability.

Kikaisk, Sistkovd, and Hejnd ( 5 th ISCEC 1968 p 59) give a general mechanism for
monacidic organophosphorous extractants

Mm++m;””(HA),, - MEA, HA+mH* : @.7)
where M™* is the ion of the extracted metal and HA is the monomeric molecule of the
extractant, x is a parameter dependent on the diluent and the extractant interactions (sol-
vation numbers) and are found by the slopes of the log Dy, — mlog{A~] = flog([HA]).
Lanthanide(III) form the complex with x=3. No indication of the values for x for higher
order valence metals for HDEHP. Sekine (Solvent Extraction Chemistry 1977 page 340)

" gives a listing of values for various metals in nitric acid for TBP and Ce(IV) has a slope
of two where as Ce(III) has a slope of three. Sharma (in Handbook of Solvent extraction
p 61) states that this slope method is based on simplifying assumptions one of which is
that no polymeric species are formed in either phase. When this polymerization occurs,
which is typical of the organophosphoric acids the plot log D vrs. log[RA] (HA and RA
being synonomous) will then show dramatic curvature. Temperature effects are prevalent
in the extraction of cobolt with D2EHPA (another acronym for DEHPA) however nickel
does not show this phenomenon with temperature (Handbook of solvent extraction page
62). Sharma also gives the cation exchange reaction (D2EHPA extractant is an example)
in a more condensed form '

M™+nRH - MR, +nH"* (2.8)

Han and Tozawa (Rare Earths Ezxtraction, Preparation and Applications: Proceedings Las
Vegas Nev. Feb. 27-March 2, 1989 page 115) developed a thermodynamic model for pre-
dicting the distribution coefficients of extracting Sm, Eu, Gd, Tb, Dy, and Ho form acidic
chloride solutions into di-2-ethylhexylphosphoric acid and 2-ethylhexyl ester in kerosene re-
spectively. Most investigators use semi-empirical or totally empirical models to predict the
distribution coeflicients under wide operating conditions. These authors present studies to
predict distribution coefficients from initial data. This work assumed that the organophos-
phorous extractants follow the cation exchange mechanism for the lanthanides in the three
valence represented by

RE?;';)+3(ID()2(W) - RE(ED(z)a(o,,)+3H?;q ) (2.9)

where RE3+, (HX)2 and RE(HXj)3 refer to the rare earth ion, the dimeric form of the
extractant and the rare earth ion complex in the organic phase, respectively. The thermo-
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dynamic equilibrium constant K is represented by

3
_ [BE(I'D(2)3](°,” [H+](aq) 7RE(HX2)37§1'+

= ” 2.10
[RE3+] (ag) [(H)() 2] ?org) TRE®+ 7(3’()2 ( )

where v and 4* denote the activity coefficient of corresponding species in the aqueous and
organic phases respectively. The formation of the complex of the rare earth ion and the
chloride ion is known to be weak until about 2 M chloride conentration and the RECI?+
ion is a major player. At 8 M the complex predominates and the thermodynamic stability
constant tgof the complex must be taken into account.

REY, +Cl,, - RECIZY) (2.11)
2+
tg = REO M 1 (2.12)
(RE**] (aq) [Cl—](aq) r
where
[=JRETCI- (2.13)

YRECE+
The distribution coefficient, D, defined to be the ratio of the total concentration of the rare
earth ion in the organic phase to that in the aqueous phase is written as

[RE(HXz)3] .,
RE] gy + RECP ] o (214

and finally the authors give the distribution coeflicient by inserting the equalibrium constant
equation and the themodynamic stability constant into the above equation

3

(aq)

where

e 1 (2.16)

and

*3
Q= K00 _ (2.17)
TRE(HX2)s
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note that @ and @' are related by log@Q’' =logQ + C [RE(ID(z)a]fm) where Q and C are
constants and if the activity coefficients of organic species is assumed to vary slightly with
concentrations, Q is equal to @ because C is zero. Taking the log of the distribution
coefficient the authors obtain

log D = logao + log TrE3+ + 3 log [(ID()2](org) -

3log [H*] ~ —3logy+ +10gQ+C [RE(mcz)s]fw) (2.18)

log Q and C must be obtained from experimental data of the distribution coefficients and
adjusting the model distribution coefficient until values of Q and C which are constants
give the correct D. The Q and C are constant for that sytem and are used as constants.
Activity coefficients obtained from estimations in electrolyte chemistry (i.e. Pitzer eqauation
Bromley’s or variations there of). Note since the activity coefficients are calculated by
concentrations and the concentrations need the activity coefficients to be calculated an
iterative procedure is a result.

Sato(page 110 Proceedings of Actinide/Lanthanide Separations 1984) discusses the extrac-
tion of uranium(IV), yttrium(III), and lanthanum(IIT) from HCl with solutions of organophos-
phorus compounds specifically di-(2-ethylhexyl)-phosphoric acid (DEHPA) or 2-ethylhexylphosphonic
acid (EHEHPA) in kerosene. The extraction of actinide and lanthanide metals by these ex-
tractants are by a cationic exchange reaction mechanism-at low acid concentrations. At high
acid concentrations the uranium(VI) and yttrium(III) are extracted into DEHPA by a sol-
vating reaction. Temperature dependency (10°C to 50°C ) is presented for the distribution
coefficient, however this is in HC1 /DEHPA system and not nitric acid. The distribution co-
efficient at low acidities is only slightly affected by the chloride ion concentration but shows
decreasing trend with increasing pH. This is postulated to be shown by the fact that at low
aqueous acidity the species extracted does not contain a chloride ion and is substantiated
by infrared spectrophotometry. The equilibrium extraction of U(VI) from hydrochloric acid
solutions into DEHPA and EHEHPA is postulated to be an ion-exchange reaction governed
by the formation of polymeric species: )

UOZt + (n+1)(HR)2,ry = (UO2)nRa(ns1)Haorg + 2nH, (2.19)

At higher aqueous acid concentrations the extraction reaction is modeled by a solvating
reaction of monomer units similar to TBP (tri-butyl phosphate) viz.

UO% + 201, + m(HR),,, - UO;Clz -2mHR,,, (2.20)

where n > 1. Infrared spectroscopy shows that UO2(R2X), is extracted species. The ex-
tracted species for the yttrium and lanthanum metals are M(R2X)3
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Choppin(page 176 Proceedings of Actinide/Lanthanide Separations 1984) discusses the redox
potential effects at different pH for neptunium and plutonium. He lists the spectrophoto-
metric measurements of the different oxidation states. In general for actinides from valence
3 to 4 the redox is fast and is a simple electron transfer. Cation exchange extractants such
as HDEHP (diethylphosphoric acid) shows a separation process due to complexation trends
of the different oxidation states of the actinides. Choppin give the basic extraction reaction
for cation exchange as

MR 4 nHS gy - M¥"S,,, +nHE HXT (2.21)
where X is the anion of the aqueous solution which may form actinide complexes (i would
increase with the concentration of X}, n is the cation charge of the actinide and HS is the
acidic form of the extractant. Because of the extraction differences of the different valence
states and since actinides or actinide hydrolysis or oxide compounds of the same valence
state behave similarly, separations and purifications are possible of the different valences.
Keeping them in a specific valence state for removal either by extraction, ion-exchange, or
precipitation is the difficulty. The valence states are pH dependent and can be maintained
with a suitable strong holding oxidizer. Note that this equation is the same as that presented
by Sharma and Kikafik et al.

Yoshizuka, Sakamoto, Baba, Inoue, and Nakashio (Ind. Eng. Chem Res. 1992, 81, 1372-
1878) review a kinetic study on the extraction of holmium(III) and yttrium(III) with bis(2-
ethyl-hexyl)phosphoric acid (D2EHPA) from nitrate media at 303°K using a hollow fiber
membrane extractor. Distribution equilibria and interfacial adsorption equilibria of the
extractant and its metal complexes between the organic and aqueous phases. The diffusion
model with a reaction at the interface reasonably explained the transport effects. The
metals used were in the three valence state and are extracted with D2EHPA as follows

M3 +3IR; - MR; - SHR+3H* (2.22)
where D2EHPA is known to dimerize in aromatic diluents such as benzene and t olsuene. 'I‘hes

extraction equilibrium constant for the above equation is given by K= M{hzs[g?é ;ﬂ =Dy AN

where M and a,, are the total concentration of metal in the aqueous phase and the hydrogen
ion activity calculated by the pH of the aqueous solution. In typical format this equation
can be expressed in logarithmic form as

ngRz l
log Das = 3log o + log Kex (2.23)
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Plotting experimental data as log D vrs log ( the K.z values are obtained. The

authors calculated the adsorption equilibrium constant assuming that the metal complex at
the interface is negligible compared to D2EHPA and the adsorption equilibrium equation
is HoR; - H3Rg ,,, and the adsorption equilibrium constant is given by Kaq . The relation
between interfacial tension and the concentration of [HaRy] in the. organic phase Kgq is
derived from the Gibbs equation for adsorption assuming Langmuir adsorption isotherm

T=7— (%) In (l + Koq [ﬁER_ED ‘ (2:24)

where 4p is the interfacial tension between organic phase and the aqueous phase and S,; is

" the interfacial area occupied by unit mole of dimeric species of D2EHPA. From experimental
results Kog and S,g is obtained by a plot of 7 vrs log [m] The interfacial reaction
mechanism is proposed

M 4+3HRy(0q) - MR*" -HR+H' K (2.25)
MR?* - HR(y) + H2Rz - MR - 2HR(q+HY K, (2.26)
PN Y ua——
MR} - 2HR(q) + HzRp - MRs-3HR+H® K3 (2.27)
3

The latter is the rate controlling step as a result of the Yashizuka et al.data. The interfacial
reaction rate R is expressed as '

R = ks [MR] - 2HR )| [F2R2) ~ k [MRs - 3HR] ax - (228)

and assuming Langmuir adsorption isotherm and that the interfacial area occupied by the
unit mole of HoR3,S,4 the interfacial reaction rate R becomes

RGN e,
a$y S H
T R )+ (DI (1, )

(2.29)

L §

Yashizuka et al. state that the third and fourth terms in the denominator are considered
to be much less than 1 + K,g {ﬁ;ﬁ;} since they are complexes adsorbed at the interface
and under their experimental conditions the concentration of D2EHPA is much higher than
those of the intermediate complexes and the interfacial extraction and stripping rates are
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approximately
kK1 (’—;;z) MR, [MR; -30R] a,
N ) 4 (2.30)
14 Kaa [Hsz]

and if the overall forward reaction rate constant is defined to be k; = k3 K1 K> (gﬂf) the
equation becomes for extraction

MI[fGR;]°  [MRs3HR|a,
i e

R= - (2.31)
1+ K4 [HzR2]
and for stripping
3
Kk, [ (MR 3R] g, — K. MG ]
R = (2.32)

14+ Kag [m]

The data in the region of high permeabilities for the extraction and stripping were analyzed
on the basis of the diffusion model accompanied by an interfacial reaction, taking into
account the velocity distributions of the laminar flows in aqueous and organic phases. The
authors wrote three diffusion equations for each diffusion regimes, i. e. diffusion through
the two bulk phases and the diffusion through the porous media that takes into account
the porosity and tortuosity of the porous structures. The authors found that if the ratio of
the forward to backward reaction rates ks to k3 is equal to the equilibrium constant K,
obtained from extraction kinetics is 7 to 10 times the values obtained from the extraction
equilibrium and is explained to be a result of the difference in the ionic strengths of the
extraction and stripping aqueous phases.

Cerium Cerium, specifically cerium in the fourth valence state is to be used in this
study as a surrogate to Pu(IV). The extraction of Cerium into various extractants has been
presented in the literture though little useful kinetic data is available. Below is a literature
review of Cerium extraction into DHEPA.

Warf was issued separate U. S. patents for extracting cerium in nitromethane and also in
TBP ( see Warf under TBP) in the 1949. In order to accomplish this the cerium was kept
in the four valence state by the use of sodium bromate in high molar strength nitric acid.
Peppard, Mason and Moline (J Inorg. Nucl Chem 1957 vol 5 pp 141) extracted Ce(IV) from
high molar nitric acids in 1957 and showed that cerium in the four valence state extracted
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to a much greater degree in DEHPA (Peppard et al referred to it as HDEHP) than did its
valence couple Ce(I1I).

Bray and partridge (Solvent Extraction Research Proceeding of 5th ICSEC 1968) discuss
the extraction into HDEHP of Ce(IIl) by oxidation to Ce(IV) in concentrated nitric acid
solutions. They conclude that the nitrate ion is necessary for rapid oxidation of the Ce(III)
in this sytem. The complex formed by this metal and the DEHPA is polymerized and has the
formula CeOp s NO3(DEHP);. No mechanism or kinetics were given; though, a distribution
curve as a function of nitric acid comparing the extraction of Ce(IV) with Ce(III) is given.
The distribution for Ce(III) is minimum between 2 and ~3.5 M HNO;. The Cerium(IV)
Cistribution is much higher in the acid range of 1 to 5 M HNO3 than the Ce(III). The ratio
of the distribution coefficient of Ce(IV) to Ce(III) is 10,000 at 2 M HNOj;.

Sato (Hydrometallurgy 22(1989)121-140) discusses the extraction efficiency including dis-
tribution coefficients as functions of concentrations and temperatures of the lanthanide ITI
series primarily from HCI but does give data on extraction from HNOj; into DEHPA and
EHEHPA in kerosene. For cerium(III) at a concentration of 0.05 ;—7-:% in 0.05 3-"7‘"% nitric
acid with 0.05 3"}:15 DEHPA in kerosene Sato observed an enthalpy change of 6 %

Uranium Fatovic, Melez, Polla, Romano(Extraction '87: The recovery of High Value
Materials ICHEME symposium Series No. 108 page 29) used uranyl nitrate hexahydrate to
illustrate the extraction kinetics of U(VI) into di-2-ethyl-hexy] phosphoric acid and trioctyl-
phosphineoxide (TOPO) in kerosene and aromatic hydrocarbons. Using a constant area
Lewis type mass transfer cell the aqueous to organic K’ and organic to aqueous K transfer.
Equilibrium was attained in less than two minutes. The equilibrium data are expressed in
terms of distribution ratio D as

uranium concetration in the organic phase (Cy), (2.33)
uranium concetration in the aqueous phase (Cy)aq )

D=

The kinetic data of the concentration vs time was analyzed by assuming a first order re-
versible reaction for uranium(VT)
k'

U032 +2(HX)n(yppy + TOPO(org) ~ UO2 - Hpn3 - Xon TOPO(org) + 2H{;,(2.34)
and after integration and rearrangement gives for aqueous to organic transfer near time
0 where C' ~C/ and the working equation given by is I<I’=—-‘;—t’2 In(1 - 'Cfb‘) and for the
organic to aqueous transfer near time 0 where C~C, the equation is k=-5 In(1 — -%%)
where k¢ indicates the rate constants (cm/s) in the aqueous phase to organic phase and k
organic phase to aqueous phase respectively; a is the interfacial area and V the volume of
the organic and aqueous phases in this case 19.252 cm? and 50 cc respectively; t the time
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in seconds; C the concentration of uranium in the organic phase after time t in g/dm?3;
C’ the uranium concentration in the aqueous phase after time t g/dm?; C, is the uranium
concentration in the organic phase at t=0 g/dm3;C!, the uranium initial concentration in the
aqueous phase at t=0 g/dm®;and D the organic to aqueous distribution ratio (). The rate
constants k and k' are time dependent. The authors extrapolated back to zero time (t )
was performed. The activation energy was calculated using the equation logk= — '303

The effects of temperature on the distribution coefficient ratio of U(IV) between phosphoric
acid are given. The authors attempted to minimize the contribution of diffusion by using
a constant stirring speed in the Lewis cell determined by a plateau of k vrs. stirring speed.
The results reveal that the rate constants for the extraction in both directions increase with
increasing temperature. The activation energy was estimated via the slope of straight lines
on the plot of log & vrs -.% the energy of activation in kcal/mol for various systems studied

system | aqueous to organic | organic to aqueous
4.91 M H3POy;
0.5M D2EHPA-0.125M TOPO
kerosene w/ 18.3% Aromatics 2.62+ 0.46 12.89 + 0.89
kerosene w/ 0.5% Aromatics
and other contaminants 292103
kerosene w/ 18.3 % Aromatics
and other contaminants 2.16 + 0.49 13.22 + 0.49

Note that the other contaminants are impurities of metals that come in industrial grade
phosphoric acids. The AH for this system has been determined by Fatovic et al as 10.18
kcal/mol. Others have given a AH of 10.38 kcal/mol for the H3POj in the kerosene with
18.3 % aromatics and no contaminants determined from equilibrium data. For the system
with contaminants and 18.3 % aromatics a value for AH using kinetic data was 11.06
kcal/mol and equilibrium data 9.53 kcal/mol. The effect of concentration of phosphoric
acids on the aqueous to organic transfer constants a.t 40°C showed that the rate constants
increased form 3.4 x10™* to 1.15 x1073 &2,

Bré&ié, Fetovié, Meles, Romano (ISECC '88 International Solvent Eztraction Conference
July 18-24, 1988 Moscow vol 2 page $-15) report on a study conducted on the rate constants
for the interphase transfer of uranium(VI) from phosphoric acid solution by D2EHPA (di-
2-ethyl-hexyl phosphoric acid) and TOPO (tri-n-octyl phosphine oxide) in non-aromatic
kerosene. The heat of reaction is calculated from van't Hoff’s equation at 26.53 ,—’,‘L%; and the
activation energy for the forward reaction is 38.73 -"%- and for the reverse reaction 13.12
"%J,l-. The heat of reaction is the difference of the activation energies and was calculated at
25.61 %‘g‘-— . The chemical reaction of uranium controls the transfer of uranium from the
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et 3

organic into the aqueous phase. The rate of transfer of the uranium is a strong function of
phosphoric acid concentration.

DHDECMP dihexyl-N,N—diethylcarbamylmethylene phosphonate

Kuwinta, David and Metzger (page 31 Proceedings of Actinide/Lanthanide Separations 1984)
discuss the extraction of rare earths in bi-functional extractant dihexyl- N, N-diethylcarbamylmethylene
phosphonate (DHDECMP). They state that the di-(2-ethylhexylphosphoric acid (HDEHP)
presents some inconveniences with insufficient selectivity, and the need of relatively low acid-
ity. These authors state that the extraction equilibrium into toluene is very fast and the
quasi- total reaction (authors words) will not require more than 2 minutes as determined by
a distribation vrs shaking time plot for lutetium (Lu z=71). The distribution relation for
the lanthanide III elements (Ce(11I), Eu(IIl), and Y(III)) used in the study was determined
to be D = k(DHDECMP)? and is stated to be in good agreement with other literature
values (see MSIssac and Baker INEL-ICP 1180 1979). Cerium III is included in this work
for extraction distribution.

Impurities in the DHDECMP are the most critical factors affecting stripping efficiencies.
The distribution coefficient decreases when the solute concentration increases. This is il-
lustrated with Ce(III) in the authors figure 4. The distribution coefficient decreases when
the temperature increases. A plot of logD vrs. % gives a van’t Hoff relationship for
the activation enthalpy in 6 N acidity of AH® = -27 ;“‘;IE . Like other metal extrac-
tion processes salting out effects are present when nitrate salts are added to the aque-
ous solution; but, also increase the distribution coefficient of other elements that may be
present. The structure of extracted complex of the lanthanide(III) elements is suggested to

be M(NO3)2(DHDECMP);.

Mitsugashira, Maki and Suzuki (page 91 Proceedings of Actinide/Lanthanide Separations
1984) discuss the bi-functional dibutyl-N, N-diethylcarbamoylmethylene phosphonate (DB-
DECMP) and the dihexyl homologue dihexyl-N, N-diethylcarbamylmethylene phosphonate
(DHDECMP) in a benzene diluent for the extraction of Th(IV), Am(III) and Cm(III) form
perchloric (HCIO,4) and nitric (HNO;) acids. To understand the extraction mechanism of
metal ions from an acid media it is necessary to examine the interaction of the extractant
and the acid. The extraction mechanism of HNO3 and HClO; is different. The mechanism
for DBDECMP is given to be

BP + nH* +nNO; ’;: BB(ANO3), (2.35)

where BP is DBDECMP and the over bar distinguishes the organic phase. &; = 0.33M~2
and ko = 0.0043M~%. The authors suggest that the kinetic constants given reproduce
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the nitric acid extraction for both DBDECMP and DHDECMP. The authors suggest that
since no difference between the constants exist the acid is attached to a functional groups
basicity is independent of the substitution buty! or hexyl group. Though we will not use
the HCLOy, it is interesting to note that the same conclusion was reached in regards to
the extraction behavior of the two extractants with this acid also. These authors did not
report a third phase forming in the nitric acid DBDECMP or DHDECMP as have other
investigators using these extractants with aliphatic hydrocarbons instead of the benzene as
used by these authors. The perchloric acid system did show a third phase formation in the
DBDECMP system at acid concentrations greater than 2.5 M; but, they did not see any
third phase formation in the DHDECMP until an acid concentration less than 5 M. The
authors postulate that the nitric acid suppresses the third phase in the organic phase.

Distributon coefficients for the actinides of interest in this article are given as functions of
concentrations of organic extractant, NO3 , ClOy, and pH. The slopes of the distribution
curves for nitric acid are identical to those reported by previous authors. The distribution
coefficients for Am(IIT) in DHDECMP need to be corrected for the decrease in [DHDECMP)
caused by nitric acid extraction. The authors conclude that the extracted Am(III) contains
one extra nitric acid in the organic phase. Th(IV) does not extract with an extra nitrate
anion. Thus for DBDECMP the extraction reactions for Th(IV) and Am(III) are given by
these authors as

xBP + M"* + (n+m)X~ + mH* . (BP)xMXy(HX)m (2.36)
WX

The authors suggest that for Cm(III) the same values for Kex x as given by them for Am(III)
can be used to evaluate extraction behavior. The values for n, x, m, and K x are valid
at [NO3] <2M. The following table is a partial listing from these authors table 2 for these
values.

xX- M n|x|m l—l-g,.ﬁf-g’:‘m
DBDECMP DHDECMP
NO7 | Th(IV) |4]2] 0 |8-10°+2-10* | 6-10*+2.10*
Am(IIT) 131311 30+10 25+ 7

Brossard, Kwinta and Schwander(page 126 Proceedings of Actinide/Lanthanide Separations
1984) investigate the extraction of americium in DHDECMP. Influence of metal concen-
tration, aqueous phase acidity, and DHDECMP concentration is studied. The effects of
ternperature are discussed but not in any detail. Synergistic effects of TBP are negligible.
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The effects of the acidity of the aqueous phase is governed by two relations
e = ke
and (2.37)
B, = _4=°+A:—Ar
where
A is the acidity of the solution before Am extraction
A is the acidity of the solution after Am extraction
A? is the acidity of the aqueous phase used for stripping Am
A, is the acidity of the aqueous phase after stripping Am

The Am distribution coefficient decreases as the temperature increases. For a DHDECMP
concentration of 0.8 M these authors obtained a ratio of 3+1 for the distribution ratio for
Am at 20°C and 60°C. Other literature reported in this article give a ratio of 5. However,
this shows a great dependency of D on temperature.

TBP Tri-Butyl Phosphate

Naylor and Eccles (ISECC'88 International Solvent Eztraction Conference July 18-24, 1988
Moscow page 31) gives a plenary evaluation of TBP as an extractive solvent for the nuclear
fuels cycle. TBP is very popular though it can be classified as a moderate metal extractant
and has been used since the 1940’s as the “workhorse” of extractants. Its cost is kept in
line because of the commercial demand in other areas. TBP is used as a plasticiser, anti
oxidant or catalyst and in anti-foaming agents, hydraulic fluids and fire retardant. TBP’s
affinity for metals derives mainly from its phosphoryl group the oxygen forms coordinate
links with cations (C4HgO)3P=0—M. TBP forms adducts such as that with U(VI) to give
UQO2(NO3)2-2TBP. The nitrates are extracted as neutral molecular species with a definite
number of attached TBP molecules. The complexes for the actinides and the lanthanides
as well are established as: trivalent, M(NQOj3)3-3TBP; tetravalent M(NQj3)4-2TBP; hexava-
lent, MO2(NO3)2-2TBP. The mechanism given by these authors is one of simple complex

formation:
MOZt +2NO; +2TBP,, - MO2(NOs); - 2TBP (2.38)
M{t +4NO;  +2TBP,,,,, - M(NOs)s - 2TBP,,," (2.39)

the nitrato complex may be substantially formed in the aqueous phase. Thermodynamic
and kinetic data for the extraction of uranium indicate the extraction is exothermic. The
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rates in the forward direction increase with increasing TBP concentration, but those in
the reverse direction (back washing) decrease. The effect of temperature on the extrac-
tion of actinides is small, although back washing from the loaded solvent is encouraged
by higher temperature. The difference in extractability due to different valency states is
utilized to effect separations between elements in the actinide series and elements in the
lanthanide series. At high concentrations of nitric acid (>>6 M) the nitrates compete with
the metal species for extraction. TBP is susceptible to hydrolysis and yields dibutyl phos-
phate (DBP) monobutyl phosphate (MBP), and phosphoric acid. The first hydrolysis step
in the extraction process is the most critical. Ionizing radiation causé decomposition of
TBP and result in the formation of DBP, MBP, H3PO4,and various gases Hy,CHy,C2oHy,
alcohols and other hydrocarbons. The degradations products complex more strongly with
the metals and cause metal losses, reduced decontamination of the products, and solvent
containing metal products. Precipitates may also form and may negatively influence the
interfacial mass transfer.

Rogers, Thompson and Thornton (Extraction '87: The recovery of High Value Materials
ICHEME symposium Series No. 108 page 15) discuss the time dependence of mass transfer
of uranyl nitrate between nitric acid and tri-butyl phosphate. Interfacial turbulence is
discussed in regards to surface renewal accompanying the transport process. Chemical
reactions occurring at the liquid liquid interface during the extraction of uranyl nitrate,
plutonium nitrate and nitric acid by TBP are

UOS* +2NO35 +2TBP - UOy(NO;3)e - 2TBP
PU +4NO3 +2TBP - PU(NQj3)s-2TBP (2.40)
H*4+ NOj +TBP - HNO;-TBP

and the determination of the interfacial transfer kinetics in these systems has been investi-
gated by independent workers (reviews of these investigations will be discussed latter). A
difference of opinion as whether the mass transfer is diffusion or kinetically controlled is
evident in the comparison of these papers. The authors comment that only two studies cited
by them were macro concentrations of uranyl ion and that the mass transfer mechanism
at low concentrations may be different than that at high macro concentrations.
For uranyl nitrate the authors state that values for the activation energy of the forward
reaction range from 10 ;—’,% to 23 -,’;—i— The authors maintain that these values are indicative
of a diffusional control mechanism.

Rogers et al. work used a quasi-steady state droplet technique to study the time dependent
behavior or mass transfer coefficients of uranyl nitrate from aqueous phase into an organic
phase of TBP and odorless kerosene at 25° C. As the interface ages the mass transfer
coefficient decreases and is associated with a corresponding decrease in the frequency of
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interfacial disturbances. This dampening has been suggested by Ruckenstein(Int J. Heat
Mass Trans. 11 1753(1968)) as a result of the liquid elements taking part in the surface
renewal process become more and more saturated and consequently the interfacial renewal
weaker. Sawistowski (Trans Inst Chem Engrs 412, 174 (1963)) suggest that the increase
in interfacial tension when liquid eddies of bulk phase arrive at the interface cause the
dampening of interfacial turbulence. The authors suggest that the exact reason for the
dampening is not known but postulate that it is caused by a buildup of complexed species
UO2(NO3)2 - 2TBP at the interface.

As the interfacial turbulence decays the rate of mass transfer will ultimately
depend on the diffusion of the complezed species across the interface and possibly
the diffusion of free TBP molecules to the interface. Thus mass transfer becomes
a totally diffusion controlled process.

The interfacial tensions of this system increases with higher solute concentrations (Thomp-
son ICHEME Symposium Series 88 (231)1984). These authors found that after an extended
period of time (600 secs) the mass transfer coefficients become a constant value and the
transport process is primarily a diffusional regime although some interfacial turbulence ex-

- ists. These authors also noted that the back extraction from the organic did not show any
visible Marangoni interfacial turbulence and also showed no time dependence of the mass
transfer coefficients. In conclusion the differences in the mass transfer coefficients reported
in the literature for the same systems is a result of the time dependence on the interfacial
turbulence and interface age.

Hughes and Lawson (Ertraction '87: The recovery of High Value Materials ICHEME sym-
posium Series No. 108 page 37) develop and discuss a mechanism for the co extraction
of uranium and nitric acid by TBP. These authors describe a phenomenon of nitric acid

“equilibrium overshoot”. This phenomenon is a result of the nitric acid concentration in
the organic being higher than predicted equilibrium concentrations. These authors propose
that the overshoot be predicted by :

Equilibrium concentration of nitric acid in the organic phase (no ura.nium) (2.41)
Equilibrium concentration of nitric acid in the organic phase (with uranium) "
Note that as the uranium concentration is increased the uranium ions displace the nitrates
into the aqueous phase and the uranium is extracted. Co-extraction in kinetic experiments
in the literature indicate the overshoot factor, E, typically within the range 1<E<3. The
mechanism for the extraction is given by

% HNO; - TBP,,,, (2.42)

E=

HNOs,,, + TBP

(org)




2.2 Summary 30
2(HNOs - TBP),,,, + UO2(NOs)z,,,, 23 UO2(NOs) - TBP,,,, +2HNOs,,  (243)
U0;(NOs)z,,, +2TBP(org) 3 U0,(NO3), - TBP,,, (2.44)

2.2 Summary




3. KINETICS of METAL EXTRACTION

3.1 INTRODUCTION to RATES of METAL EXTRACTION

Solvent extraction is commonly applied as an equilibrium process, but the rate at which
equilibrium is achieved is of paramount importance. The rate at which equilibrium is at-
tained between two phases which are initially not at equilibrium depends on the degree of
extent in which the concentration in the two phases initially differ from those attained at
equilibrium. That is, the rate that extraction reaches equilibrium depends on the chem-
ical potential of the metal in the two phases (page 89 Solvent extraction Principles and
Application to Process Metallurgy Part I Ritcey and Ashbrook).

Most processes currently in use are designed by equilibrium data. The design of a process
is dependent on the throughput of that process. The chemical reaction kinetics determines
the size and type of extractors to be used. These process can be designed by the use
of equilibrium data since the hydrodynamics and fast kinetics of the systems allow very
rapid approaches to equilibrium. This is somewhat of a paradox, since membrane processes
like the ones considered in this study are rate processes. The separation is accomplished
by a driving force, not by equilibrium between phases (Noble and Way ACS 847 Liquid
Membranes Theory and Appls. 1986 p1). The rate of metal extraction is largely determined
by interfacial chemistry. Kinetics of solvent extraction of metal species is a function of both
the kinetics of the chemical reaction occurring in the system and the rates of diffusion of
the species present in the two phases.

Generally, metal extraction is governed by mass transfer and diffusion rates which are on the
whole, fairly rapid. Most reactions involving ionic type reaction are rapid, whereas the rates
of reaction involving chelate formation can vary over considerable range. There are primarily
two regimes of extraction — the kinetic regime and the diffusion regime. A third and more
complex regime is termed the mixed regime. This regime is a combination of the two primary
regimes. Most laboratory apparatus are designed to give a combination mass transfer rate,
or a diffusional transfer rate, or a kinetic transfer rate. The separation of the transport rates
for the different regimes is difficult albeit impossible in the same experimental apparatus. In
general to accomplish this the system hydrodynamics are changed to eliminate diffusional
effects. Thus, as the hydrodynamic conditions change for each apparatus, the rates obtained
may not accurately reflect a processes actual transport rate for a specific regime.
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The interface plays a most vital role in two phase mass transport. Different models have been
developed for transport at interfaces. The two phase film is a simple model and illustrates
quite well, the mechanistic aspects of the solvent extraction process. In most published
modeling and simulation works the two film theory model has been used extensively for
two phase systems. In the two film model the hydrodynamics determines the thicknesses of
the differential film on either side of the interface. These different transport models will be
discussed in detail later in the interface section of this study.

Most of the current extraction processes i.e. pulsed columns, centrifugal contactors, etc.
are well stirred and the diffusion mechanism may not be of importance except at or close
to the interface. When the hydrodynamics is such that this film thickness approaches zero,
diffusion contributions to the rate of extraction can be small or insignificant and many
times are justifiably neglected. This is not so with membranes where the bulk fluids are in
intimate contact only at a single interface and flow in both phases is primarily in a laminar
flow regime and diffusional and kinetic regimes may be affecting the transfer of mass.

3.2 SIMPLE MECHANISMS of METAL EXTRACTION

Solvent exchange and complex formation are special cases of nucleophilic substitution re-
actions (Principles and Practices of Solvent Extraction pagel67 1992). The rate at which
solvent molecules are exchanged between the primary solvation shell of a cation and the bulk
solvent is of primary importance in the kinetics of complex formation from aquo-cations.

The dependence of the kinetics on the chemical reactions can be understood by considering
that the final products of any extraction process are usually in a chemical state different
from the initial unreacted species. The extraction of neutral metal complexes as in the
solvation environment produce completely different metal species in the extraction or strip-
ping phase than in the original phase. The extraction of a metal cation from an aqueous
solution by chelating extractant has more complex mechanism than the simpler solvating
complex. The solvating mechanism also has these additional complexities. These com-
plexities manifest themselves in where the reactions take place i.e. the bulk phases or the
interface. Reactions occurring in the bulk phases are homogenous reactions. The interface
reactions are analogous to heterogeneous reactions. In general, the distribution processes
between immiscible liquid phases of extraction of metal ions performed at very low concen-
trations, can be treated as first-order reversible reactions when the value of the equilibrium
(partition) coefficient is not very high ( Danesi in Principles of Solvent Extraction page
166).
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3.2.1 Rate Controlling Extraction Regimes

As mentioned earlier there exists transport extraction regimes. In a well stirred system
solvent extraction kinetics can be controlled only by slow chemical reactions or only by
diffusion through the interfacial film (in the two film model). When one or more of the
chemical reactions is sufficiently slow in comparison to the diffusion to and away from the
interface such that the diffusion can be considered instantaneous, the solvent extraction
kinetics occur in a kinetic regime. This can occur when the process is well mixed with
moderately slow chemical reactions or the reactions are rapid but the diffusion coefficients
are comparatively slow. Danesi gives a limiting value for the diffusion coefficients in liquids
as 10~%cm?s™! and the depth of the diffusion films is never less than 10~ cm. Danesi does
not elaborate on the origination of these numbers. In contrast, if the chemical reactions are
very fast compared to the diffusional processes the solvent extraction kinetics are defined to
occur in the diffusional regime. The rate of extraction is described in terms of the interfacial
film diffusion.

A combination of these regimes, where the diffusion and reaction rates are comparable the
solvent extraction kinetics are defined to take place in a mixed diffusional — kinetic regime.
This is a most complicated case, since the rate of extraction must be described in terms of
both diffusional processes and chemical reactions, and a complete mathematical description
is obtained only by simultaneously solving the differential equations of diffusion and those
of chemical kinetics.

Determining the transport regime is very difficult. Even when the apparatus is designed to
obtain a specific regime transfer rate, the hydrodynamics of the system may be a parameter
that may not be capable of sufficient adjustment to allow the regime to be correctly studied.
This is illustrated in a stirred cell where the diffusion film is not sufficiently small enough
to make diffusion so fast as to be neglected relative to the chemical reactions. This effect is
called “slip effect” and depends on the specific hydrodynamic conditions of the apparatus
in which the extraction takes place and simulates a kinetic regime (Danesi ISEC 83 p-1-3
and Danesi in Principles of Solvent Extraction page 182) . Thus, many workers who have
reported kinetic transport data often times conflict with each others interpretation of the

extraction regime.

Kinetic Regime
The kinetics of solvent extraction can be described in terms of chemical reactions occurring
in the bulk phases or at the interface. In many metal extractions, extraction is by ligand

substitution reactions, and the rate laws similar to those for complexation reactions in
solution may be expected. During most extraction processes, coordinated water molecules
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or ligands are substituted in part or wholly by molecules of a more oganophilic ligand (the
extractant) or of the organic diluent (ibid page 182). The hydrophobic extractants, with
little solubility in the aqueous phase, are strong surfactants as are most extractants, and
the ligand substitution reaction may and generally does take place at the interface.

As with all reactions the slowest step in the process is rate determining and controls the
overall rate of the system. Danesi presents three possible cases that can occur and the
development of the rate equations assuming the extraction of a monovalent cation M with
a weakly acidic solvent extraction reagent.

M*+HA(org) - MA(org)+H* (3.1)
The equilibrium constant, K., is given by
["M‘.fx‘]eq [H*],,
= et (32)
[FE] P71

where Mt is the monovalent metal ion HA is the organic extractant in monomeric form.
MA is the metal extractant complex and H* is the hydrogen ion. The overbar distinguishes
the organic phase as does a (org) subscripted or not. The equalibrium state is indicated by
a subscript eq and brackets indicate concentration.

Case 1. The rate-determining step of the eztraction reaction is the aqueous phase complez
formation between the metal ion and the anion of the extracting reagent.

For a monovalent metal species extraction in this regime for case 1

M* 4+ A- kf MA  (slow) ' (3.3)

—~1

and a reaction rate expression:
d M+ _ ‘
g‘f b by [M*] [A7] - kot [MA] 34

where [A~] is the dissociated acidic monomeric extractant and k; is the reaction rate con-
stant for reaction i. The following equilibrium constraints are used to derive the rate in
terms of easily measurable concentrations

rate = —

HA
1. HA- HA;Kpg= I@K}l (3.5)
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2. HA- B*+HYK,= E%%I;—] (3.6)

3. MA- MA(org);KDM = (3.7)

(MA]
where Kpp and Kpjs are the distribution or equalibrium coefficients for the extractant and
the metal extractant complex respectively between the organic and aqueous phases. K, is
the dissassociation equalibrium constant for the acidic extractant. The rate expression can
be obtained by substituting equations 3.5 through 3.7 into equation 3.4

K, M[EE] k., [ME]
Kpp [HY] Kpm

The the rate constants of the aqueous complex formation can be obtained if values for
the apparent rate constants k£ and -I%;—;; of the extraction reaction can be evaluated.
This means that K,;, Kpg,and Kpjs need to be known. The values of the apparent rate
constants are determined from the slope of straight lines obtained by plotting

+ — M+
[M+] [ +]°q vs it (3.9
where the subscript 0 indicates initial concentrations in the aqueous phase and ¢ is time. In
general experimental data is obtained for M* as a function of [-IT.K} at constant [H*], or a
function of [H*] at constant [ﬂ] , and of [m] at constant [H*] and [EI] The experi-
mental conditions are chosen such that the reaction can be assumed first order (Danesi in
Principles and Practice of Solvent Extraction). As in subsequent cases the rate of extraction

is independent of the specific interfacial area @, Q the area of diffusion, and volume of the
phases V.

(3.8)

rate = k;

In

Case 2. The rate-determining step of the extraction reaction s the interfacial formation
of the complez between the metal ion and the interfacially adsorbed extracting reagent. The
rate determining step of the extraction can be written as

M* + A~(ad) 52 MA(ad)  (slow) (3.10)
—2
where (ad) indicates species adsorbed at the liquid-liquid interface. The rate of reaction
which follows is
d M+ - - - [
rate = __d[’fft_l = kot [M*] [A™]y ~ k-o80 [MEA] (3.11)
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where @y, and @op represent the specific interfacial areas of the aqueous or water phase and
the organic phases respecitvely or the ratio of @ cm? and the volumes of the aqueous V,,
and organic V. For simplicity at this point V;, = Vp = V and To,‘ =Ty = Go = a. The
adsorption at the interface is obtained from the Langmuir’s adsorption law:

[HAly = —2 | (3.12)
.
The Langmuir adsorption constants a2 and - are specific for each system. Two regions of

adsorption can be identified at the interface:

1. Ideal case where 1>> yielding
' o
[HA],, = -72 [HA] = o [HA] (3.13)

2. Complete interface saturation with extractant molecules where 1<« yielding
HA]4 = a2 (3.14)

Extractants exhibit strong surface active properties, equation 3.14 is valid for the entire
concentration range of general interest in practical studies and the interface becomes fully
saturated with extractant molecules when their bulk concentration is as low as 1073 M
(Danesi page 186). The following instantaneously established equilibria have to be ac-

counted for:

1. HA(org) - HA(ad) (3.15)
adsorption of the extractant molecules at the igterface described by Langmuir’s Law

2. HA(ad)- B~ +H%K]= Bl [HT] (3.16)

[HA],4 _
interfacial dissociation of the extractant (involving no interfacial adsorption of the dissoci-

ated protons) ]
MAI (HA] 4

3. MA(ad)+HA(org) - MA(org) + HA(ad); K, = 5—= (3.17)
= [MA] A
fast replacement at the interface of the interfacially adsorbed metal complex with bulk
molecules of the extractant.
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Equations 3.12, 3.16, and 3.17 are inserted into equation 3.11 and obtain

R +1~1 k_oa —5 W S
rate = kpdiop K [M*] [H*]™" - e [MA]™ [HA] (3.18)
which holds for a fully saturated interface, and
_JMY[HEA] e, f
rate = koo K, o a 749 @ [MA] (3.19)

which holds for ideal adsorption. The equilibrium constant of the extraction reaction,
equation 3.2 is equal to

* 170

K., = koK Koy (3.20)
k_o :

for both ideal adsorption and for a saturated interface. The expression for K, is derived

from equation 3.18 or 3.19 since at equilibrium the forward rate equals the reverse rate.

The concentration dependency for the rate of case 1 (equation 3.8) and equation 3.19 is
the same. The difference of these two scenarios is that the second deals with the interface
and is directly proportional the interfacial area case 1 has no dependency on the interfacial
area. This has been experimentally verified in the literature . A plot of the apparent rate
constant of the forward rate of extraction versus @ must yield a straight line through the
origin of the axes when case 2 holds.

Equation 3.18 shows a zero reaction order relative to f-I_X] in the forward extraction rate,
reflecting the complete saturation of the interface with the extracting reagent. Case 2 is
more difficult to analyze for the rate constants since the interfacial parameters (¢, og, K,
K?2,) are difficult to obtain.

Case 3. There are two interfacial rate-determining steps. consisting in: (1) formation of
an interfacial complex between the interfacially adsorbed molecules of the extractant and the
metal ion; (2) transfer of the interfacial complezes from the interface to the bulk organic
phase and simultaneous replacement of the interfacial vacancy with bulk organic phase and
simultaneous replacement of the interfacial vacancy with bulk organic molecules of the ez-
tractant. This mechanism has two possibilities or sub cases. (1) reaction of dissociated
anion of the extractant and (2) the reaction with the undissociated extractant.

Case 3.1 The first mechanism is
M*+A~ (ad) k’-“ MA(sd)  (slow) (3.21)
-3
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MA (ad)-+HA (org) kf_“ HA(ad)+MA(org)  (slow) (3.22)

and the rate equations holding for the two slow steps are:

rate 1 = @kg [M*] [B7] , —@k_3[MA],, ‘ (3.23)
rate2 = ks [MA], [‘H‘K] —ak_q [HA], [m] (3.24)

When the metal concentration is sufficiently low and the concentration of the interfacially
adsorbed metal complex is consequently low, for the stationary condition at [MA]_,,

rate 1 = rate 2 (3.25)

Thus, using equations 3.23, 3.24 and 3.25 and using the instantaneously established equilib-
ria for the interfacial dissociation of the extractant (equation 3.16) for [A~],, then [MA] 4
can be determined. Considering that for a fully saturated interface [HA],4; = a3 the equa-

tion for [MA] 4
MAL, = ksKieo [MH][HY] 7 + k_gay [‘MK]
k-3 + ky [HA]
substituting this value of [MA],, into either equation 3.23 or 3.24 gives the rate equation

(3.26)

akake Koo MY][H]™  @k_sk_sa; [MA]
rate = — - " (3.27)
k-3 + kq |HA] k-3 + k¢ [HA]
again at equilibrium the rate(forward)=rate(reverse) and the equilibrium constant is
_ ksksK

Kz = P (3..28)
The following comparison of the rate equations for the above derived cases in the kinetic
regime

e A homogenous reaction in the aqueous phase with the anion of the extractant

rate = ky - Ll [_H-Aj _ fa [M‘K] equation 3.8 case 1

k= .
Kps [HY] KpMm

e Interfacial reaction with the anion of the extractant, which is ideally adsorbed at the
interface '
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MY [FE] ks,
[BY]  TK§
e Two sequential interfacial reactions: the first one being the reaction with the anion

of the extractant, which is ideally adsorbed at the interface; the second one being the
slow desorption of the interfacial complex from the interface.

[m] equation 3.19 case 2 ideal

rate = kogaK,

- * +H A" @k_gk-g02 MA
rate = Seskakgon MTJ[HT] L J equation 3.27 case 3.1

k_g + ks [HK] k_g + ks [ﬁx]

shows that if [_HI] is sufficiently small to allow the approximation k4 [I—i_A-] < k_3 into the
denominator of equation 3.27 the three rate equations have exactly the same concentration
dependence on [M¥], [—HK] , [Ht], although the extraction mechanisms are characterized by
different rate-determining steps. The difference among these mechanisms can be seen only

by measuring the dependence of the rate of extraction on the specific interfacial area, @,
and by using the broadest possible concentration range of the reactants. If a dependence
on @ exists, case 1 can be excluded. If in addition the reaction rate becomes first order then
becomes zero order when [—H—K] increases, case 2 can also be ruled out.

Case 3.2. When the interfacially reactive species are the undissociated molecules of the
extractant adsorbed at the interface (i.e., the first rate determining step of the two step
mechanism is the reaction between the metal ion M™ and HA(ad)), the following equations

will hold:
M* 4+ HA(ad) © MA(ad) +HY  (dow) (3.29)
MA(ad) + HA (org) ;:‘: HA(ad) + MA(org)  (slow) (3.30)

The rate equation for these slow steps are

rate 1 = akj [M*][HA],, — k3@ [MA],, [HY] (3.31)
rate2 = akj [MAl, [HA] —ak-s [HA],, [MA] (3.32)
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and assuming the equilibrium state (rate 1= rate 2) and introducing the same substitution
as in case 3.1i.e. ([A7] 4= Kg%ﬂ) for the fully saturated interface

__ 0ok§ [M*] — agk_o[MA]

[MA] — 3.33
M kg [HH +k [TA| (3.33)
and inserting this into equation 3.32 gives
rate = rate (forward) — rate (reverse)
_ Gksksen [M*] ['I:I_K] _ Eki3k-4azw (3.34)

R [HY]+ ke [HA| K5 [HY] 4k [HA]
when the simplification of k4 [ﬁ] « k* 3 [H*] is applied then equation 3.34 has the same
concentration dependence of [M¥], [HA} , and [H*] as equations 3.8 and 3.19

K, [M ] [-H—K] k_q

rate = k; Kop '] - Ront [MA] equation 3.8 casel

M+] [HA]
[H+]

Unlike case 3.1 the logarithmic plot of equation of the forward rate divided by the metal
ion concentration vrs. [H'] is not linear.

kg [
rate = keaaK -T K02 (o [MA] equation 3.19 case 2 ideal
' ex

Note that these cases, as presented and derived by Danesi, exemplify the differences, ambi-
guities, complexities and diversities of metal extraction systems. Many other mechanisms
can occur in the absence of diffusional contributions. Other physicochemical properties can
also effect the transport mechanism. For example, appreciable water solubility and weak
adsorption at the interface of the extacting reagent generally favor class 1 mechanisms.
High water insoluble and strongly interfacially adsorbed chelating extractant increase the
possibility that cases 2 and 3 may describe the mechanism of extraction.

A special note should be included here. As will be discussed later in sections 3.3.2 page
69, 3.206 page 83, and 3.3.2 page 85 the use of the Langmuir isotherm in the form as
used by Danesi in the above derivations is questioned as to its correctness in form and
context for this process. The assumptions in the derivation of the Langmuir isotherm are:
(1) assumes equalibrium between adsorption rate and desorption rate which is contrary
to the last reaction in the last case and its subcases where the adsorption and desorption
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reaction is slow and partially controlling; (2) a single specie adsorption isotherm is used
where two species are vying for the same surface spots. The extractant is a reversably
adsorbed/desorbed specie as is the formed neutral metal extractant complex. Once formed
the metal extractant complex will act similar to a catalyst poison competing for the sites
but not reacting. How strongly it competes will depend on the system but will probably be
strongly effected by the relative concentration of the metal complex and the extractant in
the organic phase as is suggested by the overall rate equations.

Diffusional Regime

In a two film model for mass transport between two phases a stagnant film thickness §,, or
b0 is defined on either side of the interface. The interface is assumed to have no thickness.
Three resistances are defined to account for the diffusional contributions as R,, — the water
or aqueous side diffusion contribution; R, — the organic side diffusion; R; — the resistance
across the interface. This is the most popular model to explain mass transfer between two
different phases, though it is inappropriate in some cases as will be discussed later. This
model] is introduced here to help explain the diffusional regime.

The resistances are assumed to occur completely in the stagnant films on either side of
the interface. These resistances are linearly additive to give a total resistance R as R =
Ry, + R; + R,. This equation is true for steady state situations. An assumption, that in
the absence of rigid interfacial films causes R; to be negligible compared to R, and R,,
simplifies the development of this model for metal extraction. This latter assumption is
basically a very ideal and more often than not an unrealistic assumption. The interface,
as has been mentioned several times, is a most critical and important aspect of two phase
separations. Thus, the interface will be discussed, in deta.il, later in this study .

Like his development of the kinetic regime, Danesi also develops two cases for the diffusional
regime assuming two film theory. These two cases are:

Case 1. The interfacial partition between the two phases of uncharged species is fast.
The rate is controlled by the diffusion to end away from the interface of the partitioning
species. In the absence of an interfacial resistance, the partition equilibrium of an arbatrary
specie A between the aqueous and organic phase, occurring at the interface, can be always
considered as an instantaneous process. The partition coefficient is the ratio of measured
concentration of the metal species in the organic phase to that of the measured concentration
in the aqueous phase at interfacial equilibrium. Mathematically this is developed below;

A= Al (3.35)




3.2 SIMPLE MECHANISMS of METAL EXTRACTION 42

with an extraction equilibrium distribution constant Kp4, reached at t = oo;
A~ Aprgy (fast) - (3.36)

The interfacial equilibrium, holds at any time (subscript indicates species in contact with
the interface); thus

Kpp =t =—+pt (3.37)

The symbol [ ], indicates concentrations at the extreme limit of the diffusional film (i.e.,
voluine concentrations in the region in direct contact or very close to the liquid-liquid
interface). Because of the fast nature of the distribution reaction, local equilibrium always
holds at the interface.

The diffusional regime is developed by using Fick’s diffusion law at both sides of the interface
under steady state and linear concentration gradients.

A, — [4)

Jw= —DA%I;:-l =—Dy ( 5 (3.38)
Jo=-D ,;%[fi = —p A4 :s;,[A]i) (3.39)

Djz and Dy are the diffusion coefficients of the distributing species in the aqueous and
organic layers, respectively. At steady state the fluxes J,, = Jo = J and by setting

Ay = D, Ap = D; (3.40)
Solving equations 3.38 and 3.39 for the interfacial concentrations to yield

[Al; =[A4] - J Ay ; (3.41)

[A];=J Ao+ [4] T (342)

Inserting equations 3.41 and 3.42 into equation 3.37 and considering the correlation between
flux and rate (i.e. —-‘%% = +-d;°tz% = J where Q is the area of the diffusion film and 1}
and V5 are well stirred reservoir volumes and J is the flux) the following is given by Danesi’s

development;

rate = _%ﬂ = rate (forward) — rate (reverse)
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aKpald] a [4]
KpaAw+ Ao Kpasly+ Ao

The diffusion — controlled, extraction kinetics of A, therefore, can be described as a pseudo
— first ~ order rate process with apparent rate constants
_ . Kpa by = 1

" Kpalw+ Do’ =17 Kpalhu+ A0
The rate equation is indistinguishable from that of an extraction process occurring in kinetic
regime, which is controlled by a slow, interfacial partition reaction:

(3.43)

k1 (3.44)

A El A(org) (SIOW) (345)
L1

Equation 3.43 can be integrated to obtain
Ao -1Al,, _ a(Kpa+1)

1 = t=a(ky+ k1)t 3.46
“TA -, - Koabetag 2tk (3.46)
If Kpj is very high (i.e. the partition of A in favor of the organic phase
ky ~ Da and k_1~0 (347)
b

and the extraction rate is controlled only by the aqueous-phase diffusional resistance. How-
ever, if Kp4 is very small, then k; ~ 0 and
kot~ -?—‘ (3.48)

w

the rate is controlled by the organic phase diffusional resistance.

Case 2. A fast reaction between the metal cation and the undissociated ertracting reagent
occurs at the interface (or in prozimity of the interface). The rate is controlled by the
diffusion to and away from the interface of the species taking part in the reaction :
For example in a monovalent cation extraction, the stoichiometry is repr%eﬁted by the
equation:

Mt +HA(org) - MA(org)+H* (3.49)

with ethbnum extraction constant K.,. The chemical reaction occurring at or near the
interface is considered to always at equilibrium, although bulk phases reach this condition
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only at the end of the extraction process. The condition of interfacial (local) equilibrium is
expressed by

M +HA;(org) - MA;(org)+H}  (fast) (3.50)
with interface equilibrium constant K; which alternatively can be written as the sum of the
two equilibria.

M; +HA;(org) -~ MA;(org)+H;, K, = ——[@‘—— (3.51)
MHiia-)s
HA;(org) - H}f +B[ (org), Kz= [—A%A:[IT—L (3.52)
with
MA| [HY MA| [H*].
— KKy = ;_Lq[ b _ [id_A]i Ll s (3.53)
_HA]eq MH],  [HA] M),

Like case 1 above, the rate of extraction can be obtained by considering the diffusional fluxes
through the diffusion films of M+, H*, MA, and HA, expressed through the Fick’s law; and
introducing the chemical reaction, equation 3.50 as boundary condition to the differential
equations describing diffusion through the aqueous and organic diffusion films. Applying
these laws and equations along with the simplifying assumptions of steady state and linear
concentration gradients the rate of diffusional extraction of the monovalent metal M* can

be derived.
Jut = —Dygs [al\f] = —Dy+ (7], 5’; L) (3.54)
s = —DH+6[§+] -D “@ﬂ%@ . (355)
e x5 - () o5
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These four fluxes are not independent and at steady state are related by the condition:

I+ =g+ = Sz = — Sz (3.58)
Relating again the correlation between flux and rate
d MtV ,
~~T 6 =J = Jy+ » (3.59)

solving equations 3.54—3.57 for the interfacial concentrations [ }, and introducing the
simplification that the diffusion coefficients depend only on the nature of the phase or

by b _ 6o _ b0 ;
Ay = Drr ~ Drs’ Ao = D~ Dy (3.60)
the following is obtained
MF]; = M*] - J Ay (3.61)
[HY),=[H+JA, (3.62)
[MZ]. = [MA] + 720 (3.63)
[‘ITATL = [EX] ~-JAo (3.64)

Equations 3.61 — 3.64 are inserted into equation 3.53 to yield
~ ([MA] + 7 40) (H*] + 7 Au)
“ (M4 - JAy) ([FA] - 7 20)

Thus the above equation can be solved for the flux J and an expression for the extraction
rate as a function of the four concentration variables in the bulk phases, the equilibrium
constant of the extraction reaction, and the two diffusional parameters A,, and Ap. At low
fluxes the J? term from equation 3.65 can be neglected and J isolated.

(3.65)

rate = rate(forward) — rate(reverse) = -4 E\f] =Ja
_ aK.. [M*] [HA|
By ([MA] + Kee [HA]) + A0 (HY] + Koz [M*))
a [MA] (5]
- . : (3.66)

Ay ([—MI + Koz ['H_A'D + Ao ([H] + Koz [MH])
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the terms containing [M*] and [_MI] can be neglected in the denominator of equation 3.66.

In practice this means that |{HA| and [H*] are constant with time and their initial and
equilibrium concentrations are essentially the same. The rate equation then becomes

GKez [M*] ’m"] [MA:] [H*]o

rate = — " " (3.67)
ApKes [HALq +80[HYy  AuKer [HA] + Ao [HH,,
By dividing the numerators and denominators by [H*],, and setting
. Ke[HE]

where K, is the conditional equilibrium constant of equilibrium given by equation 3.49 at
constant [H*] and [m-]

akK?:, [M+] _ a [—M_K}
AK:L +Do ALx +A0

rate = (3.69)

comparing this to equation 3.43 rate = % T(EE#JTE an observation is made
that this is the same equation with Kp4 being replaced with K,. The rate of extraction of
species present at high dilution in a system of fixed composition is the simple distribution

of an uncharged species between two immiscible phases.

Mixed Diffusional-—Kinetic Regime

When the reaction velocity is comparable to the diffusional process through the interfacial
films then a mixed regime is evident and the other two regimes are limiting cases of this
more general one. A full description of the extraction kinetics of a mixed regime requires
that the equations of diffusion and of chemical kinetics be solved simultaneously. When the
reactions occur as homogenous reactions i. e. in the bulk phase or thin films surrounding
the interface then the differential equations describing the diffusional processes and the
rate of formation of different chemical species need to be solved simultaneously. When
the chemical reactions occur at the interface and can be described as heterogeneous, the
rates of the chemical reactions appear in the boundary conditions of the differential diffusion
equations. The chemical kinetics at the interface must be known from separate experiments
carried out in a pure kinetic regime. The interfacial rate laws cannot be known a priori
and have to be derived from kinetic experiments. In some cases this has been avoided by
assuming that the interfacial rate laws are simply related to the reaction stoichiometry or
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by trying to empirically derive information on the interfacial reactions through fitting, to
experimental data obtained in a mixed regime, analytical solutions of differential equations
that take into account both diffusion and chemical reactions (Danesi page 199). Danesi
explains that

“ ..unfortunately both of the above procedures can lead to erroneous inter-
pretations, as in only a few cases can the rate laws be correctly derived from
stoichiometric considerations, and when too many variables (e.g., rate constants,
rate laws, and diffusional parameters) are simultaneously adjusted to fit exper-
imental data, many alternative models can usually satisfy the same equations.
Therefore, it is important that the boundary condition of the diffusion equat. »ns
(i.e., the interfacial rate laws) be derived by separate, suitable experiments. ..”

Danesi derives a very simple (mathematically) case where the solvent extractant is adsorbed
at the interface and has extremely low water solubility.

Case 1. The interfacial partition reaction between the two phases of uncharged species is
slow. The rate is controlled both by the slow partition reaction and by diffusion to and away
from the interface of the partitioning species.

This case is very similar to case 1 in the diffusional regime section of this study, section
3.2.1. Note that the assumptions here are those of steady state diffusion and linear con-
centration gradients through the diffusion films. The slow interfacial chemical reaction and
the corresponding interfacial flux, J; are

k
A7 Axorg) (3.70)
Ji=ky [A], - k_ [Z],- (3.71)
Note that [A]; and [X] _ are at equilibrium only at the end of the extraction process and at
% .
steady state
J=du=Jo=J; (3.72)

where J is the flux on the w— water side film, o— organic side film or i— the interface.

rate = —%‘/ﬂ = rate (forward) — rate (reverse)
_ ak; (A] ak_ [A:] ( 3.7 3)

kiAyp+ k180 +1 kiAy+k_180 +1
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3.2.2

comparing this with equation 3.43 (the rate is controlled by the diffusion to and from the
interface) indicates that the presence of slow interfacial chemical reaction shows up as an
additional term in the denominator of the rate laws. Note also that the pure kinetic and
diffusional regimes are limitations of equation 3.73. If the rate constants are large i.e. fast
reactions then equation 3.73 can be divided and multiplied by k_; and -k—k_l; =Kpa and

(k_1)~! can be neglected for fast rates relative to the other terms in the denominator an
equation identical to equation 3.43 is obtained for which only diffusion controls the partition
rate. At the other limiting end when interfacial film diffusion is fast and the reactions are
slow then 1> (k1Ay + k—1A,) and the rate equation becomes equal to

rate = ak; [A] — ak-1 [A] (3.74)

INTERPRETATION

The interpretation and comparisons between the kinetic equations and the diffusion equa-
tions as presented by Danesi illustrates that :

the rate laws obtained for a system in a kinetic regime controlled by slow two-step
interfacial chemical reactions and for a system in diffusional regime controlled
by slow film diffusion processes coupled to an instantaneous reaction occurring
at the interface have the same functional dependence on the concentrations
variables when low fluxes and low metal concentrations are involved.

Danesi Clarifies:

Diffusional contributions to the extraction rate, a fast extraction reaction occur-
ring with a simple stoichiometry can mimic a two step interfacial chemical re-
action occurring in absence of diffusional contributions. This type of ambiguity,
in the past has led solvent extraction chemists (including Danesi) to sometimes
erroneously derive extraction mechanisms invoking a series of two slow interfa-
cial chemical reactions as rate determining steps in systems for which the two
phases were insufficiently stirred. However, a distinction between the two cases
can occasionally be made if it is possible to conduct kinetic experiments in which
the values of §,, and §p are varied. When the rate is independent of é,, and 6o,
the equation for kinetic regime describes the rate extraction. Nevertheless, since
the film thickness never seem to go to zero, the ambiguity may not be resolved.
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3.3 MORE COMPLEX MECHANISMS

The derivations of the monovalent mechanisms in the previous section was developed by
Danesi (Principles and Practice of solvent extraction chapter 5) and reproduced here to
introduce the simpler characteristics of the complex mechanistic behavior of solvent extrac-
tion. The literature is as varied in mechanisms as it is in the emmense volume of types
of extractants developed over the last forty to fifty years to remove, separate, and purify
metallic species from aqueous bearing process streams. The trend has been to develop
extractants selective to a specific metal under specific conditions over other metals in the
process streams and thus effect a separation. Flow sheets for these processes can be quite
extensive and elaborate. In this section the development of the more complex mu’tivalent
extraction kinetic mechanisms and rate will be presented along with discussions of the dif-
fusional models to explain metal extraction. The three valence metal will be emphasized .
here since these are the more stable configuration for a great number of the Lanthanide
and Actinide series. An analytical model for the extraction rate of the three valence and a
general m valence metal is developed when the mathematics and algebra are amenable.

3.3.1 Liquid Ion Exchange

Acidic, extractants, or cationic liquid ion exchangers, extract metals by a cation—-exchange
mechanism, in which hydrogens of the extractant are exchanged for metal ions. Examples
of these types of extractants are phosphoric acids, phosphonic acids, carboxylic acids, and
sulphonic acids. The general chemical mechanism is

M™ 4 mHAA - MAL+mH*. (3.75)

where m is the valence of the metal being extracted and also the stoichimetric variable.
The most useful acidic type metal extractant is organic derivatives of phosphorus acids.
This group includes esters of orthophosphoric, phosphonic and phosphinic acids. Of these,
alkylphosphoric acids have proved to be the most versatile, especially di(2 — ethylhexyl)phosphoric
acid (D2EHPA or DEHPA) (solvent extraction page 98 Ritcey and Ashbrook). DEHPA has
been one of the most versatile extractants in metal extraction. DEHPA has good chemical
stability because of its size and moderate branching, generally good kinetics of extraction,
good loading and stripping characteristics, low solubility in the aqueous phase, and avail-
ability in commercial quantities (Ritcey and Ashbrook page 98 and Roddy and Coleman
page 64) though recently a number of companies manufacturing this extractant have ceased
to carry it in the U. S. This is primarily due to its replacement with the bidentate and
polydentate phosphonate compounds that have better selectivity.

Equation 3.75 is a simple form of metal extraction by D2EHPA. Like many of the acidic
extractants DEHPA forms dimers as shown in figure————— which complicates the
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extraction mechanism. At low metal loading in the organic phase extraction is considered
to occur as indicated in equation 3.76.

M™+m(HA); -~ M(A - HA);p+mH* (3.76)

where HA represents DEHPA, n is the valence of the metal, M. At higher metal loading
extraction occurs as in equation 3.75. This is a typically accepted mechanism presented in
the literature for most transition metals, lanthanides and actinides proposed by Peppard and
workers. However, as the valence charge of metals increase the extractability of the metal
also increases. Because of this the above equation may not hold for higher valence elements
such as thorium(IV) and cerium(IV) etc. since DEHPA extracts these to a greater extent.
Kolafik (in 5 th ISCEC 1968 p 59) gives an overall equilibrium formula for a monoacidic
organophosphorus extractant

M™ 4+

m;‘”(‘HX)y - MA,, 7HA + mH* (3.77)
where M™* is the ion of the extracted metal and HA is the monomeric molecule of the
extractant species. As pointed out in the previous section, this overall extraction equilibria
contains several individual equilibria mechanisms i. e. dissociation, self-association, and
partition of the extractant species, the formation and partition of simple complexes MA,,
and the addition of the HA molecules to MA,, with the formation of the adduct complex
MA,. - zHA. '

Using the above more general equation for the overall cationic exchange mechanism we
will make use of an equilibrium concept at the interface to obtain a value for . The acidic
extractant DEHPA is dimeric in the organic phase y in equation 3.77 is equal to 2. Equation

3.77 will become
M™ 4 "‘;' 2 (HA), El MA,, - 7HA + mH* (3.78)

The overall equilibrium coefficient for extraction for the above reaction is given by

B {m ™

= ey
[Mm+] [(mz] :

The distribution coefficient is defined to be the ratio of the total metal concentration or
activity (regardless of form or complex) in the organic phase to that in the aqueous phase.

MA,, zHA ke [(H—A[I:Iﬁm__

Koz (3.79)

(3.80)
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3.3.2

Taking the logarithm of equation 3.80
log (D [H*] ’") = log Koz + {m; z } log [(EI)Z] (3.81)

A log-log plot of D [H*]™ versus (HA); gives a straight line with an intercept of log K.
and a slope of =, Since for a specific metal the valence m will be known and from the
slope = can be obtained. In subsequent sections the usefulness of equilibrium data for the
reactions known to occur will be used. The z value calculated is the number of undissociated
monomeric molecules of the extractant that surrounds or complexes with the metal ion. K¢z
is also equal to the ratio of the forward and reverse reactions or Elilf

Kinetic Regime
As mentioned in the kinetic regime portion of section 3.2.1 various controlling mechanisms
can be developed.

Case 1: The controlling step in the extraction between the metal cation and an organic
acidic reagent (extractant) which is rapidly solubilized in the aqueous phase can be mech-
anistically described by the following equilibria:

Distribution or Partition of the organic extractant between the two phases
K, [HA] :
[HAlrg) -~ [HA]  fast  Kp= —[—H‘Tg‘]—gl (3.82)

where K p is the distribution equalibrium constant for HA between the phases. Generally for
acidic extractants alkylphosphoric acid or carboxylic acid is present as monomer in aqueous
solutions but mainly as dimer in nonpolar organic solvents (SEKINE pp187). Thus y is
generally 2.

Formation of Complexes

B [MAm-D :
M7+ [HA] k-1 [MA +] + ] slow (3.83)

Ky = IMA(:—1)+]A[H+]
[MA(m—l)—l-] +[HA] ksz [MAgm_z)'*'] +[HY]

a2
MA{(m—1)+ [HA]

(3.84)
Ky=
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[MAT™ "] +HA) 2 [MA{™] + (Y]

MA:(;m-a)+ [H+] (385)
K3 = ‘o]

+
[MAJ;_J + [HA] E’; MAn]+[HY]  Kn= —[[—-:g%";]]% (3.86)
For which the overall formation constant is
m FRY !
Kf = K\K3K3+ Ko1K = g K; = %ﬁ%}l%‘&%ﬁ (387)

The self association of the extractant or polymerization of some weak acid extractants such
as HDEHPA (which forms a dimer in the organic phase) is accomplished by forming inter-
molecular hydrogen bonds in the organic phase where in the aqueous phase form hydrogen
bonds with water and are present primarily as the monomer (SEKIN solvent extraction

chemistry p 122).
[HyAy] (org)

Kpoty = v
(HA]forg)

This polymerization phenomena can also occur between other types of extractants and cause
a synergistic affect of extraction.

fast (3.88)

[yHA] [HyAy]

(org) ~ (org)

The distribution of the metal extraction species

{MAm]or
{MAm] - [MAm]org fast KMAm = ""[—M—A;J'E' (389)

and for the self adduct formation to satisfy the coordination saturation demand by adding
one or several molecules of the undissociated acid HA. The complex formed is -

MAnp)org +7 [HAl g - [MAn -z (HA)],,, fast
K _ MAm-z(HA)],,
add (org) = MA~, ]‘,,‘[‘T"L,s HALS,

At this point assumptions are necessary to develop the chemical kinetic rate equations.

(3.90)

ASSUMPTION 1: The only metal species that is extracted into the organic phase is the fully
complexed MA,, and that the intermediate species in equations 3.83 through 3.86 are

not extracted.
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ASSUMPTION 2: At this point only one slow step will be assumed in the aqueous phase, that of
equation 3.83. All other reactions of the complex formations are rapid.

Therefore equation 3.83 is the controlling step and the reaction mechanism is :

[M™+] + [HA] kf_ll [MAED] 4[] ‘. (3.91)
and the reaction rate expression for this controlling step:

rate = —9-[%4-;—":] =k; [M*™] [HA] -k, [MA("‘-‘)+] [HY] (3.92)

Using equations 3.84 through 3.86 an equilibrium constant can be derived for this series of -
complex reactions '

MAn] [H]™? : |
Koomp, = [M[A(m-l])-[i-] [I]{A]""“ (3.93)

and from this the [MA<"=-1>+] can be solved

-+ m—1
Kcompl [HA]
The rate equation becomes
MA,] ™
te = k; [M+™] [HA] - k- MAn 3.95

rate = ki M) [HA] = ko AT 3%
from equation 3.89 for distribution of the metal extraction species

MA [MAm]org

[ ] - KMA".
and the rate equation

MA. H|™
rate = k; [M*™] [HA] - k_; [MAmJorg (7] (3.96)

KM A Koomp, [HA]™
using the equation for the distribution of the acidic extractant between phases equation
3.82

[HA] =.[E_Al_

org

Kp
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the rate equation becomes

[HA] org
Kp

[MAm]org [H4]™

—7 (3.97)
Kma K compy (E‘%’f&)

-k_1

rate = k; [M*™]

substituting equation 3.90 for the equilibrium of the adduct formation of the extracted
metal complex in the organic phase

- [MAm -z (HA)]org
‘& Kadd(org) [H-A]irg

the rate equation is transformed to

= K nppem
rate = Ro [M*™] [HA]

[MAm]o

org
- k—lK’B—l MAm -z (HA)]org [E+™ (3.98)
K MAm Kcornp1 Kadd(org) ([HA] org) e |

Assuming that the acidic organic polymerizes in a nonpolar organic solvent or diluent then
equation 3.88 is used to account for this phenomenon

1
[HUA!I] (org) ) i

{HA](org) = ( K. poly

and the rate equation once again is modified to reflect this

b
_ _151_ m [H!IAﬂ]org v
rate = Ry M+ ](_——-Kpoly
k—lKB_l [MAm +z (HA)]orE [H+]m (3 99)
K M Am K comp: Kadd(org) ({H,,A,,]o, )g‘?—'l '
v
or k 1
1
rate = ——— [M+m] [HyAv] or, Y
Ko ) ()
K KBTK ey [MAm -2 (HA) g Y™
18D Aoty m-? org (3.100)

z4m-1

- KM A Koompy Kada(org) ([HyAy](ors))
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MAr, - z (HA)], is a measurable or determinable quantity
HyAy) (org) — is known or determinable
[M+m] — is known

The polymerization number y is known by the type of acid or extractant used. For example
HDEHPA is a dimer in nonpolar organic solvents thus y is 2. The adduct number z is
determined by a plot as given on page 53. However, the various equilibrium constants are
not known but can be obtained from literature or suitable experiments and plots. Note
that equation 3.100 is zero at equilibrium i. e.

rate = 0
k; +m %
1 [M ] [HyAy} T,
Kp (Kpoty)? L)
mel ztm-—1 m
_ k-IKD Kpol; {MA""- 'z (HA)]org [H+]
Kyran K K £im-]
comp; £$ add(org) ( [HyA,) (org))

(3.101)

and thus

ky KM A Kcompy Kadd(org) (MAr, - 2 (HA)]org | [HH™
1 _ zim=1 — ) 1 zim~1
Kp (Kpoty)v k-1Kp IKpol; [M+m] ([HUA!I](OI’S)) ’ ([HyAy](org))

(3.102)

which simplifies to
leMAchomm Kadd(org) _ (MAm T (HA)]org [H+]m
e R5a
k-IKDI{poly [M-{-m] ([H!IA!I] (org))

which is equal to the equilibrium coefficient k., compare with equation 3.79 page 52. Note
that the equilibrium coefficient does not equal just the ratio of the forward and reverse
reaction rate constants since the other reactions of the mechanism do have an affect on
the equilibrium. Using the definition of the distribution coefficient for the metal, D=

—K_T—T—"{MAMJ (EA)]" and K, . defined to be Kot K""""QKE‘“@"’ then the distribution between

(3.103)

k1 KBK, ¥
the bulk phases can be derived as
(Bubslio) ™
Vi(org)
D=Kegex i ﬂ;,-, , (3.104)
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Equations 3.101 through 3.104 are equilibrium equations. These equations can only be used
where the process or unit operation is assured to be an equilibrium process.

Case 1-a: Additionally the extractant can dissociate in the aqueous phase and cause an
additional reaction. If for the moment this reaction in the aqueous phase is assumed to
occur completely and rapidly then additional cases need be considered.

[HAl g -~ [HA]  fast Kp= %f—]g—) (3.105)
HA] X [H*]+[A"]  fast 2= @-FHLA‘%‘—_J (3.106)
M™ 4+ A™ '-‘_’2 MAC=+  glow (3.107)
MA=1+ 4 A= B2 pp (-2t (3.108)
MAJ™ D+ 4 A- 2 MAP-I+ (3.109)
MAY_ +A- T MA, | (3.110)

The rate law for equation 3.107 is
r=kp [M™] [A7] - kg [MAC™—D4] (3.111)
and from equations 3.108 through 3.110 a total complex formation constant can be obtained

Am
Keomp, = [MA("‘%'*] [i&"]m_l (3.112)

and the term [MA("“l)"'] solved for and the rate equation becomes

-~ k—2 [MAm]
= ko [M™*] [A7] - 3.113
r=ky [ ] [ ] KOanz [A__]m-l ( ) .
using the equilibrium constant for the dissociation of the acid extractant in the aqueous
phase
.+. —_—
K, = ,[EJ_A__] (30114)

[HA]
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and solving for [A]

[A7] = K[‘;I[Iff ] (3.115)

r = ky [M™¥] K&;E]A] - K,:;:m ( K‘El\;AA;Jn—l (3.116)
’ H

r=ky Mt Kol kos [MA) LV (3.117)

[H+] Kmm (Ka [HA] )m_l

substituting the equilibrium equations as before since none of these change, give the follow-
ing rate law equation

Kak2 {Mm +] [HA]org

rate = 7 [H]
_ k—2K$’—l {MAm "z (HA)]org [H+]m-1 (3 118)
KM Am Koomps K& K agi(org) [HAJ = ’
or assuming polymerization of extractant in the organic phase
1
rate = Kakz (M7 I[_IIiyAy]grg
KpKpy, (]
1 miz—1 m—1
__ RoRETKgy  [MAn-o(EA), HY] 19
. miz—1 .
KMAchomsz;n lKadd(arg) [Hy Ay]orgy

Case 1—b: Parallel Reactions Assuming that the undissociated and dissociated forms
of the extracting reagent react in parallel viz. the reaction velocities of these two mechanisms
occurring in the aqueous phase are comparable and that they occur together then the rate
of reaction with the metal cation M™* is given by the following

rate = {ki [M™][HA]+ ko [M"H'] [A°]}
—{ka [MA<m-1>+] [H*] + k_ [MA™-2H]} (3.120)
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simplifying

rate = [M™] {k, [HA] + k2 [A7]} — [MACD+] (ke [H¥] + k_o} (3.121)
using 3.94 to solve for [MA(m‘1)+] and placing this into equation 3.121 results in
[MAR] [HH™
Kcomm [HA]m_l
NOTE: Kcomp, # Keomp, since these are obtained using different reaction mechanisms.

However, for the term [MA{™~17+| to be equal in the same “pot” so as to say, it is necessary
for the equations to be equivalent. This is shown in the following

rate = [M™] {k) [HA] + k2 [A"]} - {k-1 [H"’] +k_2} (3.122)

- Am] [HH™ _ [MAG
MAGm-D+)] = [MAn = 3.123
_ [ ] Kcomm [HA™! Zoms [A] (3.123)
and that [A~] = K“ Al where by
™ K BT K, [ ]
and therefore
_ MAm] [HH™ ! [MAR [HY™
MA(m-D+] - [MAm 3.125)
[ ] Keompy [HAT™ ' Koomp, K& L [HA]™ (
and finally
Keomp, = Keomp, K71 . (3.126)
K comp, will be used for conciseness, but it should be noted that an equivalency does exist.
Using equation 3.89 [MA.,] = %—Aﬂ-" the paralle] equation is adjusted for this equilibrium
reaction .
rate = [M™]{k [HA]+k2[A7]}
]°’5[ } {k_y [H*] + k_2} (3.127)

" Kntar Koomp, [HA]™
and the dissociation equation [A~] = 51%%&\

rate = [M™t] {k1 [HA] + k2 Ki'éIjiA]




3.3 MORE COMPLEX MECHANISMS 59

LN

MArelog — {k_1 [H] + k_2} (3.128)

and the distribution of the extractant between the two phases [HA] = E{—I?-]D-‘-’-'-‘

[HA] Ko [HA]
= + org org
rate = [M™] {k1 Ry + ky R[4
[MAm]opg (HH™
- ot et (k[ 4 ko) (3.129)
KMAchamp; {—RT;E‘}
simplifying (
ki + kzr{—i{f]-
rate = [M™] (HA],, Ky
K'B—l (k—-l [H+] + k-—2) [MAm]org [H+]m—l
- T (3.130)
KMAmePI [HA org

Case 1-c: Hydrolyzed metal ion Many times the metal ion will be hydrolyzed where
the controlling mechanism is

kt
M(OH)m-1+ k-j MA™=D+ L H,0  slow (3.131)
~1
Danesi (CRC Critical REviews vol 10 iss 1 1980 page 34) gives the reaction rates for a
cation of valence 3 (without proof). The rate equations are converted here to a general
valence cation :
_ kiky MM HAL, kKR [MAml (B

= - € 3.132
Ko B EmanKemp  HAST (3.132)

here Danesi defines kj, as the first hydrolysis constant of the metal cation. He then gives
the parallel reaction rates (without proof) for a cation of valence 3 and again is presented

here in a general form as

: * K
rate = [Mm+] [HA]org (kl *h r}#T)

Kp
_KP (e [HY] + k%) [MAR]o,g [HF)™

KMAmKannp] [HA 2:;1

(3.133)
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These rates for hydrolysis are reproduced here without proof but are proven very similarly
to 3.130; infact, equation 3.130 and 3.133 are the same equation except for the equilibrium

m-1
constants. The [H*] term in the product [MA";I";‘]‘,EZL

Danesi’s paper gives this term raised to the first l;power. It is believed this is possibly a
printing error since in my deriving the hydrolysis equation (not shown) the above equation
was obtained and verified.

is raised to the m — 1 power here.

Since these parallel rate laws are equal in context it is difficult albeit impossible to determine
the reacting species from the rate laws and is referred to as “proton ambiguity” (Danesi
CRC reviews page 35). The rate laws as given by equations in Case 1, Case 1-a, and Case
1-b can be validated by plotting the reverse and forward rates verses the concentrations of
the various species. If the rate laws hold straight lines of integer slopes will be obtained.
In the case of the parallel reactions two straight lines will be obtained with a transition
region (curvature) between the two regions. No controlling steps in the above cases involve
transport across the interface and therefore the rates will be independent of the interfacial
area and the volume of aqueous and organic phases.

Again, these rate laws are valid when the extracting reagent exhibits some solubility in
the aqueous phase and its adsorption at the interface is negligible (Danesi CRC reviews).
The above rate laws should be emphasized were derived assuming first order kinetics with
respect to all the species. There has been significant evidence that in the literature that
this is not a considerably inappropriate assumption. However, there is also considerable
controversy as to the contrary. The determination of kinetic data and order is empirical
and there seems to be a lack of kinetic information and studies in the solvent extraction
community of higher order mechanisms than first order. Hanson, Hughes and Marsland
(ISEC 74) present a discussion that no true kinetic regime exists.

Case 2: Controlling Steps Occur at the Interface The cases described and derived
in this section are done so assuming the rate determining steps are across the interface.
Slow interfacial reactions can be found when the extractant exhibits low solubility in the
aqueous phase and has substantial surfactant qualities. The driving force for the transfer of
the interfacial complex into the organic phase is the stronger surface activity of the reagent
which replaces the less surface active metal complex at the interface. Though not included
at this time this strong driving force phenomenon may induce the marangoni effect which
inturn may improve the mass transfer process.

The following mechanistic reactions can be visualized to occur:

1. Interfacial partition of the extractant is the slow step
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(a) An additional slow step is in the aqueous phase of the metal reacting with the
undissociated extractant

(b) An additional slow step is in the aqueous phase of the metal reacting with the
dissociated extractant

(c) All of the above steps are slow and in parallel

2. The controlling reaction occurs at the interface forming the metal extractant complex
with the adsorbed extractant

(a) undissociated extractant

i. slow addition of additional ligand molecule(s) at the interface

ii. slow adsorption — desorption process of the interfacial complex and extrac-
tant

iii. all of the above are slow and in parallel

(b) dissociated extractant

i. slow addition of additional ligand molecule(s) at the interface

ii. slow adsorption — desorption process of the interfacial complex and extrac-
tant

iii. all of the above are slow and in parallel
(c) All of the Mechanisms are slow
3. The slow controlling reactions occur at the interface and in the aqueous phase.

The above need to be taken into account when an extraction rate _is to be determined
in the kinetic regime only. This means that the diffusional transport is so rapid that it is
negligible. However these rate equations are necessary for the reaction term in the transport
equation. .

Case 2-1: Interfacial Partition of the extractant The following is the mechanism
associated with this case

Interfacial partition of the organic extractant between the organic and aqueous
phases
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-

(HAL, 2 [HA] slow (3.134)

org k: 1
Formation of Complexes

[M™+] + [HA] kfll [MA(m—l)-F] + [HY)

- 3.135)
MA(m-1)+][g+ (
Ky =: T‘W']'L]"‘lmm HA
[MAEm-2+] +[HA] * ? [MASm] 4 B
k_2
MAS2+ (4] (3.136)
K2 = Rae=n7]mA]
- k -
[MAL™*] 4+ [HA] = [MAJ™] + (Y]
MAS™ 9] (4] (3.137)
Ks = o ma]
MA,,] [H] |
MA} |+ [HA MAnm] + [H* K = MAm] HT] 3.138
[MAZ ]+ (HA] 7 (MAR] + (] S R ETY (3138)
Distribution or partition of the metal/extractant complex between the aqueous organic
phases
k3 - [MAm]org
[MAm] k-‘—z [MAm]org KMAm = _[—M-H;]— (3.139)

The accumulation of [HA] in the aqueous phase is given by a mass balance

d[I-IA] Qorg ; » ’ a, *
T = V_g-kl {HA]org Vaqk I[HA]

—ky [M™] [HA] + k_ [MAT—D4] [HY)
~kp [MAC™D%] [HA] + kg [MA™24] [H*]
ks [MAL™ ] [HA] + k- 3 [MATIY] (Y]
—~ka [MA{™ ] [HA] + k4 [MA 9] (H7]
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s [MAZE S| [HA] + kim [MAF | [HY]

—Fm [MAY, ;| [HA] + k_m [M Am) [H] (3.140)
d[l\;tmﬂ = kg [MA™D+] [H] — by [MA™] [HA) | (3.141)
d [ M(n;—l)+|
7 = k. [M™][HA] - k_; [MAD+] [BY]
—ks [MA®™=D*] [HA] + ks [MAS™ D] [HY] (3.142)

(m—2)
iLM_A:izT:]. = ky [MAM—IH] [HA] - [MA(m—2)+] [H]
] (%]

—k3 [MA(m‘2)+] [HA] + k_3 [MAgm—3)+ (3.143)
d [MAdF _ -
_[__dt__l = ks [MAS™ %] [HA] - k3 [MA{™ S| [EY]
—ky [MAS"‘”*] [HA] + k_4 [MA&""“)*] [HY] (3.144)
d lMA,",‘l_ll - N N
dt = kn1 [MAm—2] (HA] - k1—m [ —1] [H ]
—km [MA;:,_ ] [HA] + k—m [MAr] [HY] (3.145)
Equations 3.142 through 3.145 can be reduced in form to
d [MA™ ] . .
- = ki [MATTHY) [HA] - ko [MATT] (1Y)
ki1 [MA™ %] [HA]
+k_ (i1 [MA’"“'“)] [H] (3.146)
for i = 1 to m — 1. The rate expression for the metal complex concentration in the aqueous

phase is

- [l\fztAM] = ko [MAY ;| [HA] — ko [MAR) [HF] — B3 [MAR] + k2, [MA](3.147)
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As can be seen from the above, the extraction of a metal can become quite involved and
complex. Each individual reaction is not particularly complex but to derive an overall rate
expression the model can become very elaborate and may in retrospect become so unwieldy
that its purpose is severely negated. Danesi (Critical Reviews in Analytical Chemistry 1980
page 35) and most other published works on modeling the kinetics of extraction chemistry
use the psuedo kinetic constants as given by kf, k,, k3, k2, previously to describe the mass
transfer across the interface in the kinetic regime. The above scenario, for the extraction of
metals, assumes the second reaction is irreversible and a psuedo steady state or stationary
state exists for the intermediate [HA]. This may occur if HA is sufficiently reactive or if the
rate ﬂgti‘l is very small which says that the concentration of HA in the aqueous phase is

constant or does not accumulate to any appreciable level compared to [ﬂ] and [MA2+]
ie. [HA] < [T-I__A:] + [MAZ*]. Therefore from a material balance ‘

2+ = [Bx
[HK] + [MA ] +[HA] = [HA]O (3.148)
where [ﬁ]o is the concentration of [ﬁX] initially. If [HA] < [_H-K] + [MA?2+] is valid then
[FA] + [MA?+] = [HA] which yields L4 — ~ 42 which means that 4BAl = o, This
is a very strict condition. When this is applied to the following mechanism

[ﬁ_A—] k’-c_l i [HA] slow (3.149)
[HA] + [M+?] kf; [MA>] + [HY] slow (3.150)

diMA2+ :
then it is possible to solve for ‘LdT'l as functions of concentrations which are known such
as bulk concentrations. Using the full material balance and not setting the derivatives or
rates of the products and reactants equal to each other then a solution can be obtained and
Danesi’s example for a metal of valence 3 and an irreversalbe reaction in the aqueous phase
is a special case of this reaction scheme. The following is the derivation of the determination
of the rate of formation of [MA?*] assuming the mechanism of equations 3.149 and 3.150.

d[FA] _kqama) kA [EE] (3.151)

dt Va,q Vorg

d [HA] — k_]_A [H_A] + klA -H._A-] + k_2 [MA2+] [H+] — k2 [HA] [M+3] (3.152)

dt 7 Vers
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The concentration of [EK] is initially {ﬁ]o and will be equal to the sum of the concen-
tration of the unreacted reactants and products formed {—HK] + [MAZ*] + [HA] = [-H_A]o
or [MA%] = ['I:I'K]o — [HA] - [ﬁK] this assumes the initial concentration of the inter-
mediates and products are zero. [MAZ*], = [HA], = 0. Assuming that the stationary
state hypothesis is valid for the time derivative of [HA] and for the mass balance i.e.
[HA] <« [ﬁI] + [MA2*]. This states that the rate of accumulation of [HA] with time
is small or insignificant compared with the sum of the rates of accumulation with respect to

time for the other reactants and products. The magnitude of the [HA] is also insignificant
when compared with the sum of the concentrations of the other reactants and products.

Thus [MA?+] = [_HI]O - [_HX] assuming [HA] 2 0 or very small.

IR

dHA] o o o FA[FE]  kad(A
dt Vorg Vaq

inserting the material balance solved for [MA2*] into equation 3.153 and rearrangement to
solve for [HA]

+ kg [MA®] [H*] ~ k; [HA] [M+3] (3.153)

Vig (k-2 'HI]O [H*] Virg — k—2 ['H_A] [H] Vorg + k14 [H_A‘])

[HA] = Vorg k_1A+kp [M+3] Vo (3159
From the mechanism the rate equation for [MAZ*] is

VAT b [ (] — oo [MAZ+] (5] (3.155)
and again using the material balance for [MA?+]

gL = b o A b [, - [ ) @150

d [Ng:“ = ky [M*®] (HA] - &, [1*] ([EE] - [EA)) - (3157)

inserting equation 3.154 into equation 3.157

Ak_ - Ak_ [
d[MAZ+]  VagVorg (-V“‘;"fjkz [M+3] HA] + k2 [HY] HA] Ve k-2 (] -HA]U) (3.158)

dt Vaqurg (*ATLC::-I' + k2 [M+3])




3.3 MORE COMPLEX MECHANISMS 66

combining terms and setting

Kl—ng K= o Kz—kQ[M ]

the general equation is found for the 1:1 complex rate for a metal of valence 3

-

d [MA""*‘] B —HI] Ki1Ky + K_1k_3[HY] ([ﬁ_ﬁ] - —HX]O)

at K+ K;
If the reverse reaction of equatirn 3.150 is extremely small or k_; ¢ 0 (note that this makes
stripping impossible) makin« the term
+1 ([Fa] — [B% - [FA
Kk [H¥] ([HA] - [ER] ) < [HA] K1K2
then equation 3.159 reduces to
d [MA?+] Eq Ki1K,
d¢ =~ Ki+K
which is the same as given by Danesi and other authors on kinetic works for equation
3.150 being irreversible (see also Esperson Chemical Kinetics and Reaction Mechanisms
and Connors Chemical Kinetics). The above derivation assumes that quasi-steady-state ap-
prozimation, also referred to as the stationary state hypothesis or Bodenstein approrimation
is valid.
The restriction that the intermediate rates are negligible or set to zero is more restrictive
than necessary since from the rate equation for [HA]

(3.159)

(3.160)

AL _ ey [FER] - (or + Ko) (LA + o [MAZ*] [T (316)

using the material balance for [MAZ*] and solving for [HA] one obtains

d[HA

Al (K — k) [HA| + -, [HA] - 4GA
K_1+ Kz —k_o[HY

and the criteria that ﬂ%‘ﬂ < (K3 ~k-2) [_H—A—] +koo [ﬁ]o is sufficient and necessary for

the quasi steady state to be valid. Setting the derivative to zero is sufficient but may be
overly restrictive and cause mathematical inconsistencies. Also if (ko + k—1) > (k1 + k-2)

then [HA] will be small as compared to ([—H_K] + [MA2+]); however, without a sufficient

(3.162)
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supply of [HA] then [MAZ*] will be small also. Thus k; needs to be sufficiently greater
than k_; for the reaction to proceed.

It should be noted that in the above case the controlling reaction is assumed to be the 1: 1
complex formation and thus the rate of extraction is assumed to be approximated by the rate
of formation of the MA2+ or MA(™—1+ gpecies. The complete and general extraction rate
can be quite complex if not impossible to obtain analytically. This was attempted using
the method given by Froment and Bischoff (page 72-73) with a very extensive equation
being obtained. This equation could not be algebraically reduced to a form that would give
the limiting cases of an irreversable reaction in the second step or the summations of the
rate constants in the denominator. Both manual algebraic manipulations and the use of
Mathematica computer algebraic system was used to obtain an equation in the measurable
quantities. The intermediate concentration [HA] is a polynomial to the m power as is [H*].

Thus the ability to solve for [HA| explicitely in terms of [M A3] was not possible which
thwarted the attempt to get a meaningful general analytical equation even for a metal of
valence of three.

Interface Reactions Interfacial reactions occur when there is no distribution or partial
distribution of the extractant between the phases and the extractant organizes itself along
the interface. This is especially true for a cationic extractant that has a polar and a non-
polar head and tail. The polar or more soluble portion of the extractant hydrogen bonds
with the water in the aqueous phase at the interface. The interface becomes a structured
molecular layer of extractant molecules. Horwitz and others have suggested that the water
at the interface becomes structured also in an “ice-like” character. This phenomenon will
be discussed in the interfacial section of this study.

Based upon this qualitative argument a surface is formed of adsorbed or “condensed” ex-
tractant at the interface between two highly immiscible phases. The extractant itself both
forms and reacts with the metal ion sufficiently to form a neutral complex which then des-
orbs and diffuses into the bulk of the organic phase and more extractant is adsorbed at the
vacated site. This interface or surface is unusual in respect to ordinary view of a surface in
catalysis or adsorbtion since in a solid, a well defined surface boundary exists to which a
species adsorbs. However, the theories purported in catalyis and adsorption processes can
be extended here liquid/liquid extraction.

Adsorption and Chemisorption Two types of adsorption have been recognized in
the literature for many years. Physical adsorption or physiosorption is a physical process
generally attributed to van der Wals forces between molecules and is always exothermic.
Chemisorption on the other hand is a chermical process that entails a rearrangement of




3.3 MORE COMPLEX MECHANISMS 68

electrons and thus has an activation energy and is typically exothermic often much more
exothermic than the physical adsorption but not always. Thermodynamically adsorption
is a more ordered state and the entropy change and enthalpy is negative (Bond Heteroge-
neous Catalysis p 13, Satterfield page 27). Chemisorption leads at most to a monolayer
coverage of the available sites. Chemisorption and physiosorption can occur together but
any adsorbed layers beyond the first must be presumed to be physically adsorbed.

In the solvent extraction of metals the reaction of the metal with the extractant at the inter-
face could cause an increase in entropy requiring adjustments which could mean interactions
between adsorbates at different sites and/or desorption of the complex. Thus many schemes
as to how metals are extracted when the extraction reaction takes place at the interface .
can be proposed. The derivations of an overall rate of extraction can become tedious and
mathematically and algebraically laborious albeit impossible to obtain especially for more
than one reaction step occurring. Therefore in general when more than one step is inherent
in the overall reaction scheme then the steps are combined or lumped if possible.

The rates of adsorption are generally very rapid. The derivation of the overall rate equation
for this case requires that a relationship between the amount of substance adsorbed on the
surface and its bulk concentrations or activity at equilibrium be known. The relationship
that does this is the adsorption isotherm. This is done for several reasons: (1) to provide a
framework for describing the extent and strength of adsorption of molecules on sufraces in
quantiative terms; (2) provide the bases of a useful method for representing the kinetics of
surface catalysed reactions; and (3) to open the way to a powerful technique for estimating
the surface area (Bond pagel5). The Langmuir isotherm is generally used to model the
adsorption of the extractant at the interface. This model assumes a three step process: 1)
adsorption chemisorption of the active extractant on the interface or surface, 2) reaction
at the interface, and 3) desorption of the prodeucts from the interface or surface. This
model of adsorption on a surface was originally derived from kinetic gas theory of a gas
adsorbing on a solid catalyst and is present in catalyst theory. It is valid for liquid/solid
systems (Butt Reaction Kinetics and Reactor Design page 139) and has been extended in
the solvent extraction literature for liquid/liquid interactions. A theoretical proof of the
validity of this extension to the liquid/liquid state has not been found in the literature and
will not be established here the extension is assumed without proof..

The Langmuir isotherm adsorption theory assumes that every site on the surface has the
same energy of interaction and is not effected by the presence or absence of sorbate molecules
on adjoining sites. This is a very restrictive assumption for real surfaces of solids but may
not be for the formation of liquid/liquid surfaces or interfaces if interactions between the
adsorbed species is not present. Many other adsorption isotherm models have been proposed
and are a result of modifying the Langmuir isotherm to reflect differently the distribution
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of the energy of adsorption in the heat of chemisorption term present in the constants of
the Langmuir isotherm theory.

One such nonideal isotherm is the Freundlich isotherm which distributes the heat of chemisorp-
tion in an exponential way. This type of isotherm was originally empirical and is a power
model

1
©4 =cP; (3.163)

where n > 1 and the parameters n and ¢ usually both decrease with increasing temperature
and O, is the fraction of sites on the surface covered by species A, Py is the pressure of
species A (note for lignids this is the activity of A or the concentration of A assuming
ideality). The Freundlich isotherm distributes the energy of adsorption logarithmically or
exponentially decreasing with coverage. This particular isotherm has been derived from
a statistical and thermodynamic derivation which gives an interpretation of n as a con-
statnt representing the mutual interfaction of adsorbed species (Saterfield, Heterogeneous
Catalysis Practice p 38).

Another nonideal isotherm is the Timken (or Slygin-Frumkin) isotherm postulates that
the heat of chemisorption decreases linearly with surface coverage (Butt p 146, Saterfield,
Heterogeneous Catalysis Practice p 38). The Langmuir isotherm is used more extensively in
solvent extraction because of its simplicity compared to the other isotherms, the adsorption
is of the extractant to the surface is assumed ideal, and there is less empirical collection of
data necessary to obtain the parameters.

The derivation of an overall rate equation for a heterogeneous reaction at a surface or
interface usually uses the Langmuir-Hinshelwood, or the Rideal-Ely versions of the Lang-
muir mechanism. Both of these techniques assume three consecutive reaction steps like the
Langmuir mechanism: adsorption of reactants, surface reaction, and desorption of prod-
ucts. Each step may be complicated by such effects as dissociation of adsorbed compounds
—adsorption of only one reactant or all reactants — and an extremely large number of
combinations (Bischoff and Froment I&EC fundamentals Aug 1962 p 195-200) as well as
the laborious and tedious and more often than not impossible task of expressing the overall
rate equation as a product of a linear driving force divided by a resistance for multiple
controlling steps . Thus the use of the techniques intoduced by Hougen and Watson (Ind.
and Eng. Chem. May 1943 p 529-541) and Yang and Hougen(Chem Eng Progress March
1950) and the assumption of a single controlling step to simplify the mathematics has been
incorporated in the heterogeneous kinetic literature. Though these methods help to derive
a mathematical rate expression the one controlling step may not or can not be justified
(Bischoff and Froment I&EC Fundmtls. vol 1 no 3 1962).
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The Langmuir Henshelwood mechanism assumes the reaction at the interface is between
two adorbed molecules on the surface. The Rideal-Ely mechanism assumes the reaction is
between an adsorbed species and a “free” species close to the surface or intrface. It should
be noted that both of these mechanisms goes on in metal extraction. That is the active
extractant adsorbs at the interface, the metal cation reacts with a molecule of the extractant
for the 1:1 complex, other adsorbed extractant molecules react with the charged complex
until it is neutralized, and the neutral complex is desorbed from the surface into the bulk
of the organic phase. This will be discussed more fully in a moment.

Many real reactions as immediately discussed above can involve the formation and disap-
pearance of several intermediates on the surface and a mechanistically rigorous formulation
can become so complex as to lose most of its utility (Satterfield pa 54). Boudart (Boudart
AICHEJ 1972) adresses this problem and suggests that one step is the rate determining one
and that one intermediate is present in significant amounts compared to the others. How-
ever, as a reaction proceeds one step may gain controll over another previously controlling
step. In the transition between these “controlling regime steps” more than one control-
ling step can occur and a combination of the rates of surface reaction and desorption will
invalidate the assumption of more than one controlling step (Bischoff and Froment I&EC

Fundamentals 1962).

Danesi (CRC Critical reviews page 35) give the following mechanism for adsorption and
reaction at the interface for a 3 valence metal:

1 [M*] + [HA, ’:-‘_lx [MaZ] 4 [HY] (3.164)
12 [MAZ] +[HA]L, k'—i [Maf] + [HY] (3.165)
3 [MA}]  +[HAL, kf_ss MAs],, + [HY] (3.166)
4 [MAs],, +3 [HA] k’-: [Fis] + 3[HAL, " (3.167)

The rate equations are

ro= ko [M*][HAl, —k_1a [MA%] [HY] (3.168)
ro = kea [MA“]M[HA]M,— k20 [MA‘{]M [H] (3.169)
r3 = ksa [MA‘{]M[HA]M — k_3a [MA3],,; [H*] (3.170)
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re = kaa[MAg),,[HA]S, — k_sa[MA;] [EK]S (3.171)

Where rl, r2, r3 and r4 refer to reaction 1, reaction 2 etc. Note that reaction r4 is not
an elementary or fundamental reaction step and is actually two steps: the adsorption of
extractant at the interface; and, the desorption of the metal complex. Thus, r4 is in reality

two steps
k P
rda  [MAg],, k-_: [MZs] . (3.172)
— 1 kq -
rdb 3[HA] = 3[HA], (3.173)

with the rate equations being

T4a = kda. [MA3]ad - k_da [MA3] (3.174)
Ty = kea [HA]Zd —k_qa [—H*A-]s (3.175)

However, in certain instances the combination of reactions rs4s and ry can be useful in
the derivation of overall rate expressions where the adsorption and desorption from the
interface are slow as well as the reaction at the interface. Note that all reaction steps are
second order except for r4a and r4b which are first and third order respectively as written
in these elementary reaction steps. One or any number of the above steps could be rate
controlling. Danesi uses the Langmuir Isotherm in his derivation of an overall reaction rate
assuming different controlling steps. He derives four scenarios. There are fourteen possible
rate schemes that could controll the overall rate of extraction in the mechanism originally
proposed by Danesi. In the case of using the adsorption and desorption steps there would be
thirty one possible schemes of controlling rate steps. In the four that Danesi derives he uses
at most two controlling steps. Boudart (Boudart AICHEJ 1972 and Kinetics of Chemical
Processes 1991, Bischoff and Froment I&EC FUnd 1962) discuss the use of at most two
controlling steps. Froment ilustrates that for a two step controlled adsorption — reaction —
desorption mechanism the equation is rather complicated and cannot be written as a linear
equation in the bulk specie concentrations. Additionally, for simple first order systems i.e.
A - B a general equation can be derived assuming no controlling step (see Froment and
Bischoff Chemical Reactor Design 1990 and Aris Elementary Chemical Reactor Analysis
1989 pp 121). The derivation by Aris uses matrix linear algebra techniques and is a concise
method. For the second order mechanisms presented above no easy method of solution for
an overall reaction rate is available.
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Danesi uses the Langmuir isotherm for a single specie being adsorbed at the surface i.e. the
extractant which allows a relationship between the surface concentration of the adsorbed
extractant and the concentration of the extractant in the bulk of the organic phase. The
form of the Isotherm that he uses is

27 (3.176)
ad:-—-————-— -
I

where ag and 7 are Langmuir adsorption constants. Though, Danesi does not explain what
these constants arc it may be valuable to understand the origin of these constants and the
Langmuir isotherm:

[HA]

The Langmuir Law assumes that the rate of adsorption and desorption of a specie at a
surface are the same or the equilibrium state exists. Therefore, for species A interacting
with a surface

(4] = (Al

(&)= (&)
dt Jags  \ dt /Jges

If 64 is defined to be the fraction of occupied “sites” on which adsorption is possible (i.e.
I[ﬁ]]-:: — where [4] .. is the maximum amount of A that can be adsorbed) then the rate
of adsorption is proportional to the rate of molecular collisions with the unoccupied sites
(satterfield p 36).

(i‘%i)d = Koo (1 — 64) [4]

The rate of desorption is proportional to the number of molecules adsorbed

dng _
(—dt_)des = kgesfaA

and thus
kogs (1 — 64) [A] = kgesba
solving for 84

kaas [A]

g = ————
A kges + kads {A]
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rearranging

Jads [A]

A= %
1+ e [A]

-’,%:-: is the adsorption equilibrium constant called K or % to be consistne with Danesi (also

derived in Bischoff and Froment page 68) and using the definition of 64

A
GA = A]ads — %l
[l 1+ 1’;41
and thus

Al 2 a2

max ¢

A = =
Aloas 1+4 . 4

(3.177)

where ag = [A] ., following Danesi and < is the inverse of the equilibrium constant of
adsorption and can be expressed in and Arrehnieus form

K= % = AexpPr (3.178)
where A is the heat of adsorption. A large value of K implies strong adsorption or bonding
and the greater is the surface coverage at a fixed temperature.

Danesi uses equation 3.177 in his derivation of the overall rate equations. This is an oversim-
plification of the problem. From reaction r4 or (r4a and r4b) two species actually compete
for the “sites” or adsorption locations on the surface or interface. In order to take this into
account additional terms in the denominator are needed. If the fraction of surface area
or sites occupied by A is again taken to be 84 and 6p is the fraction of sites occupied by
species B and the adsorption reaction mechanism can be considered as

for species A

A+s = as

k_1

where s is the acitve sites and the equilibrium equation is
k1Ca(1—04—0p) =k_104
and

B+s i Bs

k_2
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k2Cp (1 -804 —0g) = k_20p

which give two equations in two unknowns and solving for 84 and 8p

KaCa
64 = .
4 1+ K4Cs+ KpCp (3.179)
KgCp
6 = .
B =17 KACa+K5Cs (3.180)

where K4 and Kp are the equilibrium constants '—]T and —25 respectively. Using equaticus
3.179 and 3.180 an overall reaction rate can be determined. Since the adsorptior B is
reversible it can be thought of as an inhibitor. As the concentration of B becomes large the
concentration of A on the surface becomes smaller and the concentration of B on the surface
larger and since A adsorbed on the surface is the reactive species the reaction is inhibited.
This can be extended to an arbitraty number of inhibitors or competing adsorbates

_ KaCa
b= TR (3.181)
0. = —5iGi _
T 1+ Y KC

where K;C; account for the n species competing for adsorption on the active sites. These
extended Langmuir isotherms are proposed to give more exacting though certainly more
complex equations than the ones using the Langmuir isotherm as in equation 3.177. The
derivations for the overall rate equations using the extended Langmuir isotherm equations
3.179 and 3.180 will be presented for only the four schemes as presented by Danesi. Danesi’s
final equations will be presented for comparison but with limited derivations.

It should be noted that Yoshizuka et. al (Ind Eng Chem res 1992 p 1372-1378) conducted
interfacial tension experiments with D2EHPA extracting Holmium and Yttrium, valence
3 Lanthanide metals, and showed that the metal complexes are scarcely adsorbed while
the D2EHPA is strongly adsorbed. This suggests that Danesi’s use of the single specie
Langmuir isotherm to derive the overall extraction rates may be valid when the acidic
extractant Bis(2-ethylhexyl) phosphoric Acid in aromatic diluents is used. Yoshizuka et.
al use the single specie adsorption isotherm and the second ligand reaction to the neutral
complex as the controlling steps i.e.

MAY - 2HA ()+H2A; - MA; - SHA+HT

The mechanism in these authors work show a dimeric acid extractant adorbing at the
interface and not the monomeric formulation used in this study and Danesi’s work.
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Case 2-2-a: reaction rl slow or controlling with remainder in equalibrium

Danesi shows using the Langmuir Isotherm with one species adsorbing on the surface
HA

HA] ;= and derives the rate equations for ideal adsorption as
1+

Vo = akioy [M*] [HA] (3.182)
MA;| [HH)
Ty = —=1n ) | - (3.183)

Ke,2Ke,3Ke4 [—HI] 2

37 €= cpe . .
where Vg, and V'p are rate velocities in the forward and reverse directions and a; = -‘%‘72

. For ideal adsorption the criteria of < 1 is meet and the Langmuir single species

adsoption equation becomes [HA] ,; = a2 =m [_HK] which is a form of a Henry’s law
that is the adsorbed concentration is proportional to the concentration in the bulk. When
1K then [HA],,; = oo or the adsorbed species is constant this is the surface saturation
region. Generally with strong surfactants the surface is saturated with the extracting species

even when the bulk concentration is very low 107% or 1073 M (Danesi page 35). For the
saturated interface adsorption region Danesi gives the forward and reverse reactions as

Vo = aka [M+3] (3.184)

ivaw 3
Vo _ k_iacy MA3] [H] (3.185)
Ke,2K e,SK ed [—H—A'] 3 ’

Danesi’s equations before the limiting Langmuir Isotherm constraints are used or

Vo = ak [M+3] [HA],, : (3.1‘86)
o  kaa  |MA|[HT[HAL,
VO - Ke,2K3,3Ke4 [—H_K]s (3187)

and combining these as 70 - Vo = r or the combined reversible reaction rate will give the
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following expression

ak_q [HA]ad (Ke,lKe,2Ke,3Ke4 [M+3] [m]s - [H+]3 [m-s]) (3.188)

r=

Ke,ZKe,sKe4 [m] ?

after simplification and inserting the Langmuir single adsorption species equation {equation
3.177) we obtain

acgk_1 (Ke,lKe,zKe,3Ke4 [M+3) [HA]” - [MA;] [H+]3>

r= ———— (3.189)
KeaKeaKes (7 [HA] + [FE]")
Equation 3.189 is equal to zero at equalibrium and reduces to
[MA;| [H)°
Ke,lKe,2Ke,3Ke =73 Keq (3.190)
[v+3) [HA]

Where K., is the overall equalibrium for the overall reaction

[M*] + 3 [HA] - [MAs| + 3 [HY)
Note that equation 3.189 contains the form of popular Hougan -Watson equations for com-
plex reactions at surfaces (see Hougen Watson Industrial and Engineering Chemistry May
1943, Yang and Hougen Chemical Engineering Progress March 1950, Butt Reactions and Re-
actor Design, Satterfield Heterogeneous Catalysis in Practice, Froment and Bischof Chem-

ical reactor analysis and design). The form of this equation for the overall reaction rate
is

e (kinetic factor) (driving-force or potential term)
- (adsorption term)

The driving force or potential term is the term that drives the rate to equilibrium at which
time no further change in chemical potental exists. The other terms are a result of the
kinetics of the system and is generally any thing other than the potential term and the
adsorption term. The adsorption term is the term that enters from the adsorption at
the interface or surface. Equation 3.189 is nonlinear and becomes complex for the overall
reaction where more than two reactions are controlling are at least of the same magnitude
in velocity. The Hougen-Watson form is also difficult to obtain for multiple reactions with
higher order reactions than one (see Bischoff and Froment Ind and EC Fund 1962).

(3.191)

As has been stated previously Danesi used the Langmuir isotherm derived for a single
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specie adsobing at a surface. The following derivation uses the Langmuir isotherm derived
for competing specie for the surface sites. The species adsorbing at this surface are the
extractant [_HK] - [HA],; and the metal complex, [M_Ag,] - [MAj3],,, formed by the
reaction at the interface but which is desorbed reversably at the interface. The overbar
denotes the organic phase and ad the adsorbed species at the interface.

Using reaction rl and assuming that it is controlling and reactions r2, r3, r4a, and r4b are
in equilibrium and that the relationship of the adsorption species are given by the Langmuir
Isotherm law

Kera [ﬂ] a2

Oaap = [HA] 3 = — —
1+ Kepa [HA] + Ke,MAs [MAs]
0 [MA ] Ke,MAa m—3] o9
paz = 3lag = — —
1+ Kera [HA] + Koras [MAs)
+1 g+
thus [MA2%¥] , = Ifé:f 3 A[H where Ko, = k_kz_ and [MA'*']ad = [I}i{j:]ﬁiH+ where K3, =

-J- and K. g4, Ke M4, are the equalibrium constants for species HA and M A3 respecitvely
between the bulk organic phase and the surface or interface. Inserting these equations into
equation rl we obtain

ak_y (agKlexgeKsng sa M¥9) [HA]” — Ko a4, [MEs) [ 5)

a2K2eK3eK3’HA [m:r (1 + Ke,HA [_HI] + Ke,MA3 [m3])

(3.192)

T =

where

E = (1 +2 (Ke,HA [ﬁ] + Ke,MAs [ms]) + (Ke,HA [_H—K] + Ke,MAs [ma])z)

E = (1+Kena [HA| + Keag [m3]g . (3.193)
or Setting r = 0 for equalibrium here gives a different more complex equation
2K1eK2e K3 K2
Koy = 2T 1e 7% S e HA (3.194)

Ke MAs (1 + Kena [—HI] + Ke MAs [m3])2

In equation 3.194 the equalibrium constant is dependent on the nonliner combination of
the equalibrium constants for each reaction and the equalibrium constant of the adsorbing
species as well as the number of or amount of adsorption space available for adsorption (az2)
and the bulk concentrations of the adsorbing species competing for the adsorption sites.
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Case 2-2-b: reactions rl and r2 slow or controlling with remainder in equalib-
rium Based on the Langmuir theory of adsorption, reaction, and desorption and using
equations 3.164, 3.165,3.166,3.172, and 3.173 on page 73 and assuming that rl and r2 are

controlling
n = ka M| [HAl, - ke [MAYY] [HY] (3.195)
r2 = kea [MA+2] o [HAly — k20 [MAQ'] g H'] (3.196)

Again Danesi vses the Langmuir isotherm for a single species absorbing to obtain an overall
rate expression for this case his equations for the ideal adsorption case are

— kikao '[M+3} -m]z

Vo = —1
k1 [H¥] + by [HA]

o e R -
o [H¥] [HA] + kaon [FA] |

(3.197)

where Vo, and ‘E?o are rate velocities in the forward and reverse directions respectively.
For the saturated interface adsorption region Danesi gives the forward and reverse reactions
as

- _ k1k2aa2 [M+3]
k1 {H"’] + koo

k.1k_2 92 +13
( koskos 402 [MAs) [H
o Keskatos MAS ] (3.200)

(k-1 1) [FER] + ko) [ER]

(3.199)

Danesi’s equations before the limiting Langmuir Isotherms constraints are used or

- krkoa [M*3] [HAJZ
- k_ll fH+]+k2 [HAfd (3:201)
o hetkera VA (1 [FA] (HAR,
k-1 [H¥] + k2 [HA],

(3.202)
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and combining these as _170 - (‘70 = 7 or the combined reversible reaction rate will give the
following expression

a (ngmekzkl [M+3] [HAJ, [ﬁK]s — b1k [H]® [MAy] [HA]id)
k‘—l [H+} + kz {m}ad

after simplification and inserting the Langmuir single adsorption species equation (equation
3.177) we obtain

(3.203)

T =

aak_1k_s <K3eK4eK2eK1e [M+3] [ﬁK]s - [—M_A-s] [H+]3) (3.204)

[_HK] (k..l [HF] 42 + v (2k1 [HY] + k2axa) [H_A] + (k=1 [H¥] + koarg) [—H—A-] 2)

Note again that this equation contains the form as put forth in the popular Hougan -
Watson equations for complex reactions at surfaces. Equation 3.204 like before is nonlinear
and comparison between this equation and equation 3.189 shows the increasing degree of
complexity associated with obtaining the overall reaction where more than one reaction is
controlling are at least of the same magnitude in velocity.

As before 1 will derive the equation for this case using the Langmuir isotherm derived for
competing specie for surface sites. The species adsorbing at this surface are the extractant
[—H_K] - [HA},; and the metal complex, [M_Kg] - [MAg],,, formed by the reaction at the
interface but which is desorbed reversably at the interface. The overbar denotes the organic
phase and ad the adsorbed species at the interface.

Applying the stationary states to the rate of change of the intermediate [MA*?] ,
d[MA*% ,

dt
[MA*2]_, can be determined

by [M*9) [A),, + koo [MAF] ()

[MA+] = T AL T h

=0=1‘1—-7‘2

r3 equation 3.166 will be used in equilibrium to obtain [MA’{]ad therefore r3 = 0 and

1
[MA'{]M = p—f{—‘:s:[]%’% where K3, = ka; and for competing adsorption species two Lang-
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muir isotherms are needed. These are taken from eqations 3.179 and 3.180
Kena [}—IA'?'] Qg
1+ Kena [H_A-] + Ke pmAq [ms]

Kema, [ms] ag

14+ Kena HA] + KeMA, mS]

fpog = [MA3]a.d =

where a3 is the total amount of surface area or sites available for adsorption. Using the
above series of equations we obtain values for the indeterminable species at tle surface:

[MA*?] ., [MA'{] o [MAg3],;, and [HA]_; in the measurable bulk concentrations. Inserting
these various parameters from the above equations reveals the following equation.

——13 — e
a (Kg nakiksod M) [HA]" — k_yk—2 [ Ke,p1.40 [MAS] (qﬂ +2Ke 14, ¥ [MAs) + K2,

r=

(Ke,HAk—lKe3 [_H—K] [H+] (‘I’ + Ke M, [_M—K?,DQ + 02 K2 4 Kesks [ﬁK] 2 (\I’ + Ke Mag [
where ¥ = (1 +Kena [—HX])
ak_1k_p (Kg naKeKaod M+ [HA] ? Ko [VEAs) (E4)° (% + Kepaas [m's])z)

- KernaKes (k_1 [ﬂ] [H] (\Il + Ke MA; [_M-Ks])z + aaKe gk [_H—K]z (‘I’ + Ke MA; [E«%D)

3 .
ak_yk_s03 (KelKezkg wa M3 [HA]" — K, [H*]P [MAS] m)

TrTr=

20K aKes (k—l [—H_K] H])Q+ ke Ke mra [H_A-] 2)

U+-K, 14, [MAs] - 14K, g a[HA]+ K. p a4 [MA3]
a2 a2

where ) =

ak_1k_s0o (KelxengH 2 M#2) [HA] - Kenga, [H)° [N 92)

’HI] KopgaKes (\Il + Ko psas [m3]) (k_1 [H+]Q+ koK. pra EKD (3.205)

r=

Equation 3.205 is similar to equation 3.204 but is different in various terms. The form of
the equation in respect to the driving potential, the kinetic term, and the adsorption term
are still present, but unequal due to the different Langmuir mechanism chosen to derive the

equation. Note in comparing the two equations Kepa= -,1; .
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Case 2-2c: rl and r4 slow remainder in equalibrium adsorption and desorption

are slow
rn = ka {M3+] [HA],, — k10 [MA2+]ad [H] slow (3.206)
ro = kea [MA2+]M [HA],, — k_sa [MA;*]M [HY] fast (3.207)
rs = ksa[MAF] [HA],; - k-3a[MAg],, [H*] fast (3.208)
re = kua[MAsl,, [HAS, — k_sa [R5 [HA] slow (3.209)

Danesi states here that the adsorption and desorption are to be slow reactions and the
Langmuir iso herm is to be used for the relationship to reformulate the adsorbed concen-
tration quantitics in measurable quantities. This is contradictory. The Langmuir isotherm
equation that Danesi uses is a single species adsorption isotherm that was derived assuming
equilibrium between adsorbed specie and the bulk concentration of the specie. Though it
can be used here if one assumes, incorrectly, that the quantity [MAs],, is not in equilibrium
with the quantity of that specie in the bulk of the liquid and does not reversibly compete for
the adsorption sites on the surface. Thus the desorption of [MAj3],, is basically irreversible.
This is inappropriate since in metal extraction the reversability is necessary to strip the
organic of the metal.

The derivation of an overall rate equation for the extraction of high valence metals in
which two or more intrinsic rates are controlling develops equations algebraically complex.
In this particulary case a fifth power of [HA]_,; is involved. Froment and Bischoff (I&EC
Fundamentals 1962) derives a rather unwieldy equation for a mixed first and second order
reversible consecutive heterogeneous reaction with two steps controlling. Here we essentially
have three steps controlling e.g. adsorption; surface reaction; and desorption of the product
species. To illustrate we chose r; and r4 as controlling steps with r2 and r3 in equalibrium
and the assumption is used that r; & rp. Thus from the equalibrium steps

k-3 [H'] [MAs],, _ [H*][MAs] A
[Maf] ==2 - HA]: ad _ o [HA‘]” a:d  (3210)
and
_ [ MAG,,
M A+2]ad ob v [HA(]?‘, (3.211)

and from the two controlling steps set equal to each other and inserting equations 3.210




3.3 MORE COMPLEX MECHANISMS 82

and 3.211 for the respective quantities [MA3],, is obtained.
(o 3
ky [M3+] [HA],; + k—q [MAs] [HA]

[MA3],; = (3.212)
[H+l
K2 eKS e [HA)Z, + ks [ ]
The total coverage of the interface with adsorbed species is given by
H*][MA H*J? [MA
61 = [HALy + [MAgl,y + A las | [HT] [MAsl,y (3213)

Kze[HAly Kz eKse[HAL,

Substituting [MAg3],,; of equation 3.212 into 3.213 gives the following equations
(Fu [M3*] + k_q [MAs] [HAZ,) (Koo Ka,e [HALL, + Ko [H¥] [HA],, + [H)%)
k_y [H]® + kyK2 o K3 [HA] [HAPZ,

¢ = [HA] 4 (3.2

When the numerator is expanded a fifth order polynomial is formed in [HA] ; and is not
ameanable to factoring. It is probable that many of the roots of the equation are in the
complex range and have no physical meaning here. The real root of [HA] , is substituted
into the following equation for reaction r4:

ot o )~ ] )

Tr=

3
ko1 [H+]® + koK Ks,e [HA] " [HALZ,
Danesi obtains the forward and reverse reactions for the fourth reaction step as follows

for the forward reaction:

L, kakea M) [HA] (HAL,

Vo= e (3.215)
K2 eKS e TLH_A]IJ_ + k4 [ ]
and the reverse reaction:
k_i1k_4a |MA3| [H1]° [HA
Vo= —— [BEe] Y ey (3.216)

KzeKsef[:IlAt]L:-’-k‘*[ ]

and Danisi use the Langmuir isotherm here to eliminate [HA], ;. This is felt to be incorrect
in this circumstance since it is contrary to the adsorption being a slow reaction and contrary
to the first reaction equaling the fourth reaction and thus influencing and controlling the
overall reaction rate.
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Case 2-2d: reaction 1 and 4 slow; reaction 2 and 3 fast with a slow parallel step
also in the aqueous phase. In all of the cases in this section and indeed in any metal
extraction from aqueous phases hydrolyzed metals can react with the extractant as well as
metals complexed with nitrates or chlorides in solutions with mineral acids. This particular
case is a combination of Case 2-2a and 2-2c. The extracting reagent is partially solubilized
in the aqueous phase and adsorbed at the liquid-liquid interface and the metal cation is
present also in its hydrolyzed form the following mechanism will be simultaneously in effect
(Danesi CRC 1980).

[M+] + (EA] = [MA®] + [HY]

k-1 k2 homogeneous parallel reactions (3.217)

[M(OH)?*] + [HA] 2 [MA?] + [H,0]
-2

[M3+] + [HAL,, = [MA?*],, + [HY]
ks k2 interfacial parallel reactions (3.218)
[M(OH)™] + [HAl,y = [MA®],, + [Hz0]

[MAs],, + 3 [FA] kf‘: [FAs] +3[HA], (3.219)
As in the previous case Danesi uses the Langmuir isotherm and again its use in this case with
the adsorption and desorption reactions assumed to be slow is opinioned to be incorrect.
The algebraic equations as a result of the above reactions need to be solved simultaniously
making use of the Bodenstein approximation and the equalibrium concept of the other
reaction steps. Again this will prove an impossible task since the equations will produce a
polynomial in the adsorbed specie of higer power than three and incapable of factorization
to solve for the adsorbed intermediate. Thus the case is relegated to numerical solutions of
simultaneous differential equations.

Summary

The kinetic regime as reviewed in this chapter can be extremely complex expecially for
metals with valences higher than 2. Thus suitably derived analytical solutions for the overall
rate equations are not available. This becomes even more obvious when one considers
that the above derivations do not account for extracting reagents undrgoing association
and dissociation which many of the later discussions did not consider. The derivations
also did not consider non ideality of the complexes in the solutions being used; thus, the
concentration quatities need be replaced by activities when non-ideal behavoir is present.
In all of the cases in this section and indeed in any metal extraction from aqueous phases
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3.3.3

hydrolyzed metals can react with the extractant as well as metals complexed with nitrates
or chlorides in solutions with mineral acids.

Diffusional Regime

Psuedo rate constants in conjunction with the actual kinetic rate equations used above
may allow the determination of an overall rate of extraction for a solute from one phase
to another for well mixed tanks or “compartments”. This concept is different from typical
chemical engineering models (see for example Cussler Diffusion:Mass Transfer in fluids) for
mass transfer and is generally used in the modeling of biological systems (Long personal
January 22, 1994, Building Brading Jones and Tomita Smooth Muscles page 69).

In a compartment model, a rate constant is used instead of a mass transfer coefficient.
Basically the model is represented as two tanks in series being well-mixed, and the transfer
being a first order linear process. The constants can be thought of as “exchange” coefficients
and are not really the same as conventional mass transfer coefficients. The transfer of mass is
more complex at the micro scale than the lumped parameter mass transfer model suggests.
Mass transfer in any system is a phenomenon created by the actual chemical potential
imbalance across the interface. In some manner the interaction between the species in
solution in one phase is broken and another interaction is formed in the other phase between
the transferred species in order to drive the system to a state of more order or equilibrium.

The kinetically derived model as in the case 1 in section ?? through 3.3.2 pages 77—61
assumes that there is no resistance or adsorbtion at the interface. These two techniques of
modeling the transfer of mass can be related for simple systems but the relationships as
a single rate equation are difficult and complex in more extensive systems. To illustrate
this the mass transfer of an acidic species transferring from one phase to another is shown

below.

Mass Transfer without reaction using exchange coefficients Assume two phases
are placed in contact with each other and these phases are immiscible and a solute initially
contained only in the first phase and has a slight solubility in the second phase.

[Fx] £, )
g = Vi [FEA]
nga = Vir [HA]

ngx + NHA = constant
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The accumulation of a species of HA in phase II is

w%ﬂ = kA [EK] —kyA[HA] =N =K A ([‘HX] - [HA))

where Ky will be defined to be the overall mass “exchange” coefficient
kr [HA] — kir [HA]

([FA] - )

and when [HA] = 0, K;; = k; and

K= = Kj1 =K1 ([m] ) [HA])

and when [—H—A_] =0, Kyr = kjr where kr and kj; are exchange coeflicients and are not true

mass transfer coefficients unless [m] = 0 or [HA] = 0. At equilibrium the distribution
coefficient can be found from the fact that

v HEAL o k4 [HA] - kiA[HA] = N = K;7A ([HA] - [HA])

dt
and therefore

k; [‘ﬁx] = k;; [HA]
and

kr _ [HA]

A= 7= 7=
-k [HA]
Danesi uses the mass exchange constants to get a rate equation for the following mechanism

[‘H_A] ;—i [HA] slow (3.220)

[HA] + [M"'a] & [MA2+] + [H*] slow
the rate of formation for the solute in the second phése is given by
d[HA]
o dt
d[MA?] KiKy (=
i s-avery -ovd L

=0=K; [—H-K] — (K-1+ K) [HA]
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with K1 = 42, K1 = “52%, and Kp = K3 [M*3] and when Vory = V;, and K—; >
K>, then
d[MA%*] K
& KR [ET‘]
which is similar to the first term of equation 3.97. The first term in equation 3.97 is the
forward rate or the irreversible reaction of equation 3.220 when '1%{'_17 = %{.1: = -1?13 where
[HA]

Kp in this case equals 17zt and when the irreversible reaction constant is much faster than
the reversible partition exchange coefficient i.e. Ko >K_; then the rate of formation of the
first metal complex (which is assumed to be the slowest here) is

d[MAZ?] A oo
-—[dt ]=KIT,;—9[HA]

and therefor the rate will be controlled by the rate of the partition of the extractant and
by the interfacial area even-though the complex formation does not occur at the interface.

This simple scenario illustrates the use of the psuedo kinetic rate constants or exchange
coefficients and also shows how once derived into a single rate equation other scenarios
can be obtained assuming knowledge of the rate constants. This scenario also assumes a
priori knowledge of the controlling steps. If all the steps of the mechanism were to have
rate constants of similar or comparable magnitude then the appropriate individual rate
equations given by equations 3.140 through 3.147 would have to be solved simultaneously.

Mass Transfer with reaction

The concept that a pure kinetic regime exits is fictional though in some cases the concept
can be approched empirically and thus a model simplified considerably. As represented
in the derivation above a relationship between the kinetic regime and the mass transfer
physical regime may be obtained. The validity of doing this may ve quesionable since ‘the
two regimes are different in concept. Most of the chemical engineering literature use mass
transfer coefficients with a chemical reaction and not the psuedo rate constants or “exchange
coefficients” of the kinetic regime. The principle behind this is a concentration difference
as the driving force for mass transfer across the interface. This concentration difference is
the difference between the bulk phase concentration and the interfacial concentration. If
the reaction is sufficiently fast that most of the reaction occurs in the film region close to
the interface the two film theory needs to be modified to take this into account.

Assuming the two film theory which implies steady state, the balance over the aqueous film
or continuity equation for the foregoing reaction mechanism (equations 3.134 through 3.138
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for a 3 valence metal extraction

Dra dzJ;A] = rua = kp [HA] [M*3] - k_p [MA?*] [H] (3.221)
+3
DM+352—2—I;;I2——-]- = ry+3 = kg [HA] [M+3] —k_2 [MA2+] [HY] (3.222)
and
2
DMA%f[—dI‘;-%—J’—] = ryaz+ = kg [MA™*] [H¥] — ky [HA] [M*] (3.223)
& [MaAf
Dyuz [dy2 L = ryag = ks [MAZ] (] — ks [HA] [MA%] (3.224)
Duuag 0 — i, = ke i) [E] — k1A ] (3.225)
note that DHA%%I,él = DM+3£%;—31 = —DMA2+22—[%}2:1 the boundary conditions at -
at y = 0 (the interface) : [ﬁﬁ]] = {I\[IZﬂ]z
MA*]] = [MA*Z, i interface
aty=1y: é&ﬁ] = [ﬁﬂf b bulk
MA*] = [Ma+d],

the rate of accumulation in the aqueous phase of HA is

A _ e (A, — A (ko (] W] ~ ks [M0a%*] (7)) (3.226)

where k,, is the mass transfer coefficient in the aqueous phase and the accumulation of HA
on the organic side is

d[A]  korohors ([mA] - [e:A] ) | | (3.227)

dt Vorg

where HA] , [HA]; are the concentration of HA at the interface on the organic and aqueous
2
phase sides. If the interface is assumed to be in equilibrium i.e. there is no accumulation of
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HA at the interface then a partition or distribution coefficient following a Henry’s hnea.nty
law could be assumed valid.
P, m]t

HA [HA), (3.228)
The system of differential equations models the mass transfer of the organic extractant
across the interface from the organic to the aqueous phase with a series reaction in the
aqueous phase. The reaction is sufficiently slow enough in the aqueous phase to occur away
from the interface and sufficiently fast to allow significant completion in the film. The
system of equations does not have an analytical or closed form solution (Secor and Beutler
AICHEJ 1967 p365-373, Bischoff and Frometn p 613-615). Contrarily a slow reaction where
an insignificant amount of the reaction occurs in the film and the majority of the reaction
occurs in the bulk phase can be readily solved analytically and has been repeatedly in the
literature (Ortiz and Ortiz Chem. Eng Process 27(1990) 13-18, H. Komiyama and H. Inoue
Chemical Enginer. Sci. V 35 (1980), V. Rod The Chemical Engineering Journal 20(1980),
Wang and Wu Chemical engr. Sc. 46(2) 1991). Rod attempts an approximation of the
solution reaction in the film which gives the exact solution for the two limiting cases of

1. reversible pseudo first order reaction

2. instantaneous reversible reaction

Hughes and Rod (Hydormetallurgy 12(1984) claim, probably rightfully so, that no true
kinetic regime exists regardless of the apparatus involved. They derive a pseudokinetic
regime equation for the maximum attainable flux for fast reactions that occur in the film
of a liquid-liquid interface using concepts from Astarita.

(krD4)? 3
Py ‘B

N]H

Ny = A

c (3.229)
Where kg, is the reaction rate constant for an irreversible fast reaction A+B kg C;Dyis the
diffusion coefficient for species A through the aqueous phase; P, is the partition coefficient
for species A between the two liquid phases; T4 is the organic phase concentration of species
A; and cp is the concentration of B in the aqueous phase.

A great deal of discussion has been put forth here in elaboration of the theory of mass
transfer across an interface with a chemical reaction in the aqueous phase. The literature
is replete with works on this subject. Evenso, most works assume an irreversible moder-
ately fast first order reaction which simplifies the process considerably or that the reaction
happens solely at the interface. If the phases are completely immiscible then a heteroge-
nous reaction at the interface is applicable. Some extracting system phases may be so
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immiscible with each other that they may be approximated sufficiently with reactions at
the interface. It is unlikely that a metal extractant will be entirely immiscible or that the
phases do not distribute at all. Astarita has developed a general model for a fast, diffusion
controlled reaction for which solutions for various cases of irreversible reactions have been
obtained. Astarita’s (Astarita Mass Transfer with Chemical Reaction 1967) equation as
given by Hanson, Hughes and Marsland (ISEC 74 p2401—2415) is

_ 1A,
A \sz . /[,41 r(A)d[4] (3.230)

where R is the transfer rate per unit in.erfacial area

[4], is the bulk concentration of A in the phase in which the reaction takes place
[4]; is the interfacial concentration of A in that phase

Dy is the diffusion coefficient of A through the phase

r(A) is the rate of the reaction with respect to A

Metal extraction processes must be reversible to permit extraction and stripping. Hanson et
al have developed a rate equation using Astarita’s method for reversible reactions. Because
of the importance of this case these authors derivation bears elaboration and repeating here:

Consider, as before the extraction process in which an extractant, HA, transfers into the
aqueous phase where it reacts with a solute, M™*

M™ ¢ mHA g‘ MA p+mH* (3.231)
2
and the elementry reaction the rate equation will be
r =k [M™] [HA]™ — k; [MA,,) [H]™ (3.232)
The following are concepts associated with this process

e The extractant and the complex will be in chemical equilibrium in the bulk of the
aqueous phase and each will be in individual mass transfer equilibrium at the interface.

e The two film theory is time invariant or steady state and the quantity entering the
phase must be equivalent to the complex leaving i.e. no accumulation

e A material balance on the extractant anion shows that for every mole of HA entering
then ;—}; moles of MR,, must leave. and this equivalence exists at every plane parallel
to the interface within the reaction zone
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e Based on the above the rate of transfer of the complex will be # times the rate of
transfer of the extractant and will be in the opposite direction. :

—_ 1
Ruma,, = _fn—zRHA (3.233)

¢ The solubilities of the extractant and complex in the aqueous phase are probably low
then the solute, M™*, and hydrogen ions will be present in the reaction zone in great
excess relative to the other reactants and the change in their concentration will be
very small and their concentrations can be considered constant and equal to their bulk
concentrations

Hanson et al give the general rate of transfer for HA as

2Dy {kll—,,g%k (1A ~ (HATH) - by (7 (& (HAP + (M A [HAL)

ko[ (& (AL + (MAL) (A, + 8 (V7 (AR - e a))

-R-HA =

In Equa.tlon 3.234 6 is defined to be the ratio of the diffusivities of the extractant to the
complex . This eqation can be simplified with the following assumptions

DMA
. The bulk concentration of the extractant in the aqueous phase will be very small and

e The effect of the reverse reaction is negligible in the extraction stage. Usually this
can be justified if conditions are chosen to minimize the reverse reaction.

= _ . |2Dgaky [Mm+], [HAT

Rus= \/ e (3.235)
and according to Hanson et al this is the eqation of the psuedo n** order urevers1b1e
reaction derived by Dankwerts

e Since the phases have been assumed to be in equilibrium at the mterface a.nd also that

all resistance to mass transfer lies in the aqueous phase we can write _[H_A]'i PHA
where [HA],,, is the extractant concentration in the bulk organic phase and ¢4 is
the partition coeﬁicient for the extractant and thus

Ra=HALT \/ 2Dpaky [M™], _ ([HA] ) k ‘/2133,::1 17 (3 936)

m+1 brA +1
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and from equation 3.233 then

__1 ([HA, %" [2Dgaky [MnH],
Rua,. = ( r— ) \/ — (3.237)

The stripping equation is obtained similarly assuming the following mechanism
MAm+mHY - M™ +mHA

and the reaction rate is

TMAn = ko [MAR) [HH]™ — ky [M™F] [HA™ (3.238)
Integrating Fick’s first law of diffusion
-D Amﬂéf_n.l = _H.A_L__l

[MAw) ~ [MAR); = ;P2 Dua (i A], - [HA) (3-239)

and using this in equation 3.238 and Astarita’s equation (equation 3.230) gives

2Dt { kol (IM A2 — (M AnE) + gyl ], (AP
— woyk (M), ((HAL + 3 [MAR); - 3 [MAL) )

and making the assumptions of negligible bulk phase concentration of M A,, and negligible
back reaction reduces to the Dankwerts’ equation again .

— M.
Rua, = [—E%J:—’i\/pmmkz (H+™ (3.241)

From Hanson et al work it is apparent that the partition coefficient is an important param-
eter for metal extraction. Also as the authors point out the overall rates have fractional
orders eventhough the actual chemical reactions are simple thus the fractional overall or-
ders obtained from experimental results reported in the literature may be in the existence
of mass transfer resistance rather than complex reaction mechanism (Hanson et al). This
model could be used to determine the diffusion coefficient if the partition coefficient, rate
constants, and concentrations are known.

RMAn = (3.240)

A further observation is the difference between this model for transfer across the interface
using mass transfer with a reaction in the film and the psuedo kinetic method presented by
Danesi. It is difficult, at least for this engineer to imagine a pure kinetc concept of mass
transfer across an interface. The development of an analytical general kinetic rate model
for metal extraction is difficult and tedious for reversable reaction mechanisms that consist
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of a number of intermediate steps. This is witnessed in the Kinetic Regime section of this
study (see section 3.3.2).
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4. Nomenclature for Chapter 3

Ml Metal Species ([ ] valence #)
MB* Metal extractant complex + superscript valence charge
k reaction rate constant

HB, HA monomeric acidic extractant

Ht Hydrogen ion

K equalibrium constant

B~ dissociated acidic extractant

Kps distribution constant; equalibrium contant of extractant between organic and aqueous
phase

Kpm distribution constant for the metal extractant complex between the organic and aque-
ous phases

t time

a specific interfacial area

Q the area of diffusion

v Volume of phases

(ad) adsorption species at surface or interface

(org) organic phase

R gas constant

R resistance

R transfer rate

T temperature

a area of transfer
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A arbutrary species area; Arrehenious coeeficient
J diffusional flux
D diffusion coefficient (subscript indicates specific specie)
D distribution coefficient
c; concentration of specie 7
m stoichemetric valence of metal
y polymerization number
X co-ordination saturation number (or adduct number)
MAn, neutral metal extractant complex for a metal of valence m
Keomp; equalibrium constant given by equation 3.93 page 55
Keomps equalibrium constant given by equation ?7?
K, dissociation equalibrium constant for acid extractant
r reaction rate
E reaction sites
cj concentration of species j
Vo forward initial reaction velocity
Vo reverse initial reaction velocity
Greek
oy Langmuir adsorption Isotherm coefficient (total sites of adsorption)
v Langmuir Isotherm coefficient = 2~
o or o =2
Oa fraction of occupies sites for specie :,:,i;
6 film thickness
o0 infinity
A &
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A B3

A heat of adsorption

¢ partitioning coefficient
Subscript

org organic phase

e, eq equalibrium

ex extraction

1,2,.... reaction number

0 (zero) initial conditions at time zero

ad adsorbed species at surface or interface

w aqueous or water phase

0 organic phase

max maximum

des desorption

i interfac; species counter

add adduct

poly polymeric

MAn neutral metal extractant complex for a metal of valence m
Superscript

+ positive valence

- negative valence

s O, indices for extraction or adsorbtion equalibrium coefficients (see equations 3.16 and
3.17
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Acronyms
D2EHP
DEHP Diethylhexylphosphoric acid
HDEHPA




5.

Modeling the Membrane Contactor

5.1 The Liquid/Liquid Membrane Extractor

As previously defined, a membrane is a semi-permeable barrier between two phases defined
by what it does and not by what it is. The membrane s »paration is a rate process accom-
plished by a driving force, not equilibrium between the phases [?]. In section 1.1.3 three
different types of liquid/liquid extractors or membranes were introduced. Of primary in-
terest to this study are the immobilized or supported liquid membranes and the membrane
contactor. The emulsion liquid membrane is discussed in a relative and historical sense.
These membrane processes allow a fast and selective separation of chemical species due
to high mass transfer surface area to volume ratios. Compared with polymer membranes
the diffusion coefficients of these membranes are much greater. Their greater selectivity is
brought about by the use of a mobile carrier initiating the facilitated transport process to
enhance the separation.

A large number of works have been published in this area for various separations. Noble and
Way [?] give a good overview of this technology. Boyadzhiev [?] also review the technology
of liquid membranes. The liquid pertraction (as Boyadzhiev refers to liquid membranes)
is simple conceptually but complex theoreticallyy The membranes are made up of two
miscible or partially miscible liquids separated by a third, immiscible, phase. These three
phases create interfaces on either side of the inner phase. The mass transfer and kinetics at
interfaces is quite complex and has been addressed frequently in the literature but is still
not well understood. The interface will be addressed separately in the discussions of this

study.

The membrane contactor has been described in section chapter 1 as a microporous structure
that separates two immiscible fluids while mass transfer between the phases is accomplished.
The membrane contactor is a unit that separates the extraction and stripping stages of
the membrane process into two separate processes. Other membrane process have these
processes inherently inseparable. The microporous structure is actually a hollow small
diameter cylindrical filament made of various synthetic (or in some rare cases natural)
material with microscopic pores that are filled either with an organic phase or aqueous phase
depending on the material that the filament is made. A hdrophobic material will cause the
organic or more non-polar fluid to invade and fill the pores and eventually permeate to the
opposite side of the filament unless counteracted by another force. The contactor in reality

98
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is a number of these filaments packed into a container, generally cylidrical itself, that allows
flow of one of the fluids outside the filaments refered to as tubes or lumin and the other fluid
to flow inside the lumin. The only contact allowed is at the interface of the two fluids via
the pore structure (see figure —1). This container packed with these hollow fiber filiments
is refered to as the membrane contactor module.

Previous literature or modeled it as a module through empiracle phenomenological corre-
lations of the mass transfer processes through a resistance theory where the membrane is
assumed to be a separate phase resistance and not modeled as the interface with adsorption
and reaction at the interface in the porous structure of the fiber walls [?], {?], [?], [?], [?], [?],
25 120, 170, 120, 120, 120, 120, 120, 120, [2), [20,[2), [2]). From these example referenced literature
the field has been active for over twenty years, but is still not developed at the fundamental
kinetic, transport, and interfacial approach though there has been efforts forward in this
area. For example the references [?], [?], [?], [?], [?], [?), [?), (%), 170, I2), (20, 120 ), %),
[?] have completed more fundamental mathematical and/or computer simulation studies.
Yoshizuka et al modeled the contactor membrane process as a single fibere concentrically
inside another cylinder from a fundamental simulation approach. In this study the more
fundamental modeling of the module will be used to approach a more realistic simulation
of the module itself. The transport equations for the shell side, tube side, and in the pore

. structure of the filament wall is developed and resembles very closely the transport mod-

5.1.1

els of a shell and tube heat exchanger and thus the theory can, in places be developed as
analogous to the heat exchanger transport model..

To properly understand the modeling of the membrane contactor, the diffusive transport
mechanisms associated with membranes will be discussed and then the modeling of porous
structures will be discussed. The governing equations for the diffusion in each phase of the
module will be presented (i.e. the lumen side, the porous structure, and the shell side). The
shell side transport becomes complicated since the flow, though assumed laminar, is parallel
to the axis of a bundle of fibers contained within a hull. Thus the shell side flow is much
like the shell side flow of fluid through a rod cluster in a shell and tube heat exchanger.
The velocity profile in the shell side is a critical factor in the design of a shell and tube
heat exchanger. Because of the well known analogous behavior of the transport properties
(mass, energy and momentum) it is proposed here that this will also be apparent in the
mass transfer through microporous hollow fibers. The geometry of the fiber placement is
also critical. As will be presented the fibers are placed randomly and accounting for this
complicates the modeling further.

Membrane Diffusive Transport Mechanisms

The transport across a membrane can be divided into three divisions [?], [?]
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" 1. Simple or passive diffusion
2. Facilitated diffusion
3. Active Transport

The first category is the ordinary mass transfer (molecular diffusion) most familiar to engi-
neers and scientists and is the movement of a substance from a region of high concentration
to a region of low concentration. This type of transport is characterized by the chemical
potential gradients of the diffusing species without the presence of carrier molecules or dif-
fusion coupled chemical reactions. The transport rate is proportional to the solubility and
diffusivity of the substance. In contrast the other two categories of facilitated diffusion and
active transport use a molecule to complex or react and “diffuse” the species against its
concentration gradient.

In facilitated, also called passive carrier transport, and active transport the diffusing species
reacts in a region (phase) with a carrier molecule forming a complex. This complex then
moves down its concentration gradient to another region where it releases the species. This
uptake and release reaction proceeds in an equilibrium setting and energy input is not
required. Active transport, is similar to facilitated transport but the transport is against
the concentration gradient or chemical potentials. Without further energy input this would
violate the second law of themordynamics.

Active transport phenomenon is accomplished within the constraints of thermodynamics by
utilizing energy input from chemical reactions. The use of chemical reactions is common to
the facilitated and active transport. The facilitated transport generally uses one or maybe
two reactions to accomplish the transport at or near an interface. The active transport,
however, uses a series of complex reactions in the membrane to accomplish the transport
against the normal gradient potentials. Simply put, for active transport a catalyst exist
at one side of the membrane where the diffusive species reacts with the carrier with the
aid of the catalyst. At the other side of the membrane another catalyst decomposes the
complex of species and carrier into separate species. At this side of the membrarie the local
concentration is higher inside the membrane than on the outside and the species diffuses
through the interface or membrane wall. Active transport is primarily a natural biological
phenomena where the catalyst is an enzyme. The facilitated transport is the mechanism of
the metals extraction and concentration to be studied here.

As discussed previously (chapter 1) liquid membranes tend to be unstable because of dis-
solution, osmotic forces, and inverted micelles. A method to improve membrane stability is
to chemically bind the mobile carrier within the membrane [?].
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The reaction for a liquid membrane is generally carried out at or close to the interface.
This reaction constitutes part of the boundary condition for the transport equations [?].
A system of second order nonlinear differential equations usually are needed to describe
the concentration field within the membrane [?]. The modeling literature for the liquid
membrane has been briefly discussed. Schultz et al [?], [?] discuss the mechanistic aspects,
mathematical aspects and analysis, and characteristic regims of carrier mediated transport
in membranes. Their emphasis was/is on the constant diffusivity, steady state behavior,
homogeneous chemico-diffusion model for membrane transport.

5.2 Current State of the Art Models )

5.2.1 Film Theory

In the previous section a number of published works were referenced that used a simplified
theory and empirical correlations to model transport in membrane processes, specifically
hollow fiber membrane contactors. A number of assumption are needed for this model {?]:

1.
2.

Steady state mass transfer at equilibrium.

No immiscible displacement taking place through the pores (i.e. no convective flow
through the membrane).

. Solute is present in high dilution so that diffusion induced convetion perpendicular to

the interface can be neglected.

. Aqueous organic interface at the opposite pore throat of the wetting pase (i.e. for

hydrophobic membrane this is at the aqueous membrane interface for hydrophylic
this is on the organic membrane interface)

. Uniform pore size and wetting characteristics throughout the membrane.

Negligible influence of aqueous organic interface curvature on solute distribution:co-
efficient rate of solute transfer and interfacial area. )

7. No chemical reaction.

. Solute transport in the aqueous phase and the organic phase outside the membrane

may be described by simple film-type mass transfer coefficients without bulk fiow
correction.

. The diffusion of solute ¢ through the wetting phase filled pore may be described by

means of a membrane transfer coefficient ki, based on the total area of the membrane
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(including porous and nonporous sections). Note that this is different for the type of
material used i.e. hydrophobic or hydrophylic.

10. No solute transport through nonporous sections of the membrane.

11. The aqueous and organic film resistances may be combined with the membrane pore
diffusion resistance as a one dimensional series of diffusion resistances.

12. Solute distribution coefficient m; is constant over the relevent concentration range
and the two liquids are essentially insoluble in each other.

The simplified model is an example of the classical two film theory presented in all classical
mass transfer textbooks [?, page 146}, [?], [?, chapter 21], [?]. Sirkar and co-workers have
used this model extensively in their work on membrane separations. The film theory pro-
vides a simple insight of the resistances to mass transfer at an interface without an enormous
amount of mathematics. There are several disadvantages to using the two film theory. One
is that the type of membrane (hydrophobic or hydorphilic) and the direction of transfer as
well as whether the organic is inside the tube or outside the tube has to be known a priori.
If this is known then the solute flux terms can be formalized in terms of individual mass
transfer coefficients and converted to an overall mass transfer coefficient. To calculate the
overall transfer coefficient the area should be based upon the diameter where the aqueous-
organic phase interface is located [?], [?], [?], [?]. Consider a hydrophobic fiber with mass
transfer from the aqueous phase (tube side) to the organic phase (shell side) then the flux
is written (reference figure 77)

Nimdy; = kiag)Tdyr) (Ci(aqb) - C;(aq,-,,t))
= Ki(m,)Tdt(tm) (Cs(o.-,u) - Ci(om))
= Ki(o,)Td1(o) (ci(om) - Ci(o.,))
= Kordy) (cio) — o)

= Kuymdyy) (ci(aqb) - c:(aq)) B B Y
where k; y are the individual mass transfer coefficients calculated using appropriate area;
K., overall mass transfer coefficient based on the repective phase given as the subscript -;
¢y ) are the concentrations at specific locations given by the subsccripts in the parenthesis;
d is the respective diameter to calculate the appropriate area; subscripts i is the specie
transferred, ¢ tube side, o the organic phase, m the membrane phase, b respective bulk
phase, ag the aqueous phase, int the interface locale, Im log mean, s shell side of the fiber;
and for the superscript * is the equilibrium value with the concentration in the opposite
phase. Making use of the assumed equalibrium conditions a Henry’s law type of distribution
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is implied or
MiCi(aq,) = c:(o)
MiCi(agint) = Ciloine)
MiCiag) = Ci(oy) (5:2)
and thereby the distribution coefficient is
Go) _ Slow) _ Siten) (53)
Ci(ags)  Ci(agine) t(a.q)

Combining equations 5.1 and 5.3 we can solve for the interfacial concentrations and assuming
the validity of the series of resistances for mass transfer i.e.[?]

== f(Bys, Rig, Bon, 1) (5.4)

where Ry;, Rps are the respective individual film transfer resistances to mass transfer and
m; is the solute distribution or partition coefficient and R,, is the mass transfer reisitance
of the liquid filling the membrane pores. Thus the overall transfer coefficient based on the
organic resistance can be determined

1 1 1 m;
Kodi, di(0)Ki(o,) M imyki(m,) + di,Kiag,) (5 S)
or for the aqueous side overall transfer resistance
1 1 + 1 T 1 )
Koqgd;, 'm'zdt(o)kt(o.) Midyim)Kigm,)  dirKi(age)
Because of the different conditions or scenarios for the types of membrane properties (hydor-
philic or hydrophobic) and the various fluid flow conditions, counter current or co-current,

aqueous in the tube or organic inside th tube there are a number of overall mass transfer
coefficients equations. These are listed in the table below (after Prasad and Sirkar(?], [7]

(5.6)

Membrane Type
and Form -I—};= Yh_z
Hydrophobic MHF
: d"t midil dlt dit
Aqueous in Tube d‘& Yo dt(zm)k«mo) + Tikiea) Mok + m»dt(zm)kzcmo) * TFiem
a3 (o) (0) i% (o) (o) o) (o)
Organic in Tube diiki(oy) + dmyki(mo) ' Ft(o)Ki(aqs)  MHt(o)Ki(os) + Midy(im)Ri(mo) ' Ft(c)¥i(ags)
Hydrophilic MHF
(o) midy(o) Mide(o) y(o) di di(0)

Aqueous in Tube dakiter) * GiltmiKi(mag) T FieFitag)  Midiapicon) | dtim)Ei(mag) * ;:ki(aqa

ie 3 4y i%iy £
‘Organic in Tube di,Fifog) + i(tm)ki(maq) + 4(0)Ki(aqs) dsg"'t(ot) + de(imyki(ingg) + de(oyKi(ags)
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The porous structure of the membrane is incorporated in the solute mass transfer coefficient
ki(m,) or ki(m,,)- Estimation of the mass transfer coefficient for unhindered diffusion of
species ¢ through organic solvent filled microporous membrane is with the effective diffusivity

Dieff [?]

D, EmDi,
kime) = =3 == (5.7)

where &,, is the membrane porosity and 7, is the membrane tortuosity, ! is the membrane
thickness, and ®;, is the free diffusion coefficient of sclute i in the organic solvent. And for
the aqueous phase ‘

~

D; EmD;
. — leff = M~ g
kitmag) = =3 — , (5.8)
and replacing the thickness by ! with 55‘1-2:2‘- the expressions above can be used for hollow
fibers [?].

The assumption that make equations 5.7 and 5.8 valid is [?]

1. There is unhindered diffusion of solute
2. The membrane is symemtric and completely wetted by the designated phase

3. No two-dimensional effects occur.

A critical assumption is that the membrane is completely wetted or filled by the appropriate
phase. If the excess pressure that keeps the wetting phase from flowing into the non-wetting
phase region approaches the critical or breakthrough pressure, Ap., then the interface is
located inside the pores of the membrane and at least two phases are present in the pores. At
this condition the location of the interface is uncertain and the membrane transfer coefficient
expressions are unknown making the predictions of the solute concentrations unpredictable.

Effect of Pressure The effects of pressure have, in general, been shown to be negligible
by Sirkar, Prasad and co-workers (cf [?] and [?]. This is a result of the magnitude of the
term V;Ap of the chemical potential equation

Ap; = RTAlnc; + ViAp (5.9)

generally being an order magnaitude smaller than the first term. This pressure indepen-
dence, as has been mentioned, dissapears close to the critical pressure and immiscible dis-
placement occurs of the liquid in the pores. This causes the membrane resistance, m;, to
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change consideribly (reference the overall extraction coefficient equations above). In hollow-
fiber systems a change in Ap beyond a certain value will cause the membrane structure to
deform. In a compression the pores may become smaller and restricted and the fiber walls
“thinned”. In tension pore sizes are increased reducing Ap,,.

Critical pressure or breakthrough pressure is the pressure to ensure non-dispersive extraction
with a microporous membrane. The pressure of the phase not in the pores must not exceed
the pressure of the phase in the pores by more than a certain determained value for a
specific system. Modeling the structure of a microporous membrane as a collection of
parallel cylindrical poares of radius ry, then the critical pressure can be determined by the
Young-Laplace equation [?]

_ 2%wo c0s O, (5 10)

where 7y, is the interfacial tension and 6. is the contact angle measured from the pore
wall to the tangent of the liquid-liquid interface drawn into the pore liquid. Correlation of
models for membranes with noncylindrical pores have been studied (see the reference of [?,
page 746]). In conventional extraction processes the interfacial tension is very critical. In
the membrane based systems using two film theory 4y, does not influence the mass transfer
coefficients and only influences the value of Apc [?]. This may not be so under circumstances
or systems that have strong spontaneous convection terms, interfacial reactions reactions
and non equilibrium conditions.

Distribution Coefficient The distribution coefficient, as defined by the equilibrium
equation in equation 5.3, is an important relationship for the two film theory of membrane
transport. It allows us to relate the phases without having to know anything about inter-
facial phenomenon; however, this relationship is only valid under equilibrium conditions.
The magnitude of m; allows a qualatative analysis of the extraction process:

e For m; > 1 implies the solute prefers the organic phase and the aqueous phase
resistance will control :

e For m; < 1 implies the solute prefers the aqueous phase and the organic resistance
will control.

In the membrane system, the membrane resistance will be important if the membrane pores
have the same fluid that is controlling the resistance. Thus in some instances the membrane
resistance may not effect the mass transfer at all unless there is hindered diffusion or the
membrane is exceptionally thick {?]. Under these conditions the membrane resistance may
still be important regardless of the magnitude of m;.
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When m; > 1 a hydrophobic membrane is much better where as for a m; < 1 a hydrophilic
membrane is preferred [?]. That is a hydrophobic membrane is preferred for a solute pre-
ferring the organic phase and a hydrophilic for solute preferring the aqueous phase. These
factors in chosing the type of membrane to be used are a good first estimate of the mem-
brane to be used. There may be other factors; for example, The use of polar-non-polar
organic systems a hydrophobic membrane can be operated with the polar organic in the
pores {?]. Hydrophylic membranes can also be operated with the organic phase in the pores

(7]-
Design Models and Correlations of the Extraction Device

There are basically two ways to model the hollow fiber membrane extraction device [?]

1. Determine an overall mass transfer coefficient for the extractor using correlations and
use a mean concentration driving force across the extractor, calculate the total rate
of solute extraction

2. Solve numerically two differential equations for concentration profiles on the tube side
and shell side coupled through the boundary conditions of diffusive transport through
the liquid-filled membrane pores.

Prasad, Sirkar and co-workers and most other workers have in the past used the first method.
The second method has seen efforts from the Japanese school [?], [?] and others [?], [?], [?].
Except for the works of Yoshizuka et al. the interface complexities were not addressed to
any degree. Chemical reactions were addressed usually by an effectiveness factor or modulus
like the Hatta number, Thiele modulus, or the Damkohler group. There is actually a third
way to model the membrane that is much more fundamental than any presented so far in
the literature and we will develop the method for this study in later sections. For now the
equations for the two film theory without chemical reaction are listed in the following table.
These equations are derived using a simple differential solute material balance about.the
membrane (see Sirkar and co-workers) for countercurrent flow configuration the length of

the membrane is calculated as
cout
cn %)
Q 1 i(agp) m;
L = In (5.11)

T T[] | (- )
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For a given . z(a.q;,)’c:(O;,)’Ka‘I’ Qag, Qo,mi, L, and d;, , then the aqueous bulk effluent
concentration can be obtained by using the overall balance equation to obtain

. cn r{1-| e
o (1) - 2 1 (551D

out _
Cifag) = B {1_ o } (5.12)
e ™iQ0 — Qag
XP\ — 11U Qo

where LTU is the length of transfer unit very similar to HTU in typical mass transfer
operations and is defined by ..

Qag
LTU = —r—v— 5.13
where IV is the number of fibers in the module. Typically one needs to know the length of
a module to effect a certain effluent concentration. This is obtained by

L=LTU x NTU (5.14)
and the number of transfer units NTU is defined by

&n _ c:%b
1 i(ags) m;
' In

{1-[=&l} (s - %)

This method is valid if a module averaged K, is available. The equation to be integrated
is 5.6 and K, is available over the distance z along the flow direction if k;(,,) and k;(,g,) are
available as function of z and the value k;(r,,) is known. Generally this is not the case and
exact analytical expressions for these values are known as function of tube length for laminar
flow conditions for constant wall concentration or constant wall flux. Neither represent
the actual conditions in a hollow-fiber extractor. Prasad and Sirkar give a- method to
approximate these values assuming Kag £ k;(44,) for m; > 1 and uniform wall concentration
and laminar parabolic flow the analytical Graetz solution may be used. Two forms of the
solution are given; one for the average Sherwood number based on arithmetic-mean driving
force, and the other for local Sherwood number. Prasad and Sirkar [?]also use a more
simplified Leveque solution to attempt to theoretically calculate film transfer coefficient on
the tube side rather than the complex Graetz equation.

NTU = (5.15)

aq: dl: d, 0.33
Sh Itube— D. = 1.6151 [-i-RetSc,-] (5.16)
tag 4
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where [ kiag)dz = Fi(ag;)L and assuming K, = k;(o,,) and substituting this equation into
equation 5.13 then and analytical expression can be obtained for LTU. In general, to use
the Graetz correlation experimental data are needed to calculate empirical mass transfer
coefficients and determine if the equation is valid to describe the mass tra.nsfer coefficients

as a funtion of z.
Based on the Graetz solution for laminar parabolic flow and developing mass transfer for

uniform wall concentration Prasad and Sirkar have found the following corrlations describe
the tubeside coefficient for species i for hollow fibers of d;, ID and length L:

_ kuds, di, —¢
Shi= 5t =05 ( > ) ReiSoir— = (5.17)
where ‘
_ ‘iigvt
Ret == —'l—j't—, (5.18)
=
Se; = Dy (5.19)
N 4B f’i) _—2/L
C—; 4(%) (dr+ ,+=lexp(d,~,RetSci)’ (5.20)
Bn=4(n—1)+2.666, n=123,..., (5.21)
Bn,=—-(1)""1x 2.84606,6n_T2, (5.22)
_p (% - 0.33
Bn ( dr+)f+=1 =2 (1.012765;°%). (5.23)

These correlations were developed with both hydrophobic and hydrophylic hollow ﬁbers for
300 < S¢; < 1000 and 0 < Re; < 60.

The above were correlations for the tubeside mass transfer correlations the shell side as
Given by Prasad and Sirkar [?] are listed now. For parallel flow

Sh; = k‘ d" =5.85(1—¢) ( )Re"“s (5.24)
where
Re, = ¥, (5.25)
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— Vs
Sc; = e (5.26)
¢ is the packing density of the fibers in the module or shell, d is the hydraulic diameter
of the shell (4x cross-sectional area/wetted perimeter). Cussler and co-workers used the
following for parallel flow in the shell

Sh; = %-d—e =8.8 (%) Re, 8033 (5.27)
and for the tubeside mass transfer
Shi= %‘i‘—‘ =15 (%ii-) v (5.28)
Chemical Reactions

Sirkar and co-workers have recently evaluated the perforamance of membrane solvent ex-
traction with chemical reactions [?}, [?]. For an instantaneous reaction at the phase interface
of a hydrophobic membrane, then the aqueous film resistance (third term) of equation 5.5
will be missing; and, for a hydrophylic membrane the aqueous and pore filled resistance
term will be missing {?, page 32]. This is basically the Hatta modified two film theory of
mass transfer with a simultaneous reaction. Application requires a knowledge of the reac-
tion plane. Basu [?] considered two cases in the extraction of (1) Citric Acid from a dilute
aqueous solution using tri-n-octylamine in a diluent and (2) the extraction of copper

Case I Reaction plane is in the aqueous film
Case I Reaction plane is the phase interface.

In his study, Basu also used the contained hollow fiber liquid membrane. In this con-
figuration the stripping and extraction phases are contained in different filaments with a
facilitation fluid between them. Solute is extracted form a feed stream into the facilitation
fluid and then back extracted or stripped from the facilitation fluid to a stripping fluid in
another tube contained in the same bundle as the feed tube. Because of this both co-current
and counter current flow is obtained relative to the facilitation fluid.

The concentrations vary down the length of the membrane and are modeled by a series
of differential equations which are solved numerically using a Runge Kutta package form
IMSL. An analytical solution to the system of algebraic differential equations defining this
problem, like that obtained without a reaction in a single HFM, is not possible due to the
reaction at the interface being non-linear. Basu solved it numerically.
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In the absence of any chemical reaction the overall mass transfer coefficient will be a function
of-ceefficients [?, page 46]

1. five individual transfer ¢ -”’Hﬁq*"‘k
(a) Two aqueous boundary layers
(b) Two porous substrates

(c) and the Contained Liquid membrane

2. the fiber dimensior§
3. the distribution coefficients.

The prediction of mass transfer coefficients using methods previously discussed appear to
work fairly well for the contained liquid membrane system without a chemical reaction. For
a system with a chemical reaction the predictions of the mass transfer coefficients become
inaccurate and appear to be dependent on the type of reaction (irreversible or reversible) and
the direction that it occurs (from organic to aqueous or aqueous to organic). The ability to
predict the mass transfer coefficients for the reacting species is necessary for the theoretical
models. Calculations of mass transfer coefficients use the diffusion correlation of Wilke and
Chang devided by the effective thicness of the HFCLM. The calculations of the effective
membrane thickness from the experimental data and that using physical parameters of the
porous membrane differ by 4.2 times [?, page 204]. Basu gives three possible explanations:

1. Actual values of the membrane thickness, é,,, is much larger than that predicted
theoretically

2. actual value of the tortuosity is larger than that obtained from the literature and
manufacture’s information

3. there may be interfacial resistance of mass transfer not accounted for in the calcula,-
tions for the effective thickness using experimental data.

Basu, through gas permeation experiments, determined a value for the membrane thickness,
ém, to be 76.2 to 452.1 um. He states these are high compared to 110 um that were
theoretically determined based on a regular pattern development of the fibers in the module;
but, does not explain the large differences in the calculated effective thicknesses for the

HFCLM that are given by

trr =g () + (5) om (5.29)
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From this equation §,, only effects one term. Thus the effect of 8, is porbably not significant
enough to cause the large difference in and of itself. Using the value for &,, a value of
tortuosity was determined to vary from 13.4 to 14.6. These values are approximately 4.5
to 7.5 higher than normal values for this same type of membrane given by Kiani et al [?]
and Prasad and Sirkar [?]. Thus the higher values are attributed to interfacial effects.

This is a very relative and important conclusion for this study. As pointed out in other
portions of this report and other authors {?],{?],[?], [?], [?], (%), [?), [?), (%), (20070, (20, [7),
75, 121, 20, 120, (20, (20, 20, [0, [0, [2], [2], [?], the interfacial effects in solvent extraction,
especially in metal extraction, is extremely important. It also illustrates a limitation of the
film theory. The amount of citric acid removed, as for any solute transferred, is dependent
upon flow. The percentage removed is shown for the experimental and theoretical values
in Basu’s table 4.6-4 and 4.6-5. Though not shown, the difference in the theoretical and
experimental values varies from 14 to 36 percent. The theoretical value always being higher.
The mass transfer rate was also higher approximately 14 to 35 percent higher than the
experimental removal rates. Just observing the actual values they look close but do have
significant error though the lower end could be within experimental error.

However, as Basu himself recognized, his model has inherent inadequecies [?, page 172] and
the predicted or theoretical mass transfer coefficients values match the experimental values
for some systems and for others they do not. An example of this phenomenon is that of
acetic acid extracted from phenol-MIBK into water system and extraction of acetic acid
from phenol-Deconol into water. In the first sytem the experimental and theretical values
match fairly well. In the later they do not. Basu supposes that the the higher viscosity
of the decanol then the solute diffusivities in the membrane are low and the fibers were
different having a lower viscosity. The effects of diluent on extraction has been known for
some time and studied fairly extensively {?], [?], [?], [?]. The effects of diluents may enhance
the extraction by enhancing the chemical activity of the active organic consituant through
solvation or other phenomenon. :

Also noted in Basu’s dissertation is the time dependent mass transfer rates. Depending on
the sytem, the time to reach steady state took from 2 to over 12 hours . This in itself shows
that a model based on a steady state assumption cannot be used until after the steady state
is reached. As Higbie pointed out many years ago, the time of exposeure of a fluid to mass
transfer is short and the concentration gradient of the film theory indicative of steady state

does not have time to develop [?, page 50].
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Summary of Film Theory Modeling of Hollow Fiber Membranes

The two film theory offers a simplier model and good insight into the performance eval-
uations of hollow fiber membrane transport processes. It prevides a method to predict,
albeit limited, effects of some process parameters. To do so, however, requires empirical
correlations for each specific system. The most difficult disadvantage is that of the mass
transfer coefficients and relating them as a function of position along the membrane length.
The two film theory inherently assumes steady state concentration gradient conditions and
the study of the effects of transient influences is not easily studied. The more complex the
system is, the more difficult and less accurate the film theory becomes since it will lump a
great deal of the physical system together. In fact, Prasad and Sirkar actually had to go
to a more complete model, the Graetz solution to obtain correlations for the mass transfer
coefficient correlations. This is somewhat ironic since the film theory is usually used as a
predictive method for the mass transfer coefficients [?, page 50]. The two film theory allows
no study of the effects of the interface, complex reactions, complex geometrical flow (i.e.
random arrangement of fibers in the shell), or unsteady state non-qualibrium conditions.
Basu, in his study also noted that the time to steady state was long indicating insantaneous
reaction was not present or that the interfacial resistance was not negligible.

!

Additionally different equations for the mass transfer coefficients have to be formulated for
each type of membrane (hydrophobic or hydrophilic), the fluid flow configuration (counter
current or co-current), which phase is in the shell and which is in the tube, and what is
the direction of mass transfer (aqueous to organic or vice versa. This gives a possibility of
sixteen scenarios that have different modeling equations for the mass transfer coefficients.

Counter Current
Hydrophobic Hydrophilic
Shell Tube Shell Tube
organic aqueous Organic aqueous

organic—aqueous  oOrganic—-+aqueous
aqueous—organic  aqueous—organic
aqueous organic aqueous organic
organic—aqueous organic—aqueous
aqueous—organic  agueous—organic
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5.2.2

Co-Current
Hydrophobic Hydrophilic
Shell Tube Shell Tube
organic aqueous organic aqueous
organic—aqueous organic—aqueous
aqueous—oOrganic = aqueous—organic
aqueous oOrganic aqueous organic
organic—aqueous organic—aqueous
aqueous—organic  aqueous—organic

Rahul Basu’s[?] doctiral dissertation modeled and experimentally evaluated a contained
hollow fiber liquid membr2ne with a chemical reaction. An anaylis of his dissertation reveals
that the two film theory, though a simpler method for a first order evaluation to characterize
the process, is inadequate to predict performance of this process. Most of the difficulty lies
with the inability to realistically model the interface and the assumption of equilibrium
conditions. This assumption allows for a simple partitioning analysis which is more than
likely an oversimplification of a process that reacts at or near the interface. The interfacial
reaction is heterogeneous and can cause a departure from equilibrium especially if the
reaction is a slow reaction. This can lead to a reduction in mass-transfer rate. Conversely,
the spontaneous convection or the Marangoni effect can increase the mass transfer rate (see
section on Interfacial Phenomenon). Neither of these two deviations from equilibrium are

placed in the two film model.

Other problems of spacial configuration and orientation of the fibers especially between the
feed and strip fibers in the shell and the flow in the shell could be of significant importance.
The location of the interface may not be at the pore mouth of the non-invading fluid and
may be somewhere in the pore itself. Pore structure could be of high importance in the
diffusional analysis especially if the membrane is not as symetrical as assumed.

Classic models that improve on the two film theory such as the penetration and surface
renewal models may aid in obtaining a more representative model of the MHFM or HFCLM.
They are not restricted to steady state and have a method of surface age distribution [?,
page 51} and can be more readily modified to account for complexities of the system.. A
combination of the film surface renewal theory like that presented by Dobbins and referenced
by Treybal may give better mass transfer coefficients, but basically this would be the same
as that presented by Basu and using Graetz correlations.

Penetration and Surface Renewal Theory

The penetration and surface renewal theory are basically the same except that the surface
renewal assumes a probability function for time of exposure of a mass element to mass
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diffusion. The penetration theory has a set time of exposure. Secor and Beutler [?] have
used the pentration theory for diffusion accompanied by a reversible chemical reaction con-
sidering many geometries (plane sheets, flat plate with impervious edges, infinite cylinder,
a cylinder with impervious ends, and a sphere; but not specifically a membrane. A general-
ized treatment of the the diffusion accompanied by a single, generalized, reversible, chemical
reaction with the following assumptions:

1. The reaction is of the form

YaA+vBB - YMM + NN (5.30)

2. Concentration of A at the surface of the medium is constant
3. Concentration of B at is initially uniform throughout the medium
4. Species B, M, and N are novolatile.
5. Transport of all species is by molecular diffusion alone
6. The diffusion coefficient of each species is constant
7. Only a single reaction is kinetically significant
8. Heat effects are negligible
The d]ﬁeyptxal material balance for each species yields: Ob
o, (TAL204) _ 24, (k14*BP — & Ml(m'e)mical Potential Equation)
A 31:2 :vax = Bt TA(F1 2 enti uatio
8’B , A\@B\ _ 0B anf -
@B(axz +$6:L‘) = -5-4"73(’61.4 B -—kzMN) (5.31)
M  AOM\ _ M «RB o
9M(6:c2 +:z:6z) = -é-t——'yM(klA B — kyM*N") (5:32)
&N  AON dN anp oy -
vl ozt ) = oW (kA*B? — aM*N ) (5.33)

where A = 0 for semi-infinite medium or an infinite plane, A = 1 for an infinite cylinder,
and X = 2 for a sphere. The boundary conditions for these equations are

A = AOaB=BO)M=MoaN=NO1t=07 t=0,0<{z<x0 (534)
6B oM ON

A = A,,' . =0, — Bz =0, 'a—— =0, t>0,z=0 (5.35)
0A oB oM ON

= = 05 =05 =050, t> 0,z = 0. (5.36)
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Secor and Beutler solved the dimensionless forms of these equations with finite difference
scheme. By integrating the flux at the surface over the time of exposure and dividing by
the time of exposure the average rate of diffussion or flux is obtained [?]

1t (84
R=-3 fo D ('a?) g . (5.37)

The concentration profiles, rate of diffussion of species through the interface, and the mass
transfer coefficients as a function of time can be calculated and are presented by Secor and

Beutler.

The model is comparable to the film theory at high values of time and when the diffusivi‘y -
ratios are near unity. At large values of time the mass transfer coefficient ratio (coefficient

with a chemical reaction to that of mass transfer without a chemical reaction) approaches

a constant value where diffusion with an equilibrium reaction is represented. Olander [?]

has presented a model for several reaction mechanisms under equalibrium conditions using

the the two film theory and the surface renewal theory. These can be solved analytically

and the equations for the mass transfer coefficients for the reactions above are

— 10 ?ﬂ_i_] .
ka=k [1+ e (539

where

2 2
6 = 1 K?JE - 1) JEBLAL + ?-’!A,-K] +4 [——BBL + \/KBLAL] DN Ak
2 Dpm Dp M Dp
-1 [—&V-\/KBLAL + 2£KA,-] (5.39)
2 Dy Dp
and
MN |
-z . (540)

The mass transfer coefficients are functions not only of the various diffusivities and equi-
librium constants but of the concentrations at the interface and in the bulk of the reacting

phase.

Cho and Ranz [?], [?] investigated diffusion controlled and slow reaction zones in two
phase liquid reactions. Their approach is pertinent to the penetration model. Consider two
stagnant semi-infinite phases brought into contact along a plane interface, phase I containing
a dilute concentration of species A and phase 11 containing a dilute concentration of species
B. Scriven [?] was referenced to have shown that the reaction zone would move into one
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phase or the other, depending on the following ratio (assuming an instantaneous reaction)

_ ot [oF
¢= cf; = 52— (5.41)

If ¢ < 1, the reaction zone moves into phase II, while ¢ > 1, it moves into phase I, and
for ¢ = 1, the reaction take place at the interface. Scriven also gives the location of the

reaction zone or zone front z* for ¢ < 1 as

z* =28/t (5.42)
where 8 is determinec by
¢ (1 + mAAi erf ﬂ) = exp [62 (—Al— —.1)} erf [Aﬁ% } (5.43)

where A = —-Fr and A = —Fr when the reaction is in phase I changing notation can result in

the smae equa.txon for ¢ > 1 In this particular case (fast reactions) the system is in steady
state practically from the initial contact of the phases [?]. For a system with a slow reaction
a steady state is approached only after a period of contact. This system is dependent upon
the reaction order and rates. A reaction zone characteristic length is estimated and an
estimation of the raction zone thickness is obtained. Though this method is an interesting
analytical limit, it appears to be similar nature to Secor and Beutlers method (which would
be expected since it is built from the penetration model). The method becomes quite
involved for first order reactions and any system with reactions of order greater than first
order or pseudo-first order will be extrememly difficult albeit impossible to analyze. In
addition, as Cho and Ranz point out, there is no direct way of using zone front data to
estimate quantitatively the effects of interfacial turbulence on transfer rates and an indirect
method to obtain “reasonable approximations” is presented [?].

Facilitated Transport to Model the Hollow Fiber Membrane — The
Graetz—Nusselt Problem

Originally solved for heat transfer, this ﬁgmulation of the diffusion transport equation is
also applicable to mass transfer across walls of a pipe containing a fluid in laminar flow [?,
page 296). The problem assumes a sparingly soluble solute and a parabolic velocity profile
i.e. laminar flow in steady state conditions. A steady state balance equation written for a

tube with microporous walls

18 [ 8¢ &c ac
D (;-5; (T'a—r) + ‘3—2‘2') - ‘Uz'a—z =0. (5.44)
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The Graetz problem assumes that the axial diffusion is small compared to the axial con-

vection thus
8% Oc
:Da 7 Llg (5.45)

and therefor the term ﬁzg = 0 and is neglected. There has been investigations as to the
inclusion of the axial diffusion, primarily in heat transfer [?], [?]. The inclusion of the axial
conduction term for heat transfer (axial diffusion for mass transfer) is referred to as the
extended Graetz-Nusselt problem. The justification for ignoring the axial diffusion in mass
transfer processes is that for short tubes, solute diffusion occurs mainly near the wall and
the bulk of the fluid near the tube’s axis is pure solvent therefore axial diffusion is small

and can be ignored [?, page 299).

The governing equation for steady state Graetz equation for mass transfer in radial co-

ordinates is
e 1 dc; 8¢
D; ( 52t oo | =g (5.46)
v, is written as the average velocity over the tube diameter. Thus [?, page 46 and 538]
v = (v;)

(5.47)

v, = vz,max{ - (-%)2] (5.48)

ve = 2(vs) [1—(%)2]

2
v = 1—( } (549)
gives a relation for the local velocity in terms of the average velocity and the Gra.etz equa.tlon
becomes |7}
&c; 18¢ Be
D; (62-’--61' =bv 1—(R) e (5.50)

where a=0 and b=1.5 for parallel plates, a=1 and b=2 for cylindrical geometry {7}, [?].

Kim {?] [?] solved the Graetz problem for the hollow fiber immobilized liquid membrane
using four reaction configurations at the the interface:
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1. Equilibrium of chemical reversible equilibrium reaction inside the membrane
k
A+B ;: AB (5.51)
2. Coupled Transport

(a) Counter Transport Membranes with the equilibrium reactions
A+C- AC (5.52)

B+C- BC. (5.53)
Here the membrane is a supported liquid membrane with the species C (the -ar-
rier species) to be constrained to remain within the membrane (i.e. immobilzed
liquid membrane). The fluxes of the species A and B are opposite to each other.

(b) Co Transport Membranes with the reversible equilibrium reactions
A+B+C- ABC. (5.54)

Again the species C is constrained to remain in the membrane pores.

3. Facilitated Ion Pair Transport

At +B™ - (AB)Mm (5.55)
(AB)mM+C - (ABC)m (5.56)
Three of the boundary conditions for two of his scenarios are:
B.C. Facilitated Transport Counter Transport
1 ca=¢ z=0,alr CA=G }z=0,a11r
cg =10
dc %4 =9
2 S4=0 r=0,alz ngf_=0 r=0,all z |
—DA%A = kyasH [(1+ F4) (ca = caa)

+U (cacBd — €BCAG))

3 —D %4 = 1+ Fy)scy r=R,allz re=(
4G~ Roa L+ Fa) o4 ~Dp%E = kypsH [(1+ Fp) (c5 — cBa)
+UT (CBCA’d -_— chBd)]
F;=2¢%T  =AandB
_ _ DpKeer i,
Feq= D, (14+KeqcaH) U= QQKAgB;THCBd

A
P=(HKpcs+ HKpcp + 1) (HKscpa+ HKp¢

Kim presents the governing equation and boundary conditions for each of these different
scenarios. The differences are in the third boundary condition at the internal membrane
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wall where the reaction occurs. In comparison these boundary condition differences can
show a remarkable affect in the amount of solute transferred to the “dialysate side” of the
membrane. Kim shows the effects of the diffusion and reaction parameters changes due to
this boundary condition of solute-fluid system on the mass transfer rate of the solute in terms
of the wall Sherwood number, the dimensionless equilibrium constant, and the maximum
facilitation factor, and the dimensionless mixing cup concentration. He shows theoretically,
as others have shown experimentally, that the liquid membrane can significantly increase
mass transfer and selectively separate ions and species in dilute concentrations.

Of critical importance is the fact that this is a modal of an immobilized liquid membrane
system. Though s milar to the membrane contactor of this study, it does not represent
the hollow fiber memurane contactor in this study. It should also be noted that Kim used
the equilibrium, steady state of the membrane process on one filament assuming that all
other filaments will be the same and a multiplication factor is all that is neceassary to
account for more fibers.. To assume equilibrium, the Damkoéhler number for diffusion and
reaction for the species inside the membrane must be close to infinity. In many situations
the equilibrium case is not valid thus the non-equailibrium case should be considered [?].

This model could be adopted to the contactor for any number of reactions, but the limits
of equilibrium steady state reactions do not allow any complex computer simulation of the
interfacial phenomenon. The Kims solution of the Graetz model for membrane transport,
though a more thorough theoretical approach than the film theory, is still more of a perfor-
mance evaluation of the membrane process than a predictive model. Design criteria can be
obtained from the information that is presented and developed by this model; such as, for
counter-transport the carrier species should be chosen to have a large K4 and a small Kp.
This qualitative but valuable information is discussed in the thesis and are not reproduced

here. ,

As is noted and has been discussed before the characterization of the diffusion and reaction
rate parameters for the membrane itself, i.e. the diffusion constants and reaction rate
constants, are effective parameters for a hetergeneous porous medium filled with reactive
liquid. Thus the need for the membrane porous structure to be accounted for [?].

The Approach to a more Substantial Theoretical Model

Recently Yoshizuka et al [?], [?] have developed a fundamental model attempting to
account for the kinetics and mechanism of extraction and stripping through hollow fiber
membranes. Since for a membrane extraction process
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5.3 Modeling of Transport in Porous Structures

In microporous membranes most models assume constant uniform porosity. Howevr, in
reality this is probably not so; though, for symetric membranes the pore size distribu-
tion is fairly uniform. The problem arises when pressures increase above the crititcal or
breakthrough pressure then there will be penetration into some of the pores. However, if
the pore size changes within the membrane thickness this does not create a situation of
breakthrough. Partial penetration will result in the interface location not to be fixed and
certainly not known and the membrane transfer coefficient expressions become unknown.
Thus the solute transfer becomes unknown [?].

In the study of effective transport properties different approaches have been used to elim-
inate the microscale dependence of the local fields or intrinsic properties. There are a
number of techniques to derive a macroscopic approximation model for the closure problem
of a microscopic spatially periodic system. Whitiker, Stroeve and co-workers have pre-
sented extensively in the literature on volume averaging techniques of multiphase transport
in porous media [?], [?], [?], [?], [?), [?], ), [Z), [?], (2], [2]. Soria and De Lasa {?] have
also presented theoretical analysis on averaging techniques. Regalbuto [?] use a maxi-
mum principle for an approximate solution to nonlinear diffusion reaction boundary value
problems. They used Langmuir Hinshelwood reaction kinetics within a porous catalyst.
Moment matching, moment-difference expansion are mentioned in the references of Mauris’
paper who uses homogination techniques to model the diffusion and convection of a solute
through a packed bed. Few of the papers consider a reactions and those that do use an
irreversible first order model. Mauri [?], following after Shapiro and Brenner [?] who used
the matching of moments technique, model a reactive solute transport in a spatially peri-
odic porous media. Hornung and Jager [?] use the homogination technique to model the
diffusion, convection, adsorption and reaction of chemicals in porous media. Ochoa-Tapia
and Whitaker [?] state that these methods produce the same macroscopic equation and the
same closure problem that is used to determine the dispersion tensor. The correspondance
between the method of averaging and of spatial homogination was compared in one of their
references by Bourgeat. Ochoa-Tapia et al {?] use the averaging technique to model facil-
itated transport in porous media. and alos bu by Kim [?] and Kim and Stroeve [?]. The
method of spatial homogination is popular among mathematicians.

The above techniques are approximations of complex systems that are assumed to be treat-
able theoretically. If the magnitude of the complexity of the microscopic system does not
allow numerical simulation, one may be forced to use one of the aforementioned techniques.
Averageing transport equations for multiphase systems seems to be the most widely used
especially in engineering circles. This is probably due to the averaging of local instanta-
neous transport equations being valid inside each phase, interface and contact line. The
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substantial advantage over other continuum approaches is that the physical meaning of the
different averaged quantities is clearly extablished [?]. However, when certain constraints
concerning the characteristic time, lengths, and the micropore Thiele modulus are not sat-
isfied [?] then the diffusive transport can not be treated by the averaging technique and can
only be described in terms of the separate transport equations for the macropore phase and
the micropore phase if no other scaling technique is shown to be valid [?, page 217]. Most
of the reported works thus far in the literature concerning the mapping of the microscale
to the macroscale have contained limited if any non-linear reaction terms. Most of the
reactions dealt with thus far are single, first order, irreversible homogenous reactions. A%
present, as far as I know, there has been no theoretical treatment of transport in corrplex
geometric structures with complex reaction chemistry. Though initially these methods are
appealling the theoretical basis is limited to a very select grouping of reactions. Thus we are
proceeding with a more fundamental development of transport in porous membranes with
reaction at an interface and in a homogenous fluid. Harada and Miyake [?] considered both
homogeonus bulk phase reactions and heterogenous interfacial reactions in the extraction
of copper(II) but not in a porous structure.

5.3.1 Geometrical Properties and Solute interactions due to Porous Structures

The modeling of membrane pore structure is difficult because of the unknown geometrical
trajectories and connectivities of the pores inside the wall of the membrane. A medium can
have a high degree of porosity but a low connectivity and the transport property is severly
restricted. At the macroscale a regular array of spheres or cylinders is one of the most
artificial and simplest models of a porous media. This concept is referred to as spatially
periodic porous media. The spatially periodic structure is extremely unlikely to occur
naturely at the macroscale but can and does occur at the atomic scale [?, page 10].

The structure of a porous media may allow the induction of a significant simplification in the
media’s modeling description and thus important consequences to the transport processes
that occur in the porous media. This structure is an invarient geometric property that may
induce symmetry or a relationship of characteristic correspondence, equivalence, or identity
among constituents of an entity or between different entities. Two different types geometric
symmetries are distinguished in the study of porous media [?, page 29]:

e Translational Symmelry is the classic concept that many materials look much the same
at different locations. If the material has a well balanced population of constituents
of the properties then it can be classed as translational invariant or homogeneous
material of that property. Material that exhibit constant overall geometric properties
such as porosity as one moves from one point to another by translation is classed in
this category. Most material are not homogenous but their properties can be derived
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from a finite sample. The whole medium is then reconstructed by the juxtaposition
(side by side placement) of identical samples or cells in space and the spatially periodic
structure model is born.

e Dilatational Symmetry is a scale or size similarity. Fractals or self-similarity are used
to describe this symmetry. This type of symmetry is a fairly new concept.

There are three modern theories of porous media [?]:

1. PERCOLATION TFEORY (ca. 1957) deals with completely random matena.ls without
any spatial cor relatl‘

2. FRACTALS (ca 19'.’5) which characterize materials by self similarity at different scales

3. RECONSTRUCTED MEDIA (ca. 1990) where the porous materials with given statisti-
cal characteristics are reconstructed numerically. The local field equations are solved
numerically inside these media with appropriate boundary conditions and the macro-
scopic fransport equations are determined by spatial integration.

In to deal with a porous media or structure some definitions are essential. First and obvi-
ously fundamental for porous material is the concept or definition of porosity. The concept
is simple enough — porosity is the void space within a solid that can be occupied by one
or more fluid phase(s). Mathematically following after Adler [?, page 19] if a porous media
occupies a volume, V, in R such that each spatial point r belongs to the solid phase (S) or

pore (void or liquid) space (L).
VW eR3,3reSuL (5.57)
Defining two phase functions X; (r) and X (r) as

__J lifr € phase K
X (r) = { 0 otherwise, (5.58)

where K = L, S and the volume of the phase K is denoted by Vi. In general for porous

media the interface between the two phases (i.e. the liquid and solid is assumed to be

negligible. In this study this will be done also. However, it should be brought out that we

have two different phases in the pores and thus an interface between these fluids. This fiuid

interface cannot be neglected since it is an integral part of the membrane process. Most of

the attention in the transport in a porous media is focused on the pore space [?, page 19]
" as will be our focus in this study. Therefor,

Xp(t)+ Xs(r) =1 (5.59)
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and focusing only on the void space and dropping the L index

X@)=X,(r) (5.60)
and using a distribution expression for the derivative of the phase functions
VXg(r)=-bs5(r) vk (5.61)

where 65 (r) is a one-dimensional Dirac delta-function across the interface and vx is the
outwar normal to phase K.

Integrating the spatial properties of the phase function give us the porosity property
e== ]V Xz (r) - dV () (5.62)

€ generally depends upon V but when V is large enough the ¢ is independent of V. As V
tends to infinity the € tends toward a limit.

6=VH_I.1;°%./‘,XL(r)-dV(r)

The interconnectivity of the pores of a media is the emphasis of most theories on modeling
of porous media. The accounting for dead or closed porosity is problematic. Tortuosity was
introduced by Carma (ca 1937) [?] and was defined as the sware of the ratio of the effective
average path length L. in the porous medium to the shortest distance L measured along a

particular direction of macroscopic fluid flow.

L.\?
T= (_f) . (5.63)
The geometric tortuosity can be defined by using the concept of connected components. If
any two points r; and rj are a subset of the same connected component or subnetwork and
Lpin (r1,r2) is the length of the sohortes path in the fluid space that connects r; and rp
then the geometric tortuosity of this particular set of points can be defined as (?, page 24]

« 2 -
16 (r1,r2) = [ET;:-SI.—:;L)} ,r2 € CL(r1).- (5.64)

At this point the modeling of porous structure by necessity expands into the three theories of
spatially periodic structures. The application of these theories to the study of the structure
and effects on the transport process of porous membrane structure is important, fascinating,
and tempting; however, the discussion and use is judged to be beyond the scope of this study
at this time.

A common practice of modeling membrane transport is to treat the hetrogeneous mem-
branes as if they were homogenous permeable membranes without considering the effects or

PRSI
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interaction between the pores and the subsequent distortion of the flux. This assumption
that the pores are so closely spaced that the membrane is homogeneously permeable shows
a diffusive resistance, Ry, related to its porosity

{

Ry = 5; (5.65)
where D, is the pore diffusivity and ! is the membrane thickness [?]. A phenomenologi-
cal approach of the pore structure resistances (permeabilities) can be implemented if the
experimental data is available. This treatment does not generally relate each term to the
intrinsic characteristics that the irregular morphologies (variations in the proe sizes, sloping
in their trajectories, etc.) present in a hetergenous membrane. These complex spatial vazi-
ations require a more thorough analysis of the membrane structure and the introduction of
these details in the flux models [?]. Another complexity is that of the streamlines of diffu-
sive flux being distorted around the mouth of each pore. This distortion of the diffusional
boundary layer has been recongnized as a potential factor in controlling the transfer rates

in membranes [?].

The pore interaction has been modeled by Glandt [?], [?], as power series expression of
Henry’s Law for the partition coefficient for an equalibrium distribution of a solute between
a bulk phase and very small pores. When Henry’s law operates then the solute concentration
is uiform across a section of the pore, exce[t for the inaccessible periphery where it is zero
[?]. As the concentration of a species is increased the concentration inside the pore becomes
spatially nonuniform near the pore walls due to solute-solute interactions. At or near the
center of the pore the concentration is close to that of the bulk phase and a layering effect
becomes apparent in the pore — an enriched region exists along the pore walls. Glandt
notes that this preference of the solute molecule for being in contact with the walls is a
result of the structure causing effect of the solid on the fluid and not by any attractive
or adsorbing potential or mechanism associated with the walls of the pore. The partition
coefficient, K, is a consequence of solute-solute interactions at finite concentrations and is
no longer a constant function of the geometry. The virial-type power series dependence on
the bulk concentration is given by Glandt as ’

K=Ko+Kicy+ Ko +... | (5.66)

where K, Kg ( Henry’s law constant) are dimensionless and K, has units of (molar volume)™.
The virial coefficients Kj, K3, etc., can be calculated from the knowledge of the effective
interactions between solute molecules with the pore walls. When the ration of the hard-
sphere diameter d, which Glandt based his work, is small compared to the diameter of a
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cylindrical pore D or A = % — 0 then the constants are

23

K} ~ 'n'( _Ev) asA—0 (5.67)

-2
K} =~ 7r(-—3-—+z\2) as A — 0 (5.68)
Glandt defined these in a dimensionless form using a reduced bulk concentraion and Avo-

gadro’s number N4

& = cd®Ny (5.69)

* Kﬂ-
Kn - (d?’NA;n (5.70)

v o-

Ko = — (5.71)

v
where V' and V are: the volume accessible to the center of the molecules, and the pore

volume respectively and equation 5.66 becomes
K=Ko+Kic+EKic +... (5.72)

Glandt [?] shows that for a limiting situation of the pore diameter approaching the dimen-
sions of the hard sphere molecule, A — 1, that the molecules behave effectively like hard
rods and the centers lie very close to the pore axis. And, as such, the properties can be
exactly solved for and the activity of particles in the pore is

2 7ed® ‘
) e

where T is the average molar density {; inside the pore. When equated to the activity of
the bulk fluid in equilibrium with the pore

_ 8n — 992 + 3n°
ay = cpexp [——-———(1 e ] (5-?4)

a relationship between T and ¢, can be obtained which determines K (cb)-

The effect of pore size distributions on the effective diffusivities was studied by Cui et
al [?]. Effective diffusivities are global parameters which lump complicated geometrical
structure together with the diffusion process. Cui et al determined that the effective and
mean diffusivities are not independent of the the geometries at a micro and macro scale and
also have a coupling between the diffusional transport and other physico-chemical process
such as adsorbtion. Determining the tortuosity without taking into account the adsorbtion
phenomenon, when appropriate, of the actual solutes can lead to erroneous values. Defining

diffusivites
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e D = the diffusivity in the homogenous fluid

e D, = the effective diffusivity in the homogeneous fluid corrected by the internal
porosity € and the tortuosity 7

e D' = the effective diffusivity in the pseudo-homogeneous solid accounting for diffu-
sion of molecules both in the fluid phase and on the adsorbed phase

e K4 = the adsorption equilibrium constant (m3/kg)
e p, = the particle or species density

v __E r_ E _ Dg.pp
Depp=7D D= r(e+ppKA)D T e+ppKa (5.75)

From these definitions a mean diffusivity determined by different techniques can be estab-
lished. Further expounding on this work will not be fruitful since these authors have used
a linear adsorption technique to arrive at an equation to determine the mean diffusivities.
Using the above definitions as well as the reaction kinetics, interfacial adsorption kinetics,
and transport equations developed subsequently in this study, basically accounts for the
physico-chemical coupling that these authors discuss are so important.

Beeckman [?] gives an exression for the tortuosity factor as a function of the porosity for a
catalystas:

r=—= 5.76
1—(1—¢)3 (&%)

He derives this from a statistical mathematical description of a heterogeneous catalyst and
a travel and branching process. The tortuosity factors calcuated from the above equation,
Beeckman claims, are within the range of values reported by Satterfield. At low porosities
the tortuosity factor approaches three. The introduction of dead in pores lead to an increase
in the tortuosity above three. For high porosities the factor approaches unity asymptotically.

Deepak and Bhatia [?] attribute higher than theoretically expected tortuosity to correlation
effects arising because of meandering of the species being transported in the network result
in the path being retraced. These authors also derive an equation from transport theory
taking into account the pore geometry and effects of the medium using the correlated
random walk theory. They report that the effective diffusivity is not significantly affected
by chemical reactions which is in contrast with Hollewand and Gladden [?]. Hollewand and
Gladden report that the effective diffusivity is significanly affected by chemical reactions in
the pores, with the tortuosity decreasing with increase in the Thiele Modulus. According
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to Deepak and Bhatia the effect that Hollewand and Gladden observed was due to finite
pore level Thiele modulus under which the usual Fickian modal for transport is suspect [7].

5.4 The Diffusional Macroscopic Governing Equations for Membrane
Interfacial Mass Transport

Consider two immiscibe phases, o and 3 phases, that are in contact and have different
concentrations of chemical species in each respective bulk phase. From Bird et al. [?, page
557) the transport equation of species i in the f phase is given by

Jc; ‘ _
S2+ (V- ") = (V-DpVe;, ) + Ry (5:77)
and the transport of species 1 in the o phase is given by a like equation or
¢
e 4 (V- 0,0%) = (V- DaVes) + R, (5.79

This assumes reaction occurs primarily in the bulk and therefore is reaction limited (reaction
rate is slower than diffusion rate). Most cases of liquid/liquid extraction of metals are
diffusion limited and the reaction takes place at the interface. The boundary conditions
become the limiting step. From Ochoa et. al.[?] similar equations have been developed in
general for cellular membranes.

%c't"i - (v : szc,-,,) (5.79)

The above equation, which is Fick’s second law of diffusion, assumes no velocity gradient
normal to the species transport and thus does not contain the hydrodynamic flow of the £
phase. The flow term is inserted in the equation below.

dcig

at
Note that the reaction term is not in equation 5.79 or equation 5.80. The boundary con-
ditions will incorporate this information for reaction at the interface. Equation 5.77 can
be used with a reaction in the bulk and at the interface. If no reaction involving species ¢

occurs in the bulk phase, R;, is zero.

+(V-cv*) = (V . i)chiﬁ) : (5:80)

Rewriting equation 5.77

Foiz 4 (V- ciot*) = (V- DaVeia) + Fia (5.81)
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5.4.1

The general boundary conditions at the a — 3 interface
dc; -
B.C.1 S +(Vs-0,0) = (Vo DuVacs,) + R, + 0o |3, | (5.82)

If we assume that there is no convective transport along the interface then equation 5.82
becomes

ac; -
it = (Ve DuVies,) + B, +1iag | 3 | (5.89)

and the second boundary condition for the o phase is

B. C. 1-o

B.C. 2-a ¢, = f(ri,t) (5.84)

note that n,g is the outwardly directed unit (normal) vector at the interface pointing from
the o phase to the § phase and equation 5.83 reflect diffusion species ¢ from one phase into
the other at the interface and therefore there is no accumulation of species ¢ in the interface.
This is in keeping with the concept of a two dimensional surface for the definition of the
interface. Where r in equation 5.84 is the position vector and t is time scalar.

The initial conditions are:

G, =i, forallr _
ey = cip for all x } fort=0 (5.85)

and in the 8 phase the transport equation is

dc;
22+ (V- epvt) = (V- D4Ve;,) + Rs, (5.86)
and the boundary conditions are similar as in the o phase. At the interface the boundary
condition is the same:
6 3 - X
B.C.1-8 it =(V,-D,Veei,) +Ri +nop | 3s, | (5:87)
and the second boundary condition for the 8 phase is .

B. C. 28 ¢, =f(ry,t) (5.88)
Derivation of Governing Equations in Cylindrical Co-ordinates Non-Constant
Diffusion Coefficient

The transport equations in cylindrical co-ordinates for hollow fiber membrane separation
processes are developed from the general equation given in equation 5.81 and 5.86. These
transport or balance equations and boundary conditions are a very general formulation in
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vector notation. Since the problem at hand is to model the transport of a species from one
phase to another via hollow fiber membranes a suitable coordinate system is the cylindrical
co-ordinate system. Most work that has been accomplished in hollow fiber contactors
has been to simplify by assuming a constant diffusion coefficient ® with concentration
we will not, at this time, use this simplification. To transform the above equations into
the appropriate useful equations we will use the relationships of spatial derivatives of unit
vectors [?, page 737]

2 6. =6 @59 =-6, 56,=0 (5.89)
26.=0 £6=0 £6,=9

and the properties of the dot products of the unit vectors

61-6) = (62-8) = (6s-85) = 1
{(51‘5;) = (52'52) = (62-63 =0 (5.90)

The definition of the del operator (V) or nabla for cylindrical co-ordinate system is

0 10 i)
V—&a + 69— 89+66

and the gradient is the operation of the nabla over a scalar quantity such as concentration
(c) and is given here to be

Oc 10c Oe

(5.91)

Ve =8,— = + 8g—— 69 +§,— =3, (5.92)
and multiplying this gradient by the scalar diffusion coefficient D gives
dc 10c dc ‘
and since a scalar multlplymg a vector is commutative '
Oc 1_dc dc
Vc_éi)a + 8p— Qae-i-di)a (5.94)

and the divergence given by the dot product of the V operator over the above equation is
represented by

a 10 0 dc dc de
VOVe= (5,.6? +69—5§+61&-)-(6r (@6 ) +602 (%e) +6, ( = ))(5 95)

= & da{r( gﬁ)]'l'&r gr[ﬁe%(s-gg)}qtar-g;[éz(@%)]-r
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5o - 1;{)[,(532”)]%9 1369[69 (.’Qg;)}-i-&o 1660[6 (@-3—2—)]+
6,--(%[,(@26)J+6 66[53 ( Z;)]+6 gz[a, (@-2—2)} (5.96)

Expanding the dot products of each of the terms above results in the following

- {loow (o5) 525 (5]

(%9_6£> +6,- 1950663} +

88 o

[o-- 05 (o) + 00552 ]} +
E[ae-arés%( 2+ (o%) (%)) +

b0-2 2 (202 46, Hn o]

rr 06 06

10 dc 1 8c\ 06,
[69'6;;55(338)4-50 ( 3)60J}+
1 6 dc dc 06,

8 (1 _dc 1_8cdbe
8= 805, (;%) +0s ‘955'5;] +

e dc Oc\ 88,
[52"’356 (%)” ( a—) az]}

(5.97)

Using the relations in equations 5.89 and 5.90 reduces equation 5.97 above to a substantxally
reduced form

V.-DVe = [a( ﬁ)] + (0] +[0] +

T7; o
[.sg (mg;) 53] [1 630 (lsag;)] + [69 : ;l-isag—;- (—ar)] [0+
o+0+ |5 (23] (5.98)

accounting for the commutative law of multiplication in vectors and scalars gives
1 1
_0 (@ac) +80- 60~ lpde 10 (1 66\ +60(—5,) 2:966 + 2 (saac> 5.99)

ar\ o ar  rof 0 08z \ 0
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and applying the same relations of equations 5.89 and 5.90 gives
g dc 1 _ 8c 18 (1 _0dc 7] Oc
= 51: (@E) + 'Dar + - 1'30 ( 5355) + 5 (@'b;) (5.100)
expanding the first, third, and fourth terms (no expansion is possible on the second term)
gives

-5 =

+

dc oD D 3 1my8c D
= [P% + ER| + 2% + 1955 (
dc D
{952 + 55
expanding the third term further
= D&% 4 90D Do 13 1Yor , 1 (8c (8D i
= [0Fs+ 52|+ 24|+ [Lo% (%) 5+ % (5 (B +2%3))| + (5.102)
+ 9626 + dc 8D ‘
822 7 5z 0z
It should be noted that the first term of the third bracketed term is zero since the r and 6
co-ordinates are orthogonal and the equation for the divergence of the gradient of ¢ becomes

8%c  0cHD D de 1 (8cdD d%c 8%  8c oD
{53 +—-——} + [——] + {;5 (———+©—)} + [Da T+ 5o ](5 103)

D

4 (o8) -

or? ' Or Or r Or 86 06 862

rearranging the above equation

8 Doc 8coD dc D &%c 0%c  8coD
Vove= [9573 oo 67‘] [ (69 a0 +959—>] [96_5 T 5252 } (5.104)
the terms in this equation can be reduced to
10 Jdc 190 Oc [ & dc
if © is assumed constant (i.e. %—?— = %%— = %2 = 0 then equation 5.104 becomes
&  18c] , [1 (% %] "
DV -Vec=2 {[573 + ;.6—7‘] + 2 W)] + [éﬁj - (5.106)
or the reduced format equation
18 ( 8c 1 [0% 0%
DV -Ve=2 { B ( —a;) + 3 (5—93) + ag:l (6.107)
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which is the laplacian. Now, if the concentration is assumed not to vary in the circumfer-
ential direction i.e. with § &£ 9¢ = () then equation 5.104 for V - DVc becomes
8% 8cdD Déc 0% 8cdd

61'2 *ar or or T r or +g‘67 + 8z 8z (5.108)

The term V - cv* of the general governing transport equation is expanded in cylindrical
co-ordinates in a similar fashion to the divergence of the gradient derived above.

V-DVe=9

V-cv*=Ve-v*+¢(V-vY) (5.109)
from (?, page 739B table A.7-2].
1 a’Ub avz
* -— — —— ———
c(V-v")= c( (rv.) + (66)+ Bz) (5.110)
and Vc- v* becomes
10c Oc
* ———— —
Ve-v* = vra +vg =90 +vzaz (5.111)
adding these two equations together
dc 138c dc 18 Ovg v
* b = z
V-cv =vro- + vg 60+ 25 +c( (rvp) + = (69)+6z) (5.112)

assuming that there is no bulk flow in the € and r direction defines %—”g— = %’"{- =v,=v9=0
and equation 5.112 reduces to

dc = Ov,

V —
Badiaker ks>
Re-writing the general transport equation (equation 5.81 and/or equation 5.86) for conve-

nient review

6°‘+(v av*) = (V- DVe) + R; (5.114)

(5.113)

and substituting the appropriate cylindrical terms in gives the transient transport with
reaction equation in cylindrical co-ordinates for a non-constant diffusion coefficient
: D;

?,;‘ +vzg(;’ +°‘?32 —D,g:; 2?6;3 +=3 gc, +D; ZC; + gc,aai), +R; (5.115)
The above equation has the homogenous reaction term R;. Vandegrift and Horwitz [?] show
that the extraction of Ca(Il) with HDEHP is complexed at the interface which is the slow
step of of the reaction. They also show that the kinetics are first order and that macro and
tracer metal extraction studies showed equal mass transfer rates. According to Vandegrift
and Horwitz these two facts as well as other data give strong support that the extraction of
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metal by HDEHP is by a complex formed at the two phase interface and not in the aqueous
phase. Thus the reaction is contained in the boundary condition for most metal extraction
by HDEHP and the above equation becomes

dc; dc; v, 8% G 8c; 9D; | D; dci &%c;  Og oD;

TR R ikl il i iy L A
Liquid membranes inherently consist of two interfaces. The membrane contactor separates
the interfaces into two operations— the extraction and the stripping stage. The interface
between two immiscible phases is the most critical and complex part of the liquid membrane
extraction process. Thus, considerable effort in this study will be directed to understanding
the chemistry, the physics, and mathematical modeling of the interface in order to model
and simulate the membrane contactor.

(5.116)

An interface is conveniently idealized as a two—dimensional, singular ‘surface’ possessing a
microscopically defined location, configuration and orientation between a pair of contiguous,
three-dimensional, immiscible bulk—fluid phases. The above definition could be viewed as
verbal mathematician’s rendition of a surface — a surface that has no thickness. A fluid
interface is not a truly two—dimensional material entity. The interface is a three dimensional
very thin region where the system’s properties change rapidly {?, Chapter 7 |.

The transport processes at and through the interfacial transition zone is analogous to vol-
umetric transport processes occurring in the bulk phases [?, page 41]. As pointed out by
Edwards et al [?] two scales of analysis can be used to describe the transport processes
through the interfacial zone between two phases.

The macroscale, or conventional view of the interface is described as a deformable, two—
dimensional, singular surface model and uses phenomenological relation functions as bound-
ary conditions imposed upon volumetric transport fields(gradients) at the interface. These
constraints are derived from analogy similarities with existing conservation and constitutive
transport laws for three-dimensional fluid continua. The ultimate characterization of the
interface and it’s fields cannot be understood without a thorough micro mechanical analysis
of the interfacial transition region. For operational purposes macro mechanical phenomeno-
logical properties such as interfacial tension, interfacial viscosity, and interfacial elasticity
may be sufficient to describe the transport phenomena between two different immiscible
fluids.

The mircroscale model is a more rigorous, fundamental three dimensional interphase de-
scription. Thus the second scale is a first principles approach at the molecular level to
model interfacial transport. The use of the micro scale theory in a liquid/liquid extraction
process using micro porous hollow fiber membranes to stabilize the interface, is of interest
and will be modeled and examined if time in this project permits. As a preliminary, since
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the macro-analysis is inherent in the micro continuity equations, the transport, constitu-
tive boundary equations are developed for a hollow fiber liquid/liquid membrane extractor.
Thus, the interface of the membrane contactor will be the first boundary condition.

In general for fast reactions and in well stirred systems two assumptions hold for transport
in liquid membranes

1. Steady State

2. Linear concentration gradient through the membrane

when the transport mechanism is simultaneously controlled by diffusion in the bulk phases,
diffusion in and through the membrane, and by interfacial chemical reactions the theoretical
treatment is complex [?]. Danesi et al as well as other workers have presented models for
the extraction of various metal species using the simplifying assumptions:

1. Metal concentrations is much smaller than the extractant
2. Extractant is assumed to behave ideally

3. linear concentration gradients for the metal cations

4. negligible concentration gradient for the hydrogen ion

5. stationary state conditions (steady state)

Ideally the boundary condition one would like to use would be the overall extraction rate
based on the controlling reactions. However, as has been discussed in the Kinetics chapter
of this study an overall extraction rate is difficult at best even for very simple processes
or imposing conditions on the extraction process that oversimplify the process. Assuming
a controlling step or steps a priori allows a researcher in some instances to reduce the
complexities to a manageable problem. This is not an incorrect scheme and requires a very
intuitive understanding analysis of the the problem at hand. But it also restricts the model
to a very specific sub-scheme of the larger model. We would like to avoid this if possible
and model the extraction process in the most general method as our current capablities will
permit.

For each phase i.e the aqueous (aq) and the organic (org) every specie that is involved in
the extraction reaction will need to be modeled by a diffusion equation as given by equation
5.115. Equation 5.115 has a reaction term for reactions that occur in the bulk phase.
These reactions are a result of partial distribution of the extractant between the organic
and aqueous phases, the dimerization reaction, if any in the organic phase, and adduct

LT S
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reactions in the organic phases. Primarily liquid liquid extraction reactions occur at the
interface and this is in the boundary conditions. Thus for specie ¢ in the aqueous phase
dc; dc; dv 8%c; 8¢ 09; D; 6('4 &%c;  Bc; 0D;

z— co— -
5T rEm e et e e TR Yo 5, I BA1T)

and for specie 7 in the organic phase where the overbar indicates organic phase

5 50 O =T 0GOD: Didh 0% 06D
5% 5% e e T o T2 T o, 5 16 (B118)
the transport equation in the pcres of the membrane is given by the following note that

there is no convective transport in the pores for this study and &, is the porosity and 7, is
the tortuosity.
d¢; € _ 8%; €0c¢8D; s@,@c, e _ 0% €0c; 09;

Bt T o2 Trar or Trror (7002 Trezar o (G119

5.4.2 The Reaction Term

The reactions listed here are discussed in detail in the kinetics seciton of this report.

Homogenous Reactions
Aqueous Phase: The following reactions can occur in the aqueous phase:

DISSOCIATION OF THE EXTRACTANT IN THE AQUEOUS PHASE

m [HA] k’f_“a m [H¥] +m[A] (5.120)
FORMATION OF METAL EXTRACTION COMPLEXES
M+ [EA) 2 [MACD] ) R = B '-
[M’”+]+[A ] 'il:a [MA(m—1)+] Ky, = hfﬁfm:? (5121
T T ey B U et

. (m—2)+ MAgn—2)+
[MaC-D+] 4 (AT] 2 [MAPT] Koo = preeag

—2a
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_ k _ MAS™ ™3+ [HH]
[MAgm 2)+] +[HA] : __33 [MAgm 3)+] + [HY] K3 = ‘et ]

_ (5.123)
(m=2)+ ks (m—3)+ MA:(;m 3)+
[MAS™2*] + (A o [MAS ] Kaa = fempe

km MARJ{HY
[MAT_,] + (Al o MAR +[HY] Km= {M,,.*-x]'l[HA]
kme
[MAL ] +[AT] 77 MAR] K, = s

Also the hydrolyzed metal ion can exist, though in some cases such high pH it may be small,
and needs to be accounted for

(5.124)

[M™F] + [H20] ,:Eyd [M(OE)™-1+] + [HY] | (5.125)
[M(OR)™-+] + [HA] Frve [MA—D+] + [H;0]
e (5.126)

[M(OH)™=1+] + [A7] :"-”"“ [MAG-D+] 4 [OH"]

—hyda

and the rate equations mathematically describing or modeling these reactions are:

re = ko[HA]™ —k_o [HT]™ [A7]T (5.127)
o= ki [M™][HA] - k_y [MACD4] [HY] (5.128)
ra = ki [M™][A7] = ko1 [MACD] (5.129)
re = k [MA(’"-1>+] [HA] — k_p [MAgm-2>+] [HY] - (5.130)
roa = ko [MACD] [A7] — kgq [MAS D] (5.131)
rsa = ks [MAS™ ] [A7] — kosa [MA Y] (5.132)
rm o= km| fa] [HA] = ko [MA] [H] (5.133)

Tma = Kma [MA;—:-l] [A-] = k_m, [MAn] (5.134)




5.4 The Diffusional Macroscopic Governing Equations for Membrane Interfacial Mass Transport 137

rhua = Fhya [M™] = k20 [MOH) ™ D4] [EY] (5.135)
Thyd = Khya [M(OH)(’""U"'] [HA] - k_pya [MA(m_1)+] [HY] (5.136)
Thyta = Knya, [MOH)™ %] [A7] — k_pya, [MA<m-1>+] (5.137)

Organic Phase: THE SELF ASSOCIATION OF THE EXTRACTANT OR POLYMERIZATION IN
THE ORGANIC PHASE

kpoty [HyAy]( )
HA - [HA Ko g, = ————— 8] _
[y ](Org) k—poty { Y y](org) poly [HA];I(,Jorg) (5 138)
Tpoly = Kpoly [HA] — k—poty [HyAy] = Kpoty [HA] — k_poly {HA]y (5.139)

This POLYMERIZATION PHENOMENA can also occur between other types of extractants and
cause a synergistic affect of extraction. The self adduct formation to satisfy the coordination
saturation demand by adding one or several molecules of the undissociated acid HA. The
complex formed is

s MA,, -z (HA
[MAm]org +z [HA]org kk—_add {MA""' T (HA)]OTS Ka.dd (org) = [[MAm] ( )]

org
T (5140

org [ org

Tadd = Kadd [MAm]org [HA]:rg —k—add [MAm T (HA)]org (5'141)

Heterogenous Reactions at the Interface:

Partitioning of the Extractant between the organic carrier and aqueous phase:
INTERFACIAL PARTITION OF THE ORGANIC EXTRACTANT BETWEEN THE ORGANIC AND

AQUEOUS PHASES

k.

[HA],,, =" [HA] (5.142)
K pare _
r;a‘rt = Qor, Qk;a‘rt [HA]org - aaqk’:part [HA] (5.143)
THE DISTRIBUTION OF THE METAL EXTRACTION SPECIES
k3 [MAm]
MAn] = MAm]org Kpn = Al (5.144)
—d m
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Interfacial reactions:
rio= K [M™][HAL, - B [MACDY] (Y]
5 = k3 [MA™ D] [HA], -k, [MALTOY] (HY]
5= ks [MAPTDY] (HAL, — k25 [MASPY]  [HY]

=k [MAL ) [HAL, - kL [MAR],, [HY]

m J
Tdes = Gorgkges [MAm]og— aéqkides [MAm]org
Tad = Gorgkag [HA]ﬁg — Gagk? g [HAlGy

Thydiny — ao"’gkhyd(int) [M(OH)(m_l)+] [HA]ad - aaqk—hyd(int) [MA(m_1)+] ad

Reaction Rates of Species The reactions displayed above happen in different phases as
well as accross the interfaces. Because of this, the change with time of the species depends
on consecutive and/or parallel reactions occuring in other phases or at the interface.

Aqueous phase:
dHA] _ o

= Tpart— ) _Ti—Thyd —Ta
B = -3
d{A~ il
[dt = e ;m
——Q— = Nttt
—at = TETTEH) T T+
d[MAm]
T@ T mTreTme
d [M(OH)™-1)+] .
) dt = rhyd - rhyd - rhyd(iﬂt) - Thyda
d[M™t - "
ap - —(r1 — Thya + 71 + 1)

dt
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d[H*]

m m
L T TS
1 1

The above is a convenient shorthand for the expanded equations listed below. The accu-
mulation of [HA] in the aqueous phase is given by a mass balance

d[HA] _ Gorg aaq
dt - Vorg kl [HA] V —1 [HA]

—khya [M(OH)<’“-1)+] [HA] + k_pya {MA@"-IH]

—ky [M™] [HA] + kg [MACDY] [HY]

—ky [MAC™=D%] [HA] + k_p [MA™2+] [H]
—ks [MA(""2)+ [HA] + ks [MAS™ 5] [H7]

kg [MAS™ 2] [HA] + kg [MAS"“*”] [H*)

o [MAZE | [HA] + kim [MAS_)] [HY]

ki [MAF ;| (HA] + ko [MAw] [H] (5.146)
D]y [MAC+] (5] — oy (M ]+ B [MOEY ™ (9]
_khyd [Mm+]
d [M(m—1)+]

=k [M™] [HA] - k- [MA™D¥] [H]
—kp [MAGD*] [HA] + k3 [MAJ™2*] [HY] (5.148)

dt

d [MAgm—2)+]

= = kp [MA™-D¥] [HA] - k_; [MAS™ 2] (Y]

ks [MAS™™ ] [HA] + ks [MA{™™9%] [H7] (5.149)

(m-3)
M = ks [MAgm—z)'*'] [HA] - k_3 {MAgm—3)+] [H+]

dt
kg [MAS™ ] [HA] + kg [MA™ ] [HY] (5.150)
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d F
[—dt—-l = ko [MART] [HA] - ki [MAY, 4] [HY]
—km [MA;‘,;_I] [HA] + k_p [MA ] [H*] (5.151)
Equations 5.148 through 5.151 can be reduced in form to

(m—i)
I P

dt
—kips [MA{™ ] [HA]
+h_ ) [MAT ) [E] (5.152)
for i = 1 to m — 1. The rate expression for the metal complex concentration in the aqueous
phase is
d|[MA * *
- —[-dt—"‘] =k [MAY, ;| [HA] -k [MAR] [HY] - &} [MAm] + k2.4 [MA](5.153)
For which the overall formation equalibrium constant is
[MA,,] [HH)™
Kf =K1K3K3---Kpm-1Km H K; = W—[-HK]—- (5.154)

Using the reaction rates for each specie and the continuity equation of equation 5.117 the
concentration gradients in the aqueous phase can be determined.

Species balance in the organic phase:

d HA

[dt ] = —(Tpoly ~+ Tadd + Tpart + 7'ad)
d| [MA.,| i

dt

d[MAm -z (HA)] = rou

dt
d[HA,| o

dt poly

In this phase the above reactions or specie rates are inserted into equation 5.118.
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5.5 The Diffusive Boundary Conditions 7

-~

5.5.1 Initial State at t =0, O Lzgland TWSTSET where 7; is the interface Location
and r is the direction of diffusion and z is the distance along the axis of

filament:
Aqueous Phase Organic Phase Interface
[HA] = [HA], HA| = [HA] [HA],, = [HA],,
+] — [+ T Al - [ A" (m-i)+]  _ (m—i)+
) = 0y A =[BA), A, = e,
[A-]=[A"], VAR = MEL,
MA,, z(HA
[M™H] = [M™H], - LL_L
= [MAm T (HA)]0
[MA{m—i)+
= AT,
[M ( OH) (m—-t)+]
= [M(om){™*|
or or or
¢; = ¢;, where €; = €, where ¢; = ¢, where
; = concentration ¢; = concentration ; = concentration
of species i such as . of species ¢ such as of species ¢ such as
HA, Ht, A- M™t etc HA, MA,, etc. HA, MA,, etc.

for most species the initial concentration is zero except for the metal concentrations in the
aqueous phase and the extractant concentration in the organic phase but here for genera.hty
we have left it to be a constant.

55,2 Att>0and z>0andr=20

by symmetry argument
SD, =0

which says the flux for each specie at the center of each filiment is zero and is a function of
r and z but not of 6.
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5.5.3 At the outer surface or structure of the membrane fiber r=7r3,t>0and 2 >0

For this study interactions between the hollow fiber solid material are assumed negligible
and no penetration of the fiber wall material occurs. Thus the flux at the solid portions of
the outside wall of the fibrous structure is

(1~e)Dig ac, =0 (5.155)

where €, = por081ty of the outside wall of the membrane and 1 — ¢, is the surface area
occupied by the solid material which nothing pentrates.

Equation 5.155 also reflects the boundary condition for pores at this point as the flux from
and into the pore is

Qra-;‘ci = 60531'?2 (5.156)

This equation states that the bulk flux of the concentration of specie i at the outer wall
of a membrane fiber is equal to the concentration flux inside the pore of specie ¢ at the
outer surface or boundary. Also, the diffusivity ®; is assumed the same in the pore as
in the bulk phase in equation 5.156. The assumption is made that immediately outside
and immediately inside the pore entrances the phases are the same. Implied with this as-
sumption is that the pore concentrations just within the pores are essentially in equilibrium
with the corresponding external concentrations. For homogenous long pore structures the
mass transfer resistances associated with two-dimensional flows at the pore entrances can
be neglected [?]. Membranes with irregularities in their morphologies or structure (i.e. vari-
ations in the pore sizes, sloping in their trajectories, tortuosities, or distributions) require a
detailed characterization introduced in the membrane model. The lack of homogeniety on
the surface of the membrane distorts the streamlines of the diffusive flux around the mouth

of each pore [?].

The diffusivity on the right hand side of equation 5.156 is more accurately represented
by D;, denoting a difference in the pore diffusivity of the outside phase ard the bulk
diffusivity in the continuous phase outside the pore structure. Within pores of dimensions
comparible to that of a solute molecule it is generally found that the ratio 2*2— < 1 where
D; 00 is the diffusivity of the bulk continuous phase outside the effects of the pores (?].
This difference between the diffusivity in the pore and the continuous phase comes about
from the wall effects of the pores causing an increase in the hydrodynamic drag force and
nonhydrodynamic interactions between the solute and pore walls expressible as potentials.
For electrically charged solutes and /or pores, electrostatic interactions between solute and
pore walls are important.
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5.5.4

5.5.5

The interactions between the molecules of the fluid or solute in the pore and the pore walls
is known as Knudson diffusion. The interaction between the molecules in the fluid is termed
continuum diffusion. Generally the Knudsen diffusion has been assumed to be important in
small gas filled pores (<0.1 pm). In liquid phases the number density of molecules is much
higher and the interactions between the walls of the porous structure usiually are neglected
[?]. These hindered diffusion effects are generally handled by a lumped parameter like an
effective diffusivity or mass transfer coefficient as given by kps = %ﬁ = ®,;%. Knowing the
porosity, €, the tortuosity, 7, and the thickness of the membrane, d, the diffusion coefficients
can be calculated from mass transfer experiments assuming no chemical reactions occur. In
the intermediate range both types of diffusion play a role.

In the case where the solute molecular size is small compared to the pore size, D, p, can be
replaced with the free or continuum diffusion coefficient. For a membrane with cylindrical
pores, the resistance of the membrane, Ry, is given by

L

Do (5.157)

Ry =

where n is the pore density anl"g , T is the radius of the pores, and L is the pore length.

Note that Ry = ~i—4— with L assumed to be the membrane thickness; thus, the term nmr2,

is the membrane porosity.

At the inner surface or structure of the membrane fiber r =7, ¢t >0and 2> 0

The boundary condition at this radial distance has the same structure as that at the outer
wall or position.

bc;
1-e1) Q’E =0 (5.158)
for the inner wall made up of the solid membrane fiber and
Oc . 9c .
D,-a—r =a%9; B (5.159)

for the pore mouth fluxes. Note that the porosities have been made different for generallity
but in most transport studies in porous media the porosities are assumed, as will be here,
to be equal on the outer and inner surfaces and thus throughout the porous structure.

At t>0and z > 0 and r = r; or the locale of the interface

The solution of the species transport equation across an interface requires the quantitative
specification of the following three conditions [?}:
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1. The bulk phase partitioning of the species across the fluid interface

2. The normal bulk phase species flux in the pore ngg -||£];]| = A + Vs - (£vOT) —

£DIVILS — eR{ where the surface excess molar specie concentration is I'f & &ef ;;

and R¢ is the surface excess molar areal production rate, ¢ is the porosity, and 7 is
the toruosity. In cylindrical coordinates for a surface at r = ro(t). Note that ngg
is the unit normal vector pointing from the a phase into the 8 phase and for radial
coordinates this vector becomes a scaler .

ICE A I
at +€rori‘1. az(Evai)+ 6¢ (€U¢F)

%13 | 1 0%rIs €
32 7o 82 ) +eRi -+~ (5.160)

and assgn;mg no spa.tlal or time vanatlonaof porosity or tortuosity:.
1
7‘ s — {°TS Sl = s
et I‘+ (vI‘)+€ 6¢(U¢F)
621‘3 1 8°I¢ -
2 T ,, 542 ) +eRj 4+~ IIJulI (5.161)

6Ff rs oS 12__ 3)
6t+€ I‘+s (vI‘)+ ad)(vl“

ors | 1 a?rs .
= D} ( 7t ¢2 ) +eRS + (;n —@,—n> (5.162)

6Fs vy s U . ors 10 oS
€5 Ten I‘ -i-E (UF)-I—E——a-a (v¢1’i)

=D

= s

or

62I‘? 1 8°T¢ dc;
— 8 1 S __ Ly
= D} 53 +r ¥ +eRS 33 = (5.163)

A discussion of each of the terms above and their importance may be fruitful:

(a) %53,-%% — this term is the net diffusive flux of specie i toward the interface. In the
equation initially presented above this flux is the dot product of the magnitude
of the flux in the bulk phase inside the pore

(b) eR; — this is the surface reaction term and is necessary when a reaction will
occur either by adsorption, desorption, between adsorbed species, with one of
the adsorbed species and a specie in the bulk, or a combination of any two or
more of these reactions.

(c) £D¢ 9;;— + é?_’%}_ — the surface diffusion flux which is important in the
surface tension at the interface and plays a role in the marangoni effect
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(d) f,%f)-I‘s +£2 %= (vfI'f) — are the surface velocity or convective terms. They are
a result of the surface diffusion fluxes caused by the opposing surface tension
gradients and concentration gradients induced by the adsorbtion of a surface

active specie at the interface.

(e) s%:- — this is the surface accumulation term of specie ¢ at the interface

These terms are necessary to account for the Marangoni effect at the interface. If
we assume that the Marangoni effect is negligible i.e. the surface diffusive fluxes
and the tension and concentration gradient effects are negligible and thus the surface
convective velocity terms are non existent the equation is reduced to in the unsteady
state equation

6 I's Oe;

— R+ (fll - CD,%%H) B -I05% (5.164)

if the bulk concentration fields on both sides of the interface i.e. c;p4) and ¢; o)
are known a priori then the flux boundary condition may be circumvented. In this
study since bulk reactions in both phases are occuring, an a priori knowledge of the
concentration or density fields is not possible.

3. Kinetic adsorption relation i.e. the adorption isotherm

(a) Two limits exist in the development of the constitutive form for the relationship
between the instantaneous value of the bulk-phase species density or concen-
tration at the interface to the surface excess species density or concentration :
Equilibrium and Nonequilibrium Adsorption.

i. Under Equilibrium (or small departures from equilibrium) conditions the
Frumkin or Langmuir Isotherms are used

ii. Under dynamical, nonequilibrium conditions the immediately previous sim-
ple models are usually invalid and a kinetic expression for the normal compo-
nent of the bulk phase flux j; at the interface in terms of the local adsorption
rate r;_,.

%nzﬁ’ = EMiq (5.165)
The bulk phase species flux at the interface
Is given by the equation
61"3 s £ 6& _ £ .5
=eR; + (T =25, ll) =eR; + =il (5.166)
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where R; is the molar reaction of species i at the interface given by the following reactions
as Ry  and [|j; gl is the flux of species ¢ in the bulk of the fluid and is equal to —D; 3.

RU'IA]“ = d[Hdl:] = Tad— g i = Thyd(iny
d MA§"“1)1+
R[MA§""”+] - dt =71 73+ Thydgny
[MAgm-.-HL = i =TT Tagny 0re= tom
Rphn,, = Dihelas = vt 1,

. [y . <0
The interface or surface adsorption expression -f.—n-Ji =er;

This relation reveals a two step process

1. specie is first transported to the interface by diffusion in the pore, and then
2. adsorbed to the interface by a change in state.

The interfacial adsorption reactions:

r;es = aorgk;es [MAm]ad - aaqkides [MAm]org

Torg = Qorghg [HA],, — Gagk? o5 [HA] (5.167)

and assuming the flux is in one direction only i.e. in the r direction only the bulk phase
diffusion is —-D,—-aa% and that equals the local specie adsorption rate for the species MAn,
and HA since these are the only species that are assumed to adsorb and desorb reversibly
at the interface or surface of the liquid/liquid membrane. _

_Egi%?_ =Zn . (5.168)
Consider a particular species that partitions between the phases and also adsorbs at the
interface. If we set the fluxes equal to each other the rates become equal and a relationship
for the concentration of the adsorped specie can be obtained in .

[HA] oy + k2 og [HA],
kX oq+kag

This assumes a steady state flow of HA to the interface from the organic and a steady state

flow away from the surface in the aqueous side. Equation 5.169 would represent surface

(5.169)

[HA],; = .
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saturated with HA.

The partitioning relation

5.5.6

5.6

Normally the partition relation is given by a linear Henry’s Law relationship such as:

cio+) = KiCyo-)
where ¢;4) and ¢y, are the concentrations of specie i on either side of the interface
and K; is the partition coefficient. This equation describes the equilibrium condition of
the the partitioning betveen contiguous phases and can only under speciefic circumstances
(i-e. diffusion controlled transport) be used for dynamic conditions (Edwards Brenner and
Wasan). Specifications of equilibrium or nonequilibrium adsorption relations implicitly
specifies the partition relation. Thus using a nonequalibrium adsorption relation for one
phase sets the other phase to the same type of evaluation. If one were to assume an
equilibrium analysis between the phases, the fluxes and thus the rates of species HA in
equation 5.168 are equal to zero and the two equations solved simultaneously for r; = 0

. . .y . k2 ad
gives the partition coefficient with the equilibrium constant as K; = —33422.

The Zero Diffusive Flux Condition Between Fibers — B. C. 2

In the shell side of the membrane contactor the concentration flux of species i between any
two fibers will be zero.

Oc;

— .1

o 0 (5.170)
Determining the location of this boundary can be difficult. The determination of this
boundary is discussed in the following section.

Longitudinal Flow over Lumen (shell side velocity profile — the
momentum balance in a tube bundle)

5.6.1 Geometrical and Packing Considerations of Hollow Fiber Bundles

The hydrodynamics of the shell side of hollow fiber membrane contactors is assumed to
be unbaffled longitudinal laminar fluid flow between cylinders. This can be analogized
to a non-baffled shell and tube heat exchanger or nuclear fuel rod assembly with axial
fluid flow over a rod bundle. The modeling of the velocity profiles of fluid flow between
cylinders can be complex and has been reported to take considerable computer time [?,
see reference 14]; though, with current computer technology this may not be as intractable
as it once was. Considerable effort within the nuclear industry to mode! the flow over
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fuel rod budles has proliferated over the last thirty years. Various tube bundle geometries
have been investigated with the primary three being a square pitch, hexagonal (triagular),
and concentric bundles. Shell side fluid velocity profiles and thus the transport thermal
properties have been shown to be dependent on the wall spacing (distance between the
channel wall and outermost rod ring cluster), rod pitch to rod diameter ratio, and distance
between rod ring clusters. The modeling of the shell and tube heat exchangers or nuclear
fuel rod assemblies usually incorporate a technique of “subchannel” modeling to divide the
heat exchanger into finite grids that are characterized primarily by the geometry of the tube
layout and shell geometry.

Packing Considerations

Though simularites exist between hollow fiber membrane and shell and tube heat exchangers
fluid flow outside the tubes, the placement of the tubes are controlled in the shell and tube
heat exchangers. The manufacturing of the the hollow fiber modules does not allow precise
placement or knowledge of the placement of the hollow fiber filaments. Thus to a large
degree, the packing of the hollow fiber modules is random (at low to moderate packing
densities and amorphic (locally structured) at high packing densities). If the packing of
the filaments inside a circular (cylindrical) shell is maximized there appears to be no global
symmetrical structure (see figure ) and there is no known simple accurate (exact)
analytical mathematical relationship to calculate the maximum number of smaller cylinders
of a given radius that can be placed in a cylinder of a larger radius. Kausch, Fesko and
Tschoegl [?] state that the packing fraction of a given area A is defined as the fraction of
the area which is covered by the smaller circles; and, the packing fraction depends upon
the choice of the area to be inspected and on its size. The packing fraction is independent
of these only in the limit as A becomes large.

Kravitz [?] and Goldberg [?] attempt to analytically ascertain the packing efficincy of
containing n equal nonoverlapping circles of diameter d in a larger circle of diameter D.
They are able to accomplish this for an ensamble of circles up to 20 elements; extrapolation
to higher densities cannot be done since instabilites and amorphous behavior appears. The
maximum efficiency is given for a 20 circle ensemble of 0.8405 and is dependent on the
number of circles in contained in the larger circle which is dependent uppon the smaller
diameter. They define the packing efficiency as the summation of the areas occupied by a
hexaganol element circumscribed about each element devided by the area of the container
or ¢ = -"’Jw@ %‘;.

From figure , which is a cursory computer experiment and was generated using a
computer drawing program, the close packing of small diameter circles in a larger circle
varies from approximately 0.259 for a single innercircle with a diameter just slightly larger
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Number Small Circle | Large Circle (—%)2 Packing

of Elemmemts (n) | diameter (d) | diameter (D) density n ( %)2
1 1.9182 3.77037 0.2588 0.2588344

2 1.8528 3.77037 0.2473 0.494759

30 0.60528 3.81 0.02538 | 0.75715

91 0.9525 10.16 0.008789 | 0.7998

127 0.9525 11.9458 0.00635 | 0.80743

Table 5.1: Values for packing densities

than the radius of the larger circle to a packing density of 0.807 for 127 smaller circles of
0.9525 cm in a 11.9458 cm circle (see table 5.1). As the diameter of the smaller circles gets
smaller or d — 0 as compared with the larger diameter then the approach of hexagonal
packing can be deduced to be approximated at least away from the walls of a circular shell
or cylinder. These conclusions are coroborated by Kausch, Fesko and Tschoegl [?]

Many workers have given experimental and computer simulated evidence that there exists a
random close packing limit.Originally the packing theory was proposed to model structures
of liquids primarily with spheres ([?], [?], [?, and references within]). The packing in
two dimensions applicable to many physical systems such as films has been investigated by
Quickenden and Tan {?], Mason [?}, Shahinpoor {?], and Berryman [?], to list a few, who give
estimates of random close packing density approaching 82%. Kausch, Fesko and Tschoegl
[?] used computer experiments to determine a range of 0.8207 to 0.8319 for the packing
density of a large number of disks i.e. > 1000 circles. From a number of these computer
experiments they determined an average packing density of 0.8207 +0.0019. Quickenden and
Tan [?] experimentally determined the critical packing to 0.83+0.015 that slowly increased
to the maximum packing density of an ordered two dimensional array of 0.9069. Shahinpoor
[?] calculates a close packing density using Voronoi cells and comes up with a value of 0.846
for a critical packing density. The maximum packing of non-overlaping circles that can
exists in a planar structure of infinite domain or at least an unconstrained environment
corresponds to a regular triangular array (hexagonal) of closely packed circles which is
V37 /6 = 09069 - - - . The value of 0.82 is considered a random close packing and is defined
by Berryman [?] as the minimum packing fraction for which the median nearest-neighbor
radius equals the diameter of the spheres.

The computer simulations to model random close packing suffers from an upper bound for
random placement using random number generators in that it is not possible to generate a
disk configuration of non overlaping disks greater than the “jamming” limit of 0.547+ 0.003
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(Feder [?], Hinrichsen, Feder and J¢ssang [?] without any reorganization of the placed
disks. The method used by Hinrichsen et al. {?] to generate an ensemble of randomly
oriented disks on a surface is called Random Sequential Adsorption or addition (RSA) and
no reordering takes place of the disks already placed on the surface. Leamitre et. al [?] used
the RSA method of placing disks on a surface along with Voronoi tesslelations to determine
the arrangement sizes of geometric shapes formed under different packing densities. A
method used by Livesley and Loveday [?] uses a computer technique first used by Bennet
[?] to sequentially deposit disks next to and in contact with at least two other disks (except
for the first two disks placed which are placed in contact with each other). The site to attach
a disk is chosen to be one of lowest potential energy. To achieve a degree of dissorder disks
of a different size were placed at random times. As the ratio of the radii of the two disks
used approach unity a crystalline or structure assembly initially appears and as more disks
are added a general amorphic structure is produced; though, localized cystaline structures
are seen (i.e. triangular, hexagonal, and square). This is also seen in figure

Rubinstein and Nelson {?] also used Bennett’s algorithm to accomplish a deterministic
chaotic behavoir or controllable amount of randomness by using a finite number of particles
or disks of a different diameter than the majority of the disks. This causes what Rubinstein
and Nelson call “stacking faults” which interrupt the crytalline (hexatic) structure but does
not detroy it; since on either side of the fault a crystal structure is present and occasionally
the faults coelesce to form regions of square lattices. These authors also note that orientation
of the local structure or crystals is only slightly effected by the stacking faults. These authors
built their computer generated packings from the inside out i.e. setting a single disk of a
varying size at the center and “adsorbing or growing” other disks of fixed sizes to this seed
and its subsequent cluster. By doing this with disks of the same size a hexagonal packing
is obtained; and, by using a random number of another sized disk an ensemble of different
configurations resembling randomness is evidenced but is actually deterministic.

Other techniques to increase the packing above the jamming limit use an emulated shaking
method that allows disks to approach, at a random angle, the center or origin of a geometric
shape where a disk has initially been placed. When it contacts this fixed circle or any other
disk that has been subsequently fixed it rotates around the fixed disk always seeking the
origin of the larger geometric shape. Eventually a close packing density (hexagonal) is
achived (i.e. crystalline), and, again as more disks are added then an amorphic structure is
formed away form the center of the assembly. This method is used by Kausch et al [?] who
describes it in detail. Mason [?] uses an expansion method of overlaping disks to determine
packing densities.

Cowan [?] considered an ensemble of solid disks having equal radii so that they are fairly
closely packed but not in an ordered or regular manner but in a seemingly random way.
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to define packing fraction and linking to thermodynamic quantities such as fluid equation
of state (cf. [?] and references) through a probablity function.

The discussion as presented here on the packing literature is motivated by the effect tube
neighbors have on fluid flow in in the shell and the subsequent effectiveness on the diffusion
and convection of thermal energy as has been evidenced in the modeling of heat exchangers.
Thus it is hypothesized that the packing configuration and density may have significant
impact on the diffusion and convective transport in the hollow fiber membrane module.

Recently work has been done on the effects of shell side hydrodynamics on the performance
of axial flow in hollow fiber modules (Costello et al [?]. The radomness of the packing
geometries is illustrated in figure 6 of Costello et al and is also presented in figure
of this study. The packing density of the modules used by this study is approximately 31%
(calculated by dividing the sum of the cross-sectional area of the filaments by the cross
sectional area of the shell) which is the lower end of the packing density of Costello et al.

Using the estimated upper limit of a random close packing of 0.82 and the diameter of the
hollow fiber filaments of 300 microns, the maximum number of filiments that can be placed
in a 2.54 cm cylindrical shell is 5,950 (NOTE: this does not account for the end space
needed for the epoxy potting to hold the fibers and segregate the two fluid flows). If a
hexagonal shell of equal cross sectional area to the circular cylinder is used then the packing
density should approach the maximum packing of a hexagonal or triangular geometry of
0.9069 to give a maximum of 6501 filaments (NOTE: again this does not account for the
end space needed for the epoxy potting to hold the fibers and segregate the two fluid flows).
From figure == all three basic geometric configurations (i.e. hexagonal or triangular,
square, and concentric circle) are present at all packing densities; though much more random
at lower densities and more prevelent at higher densities. This is evident of the random close
packing in two dimensions. An out growth of Costello et al work was the work of Chen and
Hlavacek [?] on modeling the hollow fiber modules using Voronoi Diagrams (tessellations).
This method seems to be a more rigorous fundamental approach given the randomness of
the spatial orientation of fibers especially at low packing densities. Many authors studying
the packing densities use Voronoi diagrams and tessellations to arrange elements in space
in a more dense packing as well as define the geometry of the structures at the short range
and long range metric scales.

Geometric Considerations

Voronoi Diagrams or Tessellations The Voronoi Diagrams or tessellation and its graph
theory dual, Delaunay Tesselation or Triangulation, is a method to construct randomly sized
and shaped subdivisions or “cells” (polygons) of space. Its application here is to theortically
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build or emulate a tube cluster that has no specific geometric symmetry and associate with
each tube a flow area that has one and only one tube in the Voronoi cell. The boundaries
of the Voronoi “cells” are also the boundaries where the diffusive flux is zero. Coupling
the fluid flow profile solution with the diffusive equations for each cell will provide a more
rigorous solution of the transport problem for membrane contactors.

Voronoi Diagrams and Delaunay Tessellations are part of an encompassing field of Compu-
tational Geometry. Computational Geometry is a new field and was defined in the Ph.D.
thesis by Shamos in 1978. The construction of Voronoi Diagrams and Delaunay Tessella-
tions and recently the numerical solution of partial differential equations are applications
of this field [?, page 7]. The theory of VDs is presented in a concise manner in LaBarr¢’s
Ph. D. dissertation and fairly extensively with proofs of the algorithms in Okabe et al [?]
and Preparata and Shamos [?]. The purpose of this section is not to produce a thesis of
the VDs, but to give sufficient background of the VDs for their use in this study.

The ability to describe the area of mass and momentum “fux, potential or gradient” flow
around a hollow fiber membrane and thus the necessity to delineate the boundary between
randomly and non-randomly distributed fibers is an integral portion of this study. The
numerical solution to solve the convective and diffusive partial differential equations that
model the hollow fiber membrane modules will by necessity use a gridding technique. The
use of the Voronoi Diagrams in automatic mesh generation may be valuble in this numerical
solution. To this end, two very integral portions of this study are addressed in Voronoi
Diagrams.

In a previous section porous structure and its relevence to the study of membrane transport
was discussed. The advent of faster and more efficient computer technology (hardware and
algorithms) has created a relative explosion in use of Voroni Diagrams, particularly in the
area of porous media. The necessary information to allow the use of VDs to characterize the
porous structure of the hollow fiber membrane porous structure is insufficient to allow use
in this study. However, the VDs can be utilized in another and similar way as to descrbe
fluid flow in the annular region of the membrane module.

Voronoi Diagrams — Applications and Brief History The actual formal Voronoi
diagram method has been known for a long time and historically can be traced back and
credited to mathematicians around the turn of the century, G. L. Dirichlet (1850) and G.
F. Voroni (1908) (see references in [?]). The Voronoi diagrams are quite possibly of greater
antiquity. Okabe et al. [?, page 6] gives a historical pespective of the development of the
the Voronoi diagrams. A reduced accounting is given here taken form Okabe et al. and
also from other sources (see for example [?] as well as Shamos’s 1978 Ph. D. dissertation

on Computatuional Geometry).
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Okabe et al report that Descartes used Voronoi-like diagrams to show the disposition of
matter in the solar system. During the late 19*? and early 20 centuries and in the time
since, many workers in separate and varied fields have used and in many cases rediscovered
the Voronoi diagrams independently and seemingly completely unknowledgable of any past
or current work in their respective fields or other fields dealing with the tesselation of
space. As a result many synonyms have been used to describe basically the same technique;
Direchlet domain; proximal polygon; S cell; tile; Thiessen polygon (meteorology); area of
influence polygons (mining geology or the estimation of ore reserves);Wigner-Seitz Regions
(solid state physics);domain of the atom (modelling of complex alloy structures as packings
of spheres); area of poientiality, and plant polygons (ecology); capillary domains (biology).
In the late 1940’s, Okube et al. report that the Voronoi diagram concept had spread
form the natural scientists to the social scientists to model marketing areas in the U. S.
Geographers, anthropologists, and archaeologists have also used the concept to model other
types of human territorial systems. By the 1960’s the Voronoi concept was current in both
the natural and social sciences.

The use of the Voronoi method up to this time was empirically applied by the construction
of the cells by compass and ruler. During the early 1970’s a number of algorithms had
been developed to construct Voronoi diagrams in two and three dimensions primarily stim-
ulated by the developments in the computer science fields. Over the next twenty plus years
the concept of Voronoi diagrams and the associated algorithms, computer implementation,
and applications have proliferated. Its use to model the structures of natural phenomenon
continues to help develop theoretical understanding of complex, seemingly randomly dis-
tributed and amorphic behavoir in films, soap froths {?], crystallography, structure of glass
and the amorphous solid state, metallurgy grain boundaries, ceramics and material studies,
liquid behavoir [?] and [?] [?] in the fields of condensed-matter physics [?], biological cell
structures, flow of fluids through porous media [?]. Most recently and of interest to us,
is the application of Voronoi Diagrams to the random arrangement of porous hollow fiber
filaments in hollow fiber membrane modules [?], and the application of Voronoi and De-
launay Tessellations to unstructured mesh generation for the numerical solution of partial
differential equations [?]{?]. )

Brief Theory of Voronci Diagrams The concept of the Voronoi Diagrams or for a
shorter and more preferable acronym, VD, is simple and can be defined and formalized easily.
The analytical derivation of random VD is difficult [?]; although, the construction is not
difficult when done by hand, though tedious. Computer implementation becomes extensive
especially for three dimensional studies. For this study two dimensional VD simulation is
sufficient since the two dimensional packing of disks in a circle can be extended very easily
to our three dimensional cylinders or fibers. Assuming, of course, no twisting or overlapping
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of fiber filaments in the axial direction. In fact, the two dimensional analysis of the disk
packing represents the cross-section of the module.

Definition 1 The Generalized Voronoi diagram in d dimensional Euclidean space, E4,
is a set of unique convex regions or cells called Voronoi Polyhedrons (V;). These polyhedrons
contain only one nucleus (P;) (not necessarily centered within the polyhedron) of a set of
nuclii distributed within a larger space. The polygons under discussion bound or enclose
a subset of space closer to a specific nucleus (P;) than to any other nucleus (P;). More
formally:

V(P):={r€E:d(z,F) <d(z,P),j =1,2,...,n} (5.171)
where d denotes distance. The polyhedra partition E¢ in a unique way.

In other words V(P;) is the locus of points z such that each point of a subset of E?, say S,
is nearer to P; than is any point not in S [?],[?], [?], [?].

In order to understand Voronoi Tessellations preliminary associated definitions are needed.
Great detail is not extended here and the literature by [?], [?], [?] is recommended.

Definition 2 (Convex Set) A body, set or domain D in Euclidean space E? is referred to
as convex or an ovoid if the line segment, qiqz, joining any two points, q1 and g2, contained
within the domain lie entirely in the domain. The intersection of a convexr domain is a
conver domain. [?] (D C E%and is convez if whenever 1,92 € D and §igz C D)

Definition 83 (Convex Hull) If a set of points, S, in E? is contained in the smallest
bounded convex domain in E¢ the boundary of this domain is a convex hull.

Definition 4 (Polygon) A closed figure in E? with a finite set of segments called straight
edges such that every segment extreme, called vertices or nodes, shares exactly two edges are
called polygons. They are classified by the number of vertices (number of vertices and edges
are the same). If segments connecting any two points inside the polygon always lie inside
the polygon, it is convex. The interior angles of a convez polygon are less than 18(°. If the
polygon has any corners inverted it is considered concave and any interior angle(s) exceed
18(°. A polygon, P, portitions the plane into two disjoint regions; the interior (bounded) and
exterior (unbounded). It is simple if its interior is convez.

Definition 5 (kernal) A polygon is star-shaped if there ezists a point z not external to
P such that for all points p of P — the line segment Zp lies entirely within P. Thus each
convez polygon is also star shaped. The locus of points z having this star shaped property is
the kernal of P and the convez polygon coincides with its own kernal.
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Definition 6 (Planar graph) A graph G = (V, E), where V is the vertez set and E is
the edge set, is planar if it can be embedded in the plane without crossings. A straight line
embedding determines a partition of the plane called planar subdivsion or map. Let v, e,
and f denote respectively the numbers of vertices, edges, and regions (including the single
unbounded region) of the subdivision. Euler’s polyhedron theoreum relates these parameters

v—e+f=x (5.172)

where X is an integer of order 1 and is a topological invariant of the space i.e x = 2 for a
sphere and 1 for a plane and 0 for a torus, doughnut or tea cup [?]

Definition 7 (Isomorphic) Isomorphic groups have the same structure, and calculations
in them follow the same laws and rules, even though they may have different kinds of
elements, and the operations may be defined in different ways.

Definition 8 (Polyhedron) In E? a polyhedron is defined as a set of polygons that bound
a region of space such that every edge of a polygon is shared by exactly one other polygon and
no subset of polygons has the same property. The vertices and edges of the polygons form the
vertices and edges of the polyhedron; while the polygons themselves form the facets or faces
of the polyhedron. Just as the polygon partitions E? into two disjoint domains so to does
the polyhedron partition E3 into two disjoint domains; the interior (bounded) and exterior
(unbounded) regions. The surface of a polyhedron is isomorphic to a planar subdivision thus
the numbers v, e, and f of ils vertices, edges, and facets obey Euler’s formula (eguation
5.172).

Definition 9 (Degree) The number of links or segments that have a common extreme i.e.
a node is referred to as the degree of the node or vertex.

The Voronoi Diagram was defined above for a general m-dimensional case. The construction
of the polygons that make up the VD consist of the the perpendicular bisectors between
two points. Let s;, s; € S. Then the perpindicular bisector of the segment 5;3;, denoted
PB(335;), divides the plane into two regions, one consisting of points closer to s; than to s;
and one of points closer to s;. The Voronoi polygon can be defined as half planes. The half
plane itself is determined by the perpindicular bisector and H;‘ is the half plane containing
s; created by the bisector. Continuing in with this method and contructing the segment
5;5% as s; andvances through S with k # ¢, and form each perpendicular bisector PB(3;3%)
and its associated H}, the common intersection of the H; yields precisely the collection of
all points in the plane closer to s; than to any other si. Thus the following definitions for
the Voronoi polygon and Voronoi Tessillation are given [?].
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Definition 10 (Voronoi Polygon) Let S be a finite collection of points in the plane. Let
8; € S. The Voronoi polygon associated with s; is given by :

Vor(s;) = (] H; (5.173)
ksti

Definition 11 (Voronoi Tesssellation) Let S be a finite collection of points in the plane.
The Voronoi tessellation associated with S is

VorT(S) := U Vor(s;) (5.174)
8;€8
For this study we will priiaarily be concerned with the two dimensional planar case. If

we ignore the unbounded region or the area outside the Voronoi Diagram and for a planar
graph Euler’s theorem becomes

v—e+f=1 (5.175)

If we assume that each vertex contained within the diagram has a property of degree > 3
thus the number of edges is equal to or greater than three times the number of vertices and
that there are two vertices per edge meaning that each edge is counted twice:

3v<2e ’ (5.176)

There are a great many properties of the Voronoi Diagrams and its graph dual Delaunay
Triangulation. I will list a few of the most important, but direct the reader to the literature
such as [?]{?][?] for details of proofs and further investigation. Here, we are interested in
making use of the methods, algorithms, and codes that have been developed to efficiently
construct these spatial tesselations for use with transport theory. The properties are useful
in the development and understanding of these algorithms and codes.

The properties listed below are taken from {2

Property 1 The Voronoi Diagram is a unique tessellation for the set of distinct points of
P where P={py,...,p,} CE?(2<n < ) .

Property 2 A Voronoi Diagram generated by a like set of distinct points, a Voronoi polygon
is infinite if and only if p; € CH(P) where CH(P) is the complex hull of P

Property 3 For the Voronoi Diagram generated by a set of distinct points

1. Voronoi edges are infinite straight lines iff P is collinear

2. Voronoi edge e(p;,p; )(# 0) is half line iff P is non-collinear and p; and p; are consec-
utive generators of the boundary of CH(P)
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3. A Voronoi Edge generated by these two points is a finite line segment ¢ff P is non-
collinear and at least one of the points is in the ineterior of CH(P).

Property 4 The nearest generator point of p; generates a Voronoi edge of V(p;)

Property 5 The nearest generator point from p; ezists in the generators whose Voronoi
polygons share the Voronoi edges of V(p;).

Property 6 For every Voronoi vertez, g; € Q in a Voronoi diagram, there exists a unique
empty circle C; centered at ¢; which passes through three or more generators. Under the
non-degeneracy assumption, C; passes through exactly three generators.

Assumption 1 (the non-degeneracy assumption) Every Voronoi vertezr in a Voronoi
diagram has ezactly three Voronoi edges (see also I, page 21f)

Assumption 2 (the non-cocirculatory assumption) Given a set of points P = {pi,...,pn} C
E? (4 < n < 00), there does not ezist a circle, C, such that p;1,...,pix € P,k > 4, are on C,
and all points in P\ {pi1,...,pix} are outside C,.

Property 7 Circle C; is the largest empty circle among empty circles centered at the
Voronoi vertez g;. (Ci contains no point of S in its interior (see also [?, page 21-22]))

Property 8 Let n, n, n, be the numbers of generators (number of face centers or single
points that the Voronoi Polygons are developed around), Voronoi edges, and Voronoi vertices
of a Voronoi Diagram in E2, respectively (2 <n < o). Then Eulers rule ny, —ne +n =1
gives

Ne<3n—6 (5.177)
np < 20— 5 (5.178)

When a set of P generators satisfies the non-collinearity assumption whith n > 3 every
finite Voronoi polygon has at least three Voronoi edges.

Property 9 A Voronoi polygon is given by the intersection of n-1 half planes

V(p:) = {z | lx — | < l|lz — z;|| forj #14,7 € I} (5.179)
= [\ Hpp) (5.180)
J€ln\(iy

A Voronoi polygon thus has n-1 Voronoi edges at the mazimum. At the minimum when
generators are collinear the leftmost and the rightmost Voronoi polygons have only one
Voronoi edge. From eguation 5.177 and the fact that every Voronoi edge is shared by exactly
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two Voronoi polygons, the average number of Voronoi edges per Voronoi polygon is less than
or equal to 2(3n — 6/n).

Property 10 Thus the average number of Voronoi edges per Voronoi Polygon does not
ezceed siz. The mazimum number of Voronoi vertices in a two-dimensional Voronoi diagram

s 2n — 5.

Computer Algorithms for Voronoi Construction — Two Dimensional Case A
number of algorithms and variations have been proposed to construct the Voronoi Tesse-
lations. Fortune [?] divides these into three categories — incremental algorithms, divide-
and-conquer algorithms, and Sweepline algorithms. Okabe et al [?] describe seven different
methods but do not class them into the three categories of Fortune. In fact Okabe et al.
view their seven methods as distinct different methods, but discuss the incremental, divide-
and-conquer and Sweepline methods in detail. These three as pointed out by Fortune and
Okabe et al. are the most important and the other methods appear as Fortune has defined
as varitions of these classes or methods. I will discuss the three for background but will
give the algorithms for only the incremental or iterative method since they seem to be the
most efficient and popular. An algorithm for the Naive method is also given. Though not
an efficient method, it develops the Voronoi diagram more directly from the definition of
the Voronoi polygons and diagram.

In general the construction of the Voronoi Diagram takes at least O(nlogn) time in the
worst case and at least O(n) time on average. The order (O(n), O(nlogn) etc.) represents
the behavoir of an algorithm as n — co. At small n the behavoir may be different than at
large n. Though the concept of the Voronoi Diagrams and for the most part the algorithms
describing them are relatively easy to understand, implementing them on the computer
can be difficult especially when additional information about the contents of the Voronoi
diagrams is needed. The primary difficulty is in handling the degenerate cases that can occur
and the numerical errors inherent with computer round off; thus, the direct translation of
an algorithm to a computer program does not necessarily give a numerically valid program.
In the development of the algorithms — let P = {p;,...,p,} be a set of genérators, and
B = {V(p1),--.,V(pn)} denotes the Voronoi diagram for P.

Incremental Methods The incremental algorithms to construct the Voronoi Diagrams
are some of the easiest methods to conceptually visualize and perhaps simpliest to imple-
ment (thorugh not trivial). The average time complexity can be decreased from O(n?) to
O(n) with inginuity [?]. The technique constructs a Voronoi diagram of each generator
and modifies the surrounding polygons if appropriate. A method of sorting or reordering
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randomly spaced generators by quaternary trees or bucketing and using nearest neighbor
search can reduce the time complexity to linear time O(n).

Naive method:

The Naive or brute approach method. is a relatively straight forward and follows directly
from the definition of the Voronoi diagram and can be classed as an incremental method.
The intersection of the half planes defined by the perpendicular bisectors of p; and the other
generators and the diagram is formed by constructing the polygons one by one. Though it
builds each polygon one by one it does not account for any descrepencies of surrounding
polygons previously or subsequenly formed. Thus, topological inconsitencies can occur.

Input: n generators p1,p2, .- -, Pn-

QOutput: Voronoi diagram U = {V(p1),...,V(pn)}

Step 1: For each i such thati = 1,2,...,n, generate n—1 half planes H(p; p;),1 <
Jj £mn,j #1, and construct their common intersection V(p;).

Step 2: Report {V(p1),V(p2),...,V(pn)} as output and stop.

The Naive method is an insufficient method. To be sufficient the algorithm must be

o Correct
e Efficient

e Robust against numerical errors.

The method has an efficiency over time of O(n3) which means that a computer program
based on the Naive procedure becomes eight times larger as the size of the input data
becomes twice as large. If the time to process an input data set of size n is given as T'(n)
and some positive function f(n) there exists a constant such that C such that

T(n) .

T(;J <C foralln (5.181)
we can say that T(n) = O(f(n)) and say that T(n) of order f(n) [?, page 210]. An
implication is that T'(n) does not increase nore rapidly than f(n) does as n grows and the
algorithm can be considered as being efficient if it satifies a slowly increasing function f(n)
satisfying the above equation [?, page 210]. An algorithm that has a time T'(n) = O(n) is
sometimes called a linear time algorithm.

The Naive Method’s construction of the intersection of n—1 half planes can be accomplished
in O(nlnn) time with a more sophisticated technique. Thus, the time complexity can be
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reduced to O(n?1nn) [?][?, page 206]. By computing the Voronoi polygons independently
the numerical errors could result in a topologically inconsistent tessellation. If information
is desired to be extracted from the Voronoi diagram or polygons, using the naive method
is not suitable.

Quaternary Incremental Algorithm:

Because of its conceptual simplicity and its best time complexity of O(n) this algorithm
is an important method for developing the Voronoi Diagrams and extracting information
from the individual Voronoi polygons. Two associated algorithms are necessary to make
the method work [?]

Algorithm 1 (Nearest neighbor search)
Input: 1 generators p1,ps,...,p1, Voronoi diagram ;1 and initial guess p; (1 <i <1 —1).
Output: The generator (other than p;) that is closest to p;.

1. Among the generators adjacent to p;, find the one , say p;, whith the minimum
distance to p;:

d(pj,m) = m,jnd(pk,m) ,

where the minimum s taken over all generators pr whose Voronoi polygons are
adjacent to V(p;).

2. Ifd(pi;, ;) < d(pj,p1), return p;, else p; « p; and go to Step 1.
Algorithm 2 (Incremental Method)

Input: Set {p4, ps, - . -, Pn} 0f n—3 generators located in the unit square S—{(z,y) | 0 < z,y < 1}.

QOutput: Voronoi diagram U for n generators {p1,p2,...,Pn}, where pi, p2, and p3 are the
additional generators defined by :

m = (05,3v2/2+ 05),
p2= (—3J6/4 +0.5,~3v2/4+05),
ps = (3v6/4+05,-3v2/4+ 05)
1. Find positive integer k such that 4" is closest ton, divide S into 4% square buckets,
and construct the quaternary tree having the buckets as leaves.

2. Renumber the generators by quaternary reordering, and let the relultant order be
D4, P55 -+ <3 Pn-
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8. onstruct the Voronoi diagram U3 for the three additional generators py, ps, and
p3 defined by equations above.

4. Forl=4,5,...,n, do

(a) By algorithm 1 with the initial guess given by quaternary initial guessing,
find the generator p; (1 <1 <1 —1) closest to p;.

(b) Find the points wy and wo of intersections of the perpindicular bisector of
p: and p; with the boundary of V (p;)

{c) By the boundary-growing procedure, construct the closed sequence

(W1W2, W W3, . . - , Wm—1Wm, wmwl)

of segments of perpendicular bisectors forming the boundary of the Voronoi
polygon of p;.

(d) Delete from 9;_; the substructure inside the closed sequence, and name the
resultant diagram 0;.

5. Returmn U =1%9,.

The detail explanation of this algroithm is in Okabe et al [?, pp. 223-232]. The complex
timing of the above algorithm is O(n) or linear time. LaBarre [?] uses the incremental
method developed by Watson for automatic mesh generation constructing the grid connec-
tivity via the Delaunay triangulation and then to determine the control regions (flux cells
determined by the Voronoi polygons as a by-product. Labarre’s (Watson’s) method in 2D

does not have an optimal time of O(nlogn) but instead has the time complexity of O(n%)

Divide-And-Conquer Labarre comments that this method was introduced by Shamos
in his Ph. D. thesis in 1978 for construction of the Voronoi diagram [?, page 24]. The divide-
and-conquer algorithms divides the collection of nodes or generators into two sets of roughly
equal size by a vertical line; the solution is obtained by merging the separate regions after
the Voronoi diagrams in each reagion have been recursively developed. Labarre comments
that “conceptually this is a very easy algorithm to understand but programmatically it
is difficult to implement especially in 3D”. Implementation details are complicated and
numerical errors are likely [?] which is of chief concern. The algorithms have a complex
time of O(nlogn), though an algorithm using the divide and conquer technique with an
expected time of O(n) has been developed for certain subsets (see references of [?]). As
in other methods sorting and reordering of the generators plays a key role for efficient
implementation of the procedure. In this particular algorithm the generators are sorted in
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5.6.2

increasing order of the = coordinates by any suitable efficient sort routine. An algorithm
listed by Okabe et al. is suggested for further investigation of this method along with more
detailed explanations of the algorithms structure and examples. Because of the difficulty of
implementation and the success of other more efficient algorithms discussion of this method
will belabored no further and the presentation by Okabe et al. [?] is recommended.

Plane Sweep Method This method attributed to Fortune [?] is a fundamental algorithm
used to solve two dimensional geometric problems. Conceptually the algorithm computes
the Voronoi Diagram by “sweeping the plane” and intersecting the geometric regions and
objects of the plane on~ by one. Since the location of the generator or node sites are not
known @ priori then a transformation of the Voronoi Diagram is actually calculated. The
transformation image is a function that is a set of hyperbolic regions and the transformed
diagram has the property that the lowest point of the transformed Voronoi region is the
node or generator itself. The edges become curves. Thus when the sweepline sweeps the
plane it encounters the site or node for each region first before intersecting the region. A
plane sweep algorithm does not have to be applied from bottom up as Fortune originally
proposed but can go from left to right as Okabe et al. outlines.

This method can be implemented in to run in time O(nlogn) and space O(n) (therorem
2.8 of [?]). Details of the algorithm can be found in the article by Fortune and page 242 of
Okabe et. al. A source code for this method is on NETLIB.

Shell Side Fluid Flow

The equation of motion of a fluid to model the flow in the shell side is derived from theory
of continuity and is presented in the classical books of transport (cf. (7, 7, 2, ?]. A general
form of this equation as given by Happel [?]

P (%tv_ +v- Vv) = —-Vp+ uV2v+31-uV (V-v)
+2 (Vi) - Vv+ (V) x (V x V) _ (5.182)
-g- (V) (V- v) + £V (V - v)

+(Ve)(V-v) +pg
This equation along with the equation of state for density p = p (p,T), the density depen-
dence of shear viscosity u = u(p,T'), the density dependence of bulk viscosity ¥ = x (p, T'),
and the boundary conditions, determines the pressure, density, and velocity components of
a flowing fluid. Equation 5.182 is generally not used in its complete form, but in a simpified
variation and generally at isothermal conditions. The dependency of the bulk viscosity, «,
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is often set equal to zero and assumming irrotational and incompressible flow:
Vxv = 0 irrotational flow (5.183)

V-v = 0 incompressible fluids (5.184)
Which means that equation 5.182 becomes

P (% +v- Vv) = —Vp+uViv+2(Vy) +pg (5.185)

and if constant viscosity is assumed Vy = 0 and no gravitational effects then one form of
the Navier-Stokes equation

P (-gt—v +v. Vv) = ~Vp+pViv (5.186)
and in cylindrical coordinates along the axial direction [?, page 85]

"(at TS T ") T Ta: tH|rar 67‘) gz T

+p8:z

assuming that the velocity in the z direction does not vary with z or position axially then

Ov, :

5 =0 | (5.188)
and that the velocity components in the ¢ and r direction are zero. Therfore equation 77
becomes

v\ _ Op 10 ( dv, 1 8%, | %,
p(@t)__az+p[r6r(rar)+ 2 902 +62 tre (5.189)

Normally, in a cylindrical duct such as a pipe for example, the velocity gradient %})@z of the
z component will not vary with 6 and would be set to zero and Poiseuille equation of flow
or velocity ditribution results. In our case it varies due to the effects of filament proximity
and changes in flow area azmuthally. Thus, the term —;W must remain in the model.

If the shell side fluid is assumed to be in fully developed laminar axial flow for an incom-
pressible Newtonian Fluid, the velocity field is given by Po1sson s equation in cylindrical
co-ordinates
12 (), 1% 1%
rdr \ or 2802 oz
The boundary conditions needed to be satisfied in order that either of these equations can
be solved are:

(5.190)
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1. zero velocity at every surface in the shell side or the no slip boundary condition is
applied at the shell side wall of all filaments and to the shell wall containing the
filament bundle i.e n-v =0 at all the tube walls. This is the no-slip boundary
condition.

2. The velocity gradient is zero at the “line of symmetry ” between the filaments. This
is the Voronoi edge as described previously grﬂ

Brief overview of Solutions in the literature

The above equations and boundary conditions for shell side flow pattern are well established,
but these Navier-Stokes equations are difficult to solve especially in complex geometry.
Solutions of the flow equations for tube bundles with the above boundary conditions have
been reported many times. But, these solutions have been limited to mostly one ring
problems i.e. the tube bundle is a central rod with six tubes surrounding it usually in a
fixed square or triangular structure. In complex and congested geometry the requirement
that n-v = 0 at all tube walls can be prohibitive [?]. A perspective of the progress toward
an effective solution is briefly presented.

An analytical solution for an arbitray number of rods with different radii placed in concentric
rings of arbitrary radius from a central rod was developed by [?]. They assumed however
that the bundle has a characteristic symmetry with respect to the angular direction. Their
figure 1 is reproduced here as figure ————— for ease of explanation. Two different
reference systems are used; (1) the (r,¢) polar coordinate system refers to the center of
the central rod and (2) the (b;p;,6;) polar coordiante system associated with the centers of
the individual periperl rods. Because of the angular symmetry they assumed the solution,
though basically a multiplicity of a single symmetry unit dipicted in figure , 18
not trivial and is complexed by satisfying all of the boundary conditions simultaneously.
Mattaghain and Wolf analytically solved the problem using superposition of solutions (see
[?] for detail).

The solution of the the PDEs usng orthoganol grid line (cartesian, cylindrical or spherical)
coordiantes do not always intersect orthoganally with boundaries. Meyder [?] solved the
coupled conservation equations for mass, impulse, and enthalpy in a complicated geometry
i.e. fuel rod bundle by curvilinear-orthogonal coordinates or potential theory analysis and
thereby generated a grid that orthoganally intersected the boundaries. In descretizing the
PDEs in cartesian coordinates the dimensions form one mesh to the other are the same;
but, in curvilinear coordinates the lengths and angles can vary form one mesh to the next.
Criteria that are to be considered are that the solution must be consistent across areas of
symnetry and results for laminar flow should be comparable to results of other investigations.
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Meyder’s figure 10 shows a line of symmetry; and, also reflects a state of triangulation. This
line of symmetry and triangulation , though not stated and apparently not realized or noted
in Meyder’s discussion (or any discussion on the flow of fluid parallel to a tube bundle) is the
Voronoi edge and the triangulation is the Voronoi Diagram theoretical dual the Delaunay
Triangulation. Chen et al [?] discusses the use of boundary fitted coordinate method
facilitating accurate representation of the flow regions especially between the rods and the
wall. The numerical solution of Poisson’s equation with arbitraily shaped boundaries is
discussed in the work by Miki and Takagi {?]. These authors also use boundary fitted
coordinate transformations to numerically the 3-D Poisson’s problem.

Though Meyder’s method generated a grid that orthoganally intersected the boundaries
the computational time may be extreme and the equations of mass, heat and momentum
transfer must undergo transformation dependeing on the local slopes of grid lines [?][?].
Benodekar and Date solved the flow and heat equation in a tube bundle by a typical
finite difference method using the sector approach where the smallest symmetry segment is
considered for the characteristic flow area. This is a typical approach for a spacially periodic
arranged pattern of tubes. They used a structure of an arbitrary number of rods placed on
concentric rings around a central rod.

Sha [?] reviews the rod bundle thermal hydraulic analysis of (1) subchannel concept, (2)
porous medium formulation approach, (3) bench mark rod bundle using boundary fitted
coordiante system. As Sha points out a major obstacle to the use of numerical methods
in rod-bundle thermal-hydraulic analysis has been the complex geometry. This obsticle, up
to the printing of Sha’s review, was being obviated by using boundary fitted coordinate
transformations. The mixing lengths for subchannel thermal hydrodynamical analysis of
Liquid Metal Fast Breeder Reactors (LMFBR) was studied by Yeung and Wolf [?, ?]. They
found that the effective mixing length is a strong function of the subchannel geometry and
is not equal to the normally assumed centroid-to-centroid distance. It is interesting to note
that these authors in developing their symmetrical crossection into the various unit cells for
their numerical routines were approaching the use of Voronoi polygons. They observed that
ten different polygons or unit cells of varying geometries were developed in their symmetrical
segment. The flow equations could be applied to these flow areas enabling them to perform
multicell slug flow heat transfer analysis.

A particularly interesting literature work that parallels this study of mass tranfer is that of
an axially varying heat transfer to a fluid flowing axially between cylinders [?]. The analogy
is viewed from the fact that the mass transfer driving force will dimenish in this as the heat
transfer did in their study. The difference is that axially along the periphery of the rod the
wall temperature is held uniform where in the mass transfer fiber the mass transfer is not

held uniform.




6. Interfacial Phenomenon —Boundary Conditions— Applied to
Membrane Transport

6.1 Mathematical Transformation and Relationship Between 3—D and the
2—D Interface

There are three ways to model the interface between two phases. Two of these are continuum
models and the third is a molecular model. The later is embodied in quantum chemistry
and is a statistical approach at an atomic level. The former is a simpler approximation. It is
based on the observations that the details at the atomic level are many times not necessary.
To our physical perception of site and touch the world around us — and in many ways the
phenomenon of molecular transport — behave as systems and bodies that are continuous
without any voids; though, discontinuities such as the boundaries between the air and water
and the surface of tables and the surroundings are perceived([?]). The continuum models
to approximate the behavior of an interface are (reference figure 6.1 page 170):

1. As the three dimensional continuum — The interface between two phases is physically
a three dimensional region of steeply varying gradients and inhomogeneities of fluid
properties such as mass density of the fluid, species mass densities, and shear viscosity
fields. This interface does not have a sharp delineation but is a diffuse separate
phase. The three dimensional continuum model is appealing since it represents reality;
but, the difficulties of studying the field distributions and obtaining experimental
information of the properties within this small phase prohibits or at least severely
limits its useful implementation in engineering endeavors.

2. As a two dimensional surface —This is a hypothetical model of the three dimensional
physical region between two phases. This model was originally proposed by Gibbs
for a phase interface in a body at rest or at equilibrium dividing two homogeneous
phases ([?]). Gibbs suggested that the cumulative effects in the interfacial region be
taken into account at a single two dimensional dividing surface as excess properties
not accounted for by the adjoining homogeneous phases (where homogeneous phases
are defined to have properties such as mass density and stress, that assume uniform
values). This is extended to include dynamic phenomena if a constitutive equation
to describe the material behavior throughout the homogenous phase can be defined.
And, as in the static case, the cumulative effects of the interface upon the adjoining

167
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phases can be described by associating densities and fluxes with the dividing surface.
These densities and fluxes associated with a dividing surface are referred to as excess

properties.
n, Bulk Phasel

Bulk Phase 2

Macrosccale
(2D)
Interface
Diffuse
Microscale (3D)
Interface

Figure 6.1: Visualization of the concepts between the two dimensional (macroscale) and
three dimensional (microscale) models of the interface. The microscale is perceived to be a
magnification of the macroscale 2-D surface between the two bulk phases

The literature works and reports on the study of interface phenomena is extensive. As
one attempts to go through the literature of this subject it would appear that nearly all
branches of science, mathematics, and engineering have contributed in some manner to
this subject. In this section I will follow primarily two books that I find exceptionally
beneficial — Slattery’s book on Interfacial transport [?] and Edwards et al. book on
Interfacial Transport Processes and Rheology [?]. The latter is especially beneficial from
a visualization standpoint and is fairly well developed mathematically (though in places
vague as textbooks tend to be) and will be followed fairly extensively. The former is a very
extensive and rigorous work on the mathematical understanding of interfacial transport. As
in other sections additional works will be referenced appropriately. The following of these
books is done here since the interface is a very crucial and important part of the fundamental
modeling of membrane separation processes and the theory has been fairly well developed
thus far, especially for the dividing surface model. The need for an understanding of tensor
analysis (cf. [?]) is fundamental since primarily I will look at the interface as a Riemannian
Surface in non-Euclidean two dimensional curvilinear space.
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6.1.1 Mathematic Preliminaries

In three dimensions we can use Euclidean space and its more understandable mathematical
interpretations. For two dimensional surface flows the need for non-Euclidean Riemannian
space arises. Riemannian space exists if a metric tensor exists and thus Euclidean space
is a subset of Riemannian space. The fundamental metric tensor g;; = e; - e; (where e,
is the covariant base vector) describes the nature of a space, or manifold and associates a
length with an infinitesimal vector whose components are the derivatives of the coordinate
curves associated with the space. A space is Euclidean if the metric tensors are constant
or a transformation can be found in which the metric tensors are constant. If it is not
possible to find this magping or transformation than the space is said to be non-Euclidean
or Riemannian ([?, page 43]).

Transport phenomenon in the interface or surface is not merely a two dimensional analog
of the three dimensional transport equations ([?]). The interface is a two dimensional space
that can move in the higher three dimensional space surrounding it. The region of contact
or interface between two bulk phases, as in this study, constitutes a two dimensional moving
surface. The two dimensional model of an interface is a surface in Riemannian space. This
two dimensional non Euclidean space demands a mathematical approach as a full general
tensor treatment.

A surface, as considered from an intrinsic point of view or as observed from the perspective
of an observer constrained to lie within the surface itself (independently of the three dimen-
sional space in which the surface is embedded), is illustrated in figure 6.2 page 172. This
is opposed to the extrinsic view, that is the perspective of the geometric description of an
interface by an observer external to the surface constraints. The extrinsic view gives a con-
nection between the three dimensional bulk phases and the two dimensional surface phase.
This is done by utilizing vector and tensor transformations between the two dimensions.

The transformation from a rectangular cartesian coordinate system of x, y, z system to a
curvilinear Riemannian Space is denoted by [?, page 46] '

ql = ql(ml,z2’$3) = ql(a:,y,z)
¢ = ¢ c',2%2%) = ¢(z,y,2) (6.1)
q3 = q3($1,z2,x3) = qa(w’y, Z)

where the functions ¢'(z,y, z) =constant; ¢*(z,y, z) =constant; ¢*(z,y, z) =constant; and
denote three surfaces in three dimensional space (cf. figure 6.3A, page 173 ). The inter-
section of any two defines a coordinate curve. When the transformation is non-linear the
coordinate curves g!, g2, and ¢° are curved lines and when the coordinate curves are straight
lines a linear transformation has been established. This linear transformation may and may
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P=P(¢'.4)

(¢".q*+dg®)

g*-coordinate
curve

(g'+dq'.q*+dg?)

Figure 6.2: A two dimensional surface as considered from an intrinsic view or as observed
from the perspective of an observer constrained to lie within or on the surface itself.

not be parallel to the original origin.

Slattery [?, page 13] gives a very good account of a dividing surface or interface and eluci-
dates the above relationship.

A dividing surface in three dimensional Euclidean space is the locus of a point
whose position is a function of two parameters ¢! and ¢2.

The two parameters, ¢! and g2, are the surface curvilinear coordinates and uniquely deter-
mine a point on the surface and are independent functions of position within the surface.

q* = g¢%(xs) (a=1,2) (6.2)
or
1= gl (z,y,2
32 < 32 E.z-: v ér% (6.3)

where x, is a position vector relative to an origin (see figure 6.3B page 173). The surface
point P, may be specified extrinsically as a function in cartesian coordinates with respect

to a chosen origin as

0 —
(e o) =0 (6.4

[?, page 513]. The surface coordinates for this or at this point can be expressed as functions
of the rectangular cartesian coordinate system relative to the origin O:

¢ = f* (zl,m2,z3) (a=1,2) (6.5)
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q'-coordinate
curve

urface

q'-coordinate
surface
A

4"
n
% A%
a,
e,
x, k)
Curved §
Space fixed origin

B

Figure 6.3: (A): Coordinate curves, surfaces and unit base vectors in an orthogonal parame-
terization of the interface in three dimensional space. The coordinate surface ¢ = constant
exemplifies the macroscale interface. The intersection of pairs of coordinate surfaces gener-
ate coordinate curves. (B): Curvilinear coordinate system in relation to the fixed cartesian

coordinate system.
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and therefore

q*(xs) — f* (-'c z? 23) 0 (6.6)
which if we equate F* to be this difference then
F=¢%(x,) — 1% (a",2%,2%) =0 (6.7)

and in the canonical parametric form given by Aris [?, page 279]
Fi(z,...sZm;¥1,--+,Un) =0, j=1,...,n then

FO (<1, x :c q1 ) =
F! (m :17 ,z3 ,q qz,—O (6.8)
F2(z1,22,2%,¢',¢*) =0

If the Jacobian of the above functions does not vanish then, the functional transforms have
a unique inversion given in this case by equation 6.9 [?], [?], [?], and [?, pages 86-89):

x=x, (&) ©9)

The interrelationship between the rectangular cartesian coordinates system of fixed origin
and the curvilinear coordinate system of a curved surface is illustrated in figure 6.3B page
173. If x,, sometimes denoted as r, is a two point vector field specifying the position of
a point P, in a two dimensional Riemannian surface relative to a fixed origin O then it
is defined by x; =x; (¢%,¢?) on the surface. The differentiation of x, with respect to the
coordinate curve vectors or dx; in two dimensional space can be written by the chain rule

as
- 6}(5 1 3Xs 2 _ axS
dxy = 5rdg + S’ = Zde” (6.10)
where the partial derivatives
OXs def '
o - (6.11)

~ are the tangent to the coordinate curves as shown in figure 6.3A page 173. These partial
derivatives are the surface base vectors, a,, defined locally at P;. They provide a relation
between the two point differential displacement, dx;, between neighboring interfacial points
xs and X; + dx; and the comparable differential displacement dg® of the coordinates ¢* {?,
page 44-45].

To describe the two dimensional interface embedded in the three dimensional space the use
of a semi-orthogonal curvilinear coordinate system is used (cf. [?]). In this geometrical
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6.1.2

description two of the three coordinates lie on the surface of the interface and the third
normal to the surface (cf. figure 6.3 page 173). The two coordinate vectors lying on the
surface may and may not be orthogonal to each other but the third (normal to the surface)
is always orthogonal to the other two. In terms of covariant base vectors g3- g; = 0, g3-

g2 =0, and g;- g2 # 0.

The unit surface normal at a surface point Ps = P;(g!, ¢?) also represent the tangent of the
g® coordinate curve at P;. The surface normal vector is defined as n =2 ": where a, are
the surface base vectors and a is the determinant of the surface metric tensor and is defined
as
a=detays =|a; x ap | L e (6.12)
Go3 =8q-83 (0,3=1,2) p (6.13)
:Eq‘t’{\ )

Derivation of the Interfacial Jump Equation |

Simultaneous volumetric transport processes in the continuous bulk phases surrounding
an interface accompany the areal transport process within and normal to fluid interfaces.
The interdependence of these processes is apparent especially within the proximity of the
interface. The volumetric physical properties (viscosity, density, solute diffusivity, etc.) and
fields (velocity, pressure , solute concentration) are continuous within each phase but are
generally discontinuous at the phase boundary separating the two phases. Thus the need to
develop appropriate boundary conditions using the interfacial fields and physical properties.

Let ¥ denote the total amount of some generic, extensive physical property P and be a
function of time i.e. ¥ = W (t) contained within a domain of fluid (V = V/(¢)) that convects
with the fluid motion (cf. [?] and [?]). This property may be a scaler as in the case of mass
or a vector in the case of momentum. The continuous spacial and time density field of this
property is ¢ (x,t) or the amount of the property B per unit volume at a point x of V at
time t such that :

¥ = /V dV (x,1) C (6.19)

and differentiating with respect to time
dw 0
- = — . ,0)] ¢ dV. 1
7 V(t){atz/)(x,t)+v [vep (x )]} (6.15)

The rate of production of P within V' (denoted by IT ) may be expressed in terms of the
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Figure 6.4: A single phase system or domain of convective fluid V(t) bounded by the closed
surface dV or gV (t) forming some portion of a three dimensional continuum. dS is the
outwardly directed normal on 8V that directs the flux of a property from the material
volume.

volumetric production rate density field 7(x,t)

M= /V AV (x, 1) (6.16)
and the volumetric rate of supply density

Z = /V dv¢ (%, 1) (61

and defining ¢ (x,t) the areal flux density (amount per unit area) of the property P at a
point x lying on the bounding surface denoted by dV = GV in figure 6.4 page 176. The
time rate ® at which property 9P is transferred out of volume V through its surface is

®=¢ dS¢ ' (6.18)
v

where dS is the outward pointing normal of the bounding surface V. Alternatively, using
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the divergence theorem [?] given by

i /R divAdr = ]fs i AdS (6.19)

(note that dS in this equation is a differential element of surface; fi is the outward normal;
dr a differential volume element; and A is a vector function). Thus, equation 6.18 can be
expressed as a volume integral

&= L davv.¢ (6.20)
and by the generic overrll balance the time rate of accumulation of, %‘f—, of the property P
within V'

av ‘

and substituting equations 6.15,6.16,6.17, and 6.20 into 6.21 to give the generic, volumetric
balance equation for continuous three dimensional media at each point x

%%— +V:(vip+¢) —m—(=0. (6.22)
Note that the terms v and ¢ are the convective and diffusive flux of the property P
respectively. When the specific variables (such as density, velocity, pressure, reaction rates,
energy, entropy etc.) are substituted into equation 6.22 the familiar balance equations are
obtained for the transport of mass, momentum, and energy for a continuous media (cf. [?,
page 65] and [?, page 18]). For a discontinuity of a fluid phase boundary these equations
must be supplemented by an appropriate equation quantifying the “jump” in the field across
the discontinuity. This quantification for fluid interfaces is in the form of a surface excess
balance equation at the macroscopic singular phase interface. This interface functions as a
bounding condition imposed upon the discontinuous bulk field densities.

Consider a moving deforming fluid interface domain A in figure 6.5 page 178 that separates
two bulk phases. Points within the total volume space bounded by the surfaces Ay, Ay, Sy,
Sy may be identified by the space fixed position vector x or by the surface position vector
Xs. The normal coordinate to the surface is defined as

n% (x—x5)-n (6.23)
with n being the unit surface normal. Thus the space fixed position vector x is related to
the surface vector x; by

X = Xg +nn (6.24)
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Bulk Phase 1,

Bulk Phase 11,

Vir

Figure 6.5: A visualization of the macroscale interface that separates two fluid phases I and
II. Note that pA = 84 and S= .

and n will always be directed in the positive direction away from the surface (cf. figure 6.6
pag . e. originating at P; on the interface and toward point P in space.

This allows} for the ‘generic parameterization of the three dimensional space into a two
dimensional space.

Alx;t) = A(xs,n5t) (6.25)

Because of the two different continuum models (the three dimensional or real physical model
or microscale and the two dimensional model or the macroscale) to describe an interface
and thus two different length scales — a disparity exists. The two dimensional macroscale
doesn’t have the order of thickness of the interfacial transition region near the interface
as does the microscale model. On the macroscale the total amount ¥ of 9P in a specific
bulk volume V (where the overbar denotes a bulk phase) can be expressed in terms of the
generally discontinuous volumetric density field ¥ (x,t) for each phase (i.e. amount of the
property 9B per unit volume at a point x of V) such that

¥ = /Vdvi(x, ). | (6.26)

The microscale viewpoint has a true field density ¥ (x,t) and is fully continuous over the
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Figure 6.6: The relation between space and the surface fixed position vectors x and xs

respectively.
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domain of the total volume of the system. Study of ﬁgurei6.7 )page \18} elucidates this
concept. ) )

The true total amount ¥ of P in V may be expressed in terms of the continuous volumetric
density field 9 (x,1)

o= AdV’l/) (x, 1) (6.27)

Only in the vicinity of the fluid interface does the difference between the two length scales
emerge. These differences ~re attributable to the large normal gradients %‘5 in % existing
within the interfacial transition one. To reconcile the discontinuous macroscale view with
the true continuous microscale view the residual difference W is defined

¥ eT | (6.28)

and is assigned to the macroscale surface A as representing the total ‘surface excess’ amount
of the property P in A. Assuming all subsequent intensive areal fields to be continuous
within the interface this definition of the areally extensive variable maps the surface excess
areal density field at each point x of A by the expression

= /A dAY® (xs,1). (6.29)

The generic areal field 9° (x;,t) corresponds to the (excess) amount of the property P
per unit are at the point P; of the two dimensional interfacial continuum, just as the
volumetric field density 1 (x,t) corresponds to the amount of property P per unit volume
at a point P of the three dimensional volumetric continuum. ¥° is not to be regarded as the
actual amount of property B per unit area at point P, but rather represents the amount
of property P assigned to the interface as the intensive field representation of the extensive
residual difference. For the macroscopic discontinuous domain the total amount ¥of P in
V may be expressed via the above equations as

v = [ avis [ daye. (6.30)
v A -
Likewise the molecular efflux ® of the property 8 through the boundaries of the macro-
scopically discontinuous volume element V can be obtained.

From the macroscale perspective the phase efflux ® of the property 8 through the phase
boundary 8V may be expressed in terms of the generally discontinuous areal flux density
@ (x,t) (or the macroscopic length scaled amount the property 98 per unit time flowing
across a directed element centered at a point x lying on the bounding surface V) as

$=9¢_dS-o. (6.31)




6.1 Mathematical Transformation and Relationship Between 3—D and the 2—D Interface

179
Distance above
interface, n
A
T Macroscale bulk-phase field
| ‘ / El(x"n;t)
‘. True, microscale field
. ps(x.r)
T Tps {04
Interfacial )
Transition O Volumetric
Zone 0 Density
Macroscale: —_
singular surface psp(0)
Macroscale
‘ "Surface-excess” field
. (integral of the shaded region)
) [ps*(x:0)}
Macroscale bulk-phase field _/ .
psg(x,n;0) C.
Figure 6.7: Dllustration of difference in macroscale (two dimensional model) and the mi-

croscale (three dimensional model) fields at point x;. Note ps= .
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For the microscale the true efflux ® through the material boundary 8V for a continuous
flux is expressed as '

P = ds.¢ (6.32)
v
and the residual difference between these fluxes are
% 3-F. (6.33)

Which represents the total ‘surface excess’ molecular flux of the property out of A through
the closed contour defined by the intersection of the interface with the total surface area
bounding the system. From the assumption that all areal fields are continuous within the _
interface and the surface excess lineal density field ¢° (x;,t) at each point x, of the interface
as

P°=¢ dL-¢° (6.34)

BA

where dL is an outwardly directed differential lineal element along the surface. The generic
field ¢° (xs,t)corresponds to the (excess) amount of the property ‘B per unit time per unit
arc length flowing in a positive sense across the line element dL at point P, of the two
dimensional interfacial continuum. This is the two dimensional analog of the areal flux field
¢ (x,t) corresponding to the flux of the property 98 at a point P of the three dimensional
volumetric continuum and represents flow along the surface or interface (cf. figure 6.5 page
178). The other volumetric relations are derived for

@ sim+z (6.35)
dt
where
) g JLde + / dAT® (6.36)
14 A
Z = j[_dVZ + / dAC? (6.37)
12 A
% and (* are the surface excess areal production and supply densities and the flux become
@:/_ds-$+j[ dL - ¢* (6.38)
ov 0A

and by applying the divergence theorem ({?], [?], and [?])

JpdivFdr = § i - Fds
where
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dr = differential volume element
F = wvector function
s = surface that bounds region R
i = outwardly pointing normal
r
V-FdV = ¢ F-nds (6.39)

R
which states that the Alux of a vector function F through area S equals the triple
or volumetric integral of the divergence over R.

over each of the continuous domains or bulk phases to obtain
5= ﬁdVV -+ [ dan |3+ / dAV,-(I,-¢°). (6.40)
v Ja A
where || ¢ || is a denotation of the jump in discontinuous tensor field or in a generic form

| R~ 1% %y (04) — 911 (0-) (6.41)

where R is a tensor field across a singular surface with 97 (0+) and %77 (0—) denoting the
respective values of R on the two sides of the interface, n = 0+and n = 0—.

By using the volumetric Reynolds transport theorem i.e.

d DR
= fv RAV = /V [—52—+mv-v] dv (6.42)
where 2 % 2 4 (v- V) (see [?, page 58, 72, and 86-87] and [?, page 725]

and (?]) is the convected, material, or substantial derivative.

allows the following development from
d - 9— —
i /_ aVE = ﬁv(t) av [b—t¢+v- (vz/))] (6.43)
Vi) DVt .
and using the surface Reynolds transport theorem for convected material surface [?, page
60] and [?, page 72-75] i. e.

d

4 /A RdA = /A [%?+Vs-(v9‘t)} dA. (6.44)

or in a more suitable form

2 [Lasv = [ aalgw + 9. o) (6.45)
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and the combination of equations 6.43 and 6.45 with reference to equation 6.30 allows the

development of
== . [-gt-Tp'+ v. (va)] + [ aa [—gt—zlzs +V,- (v°¢5)] . (6.46)

This comes about from the time rate of change of the amount, ¥, of property 8 given by
the derivative of equation 6.30

w= deV'z/?+ / dAY* (6.47)
v A
to give
i d(frdvy) , 4 d4y?) 6.48)
dt dat dt '
and substituting appropriately then equation 6.46 is obtained.
Recalling that
d¥v
- = —b+II+Z
where

= fFdVT+ [, dAn®
Z= deVC+_fAdA(s
®=fFdVV ¢+ [ydAn- || ¢ | + [, dAVs - (Ls - ¢°)
7% and (° are the surface excess areal production and supply densities and substituting
accordingly

oy [§+V - (vB)] + [y dA [§v* + Vs - (voy?)]
=~ (fpdvV -3+ [ydAn ||| + [, dAV,- (L -¢°)) (6.49)
+ fFdV{ + [, dACE + frdVT + [ dAx® :
combining like terms and taking terms to the left hand side
frdv{g9+V-(v§+3)-7-C}
+ [y dA{ZY* + Vs - (v + 1, ¢7) — 7 =+ || § 1} , (6.50)

The first integral term is the transport or continuity equation in a single phase or in this
case one of the bulk phases and by the conservation of mass constraint at each point within
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a phase is zero i.e.

0— - = -
/VdV {§¢+v. (v¢+¢) —T—C} =0 (6.51)
[?, page 86-87]. Thus equation 6.50 reduces to
0 s 0,18 L) s S = —
/AdA{azl) Ve (v L 67) =7 —( +n«u¢||}—0 (6.52)

and since the integrand is zero if an integral over an arbitrary portion of dividing surface is
zero [?, page 88] then the jump mass balance is

S AV (W L)~ = B =0 (6.53)
or

dws O, /,5 & s ] py

& TV (VL) -m = =-n[4]. (6.54)

Equation 6.54 is the point-wise generic interfacial equation valid for each point x; of A. It
must be true for every portion of a dividing surface excluding a common line (i.e. intersec-
tion of three phases) (cf. {?, page 87]).

n° = surface excess time rate of production of a generic property
at a point on the interface

¢®* = surface excess time rate of supply of a generic physical property
at a point on the interface

¢* = surface excess diffusion flux of generic property

v® = velocity at a point xs of the material interface

I, = unit surface idemfactor

¥*® = surface excess amount of generic physical property

at a point on the interface (field density per unit area)

If there is no mass transfer to or from the surface and the supply and production terms are
zero (w® = {* = 0) and the flux is zero (¢* = 0) and thus —n- || ¢ ||= 0 the surface excess
transport equation reduces to

d¢s 0,15\
—— + Vs (V) =0 (6.55)

and if the surface amount of the property, 1°, is held constant then V- v = 0 which states
that there is no local expansion (dilation) of the interface [?, page 87].

Except for the bulk phase molecular flux terms appearing on the right side a one to one cor-
relation or analog is apparent between the terms of the three dimensional transfer equation
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and the two dimensional surface jump equation. The flux term is a source or sink to the
interface. A second distinction is the idemfactor I which is constant in a three dimensional
space that is flat and the flux I-¢ is constant throughout space and independent of x. In
contrast, the curvature of the interface may cause I; not to be constant except for flat
surfaces or interfaces and is a function of x, [?, page 75].

Solute Mass Transfer Equation

For mass transfer there is no areal supply rate, {*. This term comes about in momentum
balance and energy balence equations. Letting

° = p? (surface excess mass density for species i)
¢° = j§ (surface excess mass flux for spcies 7)
w® = R} (surface excess areal production for spcies %)

then the mass balance becomes

dpi . -

2L+ Ve- (vopi +1-3) = Ry +n || T | (6.56)
and defining j{ in the “surface Fickian ” diffusive form

3t (v§ —v°) ol = -DIV.p} ~(657)
the surface projection of j7 = I, - j§ thus

dp3 -

TV, (v0]) ~ Ve (D}Vep}) = R 41 | T | (6.58)
or for the case of constant surface diffusivity, Dj,

dps —_

T4V, (V) —DIVI = B 40 | (6.59)
Placing terms more typical of surface excess molar species concentration »

def P§
ri=-—+ : .60
B (6.60)

where here M; is the molecular weight and I'{ is the surface excess molar concentration.
The surface excess species flux boundary condition is obtained

dars -
=5+ V.- (v'I§) - DIV =rf 0 | T | (6.61)
where r{ is the surface excess molar areal production rate.
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Equations of Motion

?t/
k@’t Recognition of the intimate coupling of surface flow with flow of the adjacent bulk fiuids,

c’}\ requires the simultaneous solution of the equations defining these two flow regimes. Scriven
v [?] as well as Edwards et al. [?] derive these equations in detail in tensor formalism
R fQ and using the theorems of differential geometry. This type of formal derivation is given in

& — section (6.1 for the generic interfacial conséTvation-egtation. In the case at hand we desire
the generic volumetric balance equation ?? page{?Z/ Using the proper fields for the generic
variables for linear momentum of ¥ = pv, ¢ = —P, 7 = 0, and ¢ = F the linear momentum
conservation equation is obtained.

%(pv)+V-(pvv)—V-P—F=0 (6.62)
and for angular momentum ¥ = xx (pv)+pa, ¢ =P xx—-C,7=0,and ( =x xF+ G
% (px x v)+% (pa)+V-(pvx x v)+V-(pva)-V-(P x x)—V-C —x x F — G = 0.(6.63)

Defining a pseudo-vector invariant Py of the antisymmetric portion % (P —PT) of the
pressure tensor as

1
—_ e -pt
Py = —e (p-P')
= -eP (6.64)
where ¢ is the unit alternator. In terms of this pseudovector equation 6.63 may be arranged
into
0 0
XX | (pv)+V-(pvv)—-V-P~-F +5 (pa)+V-(pva)-Px—V-C — G = 0.(6.65)
and as a result of equation 6.62 becomes
-gt—(pa)+V-(pva)—Px-—V-C—G=0. (6.66)

For non polar fluids the internal momentum and stress pseudovectors are zerothusa=C=G =0
and thus P, = 0 and therefore P = Pf. This illustrates the symmetry of the pressure tensor.
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a = internal angular momentum pseudovector
C =couple-stress pseudovector

F = external body force density vector

G = body couple density pseudovector

P = pressure dyadic

p = mass density

v = mass average velocity vector

x = space-fixed position vector

Pt = transpose of the stress or pressure tensor

The pressure tensor can be written in a decomposed form into what Edwards et al refer tc.‘
as the isotropic or thermodynamic pressure, p, and deviatory part or viscous stress tensor,

r
P=—pI+. (6.67)
The thermodynamic pressure is different than the mean pressure which is defined as
ef 1
p&f ~3LP (6.68)

This the pressure, p, at any point in a fluid is larger than the mean normal pressure by the
additive term proportional to the rate of expansion, V - v. For a Newtonian fluid 7 is a
second order tensor given by [?, page 565]:

T= (n - %p) (I:D) 1+2uD (6.69)

where p and k are the shear and dilatational viscosities and D is the rate of deformation
tensor defined as (7]

D & % (Vv+[w1). (6.70)

K is also referred to as the propotionality constant defined to be the bulk viscosity coefficient
and relates stress to volumetric deformation rate in the same way that shear viscesity relates
stress to linear deformation rate [?]. A compressible Newtonian fluid will have a relationship
between the thermodynamic and mean pressures given by

p—-p=—KV-.v (6.71)

involving only the dilatational viscosity coefficient £. For an incompressible Newtonian
fluid I:D = V - v = 0 and the viscous stress tensor simplifies to

T =2ﬂD. (6. 72)
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This implies that by the continuity equation that the mass density p is constant in space
in time (note: this does not imply that the mass of species i is constant in space and time)
and that the thermodynamic and mean pressures are equivalent. The whole point of this
exercise was to obtain two important starting equations in modeling the Marangoni effe;
the equation of continuity , and ; Navier-Stokes equation. By combining equatio
6.67, 6.69 and the continuity equation at constant fluid density V - v = 0 the Navier-Stckes
and continuity equation for a three dimensional, incompressible, nonpolar, Newtonian fluid
continuum with p and g constant throughout the fluid.

P (%tv_ +v- Vv) = —Vp+uViv (6.73)
V.v=0 (6.74)

Note that the external body force vector represented by F is incorporated in the pressure
term p. Generally this term is the gravitational vector pg - z and thus the pressure term
' = p+ pg - z (z being the position vector) with the prime on the left hand side eventually
dropped [?, page 28], [?, page 52]. In the section on Interfacial Turbulence section 6.2 the
coupling between the interfacial solute transport, Navier-Stokes equation, the continuity
equation as well as some constitutive equations will be combined to develop the model for
the phenomena of spontaneous convection due to mass transfer and chemical reactions at
an interface.

6.2 Interfacial Turbulence or Convection — The Marangoni Phenomena
6.2.1 Brief Background

Interfacial instabilities occur when two unequilibrated immiscible or partially miscible liquid
phases containing a solute that is soluble in both phases are brought into contact. The term
Marangoni phenomena, effect or specifically the solutal Marangoni effect or soluto-capillary
instability [?] is applied to the spontaneous interfacial flow induced by interfacial tension
gradients. These interfacial tension gradients are caused by changes in solute concentrations,
temperature and interfacial electrical potential [?, Chapter 3 by E. S. Perez de Ortiz].
Spontaneous interfacial flow results in an additional component to the interfacial flux that
is not included in the general theories of mass transfer.

Two physical properties play important roles in this induced fluid motion {?]:
o solute diffusivity

o kinematic viscosity
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Edwards et al [?, page 273] reports that Hennenberg et al [?] showed that the interfacial
turbulence may be enhanced as Sternling and Scriven deduced by:

1. solute transfer from the phase of highest viscosity and lowest diffusivity
2. small viscosities and diffusivites, and

3. large interfacial tension gradients and small interfacial viscosities

Other effects on the instabilities may be caused by a wall or boundary, adsorption-desorption
at the interface, and/or other chemical reactions. In systems with no chemical reactions a
qualitative analysis of the effects of viscosity can be discussed as the references [?, page 162]
and {?, page 275-278] have done. For a typical system without a chemical reaction with
adsorption and similar values of solute diffusivities in both phases, interfacial convection is
likely to be sustained when mass transfer takes place from the phase of higher viscosity [?,
page 161]. A system with like diffusivities but unlike kinematic viscosities is predicted to
be unstable when the solute is transferred from the phase of lower solute diffusivity [?, page
161].

In the case of a system with a chemical reaction it is not easy to predict the interfacial
stability qualitatively. There has been little theoretical work done on the effects of the
Marangoni phenomena accompanied by chemical reactions. Most of the works reported,
though abundant, are phenomenological and are primarily experimental observations of the -
turbulence of mass transfer with chemical reaction. Recently Warmuziniski et al [?] and
previously Ruckenstein and Bebente [?] and [?] have attempted to distinguish the effects
of the Marangoni effect and that of the chemical reaction on mass transfer processes.

Nakache et al [?], [?] observed reactions leading to emulsification, interfacial movements,
and surface deformation. The different types of instabilities result from variation of inter-
facial tensions and pH with contact time. Oscillations of interfacial tension were experi-
mentally observed to have a correlation between surface convection and adsorption density.
Systems were always stable when the reactants were dissolved in the phases where they
were less soluble. The type of organic solvent also effected the interfacial stability and was
interpreted to be an effect of the dielectric constant of the solvent and the ionization of
the reactants. Nakache et al proposed a mechanism of instability that included adsorp-
tion/desorption steps, reactant concentrations, and chemical, diffusional and convective
steps [?]. In the extraction of copper Nakache as reported by Ortiz [?] saw interfacial
movements and emulsion formation in the extraction of copper in di(2-ethylhexyl) phos-
phoric acid (DEPAH) and its sodium salt (DEPANa) in xylene. Extracting with DEPANa
alone had a higher interfacial activity and deformation than when mixed with DEPAH.

Rogers and Thompson [?] and Thompson [?, page 180] observed interfacial instabilities
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during extraction of uranyl nitrate, plutonium(IV) nitrate and nitric acid from aqueous
solution into tributyl phosphate organic phase. Rogers and Thompson observed and re-
ported that the systems that exhibit interfacial turbulence the value of the mass transfer
coefficient depend on the time of contact and hence the age of the interface. This is in
agreement with Nakache. Rogers and Thornton suggest that the dampening of interfacial
turbulence with time is unresolved but proposes that it is not caused by a buildup of the
interfacial complexes or contaminants as proposed by others. Ruckenstein suggests that the
liquid elements taking part in the roll cells of the interfacial activity become progressively
saturated and thereby reduce the concentration gradients [?]. Contrarily Kizim and Lafkov
[?] experimentally determined that 20-30 percent of the initial amount of a lanthanide ex-
traction in DEHP accumulates in the interfacial film 60 minutes after the initiation of their -
experiment. These authors feel that the higher accumulation during the first 5-10 minutes
may be due to spontaneous surface convection. As the interfacial film develops the interfa-
cial surface is shielded and decreases the rate of formation of the extracted compound. The
discussion is primarily limited experimentally determining the formation of the presence of
a film. Spontaneous convection is only briefly mentioned.

An experimentally verified molecular model of the interface is not yet available [?, page
176] though there is work underway to describe the interfacial parameters as described in
the references [?], [?] and [?]. Figure ((INTERFACEL))) is a qualitative conception
of the interface. This conception is echoed by Vandegrift and Horwitz description of the
water or aqueous phase near the interface in a HDEHP extractant system. They describe
the aqueous side of the interface as being a two layer system. The water forms hydrogen
bonds with the HDEHP monolayer (organic reactant) and the interface on the aqueous
side becomes “ice-like” with a very structured orientation with thickness being dependent
upon temperature [?]. In concept this can explain the aging effect. As the layer develops
with time and may grow thicker the “shielding” effect as Kizim and Lafkov noted may
become more pronounced. However, it should be noted that as the reactions take place
heat of reaction and heat of solution is present and could raise the temperature close to
the interface. This heat probably locally restricted could cause “thawing” of the interface
in these local areas and may effect oscillatory turbulence if not completely keep the system
from reaching stability. This hypothesis has not been verified and is not, to my knowledge,
contained in the literature. Vadegrift and Horwitz did comment on mechanical energy by
low speed stirring could not “thaw” the icelike structure at low temperatures.

The intensity of the interfacial turbulence strongly depends on the magnitude of the gradient
of interfacial tension as a result of the rates of mass and momentum transfer between the
two phases. Surfactants have a tendency to reduce the interfacial tension possibly below a
level that any perturbations of the solute concentration can change to induce instabilities
[?]. An example of this calming effect is the placement of thin sheen of oil on a wavy pound.
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6.2.2

Surfactants alter the structure of the interfaces rheological behavior and in the rate of mass
transfer.

Mathematical Modeling of the Marangoni Effect

The characteristic method for mathematical modeling of the interfacial instabilities often
referred to as the linear stability theory and widely used in the hydrodynamic stability
analysis is [?]: »

1. Initially the interface is along a planar or cylindrical geometry

2. Initially the system is in a stationary state (steady state) or at local equilibrium at
the interface (undisturbed state)

3. The phases may be either stagnant or flowing
4. May be accompanied by heat of solution

5. Liquid.é are Newtonian (isotropic fluids in which stress depends linearly on rate of
strain)

6. Liquids are incompressible
7. Physical properties are not dependent on concentration or temperature gradients

8. The equations governing the perturbed system are obtained by introducing infinites-
imal increments to the physical variables that describe the flow

9. These equations are linearized and solved in order to obtain the evolution of the
perturbations in time.

Additionally, most models make the following assumptions:

Sternling and Scriven first applied this approach [?] to two semi-infinite, quiescent fluid
phases in contact along a plane interface in thermodynamic but not chemical equilibrium.
Sternling and Scriven point out that interfacial forces generated by accounting for temper-
ature variations are roughly a thousandfold less than those simultaneously generated by
concentration variations in a typical system benzene-acetone-water. The simplified model
that Sternling and Scriven introduced twenty-five years ago had several simplifications that
make it unrealistic [?]:

1. Two dimensional disturbances were not accounted for

2. In reality the interface is not fixed in position
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3. the system is not planar rather it is typically curved or even spherical
4. Solute transfer is not steady state |

5. Solvents also interdiffuse along with the solutes

6. the diffusivities usually depend strongly on concentration

There are other modeling approaches. The Sgrensen et al model accounts for variables that
the Sternling-Scriven model neglects (i.e. the adsorbed mass, the normal deformations of
the interface, heat effects (phases are in thermal equilibrium), and gravity). A variation
of the Sorensen model also used an exponential estimation of the profile for the solute
concentration distribution. The Hennenberg model is basically the same as the Sgrensen
model but the interfacial balances for the perturbed quantities are written at the location
of the perturbed interface instead of at the non-perturbed interface [?].

Hennenberg [?}[?], Sgrensen and co-workers [?] and Sanfield and co-workers [?][?] con-
sidered the effects of non-linear concentration profiles, deformable interfaces, mass transfer
with interfacial chemical reactions and electrical constraints [?, page 171]. Ortiz reports
that the results differ from Sterling and Scriven model by negligible amounts for systems
with interfacial tension greater than 1 mN/m. At lower interfacial tension, oscillatory in-
stabilities appeared in regions predicted by Sternling and Scriven to be stable.

The governing equations for modeling spontaneous flow are the Navier-Stokes, continuity,
and the convection diffusion equations with chemical reactions, for each bulk phase i

P (% + vi-Vvi) =-Vpi+pmVvi+pg-z (6.75)
V-vi=0 (6.76)
66; 2

TV (vici) = V-D;Vec; + R; ; (6.77)

the boundary conditions at the interface represented by the solute mass conservation and
the surface momentum conservation equations [?], [7]

drs

g+ Ve (VT - DIVITi =140 | 5| (6.78)
S
a(PatVo) =-V,;- (P’vovo) —Vso-+2hon+V,-7° —nlp| +n “T" . (6.79)

In arriving at equation 6.79 several items need to be illuminated. These can best be il-
lustrated by a brief derivation starting from the generic surface excess balance equation,
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JRSACCT Y
/ PR - a\}..\’r
equation ?7: -\
dy°®
dt

and substituting the proper variables for surface-excess linear momentum ¢° = p*v°, ¢*° =
—P*% ¢ = —P, 7° =0, and ¢* = F® results in

+ Vs (VY*+1-¢°) =7 - (*=-n || ¢| (6.80)

d(p*v° —
—(‘jTt"-—) + V- (p°VV) =V, (I P*) —F* = —n. | =P || (6.81)

The surface excess pressure tensor possesses the property I,-P* = P*. Thus, V,-(I; - P®) =
Vs - P [?, page 106]. Using this property and the decomposition of the surface excess
pressure tensor in its isotropic and deviatory parts [?, page 108] ’

P’ =Yoo+ 7° _ (6.82)

where 7° the surface excess stress tensor ¢ is the thermodynamic interfacial tension and
is the hypothetical surface tension which would appear in an equilibrium equation of state
that is governing the surface intensive variables o = o (p°, T, z¥) results in

Syr0
..d._(ﬂ_). +VS . (psvovo) - Vs .Ps - Fs

| 7P| = 22
S0
— d(fitv ) +V,- (psvoVO) -V, (ISO'-{-TS) —F*
S<xs0
= -‘-i(—/;tl-z + Vs (p°vV°) -V - I,0 — V. 7° — F°. (6.83)
From the general identities '
I 1 —nn (dyadic surface idemfactor)
Vs e,V (Surface gradient operator)
b = -V:n (Surface Curvature dyadic)
g ¥_lyg .a
2
= —lls:b ' (mean surface curvature)

which gives the identity [?, page 51]

Vs - Is = 2Hno (6'84)
Expanding the third term of equation 6.83
Vs * Isg == Is . Vso- + aVs M Is (6.85)

= I;-Vso+2Hno (6.86)
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and noting that the bulk pressure tensor decomposed into its isotropic and deformatory
parts alters the left hand side of this equation to
—n [P || = n-||-pIl+]
= n-[-pl||+n 7|

= —|plln-I+n ||
= -n|p|| +n- |7 (6.87)
and thus equation 6.83 becomes
—nfp|| +n:jj7]| = (thv ) + V- (p°v°v°) - V0 —2Hno —V,-7° —F°. (6.88)
This is identical to equation 8 of Bekki et al [?] where | || denotes the jump of the

bracketed quantity across the interface, T and 7° the bulk and interfacial stress tensors
respectively and the other quantities have been defined previously.

The dynamic or mean interfacial tension is defined as

1
7% 1P, (6.89)
at the interfacial point x, [?, page 109]. Interfacial phases are generally not incompressible

in that V, - v; # 0 even though V - v = 0 and a difference will generally exist between the
dynamic interfacial tension & and the thermodynamic interfacial tension o{?].

6.3 Constitutive Equations — Interfacial adsorption and Surface Equations of
State — Equilibrium or Non-equilibrium

All models on the Marangoni effect, presented in the literature that have been reviewed for
this study, start with the Navier-Stokes and the continuity equation developed in section
6.1.2 for incompressible Newtonian fluids with boundary conditions at the interface given
by the surface solute mass conservaftlon equation, equatmn\j ‘and the surface momentum
conservation equation, equation{??. Additionally as has been discussed, bulk concentration
gradients in each liquid phase are assumed linear and the partition relationship between the
contiguous bulk phases is in an equilibrium state as well as steady state transport across
the interface. These simplifying assumptions are not present in the metal extraction with
membranes though they can be assumed in certain circumstances.

6.3.1 Interfacial Adsorption

Basically to solve the species transport equation involving an active interface the following
can be summarized [?]:
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1. The bulk phase equilibrium partitioning of the species (generally a surfactant) across
the fluid interface is

7: (0%) = Kip, (07) (6.90)
The partition relationship cannot in a strict sense be used for non equilibrium cir-
cumstances.

2. The normal component bulk-phase flux [i.e. surface species flux equation (boundary
condition))

dp ‘? (/R } s S S =

5 T Ve (VOPi) = Ve (DiVep}) = Ri +n- || 5 || (6.91)

3. A kinetic adsorption relation like the Frumkin or Langmuir Isotherms. These repre-
sent equilibrium states and thermodynamically ideal bulk solutions. Non equilibrium
adsorption is represented by a kinetic rate expression for the normal component of
the bulk phase species flux at the interface in terms of the local surfactant adsorption
rate as given by

nj; = ¢ (6.92)

(where ¢; is the local adsorption rate). Specification of the type of isotherm relation-
ship i.e. equilibrium or non-equilibrium also specifies the partition relation. A kinetic
rate expression developed Borwanker and Wasan [?] for Frumkin-like adsorption be-
havior in the equilibrium limit is

. Al pf 2 e
¢i=Koexp |~ | = P: (Pis — P3) — L exp —-A= (6.93)
2 \Piso Pico
and for ideality A=0, the Langmuir-type kinetic expression is
b= Ko [ (ploo = 1) ~ £ (6.94)
a

If the assumption is made, as do most analytical investigations of Marangoni ef-
fect, that small perturbations from the equilibrium adsorption state occur then the
knowledge of interfacial tension variation with specie density over the entire range of
interfacial composition would be unnecessary since the kinetic adsorption rate may
be linearized about the equilibrium state to obtain

¢ = ¢¢—¢t

- (¢:*)o—(¢:?)o+{(§ﬁ§) (gjf) (6~ 01+ }

~ o (0] —Pio)s (6.95)
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where (a) (d) represent adsorption and desorption and are equal at equilibrium state
represented by o and the single adsorption parameter is

Bee 59
= (28) - (). 60

If the specification of the bulk phase concentration fields in the proximity of the interface
P; (0%) and 7; (0™) is made or known a priori then the species flux boundary condition is not
needed. Thus, under these circumstances the solution of the bulk phase species transport,
the interfacial boundary condition reduces to a single equation (assuming the velocities are
known) — the surface excess convection diffusion equation, equation 6.61.

Two limiting case solutions for equa.t%en 6.61 are [?] these controlling mechanisms are also
discussed in more detail in chapter %? page 77:

diffusion controlled species is transported slowly by diffusion through the bulk phase to the inter-
face instantaneously relative to the diffusion step. An equilibrium adsorption relation-
ship may therefore be assumed at the instantaneous conditions and the known bulk
phase diffusion flux directly substitutes into the right hand side of equation 6.61 and
upon solution furnish I'{ (or pf or ¢f) without having to devote attention to details of
adsorption kinetics.

Adsorption Controlled species transported rapidly to the interface by diffusion and/or convection
and the adsorption steps become rate limiting. The surface excess species species
balance equation may be regarded as being separate from the bulk-phase surfactant
transport equation. Thus using an equation like 6.92 in the normal bulk species flux
equation with an appropriate constitutive choice of kinetic rate expression provides a
single equation for determining I'f (or pf or cf).

There is also the possibility of mixed regime along with chemical reactions in the bulk.
This may strongly effect the interfacial tension gradients and theit effects on the Marangoni
Phenomena. The mixed regime is also discussed in chapter #2. A thorough knowledge of
the kinetics is needed in a mixed regime.

6.3.2 The Surface Equation of State

The surface equation of state is generally a phenomenological relationship between the
interfacial tension and the state of the interface i.e. its composition. The equation is
developed under equilibrium conditions and is assumed to be equally applicable under non
equilibrium conditions as long as the properties at each point do not change very rapidly
closely generating a discontinuity [?, page 20]. This does not mean that the state variables
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do not change just not in a jump condition. The Gibbs surface equation of state is useful
in interfacial studies as long as the amount of a species is not high generally only in trace
amounts and not applicable to concentrated monolayers|?, page 171]. Two surface equations
of state developed from the Frumkin and Langmuir isotherms for the surface pressure|?,

page 171]
2
df  __ RT, _ PN AlA
T = 00— 0 = ——rPio [ln (1 Pfoo) +3 o (6.97)

and with A — 0 (A is a parameter which measures the degree of non-ideality of the interface
A = 0 for ideality),

$
T=0,—0= —%Tp;?oo [ln (1 - —’;—'——)} (6.98)

100
where R and T are the gas constant and temperature. Combining equation 6.98 with the
ideal Langmuir isotherm

. R & (6.99)

Picc — P;
the Szyskowsky-Langmuir equation is obtained [?], [?].

T=0,—0= —%pﬁm In(1+ K,p7). (6.100)
For small deviations from equilibrium the linearization of the interfacial tension can be used
to give

8o R
o = ao+(6pf)o(pf—pzo)+“'
1
& Go— ;);EZ (p: - pfo) ’ (6101)
where ’ )
i def 0o
E = — (m)o (6.102)

Note that p¢ can be chosen to be either 7; (0%)or p; (07) since K} and K, will differ by
the required amount necessary to make K,p? independent of the choice [7].
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6.4 Summary of the Interfacial Boundary Conditions to incorporate the
Marangoni Phenomena

To properly model a system of two phase mass transfer the interfacial effects must be
applied. In this chapter the equations to incorporate the interface in a two dimensional
fundamental approach have been presented. The development of the Marangoni Effects
using the equations of motion i.e. the Navier-Stokes equation was presented as well as the
constitutive equations for the surface properties and the surface equation of state. Care
must be exercised in the application of these constitutive equations since most are derived
from equilibrium systems and the membrane system as has been repeated several times
is a non-equilibrium system. With simplifications the membrane can be modeled as an
equilibrium system. Such simplifications will be kept to a minimum in this study and the
membrane modeled at unsteady state with a non-equilibrium interface.

To summarize the interfacial modeling the table below will help as a map of the boundary
equations (note after Edwards et al [?, page 473]):

Summary of Interfacial Transport Boundary Conditions
Mass
Continuity of velocity Equation 6.74
Hydrodynamics
Interfacial stress boundary condition = Equation 6.88
Species Transport
Surface Ezcess formulations of phenomenological coefficients

Interfacial species flux Equation 6.56
for Fickian Flux Equation 6.61
Non-equilibrium adsorption kinetic realtion
Frumkin Equation 6.93
Langmuir Equation 6.94
small departure from equilibrium Equation 6.95
general non-equilibrium intrinsic chemical kinetic adsorption
equations of the system
Surface Equation of State
Frumkin Equation 6.97
Langmuir Equation 6.98
Szyskowsky Equation 6.100

small diviations from equilibrium Equations 6.101 and 6.102
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6.5 Nomenclature for Chapter 6

8ij
LI,

interfacial surface area between phases

surface co-variant unit vector (o = 1,2)

surface contra-variant unit vector (a = 1,2)

diffusivity of species 1

differential element of surface or interface

outward pointing normal on 8V

mutually perpendicular co-variant unit vector (o = ¢, §, k)
mutually perpendicular contra-variant unit vector (a =i, j, k)
spatial covariant base vectors

metric tensor

unit spatial Idemfactor or unit surface Idemfactor (identity tensor that transforms
every vector into itself

unit orthogonal base vectors (i = 1,2,3)

normal coordinate to the surface

outwardly pointing normal

Point on a surface

generic physical property

three dimensional curvilinear coordinates (i = 1,2, 3)

curvilinear coordinate normal to the surface

two dimensional curvilinear coordinates (o = 1,2)

time dependent domain of fluid volumetric element of fluid

surface area bounding a single phase volumetric element (see figure 6.4 page 176)

mass average velocity

i = 1,2, 3 rectangular coordinates
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Xs surface position vector
x spatial position vector
Z extensive volumetric rate of supply

Greek Letters

¢ intensive volumetric rate of supply of generic physical property (amount of property
per unit volume) ¢ = { (x,t)

I; molar species concentration

A generic volumetric variacle used in parameterization form three dimensional to two
dimensional region

II rate of production of property 8 within a volume element V. Extensive time rate of
production of generic physical property within a fluid volume

™ intensive volumetric production rate density: time rate of production of generic phys-
ical property at a point of fluid (amount of the property P per unit volume)

P extensive diffusive flux out of the bounding surface of a fluid volume; time rate at
which property P a fluid volume is transferred out of the volume V through a surface.

¢ areal diffusive flux density : intensive diffusive flux of generic property (amount of the
property P per unit time per unit volume)

4 time dependent total amount of generic, extensive physical property ¥ = ¥ ()

Y volumetric density field (intensive amount of a generic property at a point of fluid)
[amount of property P per unit volume] v = 9 (¢)

Operators

v gradient

V-, div divergence operator

[ & discontinuous tensor field or jump condition for field R

D convected, material or substantial derivative
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Superscripts
(overbar)  bulk phase or discontinuous property

s surface excess quantity

Subscript

s property assigned to the surface




7. THERMODYNAMIC CONSIDERATIONS

AH = -—10.9kal
AG = +3.32 E’fﬁi Thermodynamic paramters as determined by Vandegrift and Hor-
AS = —44eun.

witz J. of Nucl Chem 1977 vol 19 pp 1425-1432 for the extraction of calcium from intric
acid with HDEHPA in dodecane.

201




