

JOINT ESTABLISHMENT FOR NUCLEAR ENERGY RESEARCH  
Kjeller near Lillestrøm, Norway.

JENER 54

SEPARATION OF U AND Pu FROM Zr, Nb, Ru AND Cs  
ON A COLUMN OF MANGANESE DIOXIDE.

By

D. CVJETICANIN AND N. CVJETICANIN

517 001

Kjeller, April 1958.

## **DISCLAIMER**

**Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.**

## CONTENTS

|                                                       | <u>Page:</u> |
|-------------------------------------------------------|--------------|
| Abstract                                              | 1            |
| Introduction                                          | 1            |
| Experimental Procedure                                | 2            |
| 1. Preparation of Manganese Dioxide                   | 2            |
| 2. X-Ray Analysis of Manganese Dioxide                | 2            |
| 3. Preparation of the Column of Manganese Dioxide     | 2            |
| 4. Procedure                                          | 2            |
| 5. Results                                            | 3            |
| 6. Capacity Determination of Manganese Dioxide for Zr | 4            |
| Discussion                                            | 4            |
| Acknowledgements                                      | 5            |
| References                                            | 5            |

Separation of U and Pu from Zr, Nb, Ru and Cs on a  
Column of Manganese Dioxide

by

D. Cvjeticanin and N. Cvjeticanin

Abstract

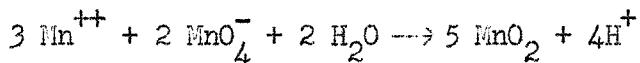
The adsorption of U, Pu, Zr, Nb, Ru, Sr-Y and Cs was examined to provide a good separation of uranium and plutonium from the fission products mentioned.

It was established that it is quantitatively possible to wash  $UO_2^{++}$  and  $PuO_2^{++}$  from a column of manganese dioxide with 0.1 N  $HNO_3$ . Under the same conditions, 99.2% of  $Zr^{95}$ ,  $Nb^{95}$ ,  $Ru^{106}$  and  $Cs^{137}$  was adsorbed.

Introduction

In the aqueous process for the separation of uranium and plutonium from fission products, the most difficult problem is the separation of Zr, Nb, and Pu<sup>(1,2)</sup>. Because of these difficulties, it is very often necessary to add special steps to a process in order to get a good decontamination from these three elements. Final decontamination of U<sup>(3)</sup> and Pu<sup>(2)</sup> from Zr and Nb is obtained by passing the acid solution over a column of silica gel.

Culler<sup>(4)</sup> used co-precipitation of fission products with manganese dioxide as a preliminary decontamination prior to solvent extraction in reprocessing highly active fuels. Potassium permanganate is added to the feed solution, which is heated, and permanganate is reduced to manganese dioxide. Permanganate and manganese dioxide both oxidize plutonium to  $PuO_2^{++}$ .  $PuO_2^{++}$  does not adsorb on manganese dioxide. Harmon<sup>(5)</sup> described a preliminary separation of Ru, Zr and Nb prior to solvent extraction by using potassium permanganate for the oxidation of ruthenium to the volatile tetroxide, which is distilled off from the feed solution. On the other hand, the use of permanganate results in formation of manganese dioxide, which can be used for the removal of Zr and Nb.


It is probable that this process is not the most convenient because of the necessity of separating the precipitate by centrifuging, which is very inconvenient in large-scale experiments and in continuous processing.

The purpose of this work was the examination of the adsorption of U, Pu, Zr, Nb, Ru and some other fission products of interest to the reprocessing and to provide an adequate separation of plutonium and uranium from fission products on a column of manganese dioxide.

### Experimental procedure

#### 1. Preparation of manganese dioxide

One of the methods for the preparation of manganese dioxide is to treat potassium permanganate solution with a solution of a manganous salt<sup>(6,7)</sup> by the reaction:



G. Forschhammer<sup>(6)</sup> used a mixture of 2 moles of potassium permanganate and 3 moles of the manganous salt in a dilute solution. A.P. Lunt<sup>(7)</sup> used a mixture of 400 ml of a saturated solution of potassium permanganate and 400 ml of a saturated solution of manganese sulphate.

In this work, manganese dioxide was prepared by the gradual addition of the solution of manganous sulphate (101.4 gr of  $\text{MnSO}_4 \cdot \text{H}_2\text{O}$  in 1 l  $\text{H}_2\text{O}$ ) to a solution of the permanganate (63,2 g  $\text{KMnO}_4$  in 5 l  $\text{H}_2\text{O}$ ). After filtration the precipitate was washed with hot water till free from acid, then with 1 l of 3 N  $\text{HNO}_3$  and again with water till free from acid. The precipitate was dried for about 20 hours at 110°C. The prepared manganese dioxide was boiled for 5 minutes in 3 N  $\text{HNO}_3$  and boiling stopped by the addition of cold distilled water. The precipitate was washed with distilled water until the filtrate was free from acid and then dried for about 80 hours at 110°C. The prepared manganese dioxide was first sieved, and the fraction from 100-140 mesh was used. This fraction contains small amounts of a very fine powder of manganese dioxide easily removable by decantation in water.

#### 2. X-Ray Analysis of Manganese Dioxide

X-ray diagrams were taken with Cu and Mo-irradiation. Only 3-4 faint and diffuse lines were found, indicating that the substance consisted of rather small crystallites (nearly X-ray amorphous). By comparison with the ASTM card index (no. 4-0779), the lattice was identified as  $\gamma\text{-MnO}_2$ .

#### 3. Preparation of the Column of Manganese Dioxide

Manganese dioxide (100-140 mesh) was made into a slurry with water and the fine powder removed by decantation. Then it was poured into a 2 mls column. The column was then washed with 50 mls of 1 N  $\text{HNO}_3$  and afterwards with distilled water.

#### 4. Procedure

On the column of manganese dioxide, prepared as described above, solutions

of  $\text{UO}_2^{++}$ ,  $\text{PuO}_2^{++}$ , Pu (IV),  $\text{Zr}^{95} - \text{Nb}^{95}$ ,  $\text{Ru}^{106}$ ,  $\text{Sr}^{90}-\text{Y}^{90}$ ,  $\text{Cs}^{137}-\text{Ba}^{137}$  were adsorbed separately, and the column washed with  $\text{HNO}_3$  in different concentrations.

After washing the column, the quantity of the element in the effluent as well as the quantity adsorbed on the manganese dioxide was determined. In the case of  $\text{U}^{233}$  and  $\text{Pu}^{239}$ , only the effluent was analyzed. To determine the quantity of adsorbed element on the column, manganese dioxide was dissolved in dilute  $\text{HNO}_3$  containing sodium nitrite, hydroxylamine or hydrogen peroxide, and the solution diluted to a desired volume. Beta and gamma activity were recorded from an aliquot of 0.5-2 mls and alpha activity from an aliquot of 50-100  $\mu$ . Alpha activity was measured with a scintillation counter of conventional type (ZnS screen on the photocathode of an E.M.J. photomultiplier tube) and Beta activity was measured with an ordinary type Philips Geiger-Müller counter.

$\text{U}^{233}$  is prepared in the Isotope Department at this Institute.

$\text{Pu}^{239}$  was purified by the extraction with 0,2 N TTA (Thenoyltrifluoroacetone) in  $\text{CCl}_4$  <sup>(8)</sup>.

The solution of Pu (VI) was prepared using freshly precipitated silver peroxide <sup>(9)</sup> as oxidizing agent.

Pu (IV) was prepared by evaporating the solution of Pu with nitric acid in the presence of hydrogen peroxide or perchloric acid. This operation was repeated and the residue was dissolved in nitric acid (in this case sodium nitrite could not be used because of the dissolution of  $\text{MnO}_2$  in the presence of nitrite). The solution of  $\text{Zr}^{95} - \text{Nb}^{95}$  in 0,5% Oxalic acid (Received from Radiochemical Center, Amersham, England) was treated with conc. nitric acid in the presence of some drops of perchloric acid. The solution was evaporated to dryness to destroy oxalic acid. The operation was repeated several time, at the end the evaporation was carried out with conc. nitric acid. The residue was dissolved in 5 N nitric acid. From this solution, the solutions in 0,1 and 1 N nitric acid were prepared by dilution with water.

$\text{Ru}^{106}$  was in 8 N nitric acid (Received from Radiochemical Center, Amersham, England). The solutions of  $\text{Ru}^{106}$  in 0,1, 0,5 and 1 N nitric acid were prepared by dilution the original solution with water.

$\text{Sr}^{90}$  and  $\text{Cs}^{137}$  are separated from a mixture of fission products <sup>(10,11)</sup>.

## 5. Results

The solution of  $\text{U}^{238}$ (VI),  $\text{U}^{233}$ (VI) and  $\text{Pu}^{239}$ (VI) from 0.001 N  $\text{HNO}_3$  (100-200  $\mu$  aliquot) was adsorbed on the column of manganese dioxide. The column was

washed with 0.1, 0.5 and 1 N  $\text{HNO}_3$ . The elution curves for  $\text{U}^{233}$  (VI) and  $\text{Pu}^{239}$  (VI) are given in figures 1 and 2.  $\text{U}^{233}$  (VI) and  $\text{Pu}^{239}$  (VI) both are quantitatively eluted.

The experimental data for U (VI), Pu (VI),  $\text{Zr}^{95}\text{-Nb}^{95}$ ,  $\text{Ru}^{106}$ ,  $\text{Sr}^{90}\text{-Y}^{90}$  and  $\text{Cs}^{137}\text{-Ba}^{137}$  are given in Table I.

After these experiments, 25 mls of a solution of uranium containing 12.9 g U/ml in 0.1 N  $\text{HNO}_3$  was passed through a column, and the column washed with 10 mls of 1 N  $\text{HNO}_3$ . No Beta or Gamma activity could be detected in the effluent, which means that UX was adsorbed on the column under the conditions mentioned.

At least 25 mls of a solution of  $\text{UO}_2^{++}$ ,  $\text{Zr}^{95}\text{-Nb}^{95}$ ,  $\text{Ru}^{106}$  and  $\text{Cs}^{137}$  in 0.1 N  $\text{HNO}_3$  was passed through a column. After that, the column was washed first with 0.1 N  $\text{HNO}_3$  and then with 50 mls 1 N  $\text{HNO}_3$ . The experimental data are given in Table II.

## 6. Capacity Determination of Manganese Dioxide for Zr

Zirconium nitrate was dissolved in 4 N  $\text{HNO}_3$  and diluted to 1 N  $\text{HNO}_3$ .

Capacity determinations were carried out by passing about thirty times the amount of Zr necessary to saturate manganese dioxide through a column, washing the column with 50 mls of 1 N  $\text{HNO}_3$  and dissolving manganese dioxide in dilute nitric acid plus hydrogen peroxide. Zirconium was determined gravimetrically as  $\text{ZrP}_2\text{O}_7$  (12).

The obtained value for the capacity was  $24 \pm 1 \text{ mg/g MnO}_2$ , dried at  $110^\circ\text{C}$ .

## Discussion

From the results given in Tables I and II, it is seen that  $\text{Zr}^{95}\text{-Nb}^{95}$ ,  $\text{Ru}^{106}$  and  $\text{Cs}^{137}$  are adsorbed on the column of manganese dioxide and that by using such a column of manganese dioxide, it is possible to separate them from U (VI) and Pu (VI) in a solution of 0.1 N  $\text{HNO}_3$ .

Separation of uranium from these elements is simple to carry out. When Pu is also present in solution, it is necessary to have an oxidizing agent present to provide  $\text{PuO}_2^{++}$ ; but under these conditions it is probable that some Ru is oxidized to the volatile  $\text{RuO}_4$ . Perhaps it would be convenient to carry out the oxidation of Pu under conditions similar to the Redox process (4), using  $\text{KMnO}_4$  or  $\text{MnO}_2$  as oxidising agent, or to oxidise Pu at room temperature with silver peroxide or with  $\text{S}_2\text{O}_8^{2-}\text{Ag}^+$ .

### Acknowledgements

This work was performed in the period, June-December, 1957. We are indebted to JENER for the kind hospitality shown us during the work. Our sincere thanks are given to Miss M. Bonnevie-Svendsen for X-ray analysis of manganese dioxide and to Dr. T. J. Barendregt for his constant interest and support during the course of this work.

### References

1. F. R. Bruce: International Conference on the Peaceful Uses of Atomic Energy, Vol. 7, P/719 (United Nations, New York, 1956).
2. A. M. Aikin: Chemical Engineering Progress, 53, 82F - 5F (1957).
3. I. R. Flanary: International Conference on the Peaceful Uses of Atomic Energy, Vol. 9, P/539 (United Nations, New York, 1956).
4. F. L. Culler: Ibid, Vol. 9, P/822.
5. M. K. Harmon: H. W. 49544 A (April 3. 1957).
6. I. W. Mellor: Inorganic and Theoretical Chemistry, Vol. XII (Longmans, Green and Co., London, 1932).
7. A. P. Lunt: Analyst, 79, 651 (1954).
8. J. G. Cunningham and G. L. Miles: J. Inorg. Nucl. Chem., Vol. 3, 54 (1956).
9. G. R. Hall, P. D. Herniman and A. J. Walter: AERE C/R 712.
10. R. O. Lingjærde: JENER Report No. 48, 1957.
11. R. Wolschrijn: JENER Report No. 49, 1957.
12. W. W. Scott: Standard Methods of Chemical Analysis, Vol. I. (D. Van Nostrand Co. Inc., New York, 1939).

St.1985.  
DCv.NCv/AS1.  
11/4-58.

517 007

TABLE I

| Element Present                                                                                                               | Amount of Eluate               | Amount of Element Present in Effluent, in % |
|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------|
| U <sup>233</sup> (VI) ~ 2,5 $\mu$ g                                                                                           | 20 ml 0.1 N HNO <sub>3</sub>   | 99.5 *                                      |
| U <sup>233</sup> (VI) ~ 2,5 $\mu$ g                                                                                           | 10 ml 1 N HNO <sub>3</sub>     | 98.4 *                                      |
| Pu <sup>239</sup> (VI) ~ 0,6 $\mu$ g                                                                                          | 20 ml 0.1 N HNO <sub>3</sub>   | 98.8 *                                      |
| Pu (VI) ~ 0,6 $\mu$ g                                                                                                         | 10 ml 1 N HNO <sub>3</sub>     | 100.5 *                                     |
| Pu (IV) ~ 0,5 $\mu$ g                                                                                                         | 22 ml 1 N HNO <sub>3</sub>     | 43 x                                        |
| Pu (IV) ~ 0,6 $\mu$ g                                                                                                         | 10 ml 5 N HNO <sub>3</sub>     | 42.8 x                                      |
| Zr <sup>95</sup> -Nb <sup>95</sup> 6.33 $\cdot$ 10 <sup>5</sup> cpm                                                           | 10 ml 1 N HNO <sub>3</sub>     | ~ 0.02 }                                    |
|                                                                                                                               | + 10 ml 1 N HNO <sub>3</sub>   | ~ - }                                       |
|                                                                                                                               | + 25 ml 5 N HNO <sub>3</sub>   | ~ 0.06 }                                    |
|                                                                                                                               | 30 ml conc. HNO <sub>3</sub>   | 69.6 }                                      |
| Zr <sup>95</sup> -Nb <sup>95</sup> 6.30 $\cdot$ 10 <sup>5</sup> cpm                                                           | 10 ml 1 N HNO <sub>3</sub>     | 0.07 x                                      |
| Ru <sup>106</sup> 5.51 $\cdot$ 10 <sup>5</sup> cpm                                                                            | 10 ml 0.1 N HNO <sub>3</sub>   | 0.26 }                                      |
|                                                                                                                               | + 10 ml 0.5 N HNO <sub>3</sub> | ~ 0.05 *                                    |
|                                                                                                                               | + 10 ml 1 N HNO <sub>3</sub>   | ~ 0.5 }                                     |
|                                                                                                                               | + 10 ml 5 N HNO <sub>3</sub>   | 17 }                                        |
| Ru <sup>106</sup> 5.41 $\cdot$ 10 <sup>5</sup> cpm                                                                            | 10 ml 0.5 N HNO <sub>3</sub>   | 3.5 }                                       |
|                                                                                                                               | + 10 ml 0.5 N HNO <sub>3</sub> | ~ 0.08 o                                    |
|                                                                                                                               | + 10 ml 1 N HNO <sub>3</sub>   | ~ 0.09 }                                    |
|                                                                                                                               | + 10 ml 5 N HNO <sub>3</sub>   | 6.9 }                                       |
| Sr <sup>90</sup> -Y <sup>90</sup> 5 $\cdot$ 10 <sup>5</sup> cpm                                                               | 10 ml 0.1 N HNO <sub>3</sub>   | 45.4 mostly Sr <sup>90</sup> o              |
|                                                                                                                               | + 10 ml 0.1 N HNO <sub>3</sub> | ~ 0.6 }                                     |
|                                                                                                                               | + 10 ml 1 N HNO <sub>3</sub>   | 56 mostly Y <sup>90</sup> }                 |
| Cs <sup>137</sup> -Ba <sup>137</sup> 4.12 $\cdot$ 10 <sup>5</sup> cpm                                                         | 10 ml 0.1 N HNO <sub>3</sub>   | ~ - }                                       |
|                                                                                                                               | + 20 ml 1 N HNO <sub>3</sub>   | ~ - }                                       |
|                                                                                                                               | + 10 ml 5 N HNO <sub>3</sub>   | ~ - }                                       |
| Ru <sup>106</sup> 5.4 $\cdot$ 10 <sup>5</sup> cpm                                                                             | 10 ml 1 N HNO <sub>3</sub>     | 2.7 *                                       |
| (treated with<br>(NH <sub>4</sub> ) <sub>2</sub> S <sub>2</sub> O <sub>8</sub> and Ag NO <sub>3</sub><br>at room temperature) |                                |                                             |

TABLE I continued

The column volume of manganese dioxide was 2 mls and the flow rate was 3 mls/min/cm<sup>2</sup>.

- (\*) The column of manganese dioxide was prepared as previously described, washed with 50 mls of 1 N HNO<sub>3</sub> and then with water until the effluent was free from acid.
- (x) The column of manganese dioxide was pre-treated with 1 N HNO<sub>3</sub>.
- (o) The column was pre-treated with 0.1 N HNO<sub>3</sub>.

TABLE II

| Element Present in 25 mls                      | Amount Eluate                | Beta Activity in the Effluent in % |
|------------------------------------------------|------------------------------|------------------------------------|
| U 0.3237 gr                                    |                              |                                    |
| Zr <sup>95</sup> -Nb <sup>95</sup> 841.700 cpm | 25 ml 0.1 N HNO <sub>3</sub> | 0.8                                |
| Ru <sup>106</sup> 2.164.800 cpm                |                              |                                    |
| Cs <sup>127</sup> 130.560 cpm                  | + 50 ml 1 N HNO <sub>3</sub> | 3.7                                |

FIGURE 1.

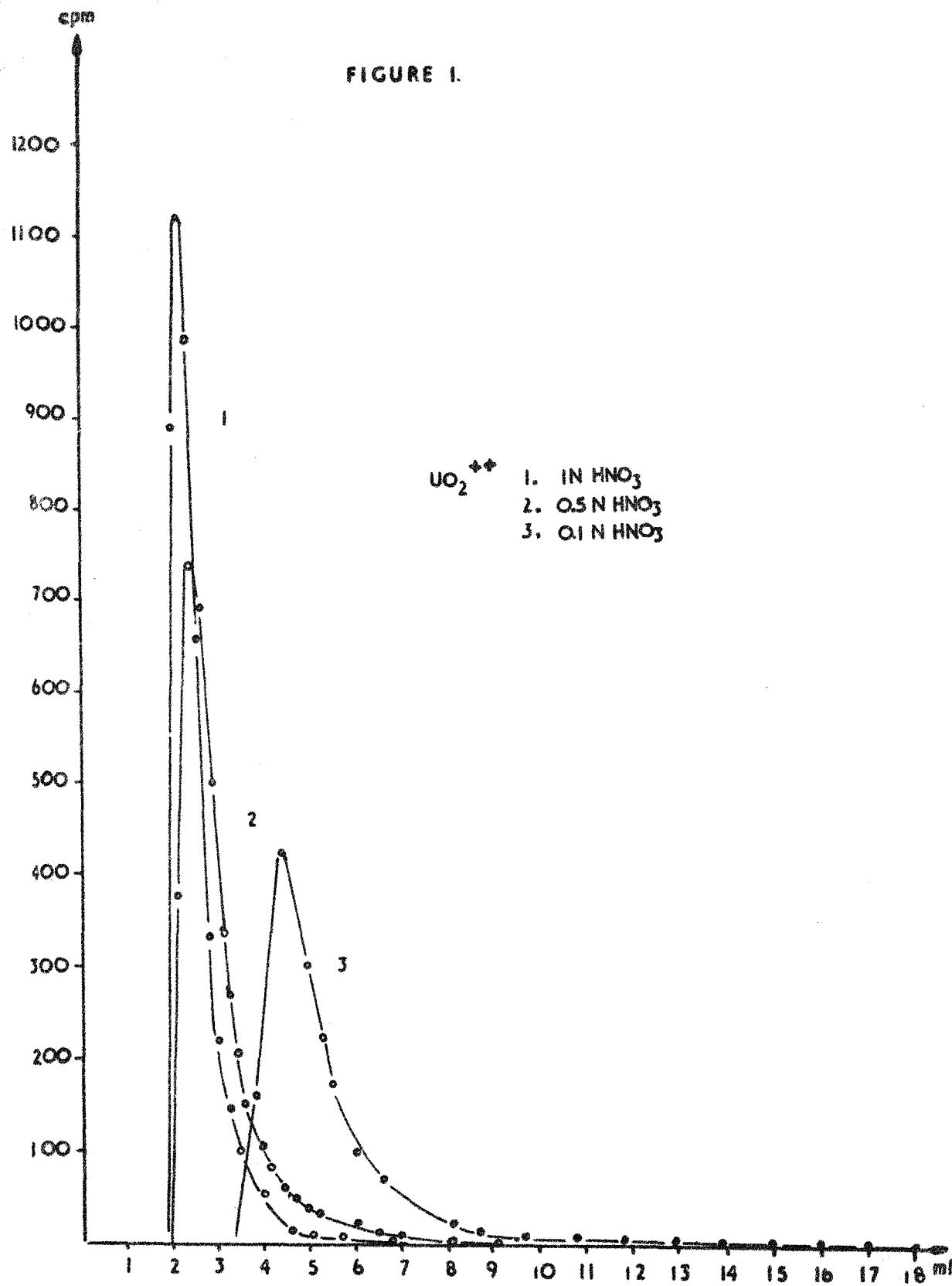
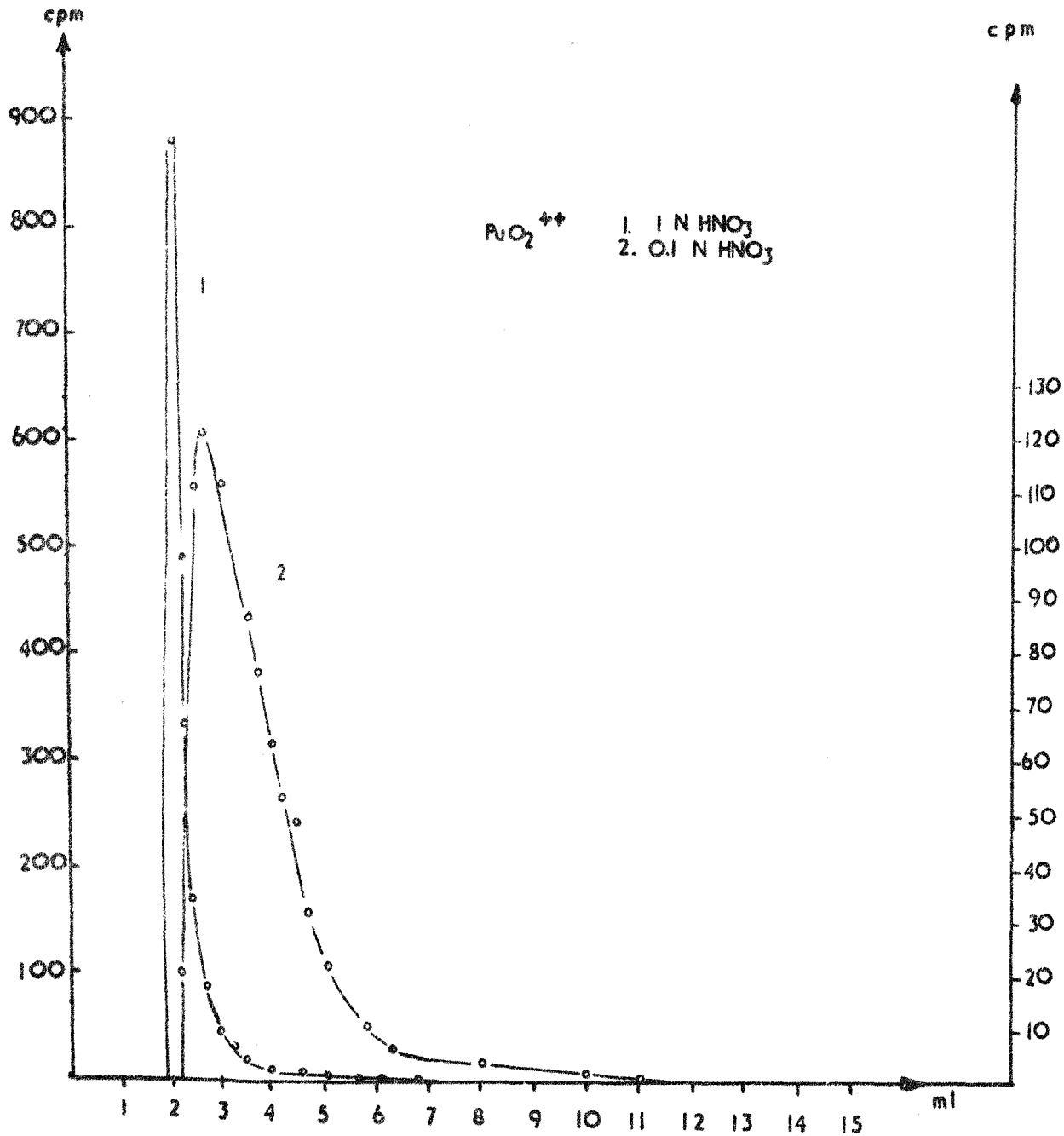




FIGURE 2.



517 011