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A Shjck-Vave S t r e s s  Gmgz Util izj-ng t h e  

Capacitance Change of a. Sol id  Die lec t r i c  Disc 

The s t r e s s - t i n e  p r o f i l e s  vhich r e s u l t  when so l ids  a r e  subjected t o  shock-:.rave 
nvices loading exh ib i t  considerable de ta . i l  &en observed with f a s t  tirile-resolution d, 

such as $ar?dia quar tz  gaugesl,2 air  d i e l e c t r i c  ~ a . ~ a c i t o r s , 3 - 6  and lase r  i n t e r f e r ~ m t e r  
devices. 1-9 Wave p r o f i l e s  have been observed ?.rhich sho~r s i gn i f i c an t  s t r e s s  a,gplitude, 
changes occurring i n  times .of 10-8 sec .  It i s  t h e  purpose of t h i s  paper .to describe 
a new .type of gauge capable of measurirlg eit'ner par t i c le -ve loc i ty  o r  s t r e s s  with Lime- 
reso lu t ion  l imi ted only by t he  r ise-t ime of t he  recording equipment and .tne pla.nari.ty 
of .the shock-rmve f ron t .  The s igna l  from the  gauge r e s u l t s  from t h e  capacitance 
change of a so l i d  d i e l e c t r i c  d i s c  vrhich produces a, cur req t  lrhich is  insJcantaneou.sly 
proportional  'to t h e  veloc i-ty of the  s t ressed  e lect rode.  . . 

We w i l l  f i r s t  show an analysis  which demonstrates t h e  physical  ba s i s  f o r  t h e  
re la t ionsh ip  between t h e  shock-lave induced capacitance change aod t h e  c w r e n t .  Fol-  . 

' 

lotring t h i s  ana.lysis, we w i l l  describe t he  experimental program used -to study t h e  
p roper t i es  of several  promising mater ia ls  and discuss  the  r e s u l t s  obtained. Tnis 
inves t iga t ion  sho\rs ' that synthet ic  s inglc  . c r y s t a l  sapphire d i s c s  c u t  i n  t h e '  60" orien'ia- 
t i o n  preferred gro?.rth hab i t  a r e  u s e i f 1  a s  gau-ges t o  s t r e s s e s  a s  high as about 1-00 kbar. 
These gauges have. been used f o r  t h e  measurement of a number of stress-t ime p r o f i i e s ,  

11, RnT.4.LYSIS OF A SHCCK- LO^^ DIELECTRIC DISC ' 

4- 

iGiile a shock-wave i s  t ravers ing  a d i e l e c t r i c  d i sc  t o  which an elecJcrostat ic 
po t en t i a l  i s  applied, a cur ren t  flows due t o  t he  shock-wave ioduced coxpression and . . 
permi t t iv i ty  change. To understand thn behavior of a so l i d  d i e l e c t r i c  g a g e ,  we 
rnus-t cons ide r - i t s  respbnse f o r  . t h e  i n t e rva l s  which a r e  shor t  cornpi-ed t o  t h e  shock 
Wave t rans i - t  t-hie. ' The analysis  considers .the response of t he  d i s c  t o  a s t r e s s - t h e  

. . p r o f i l e  of a r b i t r a r y  shape, The appendix includes an ana lys i s  of t he  response oi' t h e  . 

d i sc  t o  a s t e p  function s t r e s s  rlave. 

Consider a d i e l e c t r i c  d i s c  with an electros...;ztic po t en t i a l  between the .electrodes on 
t h e  ti.70 plane surfaces of t he  c?iec trhile one face  of t h e  d i s c  j.s su-bjected t o  a 
rap id ly  changing impulsive load. Assms:  ( a )  t h a t  t h e  d i s c  is  i n  a s t a t e  of one- 

, dimensional s t r a i n ,  ( b )  t h a t  t he  e l e c t r i c  f i e l d ,  E, iii t he  d i sc  i s  om-dixiensional, 
(c  ) -that -the e l e c t r o s t s t i c  po t en t i a l  diTference, V, bstbreen ' i he  e lect rodes  . i s  constant ,  
(d )  t h a t  -thn e1e~f ;~ i . c  f i e l d  has t h e  sane valuz i n  the  s t ressed  and unstressed regions 
of t h e  d i s c , l o  (el i n a t  tS.e s t r e s s  i s  applied simultaneously t o  the  e n t i r e  electroded 

' 

a r e a ,  A, of the  disc ,  and ( f )  t h a t  t he  current ,  i, re su l t i ng  from 'the capacitance change 
flo??s i n  an external  resis-Live load 1rj:th a v ~ l u e  such t h a t  t he  pr0duc.t of t h i s  r e s i s -  
t i v e  load and t he  capacitance of %be gauge gives a time constant  vrhich i s  sho r t  
cnn,pared t o  t.he r i ~ e t i m e  of %he s$ress pulse. 

Concerning t he  p!l;rsiaai properi;ic-s of the  d i s c  wider shock-:?ave compression, assume: 
( g )  .that t he  resie+,Ls-i.t.7 i s  i n f i n i t e ,  ( h )  t h a t  a l l  s t r e s s  amplitudes t r a v e l  ~.ri.th the 
sxne veloci ty ,  U, ( i )  .;hat 2.~1 s t r e s s  amplitudes a r e  steady, ( 3  ) t'nai; t h e  1.Eve ve loc i ty  
i s  steady, ( k  t h a t  the chznge i n  pero;i.t'civity, G, ~r-i.t'n par.cicle veloci ty ,  u, IS a . 

coustant  trilich we w i l l  c a l l  y ,  a d  f i z a l l y  (2,) t h a t  -the d i s c  exh ib i t s  no charge genera- 
tfion undzr shock P 



where t i s  th2 t - h e  and t h e  e l e c t r i c  displacement D = sE, may be evaluated a,s 

Tie x-direct ion i s  taken along t h e  a:cis of  t h e  d i s c  rilaose thickness i s  4 ,  and t h e  
. pos i t ion  of . t h e  s t ressed  e l ec tmde  a t  x = 0 i s  taken .to be time dependent., F'or a 

constant  po t en t i a l  across  tine d i sc ,  Eq, .(2) reduces t o  

The displacement cu-rrent can then be z'valua.ted from Eq. (1) and Eq. (3)  a s  
I x. 

wl~&re dx /d t  i s  t h e  p a r t i c l e  ve loc i ty  u ( t )  of  t h e  s t ressed  electrode,  c 0 ( t )  = ci + yu 
0 

. i s  t h e  stress'ed p e m i t t i v i t y  and C i s  t h e  ' u s t r e s s e d  permit t iv i ty . '  >ioting t h a t  the  . ' 

i . assuuizd steady proper t i es  of t h e  wave give t h e  condit ion t h a t  dx ld t  = -U, ( I : )  
can be s impl i f ied t o  

. '  Three t e rn s  i n  Eq., ( 5 ) ,  u(x)dx depend upon t h e  spec i f ic  ~ m v e  

shape being dollsidered a.nd cau.se a time dependeni; response. Ho~,rever, it can be . 

r ead i l y  v e r i r i e d  by reference t o  X q ,  5 t h a t  .thesr: ccnt.:ibu.tions a r e  of a mgnitu.de 
n 

(u?/u) ~ r h i c h  i s  very'srna.11 R3r small va1v.e~ of p= . t . i c l e  vel-oci-ty. Neglec.ting these  . 

t e rn s  Eq. . ( 5 )  s i rnpl i f ies  -Lo ?;he expression 

Eq,  6 i rori .des a. rel.a..tion be4cx.iccn t h e  instan-ta.nm!~s o,::rrr;nt and t h e  i.ns+ariksneous 
. . 

ve loc i ty  of' t h e  ~i: . ressed eLec-trode, , !Pne f ir3-i;. II-, %rackets gives -ti-!e coL1.t;rfi:l~icn, . . 



due t o  the pgmit t ivi- ty  change and the secoizd term gives the  contribu.tion du.e t o  
the shocir corripression. . 

The analysis sho~rs t h a t  f o r  t h e  highly r e s t r i c t i v e  assumptions used i n  tile analysis  
and f o r  sinaU values of p . r t i c l e  ve loc i t ies  tne  current i s  instan-taneously propor- 
t i ona l  t o  the veloci ty  of the input electrode fo r  times before Vne rear  electrode i s  
stressed. The instantaneou.~ nature of t h i s  response i s  analogous t o  t h a t  observed 
i n  the Szndia quartz gauge; however, -the assmpti.ons concerning the  properties of , 

the d i e l ec t r i c  material rius t. be ver i f ied  ex~erinenta . l ly .  . As l-re t r i l l  demonsirate, 
Eq. ( 6 )  describes the observed response of sapphii-e w i t i ~  good precision f o r  measure- 
ments a s  high a s  =bout 100 kbar. 

Tile instantaneous re la t ion  bet~reen the pa r t i c l e  veloci ty  of the inpu:t electrode 
and the  current i s  obta,ined only under .the , res . t r ic t ive conditions given i n  tine 
analysis;  hence, it i s  expected t'na-t only a very few d ie1ec t r i . c~  1.~i.11 actual ly  re -  
spond a s  predicted i n  Eq. (6) .  I n  particu.lar, zssmptions ( h ) ,  ( i  ), and ( j ) require 
mechanical r e s p ~ ~ n s e  ~ ~ h i c h  can only be ob-b.ined u.nder e l a s t i c  condi.tions. Since a 
high pressure gauge is  of par t icv lar  in t e re s t ,  po.tential2.y usez"vl d i e l e c t r i c  mziierials 
shoul-d have u.nusually la-rge i3ugonio.t e1as.i;i.c limits, Accordingly, our a-ttentfon i s  
f i r s t  direc-led to~rax-d such ma,terials, After consideration of the  e l a s t i c  l i m i t s  
observed i n  several. pro-misii~g d ie l ecJ~r i c s ,  tre w i l l  then describe measurements or" 
d i e l ec t r i c  proper-Lies und-er shock-vave compression, 

Previ0u.s s tudies  of s ingle  c rys t a l  quartz shock-tave compression 1 1 ~ 2 ~ 1 3  

S ~ O T T  ~11usua.Uy high Rdgoniot elasi;ic lk11i.i;~ even though the values observed depended 
upon the  ~ ~ i c ~ k n e s s e s  of -the s?,mples and .t'ne dzi7ring pressure. X-cut samnles have 
Hugonio-i; elas'tic limits of about 50 lcbar while Z-cu-t saaples exhibi't a value of 
about 120 lrbar, Since a Z-cutquartz  disk i s  nonpiezoelecJ~ric, I.t i s  potentid.!-y ' . 

u s e . N  a s  a so l id  d i e l ec t r i c  gauge t o  s t resses  of about 120 kbar, 

Sapphire, s ingle  c rys ta l ]Al  0 is noted f o r  an extrexely 5igh e l a s t i c  s-t iffness 
2 3, 1 I ,  

-L 7 

t~nd a correspondingly high s t a t i c  t e n s i l e  strength of 100 !<bar i n  vrhisker fom.  
I n  addition, sapphire i s  nola grotm s-jathetically i n  s izes  su.i.table f o r  shock-wave 
6xperllnents. Therefore, a detennination of the  Hugoniot elas.'cic l i m i t  of sanp'nire 
is of :i.mec?iate inice~~eot r 

Measure.men.ts of the Hugoniot e l a s t i c  l imi t s  of sapphire have been a.cconipl.9shed 
for  three c r y s t a l l o g r a ~ h i c  direct ions; l5  th.e z-direction, the  x.-direc.i;ion, an2 t;; is easy synthetic gror.rt;h direct ion which ?Is noxinally 60' from the z-d.ifectionol: 
beyond the scope o f . t h i s  paper t o  give a detai led account of these measurements, and 
they w i l l .  be reported i n  more d e t a i l  l a t e r ,  Briefly s-La.ted, >oraever, the  f r ee  s u r -  
face veloci ty  measurements (accomplished with a wire-reflection technique sirLi.l.ar .to 
.t'na,t employed by ~ ~ ~ a c k e r l e l l )  show t h a t  the  Hu.goniot e l a s t i c  l i m i t  depends upJ!i .;he 
driving pressure i n  a particula,~; crys-i;allogra;inic directi.~::, !The 1-ovest valde 
obtained is. 120 k.1-a.r f o r  al.1 three or ientat ions a-t the 1-owect driving pressure ol' 
200 lrbar, Tnus sapphire has the  e l a s t i c  properties regu-ired of a gauge f o r  measure- 
33::lts 02. p:ressures .to &bout. 120 Irbar, Because of the e x c e ~ t i o n a l l y  high FIugonio-t 
e l a s t j c  1 i in i . l ;~  of both ~ U S ~ Z  and sapyhlre; t h e i r  dj.elec.i;~.ic properties czn be 
cibserved under lc?.rge e l a s t i c  comj?ressions, 



Dielectr ic  Meas~~rements 

Perini t t ivi t ies  of sol ids  imder la rge  ~ o n y ~ e s s i o n s  Inme .not been extensively itr- 
ves-i;i@;ted even under s t a t i c  conditions, The pemitLivj:ty of stron.timl -i;itana-be 
has been measured ' fo r  pressures up t o  $0 kbar17 l-lizile -the'permitt ivikies of rubidium 
chloride, sodium cl~loride,  and barium Litanate have been measu-red fo r  pressulres up 
t o  about 25 libzro18919t20 A number of other mztcrials have been investigated a t  
nlu-cl~ lower pressu.res ,2l922 Previous shock-mve measurements of permi.ttivity2923 'are  
very l imited and new experiments s r e  needed with a more sensit ive,  generally appli-  
cable technique, 

To induce shoclc-~mlres with precisely h o ~ m  amplitudes and 'r.re3-l-der"inec1 prof i les  
itl'co our die]-eclric sarr!l~lesy >re u t i l i z e  controll-ed p ro jec t i l e  irpac.t e x ~ e r i m e n t s ~  
The mechanical features  of the  experiment are -the sayfie as -those previously reported 
f o r  the investigation of the  physical properties of X-cut qua,rtzo2 As indicated i n  
Fig, I, one d i e l e c t r i c  disc,  the specimen, i s  mounted-on the muzzle end of a corn-. 
pressed gas gun, A second &kc, the  f a c b g ,  of the sa.me ma,terial i s  at'~ached t o  t h e  ' . . i.~npac.t face of a p ro jec t i l e  ~ tn ich  i s  accelerated t o  various preselected ve loc i t ies  
by the  compressed gas g~nn.*~ Tne impact occurs i n  the  evacuated bar re l  lfnile .the 
projecJcile i s  s - b i l l  guided by .the bore of the gun b a n e l ,  Rigid coatrol  of a l l  
tolerances allo~tis tlie impac.ting swl-faces t o  be aligned t o  within 5 x 10-4. radian, 
This value f o r  .the " ' L i 1 . t "  s a t f  s f  i e s  the  requ-ired condition of achieving closure. 
betl?een .the i-mpac.ting sur:?~,ces i n  times short  cornpsred t o  shoclc-rmve t r a n s i t  .time 
across the specimen which i s  typica l ly  250 nsec, 

For s y m e t r i c  impact, tha.t is,  the  impact of ident ica l  materials, t he  p,r-title 
veloci ty  -hpr . ted  .to the specimen i s  exactly. one-half the  veloci-ty of the  5m1,acting 
surface. . This condition r e su l t s  f o r  any material. independent oP .the mechanical 
properties involved, I f  there  .is no s t r e s s  relaxa.tionj25 the   article veloci ty  Is a 
constcznt unt ip wave ref lect ions occur, The.ilnpact velocisy i s  measured .to a pre- 

' 

. cis ion of. from 0,2$ t o  0,5$ dependiag on the  thus, t he  pa r t i c l e  veloci ty  
imparted t o  the  saample i s  precisely specified and can be eas i ly  varied over a wide 
range, 

For experiaents .c:ri.thi.n the  ela .s t ic  ra.nge9 a single  shock~~m,ve propa,gates through 
the  sarnyle? For t h i s  condi%-ion the  s t r e s s  imparted t o  -the sanple can be computed 
from the  conservati.on of monzenLuu1 re l a t ion  f o r  a s ingle  s t r e s s  jurap in to  a medium 
at  r e s t ,  

where ,o i s  the  x cornpanen% of s t r e s s  imparted -to the  saaple and. p is  the  undisturbed 
density. Tne i ~ r t i c l e  veloci ty  i s  de'cermined from the  impact veloc i t y  measurenent 
while the shock-wave velocity i s  d i r ec t ly  determined froin the  shock-~.m,ve t r a n s i t  t h e  
indica-Led nn +,he p.l ~ c t - r i c a b  ~j,grlaI fmm tkc oakple. 

S in i la r ly ,  from the  conser-ration of mass r e l a t ioc  tiie specif ic  volurrle can be 
evaluated a s  

where v is the unstressed specif:ic volu~xe and v is  the  i t rcssed  sk~c.if.?.c volme, 
0 

Three dielec.tx4.c m, t e r j s l s  i n  several c.q~'i&llogr~:hic. orienfa-Lion hzie  been 
investigated: %-cl~t  qua^'^^^ Z-cut and 60' sap?ilire,iL .X-cxt and Z-cllt rcby (.r\ll 0 -:* 

2 3 00j$ c r o  doping). The axi?.i. a1igrflen-L of the  d i scs ,  V ~ . I  within the  sp rc? l i& crys-bal-. 
lographic ol:ien~.i;j.on -to witr,i.n 1 depee,  Els qua,r.tz. .(as syllth2tj.c mp;>e:r.ial 



. hydro-thermally pol-rn by saiver Iiesearch Products, T.he sap9hire and ruby were a l s o  
synthet ical ly  grown by .t̂ oe Linde Co, using a flame f t~sioi l  Verneuil process, P.l.1 
c rys ta l s  were purchased f ~ * ~ i n  the  Tralpey Corp, ~ ~ h o  selecJced t h e  m t e r i a l  .to flaw-free 
specifications,  and su.bsequen%ly shaped, polished and oriented the discs  t o  tlo0 
Tie plane surfacer; of -the discs Irere f l a t  t o  3 sod im l i g n t  .bands and the  faces were 
pa ra l l e l  t o  2,s x 10-3 mmo27 Wpical dTsc dimensions Irere 19 .to 25 m i n  diameter 
and 1.5 .to 2,5 mn i n  .bhicicness. A s t a t e  of one-dimensional s t r a i n  i s  assured by 
using discs  with diameter--Lo-thickness r a t io s  of greater  .tha,n LO. 

Ins trumenLation . 

The seemingly con"crz.dic$ary e l e c t r i c a l  condi.tions require %ha,% the  d ie l ec t r i c  2 isc  
be biased ~ r i t h  a constant elec-trostatic potent ia l  and %ha-t; the pu3.sed s ignal  from the  
d isc  be shu-nte with a r e s i s t ive  load. The cir&:it used consis ts  simply ox a ehargsd 8 coaxial cable2 (unteminated) connected across the  electrodes of the  d isc ,  The 
coaxial cable has the property tna? there i s  negligible D e C o  po tent ia l  difference 
betveen the  porarer supply and the  disc; but during shock-~ja,ve "cansi t  time, it a c t s  
as a 50 Q resistive load, ' This load and the  ca,ga@i-i;mce of the d isc  r e s u l t  i n  an 
R O C o  t i n e  constant of about 10-9 sec I-fnich i s  short  compared t o  .th, rise-the. of the  
observed. s t r e s s  pulses, To ob.tain c u r ~ e n t  pulses of the order of millia~nps, e lectro-  
s.ta;tic potent ials  oP t h e  order of ki lovol ts  must be a m l i e d  t o  the  d isc  and detection 
c i r cu i t .  The requiregent f o r  constant e l ec t ros t a t i c  potent ial  i s  met since the 
observed t rans ien t  s ignal  i s  only one part i n  1 0 ~ 1  of the  s t s t i c  potent ial .  Hence, 
the  c i r cu i t ry  mu-st a l so  accomuodaJce "the addi t ional  s"mLic high v o l t ~ ~ g e  co~zditions, 
~ i - b h ' t h e  coaxial cable system the gauge can be bizsed, i t s  current output lozded, 
and the cw~~@n'i ;  con4u.c-i;ed t o  a location where it can be measured., 
. . 

The coaxial cable used ~ m s  7/8-inch diameter a i r -d ie lec t r ic29  with a 1.ength of 
95 meters beyond the coaxial probe connec.tor -i;o the  oscilloscope, T11i.s s y s t e m . i r ~ t ~ o -  
duces cegl ible  d is tor t ion  between the voltage m l s e  measured at the osciU.oscope cod 
the current p*.Jlse octpu.fi; from the  dielectr2-c disc ,  Tne s ignal  ref lected from "ce 
open end of the  ca;ble does not in te r fere  with the  s ignal  a t  the oscilloscope since 
the  pulse duration is  .typica.lly 250 nsec and the  ref lected pulse a r r ives  814 nsec 
l a t e r ,  

The connection t o  the  oscilZoscope i s  made t:i.bh a  lo^?-loss coaxial capactive probe 
~,fnich blocks the e l ec t r c s t a~ t i c  s i g ~ a l ,  yet admits t h e  pulsed signal t o  Lne osc i l lo-  
scope. input, The oscilloscope used .to display the -transient signal was a nigh input 
impedance 85 1Mz deviceJO with a rise-time of a , b ~ u t  4 mec. 'J31c osc i l~oscope  t races  
were recorded photographictllly on high speed Polaroid filni, The connection from t h e .  
coaxial cable to,  the elecJcmde 5.s mad2 with a short  length of cable such tlhrt the 
inducJa,nce i s  l e s s  than 5 n;?enryo 

A low-noise regulated por.rer sulqly31 srith zccuracy of ~ , 2 5 $  and l e s s  :than 5 mv ' 

noise i s  used t o  apply the  'electrqs.tatic po.'ieni;ial across the  d isc  tirough the cable 
as shown i n  Fig, 1, . Ty-picd sign<;&. leve ls  a r e  from 1 ,to 10 m i l l i m p  with typica l  
b i a s .  voltages of Pscn 500 t o  2000 1vol"i ., , 

The sanple assczbly consists of' an electrode d isc  of mild s t e e l  i n  intimate con? 
.%ct .c.rith -the r e a r  of tne  d i e l ec t r i c  disc ,  The electrode i s  connec.ted d-irectly t o  
the  center cond~~ctor  of . the coaxj..al cable and. t h i s  en t i r e  assembly i s  enc&psulated 
.in a low shrinkage epoxy resli l  inside EL spec.b.:?n holder, ??he coaxial cable ground 
shLelZ: co!zmec~tion i s  made F,e.i;?reen the .inlmii ~ l e c t r o d e  and ;LGe ground rillg Sy vzdcu.un 
-Japor depositeci a:Luminu~a f'?.lm &cross the ;L~P,~X*, face of %he assembly, This fi lm has 
a rcs-is.i;ailce o: 0.1 o h -  ~ c r  sqlJareo 



. . 

. . Results 

A typica l  record obtained on 60" orientat ion sapphire at  the r e l a t ive ly  low s t r e s s  
' 

amplitude of 30 kbar is shown i n  Fig. 2. The waveform corresponds very closely t o  
the  response predicted by Eq. (6). The f i n i t e  risetime is a r e s u l t  of the  closure 
time to impact the  en t i r e  face of the  disc. To confirm t h a t  the  observed signals 
r e s u l t  from the  capacitance change, experiments were conducted in which no electro-  
s t a t i c  potent ial  was applied t o  a 'sapphire  d isc  shocked a t  100 kbar. No signal  was 
detected. Further, when voltage is  applied t o  the d isc  the  signals were found t o  

. sca le  according t o  the thickness, area, voltage, and wave velocity i n  the  manner 
specified by Eq. (6). These considerations provide a d i rec t  ver i f ica t ion  t h a t  the  
observed currents r e s u l t  from the anticipated capacitance change o'f t he  d ie l ec t r i c  
discs  under shock-wave loading. 

The records obtained i n  the  2-cut quartz experiments showed considerable "noise" 
a t  all s t r e s s  levels.  Further, the signals showed dis tor t ions resul t ing  f r o m  exces- 
s ive in terna l  conduction a t  all s t r e s s  levels.  Thus, even though current amplitudes 
showed a l inea r  increase with s t r e s s  from 25 t o  70 kbar 2-cut.quartz i s  not su i tab le  
f o r  a gauge material. 

A s  both the  s t r a i n  and permittivity change become large a t  the higher s t r e s s  
amplitudes, the  factors  neglected i n  deriving Eq. (6)  become detectable and the  
current prof i le  deviates from a constant value. The solution given i n  the  appendix 
for  the  current resul t ing from a constant amplitude shock-wave shows t h a t  f o r  the  
values of capacitance change observed a t  -100 kbar f o r  the  60" orientat ion the  current 
should decrease 12$ during wave t r a n s i t  time. To provide f o r  t h i s . e f f e c t  the  current 
value used t o  characterize the data i s  'the jump in current, ii, observed at  impact 

- -- . . . . - -- - . - . - - - . . . .  . .  - . - - . . . - . . . - . . - - . . , . . . - - . - . -. 
- -  f;ime. As.-indicated by Eq. . ( 6 ) ,  it is. p o s ~ . i b l e . _ t o - s e p ~ ~ ~ t _ e ~ t h e  experime.nt+lly_ ad just  - - . . . . 

--.--- -- ..--- able-. ~a~meter~-&,-P,--ar!a~~fr~m. the_.phys~cal-.propertLes U, ..%-anQf. T h u s . ,  .a-f actor  *-. 9 .  

- - ---IzI_I.&*/Av, . calW-f&e. sca_1-@_~.a~acitive_curre!!f.~, . - specif ies  _the currer!_t-j %obtained . . 

- - . . . - .- - -- . -- - a t  .a given pa r t i c l e  ve_locity. The - values observed f o r  -y  were negative. .for all '  the - - . - - . -. . , - . 
material investigated. That i s  t o  say, the 'permit t ivi ty decreased with i n c M s i n g  s t ress .  --- - -.- - . .-. - . . - - , . . .. . . . . . - . - .  . . . . .. -. - - . - - - - - . . . - . .  . . . .  .. _. . _  _ ..... - - .-.. 

The scaled capacitive current values observed f o r  two crystallographic orienta- , 

' 

t ions  of ruby a re  shown i n  Fig. 3.  These values f o r  both the  x and z direct ion show 
a pronounced change i n  slope at  pa r t i c l e  velocl t i e s  between 0.09 and 0.. 11 mm/wec 
(40 t o  50 kbar). This a r i ses  from a nonlinear permittivity change and prevents use 
of ' ruby as a time-resolved gauge f o r  s t r e s s  above about 40 kbar. Further, both ruby 
orientat ions show excessive in terna l  conduction f o r  s t r e s s  amplitude above 50 kbar. 
Thus ruby discs  can be employed as time-resolving s t r e s s  gauges t o  s t resses  up t o  
only 40 kbar. 

The values obtained f o r  the  two sapphire orientations a r e  shown i n  Fig. 4, Both 
orientations show l inea r ly  increasing values of I with increasing s t ress .  Again, '. 

however, f o r  s t resses  greater than about 40 kbar the 2-cut discs show excessive 
in terna l  conduction, and a time-rgsolving gauge i n  t h i s  orientation w i l l  be l imited ' ' 

t o  measurements below 40 kbar. i j  
I 

The response of the orientat ion sapphire discs  i s  more encouraging i n  t h a t  I 
increases l ineari ly 'wikh w r t i c l e  velocity and the  r e s i s t i v i t y  under shock remains' 
much higher than f o r  the  other materials investigated. Up t o  a s t r e s s  of about 
75 kbar the r e s i s t i v i t y  remaj-as high enough su.ch tha t  it has no e f fec t  on the  records. 
Above 75 kbar in terna l  con&action beccmes d2tectable and a t  100 kbar 'causes the 
current to d.ecreaae a.hout; ?5$ during wave t r o . r ) s i t  time. kt this same s t r e s s  a 12$ 
decrease i s  predicted f o r  th'e s t ep  function s t r e s s  i n p ~ t  (see appendix). Th3.s e f fec t  
is not expected. t o  a f fcc t  s t r e s s  readings of sharply r i s ing  wave fronts  but would 



a,ppreciably a f f ec t  l1rave prof i les  with slorrly r i s ing  s-tjress ampliJ~udes , Tilu.s, 60" 
sa:pphire has the d ie l ec t r i c  proper'ties required f o r  a so l id  ca,pr,citance gs,u.ge i n  a 
usefit?l. pressure range, and we w i l l  consider the  mechanical proper-ties of t h i s  ma'cei-ial 
i n  inore detail-. 

Mechanical Pro?erty 14zasukeinen.t~ 

'fhe qual i ty  of synthetic sapphire gr0-i.m i n  the 60" orientation i s  generally rilu.ch 
be t t e r ,  and -Lhe 1m.teria1 is nore readl ly avai lable  than other orien'iations because 
t h i s  is  the preferred gro71ri;'h direc~Lion, Ho~rever, Proin the  stan6poin.t o:f i t s  e l a s t i c  
prope~:.ties t h i s  or ientat inn would not have been an obvfous choice f o r  a gauge material .  
The e l a s t i c  response is  so~ei.rilat uncertain' since t h i s  or ientat ion i s  not a "specif ic  "32  
direct ion,  Generally, an anisotropic cqrsJcal responds t o  a longltud.inal motion vi.'ih 
both shear: and longi-tudinal co;a-$oneii;s excegt i n  "specif'ic" direcJc;ions rrhich g P ~ e  
pure l o n g i t u d i ~ a l  motion, Since .the 60" or ientat ion is  not a, specif ic  direc-tioii, it 
is possible t h a t  z shear -\rave might be produced a,nd propagate through tile crys-La1 a t  
a veloci ty  mu.ch slower 'chan the  longitudinal velocity,  The current--Lirae m e z ~ ~ e m e n t s  
a r e  very sensi t ive t o  the  properties of the  shoclr-~mve, I f  a slotrer moving s t r e s s  
wave of significaxl-i; anip1iSGtld~ were present i n  the  disc,  .it T ~ T O ~ J L ~  be expscted t o  
a f fec t  .the s.nlpliiu.de and time dependence of .the cwZenL, m e r e  i s  no evidence f o r  
the presence of a slower moving \;rave i n  any of the  records. 

I n  order "GO expl.ore -the mechani.cal response of 60" discs  i n  more de ta i l ,  an 
additional . experiment was perf omed , R specimen d isc  12,7 nrn th ick  tras impic.i;ed at 
30 k3ar with a. qua.rtz gauge t o  measure the  skress and par-ticle veloci.ty inpa,rtt?d. t o  
the  disc.  An add-it iond qua,rtz gmge located at the  r ea r  of .the sapphire specimen 
recorded tho a *rival  of the  s-tress pulse produced by the  :inlpac.i;, This "fron2~-back" 
exyerjmmt 3 3 9 3 f i  permits two inclepnden"~ evaluations of -the mechznical pro1,erties of 
the impacted specinien on the same e,xperiment, A delayed a.rriva,l of a shear wave 
~.rould be eas i ly  detec-Led, The experi~uenl shotred. a s ingle  longliLudina1 shocli-trave 
a r r i v - h g  a t  the r ea r  quartz gauge, The amplitude of .this .crave a.greed ~,riLl?in experi- 
men-hl e r ror  with the s t r e s s  m1u.e measured a t  the  impact surface. The propagation 
veloci ty  of the  Tmve a.lso agreed ~.ri'c:rl t h a t  deLermined f r o m  .the capacit8nce change 
measu.remenJ~s , ?%?.is, it appears t h a t  a s ingle  l o n ~ i t u d i n a l  shock-?rave propagates 
within .the e l a s t i c  range o f .  60" orientat ion sa,pphire. Even LTzou.&h t h i s  oriexLation 
:is not a specif ic  d i rec t icn ,  .s~,pphire shotrs a very symme.i;rica,i e l a s t i c  r e s p o ~ s e  i n  
khe various d i r e c t i o n s o 3 5 ~ ~ 6   or exaxample, the e l a s t i c  constant c i s  nwnericaliy. 

11 
equal t o  .t'ne e l a s t i c  constant c . For tha-t reason one ~ni&l t  expect Chat %he 
anis tropic  response i s  too silEd't0 be detectable. 

3 

The a ~ p r e c i z b i e  defomt:ion encountered. i n  the e l a s t i c  range of sapphire (about 
274 a t  100 kbar) trou-ld be e x ~ e c t e d  t o  cause some snmll iricrease i n  'veloci$y over 
the 101.r s igiial value, The tra.nsi.t time measvxed. from our capscitance change records 
give a d i r ec t  measure;rien.t of the wave velocity. In  addition, wave veloci ty  measure- 
ments Irere obtail~ed on the previously described' quartz gauge eqeriment  and the 
free-surface-velocity nmeasurcnentsl-5 -to deterinine t h e  Hug0nio.i; e l a s t i c  l i m i t c  Tne 
precision of the  r,ra~re vcloci-ty measurements made from the  capacitaice change r~c..nords 
i s  presen'c-ly l imited t o  "1~6~ l?he precision of the other 1;!,!c exyerinents i s  k1/2$.- 
The l inear  fit,. t o  these data i s  U = 1.0~96 + 0 98 u., there-U and u a re  given . i n  . -. . . 

mm/psec. This f i t  shows .i;he'wa.ve vel-oci'iy t o  increase 25 a-t, 100 kbar. 'illis small 
c!?znge i n  wave vniocity with increasing pa r t i c l e  veloci ty  1.Jil.2- have .only a minor , 

influence on f:ai;lge perf o~nance.  

!I'hJ.s w??er bas shorrn .;;hi analy t ica l  basis  fer the u%e of the  capacitrtnce shnnge ~f 
a so l id  die:L?ci-rfc d isc  fcr  t ims-res~lved  s-brcss o r  pat i . r . le  vel-ocibg ~rzeasliremen's~.:. 

eperTole:yZal method for. s t i~~l jr ing the perrniG;,;'vj:ty chang? induced by thz: 
! 



. one-di~iznsional stra,iii shock-~mve loading was developed and apglied t o  the  stud.y ' 

of qu.ari;z, ruby, 2nd sapphire discs ,  Sa,pphire i n  the  60' or ientat ion i s  Pound t o  
have appropriate properties f o r  .use a s  a gauge f o r  s t r e s s  ;,ulses o:? a y b i J ~ r m y  shaye 
t o  75 lrbar and for  the measu.remen-ts of s t r e s s  jtrrnps t o  100 Irbar, Euby and sapphire 
i n  the  z and x direct ions could be used as gauges up t o  ' s ts2sses  of sbou? 40 kbar, 
R more de ta i led  stu.dy of the  60" or ientat ion discs  i s  required t b  obtain more data, 
i n  smaller s t r e s s  increments and to invcs-tigate the higher s t r e s s  region i n  more 
deta,il,  

Tae maJor.:I:imitation f o r  use of the  sapphire gauge i s  .t11e shor t  recording time 
( typica l ly  250 nsec) l imited by the wave t ra .nsi t  time i n  the  ga2uge. This i s  su f f i -  
c i en t  t h e  f o r  meani.ngPu1 observations on jmps i n  s t r e s s  'but ~nifi t iple Tmve f ronts  
such a s  a r e  encoun%ered i n  el.as.tic-plas-tic i%raave propagation studies generzlly 
require raqre observa,kion t-ime. Kovrever, mea,sureaents on t h i n  samples a r e  eas i ly  
accomplished as indicated by ' the  record sh0r.m i n  Fig,  5, T'nis sapphire gwge record 
shovs a measurement of the  e las t ic -p las t ic  wave p ro f i l e  propagated .throu.gh a sample 
of spheroidized. 4340 s t ee l .  Tile e l a s t i c  ~ a , v e  amplitv.de i s  21 Irba,r, and the p la s t i c  
xmve aaip.pl?i,tu.de is 75 kbar, O'c'ner measurernen.i;s recently accomplished with "ce 
sapphire gauge include 2 Eugoniot e l a s t i c  l i m i t  determination on [~co]  germanium 
(53 kbar) and a determT~~a,"con 02 a firs-t-order phase .tra,nsition i n  a 20 Cr 8,5 N i  
s ta in less  s t e e l  a t  70 kbar. 

Tne gauge seems :mediately applicable to impactsurface measuxernents of mechani- 
c a l  properkies a s  previously described.32 One very desirable Peatux-e of the  
sa,-pphire gauge i s  %hat it has a high a,cous-i;ic impzdance (very close t o  t h a t  of s t e e l )  
and as such a l . 1 0 ~ ~  d i rec t  measurements of wave prof i les  i n  high irnpeciance li~aa-terials 
~~L-thoxt Tmve re:i?lections. I n  practice we f ind  Ll~e szppnire gauge no rcore d i fPieul t  
t o  use than the quartz gauge, m e  sa,pphire W.ge un i t  i s  eas ie r  Lo assemble than 
the  quartz Guge becau.se a guard-ring configwa;tion i s  not used, and it does not 
seem necessary i n  the c o n f i g u ~ t i o n s  tested.  

Ike milliampere signal l eve l  i s  soiiaewh.hat r e s t r i c t i v e  compared t o  the ampere signal. 
level. achieved w i c h  the quartz gauge. I-Io~.rever, Ire a r e  currently us5.n~ gauges 38 mm 
i n  dia3mee.t& and 2,5 r.m thick trhich give a cu.rren.t of 11 ria a t  23 kbar when ail electro-  
s-&tic potent ia l  of 2 ki lovol ts  i s  cpylieil. This s ignal  l e v e l  i s  high enough f o r  
r e s s o n ~ b l y  easy !~ea.s~~.remeilts. 

It should be emphasized .tha.t Yne general concep.t used f o r  .the sol id  capacita.nce 
@.11gc i s  pot on t i a l ly  applicuble t o  s~ate~;LXLs u.Lher than sapphire, Although iJc;  i s  
doubtfcd t h a t  many na;i;erials w i l l  be usefv.1 t o  100 kbar, i L  i s  cer ta tn ly  conceivable 
t h a t  a number of niaterials may be useful  a t  lo:r~?r s t r e s s  leve ls ,  It may .be adma- 
-tageou.s t o  use other  m a t e r i d s  at  lov s t resses  i n  order t o  do impedance-~aatc'hed 
experiments. The z . .~alysis  and experixents reported i n  t h i s  papar show -the condi-cions 
f o r  ~rhiclz these s o l i d  ca,pacitance gauges w - i l l .  operzte, 

Rwendix 

' 7  Capacitance Change From A '  Cons3za-i; flmpli.Lu.v.de s t r e s s '  Pulse-' 

Tne analysis given f o r  current produced .b)- the ca.pacilxj,rice change resul t ing from 
a s t r e s s  pulse of a r b i t r a r y  ~h.ap2 negl-ecks t h e  e f fec t  of tlle sli.ghtly diiYerenL 
electric,  f i e l d  3.n the  s i~ressed and unstressed rcgions of i ; !~c disc.  The ef'fect of ' . 
neglec.ting %ti s can 'be c~ral.cx,.ted by deriving the  current c;cpcc'l;zd. from a coric-l;n,n.'~ 
t?,l;lp.l it.il.de s t r e r  c: T.:o,T~~ Tnc an0,7.ysj.s wakes use u f  .the s m . 2  e~snirpt;ions as i n  'che nain 
t e x t  except ?.hat RO resJiri:c.-on is placed on Lhc ~ , ~ I I C  ~2 the  e1zztrj.c f i e l d s  i n  .the 
-mrious ens 3: the  ii.i.:::~ ; xj1 lfhat :Follows, the s ~ i t a e r i p t  (I-) refers  .LO 
wns.tressed r,.-el,ori, an6 the :;i-;bscript ( 2 )  re fers  .to the S-lrcssed regi.on. 



'SLnce the  e l e c t r i c  displacements a r e  equal i n  the s t reg  sed and unstressed region 
of tine d isc  

clEl =c2E2  o ' .  A - l  

The constant . e lec t ros ta t ic  potent ial  between the  .electrodes require t h a t  

solving f o r  El from Eqo A-2 and subs t i tu . t fn~  t h i s  value in to  A-1 gives 

€ 7  v 

Solving f o r  the  displacement cv.ment and col lect ing the W,riou.s terms yields  

where C is  tine m-stressed pennit-Livity0 

This r3sul.t shows tlnnat the  effect  of constant f i e l d  assumption i s  pr incipal ly  
.to neglect te rns  i n  (yu/e)2 .r~hich a r e  second order %elms i n  the  chsnge i n  ~ermi-ttivi'qy. 
The l a rges t  effect w i l l ,  be a t  the  highest s t r e s s  encountered, Compar-hg the  solut ion 
of Eq, A-4 t o  Eqo 6 f o r  the  values ob.ta.ined f o r  60' sayphire a t  100 kbar we f ind  t h s t  
Eqo A==& gives a current 8,5$ higher than Eqo 6 a t  t = 0 and a cursent 4,0$ lover a t  
.t = &/u. Thus, the  t rue  response slio~rs a decrease i n  current of 12,4$ a t  100 kbar. 
This ePfect r.rilL not cause serious d i f f i c u l t i e s  i n  t'ne gauge response, 

The au."cors ape pleased .to aclmo~rledge the iiugonio-i; e l a s i i c  1-bit measvl-eaents 
perfo-med by I!, Po Brooks, helpf'ul discussions k i t h  E. 38. Royce, and many Sandia 
Corpora-tion colleagues, 
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~ ' igure '  Captions 

Fig ,  1. Schematic d i a g r m  shor.rLng t h e  shock loading method and t h e  charged coaxia>l 
cable ins . tmien ta t ion  systern. 

Fig,  

Fig  , 

F'i g 

Fig,  

2, m i c a 1  current  pulse r e su l t i ng  from a 6do o r i en t a t i on  sapphire d i s c  i m -  ] 
patted. syrmetr ical ly  at 30 kbar, T h e  increases fsou l e f t  to r i gh t .  Tie 
wave -transit- t ime is  ab0u.t 250 nsec, The - t h i n g  wave shown above t h e  gauge 

. s igna l  i s  50 MHz while the  lover t r a c e  is  a voltage' ca l ib ra t ion ,  

3. Scaled capaci t ive  current  values observed f o r  t h e  ruby d i scs ,  With wave 
ve loc i t i e s  of 11,l rnm/}~sec and a densi ty  of .3.986 g/cm3, a, p a r t i c l e  
ve loc i ty  of' 0 , l  n../~lsec i s  associa.ted with a sJcress of' 44.2 lrbar, . The 

' v8loci ty  changes only about 2$ i n  t h e  ' p a r t i c l e  ve loc i ty  range shorn. 

4, Scale6 capaci t ive  current '  values observed f o r  t h e  sa~phi i -e  'discs,  With 
wave ve loc i t i e s  of l L o I  lm/l~.sec and a densi ty  of 3.986 g/cn?3, a par- t ic le  
vel.ocity of 0 0 1  m/psec is  associa ted with a s t r e s s  of 44,2 kbar. 

5. Stress-time p r o f i l e  observed.~-ri th a sa,pphire gauge 011 a szmple of  
spheroid.ized 434.0 s t e e l  r.rhich i s  3e18 th ick ,  Time increases  from l e f t  
t o  r i gh t .  Tne ga-uge recorbing-time i s  about 250 nsec, The m a x i m u m  s t r e s s  
observed i s  75 kba.r, A t:lmirrg f i d u c i a l  i s  shorn before -t?.le a - ~ r i v a l  of t h e  
e l a s t i c  l ~ v e o  1ke propa.gation of t h e  e l a s t i c  m v e  t'nrough 'the r e a r  e lec -  
t rode of t he  gauge causes t h e  lnverted s igna l  observed l a t e  Ln t h e  t r ace ,  
The small' ar;lpli.tude sinixsoidal t r a c e  at t h e  bottom of t h e  f i gu re  i s  a 
50 MHz timing wave and t h e  l a r g e r  amplitude .trace is  't'ne voltage ca l i b r a t i on ,  








