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FOREWORD 

This  document i s  a r e p o r t  of progress  on t e c h n i c a l  programs of t h e  
Nuclear Technology Div i s ion  of Aero je t  Nuclear Company f o r  FY 73 ending 
June  30 ,  1973.. It con ta ins  a b s t r a c t s  o r  expansions of abs , t r ac t s  of 
papers  which have been publ i shed  w i t h i n  t h e  year .  I n  t h e s e  cases ,  
p r e p r i n t s  o r  r e p r i n t s  of t h e  a r t i c l e s  a r e  a v a i l a b l e .  Resu l t s  of work 
i n  p rog res s  a r e  a l s o  r epo r t ed ;  s i n c e  t h i s  work is  of a pre l iminary  
n a t u r e ,  t h e  au thors  should be  contac ted  be fo re  inc luding  any r e fe rence  
t o  t h e s e  works i n  o t h e r  pub l i ca t ions .  

Progress  r epo r t ed  on p r o j e c t s  by t h e  Ins t rumenta t ion  and Control  
Equipment Branch covers t h e  per iod  January 1, 1972 through June 30 ,  1973. 
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A. NUCLEAR PROPERTIES 



INTEGRAL CAPTURE CROSS SECTION MEASUREMENTS OF 
FISSION PRODUCT ISOTOPES (CFRMF) 

Y.  D. Harker ,  R. G. N i s l e ,  E. H.  Turk, J.  R. Ber re th  111 

The s i g n i f i c a n t  e f f e c t  of f i s s i o n  products  on t h e  economy and design 
of t h e  Liquid  Metal Fas t  Breeder Reactor  (LMFBR) has long been recognized; 
however t h e r e  have been and s t i l l  a r e  s e r i o u s  gaps i n  neut ron  d a t a  f o r  
t hese  nuc l ides  i n  energy range a p p l i c a b l e  t o  t h e  LMFBR. This  l a c k  of 
fundamental phys ics  d a t a  i n  such a  c r i t i c a l  a r e a  c r e a t e s  s i g n i f i c a n t  
con t r ibu t ions  t o  t h e  u n c e r t a i n t i e s  on t h e  p red ic t ed  performance para- 
meters such a s  breeding  r a t i o ,  doubling t ime,  e t c .  To f i l l  t h i s  need, 
t h e  Fas t  Breeder Reactor  Physics  c o n s t a n t s  Program has undertaken and 
is measdring t h e  cap tu re  c ros s  s e c t i o n s  of important  f i s s i o n  product 
i so topes  i n  t h e  neutron environment of t h e  Coupled Fas t  R e a c t i v i t y  
Measurement F a c i l i t y  (CFRMF). The neutron spectrum of t h e  CFRMF has  
been t a i l o r e d  t o  be  r e p r e s e n t a t i v e  of t h a t  found i n  an LMFBR and conse- 
quent ly  t h e  i n t e g r a l  c ros s  s e c t i o n  va lues  determined i n  t h e  CFRMF a r e  
u s e f u l  i n  a p p l i c a t i o n s  r e l a t i n g  t o  such a  f a c i l i t y .  

Because of t h e  i d e n t i t y  of t h e  CFRMF wi th  t h e  LMFBR i t  has been 
extremely va luab le  a s  a  f a s t  neutron s tandard  f o r  comparing measured 
and c a l c u l a t e d  i n t e g r a l  r e a c t i o n  r a t e s .  E f f o r t s  of t h e  Cross Sec t ions  
Evaluat ions Working Group (CSEWG) i n  the  a r e a  of  eva lua t ions  of cap tu re  
c ros s  s e c t i o n s  of f i s s i o n  product  i so topes  i n  t h e  energy range from 
% 50 eV t o  10 MeV a r e  centered  around t h e  use of o p t i c a l  model ca l cu la -  
t i o n s  t o  genera te  d i f f e r e n t i a l  c ros s  s e c t i o n  information.  A s  a  p a r t  of 
t h i s  e f f o r t ,  the  CFRMF has been e s t a b l i s h e d  a s  a  CSEWG benchmark f o r  
t e s t i n g  t h e s e  eva lua t ions  aga ins t  measured i n t e g r a l  d a t a .  During t h i s  
p a s t  y e a r  t h e  measured c ros s  s e c t i o n s  l i s t e d  i n  Table I and t h e  CFRMF 

have been presented  t o  CSEWG f o r  use  i n  t h e  t e s t i n g  phase 
of t h e s e  eva lua t ions .  

The r e a c t i o n  c ros s  s e c t i o n  va lues  i n  Table I a r e  t h e  r e s u l t  of n o t  
only t h e  measurements of t h i s  y e a r  b u t  a l s o  those  of previous yea r s  [3-51. 
The va lues  repor ted  i n  Table I may n o t ,  however, be  t h e  same a s  those  
repor ted  e a r l i e r ;  t h i s  i s  because two genera l  a s p e c t s  have been changed 
o r  updated i n  .our measurement program. F i r s t ,  t h e r e  has  been a  change 
i n  t he  way t h e  abso lu t e  c ros s  s e c t i o n  i s  determined from t h e  r e a c t i o n  
r a t e .  I n  t h e  p a s t ,  our  measurements have been re ferenced  t o  t h e  gold 
cap tu re  c ros s  s e c t i o n  a s  a  s tandard .  A t  p r e s e n t ,  t h i s  p r a c t i c e  i s  no 
longer  used and t h e  abso lu t e  c ros s  s e c t i o n  i s  determined by d iv id ing  
t h e  r e a c t i o n  r a t e  p e r  atom by t h e  abso lu t e  i n t e g r a l  f l u x .  This f l u x  
has been determined a s  a  by-product o  t h e  e f f o r t s  of t h e  I n t e r l a b o r a t o r y  
LMFBR React ion Rate (ILRR) program. [ 6f The gold a c t i v a t i o n  de termina t ions  
which accompany each c ros s  s e c t i o n  measurement a r e  now used p r imar i ly  a s  
f l u x  monitors f o r  t h e  purposes of power normal iza t ion  t o  t h e  ILRR i r r a -  
d i a t i o n s  du'ring which t h e  abso lu t e  f l u x  l e v e l  was e s t a b l i s h e d .  

The second reason f o r  d i f f e r e n c e s  r e s u l t s  from t h e  updat ing of t h e  
gamma-ray spectrum d a t a  used i n  conver t ing  t h e  measured gamma a c t i v i t y  
t o  t he  d e s i r e d  a c t i v a t i o n  c ros s  s e c t i o n .  There have been s e v e r a l  



advances  made r e c e n t l y  i n  o b t a i n i n g  a b s o l u t e  gamma-ray i n t e n s i t i e s  and 
t h e s e  have been i n c o r p o r a t e d  i n  n o t  on ly  t h e  c u r r e n t  c r o s s  s e c t i o n  
measurements b u t  a l s o  i n  t h e  p a s t  measurements. 

Very p r e l i m i n a r y  comparisons of t h e  r e s u l t s  l i s t e d  i n  Tab le  I and 
t h o s e  c a l c u l a t e d  from o p t i c a l  model g e n e r a t e d  show a g e n e r a l  
agreement of t h e  o r d e r  of 20%. Although t h e  more meaningful  i n t e r p r e -  
t a t i o n s  a r e  con ta ined  i n  t h e  comparisons f o r  i n d i v i d u a l  n u c l i d e s ,  t h i s  
g e n e r a l i z e d  agreement r e p r e s e n t s  a  rough e s t i m a t e  of t h e  p r e s e n t  s t a t u s  
of t h e  accuracy of f i s s i o n  p r o d u c t  c r o s s  s e c t i o n  d a t a .  
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'TABLE I 

MEASURED INTEGRAL DATA FOR PHASE I1 
TESTING OF CAPTURE CROSS SECTIONS OF 

FISSION-PRODUCT ISOTOPES 

Chemical* .Th%ckness** a + 
m 

R e a c t i o n  Form (mg/cm2 1 (ba rns  / t a r g e t  atom) 

8 7 ~ b  (n  ,y)  OR^ RbCl 79.7 0.0132 & .0018 

9 9 ~ c  (n ,  y) OTC Tc powder 126.3 0.294 + .039 

l o 2 ~ u ( n , y )  lo3Ru Ru powder 111.4 0,097 + ,011 

1 1 5 ~ n ( n , y ) 1 1 6 m ~ n  I n  f o i l  81.11 .0.288 + ,027 
. . 

1 2 1 ~ b ( n , y )  1 2 2 ~ b  Sb powder 168.2 0.309 + .028 



TABLE I (Cont. ) 

Chemical* Thickness** 
a ' +  
m 

React ion Form (mg! cm2 ) ( b a r n s / t a r g e t  atom) 

Sb powder 

HI0 

1 32xe 

1 32xe 

1 34xe 

cs2so4 

CSNO 3 

P r  powder 

l 4  7 ~ m ( ~ 0  ,) 

1 4 7 ~ m ( ~ 0 3 )  

Nd20 3 

Nd20 3 

Sm20 3 

Sm20 3 

* Natura l  abundance elements a r e  used except  where t h e  s p e c i f i c  
i so topes  a r e  i nd ica t ed .  

** Mass inc ludes  a l l  c o n s t i t u e n t  elements i n d i c a t e d  i n  chemical form. 
The r e a l  th ickness  f o r  powdered and compound samples is  .76 nun and 
f o r  f o i l s  t h e  real th ickness  can be  determined us ing  normal d e n s i t i e s .  

t am i s  determined by d iv id ing  t h e  measured r e a c t i o n  r a t e  Ooam by 
4, = 1.205 x 1011 n/cm2/sec ( 2  8%). 4, is  t h e  i n t e g r a l  f l u x  a s  
measured us ing  SAND I1 and the  r e a c t i o n  r a t e s  measured i n  t h e  ILRR 
program. The e r r o r  assignments a r e  f o r  67% confidence l e v e l  and 
a r e  abso lu t e ,  i.e., sys t ema t i c  e r r o r s  have been included.  



ACTIVATION CROSS SECTION MEASUREMENTS OF l 5  ~ E U  AND 1 5 3 ~ u  

J. R. B e r r e t h [ l l ,  Y .  D. Harker,  E. H. Turk 

The a c t i v a t i o n  c ros s  s e c t i o n s  of  enr iched  samples of 151Eu and 
1 5 3 ~ u  were determined as a  p a r t  of t h e  Fas t  Breeder Reactor  Physics  
Constants  Program. This  program is  p r imar i ly  concerned wi th  measuring 
i n t e g r a l  c ros s  s e c t i o n s  of f i s s i o n  products  i n  an LMFBR type  neut ron  
spectrum. I n  t h i s  ca se ,  t h e  measurements were p r imar i ly  performed i n  
t h e  i n t e r e s t  o f  determining t h e  p o s s i b l e  va lue  of  n a t u r a l  europium a s  
a  burnable  poison f o r  LMFBR type  r e a c t o r  c o n t r o l .  The f a c i l i t y  used 
i n  t h e s e  measurements was t h e  Coupled Fas t  Reactor  Measurement F a c i l i t y  
(CFRMF) which has  an LMFBR type  neut ron  spectrum. [ * - 4 l  

The enr iched  samples were obta ined  from O.ak Ridge I so tope  Sa le s .  
The 151Eu composition was 96.83% lS1Eu and 3.17% 1 5 3 ~ u .  The 1 5 3 ~ u  
sample contained 1.24% l 5  lEu and 98.76% 1 5 3 ~ u .  Since i t  is  very  
important  t h a t  t he  Eu be  f r e e  of  o t h e r  r a r e  e a r t h  i m p u r i t i e s ,  a  very 
c a r e f u l  i o n  exchange column s e p a r a t i o n  was performed p r i o r  t o  neut ron  
i r r a d i a t i o n ,  For d e t a i l s  on t h i s  s e p a r a t i o n ,  s e e  "Techniques and 
~ n s t r u m e n t a t i o n "  of  t h i s  r e p o r t .  Weights of  p u r i f i e d  m a t e r i a l s  which 
were encapsula ted  f o r  i r r a d i a t i o n  i n  sma l l  q u a r t z  v i a l s  were 15.33 mg 
of 151Eu203 and 14.87 mg of  1 5 3 ~ u 2 0 3 .  

A s i n g l e  i r r a d i a t i o n  f o r  bo th  samples was performed i n  t h e  CFRMF 
a t  a  power l e v e l  of 10 kW. Gold neut ron  f l u x  monitor f o i l s  were placed 
w i t h  t h e  europium samples on a  t h i n  l e a d  f o i l  ho lde r .  The a c t i v a t i o n  
products  of i n t e r e s t  f o r  t h i s  i r r a d i a t i o n  were the 9.3-hr 1 5 2 m l ~ u ,  

' 

12.4-y 1 5 2 ~ u  and 8.6 y  1 5 4 ~ u .  Because t h e  c r o s s  s e c t i o n s  f o r  m a t e r i a l s  
i n  t h e  CFRMF f l u x  spectrum a re . sma l1 ,  t h e  i r r a d i a t i o n s  were done by 
o p e r a t i n g  16 hours p e r  day f o r  a  30-day per iod  wi th  a . con t inuous  48-hour 
run a t  t h e  end of t h e  i r r a d i a t i o n  t o  opt imize  t h e  9:3-hr 1 5 2 m l ~ u  a c t i v i t y .  

The r e s u l t a n t  a c t i v i t i e s  were measured on a  39 mm by 38 -mm coax ia l  
Ge(Li) d e t e c t o r  coupled t o  a  Nova computer, f o r  d a t a  a c q u i s i t i o n  and 
s t o r a g e .  Data ana l  sis was done u t i l i z i n g  a Gauss gamma spectrum 
a n a l y s i s  program. [ 5j Gamma peaks used f o r  a n a l y s i s  were 841 lceV and 
963 keV f o r  the  9.3-hr 1 5 2 m l ~ u ,  778.7, 1085.8, 1112.1, 1408.2 keV f o r  
t h e  12.4-yr 1 5 2 ~ u  and 723.3, 1004.8 and 1274.4 keV f o r  t h e  1 5 4 ~ u .  The 
r e s u l t a n t  c ros s  s e c t i o n s  a r e  1.072 + .086 barns f o r  1 5 2 ~ u ( n , y ) 1 5 2 m l ~ u ,  
152 + .13 barns  1 5 1 ~ u ( ~ , y ) 1 5 2 ~ u  ( a f t e r  decay of 1 5 2 m l ~ u )  ,and 1.51 2 
.12 barns  5 3 ~ u ( n ,  y)  5 4 ~ u .  These a r e  cons iderably  h ighe r  c ros s  s e c t i o n s  
than  normally encountered (% 1.5  barns  v s .  0.5 barns  p e r  i so tope )  f o r  
most i n t e rmed ia t e  mass nuc l ides  measured i n  t h e  CFRMF neut ron  f l u x  
spectrum. Because of i t s  h igh  c r o s s  s e c t i o n  of % 3 ba rns ,  n a t u r a l  
Eu(n,y) compares favorably i n  u se fu lnes s  wi th  1 ° ~ ( n , a )  of % 1.9 barns  [ G I  
as a  c o n t r o l  rod m a t e r i a l  f o r  LMFBR type  r e a c t o r s .  

The c ros s  s e c t i o n  of 1 5 1 ~ u ( n , y ) 1 5 2 . m 2 ~ u  (97 min) was a l s o  measured, 
The samljle s i z e  used was 5.49 mg of  Eu203 wi th  t h e  same i s o t o p i c  151Eu 
composition a s  above and ' the  CFRMF i r r a d i a t i o n  was f o r  30 min a t  10 KW. 
The s h o r t  i r r a d i a t i o n  minimized t h e  product ion of 9.3-hr a c t i v i t y  b u t  



al lowed p r o d u c t i o n  of 
t h e  90-keV gamma peak 
s e c t i o n  o b t a i n e d  was 

s u f f i c i e n t  97-min a c t i v i t y  f o r  easy  d e t e c t i o n  of 
w i t h  t h e  Ge(Li) d e t e c t o r .  The r e s u l t i n g  c r o s s  

(2 .1  + 0.2)  x b a r n s .  

Although c o n t r i b u t i o n  of t h i s  isomer a s  a f i s s i o n  p roduc t  t o  gamma 
h e a t i n g  i n  r e a c t o r s  i s  a d m i t t e d l y  v e r y  small, measurement of t h e  pro- 
d u c t i o n  of s h o r t  l i v e d  isomers  is  of  i n t e r e s t  f o r  e s t a b l i s h i n g  t h e i r  
c o n t r i b u t i o n  t o  s h o r t - t e r m  gamma h e a t i n g  e f f e c t s  immediately a f t e r  
r e a c t o r  shutdown. 

[ I ]  P r e s e n t  a d d r e s s :  A l l i e d  Chemical Corpora t ion ,  550 Second S t r e e t ,  
Idaho F a l l s ,  Idaho 83401. 

[ 2 ]  C. L. Beck, e t  a l . ,  Nuclear  Technology Branch Annual P r o g r e s s  
Report  f o r  P e r i o d  Ending June  30,  1968, IN-1218 (1968) p.  192.  

[ 3 ]  J .  J .  S c o v i l l e ,  e t  a l . ,  Nuclear  Technology Branch Annual P r o g r e s s  
Report  f o r  P e r i o d  Ending June  30, 1970, IN-1407 (1970) p.  281. 

[ 4 ]  D.  A. ~ i l l s a ~ ,  Nuclear  Technology Branch Annual P r o p r e s s  Report  
f o r  P e r i o d  Ending June  30, 1970, IN-1407 (1970) p., 286. 

[ 5 ]  R. G. Helmer and M. H. Putnam, GAUSS V - A Computer Program f o r  
t h e  Ana lys i s  of Gamma-Ray S p e c t r a  from Ge(Li) Spec t romete rs ,  
ANCR-1043 (January 1972) .  

[ 6 ]  H. F a r r a r  I V ,  p r i v a t e  communication. 

CSEWG THERMAL BENCHMARK CALCULATIONS 

F. J. Wheeler, A. W. Brown 

Thermal benchmark c a l c u l a t i o n s  were  performed i n  c o n j u n c t i o n  w i t h  
ENDFIB-In d a t a  t e s t i n g  a c t i v i t i e s  a t  ANC. The results of the c a l c u l a -  
t i o n s  were i n f o r m a l l y  t r a n s m i t t e d  t o  CSEMG p e r s o n n e l  who w i l l  t e n t a t i v e l y  
p r e s e n t  d e s c r i p t i o n s  of the benchmarks and r e s u l t s  of c a l c u l a t i o n s  by 
v a r i o u s  CSEWG members a t  t h e  San F r a n c i s c o  ANS Meeting i n  November 1973. 

The c r i t i c a l  l a t t i c e s  f o r  which  c a l c u l a t i o n s  were  performed were  
d e s i g n a t e d  TRX-1 and TRX-2 and were  composed o f  A1 c l a d ,  U m e t a l  r o d s  
a t  a modera to r - to - fue l  r a t i o  of 2-35 and 2.40, r e s p e c t i v e l y .  The 
l a t t i c e s  were  H 0  moderated w i t h  a f u l l  H 0 r e f l e c t o r .  The v a l u e s  .of 

2 
k-eff o b t a i n e d  are p r e s e n t e d  i n  T a b l e  I a  ong w i t h  a comparison of t h o s e  
computed by o t h e r  i n v e s t i g a t o r s .  

1 

Other r e s u l t s  of i n t e r e s t  were: 1 )  the r a t i o  o f  2 3 8 ~  epi- thermal  
c a p t u r e  t o  the rmal  c a p t u r e  (p28) ; 2) the r a t i o  of 2 3 5 ~  epi- thermal  
f i s s i o n  t o  the rmal  f i s s i o n  (625) ; and 3) t h e  r a t i o  2 3 8 ~  f i s s i o n  t o  
2 3 5 ~  f i s s i o n  ( 1 5 ~ ~ ) .  These a c t i v a t i o n  r a t i o s  a r e  g i v e n  i n  T a b l e  11. 



The s p a t i a l l y  and energy weighqed c r o s s  s e c t i o n s  a p p l i c a b l e  t o  t h e  
u n i t  c e l l  were obta ined  from t r a n s p o r t  (S ) c a l c u l a t i o n s  us ing  t h e  SCAMP 6 
code w i t h  97 energy groups and a  c y l i n d r i c a l i z e d  model of t h e  c e l l .  Reso- 
nance e f f e c t s  were t r e a t e d  us ing  t h e  R . B L E [ ~ ]  code*. The k-ef f  va lues  and 
a c t i v a t i o n  parameters  were obtained from fu l l - co re  SCAMP c a l c u l a t i o n s  
us ing  66 energy groups above 0.625 eV and one energy group (obtained 
from t h e  SCAMP c e l l  c a l c u l a t i o n s )  below t h i s  cut-off va lue .  

* A se l f - sh i e ld ing  c a l c u l a t i o n  was a l s o  performed us ing  mul t i - l eve l  
theory f o r  2 3 5 ~ .  The mul t i - leve l  e f f e c t  w a s  found t o  b e  n e g l i g i b l e .  

[ l ]  P. H. Keir and A. A. Robba, RABBLE --,.A Program f o r  Computation of 
Resonance Absorption i n  Mul t i reg ion  Reactor C e l l s ,  ANL-7326 (1967). 

TABLE I 

CRITICALITY CALCULATIONS (ENDF/B-111) 

'eff (exp = 1.0)  

Benchmark Description - BAPL - ORNL - SRL 

TRX 

- I  . ModlFuel = 2.35 0.9872 0.9808 0.9766 0.9741 

-2 ModIFuel = 4.02 0.9913 0.9876 0.9859 0.7823 

TABLE I1 

Benchmark EXP BAPL ORNL SRL ANC EW BAPL ORNL SRL ANC %!L & 

Note: Parameters correspond to a thermal cut-off of 0.625 eV. 



THE TOTAL NEUTRON CROSS SECTION OF 2 4 1 ~ ~  

MEASURED AT LIQUID NITROGEN TEMPERATURE FROM 1 .0  eV TO 1 0  keV 

F. B. Simpson, H. G .  M i l l e r ,  J. A. Harvey1'', N.  W. H i l l  111 

Accurate  2 4 1 ~ u  cross-sec t ion  d a t a  a r e  important  when p r e d i c t i n g  
t h e  growth of Pu i n  power r e a c t o r s  and t o  t h e  p r e d i c t i n g  of heav ie r  
t ransplutonium elements i n  t h e  product ion r e a c t o r s .  There have been 
u n c e r t a i n t i e s  i n  the  2 4 1 ~ u  t o t a l  c ros s  s e c t i o n  d a t a  and the  r e l a t i o n -  
sh ip  of the  t o t a l  t o  t he  p a r t i a l  c r o s s  s e c t i o n s .  For t hese  reasons 
we were requested and d id  measure t h e  t o t a l  neutron c ros s  s e c t i o n  of 
2 4 1 ~ ~  on t h e  Oak Ridge E l e c t r i c  Linear  Acce lera tor  (ORELA). 

These measurements were made a t  l i q u i d  n i t r o g e n  temperature using 
t h r e e  meta l  samples of d i f f e r e n t  th icknesses .  Table I g ives  t h e  sample 
th icknesses  and i s o t o p i c  compocition a t  t h e  time of chemical s epa ra t ion .  
The ope ra t ing  condi t ions  and neut ron  energy range f o r  f o u r  d i f f e r e n t  -(.: 

s e t s  of measurements a r e  summarized i n  Table 11. The f i r s t  two se t s '  . 
of d a t a  have been converted t o  c ros s  s e c t i o n  vs .  energy. However, 
funding l i m i t a t i o n s  d id  no t  permi t  t he  completion of t h e  l a s t  s e t s  of 
d a t a  covering t h e  h igher  energy region.  

TABLE I 

COMPOSITION OF THE PLUTONIUM SAMPLES 

Sample 1 Sample 2 Sample 3 
I so tope  ~t % PU ~toms/cm'* lo2 '  ~toms/cm'* l o Z o  ~ t o m s / c m ~ *  l o Z u  

A l l  of t he  measurements were made a t  t h e  80 meter  f l i  h t  pa th .  The 
f i r s t  two s e t s  of d a t a  used a L i  g l a s s  d e t e c t o r  and t h e  "'Ne d e t e c t o r  
was used f o r  t he  two h igher  energy measurements. A l l  t h r e e  samples were 
contained i n  the c r y o s t a t  and a thermocouple a t t ached  t o  t he  bottom of 
t h e  sample holder .  It does appear ,  however, from t h e  shape of t he  
resonances,  due t o  t h e  containments,  t h a t  t h e r e  was some i n t e r n a l  
hea t ing  i n  t h e  t h i c k  sample. This  can only be determined when and i f  
t h e  d a t a  a r e  analyzed f o r  resonance p a r m e t e r c .  



TABLE I1 

OPERATING CONDITIONS FOR MEASUREMENTS I N  THE DIFFERENT ENERGY REGIONS 

Pu l se  Channel Detec tor  
Width Width Thickness 

, Energy Range (nsec) (nsec) Pulses /Sec  ( i n )  Beam F i l t e r  

1.0-100 eV 30 8-2048 80 0.5 Cd (0.035") 

30 500 
1 0  

30 eV-10 keV 8-256 0.5 B 

The raw d a t a  has  about 2000 t o  4000 counts  p e r  channel which g ive  
counting s t a t i s t i c s  of approximately 2%. The c ros s  s e c t i o n  d a t a  look 
very  good and t h e r e  i s  good agreement between d i f f e r e n t  runs. The 
energy r e s o l u t i o n  AE/E was 0,0007J1 + 4E (MeV).  background^ wcre 
approximately 1 t o  2%, wi th  a major p a r t  of i t  being a  cons t an t  room 
background a t  low ene rg ie s ,  2.23-MeV gamma rays  (with a  16-psec decay 
pe r iod )  from H-capture i n  t h e  moderator a t  keV ene rg ie s  w i th  t h e  6 ~ i  

l a s s  d e t e c t o r ,  and a  background i n  t he  key measurements w i th  t h e  
RuNe d e t e c t o r  due t o  neutrons be ing  moderated (with a  5-psec leakage 
pe r iod )  by the  d e t e c t o r  and producing gamma rays  from cap tu re  i n  t h e  
d e t e c t o r .  

111 Oak Ridge Nat iona l  Laboratory.  

MULTILEVEL FITTUG OF 23  5 

J,. R.. Smith 

For some yea r s  t h e r e  have been disagreements a s  t o  whether o r  n o t  
m u l t i l e v e l  e f f e c t s  were important  f o r  r e a c t o r  a p p l i c a t i o n s .  Comparison 
-of parameters  has been hampered by t h e  f a c t  t h a t  t h e r e  can be  d i f f e r ences  
i n  d a t a  i n t e r p r e t a t i o n  and f i t t i n g  techniques which obscure t h e  r e a l  
d i f f e r e n c e s  between parameter types.  Such comparisons must be. based 
on matched s e t s  of  parameters .  

Reich-Moore m u l t i l e v e l  p.arameters y e r e  f i t t e d  t o  t h e  c ros s  s e c t i o n s  
of  2 3  5 b-elow 82 eV. The i m u l t i l e v e l  parameters  were in tended  t o  match 
c l o s e l y  t h e  s ingle-1  v 1 parameters  prev ious ly  der ived  f o r  u se  i n  
ENDFIB, Version 111. rly The same d a t a  were f i t t e d ,  us ing  t h e  same 
normal iza t ions  and i n t e r p r e t a t i o n s  of r e s o l u t i o n .  These d a t a  s e t s  were 
a s  fo l lows:  



1. The f i s s i o n  and cap tu re  measurements of desaussure  e t  a l .  121 

2. The t o t a l  c r o s s  s e c t i o n  measurements of Michaudon. C 31 

3. The f i s s i o n  c ros s  s e c t i o n  d a t a  of Blons. 141 

4. The f i s s i o n  measurements of Cao e t  a l .  [ 51 However, t h e  u s e  
of t hese  d a t a  i n  t h e  m u l t i l e v e l  program was very  l imi t ed .  

5. The s c a t t e r i n g  c r o s s  s e c t i o n  measurements of Poortmans e t  al .  C61 
These d a t a  were n o t  a v a i l a b l e  a t  t h e  s ing le - l eve l  f i t t i n g ,  
b u t  were examined t o  a  c e r t a i n  & t e n t  i n  t h e  m u l t i l e v e l  a n a l y s i s .  

The f i t t i n g  was done using t h e  codes MULTI, ACSAP, and SCORE. MULTI 
i s  t h e  only  one of t h e  t h r e e  t h a t  au tomat ica l ly  a d j u s t s  t he  r e l a t i v e  ang le  
between f i s s i o n  v e c t o r s  of resonances,  s o  i t s  r o l e  w a s  t o  s ea rch  ou t  t h e  
i n t e r f e r e n c e  p a t t e r n s  i n  f i s s i o n .  ACSAP was used i n  f i n a l  adjustments  t o  
i n s u r e  t h a t  t h e  resonance widths would be i n t e r p r e t e d  as they had been f o r  
t h e  s ing le - l eve l  a n a l y s i s ,  and t o  p repa re  d e t a i l e d  p l o t s  of c a l c u l a t e d  
ve r sus  measured c r o s s  s e c t i o n s  f o r  t h e  comparison of t h e  e f f e c t s  of ad jus t -  
ments on a l l  da t a  s e t s .  SCORE was used t o  examine c l o s e l y  t h e  i n t e r f e r e n c e  
e f f e c t s  i n  some reg ions  where MULTI and-ACSAP were both  experiencing 
d i f f i c u l t i e s  deciding on a b e s t  f i t .  

The resonances were d iv ided  i n t o  two s p i n  s t a t e s .  Spin assignments 
were made on t h e  b a s i s  of measurements where t h e s e  were a v a i l a b l e ,  and - 
on t h e  b a s i s  of r e l a t i v e  i n t e r f e r e n c e  where no experimental  da t a  e x i s t e d .  
For t h e  most p a r t ,  t h e  s p i n  assignments a r e  no t  very  r e l i a b l e .  The smal l  
d i f f e r e n c e  i n  s t a t i s t i c a l  weight of t h e  two s p i n  s t a t e s  (7116 and 9/16) 
makes experimental  s p i n  e f f e c t s  sma l l  and assignment d i f f i c u l t .  

The f i n a l  parameters  a r e  l i s t e d  i n  Table I. These parameters  
gene ra t e  c r o s s  s e c t i o n s  very c l o s e  t o  those  produced by t h e  Version-I11 
parameters .  Comparisons between t h e  two s e t s  a r e  d iscussed  i n  t h e  
next  s e c t i o n .  

[l] J.  R. Smith and R. C. Young, 2 3 5 ~  Resolved Resonance Parameter f o r  
ENDFIB, Version 111, USAEC Report ANCR-1044 (1971). 

[2]  G. desaussure e t  a l . ,  Simultaneous Measurements of t h e  Neutron 
F i s s i o n  and Capture Cross Sec t ions  f o r  '"u f o r  Inc iden t  Neutron 
Energies  from 0.4 eY t o  3 key, USAEC Report ORNL-TM-1804 (1967). 

[3 ]  A. Michaudon, Cont r ibut ion  a  1 'Etude p a r  des  Methodes du Temps 
de Vol de l l I n t e r a c t i o n  des  Neutrons Lents Ave., 1'U-235, Report 
CEA-R2552 (1964). 

141 J.  Blons, H. Der r ien  and A. Michaudon, Measurements and Analysis  of 
t h e  F i s s i o n  Cross Sec t ions  of U-235 and U-235 f o r  Neutron Energies  
Below 30 KeV, CONF-710301, Yol. 2,  (1971) p .  829 

[ 53 M. G. Cao e t  a l .  , ' P i s s ion  cross-Sect ion Measurement of U-235", 
J .  Nucl. Energy 22, (1968) p.  211. 

[6]  F. Poortmans e t  a l . ,  "Sca t te r ing  Cross Sec t ion  of 23% Below 100 e ~ " ,  
2nd I n t e r n a t i o n a l  Conference on Nuclear Data f o r  Reac tors ,  He l s ink i ,  
CN-26/20 (1970). 



TABLE I 

' 5~ MULTILEVEL PARAMETERS 

RESONANCE PARAMETERS 

RESONANCE 
ENERGY (EV) 

RESONANCE 
SP l N 

GAMMA-N 
IEV) 

GAMMA-N- 
NOUGHT (EVI 

3.3000E-03 
6.0000E-06 
2.4920E-04 
8.0000E-06 
8'. 7000E-06 
7.2000E-06 
4.00QOE-07 
1.5200E-05 
3.0800E-05 
3.2100E-05 
8.0000E-06 
3.3000E-06 
3.0700E-05 
I.OOOOE-04 
5.620QE-05 
3.OOOOE-07 
4.5IOOE-04 
5.0'tOOE-05 
2.4800E-05 
1.6200E-05 
1.6000E-05 
9.800UE-06 
I.4l4OE-04 
4.35rOE-04 
2.6900E-05 
2.58OOE-05 
4.23OOE-05 
1.2570E-04 
2.970OE-05 
6.60OOE-05 
I .OBOOE-04 
8.0600C-05 
8.0900E-05 
3.45OOE-05 
6.6770E-04 
1.7000E-05 
4.8100E-(r5 
4.0690E-04 
1.1200E-04 
I.3290E-04 
~ . I ~ ~ O E - O C  
5.7OOOE-05 
l.49OOE-05 
3.27OOE-05 
I.9500E-04 
I.0900E-04 
1.2200E-05 
1.1600E-04 
3.2000E-06 
4.IOOOE-05 

GAMMA- 
GAMMA (EV) 

GAMMA-F 1 
IEV) 



TABLE I (Contd.) 

RESONANCE PARAMETERS 

RESONANCE 
ENERGY ( E V )  

RESONANCE 
S P I N  

GAMMA-N GAMMA-N- GAMMA- GAMMA-F I 
( E V )  NOUGHT ( E V )  GAMMA ( E V )  t E V )  



RESONANCE PARAMETERS 

t-' 
Ec 

RESONANCE 
ENERGY (EVI  

RESONANCE 
SPIN 

GAMMA-N GAMMA-N- GAMMA- 
(EV) NOUGHT (CVl GAMMA (EVI 

GAMMA-F 1 
CCVl 

-3.4887E-02 
-7.5927E-02 

1.7929E-02 
-1.8778E-01 

3.5662E-01 
-2.079CE-02 

1.8552E-01 
-7.1950E-03 
-2.4000E-01 
-2.7800E-02 

2.6939E-02 
C.8Y70E-02 

-8.5900E-03 
-t.C780E-03 

t.0200E-02 
-9.0600E-03 

1.5182E-01 
3.572CE-02 
6.8101E-01 
5.0982E-02 
1.7300E-01 

-I.7*57E-01 
I . IB52E-Ol  

-5.3300E-04 
5.1945E-02 
l.lDOOE-01 

-6.1700E-01 
I . 6 r o o ~ - o 3  

-3.3807E-02 
3.6267E-02 
8.3C73E-02 

-*.2950E-03 
9.0373E-02 
1.7676E-02 

101 
I 02  
103 
10'4 
105 
106 
I Q7 
108 
109 
110 
111 
112 
I I 3  
114 
I I S  
116 

. 117 
118 
119 
120 
121 
122 
123 
124 
125 
IPS 
127 
128 
129 
130 
131 
132 
133 
8 3'4 



COMPARISONS OF SINGLE-LEVEL VS . MULTILEVEL PARAMETERS FOR 

J.  R.  Smith 

A c u r r e n t  concern t o  r e a c t o r  des igners  i s  t h e  ques t ion  of whether 
o r  n o t  a  m u l t i l e v e l  formalism i s ' r e q u i r e d  f o r  t h e  unresolved region.  The 
a v a i l a b i l i t y  of matched s e t s  of s ing le - l eve l  and m u l t i l e v e l  parameters  f o r  
2 3 5 ~  makes i t  p o s s i b l e  t o  compare the  performances of t h e  two formalisms 
i n  terms of va r ious  c r i t e r i a .  These included s t u d i e s  of t h e  s t a t i s t i c s  of 
t h e  parameters ,  c a l c u l a t i o n s  of c ros s  s e c t i o n s  using t h e  parameters  pro- 
j e c t e d  i n t o  t h e  unresolved r eg ion ,  and r e a c t o r  c a l c u l a t i o n s  based on a  
h igh  temperature l a t t i c e  having cons iderable  s e l f - sh i e ld ing .  

S t a t i s t i c a l  s t u d i e s  were made t o  i n q u i r e  a s  t o  whether t h e r e  a r e  
s i g n i f i c a n t  d i f f e r e n c e s  i n  t he  average va lues  of s i n g l e - l e v e l  and mul t i -  
l e v e l  parameters ,  A leas t - squares  f i t  t o  t h e  l adde r s  of zrnO vs .  E gave 

s t r a i g h t  l i n e s  where s lopes  i n d i c a t e  F n O / ~  = 1.035 x lo-' f o r  t h e  mult i -  

l e v e l  parameters  and 1.025 x lo-' f o r  t he  s i n g l e - l e v e l  parameter.  The 
0 d i s t r i b u t i o n  of 2grn f o r  t h e  s i n g l e - l e v e l  parameters ,  assuming 154 

l e v e l s  w i th  (2grn0)ave = 0.097 meV, i s  shown i n  F igure  1. The correspond- 

ing p l o t  f o r  t h e  m u l t i l e v e l  parameters ,  w i th  (2grn0) = 0.098 meV, is. 
ave 

shown i n  F igure  2. The average parameters  a r e  shown i n  Table I. They do 
no t  show g r e a t  d i f f e r e n c e s  between t h e  two types of formal iza t ion .  

Figure 1 D i s t r i b u t i o n  of neutron widths f o r  s i n g l e - l e v e l  
resonance parameters  of 2 3 5 ~ .  



Figure  2 D i s t r i b u t i o n  of neutron widths f o r  t he  m u l t i l e v e l  
resonance parameters of 2 3 5 ~ .  

TABLE I 

AVERAGE 2 3  'U PARAMETERS 

Single-Level Mul t i l eve l  

2g~,0 (from f i t  t o  d i s t r i b u t i o n )  0.097 meV 0.0977 meV 

r ( d i r e c t  average) f 
166 meV 218 meV 

- r f  (2  d i s t r i b u t i o n s )  87,  400 meP . 90  me^; 450 meV 

r~ 37.3 meV '39.1 meV 

r n 0 / ~  1 . 0 2 5 ~ 1 0 - ~  1 . 0 3 5 x 1 0 - ~  



The f i s s i o n  widths have t h e  appearance of a  double d i s t r i b u t i o n  f o r  
both s e t s  of parameters .  The m u l t i l e v e l  parameters  appear t o  inc lude  more 
broad l e v e l s ,  b u t  t h i s  i s  p a r t i a l l y  due t o  t h e  f a c t  t h a t  a  few more broad 
l e v e l s  were used t o  f i l l  i n  c ross  s e c t i o n s  where necessary.  The s ing le -  
l e v e l  s e t  used an a u x i l i a r y  smooth f i l e  t o  accomplish t h e  same th ing .  
The observed m u l t i l e v e l  d i s t r i b u t i o n  can be approximately f i t t e d  by 
chi-squared d i s t r i b u t i o n s  u t i l i z i n g  95 l e v e l s  having = 90 meV and 

f - 
45 l e v e l s  having Tf = 450 meV. A f i t  t o  t h e  s i n g l e - l e v e l  d i s t r i b u t i o n  

used 120 l e v e l s  having I' = 87 meV, and 25 l e v e l s  having 400 meV. 
f  

Calcu la t ions  i n  t he  unresolved reg ion  a r e  o f t e n  based on mock 
parameters ,  genera ted  us ing  observed average va lues  and d i s t r i b u t i o n  
c h a r a c t e r i s t i c s  observed i n  t he  reso lved  resonance region.  A l t e r n a t i v e l y ,  
we can assume t h a t  t h e  observed reso lved  parameters  a r e  t y p i c a l  of t h e  
parameters  t o  be found i n  t h e  p r e s e n t  i n v e s t i g a t i o n .  

A comparison t e s t  of the  parameter s e t s  was made by bodi ly  p r o j e c t j n g  
t h e  parameters  i n t o  t h e  unresolved reg ion .  Both the  neutron width a n d , t h e  
Doppler width i n c r e a s e  w i t h  energy, so  c a l c u l a t i o n s  of t h i s  type make i t  
p o s s i b l e  t o  compare t h e  performances of t h e  parameters1 under condi t ions  of 
i nc reas ing  over lap  of t h e  l e v e l s .  

The s ing le - l eve l  and m u l t i l e v e l  parameters  were p ro j ec t ed  i n t o  t h e  
unresolved r eg ion  by adding 800 eY t o  each resonance energy. The smooth 
f i l e s  f o r  t h e  s ing le - l eve l  s e t  were ignored.  Unshielded c ros s  s e c t i o n s  
were c a l c u l a t e d  between 810 and 874 eY, omi t t i ng  about 10  eY from each 
end of t h e  range. I n  o rde r  t o  make d i f f e r e n c e s  due t o  formalism more 
apparent ,  c a l c u l a t i o n s  were made f o r  bo th  s i n g l e - l e v e l  and m u l t i l e v e l  
parameters ,  us ing  both the  s i n g l e - l e v e l  and m u l t i l e v e l  formalisms. 

The s ing le - l eve l  parameters ,  when used i n  t h e  m u l t i l e v e l  formula, 
y i e lded  a  f i s s i o n  c ros s  s e c t i o n  35% lower than  t h a t  produced us ing  t h e  
s i n g l e - l e v e l  formula. It was suspected t h a t  t h i s  might be a t  l e a s t  
p a r t i a l l y  due t o . t h e  a t y p i c a l  i n t e r f e r e n c e  generated by t h e  f a c t  t h a t  
a l l  t h e  f i s s i o n  widths had t h e  same s ign .  To i n v e s t i g a t e  t h i s  e f f e c t ,  
t h e  s i g n s  of t h e  f i s s i o n  widths were randomized two ways: by hand (by 
s h u f f l i n g  cards  and ass igning  nega t ive  s i g n s  t o  h a l f  t h e  f i s s i o n  wid ths ) ,  
and by computer (by ass igning  s i g n s  through use of random numbers). The 
two randomized s e t s  were then  used t o  c a l c u l a t e  c ros s  s e c t i o n s  i n  t h e  
reg ion  810-874 eV. The r e s u l t s  a r e  shown i n  Table 11, along wi th  t h e  
o r i g i n a l  s ing le - l eve l  r e s u l t s .  The f i s s i o n  c ros s  s e c t i o n s  of the . two 
randomized s e t s  agree  w e l l  w i th  each o t h e r ,  and f a l l  midway between t h e  
s ing le - l eve l  and m u l t i l e v e l  r e s u l t s  prev ious ly  obtained.  It should 
be noted t h a t  the  cap tu re  c ros s  s e c t i o n  changes a l s o ,  though no t  so  
much a s  t h e  f i s s i o n  c ros s  s e c t i o n .  

The f i n a l  test f o r  d i f f e r e n c e s  between parameters  formalisms 
involved r e a c t o r  c a l c u l a t i o n s  us ing  c ros s  s e c t i o n s  from the  two types 
o f  parameters.  These c a l c u l a t i o n s  were based on t h e  con f igu ra t ion  of 
t he  Fuel  Element F a i l u r e  Propagat ion Loop (FEFPL). 



TABLE I1 

AVERAGE CROSS SECTIONS, 810-874 eV, FROM PROJECTED RESONANCE PARAMETERS 

F i s s i o n  
Capture  
Alp ha  

Calcu la ted  a s  Calcu la ted  a s  M u l t i l e v e l  
Single-Level (rf Signs  a s  Ind i ca t ed )  -- 

9.075 8.805 
4.333 4.533 
0.4775 0.5148 

B. S i n g l e  Level  Parameters .  T = 3 0 0 ' ~  

Calcu la ted  a s  Same Hand-Randomfzed Computer-Randomized 
Single-Level S ign  Signs Signs 

F i s s i o n  8.739 6.460 7.654 
Cap t u r c  4.485 4.726 5.364 
Alpha 0.5132 0.7316 0.7008 

It was suspec ted  t h a t  i f  any d i f f e r e n c e s  were observed,  they might 
w e l l  be  due t o  d i f f e r e n c e s  i n  t h e  way t h e  resonance c r o s s  s e c t i o n s  were 
c a l c u l a t e d  and t h e  smooth f i l e s  added i n  f o r  t h e  s i n g l e - l e v e l  parameters .  
It  was f u r t h e r  suspec ted  t h a t  i n  heav i ly  s h i e l d e d  ca se s ,  i t  might be 
b e t t e r  t o  l eave  o u t  t h e  smooth f i l e  completely.  Therefore ,  c a l c u l a t i o n s  
were made us ing  resonance c r o s s  s e c t i o n s  ob ta ined  i n  t h e  fo l lowing  ways: 
(1) c a l c u l a t e d  by PHROG-11, t h e  s t anda rd  r e a c t o r  c r o s s  s e c t i o n  code now 
used by Aero j e t  Nuclear Company, (2 )  c a l c u l a t e d  from m u l t i l e v e l  parameters  
by ACSAP, then  passed t o  PHROG t o  be s e l f - s h i e l d e d  and formed i n t o  group 
c r o s s  s e c t i o n s ,  (3)  c a l c u l a t e d  from s i n g l e - l e v e l  parameters ,  w i t h  smooth 
f i l e s  added and Doppler-broadened by ACSAP, then  passed t o  PHROG as above, 
and ( 4 )  c a l c u l a t e d  from s i n g l e - l e v e l  parameters  wi thout  t h e  smooth f i l e .  

The r e s u l t s  of t h e s e  c a l c u l a t i o n s  i n d i c a t e  t h e  d i f f e r e n c e s  between 
s i n g l e - l e v e l  and m u l t i l e v e l  r e so lved  resonance parameters  a r e  n e g l i g i b l e ,  
even f o r  a  h igh  temperature ,  s h i e l d e d  system such as FEFPL. The f a i l u r e  
of PHROG-I1 t o  broaden o r  s h i e l d  t h e  smooth f i l e s  c r o s s  s e c t i o n s  does 
no t  seem t o  e f f e c t  t h e  r e a c t o r  c a l c u l a t i o n s  apprec iab ly .  The smooth 
f i l e s  appear  t o  improve t h e  accuracy of t h e  c a l c u l a t i o n s ,  which a r e  
b e t t e r  w i t h  than wi thout  t h e  smooth f i l e s .  The d i f f e r e n c e s  i n  t rea tment  
of t h e  resonance f i l e s  by r e a c t o r  codes can be much l a r g e r  than t h e  
d i f f e r e n c e s  between s i n g l e - l e v e l  and m u l t i l e v e l  parameters  themselves.  



EVALUATION OF 2 3 7 ~ p  CROSS SECTIONS FOR ENDFIB, VERSION I V  

J. R. Smith 

The f i s s i o n  c ros s  s e c t i o n  of 2 3 7 ~ p  i s  a popular  d e t e c t o r  f o r  f a s t  
neu t ron  dosimetry because of i t s  th re sho ld  shape and t h e  completeness 
w i t h  which t h i s  i s o t o p e  can be  s epa ra t ed  from t h e r m a l l y . f i s s i o n i n g  
i so topes .  Enthusiasm f o r  23 7 ~ p  i s  neve r the l e s s  tempered by u n c e r t a i n t y  
a s  t o  c o n t r i b u t i o n s  from subthreshold  f i s s i o n ,  which i s  app rec i ab l e  i n  
t h i s  i s o t o p e ,  and which may p l ay  a  p a r t ,  p a r t i c u l a r l y  i n  s p e c t r a  having 
an app rec i ab l e  low energy component. Re-evaluation of t h e  ENDFIB f i l e s  
f o r  Version I V  was t h e r e f o r e  concerned p r i n c i p a l l y  w i t h  g e t t i n g  a  good 
d e s c r i p t i o n  of t h e  f i s s i o n  c r o s s  s e c t i o n ,  w i t h  an  updated eva lua t ion  
normalized t o  t h e  re-evaluated 2 3 5 ~  f i s s i o n  c r o s s  s e c t i o n ,  and a  sub- 
t h r e sho ld  f i s s i o n  d e s c r i p t i o n  t h a t  would fo l low t h e  observed in t e rmed ia t e  
s t r u c t u r e  i n  f i s s i o n .  

The e v a l u a t i o n  keeps t h e  Version I11 low energy f i l e ,  i nco rpo ra t e s  
t h e  resonance parameters  of Paya from 0.3 e V  t o  130 eV, newly genera ted  
energy-dependent unresolved paramaters  from 130 e V  t o  40 keV, and a  new 
eva lua t ion  of t h e  f i s s i o n  c r o s s  s e c t i o n  from 40 keV t o  20 MeV by W .  E. 
S t e i n  of Los Alamos. The unresolved parameters  were a d j u s t e d ,  us ing  t h e  
UR code, t o  f i t  t r i a n g l e s  whose a r e a s  a r e  t h e  f i s s i o n  a r e a s  l i s t e d  by 
Paya i n  t h e  r eg ion  130 eV-2 keV. From 2 keV t o  5 keV, t h e  parameters  
were ad jus t ed  t o  match i s o l a t e d  measurements nea r  1 2 ,  25 and 1 0  keV. 

The new unresolved parameters ,  i f  cont inued t o  120 ke  would t i e  
Yil i n  c l o s e l y  w i t h  r e c e n t  cap tu re  measurements of Nagle e t  a 1  . The 

eva lua ted  cap tu re  c ros s  s e c t i o n  f o r  Version I V  matches t h e  c a l c u l a t i o n s  
us ing  t h e  unresolved resonance parameters  a t  40 keV and passes  through 
t h e  Nagle d a t a  from 120 keV o 3 MeV. The Nagle d a t a  a r e  apprec iab ly  

f 2 1  lower than the  S tupegia  d a t a  , on which t h e  cap tu re  c r o s s  s e c t i o n  was: 
based i n  bo th  prev ious  ENDFIB 2 3 7 ~ p  eva lua t ions .  

Above 1 MeV, t h e  p a r t i a l  c r o s s  s e c t i o n s  were cons t r a ined  t o  produce 
a  t o t a l  c ro s s  s e c t i o n  c l o s e  t o  t h e  t o t a l  c r o s s  s e c t i o n  of  2 3 Y ~ u ,  a s  
measured r e c e n t l y  a t  RPI. The (n,2n) c r o s s  s e c t i o n  shape c a l c u l a t e d  
by P e a r l s t e i n  was normalized t o  r e c e n t  measurements by Landrum e t  a 1  131. 
This  gave a  curve which f a l l s  o f f  more s t e e p l y  t han  t h e  Landrum measure- 
ments showed, and gave too h igh  a  c ros s  s e c t i o n  t o  be  c o n s i s t e n t  wi th  
r e s t r i c t i o n s  on t h e  t o t a l ,  s c a t t e r i n g  and f i s s i o n  c ros s  s e c t i o n s .  The 
(n,2n) shape was modif ied t se t h e  Landrum shape on i t s  t r a i l i n g  edge, 
and t i e  i n t o  t h e  P e a r l ~ t e i n P ~ ~  shape a t  a  peak va lue  of approximately 
0.62 b. The (n,3n) c ros s  s e c t i o n  kept  t h e  P e a r l s t e i n  shape,  and was 
normalized t o  s t a y  w i t h i n  t h e  p rev ious ly  mentioned r e s t r i c t i o n s  on t h e  
t o t a l  c r o s s  s e c t i o n .  

No r e a l  re -eva lua t ion  of t h e  i n e l a s t i c  c ros s  s e c t i o n  could be made 
w i t h i n  budget r e s t r i c t i o n s .  The Version I11 i n e l a s t i c  c r o s s  s e c t i o n s  
were kep t ,  b u t  were lowered above 10  MeV t o  s t a y  w i t h i n  t h e  l i m i t a t i o n s  
on t h e  t o t a l  c r o s s  s e c t i o n s ,  a s  (n ,2n ) ,  (n ,3n) ,  and f i s s i o n  c ros s  s e c t i o n s  
were a l l  i nc reased  i n  t h i s  r eg ion  over  t h e  Version I11 eva lua t ion .  The 



c r o s s  s e c t i o n s  f o r  exc i ta t ion ,of  i n d i v i d u a l  l e v e l s  were ad jus t ed  t o  
they would add up t o  t he  t o t a l  i n e l a s t i c  c ros s  s e c t i o n .  The Version I11 
f i l e  had some p o i n t s  where t h e  t o t a l  d i d  no t  equal  t h e  sum of i t s  p a r t s .  

The Version I V  f i l e  f o r  2 3 7 ~ p  should prove s u b s t a n t i a l l y  s u p e r i o r  
t o  Version 111, p a r t i c u l a r l y  t h e  re-evaluated f i s s i o n  c ros s  s e c t i o n  t h a t  
i nc ludes  improved resonance parameters  and an updated h igh  energy 
r e s o l u t i o n .  

[l] R. J. Nagle, J .  H. Landrum and M. Linduer ,  Neutron Capture Cross 
Sec t ions  i n  t h e  MeV Range, CONF-710301, Vol. I ,  p. 259 (1971). 

[ 2 ]  D. C: Stupegia,  M. Schmidt and C. R. Keedy, Nucl. S c i .  Eng. 3, 
- - 

218 (1967). 
131 J.  H. Landrum, R. J .  Nagle and M. Linduer ,  USAEC ~ e ~ o r t  UCRL-74262 

(1972). . 

141  S. P e a r l s t e i n ,  ~ u c l ;  S c i .  Eng. 23, 238 (1965). 

EVALUATION OF DECAY SCHEMES FOR ILRR 

R.  G .  Helmer, R. C .  Greenwood 

The I n t e r l a b o r a t o r y  LMFBR React ion Rates (ILRR) program has been 
organized t o  develop t h e  c a p a b i l i t y  t o  measure accu ra t e ly  neutron- 
induced r e a c t i o n  r a t e s .  Such measurements a r e  necessary i n  t h e  
development of f u e l s  and o t h e r  m a t e r i a l s  f o r  t h e  LMFBR. A goa l  of 
t h e  ILRR program i s  t o  measure f i s s i o n  and nonf i s s ion  r e a c t i o n  r a t e s  .- 
by means of gamma-ray spectroscopy wi th  accu rac i e s  of about f 5% a t  
t h e  20 l e v e l  f o r  f i s s i o n  r e a c t i o n s  and f 10% (20) f o r  t h e  non-f iss ion 
r eac t ions .  

I n  t h e  de te rmina t ion  of t hese  r e a c t i o n  r a t e s  i t  i s  necessary  t o  
use c e r t a i n  decay scheme d a t a  ( i . e . ,  t h e  h a l f - l i v e s  and one o r  two 
gamma-ray i n t e n s i t i e s )  f o r  t h e  i so topes  of i n t e r e s t .  It i s  a l s o  
necessary  t h a t  a l l  of t h e  l a b o r a t o r i e s  involved use t h e  same decay 
scheme da t a .  Therefore ,  a review of t h e  decay scheme l i t e r a t u r e  has  
been c a r r i e d  out .  The r e s u l t i n g  recommended informat ion  is given i n  
Tables  I and 11. 



TABLE I 

A SET OF RECOMMENDED HALF-LIVES, GAMMA-RAY ENERGIES AND 
BRANCHING RATIOS FOR THE NONFISSION MEASUREMENTS 

Hal f -L i fe  [ a 1  

Rad io i so tope  t& 

Gamma- Ray 
~ n e r ~ ~ [ a ]  

(keV) 

Gamma-Ray  ranchi in^ 
~ a t i o [ ~ ]  
( X I  

71.4(5) } sum = 100. o 
28.6 (5)  

44.6 (1)  d 1099.224 (25) 
55*5(17) ) sum = 99 .6(1)  1291.564(28) 44.1(12) 

83*7(15) } sum = 99.93(2) 16.2 (15) 

9 ~ p  2.355(4) d 228.19(1)LeI 1 2 = 5 ( 1 5 ) [ e 1  [ d l  [ d l  

277.60 (3) 14.5 (15) 

The numbers i n  p a r e n t h e s e s  i n d i c a t e  t h e  u n c e r t a i n t y  (1 o )  i n  t h e  
l a s t  d i g i t ( s ) .  

[ b l  The combingd i n t e n s i t y  of  t h e  1037-keV gamma r a y  and a 1212-keV 
gamma r a y  i s  (99.98 + 0.01)%. 



TABLE I (Contd.) 

The e f f e c t i v e  l ine-energy of  t h i s  peak may be lower than  t h i s  energy 
due t o  e l e c t r o n  b inding  e f f e c t s  and t h e  f i n i t e  width of t h e  annihi-  
l a t i o n  r a d i a t i o n  energy d i s t r i b u t i o n .  

I d '  There i s  a l s o  a gamma-ray t r a n s i t i o n  of 226.4 keV which has an . 

i n t e n s i t y  of 0.7%. 

There a r e  a l s o  gamma-ray t r a n s i t i o n s  of 272.8 kev 'and 280.5 keV, 
b u t  both have i n t e n s i t i e s  of l e s s  than  0.1%. 

TABLE I1 

A SET OF RECOMMENDED' HALF-LIVES, GAMMA-RAY ENERGIES AND 
BRANCHING RATIOS FOR SELECTED FISSION PRODUCT NUCLEI 

Gamma-Ray Gamma- Ray 
~ a l f - ~ i f e ' ~ ]  ~ n e r ~ ~  [ a 1 Branching 

Radioisotope tl/, (keV) (%'I 

[ The numbers in parentheses  i n d i c a t e  t h e  unce r t a in ty  ( 1  0) i n  t h e  l a s t  
d i g i t  ( s )  . 

' b l  The r a t i o  t + ( ~ a ) /  [t%(Ba)-tq(La) 1, which is  t h e  r a t i o  of t h e  140La t o  14013a 
a c t i v i t i e s  I n  a mixed 1 4 0 ~ i - 1 4 0 ~ a  source  a t  equi l ibr ium,  i s  t h e r e f o r e  
1.15096 2 0.00012. 



GAMMA-RAY ENERGY AND RELATIVE INTENSITY MEASUREMENTS 
OF SEVERAL FISSION PRODUCT RADIONUCLIDES 

R. J. Gehrke, L. D. Mc1saac[l1,  R. L. Heath 

This  p a s t  y e a r  w e  have undertaken t h e  p r e c i s e  measurement of 
energ ies  and r e l a t i v e  i n t e n s i t i e s  of y r ays  emi t ted  from t h e  fol lowing 
f i s s i o n  product  rad ionucl ides  : 8 7 ~ r ,  8 8 ~ r ,  8 8 ~ b ,  "MO, 3 3 ~ ,  3 4 ~  and 
1 3 5 ~ .  These d a t a  a r e  used i n  t h e  a n a l y s i s  of  Ge(Li) y-ray s p e c t r a  
r e s u l t i n g  from s e v e r a l  Nuclear Phys ics  Branch p r o j e c t s  i nc lud ing  t h e  
Ass is tance  t o  Compliance Program, t h e  GGA gas-cooled r e a c t o r  experiment 
i n  ETR, and t h e  I so top ic .  Monitoring Program. The energ ies  and in ten-  
sities of t h e  y rays emi t ted  from t h e  above rad ionucl ides  were determined 
us ing  t h e  techniques descr ibed  i n  Reference [ 2 ] .  

The y-ray energ ies  and r e l a t i v e  i n t e n s i t i e s  ob ta ined  from these  
measurements a r e  l i s t e d  i n  Table I. 

[ l ]  P re sen t  address :  A l l i ed  Chemical Corporat ion,  550 Second S t r e e t ,  
Idaho F a l l s ,  Idaho 83401. 

[ 2 ]  R. J. ~ e h r k e ,  Nuclear Technology Divis ion  Annual Report f o r  Per iod  
Endine June 30. 1972. ANCR-1088 (1972) 392. 

[ 3 ]  R. G . - ~ e l m e r ,  i .  C .  Greenwood and R. J.  Gehrke, Nucl. I n s t r .  and 
Meth. 96 (1971) 173. 

[ 4 ]  R. C . . ~ z e n w o o d ,  R. G. Helmer and R. J .  Gehrke, "Prec ise  Comparison 
and Measurement of Gamma-Ray Energies wi th  a Ge(Li) Detector  111: 
1300-3600 keV", t h i s  r epo r t .  

TABLE I 

ENERGIES AND RELATIVE INTENSITIES 

Energy ' (kev) I n t e n s i t y  ( r e l . )  Comments 

Contains 5 ~ e  
y-ray peak 



TABLE I (Contd.) 

Energy (kev) 

1389.86 + 0.20 
1464.5 + 2.0 
1531 

1577.98 + 0,20 
1610.94 + 0.25 
1740.52 + 0.08' 
1842.32 + 0.25 
2011.81 + 0.15 
2378.9 + 2.0 
2408.8 2 0 . 3  
2554.88 + 0.20 
2558.20 + 0.25 
2652, + 2 
2811.25 + 0.20 
3054.8 2 0 . 3  
3308.45 + 0.18 
3704.6 + 1.0 

I n t e n s i t y  ( r e l .  ) Comments 

0.24 + 0.03 
0.098 + 0.014 

Contains DE of 
2554 y r ay  

0.29 + 0.03 
0.19 + 0.03 
4.3 + 0.2 
0.27 + 0.03 
6.1 2 0.3 
0.20 + 0.03 
0.50 + 0.07 

20.6 + 1.6 ' 

7.8 + 0.7 
0.061 + 0.010 
0.70 + 0.10 

, 0.19 2.  0.02 
0.96 + 0.07 
0..03 + 0..01 . 

i * Assignment unce r t a in  



TABLE I (Contd.) 

Energy (kev) - I n t e n s i t y  ( r e l . )  Comments 

8 8 ~  (cont inued)  

Doublet 

con ta ins  DE of  
2392 y 

Contains SE of 
2030 y r ay  

Contains SE of 
2195 y r ay  



TABLE I (Cont .) 

Energy (keV) I n t e n s i t y  ( r e l . )  Comments 

88~r-8  8 ~ b  I N  EQUILIBRIUM 

I ( re l . )  of s t ronger  8 8 ~ b  y rays with i n t e n s i t y  of 2392 kev y ray of  8 8 ~ r  
normalized t o  b e  100. 

Energy calcula ted  
from 898 and 1836 

66.0-h 9 9 ~ 0  - 6.0-h "TC I N  EQUILIBRIUM 

e a 1 From. Reference [.3 1. 
[ b ]  From Reference [ 4 ] .  



Energy (kev) 

TC (continued) 

TABLE I (Cont .) 

I n t e n s f t y  ( r e l . )  Coniuients 

* 
* 
* 
Doublet 

*Poss ib l e  cs 37 
contamination 

* Assignment unce r t a in  



TABLE I (Cont . ) 
Energy (kev) Intensity ( t e l  .) 

3.94 + 0.23 
0.72 + 0..05 . 

0.111 + 0.012 
0.27 5 0.03 
0.73 + 0.04 
0.26 + 0.03. 
2.08 + 0.16 

very weak 
0..137 + 0.015. 
0.54 + 0.05 
0.52 + 0.06 
7..7 + 0.4 
0.64 + 0.06 
4.39 2 0.25 
1.36 + 0.09. 
0.38 + 0.04 

Doublet 
* 

+ Accidental s.umming 

,* Assignment uncertain 



Energy (kev) 

52.6-m 3 4 ~  (cont inued)  

TABLE I (Cont .) 

I n t e n s i t y  ( r e l .  ) Comments 

* Assignment Uncertain 

29 



TABLE I (Cont.) 

Energy (kev) I n t e n s i t y  ( r e l . )  Comments 

52.6- 3 4 ~  (continued) 

0.47 + 0.04 
0.163 + 0.038 
0.'43 + 0.06 
1.05 + 0.10 
1.1 + 0.2 

12.5 + 0.7 
0.33 + 0.05 
1.10 + 0.09 
1 .81 + 0.12 
1.03 2 0.07 

45.  + 4 .  
24.8 + 1.3 

0.3'1 + 0.04 * 
0.09 + 0.04 
1.56 + 0.11 
0.58 + 0.09 
2.8 + 0.4 3~ c o n t r i b u t i o n  removed 
0.48 + 0.05 
0.53 + 0.07 
0.23 + 0.04 * 
22.5 + 1.1 

0.63 + 0.08 
7.6 + 0.4 Doublet 
0.76 + 0.12 

28.2 + 1..7 
very  weak 

5.6 + 0.3  
12.7 2 0 .8  
76.4 + 2.0 

Doublet , 

* Assignment Uncertain 



TABLE I ( ~ o n t  .) 

Energy (kev) I n t e n s i t y  ( r e l , )  

0.53 2 0.06 
3.22 2 0.26 
0.19 2 0.04 
3.00 2 0.29 

100 
0.40 2 0.04 
0.31 2 0.05 
2.30 2 0.08 
1.5 2 0 . 4  

30.4 2 1.0 
3.9 2 0.3 
4.9 2 0.2 

34.1 2 1.3 
14.5 2 0.7 
28.1 2 1 . 4  
2.11 2 0.13 
1.12 2 0 . 0 8  
0.278 2 0.030 

very  weak 
3.13 2 0.18 
0.27 '2 0.03 
0.11 2 0.03 

very  weak 
2.16 2 0.20 
3.22 2 0.19 
0.24 2 0.3 

Comments 

* assignment unce r t a in  

STUDIES OF FISSION GASSES AND GROSS FISSION PRODUCTS 

E. B. Nieschmidt 

The a p p l i c a t i o n  of on-l ine r e a l  t ime d e t e c t i o n  and a n a l y s i s  
systems t o  t he  monitoring of nuc lea r  r e a c t o r  systems and e f f l u e n t s  
r equ i r e s  thorough knowledge of t h e  gamma-ray s p e c t r a  of f i s s i o n  
products  a s  t i m e  a f t e r  f i s s i o n  progresses .  The i n v e s t i g a t i o n  of h e a t  
generated by nuc lea r  decay a f t e r  r e a c t o r  shutdown a l s o  r e q u i r e s  t h i s  
knowledge. 

The gamma-ray s p e c t r a  of f i s s i o n  gasses  were accumulated from 
samples w i th  decay times from 1.1 min from flowing gas samples t o  
15 min from grab samples. Gamma-ray s p e c t r a  were obtained from gross  
f i s s i o n  products  w i t h  decay times from 5 min t o  100. days and i r r a d i a t i o n  
times vary ing  from 5 min t o  34 days. Samples were 1, 5 and 100 pgm 
235u. 



STUDIES OF THE 'l Sm(n, y)  REACTION 

R. C. Greenwood, C. W.  Reich 

The l e v e l  s t r u c t u r e '  o f  t h e  deformed even-even nucleus 5 2 ~ m  has 
' 

been s t u d i e d  ex tens ive ly  from t h e  decay of 1 5 2 ~ u  bu t  no t  s o  f a r  by 
151Sm(n,y) r e a c t i o n  s i n c e  151Sm is  uns tab le .  Because of t h e  long 
h a l f - l i f e  (Q 93  y ) ,  low B- as soc ia t ed  w i t h  t h e  151sm decay and t h e  
l a r g e  thermal neut ron  cap tu re  c ros s  s e c t i o n  (% 15,000 b ) ,  we were a b l e  
t o  o b t a i n  good q u a l i t y  neut ron  cap tu re  s p e c t r a  from a few-mg sample of 

. 

t h i s  i so tope .  F igures  1 and 2 i l l u s t r a t e  p o r t i o n s  of t h e  y-ray d a t a  
obta ined .  Analysis  of t h e s e  d a t a  i s  c u r r e n t l y  i n  progress  and i s  
expected t o  r e v e a l  new f e a t u r e s  of t h e  l e v e l  s t r u c t u r e  of 1 5 2 ~ m .  

F igure  1 The high-energy p o r t i o n  of t h e  prompt y-ra spectrum 
r e s u l t i n g  from thermal neut ron  cap tu re  i n  'lSm. 



5 0 0  1 0 0 0  1 5 0 0  2 0 0 0  
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CHANNEL NUMBER 

Figure 2 The low-energy p o r t i o n  of  t h e  prompt y-ray spectrum 
r e s u l t i n g  from thermal neut ron  cap tu re  i n  lS1sin. 

EVEN PARITY STATES I N  1 7 8 ~ f  FROM THE 7 7 ~ f ( n , y )  REACTION 

R. C .  Greenwood, C. W.  Reich 

Levels  i n  t h e  deformed even-even nucleus 1 7 8 ~ f  have been s t u d i e d  
ex tens ive ly  through t h e  deca of 1 7 8 ~ a  ( e  . g , , References [ 1,2] )  and 
through t h e  decay of 178Lu,[37. These s t u d i e s  have revea led  t h e  
ex i s t ence  of f o u r  exc i t ed  0' s t a t e s  below 2 MeV. Fur the r  in format ion  
about t h e  l e v e l  s t r u c t u r e  of t h i s  nucleus has been obtained from s t u d i e s  
of t h e  1 7 7 ~ f ( d , . p )  L41, 17'Hf(d,t) L4], 1 7 8 ~ f ( d , d r )  L41 and ? 8 0 ~ f ( p , t )  [51 
r e a c t i o n s .  Noteworthy i n  t h e s e  s t u d i e s  has  been t h e  es tab l i shment  of  
bo th  t h e  KT = 3+ and 4+ bands r e s u l t i n g  from t h e  coupling of t h e  
7/2'[514] and 1/2'[510] neut ron  o r b i t a l s .  

The p re sen t  s t u d i e s  of t h e  prompt y rays emi t ted  a s  a  r e s u l t  of 
neut ron  cap tu re  i p  1 7 7 ~ f  were undertaken t o  provide  f u r t h e r  in format ion  
on t h e  h igher  s p i n  s t a t e s  i n  1 7 8 ~ f .  S ince  t h e  compound nuc lea r  s t a t e s  
which r e s u l t  from s-wave neutron cap tu re  have I' = 3- and 4-, t h e  primary 
E l  t r a n s i t i o n s  w i l l  popula te  s t a t e s  w i th  I' = 2+-5+. Severa l  e a r l i e r  



s t u d i e s  of t h e  neutron cap tu re  have been made ( e .g . ,  References [6-81) but  
t h e  a v a i l a b i l i t y  of t h e  2-keV neutron cap tu re  d a t a  w i l l ,  we b e l i e v e ,  provide 
more complete informat ion  on t h e s e  f i n a l  s t a t e s  wi th  s p i n s  2 through 5 .  Because 
of t h e  f i n i t e  energy spread of t h e  2-keV neut rons  (% 0.7 keV FWHM) we e s t ima te  
t h a t  . the r e s u l t i n g  c a p t u r e  y-ray spectrum of 1 7 7 ~ f  r e p r e s e n t s  an  average over 
% 200 resonance s t a t e s ,  t hus  providing good averaging of t h e  Porter-Thomas 
s t a t i s t i c a l  f l u c t u a t i o n s  i n  t h e  i n t e n s i t i e s  of t h e  primary t r a n s i t i o n s .  This  \ 

spectrum i s  shown i n  F igure  1. The corresponding p o r t i o n  of t h e  thermal 
neut ron  cap tu re  spectrum i s  a l s o  included i n  F igure  1 f o r  comparison. Primary 
E l  t r a n s i t i o n s  a r e  e a s i l y  d i s t i ngu i shed  from M 1  t r a n s i t i o n s  ( a t  l e a s t  
f o r  t hose  t r a n s i t i o n s  popula t ing  f i n a l  s t a t e s  wi th  ene rg i e s  < 2 MeV) 
by comparing t h e i r  reduced t r a n s i t i o n  i n t e n s i t i e s ,  a s  shown i n  Figure 2.  
Th i s  p l o t  a l s o  provides somf d i s t i n c t i o n  between primary E l  t r a n s i t i o n s  
t o  f i n a l  s t a t e s  w i t h  I' = 3 and 4+ and those  wi th  I' = 2' and 5+. 

When these  primary cap tu re  y-ray d a t a  a r e  combined wi th  t h e  
ex t ens ive  d a t a  on t h e  low-energy secondary t r a n s i t i o n s  which were a l so .  
measured we a r e  a b l e  t o  cons t ruc t  t h e  pre l iminary  l e v e l  scheme shown i n  
F igure  3 f o r  p o s i t i v e  p a r i t y  s t a t e s  i n  1 7 * ~ f .  Fea tures  of t h i s  l e v e l  
scheme which a r e  of s p e c i a l  i n t e r e s t  inc lude :  

- t h e  es tab l i shment  of t h e  f a c t  t h a t  t h e r e  a r e  no- more than  fou r  
e x c i t e d  KT = 0' bands below 2 MeV; 

+ - t h e  l o c a t i o n  of t h e  4 members of  each of t hese  e x c i t e d  K' = 0' 
bands ; 

- t h e  l o c a t i o n  of  members of t h e  y -v ib ra t iona l  band up t o  s p i n  6; 

- t h e  de te rmina t ion  of t h e  m d e s  of decay of t h e  K' = 3+ and 4 + 
bands r e s u l t i n g  from t h e  coupling of  t h e  7/2'[514] and 112-[510] 
neutron o r b i t a l s ;  

+ - t h e  es tab l i shment  of ano the r  band w i t h  K= = 3 loca t ed  a t  
1758 keV. S t a t e s  i n  t h i s  band decay p r i n c i p a l l y  t o ' s t a t e s  i n  
t h e  K' = 2- oc tupole  v i b r a t i o n a l  band. 

I f  we now cons ide r  s p e c i f i c  f e a t u r e s  of t h e  de-exc i ta t ions  of some. 
of t h e  bands : 

- v i b r a t i o n a l  band. While w e  a r e  i n  agreement wi th  Fogelberg and 
B l l c k l k l a  I on t h e  l o c a t i o n  of states i n  t h i s  band w i t h  I' < 6+ we a r e  
i n  s u b s t a n t i a l  disagreement w i t h  them on t h e  va lues  of the-band-mixing 
parameters  which are necessary  t o  f i t  t h e  t r a n s i t i o n  i n t e n s i t i e s  from 
t h e s e  s t a t e s . t o  t h e  ground state. While they have proposed t h a t  a  
va lue  of Z2 % 0.014 can b e  used t o  f i t  t h e s e  t r a n s i t i o n  i n t e n s i t i e s ,  
o u r  d a t a ,  s h ~ w n  i n  Table I, would i n d i c a t e  t h a t  f o r  s t a t e s  w i th  
1" - 4+ Z2 % 0.037 and f o r  t h e  s t a t e s  w i t h  I' = 5+ and 6+ Z2 % 0. 

+ + 
K' = 0 bands. Re la t ive  t r a n s i t i o n  i n t e n s i t i e s  from t h e  2 and 4 

+ 
members of  t h e  KT = O+ bands a r e  shown i n  Table 11. The decay modes 
from t h e  two lower-lying 2+ s t a t e s  ha e been s t u d i e d  i n  g r e a t  d e t a i l  
i n  t h e  decay of 1 7 8 ~ a .  L i t t l e  e t  al.Y1l have shown t h a t  t h e  A1 = 0 -- 
t r a n s i t i o n s  have s u b s t a n t i a l  M 1  components (86% and 65%, r e s p e c t i v e l y ,  
f o r  t h e  1183- and 1402-keV t r a n s i t i o n s ) .  While, as we s e e  from t h e  



f i n a l  column i n  Table  11, t h e i r  measured M 1  component is  a c t u a l l y  t o o  
l a r g e  t o  allow t h e  t r a n s i t i o n  i n t e n s i t i e s  from t h e  1276-keV l e v e l  t o  
be f i t  us ing  a s i n g l e  z0 parameter ,  t h e i r  d a t a  a r e  i n  agreement w i th  
t h e  implied M 1  component i n  t h e  decay of t h e  1496-keV s t a t e .  Our 
p re sen t  d a t a  would a l s o  imply t h a t  t h e r e  is  a s i g n i f i c a n t  M 1  component 
i n  t h e  decay of t h e  4' s t a t e  a t  1450 keV. On t h e  , o t h e r  hand, it i s  
t h e  A 1  = 0 t r a n s i t i o n  which appears  t o  be too  weak i n  t h e  decay from 
the  1561-keV s t a t e ,  s o  t h a t  an M 1  admixture i n  t h i s  t r a n s i t i o n  can only 

\ 
s e r v e  t o  worsen t h e  d i s p a r i t y  i n  t h e  computed z0 parameters .  It is  of 
i n t e r e s t  t o  n o t e  t h a t  t h e  A 1  = +2 t r a n s i t i o n  is  r a t h e r  weak f o r  both 
t h e  1496- and 1636-keV s t a t e s  which might t h e r e f o r e  imply a KT = 2+ 
admixture i n  t h i s  K~ = 0+ band. 
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TABLE I 

RATIOS OF REDUCED TRANSITION PROBABILITIES FOR DECAY FROM STATES OF THE 

y-VIBMTIONAL BAND TO LEVELS I N  THE GROUND-STATE. BAND 

Initial State Transition Ratio Experimental Alaga Rules Mixing Parameter 

Energy (keV) I,K' (Ii2+IfO)/(Ii21f'O) B(E2) Ratio (without band mixing) z (X lo3) - 
1174 2,2+ B(2;22+00)/B(2;22+20) 0.580(26)'~' 0.798 32(10) 

[a] Using the y-ray intensities measured by Little &. for the 1 7 8 ~ a  decay; 



TABLE I1 

RATIOS OF REDUCED E 2  TRANSITION PROBABILITIES FOR DECAY FROM MEMBERS OF 

THE EXCITED K"=o+ BANDS TO LEVELS I N  THE GROUND-STATE BAND 

-~ --- 

I n i t i a l  S t a t e  Trans i t ion  Rat io  Experimental Alaga Rules Mixin,g Parameter %M1 i n  A I = O  
r .  

Energy (keV) I , K ~  (IiO+I 0) / (IiO+If'O) B(E2) Rat io  (without band mixing) z0 (X lo3)  T r a n s i t i o n  1 a I - f 

1276 2,0+ ~ ( 2 ; 2 ( k 0 0 ) / ~ ( 2 ; 2 & 2 0 )  0.164(21) 0.700 74 (18) 67[b1 ' 

[ a ]  The amount of M1 admixture i n  t h e  A I = O  t r a n s i t i o n  which would be necessary t o  allow each of t h e  r a t i o s  
t o  b e  f i t  wi th  t h e  band mixing parameter deduced from t h e  ~(2;1C+[I+2]0)/~(2;10+[1-210) r a t i o .  

[b]  To be compared t o  t h e  measured M l  admixture of ( ~ 5 .  6:;: :)%. 

[ c ]  Using the  y-ray i n t e n s i t i e s  measured by L i t t l e  e t  a l .  [I1 f o r  t h e  1 7 * ~ a  decay. 

[ d l  To be compared t o  t h e  measured M 1  admixture of (65.2 + 3.2)%, 

[ e l  Since i t  i s  t h e  A130 t r a n s i t i o n  which is  too weak, an M 1  admixture w i l l  only worsen t h e  d i s p a r i t y  i n  
t h e  computed Za parameters. 
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Figure  1 Comparison of t h e  high-ener po r t ions  of t h e  prompt y-ray s p e c t r a  r e s u l t i n g  from 2-keV and 

thermal neutron capture  i n  E7Hf. 
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Figure  3 Level  scheme f o r  t h e  p o s i t i v e  p a r i t y  s t a t e s  i n  17*Hf based upon t h e  1 7 7 ~ f ( n , y )  r e a c t i o n  s t u d i e s  
w i th  proposed grouping of s t a t e s  i n t o  r o t a t i o n a l  bands, An arrow i n t o  a  l e v e l  i n d i c a t e s  popula t ion  
by primary y-ray t r a n s i t i o n s .  So l id  t r i a n g l e s  a s soc i a t ed  wi th  a  l e v e l  i n d i c a t e  t h a t  t h e  l e v e l  i s  
populated by charged p a r t i c l e  r eac t ions :  upper l e f t  i n d i c a t e s  (d,p)  popula t ion ,  lower l e f t  i nd i -  

, c a t e s  ( d , t )  popula t ion ,  upper r i g h t  i n d i c a t e s  (d ,d ' )  popula t ion ,  and lower r i g h t  i n d i c a t e s  ( p , t )  
popula t ion .  Open t r i a n g l e s  i n d i c a t e  t e n t a t i v e  assignments.  



STUDIES OF THE 8 ~ b  (n , y ) REACTION 

R. C. Greenwood, C. W .  Reich 

Analysis  of t h e  prompt p r a y  s p e c t r a  r e s u l t i n g  from thermal neutron 
cap tu re  i n  168Yb is  cont inuing .  These d a t a  were obta ined  us ing  t h e  
e x t e r n a l  neutron beam from t h e  HR-4 f a c i l i t y  a t  t h e  MTR wi th  t h e  y rays  
be ing  de t ec t ed  wi th  var ious  Ge(Li) d e t e c t o r s .  

This  work is  be ing  undertaken i n  a coopera t ive  e f f o r t  w i t h  s c i e n t i s t s  
from Technische U n i v e r s i t a t  MUnchen, West Germany (who have made h igh  
r e s o l u t i o n  prompt y-ray measurements w i t h  a ben t  c r y s t a l  spectrometer)  
and Uppsala U n i v e r s i t e t ,  Sweden (who have measured t h e  prompt conversion 
e l ec t ru i l  spectrum us ing  a magnetic b e t a  spectrometer)  i n  an e f f o r t  t o  
improve ou r  understanding of  t h e  l e v e l  s t r u c t u r e  i n  t h e  deformed 169Yb 
nucleus.  The ene rg i e s  and r e l a t i v e  i n t e n s i t i e s  of t h e  primary prompt 
y rays  , r e s u l t i n g  from t h e  1 6 8 ~ b ( n , y )  r e a c t i o n  a r e  shown i n  Table I. 
From the  measured energ ies  of those primary y-ray t r a n s i t i o n s  which 
popu la t e  l e v e l s  i n  16'Yb whose energy i s  grevious ly  known, a n  average 
v a l u e  f o r  t h e  neutron b inding  energy i n  9Yb i s  determined t o  be 
6866.7 + 0.6 keV. This  va lue  f o r  t h e  thermal neutron captur ing  s t a t e  
energy can then be  used i n  t h e  CAPSPC computer program t o  compute 
ene rg i e s  of  t hese  s t a t e s  i n  169Yb which a r e  populated by primary y-ray 
t r a n s i t i o n s .  These f i n a l - s t a t e  ene rg i e s  a r e  a l s o  included i n  Table I. 
Since  t h e  ground s t a t e  of 1 6 8 ~ b  has I T  = 0' compound-nucleus s t a t e s  i n  
169Yb  w i th  IT = h+ r e s u l t  from s-wave neutron cap tu re .  Consequently, 
primary d i p o l e  y-ray t r a n s i t i o n s  w i l l  popula te  f i n a l  s t a t e s  i n  16'yb 
w i t h  s p i n s  4 and $, w i t h  t h e  more probable E l  t r a n s i t i o n s  popula t ing  
f i n a l  s t a t e s  wi th  nega t ive  p a r i t y .  

TABLE I 

PRIMARY y-RAY TRANSITIONS FROM THE 8 ~ b  (n , y ) REACTION 

~ - 

Y-Ray . 

Energy 
(keV) 

6842.5 
677'9. 8 
6207.1 
6146.8 
6053, f+ 

6017.7 
5832.7 
5706.7 
5664.2 
5643.0 
5633.. 5 
5595.6 
55'17.2 

Error  
(keV) .- 

0.6 
0.6 
0.6 
0.7 
0.6 
2.0 
1.0 
0.8 
0.8 . 

1.2 
1.2 
0.6 
0.7 

-- 

Rela t ive  
Y-Ray 

I n t e n s i t y  

23.0 
100.0 

15 .1  
2. o9 

17.8 
0.9 
1.5 
0.9 
1.1 
0.5 
0.5 

. 7.8 
5.2 

Error  
(keV) 

Level 
Energy 
(keV) 

Error  
(keV) 



TABLE I (Cont .) 

Y-Ray 
Energy 
(keV) 

Error  
W V )  

Rela t ive  
Y -Ray Er ro r  

I n t e n s i t y  ( ' k e ~ )  - 
L eve 1 
Energy 
( k e n  

Error  
(keV) 



TABLE I (Cont .) 

Y -Ray 
Energy 
IkeV) 

Er ro r  
(keV) ' 

Rela t ive  
. y -Ray 

I n t e n s i t y  

2.6 
1.5 
1.6 
3.4 
1.6 
2.8 
2.3 
0.8 
8.1 
4.2 
1.7 
4.5 
2.8 
3.5 
2.1 
3.8 
6.6 
2.6 . 

1.8 
7.8 ' 

2.2 
1.9 
2.2 
4 .O 
1.3 
2.1 
3.5 
4.5 
3.9 . 

2.8 
2.0 
6.3 
2.9 
2.4 
5.0 
3.6 
2.8 
3.6 
4.2 . 

2.3 
3.1 
6.5 
4 .O 
1.9 

Error  
(keV) 

Level 
Energy 
(keV) 

Error  
(keV) - 



HALF-LIFE OF 1 7 8 m 2 ~ f  AND ITS NEUTRON CAPTURE PRODUCTION 

R. G. Helmer, C. W.  Reich 

I n  Reference [ I ] ,  the  e x i s t e n c e  of a long-lived high-spin i somer ic  
s t a t e  of 1 7 8 ~ f  and a s tudy of i t s  decay were repor ted .  I n  t h e  p re sen t  
work, we r e p o r t  t h e  r e s u l t s  of a measurement of t h e  h a l f - l i f e  and 
neutron-capture product ion c r o s s  s e c t i o n  of t h i s  i somer ic  s t a t e .  For 
t h e  experiments d iscussed  i n  t h i s  paper ,  f o u r  1 7 8 m 2 ~ f  samples were used, 
The i r r a d i a t i o n  and chemical h i s t o r i e s  of t h e s e  samples a r e  given i n  
Table I. 

The h a l f - l i f e  of 1 7 8 m 2 ~ f  was determined from 18 gamma-ray s p e c t r a  
f o r  sarhple /I1 ( s e e  Table I )  measured on one Ge(Li) d e t e c t o r  over  a 
per iod  of s i x  y e a r s .  The f i r s t  s p e c t r a  of t h i s  s e t  were taken about 
t h r e e  yea r s  a f t e r  t h e  neutron i r r a d i a t i o n ;  b e f o r e  t h a t  t ime o t h e r  
a c t i v i t i e s  were too i n t e n s e  t o  permit  observa t ion  of t h e  7 8 m 2 ~ f  l i n e s .  
For each spectrum, t h e  i n t e n s i t i e s  of s i x  of t h e  gamma rays  from 1 7 8 m 2 ~ f  
were determined r e l a t i v e  t o  t h a t  of t h e  270-keV l i n e  from 1 8 2 ~ f  (T+ = 
9 x l o6  y r )  . This  comparison method should minimize ,any e r r o r  t h a t  
might r e s u l t  from changes i n  t h e  d e t e c t o r  e f f i c i e n c y  over  t h e  long per iod  
involved. I n  t h e  a n a l y s i s  t h e  same d e t e c t o r  e f f i c i e n c i e s  were used 
throughout t h e  s i x  yea r s ; .  t h e r e f o r e ,  t h e  e r r o r s  i n  t h e  r e l a t i v e  in ten-  
s i t i e s  i nc iude  only those  con t r ibu t ions  from t h e  peak a r e a s ,  

The d a t a  f o r  each gamma ray  were analyzed by means of a weighted, 
leas t - squares  f i t  of a l i n e a r  func t ion  t o  t h e  logar i thm of t h e  observed 
r e l a t i v e  i n t e n s i t y .  The r e s u l t i n g  va lues  a r e  given i n  Table 11. The 
normalized X2 va lues  

f o r  t h e  s i x  f i t s  averaged 1.9 and ranged from 0.8 t o  2.9. This  i n d i c a t e s  
some sys t ema t i c  e r r o r s  i n  t he  da t a ,  b u t  t h i s  may n o t  be unreasonable 
cons ider ing  t h e  long  per iod  involved.  For example, a change i n  t h e  
r e l a t i v e  d e t e c t o r  e f f i c i e n c y  a t  t h e  var ious  energ ies  could in t roduce  
such an e r r o r .  For t h e  weighted average of t h e  s i x  h a l f - l i f e  va lues ,  
t h e  normalized X2 i s  % 1.0, which i n d i c a t e s  e x c e l l e n t  agreement. The 
adopted h a l f - l i f e  va lue  i s  31 5 1 y. 

The ene r  and m u l t i p o l a r i t y  of t h e  isomeric  t r a n s i t i o n  emi t ted  i n  
t h e  decay of E8m2Hf have no t  y e t  been e s t ab l i shed .  A s  d i scussed  i n  
Reference [ I ] ,  we f e e l  t h a t  t h e  i somer ic  t r a n s i t i o n  i s  most probably a 
low-energy (< 0.1  MeV) E3 t r a n s i t i o n ,  although a 238-keV M4 t r a n s i t i o n  
is  poss ib l e .  The 1 t t e r  is  t h e  only observed unplaced t r a n s i t i o n  i n  

17 t h e  1 7 8 m 2 ~ f  decay [ , 

From t h e  measured h a l f - l i f e ,  t h e  abso lu t e  gamma-ray t r a n s i t i o n  
p r o b a b i l i t i e s  have been computed f o r  var ious  assumed ene rg i e s  and 



m u l t i p o l a r i t i e s  as shown i n  Table 111. For a  4-times K-forbidden M4 
(from I,K" = 17,16+ t o  13,8-) , t h e  hindrance i s  about 20 p e r  u n i t  of 
K forbiddenness .  For a  5-times K-forbidden E3 (from 1 , ~ "  = 16,16+ t o  
13,8-) , t h e  same f a c t o r  i s  about 75 t o  110 f o r  t h e  energy range shown. 
Although t h i s  comparison i s  by no means conclus ive ,  i t  may lend  support  
t o  t h e  E3 preference .  

A measurement has  been made of t h e  c ros s  s e c t i o n  f o r  product ion of 
t h i s  1 7 8 ~ f  isomer i n  t h e  neutron spectrum of a  thermal r e a c t o r  ( i . e . ,  t h e  
Ma te r i a l s  Tes t ing  Reactor) . Data from a l l  fou r  samples l i s t e d  i n  Table I 
were used f o r  t h i s  measurement. The b a s i c  d a t a  were t h e  decay r a t e s  of 
samples i13 and ii4 a f t e r  t h e i r  six-month i r r a d i a t i o n  i n  a  f l u x  of 
5  x 1 0  n m 2 - s e .  However, t h e  a c t i v i t y  of t h e  1 7 8 m 2 ~ f  depends a l s o  
on i t s  burnup dur ing  t h e  i r r a d i a t i o n .  An upper l i m i t  on t h i s  burnup 
c r o s s  s e c t i o n  was determined from t h e  d a t a  from samples ill and 112. 

Because of t h e  l a r g e  d i f f e r e n c e  i n  t h e  neut ron  exposure, a  l i m i t  
on t h e  burnup c ros s  s e c t i o n  of 1 7 8 m 2 ~ f  can be  determined from t h e  
r e l a t i v e  amounts of 1 7 8 m 2 ~ f  and 1 8 2 ~ f  i n  t h e  two samples,  ill and ii2. 
However, t h i s  r a t i o  cannot be  used f o r  a  q u a n t i t a t i v e  c a l c u l a t i o n  s i n c e  
t h e  burnup c ros s  s e c t i o n  f o r  1 8 2 ~ f  i t s e l f  i s  'not known. From t h e  a n a l y s i s  
of  t h e  gamma-ray s p e c t r a  of samples  111 and il2 (Table I ) ,  we conclude 
q u a l i t a t i v e l y  t h a t  t h e  178m2~f  burnup c ros s  s e c t i o n  .is l e s s  than  20 b .  

The product ion  c r o s s  s e c t i o n  i s  then  found t o  be 2.3 x b .  
S ince  the  a c t u a l  i n t e g r a t e d  f l u x  a t  t h e  sample may be  i n  e r r o r  by, say ,  
25% and t h e r e  is a 20% unce r t a in ty  from t h e  unknown burnup, t h e  f i n a l  
c r o s s  s e c t i o n  and unce r t a in ty  a r e  taken t o  b e  (2 f 1) x 10 '~ b ,  

The measured c r o s s  s e c t i o n  f o r  roduct ion  of 178m2~f  may b e  of 
i n t e r e s t  f o r  comparison w i t h  m ~ d e l s [ t - ~ ]  used t o  p r e d i c t  i somer ic  cross-  
s e c t i o n  r a t i o s ,  This  i s  e s p e c i a l l y  t r u e  s i n c e  i t s  s p i n  i s  12 o r  more 
u n i t s  g r e a t e r  than  tha t  of t h e  cap tu r ing  s t a t e .  It should be  noted t h a t ,  
i n  some cases ,  t h e  i n t e n s i t i e s  of  gamma rays  observed i n  t h e  (n,y) 
r e a c t i o n  g ive  c ros s  s e c t i o n s  f o r  product ion of p a r t i c u l a r  s t a t e s .  Since 
d a t a  of t h i s  type  e x i s t  [ 7 ]  f o r  1 7 7 ~ f  ( n , y ) ,  they have been summarized i n  
Table I V  a long  w i t h  t h e  va lue  f o r  t h e  isomer. It is f e l t  t h a t  t h i s  
amount of da t a ,  over  a  l a r g e  range of f i n a l - s t a t e  s p i n s ,  may b e  s u f f i -  
c i e n t  t o  g i v e  a  much b e t t e r  de te rmina t ion  of  t h e  s e v e r a l  model parameters 
than  i s  p o s s i b l e  f o r  t h e  usua l  case  of only one c ross-sec t ion  r a t i o  p e r  
i so tope .  

R. G. H e l m e r  and C.  W. Reich, Nucl. Phys. - A114, (1968) 649. 
R. S. Hager and E. C .  S e l t z e r ,  Nuclear Data g, (1968) 1. 
S .  A. Moszkowski, i n  Alpha-, .Beta- and Gamma-ray Spectroscopy, ed.  
K. Siegbahn (North-Holland, Amsterdam, 1965) Vol, 11, Chapt, XV, 
H. K.  Vonach, R. Vandenbosch and J. R. Huizenga, Nucl. Phys, 60,  
(1964) 70. 

W. P. Pon i t z ,  Z. Physik E, (1966) 262. 
D. Sperber  and J .  W.  Mandler, Nucl. Phys. G, (1968) 689. 
R. C. Greenwood and C ,  W.  Reich, Nuclear Technology Branch Annual 
Progress  Report f o r  Period Ending June 30, 1970, IN-1407 (1970) 142. 
Brookhaven Nat iona l  Laboratory Report BNL-325, Third Ed i t i on ,  t o  be 
publ ished.  



TABLE I 

HISTORY OF 17*m2Hf SAMPLES 

Neutron Radiat ion 

Sample Mass of 1 7 7 ~ f  Enrich-  lux[^] In tegra ted  Flux Chemistry 
Number Hf (mg) ment (atom %) Dates (10'" n/cm2-sec) ( 1 0 ~ ~ n l c m ~ )  (Element Removed) 

1 -- 18..5 (normal)' 711961-711963 4.6-5.7 264 Ta, r a r e  e a r t h s ,  e t c .  

2 -- 18.5 (normal) 711961-111962 5.1 66 Ta, r a r e  e a r t h s ,  e t c .  

3 27.4 84 911967-311968 5.0 69 Co, r a r e  e a r t h s  (not  Ta) 

4 120 84 91 1967-311968 5.0 69 None 

[ a ]  Unperturbed value. 

TABLE I1 

DETERMINATION OF THE HALF-LIFE OF 178m2~f FROM GAMMA-RAY INTENSITIES 

MEASWD RELATIVE TO THAT OF THE 270-keV LINE FROM 182~f 

Gamma-Ray 
Energy (keV) 

213 

216 

325 

426 

495 

5 74 

Half-life [a1 

(years) 

Average (weight = l/a2) 

Average (weight = 110) 

Adopted value 

[a] Uncertainty includes a factor @ if this quantity is >1.0. 

[b] Normalized X2 value as defined in text. 



TABLE I11 

GAMMA-RAY TRANSITION PROBABILITIES OF THE ISOMERIC TRANSITION 

FROM 1 7 8 m 2 ~ f  FOR VARIOUS ENERGIES AND MULTIPOLARITIES 

(CALCULATED ASSUMING T = 31 y)  % 

E Deduced Gamma-Ray 
Y ~1 [a1 T r a n s i t i o n  P r o b a b i l i t y  Hindrance [ b  1 

(keV) M u l t i p o l a r i t y  - T (sec-l  ) F a c t o r  

20 E 3 8 x lo5  8.9 x 1.5 x lo9 

[ 21  [ a ]  T h e o r e t i c a l  v a l u e s  . 
[ 31 

[b] Hindeyance f a c t o r  o f  t h e  t r a n s i t i o n  r e l a t i v e  t o  t h e  Moszkowski 
. estimate. 

1 

TABLE TV 

CROSS SECTIONS FOR ( n , y )  POPULATION OF VARIOUS STATES I N  i 7 8 ~ f  

Level  Cross S e c t i o n  
Enerpy (keV) IT - (b)  . Reference 

0 O+ 365 8 

1147 8- 0.93 7 

2 2450 16+(17+)  . (2 f' 1 )  lo-7 This  work 



LEVEL .STRUCTURE .OF 8 4 ~  .FROM DECAY 'OF ' 1 8 4 g ~ e  AND 84%e 

R. C .  Greenwood, C. W. Reich, R. G. Helmer, D. J. McMillan [ I ]  

The l e v e l  s t r u c t u r e  of t h e  doubly even nucleus 1 8 4 ~  has  prev ious ly  
been i n v e s t i g a t e d  u s i n  a v a r i e t y  of experimental  techniques.  I n  many 
of t h e s e  s t u d i e s ,  t h e  g84W l e v e l s  have been populated by t h e  decay of 
38-d 1 8 4 g ~ e  ( the  ground-state  decay) and 165-d 184%e ( t h e  isomer decay). 
The r e s u l t s  of  t h e  earliest s t u d i e s  of t h e s e  nuc lea r  decay modes has  been 
summarized i n  Reference [ 2 1. Many of t h e  s a l i e n t  f e a t u r e s  of t h e  decay 
of t h e  ground and isom c states of 1 8 4 ~ e  were e s t a b l i s h e d  i n  t h e  work 
of Harmatz and Handley and i n  subsequent t d i e s  by o t h e r  i n v e s t i -  f lYl gators[4-10], i nc lud ing  a pre l iminary  r e p o r t  . of some as e c t s  of t h e  
p re sen t  work. Fu r the r  d e t a i l s  of t h e  l e v e l  s t r u c t u r e  of  18'W have been 
obta ined  from s t u d i e s  1 8 4 ~ a  decay[2,121, t h e  prompt y , r a  s emi t ted  x as a r e s u l t  of thermal , r e s o n a n c e  , and 2-kevL1 1 neutron 
capture  i n  3 ~ ,  Coulomb e x c i t a t i o n [  181, t h e  l 8  3 ~ ( d , p )  r e a c t i o n [  l91 and 
t h e  1 8 3 ~ ( d , d ' )  

These s t u d i e s  e s t a b l i s h e d  t h e  fol lowing f e a t u r e s  of  t h e  1 8 4 ~  l e v e l  
scheme: t h e  y -v ib ra t iona l  band a t  903 keV; a KT=O+ band a t  1002 keV; 
t h e  KT=5' and 7' bands a t  1284 and 1501 keV, r e s p e c t i v e l y ;  and a n  
octupole band wi th  a 3- s t a t e  a t  1221 keV and an  a s s o c i a t e d  2- s t a t e  
t e n t a t i v e l y  proposed as t h e  l e v e l  a t  1129 keV. 

The p re sen t  work was undertaken t o  o b t a i n  more co l e t e  information 
on t h e  decay of t h e  i somer ic  and t h e  ground states of "Re. I n  a 
p a r a l l e l  e f f o r t ,  measurements were made of  t h e  prompt y r ays  emi t ted  a s  
a r e s u l t  of neut ron  cap tu re  i n  1 8 3 ~ .  These l a t t e r  r e s u l t s  a r e  d iscussed  
i n  a fol lowing r e p o r t i 2 1 ] .  To e t h e r  t h e s e  s t u d i e s  provide  a more 
complete l e v e l  scheme f o r  t h e  18'W nucleus and informat ion  about t h e  
make-up of many of t h e s e  s t a t e s .  

Seve ra l  pub l i ca t ions  have r e c e n t l y  appeared g iv ing  r e s u l t s  of 
a d d i t i o n a l  s t u d i e s  of t h e  1 8 4 ~  l e v e l  s t r u c t u r e s .  These s t u d i e s  involve  
i n v e s t i g a t i o n s  of t h e  decay of 184%e[22,231, t h e  decay of 1 8 4 ~ a [ 2 4  I ,  
t h e  prompt y r a  s emi t ted  a s  a r e s u l t  of n e  t r o n  cap tu re  i n  t h e  7.8-eV 
resonance of 18'W[ 25 I ,  and t h e  1 8 2 ~ ( t  ,p) [26Y w d  l8  3 ~ ( d , p )  [27 1 r eac t ions .  
The s tudy  of t h e  1 8 4 m ~ e  decay by Canty -- e t  a1. [231, wh i l e  no t  provid ing  
as complete informat ion  o n ' t h e  l e v e l s  populated o r  on t h e i r  decay modes, 
i s  i n  e s s e n t i a l  a reement wi th  t h i s  p re sen t  work, a s  a r e  t h e  r e s u l t s  of 
t h e  1 8 ' ~ a  decay[2&] f o r  those  l e v e l s  which a r e  observed i n  both decay 
modes. From y-ray 'angular d i s t r i b u t i o n  measurements from a source  of 
a l i gned  1 8 4 ~ e  n u c l e i ,  Krane -- e t  a1,  [ 22 1 measured mul t ipo le  mixing r a t i o s  
f o r  many of t h e  s t r o n g e r  y-ray t r a n s i t i o n s .  The r ecen t  p a r t i c l e  t r a n s f e r  
r e a c t i o n  s t u d i e s  [ 26y27 1 a l s o  provide a d d i t i o n a l  va luab le  i n s i g h t s  i n t o  
t h e  make-up of s e v e r a l  of t h e  1 8 4 ~  l e v e l s .  

The 1 8 4 ~ e  sou rce  which was p r i n c i p a l l y  used i n  t h e  p re sen t  work was 
produced % 3-112 yea r s  ago by i r r a d i a t i n g  n a t u r a l  tungsten (with a low 
rhenium impuri ty  l e v e l )  w i th  22-MeV pro tons  i n  t h e  i n t e r n a l  beam of t h e  
218-cm cyclo t ron  a t  Oak Ridge Nat iona l  Laboratory. S p e c i f i c  measurements 



which have been made wi th  t h i s  sou rce  inc lude :  

- y-ray spectrum measurements w i t h  var ious  Ge(Li) and S i (L i )  
d e t e c t o r s  soon a f t e r  source  product ion  and a t  f requent  i n t e r v a l s  
t h e r e a f t e r  up t o  t he  p re sen t  t ime. A t  s h o r t  t imes ( a  few months) 
a f t e r  source  product ion  t h e  dominant a c t i v i t i e s  w e r e  1 8 4 g ~ e  and 
1 8 3 ~ e  wh i l e  a t  t h e  p re sen t  t ime t h e  dominant a c t i v i t y  i s  1 8 4 m ~ e  
wi th  only a t r a c e  of 1 8 3 ~ e  remaining. Po r t ions  of t h e  1 8 4 m ~ e  
s p e c t r a  are shown i n  Figures  1 and 2; and t h e  energ ies  and 
i n t e n s i t i e s  of  t h e  y-ray t r a n s i t i o n s  a s s o c i a t e d  wi th  t h e  1 8 4 g ~ e  
and 1 8 4 m ~ e  decays a r e  summarized i n  Table I. 

- y-y coincidence measurement conducted soon a f t e r  source  product ion 
(as descr ibed  i n  Reference 7 11 I )  . 

- conversion e l e c t r o n  measurements us ing  a 35-cm rad ius  i ron - f r ee  
 IT^ e l e c t r o n  spec t rometer  made soon a f t e r  source  prod.uction (as 
descr ibed  i n  Reference [ 11 3 )  and % 1.5  yea r s  l a t e r .  I n t e r n a l -  
conversion c o e f f i c i e n t s  der ived  from t h e s e  d a t a  t oge the r  w i t h  
t h e  y-ray d a t a  a r e  summarized i n  Table  11. These conversion 
c o e f f i c i e n t s  are q u i t e  c o n s i s t e n t  wi th  those  which can be  computed 
from t h e  conversion-electron i n t e n s i t i e s  r epo r t ed  by Ageev 
e t  a1,  L 6 p 7  1 and t h e  y-ray i n t e n s i t i e s  f o r  1 8 4 ~ e  l i s t e d .  i n  Table I. -- 
Conversion c o e f f i c i e n t s  computed i n  t h i s  way f o r  s e v e r a l  of t h e  
t r a n s i t i o n s  no t  measured i n  t h e  p re sen t  work a r e  shown i n  Table 111. 

The 1 8 4 ~ e  decay scheme which was cons t ruc ted  us ing  these  d a t a  is 
shown i n  F igure  3. The "best" s e t  of l e v e l  ene rg i e s ,  given i n  Table I V ,  
w a s  determined f o r  1 8 4 ~  u t i l i z i n g  a l i n e a r  leas t - squares  f i t t i n g  program. 
The e lec t ron-capture  branching r a t i o s  and l o  f t  va lues  which have been 
computed from t h e s e  branching r a t i o s  f o r  a lE4Re decay energy of 
1496 t 6 . k e ~ t  a r e  shown i n  Table V: 

While many of  t h e  f e a t u r e s  of t h i s  scheme a e i n  s u b s t a n t i a l  agree- 
ment w i t h  those  proposed by e a r l i e r  in~esti~atorsf3.~~6-lol, t h e  p re sen t  
d a t a  p rov ide  a more complete c h a r a c t e r i z a t i o n  of t h e  1 8 4 ~  l e v e l  scheme. 
These a d d i t i o n a l  f e a t u r e s  inc lude :  

+ + - new l e v e l s  a t  1425 and 1431. keV w i t h  1'=3 and 2 , r e spec t ive ly ;  

- es tab l i shment  of 1 ~ 5 2 -  f o r  t h e  1130-keV s t a t e ;  

- placement of t r a n s i t i o n s  from t h e  5- s t a t e  a t  1284 keV t o  t h e  2' 
and 4+ members of t h e  y -v ib ra t iona l  band; 

Prom measurements of  Q va lues  of ( 3 ~ e , d ) ,  (a, t )  and (d ,  t )  r e a c t i o n s  
on va r ious  tungs ten  and rhenium i s o t o p e s ,  D. Elmore. ob ta ined  two 
de termina t ions  of  t h e  1 8 4 ~ e - 1 8 4 ~  mass d i f f e r e n c e ,  f49 1 + 5 keV and 
1502 t 17 keV. The va lue  given i s  j u s t  an average of t hese  two 
numbers. 



+ - placement of a t r a n s i t i o n  between t h e  1130-keV s t a t e  and t h e  3 
member of t he  y -v ib ra t iona l  band; and 

- placement of t h e  4++2+ in t raband t r a n s i t i o n  w i t h i n  t h e  y- 
v i b r a t i o n a l  band. 

Of s p e c i a l  n o t e  a l s o  i s  t h e  f a c t  t h a t  t h e  A I = O  t r a n s i t i o n s  from t h e  
states a t  1386 and 1431 keV t o  t h e  ground-state band a r e  both e s t a b l i s h e d  
t o  conta in  EO components thus  i n d i c a t i n g  e i t h e r  pure KV=O+ s t a t e s  o r  
admixtures of KT=O+ i n  t h e s e  s t a t e s .  Fur he  d i scuss ion  of t h e s e  two 

f21f s t a t e s  is contained i n  a fol lowing r e p o r t  . 
The 3- s t a t e  a t  1221 keV i s  observed t o  b e  Coulomb exc i t ed ;  and, 

from i ts  B(E3) + v a l u e [ l 8 ] ,  abso lu t e  t r a n s i t i o n  p r o b a b i l i t i e s  can be 
deduced f o r  t h e  de-exci t ing y-ray t r a n s i t i o n s .  This  a n a l y s i s  r e v e a l s ,  
among o t h e r  t h ings ,  t h a t  t h e  E l  t r a n s i t i o n s  between t h e  ~ ' = 2 -  octupole-  
v i b r a t i o n a l  band and t h e  y -v ib ra t iona l  band a r e  reasonably " f a s t "  
[FM(E1) Q l o4 ] .  This  f a c t  can be  r e a d i l y  understood i n  terms of unhindered 
11 s i n g l e - p a r t i c l e "  E l  t r a n s i t i o n s  involv ing  small-amplitude two-quas ipar t ic le  

components i n  t h e  wave func t ions  of t h e  v i b r a t i o n a l  s t a t e s .  A n  unexpected 
r e s u l t  is t h e  observa t ion  of a r e l a t i v e l y  l a r g e  M2 t r a n s i t i o n  s t r e n g t h  
between t h e s e  two bands [FM (M2) Q 1.4 1 . We have a s  y e t  found no expla- 
n a t i o n  f o r  t h i s  i n t e rband  M2 t r a n s i t i o n  s t r e n g t h .  

Comparison, us ing  a  Mikhailov p l o t ,  of t h e  E2 t r a n s i t i o n  p r o b a b i l i t i e s  
t o  t h e  ground-state band from t h e  4 s t a t e  wi th  those  from t h e  2+ s t a t e  + + Y  sugges ts  t h a t  t h e  in t raband (4 +2 ) t r a n s i t i o n  may be  somewhat s lower Y Y . than expected f o r  a  pure  r o t a t i o n a l  E2 t r a n s i t i o n .  Th i s  dev ia t ion  can 
be  explained a s  a  r e s u l t  of mixing w i t h  t h e  o t h e r  low-lying ( 2  1.5 MeV) 
pos i t i ve -pa r i t y  bands (p r imar i ly  t h e  2+ band a t  1386 keV) These conclu- 
s i o n s  a r e  d iscussed  i n  more d e t a i l  i n  a  forthcoming 30 I .  
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TABLE I 

GAMMA-RAY ENERGIES AND INTENSITIES MEASURED FOR 

THE DECAY OF 38-d 1 8 4 g ~ e  AND 165-d 1 8 4 m ~ e  

Gamma- ray 
Energy 
(keV) 

Relative y-ray intensity 

18'+gReLa1 1 8 4 m ~ e  



[a] A more complete c h a r a c t e r i z a t i o n  of t h e  1 8 4 g ~ e  decay y r ays  i s  
der ived  from t h e  1 8 4 m ~ e  i n  s e c u l a r  equ i l i b r ium decay and i s  given 
i n  Table V I I .  Therefore,  i t  i s  t h i s  l a t t e r  s e t  which should b e  
used i n  any cons ide ra t ion  of t h e  1 8 4 g ~ e  decay modes. 

TABLE I1 

K-ELECTRON INTENSITIES AND INTERNAL CONVERSION COEFFICIENTS 
FOR TRANSITIONS RESULTING FROM THE DECAY OF l a 4 ~ e .  UNCERTAINTIES 

I N  THE LEAST SIGNIFICANT FIGURES OF THE EXPERIMENTAL 
VALUES ARE INDICATED I N  PARE'N'THESIS . 

Trans i t ion  K-Electron Gamma-Ray In fe r red  

Energy (keV) intensitycai 1 n t e n ~ i t . y ' ~ ~  E2 E3 M1 MZ Multipolar1f.y 

[ a ]  I n t e n s i t i e s  of t h e  mixed l B 4 ~ e  source a t  t h e  beginning of t h e  i n t e r n a l  conversion e lec t ron  experiments. 

[ b ]  Conversion coef f i c ien t s  a r e  computed on t h e  assumption t h a t  t h e  903 keV t r a n s i t i o n  i s  pure E2. 

[ c ]  The L1/L2/L3 conversion e lec t ron  r a t i o  was measured t o  be (0.275 + 0.019)/(0.053 + 0.010)/1.000 which 
can be compared t o  t h e o r e t i c a l  r t i o s  of 0.253/0.0494/1.000 f o r  an M4 and 0.3741 
1.30/1.000 f o r  an E5 

[ d l  Determined i n  the  l a t e r  s e r i e s  of measurements with the la4%e secular-equi l ibr ium source, with the  
conversion coef f i c ien t s  computed on the  assumption tha t  t h e  252-keV t r a n s i t i o n  i s  pure E'2. 

[ e l  A conversion c o e f f i c i e n t s  of (1.55 + 0.06) x was determined i n  t h e  l a t e r  s e r i e s  of  measurements 
wi th  the  la4%e secular-equi l ibr ium source,  based upon t h e  assumption tha t  the  252- and 384-keV 
t r a n s i t i o n s  a r e  pure E2. 



TABLE 111 

ADDITIONAL (TO TABLE 11) K-CONVERSION COEFFICIENTS COMPUTED 
USING CONVERSION-ELECTRON INTENSITIES MEASURED 

BY AGEEV - et -a a1 I i 6  9 71 FOR 84m~e IN SECULAR EQUILIBRIUM 
AND OUR I(-RAY INTENSITIES FROM TABLE I 

Trans i t ion  K-Electron Gamma-Ray Experimental Theore t i ca l  lo3 
Energy (keV) I n t e n s i t y  I n t e n s i t y  lo3 ak % I n f e r r e d  

E  1 E2 E3 M1 M2 Mul t ipo la r i ty  

[ a ]  No K-electron i n t e n s i t y  is given f o r  t h e  483-keV t r a n s i t i o n  i n  Reference [7]. There i s  only a  lower 
l i m i t  given on t h i s  c o e f f i c i e n t .  

TABLE IV 

BEST ENERGIES DETERMINED FOR THE LEVELS 

IN 1 8 4 ~  POPULATED IN THE 184~e DECAY 

Level Energy 
(keV) 

0 .o 
111.207 2 0.006 
364.055 + 0.012 
748.309 + 0.019 
903.283 + 0.020 

1005.968 + 0.022 
1121.438 + 0.029 
1130.029 + 0.024 
1133.840 + 0.024 
1221.292 + 0.025 
1284.991 + 0.027 

.1386.327 + 0.034 
1425.011 + 0.041 
1431.02 + 0.07 
1446.260 + 0.032 
1501.538 + 0,032 



TABLE V 

ELECTRON-CAPTURE BRANCHING RATIOS AND l o g  - f t  VALUES DETERMINED 

FOR THE 1 8 4 ~ e  DECAY, USING A VALUE OF 1496 2 6 keV 

FOR THE 1 8 4 g ~ e - 1 8 4 ~  MASS DIFFERENCE 

Level  Energy 
(:ke V) 

[ a  I Branching Rat io  
(XI Lop f t  

gRe decay  

1 8 4 m ~ e  decav 

[ a ]  An unce r t a in ty  i s  p laced  on t h e s e  branching r a t i o s  only f o r  those  
cases  when t h e  percentage  unce r t a in ty  i s  g r e a t e r  t han  t h e  percentage 
change which might occur  from any reasonable renormal iza t ion ;  f o r  . 
example, i f  t h e r e  were i n  f a c t  e s s e n t i a l l y  zero branching t o  t h e  
2+ and 4' members of t h e  ground-state  band (which would no t  b e  
unreasonable s i n c e  t h e  u n c e r t a i n t i e s  which a r e  quoted r ep re sen t  
l a  v a l u e s ) ,  



5 0 0 1 0 0 0  1 5 0 0  
2 5 0 0  3 0 0 0 35 0 0 

CHANNEL NUMBER 
Figure  1 Lower energy (< 1 MeV) p o r t i o n  of the '  y-ray spectrum of 184m~e  measured us ing  a 65-cm3 Ge(Li) 

d e t e c t o r  a t  a  source-to-detector  d i s t ance  of 10 cm. The spectrum was obta ined  3 .4  years  a f t e r  
sou rce  product ion.  Plat inum K x-rays, r e s u l t i n g  from f luo rescen t  e x c i t a t i o n  i n  t h e  backing 
m a t e r i a l ,  a r e  a l s o  p re sen t  i n  t h e  spectrum. 



Figure  2 Higher energy (> 0.7 MeV) p o r t i o n  of t he  y-ray spectrum o f  1 8 4 m ~ e  obta ined  1.75 y e a r s  a f t e r  
source  product ion w i t h  a 35-cm3 ~ e ( ~ i )  d e t e c t o r .  An 0.8-cm l e a d  absorber  was in t e rposed  
between t h e  source  and t h e  d e t e c t o r .  
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Figure 3 Decay scheme of 1 8 4 g ~ e  and 184%e. The brackets a t  the l e f t  of the figure indicate the 
grouping of states  into rotational bands. 



333 TRAMSZTION PROBABILITIES AND QTJASPART,IfXE- 
FHONON MIXING IN 1 8 % ~  

5- stare which map have a significant k'fhenca the E3 transition 
probabilities. These are (I) the respeqr%%e o ~ s & ~ o l e - v ~ r a t i ~ n & l .   om- 
panetnts, which although possiblp- .pyw-ent wish .~lmq11 ampl&tudsg a~a;e&e- 
lea# possess enhqgmd 83 matrix elmate tx3'Che &m&-$ia*e Be&$ add 

I - P  . -7 ' 4,. 8 



TABLE I 

SUMMARY OF TRANSITION-AMPLITUDE VALUES WHICH ARE CONSISTENT WITH THE 
OBSERVED .B(E3) VALUES OF THE TRANSITIONS FROM THE 1284-keV STATE TO THE 
2+, 4' AND 6+ MEMBERS OF THE GROUND-STATE BAND I N  8 4 ~  

X2 X 3  T r a n s i t i o n  ~ o ~ B ( E ~ ) +  ( e 2 * b 3 )  
Root - ( e *  f  3, ( e *  f  3, 5-+I' ; E, (keV) C a l c u l a t e d  Exper imental  

a  
S e t  1 of Reference [ 2 ] .  

S e t  2  of Reference [ 2 ] .  

(2)  t w o - q u a s i p a r t i c l e  s t a t e s  , which a l though  h a v i n g  somewhat s m a l l e r  
E3 m a t r i x  e lements  t o  t h e  g round-s ta te  band might b e  p r e s e n t  wi.th l a r g e r  
ampl i tudes  because  of Cor io l i s -mix ing  e f f e c t s .  The t r a n s i t i o n - a m p l i t u d e  
p a r a m e t e r s ,  XK, may b e  expressed  i n  terms of t h e  c o l l e c t i v e  and two- 
q u a s i p a r t i c l e  E3 m a t r i x  e lements  by t h e  r e l a t i o n  

0 
w I"' = [CXPK (K- ( M '  ( i3;K) 1 oi) + ( , 1P1312 l1I2 %';,K1 G E3 (AK) e - b 3 I 2 ,  (2) I 

where A i s  t h e  mass number (=184) ,  P and P '  a r e  t h e  p a i r i n g  f a c t o r s ,  
0 and "'0 , U O  and GE3 a r e  a s  d e f i n e d  by ~ i l s s o n  I 4  1 ,  i t  b e i n g  unders tood  

t h a t  t h e  GE3 i s  t h a t  a p p r o p r i a t e  t o  t h e  s i n g l e - p a r t i c l e  (Ni l s son)  s t a t e s  
invo lved  i n  t h e  t r . a n s i t i o n  of t h e  odd p a r t i c l e .  (See,  f o r  example, 
Reference [ 5 ] . )  The CK and % a r e  t h e  admixed ampl i tudes  of t h e  



c o l l e c t i v e  and t h e  two-quas ipar t ic le  .components, r e s p e c t i v e l y .  
Equation (2) a s  w r i t t e n  t r e a t s  t h e  e f f e c t  of only one two-quas ipar t ic le  
component; i f  s e v e r a l  such terms a r e  assumed t o  be  p r e s e n t ,  t h e i r  e f f e c t  
can b e  included by inco rpo ra t i ng  a d d i t i o n a l  terms. 

The parameters which i n f l u e n c e  t h e  B(E3) va lues  of t h e  t r a n s i t i o n s  
t o  t h e  ground-state  band a f f e c t  o t h e r  t r a n s i t i o n  p r o b a b i l i t i e s  as w e l l .  
Therefore ,  knowledge of t h e s e  o t h e r  t r a n s i t i o n  p r o b a b i l i t i e s  he lps  i n  
t h e  parameter  determinat ion.  The i n t e r r e l a . t i o n s h i p  of t h e s e  va r ious  
quan t i t i . e s  i s  i l l u s t r a t e d  i n  F igure  2. There i t  is  seen  , t ha t  t h e ' C 2  
and C 3  amplitudes (which in f luence  t h e  E3 t r a n s i t i o n s  t o  t h e  ground- 
s t a t e  band),  t oge the r  w i t h  t h e  bK, have a  very  important  e f f e c t  on t h e  
t r a n s i t i o n  p r o b a b i l i t y  of t h e  63-keV E2 t r a n s i t i o n .  These bK a r e ,  i n  
t u r n ,  r e l a t e d  t o  bo th  t h e  B(E3)+ va lue  of t h e  1221-keV s t a t e  and t h e  
B(E2) va lue  of t h e  in t raband  (3-+2-) t r a n s i t i o n .  I n  a d d i t i o n ,  t h e  
B(E3)+ va lue  depends on t h e  two c o l l e c t i v e  E3 ma t r ix  e lements ,  which 
themselves a l s o  i n f luence  t h e  t r a n s i t i o n  p r o b a b i l i t i e s  of t h e  E3 t r an -  
s i t i o n s  from t h e  1284-keV s t a t e  t o  t h e  ground-state  band. 

The XK va lues  provide ,  through Equation ( 2 ) ,  one set of r e l a t i o n -  
s h i p s  among t h e  r e l e v a n t  parameters .  Addi t iona l  such r e l a t i o n s h i p s  a r e  
provided by the  B(E2) va lues  of t h e  5-+3- and 3--+2- t r a n s i t i o n s  and by 
t h e  B(E3) va lue  of t h e  t r a n s i t i o n  from t h e  ground s t a t e  t o  t h e  3- s t a t e  
a t  1221 keV. I n  t e r m s  of t h e  n o t a t i o n  given i n  F igure  2 ,  t h e s e  r e l a t i o n s  
can be  w r i t t e n :  

The fol lowing procedure was used t o  e x t r a c t  parameter va lues  from 
t h e  t r a n s i t i o n - p r o b a b i l i t y  d a t a .  For each allowed (X2,X3) r o o t  i n  
Table  I ,  t h e  products  cK(IC [ M I  (E3;K) 10') were ob ta ined  from Equation (2) , 
a f t e r  c o r r e c t i o n  f o r  t h e  assumed two-quas ipar t ic le  c o n t r i b u t i o n .  These 
E3 m a t r i x  elements were then s u b s t i t u t e d  i n t o  E q u a t i ~ n  (5 ) .  This equa- 
t i o n ,  t oge the r  wi th  Equation ( 3 ) ,  provides  two r e l a t i o n s  involv ing  t h e  
products  b2C2 and b  3C3.  For "reasonable"  [ i .  e.  , c o n s i s t e n t  wi th  t h e  
B(E2) va lue  of t h e  3-+2- t r a n s i t i o n ]  choices  of b2 (and hence b 3 ) ,  
c o n s i s t e n t  va lues  of C2  and C3 were then obtained through g raph ica l  
s o l u t i o n  of Equations (3) and (5) .  For convenience, i t  was assumed 



t h a t  t h e  two i n t r i n s i c  quadrupo le  moments were  e q u a l  t o  t h a t  of t h e  
.g round-s ta te  band. 

The c o n t r i b u t i o n s  of t h e  admixed t w o - q u a s i p a r t i c l e  s t a t e s  which 
are ne.eded f o r  t h e s e  c a l c u l a t i o n s  cou ld  n o t  be  determined e x p e r i m e n t a l l y .  
I n s t e a d ,  t h e i r  magnitude was e s t i m a t e d  assuming t h a t  t h e  admixtures  
r e s u l t  from C o r i o l i s  coup l ing  wi th  t h e  dominant component i n  t h e  5- 
s t a t e ,  namely c6] {1/2-[510]~,11/2~[615]~I~-. We expec t  t h a t  t h e  
Coriol is -mixed KT=3- and 2- t w o - q u a s i p a r t l c l e  s t a t e s  w i t h  t h e  l a r g e s t  
ampl i tudes  w i l l  b e  { 1 / 2 - [ 5 1 0 ] ~ , 7 / 2 + [ 6 3 3 ] ~ I  and {1/2-[510]n~,5/2+[642]n12-, 
owing t o  t h e  expec ted  s t r o n g  C o r i o l i s  coup?Tng among t h e s e  i13 
o r b i t a l s .  These c a l c u l a t i o n s  i n d i c a t e d  t h a t  t h e  magnitude of 
b u t i o n  of t h e s e  t w o - q u a s i p a r t i c l e  components t o  t h e  XK ampl i tudes  might 
b e  o f  t h e  o r d e r  of 0 . 6  e * f 3  and 1 . 0  emf f o r  K=2 and 3 ,  r e s p e c t i v e l y .  
With t h e s e  e s t i m a t e s ,  c a l c u l a t i o n s  were c a r r i e d  o u t  f o r  t h r e e  d i f f e r e n t  
s i t u a t i o n s .  I n  t h e  f i r s t  and second of  t h e s e ,  t h e  above e s t i m a t e d  two- 
q u a s i p a r t i c l e  c o n t r i b u t i o n  t o  t h e  XK was assumed t o  i n t e r f e r e  cons t ruc -  
t i v e l y  a ~ t d  d e s t r u c t i v e l y ,  r e s p e c t i v e l y ,  w i t h  t h e  c o l l e c t i v e  component. 
I n  t h e  t h i r d ,  t h i s  c o n t r i b u t i o n  was assumed t o  v a n i s h  ( i - e .  , a2 and a3 
were  s e t  e q u a l  t o  z e r o ) .  

From t h e  a v a i l a b l e  d a t a ,  i t  is  n o t  p o s s i b l e  t o  o b t a i n  unique v a l u e s  
f o r  a l l  t h e  pa ramete rs  invo lved  i n  t h e  a n a l y s i s .  However, t h e  f a c t  t h a t  
a l l  t h e  r e l e v a n t  d a t a  ( s e e  F i g u r e  2) can b e  f i t  q u i t e  w e l l  u s i n g  
"reasonable"  pa ramete r  v a l u e s  s u g g e s t s  t h a t  t h e  i n t e r p r e t a t i o n  is funda- 
m e n t a l l y  c o r r e c t .  I n  s p i t e  of t h e  l a c k  of un iqueness  of t h e  r e s u l t s  
o b t a i n e d ,  some c o n c l u s i o n s  can n o n e t h e l e s s  b e  drawn from t h e  a n a l y s i s .  
For example, a l though  Root I g i v e s  t h e  b e s t  o v e r a l l  f i t  t o  t h e  B(E3)+ 
d a t a  ( s e e  F i g u r e  l ) ,  i t  is  probab ly  n o t  a  r e a l i s t i c  s o l u t i o n .  The 
reason  f o r  t h i s  is t h a t ,  w h i l e  t h e  deduced E3 m a t r i x  e lements  f o r  t h i s  
c a s e  do indeed f i t  t h e  observed ~ ( ~ 3 ; 0 + + 3 - )  v a l u e ,  t h e  K=2 and K=3 con- 
t r i b u t i o n s  i n t e r f e r e  d e s t r u c t i v e l y .  One might e x p e c t ,  and t h e  c a l c u l a -  
t i o n s  of Neergdrd and v o g e l i 7 ]  i n d i c a t e ,  t h a t  t h e  enhanced B(E3) v a l u e  
t o  t h e  lowes t  c o l l e c t i v e  3- s t a t e  i n  t h e s e  n u c l e i  would r e s u l t  from a  
c o n s t r u c t i v e ,  n o t  d e s t r u c t i v e ,  i n t e r f e r e n c e  of t h e  v a r i o u s  components. 

I n  Tab le  I1 a r e  p r e s e n t e d  t h e  r e s u l t s  of two of t h e  c a l c u l a t i o n s .  
The c a s e s  summarized t h e r e  a r e  t h o s e  where t h e  c o n t r i b u t i o n  of t h e  two- 
q u a s i p a r t i c l e  components t o  t h e  XK ampl i tudes  h a s  been assumed t o  b e  
ze ro .  I n  g e n e r a l ,  f o r  each of t h e s e  c a s e s ,  t h e r e  a r e ,  f o r  a  g i v e n  
c h o i c e  of (b2,b3) ,  four .  (C2,C3) s o l u t i o n  sets. We have l i s t e d  i n  Table  I1 
only  t h o s e  s e t s  f o r  which t h e  two E3 m a t r i x  e lements  a r e  p r e d i c t e d  t o  
have t h e  same s i g n  [ s o  t h a t  c o n s t r u c t i v e  i n t e r f e r e n c e  i n  ~ ( ~ 3 ; 0 + + 3 - )  i s  
p r e d i c t e d ] .  From t h e s e  c a l c u l a t i o n s  t h e r e  is  l i t t l e  b a s i s  f o r  choosing 
between Roots I1 and 111, a l though  a  s l i g h t  p r e f e r e n c e  f o r  t h e  former 
might e x i s t  simply because  t h e  two E3 m a t r i x  e lements  a r e  of more n e a r l y  
e q u a l  magnitude.  A p r e f e r e n c e  f o r  ~ o o t  I1 is a l s o  i n d i c a t e d  b  t h e  
q u i t e  r e c e n t  y-y d i r e c t i o n a l - c o r r e l a t i o n  d a t a  of Canty e t  a l .  ['I. Of 
t h e  two E3/E1 mix ing- ra t io  pa ramete rs  which they  o b t a i n e d  f o r  t h e  920- 
keV y  r a y ,  t h e  one cor responding  t o  Root I1 had t h e  s m a l l e r  X 2  v a l u e .  



TABLE I1 

SELECTED RESULTS OF THE PARAMETER VALUES OBTAINED FROM A CONSISTENT F I T T I N G  OF THE 
EXPERIMENTAL TRANSITION-PROPABILITY DATA SUMMARIZED I N  FIGURE 2  

The c a l c u l a t i o n s  i nc luded  h e r e  were c a r r i e d  o u t  n e g l e c t i n g  t h e  p o s s i b l e  c o n t r i b u t i o n  o f  t h e  two- 
q u a s i p a r t i c l e  s t a t e s  t o  t h e  E 3  t r a n s i t i o n  m a t r i x  e lement  from t h e  1284-keV s t a t e .  Only t h o s e  (C2,C3) 
r o o t s  which l e a d  t o  E 3  m a t r i x  e lements  of t h e  same s i g n  a r e  inc luded .  

a '  For t h e  a s s o c i a t e d  (X2,X3) v a l u e s ,  s e e  Table  I and F igu re  1. 

c a l c u l a t e d  u s ing  Equat ion  (4 )  ( s e e  t e x t ) .  The exper imenta l  v a l u e  is  (1.27'0.21) e2.b2. 

Obtained from f i t t i n g  t h e  observed B(E2;5-+3-) v a l u e .  

Quan t i t y  i n d e t e r m i n a t e  i n  t h i s  c a se .  
e  Obtained from X2 and deduced C2 v a l u e s ,  b u t  does n o t  g i v e  t h e  c o r r e c t  B(E3)+. 

+ 
C o n s i s t e n t  w i t h  X2 v a l u e  and ( 2 - I ~ ' ( ~ 3 ; 2 ) 1 0  ) ob t a ined  from B(E3)f. 



It should be  noted t h a t  t h e  "order-of-magnitude" e s t ima te s  of t h e  
two-quasipart ic le  c o n t r i b u t i o n  t o  t h e  t r a n s i t i o n  ampli tudes,  XK, a r e  
q u i t e  c l o s e  t o  t h e  va lue  of Xg f o r  Root I1 and X2 f o r  Root 111. Once 
it has  become p o s s i b l e  t o  e s t a b l i s h  which of t h e s e  r o o t s  is t h e  proper  
one, s e r i o u s  cons ide ra t ion  w i l l  have t o  be  given t o  t h e  p o s s i b i l i t y  t h a t  
t h e  r e l e v a n t  K-admixture may b e  due e n t i r e l y  t o  two-quasipart ic le  s t a t e s ,  
t h e  corresponding c o l l e c t i v e  component be ing  e s s e n t i a l l y  absent  i n  t h e  
5- state. Taking Root I1 a s  an example, we would conclude i n  such a 
case  (c f .  Figure 2) t h a t  t h e  con t r ibu t ion  of t h e  c o l l e c t i v e  term t o  t h e  
K=3 t r a n s i t i o n  amplitude w a s  zero  and t h a t ,  consequently,  t h e  c o l l e c t i v e  
K=2 admixture i n  t h i s  s t a t e  is much l a r g e r  than t h a t  from K=3. 
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Figure 1 X3 vs X2 p lo t  summarizing t he  B(E3) data  from the  5- s t a t e  a t  
1284-keV t o  the  2+, 4' and 6+ members of the ground-state band. 
The dashed l i n e s  and t he  shaded a reas  surrounding them repre- 
sen t  the  experimental values and t h e i r  associated uncertain- 
t i e s ,  respectively.  Each such l i n e  is labeled by the  spin  of 
the  f i n a l  s t a t e  with a subscr ipt  denoting whether i t  corre- 
sponds to t he  pos i t ive  o r  ne a t i v e  square root ( i n  Equation 1) .  f rans i t ions  t o  the  4 and 6+ s t a t e s ,  t he  data of Krgne 
::ra:?2i y i e ld  two so lu t ion  sets f o r  the  E3/E1 mixing r a t i o  -- 
(and hence fo r  t h e  B(E3) value). I n  these  cases, an addi t ional  
subscr ip t  -Is included, denoting which s e t  (in t he  notation of 
Ref. [ Z ] )  is involved. Those points  at which l i ne s  corre- 
sponding t o  th ree  d i f f e r en t  f ina l - s ta te  spln  values i n t e r s ec t  
a r e  labeled by Roman nqnerals. It should be noted t h a t  f o r  
each such point  (X2,X3), there is a corresgonding point  
(-X2,-X3) which i s  a l so  a solut ion.  



E:} I l l  

EXPERIMENT 

F i g u r e  2  R e p r e s e n t a t i o n  of t h e  r e l a t i o n  of t h e  v a r i o u s  q u a n t i t i e s  con- 
s i d e r e d  i n  t r e a t i n g  t h e  1284-keV.s ta te  i n  1 8 4 ~ .  The aK d e n o t e  
t h e  ampl i tudes  of t h e  v a r i o u s  t w o - q u a s i p a r t i c l e  s t a t e s  i n  t h e  
wave f u n c t i o n  of t h e  1284-keV s t a t e ,  t h e  w i d t h s  of t h e  a s s o c i -  
a t e d  l i n e s  i n d i c a t i n g  t h e i r  expec ted  r e l a t i v e  magnitudes.  The 
ampl i tudes  of t h e  admixed 2- and 3- o c t u p o l e - v i b r a t i o n a l  s t a t e s  
i n  t h e  1284-keV s t a t e  a r e  C2  and C3, r e s p e c t i v e l y ,  w h i l e  t h e  
cor responding  q u a n t i t i e s  i n  t h e  1221-keV, 1'=3-, s t a t e  a r e  b2 
and b 3. ' ( I t  i s  assumed t h a t  t h e  2- s t a t e  a t  1130 keV i s  p u r e  
K=2, i . e . ,  t h e  ampl i tude  of t h e  ~ ' = 2 -  o c t u p o l e - v i b r a t i o n a l  
component is u n i t y .  ) l'he E2 and E3 m a t r i x  e lements  cons idered  
i n  t h i s  a n a l y s i s  a r e  i n d i c a t e d  by arrows between t h o s e  com- ... 

ponen ts  of t h e  wave f u n c t i o n s  which they  a r e  assumed t o  connec t .  
The e f fec t  of p o s s i b l e  d i r e c t  E2 m a t r i x  e lements  between t h e  
2- and 3- o c t u p o l e  v i b r a t i o n s  h a s  been n e g l e c t e d .  A t  t h e  
r i g h t  i n  t h e  f i g u r e  a r e  shown t h e  r e l a t i v e  e x p e r i m e n t a l  
q u a n t i t i e s .  



LEVEL STRUCTURE OF 8 4 ~  FROM THE 3 ~ ( n ,  y )  REACTION 

R. C. Greenwood, C. W. Reich 

S tud ie s  of t h e  decay of 38-d 1 8 4 g ~ e  and 165-d 1 8 4 m ~ e ,  descr ibed  i n  
a p r e t e d i n g  r e p o r t [  l ] ,  have provided d e t a i l e d  spec t roscop ic  informat ion  
about a number of  l e v e l s  i n  doubly-even 1 8 4 ~ .  I n  o r d e r  t o  o b t a i n  f u r t h e r  
i n s i g h t s  i n t o  t h e  l e v e l  s t r u c t u r e  of 1 8 4 ~  we have undertaken a comple- 
mentary s tudy  o f  t h e  prompt y rays  a s s o c i a t e d  wi th  t h e  1 8 3 ~ ( n , y )  r eac t ion .  
Prompt y rays  r e s u l t i n g  from cap tu re  of both thermal and 2-keV neut rons  
were measured. These a d d i t i o n a l  s t u d i e s  have allowed us t o  o b t a i n  a 
more complete p i c t u r e  of  t h e  l e v e l  s t r u c t u r e  of l U 4 W ,  e s p e c i a l 1  wi th  
r ega rd  t o  t h e  occurrence and d i s t r i b u t i o n  of s t a t e s  having IT=O', 1+ 
and 2+ up t o  an e x c i t a t i o n  energy % 2 MeV. P re l imina ry .  r e p o r t s  of some 
a s p e c t s  of  t h i s  work have been presented  previous ly  [ 21. 

E a r l i e r  s t u d i e s  of t h e  l8 3 ~ ( n ,  y )  r e a c t i o n  have p r i n c i p a l l y  involved 
measurements of t h e  rimary prompt y r ays  r e s u l t i n g  from resonance- ! neut ron  cap tu re  i n  3 ~ [ 3 - 6 1 .  F a l e r  e t  a1. L71 d id ,  however, make neutron -- 
c a p t u r e  measurements s p e c i f i c a l l y  t o  e s t a b l i s h  t h e  lowest exc i t ed  K T = ~ +  

band i n  1 8 4 ~  and t o  determine t h e  decay modes from t h i s  band. Recent ly,  
Casten and ~ a n e [ ~ ]  have repor ted  on t h e i r  measurements of bo th  primary 
and secondary prompt y r ays  which were undertaken t o  o b t a i n  information 
about t h e  lower (<  2.5 MeV) l y i n g  l e v e l s  i n  1 8 4 ~ .  

D e t a i l s  of t h e  s p e c i f i c  y-ray measurements made were \ r epor t ed  i n  
Reference [ 2 ] .  By combining t h e  primary cap tu re  y-ray d a t a  ( thermal  
and 2-keV neutron)  w i t h  t h e  ex t ens ive  d a t a  on t h e  low-energy secondary 
t r a n s i t i o n s  which were a l s o  measured, w e  were a b l e  t o  cons t ruc t  t h e  
l e v e l  scheme shown i n  F igure  1 f o r  those  s t a t e s  i n  1 8 4 ~  populated i n  
t h e  1 8 3 ~ ( n , y )  r e a c t i o n .  The l e v e l s  have been grouped i n t o  r o t a t i o n a l  

. bands whenever such assignments can  be made w i t h  a high degree of con- 
f idence .  The ene rg i e s  of t h e  l e v e l s  a r e  a l s o  l i s t e d  i n  Table I ,  toge the r  
w i t h  t h e i r  de-exc i t ing  y-ray t r a n s i t i o n s  ( i nc lud ing  t h e  energ ies  of t hese  
t r a n s i t i o n s  which f o r  c l a r i t y  a r e  .not included i n  F igure  1 ) .  The l e v e l  
ene rg i e s  r ep re sen t  a "best" set determined both  i n  t h i s  work and i n  t h a t  
of  a preceding r e p o r t [  l.1. Fea tures  of  t h i s  l e v e l  scheme which a r e  of  
i n t e r e s t  inc lude :  

- es tab l i shment  of t h e  1130-keV s t a t e  a s  being t h e  band head of a 
KT=2' oc tupole  v i b r a t i o n a l  band; 

+ + - es tab l i shment  of admixed KT=O and 2 bands a t  1322 and 1386 keV, 
r e s p e c t i v e l y ,  Based upon t h e  r a t i o s  of abso lu t e  EO t r a n s i t i o n  
p r o b a b i l i t i e s  i n  t h e  A I = O  t r a n s i t i o n s  de-exci t ing the  2' s t a t e s  
and upon t h e  r a t i o  of f t  v a l u e s . o f  t h e  e lec t ron-capture  t ran-  
s i t i o n s  from 1 8 4 g ~ e  decay, we e s t ima te  a % 12% mixing of t h e  
1386- and 1431-keV 2+ s t a t e s .  

+ + - es tab l i shment  of  a h ighe r  l y i n g  K'=O band at 1614 keV and K T = l  
bands at 1613 keV and 1713 keV. 



+ 
A phenomenological five-band mixing a n a l y s i s  involv ing  t h e  Kr=O 

and 2' bands below % 1.5 MeV has been c a r r i e d  ou t .  While t h i s  a n a l y s i s  
is  no t  unique, i n  t h a t  va lues  of s e v e r a l  of t h e  ma t r ix  elements e n t e r i n g  
t h e  c a l c u l a t i o n  cannot be r e c i s e l y  determined, i t  does nonthe less  r e v e a l  
c e r t a i n  f e a t u r e s  of t h e  18'W l e v e l  scheme. Among these  a r e  t h e  fol lowing.  

Explanat ion of t h e  decay p r o p e r t i e s  of t h e  0' band a t  1322 keV 
appears t o  r e q u i r e  a nonzero E2 ma t r ix  element between t h i s  band and t h e  
y -v ib ra t iona l  band. I f  t h e  proposed assignment of t h e  425-keV y ray a s  
t h e  2,0+ + 3,2; t r a n s i t i o n  i s  c o r r e c t  and i f  i t  has a pure  ( o r  a t  l e a s t  
dominant) E2 m u l t i p o l a r i t y ,  t hen  t h e  magnitude of t h i s  i n t e rband  E2 
ma t r ix  element can be  i n f e r r e d .  It i s  found t h a t  t h i s  ma t r ix  element 
and t h e  coupling s t r e n g t h  between t h e s e  two bands a r e  comparable i n  
magnitude w i t h  those  connect ing t h e  ground-state and y -v ib ra t iona l  bands. 
This  behavior  and t h e  s t r o n g  p re fe rence  of t h e  1322-keV s t a t e  f o r  decay + + t o  t h e  y band r a t h e r  than t o  t h e  ground-state band [ B ( ~ 2 ; 0  +2 ) /  
B (E 2 ; O++?+) a r c  p r o p e r t i e s  expected f o r  a "2-phonon" B ib ra t ion  
wi th  K' LYO+,  a l though s e v e r a l  p r o p e r t i e s  of t h i s  0' band a r e  apparent ly  
n o t  c o n s i s t e n t  w i t h  such an i n t e r p r e t a t i o n .  

The y-band i s  no t  found t o  b e  s t rong ly  mixed w i t h  any of t h e  0' 
bands. This  conclusion c o n t r a d i c t s  t h e  c a l c u l a t i o n s  of Kumar and 
Barangerr9] ,  which p r e d i c t  s t r o n g  mixing between t h e  y -v ib ra t iona l  band 
and t h e  lowest  exc i t ed  O+ band i n  1 8 4 ~ .  

+ The 4,O s t a t e  a t  1358 keV, r epo r t ed  i n  (d ,d ' )  and (d,p) s t u d i e s ,  
l i e s  % 40 keV lower than  p red ic t ed  by ou r  a n a l y s i s .  No reasonable 
parameter choice can f i t  t h e  energ ies  of  a l l  t h r e e  members of  t h i s  band. 

The smallness  of t h e  E2 ma t r ix  elements connect ing t h e  ground-state 
band and t h e  exc i t ed  O+ bands sugges ts  t h a t  n e i t h e r  of  them can be 
regarded a s  be ing  predominantly I '  B v ib ra t ions" .  

A more d e t a i l e d  d i scuss ion  of t h e  f e a t u r e s  of  t h e  1 8 4 ~  l e v e l  scheme 
which have been found as  a r e s u l t  of t h e  p re sen t  d a t a  i s  given i n  a 
forthcoming paper  [ lo 1 . 
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TABLE I 

LEVELS I N  1 8 4 ~  AND THEIR MODES OF DE-EXCITATION DETERMINED 
FROM STUDIES OF THE ' 8 3 ~ ( n , y )  REACTION 

I n i t i a l  S t a t e  

Level 

De-excitina Trans i t ion  

Gamma- r ay Rela t ive  
energy b gamma-ray 

(keV) i n t e n s i t y a  

Final  S t a t e  

Level 
energy 
(keV) 1,~' 



TABLE I .(Cont .l 

1 n i t i a 1  S t a t e  

Level  
e n e r g y a s b  

(keV) I ,K" 

1431.01(5) 2,0+ 

De- exc i  t ing  T r a n s i t  ion  

Gamma-r gy Re la t i ve  
energy gamma-r ay 

(keV) i n t e n s i t y  a 

1430.97 8.5(6) 
1319.84 10.8(7) 
(424.36) 0.9(2) 

1412.05 7.3(5) 

1424.6 1*0 (25 )  
315.59 1.3(3)  . 

710.08 8.5(9) 
607.620 9.0(5)  

1503.74 6.9 (5) 
711.58 8.8(9) 

724.388 14.4 (7) 
241.46 0. 7(14)  

810.16 2.5(4) 

871.56 3.4(7) 
(769.44) 8.1(61d ' 

1808.54 2.3(5) 
1697.49 3.1(5) 
1444.50 2.7 (7) 

802.53 1.4(3)  
(678.17) 3.4(3) 
(586.94) 1 .5  (1s)  

F i n a l  S t a t e  

Level 
energy 
(keV) I,K' 



' TABLE I (Cont. ) 

.' I n i t i a l  S t a t e  De-exci t  in^ T r a n s i  t . ion F i n a l  S t a t e  

Leve l  Gamma-r y R e l a t i v e  Level  g energya,  energy gamma-raY a , energy 
(keV) I ,K" (keV) i n f  ens . i ty  (keV) I,K' 

a The uncertain tie.^ in t h e  l e a s t  s i g n i f i c a n t  f i g u r e s  a r e  i n d i c a t e d  i n  p a r e n t h e s e s .  
b 

P a r e n t h e s e s  around a  l e v e l  energy,  o r  a  y-ray energy ,  i n d i c a t e s  a  t e n t a t i v e  
ass ignment  . 

C P a r e n t h e s e s  a r e  used t o  i n d i c a t e  p r o b a b l e  s p i n  v a l u e s  o r  p robab le  l i m i t s  on 
t h e  s p i n  v a l u e s ,  and t h e  use  of t h e  symbol K i n d i c a t e s  t h a t  t h e  K quantum 
number is  unknown. 

Based upon t h e  l B 4 ~ e  decay data''' w e  would e s t i m a t e  t h a t  o n l y  (74k7)X of  
t h i s  i n t e n s i t y  r e s u l t s  from decay of t h e  1133-keV l e v e l ,  w i t h  t h e  b a l a n c e ,  
(26?7)%, be ing  e m i t t e d  i n  decay from t h e  1774-keV l e v e l .  

e 
T h i s  y-ray t r a n s i t i o n  can be  a s s i g n e d  as d e - e x c i t i n g  one o r  more a d d i t i o n a l  
states i n  1 8 4 ~ .  



Figure  1 Level  scheme f o r  1 8 4 ~  based upon t h e  1 8 3 ~ ( n , y )  r e a c t i o n  s t u d i e s  wi th  proposed grouping of s t a t e s  
i n t o  r o t a t i o n a l  bands. An arrow i n t o  a l e v e l  i n d i c a t e s  populat ion by primary y-ray t r a n s i t i o n s , .  
S o l i d  t r i a n g l e s  a s soc i a t ed  wi th  a  l e v e l  i n d i c a t e  t h a t  t h e  l e v e l  i s  populated by charged p a r t i c l e  
r eac t ions :  lower l e f t  i n d i c a t e s  (d,p) popula t ion ,  and lower r i g h t  i n d i c a t e s  ( d , d l )  populat ion.  
Open t r i a n g l e s  i n d i c a t e  t e n t a t i v e  assignments.  



NUCLEAR STRUCTURE STUDIES USING THE 25-keV 
NEUTRON BEAM FACILITY ON 'HFBR 

R. C. Greenwood 

The iron-aluminum f i l t e r  which has  been i n s t a l l e d  i n  t h e  H-1B beam 
of t h e  HFBR provides an i n t e n s e  (% l o6  neutrons/cm2-sec) beam of 25-keV 
neutrons.  Furthermore, t h e  beam is  q u i t e  monoenergetic, 'containing a 
< 3% component of h ighe r  energy neut rons .  Of s p e c i f i c  import t o  u s ,  
f o r  nuc lea r  s t r u c t u r e  s t u d i e s ,  i s  t h e  f i n i t e  energy spread i n  t h e  25- 
keV neut rons .  The 25-keV neut ron  d i s t r i b u t i o n  w i l l  have a FWHM ranging 
from 1.1-2.0 keV depending upon t h e  th ickness  of t h e  f i l t e r .  Hence, 

' f o r  t h e  higher-Z n u c l e i  no t  c l o s e  t o  c losed  s h e l l s ,  we expect  t h e  
r e s u l t a n t  cap tu re  y-ray s p e c t r a  t o  r ep re sen t  an  average over  many 
compound resonance s t a t e s .  Such averaging w i l l  thus  tend t o  smooth o u t  
t h e  Porter-Thomas s t a t i s t i c a l  f l u c t u a t i o n s  i n  t h e  i n t e n s i t i e s  of t h e  
primary t r a n s i t i o n s ,  thus  al lowing t h e s e  t r a n s i t i o n  i n t e n s i t i e s  t o  be  
r e l a t e d  t o  t h e  IT of  t h e  f i n a l  s t a t e s .  

Measurements which have been undertaken t o  d a t e  w i t h  t h i s  f a c i l i t y  
have been explora tory  i n  n a t u r e  and hence have i n t e n t i o n a l l y  dup l i ca t ed  
measurements we have previous ly  undertaken wi th  t h e  2-keV neut ron  beam 
of t h e  MTR. The purpose of t hese  measurements have i n  t h e  main been t o  
determine s e n s i t i v i t y ;  t h a t  i s ,  what sample s i z e s  a r e  needed t o  o b t a i n  
s p e c t r a  of s u i t a b l e  q u a l i t y  t o  e x t r a c t  u s e f u l  nuc lea r  s t r u c t u r e  i n fo r -  
mation. To t h i s . e n d ,  we have measured 25-keV neut ron  cap tu re  s p e c t r a  
from t a r g e t s  of n a t u r a l  gadolinium oxide  (% 100 g) , 8.8 g each of  
1 8 2 ~ 0 3  and l8  3~9, and n a t u r a l  tantalum. . Figure  1 shows a p o r t i o n  of 
t h e  spectrum of 8 2 ~ ( n , y )  ob ta ined  i n  a % 36-hr run us ing  a % 10 cm3 
i n t r i n s i c  Ge d e t e c t o r .  This  spectrum can be compared wi th  t h a t  ob ta ined  
us ing  2-keV neut rons  shown i n  Reference [ I ] .  A f t e r  a l lowing f o r  t he  
d i f f e r e n t  running times we conclude t h a t  t h e  s p e c t r a  a r e  of f a i r l y  
comparable q u a l i t y .  The prompt y-ray spectrum r e s u l t i n g  from capture  
of t h e s e  25-keV neut rons  i n  t h e  gadolinium sample is a l s o  shown i n  
F igure  2. This spectrum, wh i l e  i t  was obta ined  wi th  only a % 4 cm3 
Ge(Li) d e t e c t o r  having poor r e s o l u t i o n  ( i t  had been s i g n i f i c a n t l y  
neut ron  damaged), shows cons iderable  l i n e  s t r u c t u r e .  

[ l ]  R. C .  Greenwood and C .  W.  Reich, Nuclear Technolopy Divis ion  
Annual Progress  Report f o r  Per iod  Ending June 30, 1971, ANCR-1016 
(1971) 54. 
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Figure  2 Higher energy p o r t i o n  of t h e  prompt y-ray spectrum r e s u l t i n g  
from 25-keV neut ron  cap tu re  on a n a t u r a l  gadolinium t a r g e t .  



2 ~ a  CONVERSION ELECTRON STUDIES 

R. G. Helmer 

The internal-conversion-electron spectrum above 800 keV from t h e  
decay of  lE2Ta (115 d)  has been measured wi th  t h e  rfi e l e c t r o n  spec- 
t rometer .  A l i s t  of  t h e  l i n e s  observed and t h e  r e s o l u t i o n s  used i s  
given i n .  Table, I ,  

The 1 8 2 ~ a  source  used w a s  made by vacuum evapora t ion  of s t a b l e  
tan ta lum onto an 0.0003-in. t h i c k  aluminum backing w i t h  subsequent 
i r r a d i a t i o n  i n  a f l u x  of % 4 x 1014 n/cm2-sec f o r  Q 30 days. The 
e l e c t r o n  d a t a  were accumulated over  a pe r iod  of fou r  months of almost 
continuous ope ra t ion ,  

The 1 8 2 ~ a  source  is  q u i t e  t h i c k .  Severa l  low-energy ( i . e . ,  < 200 
keV) l i n e s  were measured i n  o r d e r  t o  proviae  information on t h e  source  
th i ckness .  An a t tempt  w i l l  beuade t o  t a k e  t h i s  t h i ckness  i n t o  account 
i n  t h e  a n a l y s i s  of t h e  da ta .  

TABLE I 

INTERNAL-CONVERSION-ELECTRON LINES MEASURED I N  DECAY OF. 2 ~ a  
(Lines f o r  t r a n s i t i o n s  below 300 keV a r e  fo r . i n fo rma t ion  on source  
th i ckness .  ) 

Gamma-Ray Gamma-Ray 
Energy Energy 

Resolution (keV) Lines Resolution (keV) Lines 



STUDIES OF CONTINUOUS ELECTRON SPECTRA 

R. G. Hughes['', R. G. Helmer 

I n  t h e  b e t a  decay process ,  a continuous spectrum of e l e c t r o n s  i s  
emit ted.  These s p e c t r a  a r e  o f t e n  composed of s e v e r a l  components, w i t h  
each one popula t ing  a d i f f e r e n t  s t a t e  i n  t h e  daughter nucleus.  The 
a n a l y s i s  of such s p e c t r a  involves  f o r  each component, t h e  de te rmina t ion  
of (1) t h e  r e l a t i v e  i n t e n s i t y  and (2) t h e  shape ( i . e . ,  t h e  energy 
dependent shape f a c t o r ) .  An a n a l y s i s  of  t hese  continuous s p e c t r a  i s  

2 

o f t e n  important f o r  t h e  de te rmina t ion  of abso lu t e  gamma-ray i n t e n s i t i e s  \ 

as  w e l l  a s  t h e  s tudy  of c e r t a i n  nuc lea r  s t r u c t u r e  p r o p e r t i e s .  

Continuous e l e c t r o n  s p e c t r a  measurements have been made f o r  3 2 ~ ,  
8 6 ~ b  and 1 2 4 ~ b  on t h e  i ron - f r ee  n& spectrometer .  The p o s i t r o n  spectrum 
from 8 4 ~ b  has a l s o  been measured. The 3 2 ~  sources were made both  by 
vacuum evaporat ion and by dry ing  t h e  s o l u t i o n .  Comparison of t h e  s p e c t r a  
of t hese  d i f f e r e n t  s o u r c e s . y i e l d s  information on t h e  e l e c t r o n  s c a t t e r i n g  
i n  the  sources .  The spectrum was a l s o  measured wi th  va r ious  source  
arrangements t o  determine t h e  magnitude of  t h e  e l e c t r o n  s c a t t e r i n g  from 
m a t e r i a l  i n  t h e  v i c i n i t y  of t he  sou rce ,  i nc lud ing  t h e  source  backing. 

The 8 4 * 8 6 ~ b  sources  were a l s o  made bo th  by dry ing  t h e  s o l u t i o n  and 
by vacuum evaporat ion.  The s p e c t r a  were measured a t  a r e s o l u t i o n  of 
0.3%. Sources of  1 2 4 ~ b  were made by vacuum evaporat ion of a 1 2 3 ~ b  
sample i r r a d i a t e d  % 15 days i n  t h e  ETR. Sources of  d i f f e r e n t  th ickness  
were made a s  a check on t h e  e l e c t r o n  s c a t t e r i n g  i n  t h e  source .  These 
sources  were mounted on 0.00003-in. t h i c k  aluminum f o i l .  For t h i s  t h i n  
backing, t h e  e l e c t r o n  s c a t t e r i n g  from t h e  backing should be  n e g l i g i b l e .  

The a n a l y s i s  of t h e s e  d a t a  i s  i n  progress .  

[ l ]  Graduate s tuden t  from Utah S t a t e  Univers i ty ,  Logan, Utah on AWU 
program. Current address:  Naval Research Lab, Ocean Technology 
Divis ion ,  Washington, D.C. 
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FISSION AND ACTIVATION PRODUCT INVENTORIES I N  
COMMERCIAL POWER REACTOR COOLANT, OFF-GAS AND WASTE SYSTEMS 

N .  C. Dyer, J .  E. Cline[ ' ' ,  R. L. Heath 

I n  conjunct ion w i t h  t h e  D i r e c t o r a t e  of Regulatory Operat ions of t h e  
USAEC, measurements have been made of t h e  rad ionucl ides  present\ i n  t h e  
coolant ,  off-gas and was te  systems of s i x  b o i l i n g  water  r e a c t o r s .  Pre- 
l iminary  measurements have been done a t  one p re s su r i zed  water  r e a c t o r .  
These p l a n t s  a r e  be ing  opera ted  i n  commercial power product ions.  The 
i n v e n t o r i e s  were taken a s  a p o r t i o n  of t h e  independent measurements 
program of Regulatory Operat ions t o  determine t h e  behavior  and l e v e l s  
of rad ionucl ides  i n  t h e  r e a c t o r  coolan t  and e f f l u e n t  systems. 

A l i s t  of  t h e  t y p i c a l  ~ a m p l e s  taken  f r o u  each BWR is  presented  i n  
Table I. The gamma rays emi t ted  by t h e s e  samples were measured over a 
per iod  of s e v e r a l  weeks t o  o b t a i n  information on rad ionucl ides  w i th  both 

- 

s h o r t  and long h a l f - l i v e s .  A h igh- reso lu t ion ,  l a r g e  volume, 4096-channel 
Ge(Li) gamma-ray spectrometer  w a s  t r anspor t ed  t o  each r e a c t o r  s i t e  f o r  
t h e  week dur ing  which samples were c o l l e c t e d .  This  enables  . t h e  c o l l e c t i o n  
of gamma-ray s p e c t r a  f o r  t he  measurement of t h e  shor t - l ived  rad ionucl ides .  
The samples and spec t rometer  were then  r e tu rned  t o  NRTS i n  o rde r  t o  
acqu i r e  d a t a  on t h e  longer- l ived spec i e s .  About 100 t o  130 gamma-ray 
s p e c t r a  were acqui red  from t h e  samples f o r  each BWR. These were analy e 
i n  t h e  ba tch  process  mode using t h e  computer a n a l y s i s  program Gauss V I  f 27 
t h a t  was developed a t  t h i s  l abo ra to ry .  Without t h e  use  of an automated 
ba t ch  process ing  a n a l y s i s  package, measurements such a s  t hese  would be 
very d i f f i c u l t  and time consuming. 

Some 40 f i s s i o n  and ac t iva t ion-product  rad ionucl ides  were quant i-  
t a t i v e l y  inven to r i ed  i n  t h e  measurements of  each BWR. The r e s u l t s  - a r e  
being used by Regulatory t o  eva lua t e  t h e  hazards  and t h e  r e l e a s e  r a t e s  
of b o i l i n g  water  r e a c t o r s .  For t h e  next  f i s c a l  yea r ,  measurements a r e  
planned f o r  s i x  ope ra t ing  PWR p l a n t s  designed by t h r e e  d i f f e r e n t  
manufacturers . 

[ 1 ] Present  address  : Nuclear Environmental Se rv i ces ,  Div. of JRB 
Associa tes , ,455  W. 17 th  S t r e e t ,  P. 0 .  Box 831, Idaho F a l l s ,  Idaho 
83401. 

[ 2 ]  J. E. Cl ine ,  M, H. Putnam and R. G. Helmer, Gauss V I ,  A.Computer 
Program f o r  t h e  Automatic Batch Analysis  of Gamma-Ray Spec t r a  from ' 

Ge(Li) Spectrometers ,  ANCR-1113 (1973). 



TABLE I 

1) 50-ml samples of primary coolant water 7' 

2) 100-ml sample of primary coolant water taken jus t  a f t e r  
s tar t -up of following re fue l ing  - fo r  "crud" analysis  1 

3 )  500-ml samples of steam (condensed i n  t he  sampling l i n e )  4 

4 )  500-ml samples of condensate water 4 

5 )  50-ml samples of water taken a t  t h e  i n l e t  t o  t h e  bypass 
o r  clean-up demineralizer 4 

6) 500-ml samples of water taken a t  t h e  o u t l e t  of  t h e  bypass 
demineralizer 4 

7 )  500-ml samples of water from the  ou t l e t  of t h e  full-f low 
demineralizer 4 

8) 500-ml samples of reac to r  feed water 4 

9 )  1000-ml samples of water tank e f f luen t  * 2 

10) 15-ml samples of off-gas from t h e  steam-get a i r  e j e c t o r  3 

11) 15-ml samples of off-gas a f t e r  delay l i n e  1 

12) 60.5-gm samples of by-pass demineralizer r e s i n  bed - jus t  
p r i o r  t o  regeneration - 2 

Total  Samples 40 



ASSISTANCE TO REGIONAL OFFICES OF AEC REGULATORY OPERATIONS 

[21 N. C .  Dyer, R.  G. Helmer, J. E. Cline" I ,  E. W. K i l l i a n  , 
R. J .  Gehrke, R. C. ~ a v i e s  L 2 ] ,  R. L. Heath 

.Regulatory Operat ions of t he  USAEC have f e l t  i t  would be advan- 
tageous i f  t h e i r  r eg iona l  o f f i c e s  could have t h e  c a p a b i l i t y  t o  make 
i n - f i e l d  r ad ionuc l ide  inven to r i e s  a t  nu l e a r  p l a n t  s i t e s  s i m i l a r  t o  

[ 37 an ongoing p r o j e c t  a t  t h i s  l a b o r a t o r y  . A s  a p i l o t  p r o j e c t ,  ANC and 
Brookhaven National  Laboratory have been a s s i s t i n g  t h e  Region I O f f i c e  
of AEC Regulatory Operat ions i n  t h e  implementation of a gamma-ray 
s p e c t r a l  a n a l y s i s  system which w i l l  be  housed i n  a mobile van. Our 
p a r t  of t h e  p r o j e c t  has been t o  provide  t h e  sof tware  programming f o r  
an e x i s t i n g  computer-analyzer system (HP 2114), purchase and c a l i b r a t e  
t he  Ge(Li) d e t e c t o r  and l i n e a r  a m p l i f i e r ,  i n t e g r a t e  t h e  d i f f e r e n t  
components i n t o  a working gamma-ray spec t rometer ,  p rovide  i n s t r u c t i o n  
t o  Region I personnel  i n  t h e  use  of t h e  system and provide ba t ch  process  
a n a l y s i s  f o r  some of t h e  s p e c t r a  c o l l e c t e d  through use of  Gauss VI[4].  

During t h i s  p a s t  f i s c a l  yea r ,  t h e  Ge(Li) d e t e c t o r  has  been obta ined  
and c a l i b r a t e d  p l u s  t h e  sof tware  packages have been w r i t t e n  and p a r t i a l l y  
t e s t e d .  It i s  a n t i c i p a t e d  t h a t  t h e  complete gamma-ray measurement and 
a n a l y s i s  system w i l l  b e  made o p e r a t i o n a l  and i n s t r u c t i o n  of Region I 
personnel  w i l l  be  completed dur ing  t h i s  next  yea r .  An a n a l y s i s  and 
measurement system such as t h i s  should prove very u s e f u l  t o  t h e  r eg iona l  
Regulatory o f f i c e s .  

[ l ]  . P r e s e n t  address :  Nuclear Environmental Se rv i ces ,  Div is ion  of JRB 
Associa tes ,  455 W. 17 th  S t r e e t ,  P.  0 .  Box 831, Idaho F a l l s ,  Idaho 
83401 

[2]  Members of Analysis  and Programming Branch, Technical  service;  
Div is ion ,  ANC . 

[ 3 ]  N. C. Dyer, J. E. Cl ine ,  R. L. Heath, "F iss ion  and Ac t iva t ion  
Product Inven to r i e s  i n  Commercial Power Reactor Coolant ,  Off-Gas 
and Waste Systems", t h i s  r e p o r t .  

[ 4 ]  J. E. Cl ine ,  M. H. Putnam and R. G. Helmer, Gauss V I ,  A Computer 
Program f o r  t h e  Automatic Batch Analysis  of Gamma-Ray Spec t r a  from 
'Ge(Li) Spectrometers ,  ANCR-1113 (1973). 
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NUCLEAR DATA GENERATION FOR FISSION-PRODUCT DECAY-HEAT STUDIES . 

C. W.  Reich, R. G. Helmer, R. C. Greenwood 

I n  r ecogn i t i on  of t h e  p r e s s i n g  need f o r  such d a t a  i n  a v a r i e t y  of 
r eac to r - r e l a t ed  a p p l i c a t i o n s ,  t h e  scope of ENDFIB has been expanded t o  
i nc lude  informat ion  on t h e  decay p r o p e r t i e s  of r a d i o a c t i v e  nuc l ides .  
Through our  p a r t i c i p a t i o n  i n  t h e  Decay-Heat Task Force of t h e  F iss ion-  
Product  Subcommittee of CSEWG, we have a major involvement i n  t h i s  



p r o j e c t .  The f i r s t  t a s k  w a s  t o  dec ide  upon t h e  d a t a  con ten t  of  t h i s  
f i l e .  A f t e r  cons ide ra t ion  of t h e  p o t e n t i a l  u s e r  a p p l i c a t i o n s  of  radio-  
a c t i v e  decay da t a , a  f i l e  conten t  w a s  proposed which should have app l i -  
c a b i l i t y  i n  a wide range of p r a c t i c a l  problems. This  proposed content  
w a s  adopted by CSEWG dur ing  i t s  May, 1973 meeting a t  Brookhaven National  
Laboratory.  

The cu r ren t  phase of t h i s  e f f o r t  is t h e  p repa ra t ion  f o r  i n c l u s i o n  
i n  ENDFIB-IV of c e r t a i n  n u c l i d e  decay d a t a  f o r  a s e l e c t e d  group of 
f i ss ion-product  nuc l ides  r e l e v a n t  t o  decay-heat c a l c u l a t i o n s  i n  reac. tor  
co re s .  These d a t a  i nc lude  f i s s i o n  y i e l d s ,  h a l f - l i v e s ,  decay ene rg i e s  
and average P- and y-ray ene rg i e s .  A l i s t  of  338 " p r i o r i t y "  nuc l ides  
f o r  which these  d a t a  are necessary  has  been drawn up by t h e  Decay-Heat 
Task Force. 

A t  p r e s e n t ,  we have completed a compilat ion of t h e  t o t a l  decay 
e n e r g i e s  ( i . e . ,  Qg va lues)  f o r  t h e s e  nuc l ides .  Experimental va lues  
have been taken p r imar i ly  from t h e  1973 r e v i s i o n  of t h e  Wapstra-Gove 
atomic-mass t a b l e s  [ I ]  a l though,  where such d a t a  have appeared suf  f i -  
c i e n t l y  r e c e n t l y  a s  n o t  t o  b e  included i n  t h i s  compilat ion,  t h e s e  
later d a t a  have been used. For t hose  nuc l ides  f o r  which no experimental  
d a t a  e x i s t ,  t he  Qg values  have been taken from t h e  p r e d i c t i o n s  of 
Garvey e t  a1.  [21 -- 

It has been found. t h a t  ( E d  and (5) values  can b e  der ived  from 
. experimental  d a t a  f o r  Q, 180 of t h e s e  p r i o r i t y 1 '  n u c l i d e s ,  and t h i s  d a t a  

compilat ion e f f o r t  is c u r r e n t l y  under way. For t h e  remaining Q 150 
n u c l e i ,  i t  w i l l  b e  necessary  t o  u se  t h e o r e t i c a l  cons ide ra t ions  t o  e s t i -  
mate t h e  ( E ~ )  and (Ey) va lues .  The major r e s p o n s i b i l i t y  f o r  t h i s  
p o r t i o n  of t h e  t a s k  has  been assumed by HEDL, al though some sugges t ions  
of p o s s i b l e  approaches t o  t h i s  problem have been made by ANC personnel .  

The major r e s p o n s i b i l i t y  f o r  t h e  p repa ra t ion  of t h e  f i s s i o n - y i e l d  
and h a l f - l i f e  d a t a  f o r  t h e s e  nuc l ides  has  been taken by personnel  a t  
o t h e r  l a b o r a t o r i e s ,  a l though ANC personnel  w i l l  have some involvement.  
i n  t h e  h a l f - l i f e  da t a .  The p r e s e n t  schedule  c a l l s  f o r  t h e s e  d a t a ,  i n  a 
form s u i t a b l e  f o r  pre l iminary  f i l e - e v a l u a t i o n  purposes,  t o  be  ready by 
t h e  l a t t e r  p a r t  of September, 1973. 

[ l ]  A. H. Wapstra and N. B. Gove, p r i v a t e  communication from N.  B. Gove 
(1973). . 

[ 2 ]  G. T. Garvey, 'w. J .  Gerace, R.  L .  J a f f e ,  I. Talmi and I. Kelson, 
Reviews of Modern Phy-sics 2, No. 4 ,  p a r t  I1 (1969). 



SPECTRUM CALCULATIONS FOR THE CFRMF 

D. A. M i l l s a p  

There  h a s  been a c o n t i n u i n g  e f f o r t  t o  improve knowledge of t h e  
n e u t r o n  spec t rum of t h e  Coupled F a s t  R e a c t i v i t y  Measurement F a c i l i t y  
(CFRMF) by way of c a l c u l a t i o n s .  Recent i n v e s t i g a t i o n s  have employed 
t h r e e  d i f f e r e n t  computer codes t o  c a l c u l a t e  t h e  CFRMF spectrum.  These 
were:  SCAMP [ I ] ,  a  one-dimensional t r a n s p o r t  code c o v e r i n  t h e  e n t i r e  f energy range ;  RAFFLE [21 ,  a  Monte c a r  l o  code; and RABBLE L 3  , 9 m u l t i -  
r e g i o n  resonance  a b s o r p t i o n  c r o s s  s e c t i o n  code.  The l a t t e r  codes were 
l i m i t e d  t o  d i s t i n c t  energy r a n g e s .  ' 

.SCAMP, a  one-dimensional Sn n e u t r o n  t r a n s p o r t  code was used L o  

c a l c u l a t e  t h e  CFRMF spectrum o v e r  t h e  f u l l  energy range  from thermal  t o  
10 MeV. S i n c e  t h i s  code i s  q u i t e  v e r s a t i l e  w i t h  many u s e f u l  o p t i o n s  and 
a  r e l a t i v e l y  s h o r t  computat ion t ime,  i t ' w a s  used a s  t h e  p r i n c i p a l  t o o l  
f o r  t h e  spectrum i n v e s t i g a t i o n s  p r e s e n t e d  h e r e .  A s p e c i a l  69-group 
l i b r a r y  was p repared  f o r  u s e  w i t h  SCAMP, u s i n g  t h e  c r o s s  s e c t i o n  code 
P H R O G [ ~ ] .  A l l  c r o s s  s e c t i o n s  were  d e r i v e d  from ENDFIB, Vers ion I11 d a t a  
excep t  f o r  t h o s e  of i r o n  which came from Vers ion 11. The group s t r u c t u r e  
used f o r  t h e  c a l c u l a t i o n s  is  g iven  i n  Tab le  I. A wide v a r i e t y  o f  ca lcu-  
l a t i o n s  was performed b o t h  t o  r e f i n e  t h e  geomet r ic  r e p r e s e n t a t i o n  o f  t h e  
model and t o  e v a l u a t e  t h e  e f f e c t s  of t h e  v a r i o u s  .assumptions made f o r  
t h e  codes b e i n g  used.  D e t a i l s  of t h e  model found t o  g i v e  t h e  b e s t  pos- 
s i b l e  r e p r e s e n t a t i o n  of t h e  CFRMF w i t h i n  t h e  l i m i t a t i o n s  of t h e  codes 
a r e  g iven  i n  Tab le  11. The SCAMP c a l c u l a t i o n  u s i n g  t h i s  model w a s  an 
e i g e n v a l u e  problem w i t h  a  s e m i - i s o t r o p i c  r e f l e c t i v e  bo ndary c o n d i t i o n  
a t  t h e  o u t e r  boundary. A c o n s t a n t  a x i a l  b u c k l i n g  of BY = 0.001769 was 
used f o r  a l l  r e g i o n s .  The f u l l  c o r e  l o a d i n g  f o r  t h e  CFRMF cou ld  n o t  be  
r e p r e s e n t e d  by SCAMP due t o  computer c o r e  s t o r a g e  l i m i t a t i o n s .  The par-  
t i c u l a r  dimension of t h e  o u t e r  boundary g iven  i n  Tab le  ,I1 was a n  a r b i -  
t r a r y  c h o i c e ,  s e l e c t e d  on ly  because  i t  gave a n  e i g e n v a l u e  c l o s e  t o  1 .0 .  
A s e r i e s  of o u t e r  boundary dimensions w a s  t e s t e d  and gave e i g e n v a l u e s  
rang ing  from 0'.96 t o  1 .07 ;  however, t h e  c e n t r a l  f l u x  spec t rum was n o t  
s i g n i f i c a n t l y  e f f e c t e d  by such changes.  

The Monte Car lo  Code RAFFLE was used t o  c a l c u l a t e  f l u x e s  o v e r  t h e  
energy range  15.0  keV t o  10 M ~ V .  The purpose  of t h e  RAFFLE c a l c u l a t i o n  
was t o  examine a s  c a r e f u l l y  a s  f e a s i b l e  t h e  r e s i d u a l  e f f e c t s  of t h e  
resonances  of '  t h e  aluminum and oxygen con ta ined  in  t h e  the rmal  d r i v e r  
on t h e  c e n t r a l  f l u x e s  of t h e  CFDIF. The b a s i c  geomet r ic  model used f o r  
t h e  RAFFLE c a l c u l a t i o n  i s  i d e n t i c a l  t o  t h a t  of t h e  SCAMP c a l c u l a t i o n s  
whose d e t a i l s  a r e  g iven  i n  T a b l e  11. C e r t a i n  p o s s i b l e  d e f i c i e n c i e s  of 
t h e  c a l c u l a t i o n a l  model o r  of t h e  code i t s e l f  were examined u s i n g  SCAMP 
i n  o r d e r  t o  e v a l u a t e  t h e i r  approximate  e f f e c t  on t h e  RAFFLE genera ted  

' 

spectrum.  A p rev ious  RAFFLE c a l c u l a t i o n [ 5 ]  used a  s p a t i a l l y  c o n s t a n t  
, f i x e d  s v u r c e  i n  t h e  r e a c t o r  f u e l  r e g i o n .  It w a s  found t h a t  a  SCAMP 

problem w i t h  a  uniform f i x e d  s o u r c e  gave s i g n i f i c a n t l y  d i f f e r e n t  f l u x e s  
from t h o s e  of t h e  e i g e n v a l u e  problem. It was f o r  t h i s  r e a s o n  t h a t  t h e  
f u e l  r e g i o n s  were  s p l i t  i n t o  s e v e r a l  s u b r e g i o n s .  S u i t a b l e  volume- 
averaged s o u r c e s  f o r  t h e  f u e l  c o n t a i n i n g  r e g i o n s  were  determined from 



SCAMP and used i n  t h e  cor responding  r e g i o n s  i n  t h e  RAFFLE problem. The 
r e l a t i v e  volume-integrated s o u r c e s  used a r e  g iven  i n  Tab le  111. Other  
d e f i c i e n c i e s  were found t o  b e  of r e l a t i v e l y  minor importance.  The 
p r e v i o u s  RAFFLE problem used p o i n t w i s e  e l a s t i c  s c a t t e r  c r o s s  s e c t i o n s  
f o r  aluminum and oxy en. For t h i s  c a l c u l a t i o n ,  p o i n t w i s e  a b s o r p t i o n  
c r o s s  s e c t i o n s  f o r  l f B  were added t o  e l i m i n a t e  any p o s s i b l e  f l u x  
smoothing e f f e c t  due t o  t h e  group-averaged c r o s s  s e c t i o n  of t h i s  i s o t o p e .  
Also,  t-he s o u r c e  spec t rum was i n p u t  u s i n g  a  0.125 l e t h a r g y  group 
s t r u c t u r e .  

A spec ' i a l  v e r s i o n  of t h e  computer code RABBLE was used t o  c a l c u l a t e  
f l u x e s  o v e r  t h e  energy r a n g e  from 0.876 e V  t o  52.5 keV. Among o t h e r  
f e a t u r e s ,  t h i s  code g i v e s  group-averaged c r o s s  s e c t i o n s  f o r  t h e  resonance  
energy r a n g e  u s i n g  s p a c e  and l e t h a r g y  dependent s lowing  down s o u r c e s .  
Extremely f i n e  group f l u x e s  a r e  c a l c u l a t e d  i n  o r d e r  t o  r e p r e s e n t  t h e  
r e s o n a n c e  a b s o r p t i o n  p r o p e r l y .  M o d i f i c a t i o n s  were.made t o  t h e  code 
which a l lowed a  g r e a t e r  number of b road  groups and r e g i o n s ,  unreso lved  
resonance  s u b r o u t i n e s  were added, and a prov i s io r l  t o  o u t p u t  t h e  f i n e  
group f l u x e s  on magnet ic  t a p e  was i n c o r p o r a t e d .  A r o u t i n e  was then  
programmed t o  p l o t  t h e  f i n e  group f l u x e s  from t a p e .  Examination o f , f i n e  
group f l u x ,  p l o t s  cou ld  t h e n  presumaljly show t h e  pres 'ence of "holes"  o r  
"windows" n o t  s e e n  by t h e  SCAMP c a l c u l a t - i o n  w i t h  i t s  much broader  group 
s t r u c t u r e .  

A c a l c u l a t j . o n  was performed u s i n g  t h e  r e v i s e d  RABBLE code and a  
geomet r fc  r e p r e s e n t a t i o n  which i n c o r p o r a t e d  t h e  i d e n t i c a l  major m a t e r i a l  
boundar ies  and atom d e n s i t i e s  of t h e  SCAMP problems d e s c r i b e d  above. 
D e t a i l s  o f  t h i s  model a r e  g iven  i n  Tab le  I V .  The broad group s t r u c t u r e  
used  i s  t h e  same a s  t h a t  of t h e  SCAMP ( s e e  T a b l e  I )  f o r  groups 22 
th rough  65. Each broad group had 250 f i n e  groups of e q u a l  l e t h a r g y  
w i d t h ,  making a  t o t a l  of 1000 f i n e  groups p e r  u n i t  l e t h a r g y .  

The r e s u l t s  of t h e  v a r i o u s  c a l c u l a t i o n s  u s i n g  SCAMP, RAFFLE and 
RABBLE a t e  p r e s e n t e d  i n  F i g u r e s  1-6. F i g u r e  1 g i v e s  t h e  CFRMF f l u x  
c a l c u l a t e d  u s i n g  an  S8 SCAMF f o r  t h e  energy range  3.06 e V  t o  1 0  M e V .  
For  e n e r g i e s  below 3.06 eV (group-, 6 0 ) ,  t h e  f l u x  c o n t i n u e s  t o  d rop  o f f  
v e r y  s t e e p l y  and a p p e a r s  t o  b e  of l i t c l e  s i g n i f i c a n c e  f o r  a c t i v a t i o n  
c a l c u l a t i o n s .  F i g u r e  2  compares t h i s  t r a n s p o r t  c a l c u l a t i o n  w i t h  a  
p r e v i o u s  44-g.roup d i f  £us  i o n  t h e o r y  c a l c u l a t i o n  which used t h e  computer 
code  MONA[^] ., The s i g n i f  i c a n r l y  h i g h e r  f l u x e s  o f  t h e  t . ranspor t  ca lcu-  
l a t i o n  a t  e n e r g i e s  below 1 . 0  keV r e s u l t  l a r g e l y  from a  change i n  t h e  
PHROG code which p r e p a r e s  t h e  group-averaged c r o s s  s e c t i o n s .  No resonance 
c a l c u l a t i o n  was made f o r  t h e  e l a s t j c  s c a t t e r  c r o s s  s e c t i o n s  i n  t h e  e a r l i e r  
c a l c u l a t i o n .  Thus,  t h e  e l a s t i c  s c a t t e r  c r o s s  s e c t i o n s  were i n f i n i t e  
d i l u t e  and t h e  d i f f u s i o n  c o n s t a n t s  f o r  t h e  uranium b lock  were g r e a t l y  
d i s t o ' r t e d .  The SCAMP c r o s s  s e c t i o n  l i b r a r y  was .prepared by t h e  r e v i s e d  
PHROG code and t h e  spec t rum change i n  t h e  SCAMP c a l c u l a t i o n  r e l a t i v e  t o  
t h e  o l d e r  c a l c u l a t i o n  i s ,  a t  l e a s t  i n  p a r t ,  a d i r e c t s - r e s u l t  of t h i s  
change.  F i g u r e  3 compares t h e  SCAMP spec t rum w i t h  t h e  p r o t o n - r e c o i l  
measurement c o a l e s c e d  t o  a  s imilar  l e t h a r g y  s t r u c t u r e .  As i n  p r e v i o u s  
work,  t h e r e  a r e  s i g n i f i c a n t  d i f f e r e n c e s  between t h e  measurement. and t h e  , 

c a l c u l a t i o n ,  p a r t t c u l a r l y '  a t  t h e  groups  cor responding  t o  e n e r g i e s  of 
1 . 0  MeV, 225 keV, and 90 keV. For some t ime  i t  h a s  been s u s p e c t e d  t h a t  



t h e s e  d i f f e r e n c e s  might r e s u l t  because  of t h e  smoothing e f f e c t  of t h e  
c r o s s  s e c t i o n  p r o c e s s i n g  codes on t h e  resonances  of aluminum and oxygen. 
Howeve.r, t h e  Monte C a r l o  approach,  w i t h  p o i n t w i s e  c r o s s  s e c t i o n s  f o r  
most of t h e  m a t e r i a l s  expec ted  t o  b e  c o n t r i b u t i n g  t o  a  f lux-smooth ing '  
e f f e c t  (aluminum and oxygen e l a s  t i c  s c a t t e r  , 1 0 ~  a b s o r p t i o n ) ,  shows on ly  
minor d i f f e r e n c e s  from t h e  SCAMP c a l c u l a t i o n  ( F i g u r e  4 ,  SCAMP v s .  RAFFLE). 
The low energy broad-group f l u x  spectrum c a l c u l a t e d  by RABBLE i s  p l o t t e d  
w i t h  t h a t  of SCAMP i n  F i g u r e  5. The g e n e r a l  p r o f i l e  of t h e  broad-group 
c e n t r a l  f l u x e s  of t h e  two c a l c u l a t i o n s  compare v e r y  w e l l  over  t h e  energy 
range  from 3.93 eV t o  15.0  keV. It i s  t h e r e f o r e  p l a u s i b l e  t o  assume 
t h a t  t h e  f ine-group f l u x e s  of t h e  RABBLE c a l c u l a t i o n  (shown i n  F i g u r e  6 )  
p r e s e n t  a f a i r l y  r e a s o n a b l e  p i c t u r e  of t h e  f l u x  d i s t r i b u t i o n  of t h e  
CFRMF over  t h i s  energy range .  The s t r u c t u r e  i n  F i g u r e  6  c l e a r l y  i n d i -  
c a t e s  t h e  e f f e c t s  of t h e  r e s o l v e d  resonances  p r e s e n t  i n  t h e  ENDFIB 
Vers ion I11 d a t a .  Below 80 keV, t h e  i n f l u e n c e  of t h e  2 3 5 ~  r e s o l v e d  
resonances  a r e  superimposed on t h e  much broader  f l u x  s t r u c t u r e  produced 
by t h e  2 3 8 ~ .  The f ine-group f l u x  c a l c u l a t i o n  shows t h a t  t h e r e  a r e  no 
impor tan t  windows i n  t h e  f l u x .  

Because of t h e  g e n e r a l  agreement between t h e  r e s u l t s  o f  t h e  wide ly  
v a r y i n g  approaches  one can conc lude  t h a t  t h e  69-group f l u x  spec t rum 
g iven  by SCAMP is  a s  good a  r e p r e s e n t a t i o n  of t h e  CFRMF spectrum a s  can 
b e  c a l c u l a t e d  w i t h  t h e  e x i s t i n g  c r o s s  s e c t i o n  s e t s .  Any f u r t h e r  improve- 
ments i n  t h e  c a l c u l a t e d  f l u x  spec t rum w i l l  probably  o r i g i n a t e  p r i m a r i l y  
from changes i n  c r o s s  s e c t i o n s  r a t h e r  t h a n  from m o d i f i c a t i o n s  of t h e  
c a l c u l a t i o n  p rocedures .  

[ l ]  C.  E. Beck, "Sn Codes f o r  t h e  Ana lys i s  of Mult igroup Problems", 
Beck-2-68A, Idaho Nuclear  i n t e r o f f i c e  correspondence.  
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Purpose  Monte C a r l o  Code, ANCR-1022 ( A p r i l  1973) .  
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TABLE I 

BASIC GROUP STRUCTURE 

Group 
Numb e r  

Lower 
Lethargy 

Lower 
Energy (eV) 

Group 
Number 

Lower 
Lethargy 

Lower 
Energy (eV) 



TABLE I1 

DETAILS OF MODEL USED FOR SCAMP AND RAFFLE CALCULATIONS 

Region 
Numb e r  

Outer  
Radius (cm) 

M a t e r i a l  
D e s c r i p t i o n  

I s o t o p e s  Atom Dens i t  ies 
Contained ( ~ m - ~  x 

Void 

Chromium 0.0174285 
Manganese 0.0017947 
I r o n  0.0580747 
Nicke l  0.0081239 

S t a i n l e s s  S t e e l  
Type 304 
Dry Tube 
and Cladding 

Uranium S l e e v e  

Same a s  Region 2 S t a i n l e s s  S t e e l  
Type 304 Cladding 

' O  oro on 0.0732773 ' 'Boron 0.0068255 
Enriched Boron 
S l e e v e  

S t a i n l e s s  S t e e l  
Type 304 Cladding 

Same a s  Region 2 

Uranium Block 

Same a s  Region 7 Uranium Block 

Uranium Block Same a s  Region 7 

Same a s  Region 7 Uranium Block 

Uranium Block Same a s  Region 7 

Carbon 0.0087848 
Aluminum 0.0361511 ' O ~ o r o n  0.0069505 
.ll  oro on 0.0281886 

Boral  
Thermal Neutron 
F i l t e r  

Same a s  Region 2 S t a i n l e s s  S t e e l  
Type 304 
Assembly Housing 

Hydrogen 0.0274447 
O ~ Y  gen 0.0137223 
Aluminum 0.0354132 
2 3 5 ~ r a n i u m  4.76406 x 
2 3 8 ~ r a n i u m  2.82833 x 

Water Annulus 
S ide  P l a t e s  and 
Reactor  Fue l  



TABLE I1 (Cont .) 

Region Outer  M a t e r i a l  
Number Radius (cm) D e s c r i p t i o n  

1 5  9.96967 Water Annulus 
S i d e  P l a t e s  and 
Reac to r  Fue l  

1 6  10.4221975 Homogenized 
Reac to r  F u e l  

17  10.984725 Houiogenized ' 

Keactor F u e l  

I s o t o p e s  Atom D e n s i t i e s  
Contained ( ~ m - ~  x 

Same a s  Region 1 4  

Hydrogen 0.0430022 
O ~ Y  gen 0.0215001 
A 1  uminum 0.0212863 
2 3 5 ~ r a u i u m  1.14407 x l r 7  
' 3 8 ~ r a n i u m  6.79208 x 10'~ 

Same a s  Region 1 6  

1 8  11.77978 Homogenized Same a s  Region 1 6  
Reactor  Fue l  

19 12.684835 Homogenized Same a s  Region 1 6  
Reac to r  Fue l  

20 15.40 Homogenized Same as Region 1 6  
Reactor  Fuel 



T H I S  PAGE 

W A S  INTENTIONALLY 

L E F T  BLANK 



TABLE I11 . 

RELATIVE VOLUME INTEGRATED SOURCES 

By Region 

Region 
Number Desc r ip t i on  

Uranium Sleeve  

Uranium Block 

Uranium Block 

Uranium Block 

Uranium Block 

Uranium Block 

Water Annulus, 

Side P l a t e s ,  Reactor  Fuel 

Homogenized Reactor  Fuel  

Homogenized Reactor  Fuel  

Homogenized Reactor  Fue l  

Homogenized Reactor  Fuel 

Homogenized Reactor Fue l  

R e l a t i v e  
Source 



TABLE I V  

DETAILS OF MODEL USED FOR RABBLE CALCULATION* 

Region Outer  
Number Radius ( c m )  M a t e r i a l  D g s c r i p t i o n  

1 1.95393 Void 

2 2.12344 S t a i n l e s s  S t e e l  

3 2.21996 Uranium Sleeve  

' 4  2.29997 S t a i n l e s s  S t e e l  

5 2.65049 Enriched Boron S leeve  

6 2.69748 S t a i n l e s s .  S t e e l  

7 4.894992 Uranium Block 

8 7.092504 Uranium Block 

9 8.19126 Uranium Block 

10 . 8.97083 . Bora l  

11 ' . 9.3291 S t a i n l e s s  S t e e l  

12 9.96967 Water Annulus, S i d e  P l a t e s  and Reac to r  Fue l  

1 3  15.40 Homogenized Reac.tor F u e l  

* I s o t o p e s  con ta ined  i n  t h e  v a r i o u s  m a t e r i a l s  and t h e i r  atom d e n s i t i e s  
a r e  t h e  same as f o r  SCAMP and RAFFLE, shown i n  T a b l e  11. - . 
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Figure  1 CPKMP C e n t r a l  F l u x  as C a l c u l a t e d  by SCAMP. 
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Calculated by SCAMP 

--------- Calculated by MONA' 
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F i g u r e  2 CFRMF C e n t r a l  Flux:  A comparison of c a l c u l a t i o n s  by SCAMP 
and MONA. 
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Figu re  3 CFRMF C e n t r a l  Flux: A comparison of SCAMP c a l c u l a t i o n  wi th  p ro ton - r eco i l  measurement. 
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- Calculated by SCAMP 

- - - - -  -- Colculoted by RAFFLE 

F i g u r e  4 CFRMF C e n t r a l  Flux:  A comparison of c a l c u l a t i o n s  by SCAMP and RAFFLE. 



F i g u r e  5 CFRMF C e n t r a l  F lux :  A comparison of c a l c u l a t i o n s  by SCAMP 
and RABBLE. 
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FISSION PRODUCT ISOTOPE REACTIVITY MEASUREMENTS I N  CFRMF 

J.  W.  Rogers, I. E. Stepan. 

Reac t iv i ty  measurements i n  t h e  c e n t e r  of CFRMF have been made wi th  
f i s s i o n  product  i s o t o p e  samples of samarium, molybdenum and zirconium. 
These measurements were made t o  t e s t  c r o s s  s e c t i o n  s e t s  on an i n t e g r a l  

, b a s i s  i n  t h e  CFRMF neut ron  spectrum. The comparison of t h e  measurements 
and c a l c u l a t i o n s  provides a check on a l l  t he  nuc lea r  r e a c t i o n s  which 
produce r e a c t i v i t y  e f f e c t s  and a l so . checks  t h e  adequacy of c a l c u l a t i o n a l  
techniques.  These t e s t s  on f i s s i o n  product  i so topes  a r e  important  because 
f o r  most f i s s i o n  products  only c a l c u l a t e d  c ros s  s e c t i o n s  e x i s t  i n  t h e  
energy range important  t o  LMFBR's and have no t  been checked a g a i n s t  any 
type  of measurement. C o r r e l a t i v e  measurements have a l s o  been made w i t h  
s tandard  and c o n t r o l  m a t e r i a l s  of gold, i o d i n e ,  enr iched  uranium, boron 
and europium. Measurements were made wi th  water  which were necessary 
f o r  c o r r e c t i o n  purposes.  

The i s o t o p i c a l l y  enr iched  sample ma te r i a l s  were obtained from t h e  
s t a b l e  i so topes  pool  a t  ORNL and t h e  s t anda rds  and c o n t r o l  m a t e r i a l s  
were purchased commercially. Samples of t hese  m a t e r i a l s  were prepared 
by vibra-compaction of t h e  m a t e r i a l  i n t o  s t a i n l e s s  s t e e l  capsules ,  These 
capsules  a r e  c y l i n d r i c a l  shaped w i t h  a sample l e n g t h  of 14.2 cm and wi th  
. ins ide  diameters  of 1.27 cm, 1.9 cm, 2.54 cm and 3.175 cm. These capsules ,  
w i t h  volumes of 16.4 cm3, -36.9 cm3, 65.6 cm3 and 102.5 cm3, a r e  designed 
t o  be  ~ e l f ~ p o s i t i o n i n g  a t  t h e  cen te r  of t h e  CFRMF by having end caps of 
t h e  app ropr i a t e  diameter .  The samples of d i f f e r e n t  s i z e s  were made s o  
t h a t  t h e  e f f e c t s  of sample s i z e  on r e a c t i v i t y  could be  i n v e s t i g a t e d .  

Most of t h e  i s o t o p i c a l l y  enr iched  samples were of t h e  oxide form 
and due t o  t h e  hygroscopic n a t u r e  of ox ides ,  mois ture  accumulation is  
common. Small p o r t i o n s  of t h e  samples used h e r e  have been checked by 
i g n i t i n g  them below v o l i t i z a t i o n  temperature and have been found t o  
con ta in  moisture.  Table I l ists  t h e  oxide  samples, t h e i r  enrichment 
and t h e  percent  weight l o s s  due t o  i g n i t i o n .  

TABLE I 

ISOTOPICALLY ENRICHED OXIDE SAMPLE MATERIALS 

Mate r i a l  % Enrichment 

9 0 ~ r ~ 2  97.85 
I ~ r 0  89.31 

g2zro2 95.36 . 
9'.' zro2 96.07 

*MOO 97.30 
1 4 7 ~ m 2 ~ 3  98.34 
149sm 0 

2 3 97.72 
lS2sm203 98.29 
lS4sm20 3 98.69 

% Weight Loss 

2.39 (2 .24) [a1  
0.37 
0.091 
0.21 
0.084 
2.82 
0.874 
2.37 
4.08 

[ A ]  r1etermi.ned a t  ORNT, frnm t h e  e n t i r e  sample, 



Because of t h e  mois ture  contained i n  t h e s e  samples i t  was necessary 
t o  e i t h e r  remove t h e  mois ture  from t h e  samples o r  t o  c o r r e c t  t h e  r eac t iv -  
itied f o r  t h e  e f f e c t  due t o  mois ture .  Because of t h e  problems of dry ing  
t h e  samples and keeping them dry wh i l e  loading  them, c o r r e c t i o n s  f o r  t h e  
mois ture  were determined by measuring t h e  r e a c t i v i t y  e f f e c t  of t h e  moisture.  
This  was accomplished by us.ing S i02  a s  a  c a r r i e r  f o r  amounts of moisture 
over  t h e  range contained by t h e  samples t o  be  co r r ec t ed  and measuring t h e  
r e a c t i v i t y  e f f e c t  of t h e  moisture.  The r e s u l t s  of  t h i s  "moisture c a l i -  
b r a t i o n "  a r e  presented  g raph ica l ly  i n  F igure  1. Tes t s  a l s o  showed t h i s  
c a l i b r a t i o n  app l i cab le  t o  a l l  sample s i z e s  used i n  t h e s e  measurements. 
Measurements t o  determine t h e  r e a c t i v i t y  e f f e c t s  of  normal d e n s i t y  water 
were a l s o  made and t h e s e  r e s u l t s  a r e  shown i n  F igure  2. For normal dens i ty  
wa te r  t h e  sample s i z e  e f f e c t ' i s  observed due t o  s e l f - sh i e ld ing .  

Reac t iv i ty  measurements have been made wi th  m a t e r i a l s  be ing  considered 
f o r  s t anda rds .  Gold was considered because of  i t s  w e l l  known cross-sec t ion  
and i t s  f requent  u se  as a s t anda rd ,  i o d i n e  because of i t s  l o c a t i o n  on t h e  
atomic mass s c a l e  i n - r e l a t i o n  t o  most f i s s i o n  products  and i t s  smooth 
shaped cross-sec t ion  i n  t h e  energy reg ion  of i n t e r e s t  and 2 3 5 ~  because of 
i t s  . f u e l s  s tandard  r ecogn i t i on .  

Gold metal  powder (99.999% pure)  and gold oxide  powder (99.99% pure)  
w e r e  used as sample m a t e r i a l s  t o  g e t  t h e  r e a c t i v i t y  e f f e c t  of gold and 
oxygen. The gold oxide  measurements had t o  b e  co r r ec t ed  f o r  a mois ture  
content  of 2.36% by weight.  R e l a t i v e  t o  t h e  gold metal  powder samples 
no r e a c t i v i t y  e f f e c t  due t o  t h e  oxygen i n  t h e  gold oxide samples was 
observed. Elemental i od ine  (99.9% pure)  w a s  used f o r  t h e  iod ine  samples. 
U02 powder wi th  t h e  uranium enr iched  t o  93% was used f o r  t h e  2 3 5 ~  samples 
and t h i s  m a t e r i a l  was n o t  checked f o r  mois ture  content .  The r e s u l t s  from 
t h e  measurements of t h e s e  samples a r e  shown i n  F igure  3 .  

The measurements w i t h  t h e  i s o t o p i c a l l y  enr iched  samples have been 
c o r r e c t e d  f o r  mois ture  content  as descr ibed  above. To t e s t  t h e  v a l i d i t y  
o f .  t h e s e  mois ture  c o r r e c t i o n s ,  two of t h e  samples w i th  d i f f e r e n t  mois ture  
concent ra t ions  were f i r e d  a t  8000C and t h e i r  changes i n  weights  and 
r e a c t i v i t y  worths were checked a g a i n s t  t h e  mois ture  c a l i b r a t i o n  c o r r e c t i o n s  
determined from sma l l  p o r t i o n s  of t h e  sample ma te r i a l .  The r e s u l t s  were 
i n  exce l len t ' agreement  i n  t h a t  they agreed w e l l  w i t h i n  t h e  2% u n c e r t a i n t i e s  
ass igned  t o  t h e  r e s u l t s .  Based on t h e  gold oxide  measurements, i t  i s  
assumed t h a t  t h e  oxygen contained i n  t h e  oxide  samples does n o t  produce 
a  measurable r e a c t i v i t y  e f f e c t .  The non-oxide samples have been assumed 
t o  b e  f r e e  of moisture.  Table I1 summarizes t h e s e  r e s u l t s  a long  wi th  t h e  
s tandards .  The es t imated  combined u n c e r t a i n t i e s  on t h e  sample weights  
and t h e  r e a c t i v i t y  measurements are Q, +-2% f o r  each sample. Where correc-  
t i o n s  a r e  made f o r  mois ture  i n  t h e  samples, t h e  u n c e r t a i n t i e s  a r e  e s t i -  
mated t o  b e  a s  much as 25% where very l a r g e  c o r r e c t i o n s  a r e  necessary.  
Most sets of  samples of t h e  'same m a t e r i a l  show no s t a t i s t i c a l l y  s i g n i f i -  
c a n t  sample s e l f - s h i e l d i n g  b u t  some show t r ends  toward t h i s  e f f e c t .  The 
9 8 ~ 0  s o l i d  metal  sample has a dens i ty  of 8.61 g/cm3 where t h e  9 8 ~ 0  i n  t h e  
oxide  form has a dens i ty  of  only 0.534 g/cm3 which may account  f o r  t h e  
disagreement between t h e s e  samples.  



Control  m a t e r i a l s  of i n t e r e s t  t o  LMFBR's have been measured t o  
compare t h e i r  r e a c t i v i t y  worths  i n  t h e  CFRMF neut ron  spectrum. These 
measurements were made i n  t h e  same manner as those  mentioned above. 
Samples of enr iched  boron metal  powder (99% pure) n a t u r a l  boron ca rb ide  
(99.9% pure)  and europium oxide  (99% pure) were measured and t h e  r e s u l t s  
a r e  presented  g raph ica l ly  i n  F igure  4 and a r e  t abu la t ed  i n  Table 111. 
The europium oxide  r e s u l t s  have been co r rec t ed  f o r  a  mois ture  content  of 
3.49% by weight.  

TABLE I1 

CF'RMF REACTIVITY IJORTHS OF FISSION PRODUCT ISOTOPES AND STANDARDS 

Reactivity per Gram [a] 
of Four Sample Diameters (pk) 

Material (% Enrichment) 1.27 cm 1.9 cm 2.54 cm 3.175. cm 

[a] Grams of the metallic component of the sample material. 
[b] Solid metal sample 2.159 ca diameter x 2,108 cm longth, 



TABLE I11 

REACTIVITY WORTHS 'OF CONTROL MATERIALS I N  CFRMF 

Reac t iv i ty  pe r  G r a m  
of Four sample Diameters ( ~ k )  

Mate r i a l  (% Enrichment) 1.27 cm 1.9 cm 2.54 cm 3.175 cm 

The es t imated  u n c e r t a i n t i e s  on t h e s e  r e a c t i v i t i e s  a r e  aga in  % 52.0%. 
The sample s i z e  s e l f - s h i e l d i n g '  e f f e c t s  a r e  c l e a r l y  observable  i n  t h e s e  
r e s u l t s  where c ross -sec t ions  a r e  much l a r g e r .  I n  i n t e r p r e t a t i o n  of t hese  , 

measurements r e l a t i v e  t o  some o t h e r  r e a c t o r  environment, t h e  r e l a t i v e  
r e s u l t s  might b e  very  d i f f e r e n t  due t o  t h e . n e u t r o n  energy d i s t r i b u t i o n  - ' 

and importance func t ion  ( a d j o i n t  f l u x ) .  

Grams o f  n20  

Figure 1 Measured ; e a c t i v i t y  e f f e c t  of moisture i n  CFRMF. 
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Figu re  2 Measured r e a c t i v i t y  e f f e c t  of normal d e n s i t y  wate r  i n  CFRMF. 
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Grams of Sample Moterial 

F i s u r e  3 Measured r e a c t i v i t y  e f f e c t s  of  s t a n d a r d  m a t e r i a l s  i n  CFRMF. 



F i g u r e  4 

4 0  8 0  120 160 200  

Grams o f  Material 

Measured r e a c t i v i t y  e f f e c t s  of  c o n t r o l  m a t e r i a l s  i n  CFRMF. 



DOSIMETRY REACTION RATE MEASUREMENTS I N  CFRMF 

J .  W. Rogers 

React ion r a t e s  from f o i l s  of s e l e c t e d  m a t e r i a l s  i r r a d i a t e d  i n - t h e  
CFRMF neut ron  spectrum have been obta ined  by gamma-ray spectrometry 
measurements and a c t i v a t i o n  ana lyses .  This  work was done i n  suppor t  of 
t h e  In t e r l abo r , a to ry  LMFBR React ion Rate Program (ILRR) t o  compare 
a c t i v a t i o n  ana lyses  from va r ious  l a b o r a t o r i e s  and t o  improve f a s t  
neut ron  induced r e a c t i o n  r a t e  measurement techniques and accuracy. It 
i s  a l s o  intended t o  improve and perhaps ~ t a n d a ~ d i z e  nuc lea r  parameters 
involved i n  the measurement of neutron f l u x  and s p e c t r a .  This  i s  
. important because of t h e  r educ t ion  of u n c e r t a i n t i e s  i n  design and 
a n a l y s i s  of ' leactors  a s  t hese  techniques a r e  made more r e l i a b l e .  

The gamma-ray spectrometry measurements were made wi th  a  7.62 cm x 
7.62 crn NaI(TR) c r y s t a l  d e t e c t o r  w i th  a  source-to-detector  d i s t a n c e  of 
1 0  cm. A 1.024 g/cm2 polys tyrene  absorber  was used t o  s t o p  the  source 
b e t a  r a d i a t i o n .  The gamma-ray d e t e c t i o n  e f f i c i e n c y  of t h e  d e t e c t o r  i s  
t h a t  computed from i t s  known c h a r a c t e r i s t i c s .  The system and techniques 
a r e  checked aga ins t  sources  c a l i b r a t e d  by d i f f e r e n t  techniques and these  
t e s t s  over  long pe r iods  of  time have e s t a b l i s h e d  t h e  es t imated  unce r t a in ty  
on t h e  e f f i c i e n c y  of t h e  d e t e c t o r  used, t o  count t hese  f o i l s  a t  +1.0%. To 
avoid making high count ing- ra te  c o r r e c t i o n s ,  most counts  were made a t  
decay t'imes s u f f i c i e n t l y  long t o  y i e l d  optimum r a t e s .  When h igh  counting 
r a t e s  were unavoidable and cascade gammas were p r e s e n t ,  c o r r e c t i o n s  f o r  
random and co inc ident  summing were made. Correc t ions  have been made f o r  
gamma-ray a t t e n u a t i o n  w i t h i n  t h e  f o i l s .  The f o i l s  were c a r e f u l l y  weighed 
t o  +0.00002 g fo l lowing  i r r a d i a t i o n .  The f o i l s  were counted s e v e r a l  t imes 
each involv ing  d i f f e r e n t  decay per iods  f o r  each count.  Each count was 
handled i n d i v i d u a l l y  t o  compute t h e  s a t u r a t e d  r e a c t i o n  r a t e  and consequently 
a l l  count ing e r r o r s  a r e  represented  i n  t h e  u n c e r t a i n t i e s  ob ta ined  from the  
span of t h e  measurements except  f o r  t h e  d e t e c t o r  e f f i c i e n c y  and decay 
scheme d a t a .  The decay scheme u n c e r t a i n t i e s  a r e  found elsewhere i n  t h i s  
r e p o r t .  React ion r a t e s  f o r  t h r e e t d i s t i n c t  groups of f o i l s  were obta ined ,  
power l e v e l  monitor f o i l s  f o r  normalizing the  CFRMF f l u x  l e v e l s ,  a  pack- 
age of f o i l s  f o r  ob ta in ing  r e a c t i o n  r a t e s  s e n s i t i v e  t o  var ious  neutron 
energy ranges and s e t s  of f o i l s  w i th  d i f f e r e n t  th icknesses  t o  determine 
se l f - sh i e ld ing  e f f e c t s .  

r 
The monitor f o i l s  were 1.27 cm diameter  0.0508 mm t h i c k  gold  meta l  

and indium metal.  A s e t  of t hese  f o i l s  ( 1  gold and 1 indium) from each 
ILRR-CFW t e s t  was counted. These f o i l s  were always pos i t i oned  in a 
hold ing  device 3.81 cm above t h e  CFRMF c e n t e r .  Nominal power l e v e l s  of 
0.6 kW, 6.0 kW and 10  kW have been used ' in  t hese  t e s t s .  The 411.8-keV 
gamma ray .  from t h e  decay of 8 ~ u  from t h e  lg7Au (n,  y) 9 8 ~ u  r e a c t i o n  was 
counted from t h e  gold f o i l s .  I n  a l l  measurements, more than  l o 5  counts  
were c o l l e c t e d  i n  t h e  photopeak. I n  o r d e r  t o  have acceptab le  counting 
r a t e s  a t  10  cm, decay times of 16 t o  20 days were allowed f o r  t he  

. 
,higher exposure f o i l s .  A h a l f - l i f e  of 2.696 days and a .branching  r a t i o  
of-0.9547-were used i n  t h e  gold d a t a  reduct ion. .  The 335-keV. ga&a ray 
from t h e  decay of 115m~n from t h e  115~n(n,n ' )115m1n r e a c t i o n  was 



counted from t h e  indium f o i l s .  I n  a l l  measurements more t h a n  l o 4  
coun ts  were  c o l l e c t e d  i n  t h e  photopeak ( i n  most c a s e s ,  more t h a n  l o 5  
c o u n t s ) .  Decay t imes  of between 20 and 28 h o u r s  were  a l lowed s o  t h a t  
good count ing  r a t e s  and a s i n g l e  photopeak spec t rum were o b t a i n e d .  A 
h a l f - l i f e  o f  4 .5  ho.urs and a branch ing  r a t i o  o f  0 .47 were used i n  t h e  
indium d a t a  r e d u c t i o n .  Tab le  I summarizes t h e  r e s u l t s  from a l l  t h e  
power moni to r  f o i l s  measured t h u s  f a r .  Some of t h e s e  measurements were 
r e p o r t e d  e a r l i e r  b u t  f i n a l  c o r r e c t i o n s  and a n a l y s e s  had n o t  been  made. 

TABLE I 

POWER LEVEL MONITOR FOILS REACTION RATES FROM CFRMF-ILRR TESTS 

: S a t u r a t e d  : 
:Reac t ion  : :Power (b)  1 
: Rate by :Number o f  (a)  : ~ e v e l  I 

T e s t  I d e n t i t y :  F o i l  : Mass (g): NaI(TR) :Measurements : (kW) :Au/In 

NBS F i s s i o n  Au-AA '0.1216 3 . 2 2 5 ~ 1 0 - l 5  3 ( .33%) 
Chamber IN-2/11 0.04878 0.3966 1 

0'619 8..1316 
0.599 

(212172) 

ANL SSTR 1, Au-AC 0.1214 3.218 2 ( .25%) 0.618 
2 & 3  1n-2/13 0.04802 0.3930 2 (.14%) 0.594 8.1883 
(2141 72) 

NBS F i s s i o n  ' Au-AE 0.1239 3.225 2 (. 74%') 
Chamber In-2/15 0.04909 0.3953 1 

0'619 8.1584 
0.597 

(214172) 

ARHCO-I 
(218172) 

ANL- I 
(21151721 

HEDL-I 
(2116172) 

ANC-I 
(2129172) 

A I -  I 
(41111 72) 

HEDL-V 
(11161 72) 

HEDL-V 1 
(1117172) 



TABLE I (Contd.) 

: Sa tu ra t ed  : 
: React ion : (b) : 
: Rate by : Number of ( 4  

T e s t  I d e n t i t y  : F o i l  : Mass (g) : NaI(TR) : Measurements: (kW) : Au/In . t 

ANL-SSTR 4 Au-CA 0.1252 3. 123x10-1 3 ( .60%) 
(XI/ 8/ 72) 1n-21/21 0.04700 0.3995 

7.8173 

ANL SSTR 5 Au-CC 0.1223 3.136 
(11/8/72) In-2#23 0.04945 0.3959 

7.9212 

ANL SSTR 6 Au-CE 0.1237 3.118 
(11/8/72) In-2#25 0.04814 0.3947 3 (.51%) 

7.8997 

ANL SS'l'K 7&8 Au-CG 0.1201 3.188 3 (. 53%) 0.599 , 8. oo20 
(317173) In-2#27 0.04672 0.3984 3 (.60%) 0.602 

ANC-HEDL- Au-CI 0.1211 53.29 4 (.152) 10.23 
'ARHCO-S S-I In-2#29 0.04880 6.705 .5 (.76%) 10.13 

7.9478 

(31131 73) 

'(a) The number i n  parentheses  i s  the  es t imated  pe rcen t  s tandard  dev ia t ion  
based on t h e  span of t h e  measurements and does no t  i nc lude  u n c e r t a i n t i e s  
on e f f i c i e n c i e s  and decay dataL. 

(b) Based on the  average of t he  t h r e e  ANL SSTR t e s t s  on 11/8/72 a t  t h e  
assumed 0.600 kW l e v e l .  

The r e l a t i v e  power l e v e l  of t h e  CFRMF has  a l s o  been monitored wi th  t h e  
NBS f i s s i o n  chamber l oca t ed  a t  t h e  c e n t e r  of t h e  r e a c t o r  u s ing  23 5~ ,nd 
2 3 8 ~  f i s s i o n  r a t e s .  By averaging t h e  Au and I n  f o i l s  r e s u l t s  and t h e  
2 3 5 ~  and 2 3 8 ~  f i s s i o n  chamber r e s u l t s ,  t he se  methods can be  compared a t  
d i f f e r e n t  power l e v e l s .  Table I1 summarizes t h e  comparison of t hese  

- measurements. 



TABLE I1 

RELATIVE CFRMF POWER LEVELS BY FOILS AND FISSION CHAMBERS 

Nominal Power F o i l s  F i s s i o n  Chambers 

0.600 kW 1.000 1.000 

I n  Table I t h e  gold-to-indium r a t i o  s p e c t r a l  index shows a  s t a t i s t i -  
c a l l y  s i g n i f i c a n t  d i f f e r e n c e  bctween t h e  t h r e e  0.6 kW t e s t s  of 21.2172 and 
2/4/72 and a l l  o t h e r  t e s t s .  Upon examining t h e  counting. d a t a  f o r  t hese  
f o i l s ,  i t  was found t h a t  a  sys t ema t i ca l ly  d i f f e r e n t  way of s u b t r a c t i n g  
the background a c t i v i t y  was used f o r  t hese  d a t a  i n  comparison t o  t h e  

.way used i n  a l l  o t h e r  t e s t s .  It i s  assuined t h a t  t h i s  i s  t h e  cause f o r  
t h i s  discrepancy s i n c e  i t  does no t  occur a t  t h e  o t h e r  0.6 kW t e s t s  of 
11/8/72 and 3/7/73.  

The package of f o i l s  designated a s  ANC-I has  been d iscussed  and 
descr ibed  i n  t h e  previous annual r e p o r t .  Since f i n a l  co r r ec t ions  and 
comparisons were not  included i n  t h a t  r e p o r t i n g ,  they a r e  summarized i n  
Table 111. The r e a c t i o n  r a t e s  from a l l  l a b o r a t o r i e s  were obta ined  from 
f o i l s  l i k e  those  i n  t h e  ANC-I f o i l  s e t  which were packaged and i r r a d i a t e d  
i n  t h e  same o r i e n t a t i o n .  The counting and ana lyses  were done a t  each 
l abo ra to ry  us ing  t h e  same decay scheme d a t a .  

Neutron se l f - sh i e ld ing  e f f e c t s  of c e r t a i n  r e a c t i o n s  i n  i n d i v i d u a l  
f o i l s  i r r a d i a t e d  i n  t h e  CFRMF neutron f i e l d  have been examined by 
i r r a d i a t i n g  f o i l s  of ' d i f f e r e n t  th icknesses .  These f o i l s  were then  
counted t o  determine t h e i r  a c t i v i t i e s  r e l a t i v e  t o  t h e i r  th icknesses .  
F o i l s  of Au, Co, Cu, Sc and 2 3 5 ~  0.00127 mm t h i c k  were i . r r ad i a t ed  i n  
one package (ANC-SS-I) and t h e i r  r e a c t i o n  r a t e s  determined. The Au 
and Co f o i l s  were counted ba re  and t h e  Sc and 2 3 5 ~  were counted 
through the  % 0.2 mm A 1  wrapping. The Cu f o i l  was sandwiched between 
0.254 mm of u n i r r a d i a t e d  pure Cu t o  a n n i h i l a t e  a l l  t h e  p o s i t r o n s .  
These r e s u l t s  a r e  summarized i n  Table I V .  Sc and 2 3 5 ~  f o i l s  of t h e  
same and o t h e r  th icknesses  which were i r r a d i a t e d  i n  o t h e r  packages 
(HEDL-SS-I, I1 and 111) a t  t h e  same power l e v e l  were a l s o  counted 
and analyzed. These r e s u l t s  a r e  summarized i n  Table V. For t h e  
4 5 ~ c ( n , y ) 4 6 ~ c  r e a c t i o n ,  t h e r e  may be  about 2% s e l f - s h i e l d i n g  i n  t h e  
0.254 mm f o i l .  The 2 3 5 ~ ( n , f ) 1 4 0 ~ a  shows no s e l f - s h i e l d i n g  and t h e  

.0.00127 nun f o i l s  from t h e  HEDL and ANC t e s t s  a r e  i n  agreement. 
There i s  disagreement between t h e  HEDL and ANC 0.00127 mm SC f o i l s  
i n  excess of t h e  known u n c e r t a i n t i e s  which i s  being i n v e s t i g a t e d .  



I-' 
I-' 
0 

TABLE 111 

CFRMF REACTION RATES FROM ANC-I FOIL SET PACKAGE 

Saturated Reaction Number of(a) Sarurated Reaction Rate %  tanha hard'^) 
Foil Mass(g) - Reaction Rate by NaI(TL) Measurements From All Laboratories Devi'ation 

A1-3 0.04720 27Al(n,a)2'~a 2.022 10-l7 4 (.el%) 2.042 x 1c-I7 2.3 
0.04739 27Al(n,p)27~g 1.137 x 10-l6 1 1,110 x 10-l6 

Al- 2 0.04700 27Al(n.a)24~a 2.000 lo-17 4 (1.04%) 2.037 x lo-'' 2.3 
C.4725 27~l(n,p)27~g 1.133 x 10-l6 1 1.110 x 10-l6 

Au- 1 0.00338 197~u(n,y)198~u 5.365 x lo-'' 6 (.27%) 5.428 x lo-'' 2.0 

SC-1 0.04925 'S~c(n,y)46~c 2.944 x 10-l5 5 (.i7%) 2.948 x l0-l5 0.4 

235~-1 0.23080 235~(n,f) 140~a(5.8%) 2.045 x l0-l3 7 (1.62%) 2.051 x l0-l3 3.0 

238u-1 0.06439 238~(n,f) 140Ba(6.0~) 9.828 x lo-15 7 (1.05%) ' 9.682 x 10-l5 2.7 

In- 1 0.04487 115~n(n,n')115m1n 6.349 x lo-'5 4 (.26%) 6.331 x lo-'' 0.9 

Al- 1 0.04638 2 7 ~ ( ~ , a ) 2 s ~ a  2.028 x l0-l7 4 (1.10%) 2.078 x lo-'' 2.3 

Au-A1 0.0001368 197~u(n,y) lg8Au 5.326 x 10-l4 4 (.92%) 5.450 x 10-l~ 2.3 

(*) The number in parentheses is the siandard deviation on span of measurements and does rot include errors on efficiencies and 
decay scheme data. 

(b) Deviation of the mean. 



TABLE I V  

ANC-SS-I FOIL REACTION RATES 

Saturated ~ e a c t i o n ~  
Fo i l  - Target Mass (nig) Reaction 'Rate by NaI (TR) 

Au /I1 . 6.918 1 9 7 ~ u ( n , y ) 1 9 8 ~ u  5.979 2 0.020 x 1 0 - l ~  

' ~ h e s e  uncer ta in t i e s  a r e  the  est imated standard devia t ion on span of 
measurements (does not include uncer ta in t i e s  on e f f i c i e n c i e s  and 
decay scheme data) .  ' . 

b~ssuming a 5.8% y i e l d .  

--- - - - - - ~ -  - - - -  

TABLE V 

REACTION RATES OF HEDL SELF-SHIELDING FOILS 

Thickness 2 3 5 ~ ( n , f )  1 4 0 ~ a ( 5 . 8 % ) ~ , , c t i o n  4 5 ~ c ( n , y ) 4 6 ~ c  Reaction 



SPECTRUM DETERMINATIONS I N  THE EBR-I1 

Y.  D .  Harker 

I n  s u p p o r t  of t h e  i r r a d i a t i o n  programs b e i n g  conducted i n  EBR-I1 
by t h e  F a s t  Breeder  Reac to r  P h y s i c s  Cons tan t s  P r o j e c t  of ANC and t h e  
Burnup Methods f o r  FBR Fue l s  P r o j e c t  of ACC, t h e  m u l t i - f o i l  a c t i v a t i o n  
t e c h n i q u e  1 has  been u t i l i z e d  i n  measur ing n e u t r o n  s p e c t r a  a t  v a r i o u s  
e x p e r i m e n t a l  p o s i t i o n s  i n  EBR-11. F o i l  a c t i v a t i o n  spec t rum techn iques  
u t i l i z e d  i n  t h i s  manner a r e  v e r y  power fu l  t o o l s  i n  t h e  a n a l y s e s  of t h e  
i n t e g r a l  measurements, p r i m a r i l y  because  t h e  spectrum of t h e  n e u t r o n  
environment i s  determined i n  t h e  a c t u a l  c o n d i t i o n s  of t h e  i r r a d i a t i o n .  
I n t e r p r e t a t i o n s  of t h e  i n t e g r a l  r e s u l t s  o b t a i n e d  a r e ,  t h e r e f o r e ,  a i d e d  
by a  more a c c u r a t e  p i c t u r e  of t h e  n e u t r o n i c  cond i t iv r i s  of  t h e  measure- 
ment. I n  a d d i t i o n ,  t h e  f o i l  packages a r e  g e n e r a l l y  s m a l l  i n  s i z e  and 
do n o t  c r e a t e  p e r t u r b i n g  e f f e c t s  on t h e  n e u t r o n  f l u x  and are ex t remely  
a d a p t a b l e  t o  s i t u a t i o n s  where d i r e c t  a c c e s s  t o  t h e  exper iment  cannot  be 
main ta ined  d u r i n g  t h e  i r r a d i a t i o n ,  such a s  is t h e  c a s e  i n  EBR-11. 

S p e c t r a  f o r  seven  p o s i t i o n s  t r a v e r s i n g  t h e  v e r t i c a l  and h o r i z o n t a l  
a x e s  of a  B-7 assembly i n  row e i g h t  of EBR-I1 have been determined.  An 
example of t h e  measured spec t rum and t h e  comparison o f  t h e  cor responding  
c a l c u l a t e d  t o  measured r e a c t i o n  r a t e s  a r e  shown i n  F i g u r e  1 and Tab le  I ,  
r e s p e c t i v e l y .  The r a t i o s  g iven  i n  Tab le  I i n d i c a t e  how w e l l  t h e  
r e s u l t i n g  spec t rum p r e d i c t s  t h e  r a t e s  of t h e  d i f f e r e n t  dos imet ry  reac -  
t i o n s  and i n  t h i s  c a s e ,  t h e  agreement is  q u i t e  s a t i s f a c t o r y .  

TABLE I 

COMPARISON OF CALCULATED TO MEASURED REACTION RATES 

F o i l  - 
1 
2  
3  
4  
5  
6  
7  
8  
9  

Type 

C059 (NG) C060 
SC45 (NG)SC46 
FE54 (NP)MN54 
N158 (NP)C058 
TI46 (NP) SC46 
CU63 (NHE) C060 
NP237 (NF)FP 
U235 (NF) FPFAST 
U238 (NF)FP 

C a l c u l a t e d  
A c t i v i t y  

0.32955810E 07 
0.11281354E 09 
0.47875550E 07 
0.21370320E 08 
0.24435230E 07 
0. 35169314E 04 
0.45939943E 1 4  
0.21782108E 1 5  
0.33959256E 1 3  

The r e s u l t s  of t h e s e  seven  d e t e r m i n a t i o n s  i n d i c a t e  a  d e f i n i t e  . 
s o f t e n i n g  of t h e  n e u t r o n  f l u x  f o r  p o s i t i o n s  f a r  removed from t h e  mid- 
p l a n e  of t h e  c o r e  and g i v e  e v i d e n c e  t o  t h e  need f o r  u s i n g  f o i l  a c t i v a -  
t i o n  packages a t  v a r i o u s  l o c a t i o n s  w i t h i n  t h e  e x p e r i m e n t a l  assembly. . 



The r e s u l t s ,  however, from e q u i v a l e n t  measuring p o s i t i o n s  have  
demonstra ted very  s a t i s f a c t o r y  r e p r o d u c i b i l i t y .  

From t h e  f o i l  packages handled t o  t h i s  d a t e ,  i t  a p p e a r s  t h a t  t h e  
m e t a l  a l l o y s  [3] t e s t e d  i n  t h e s e  i r r a d i a t i o n s  a r e  n o t  ' r e l i a b l e  and 
f u t u r e  f o i l  packages w i l l  c o n t a i n  on ly  s e p a r a t e d  e l e m e n t a l  m a t e r i a l s  
which can  b e  p rocessed  and ana lyzed  i n d i v i d u a l l y .  

[ I ]  D. A. Pearson ,  Nuclear ~ e c h n i l o k v  Branch Annual P r o p r e s s  Report  
f o r  P e r i o d  Ending June  30,  1970, IN-1407 (1970) p.  291. ' 

[ 2 ]  R. E. Narum, INSPECT - I n t e r a c t i v e  Computer Code f o r  Unfo ld ing  
Neutron S p e c t r a  from A c t i v a t i o n  Measurements, ANCR-1035 (1972).  

[ 3 ]  D. A. Pearson ,  Nuclear Technology D i v i s i o n  Annual P r o p r e s s  Report  
f o r  P e r i o d  Ending June  30, 1971, ANCR-1016 (1971) p. 457. 

Energy (MeV) ANC-A- 1781 

F i g u r e  1 Neutron spectrum f o r  EBR-I1 Row 8 n e a r  midplane.  



FISSION PRODUCT DI.FFUSI0N I N  FUEL PINS 

H. L. McMurry, E. F. Aber 

This  work was i n  response t o  an AEC reques t  t o  provide d a t a  f o r  an 
Aeroje t  p r o j e c t  which aims a t  a s se s s ing  t h e  hazards  of power r e a c t o r  
acc iden t s .  The r e s u l t s  a r e  t o  b e  used i n  eva lua t inghaza rds  a r i s i n g  from 
t h e  r u p t u r e  of f u e l  p ins  i n  ope ra t ing  r e a c t o r s .  For t h i s  purpose calcu- 
l a t e d  va lues  a r e  needed f o r  the amount of f i s s i o n  products  of va r ious  types 
which have d i f f u s e d  t o  t h e  fue l -c lad  i n t e r f a c e  by t h e  time of rupture .  

, 

A review of, t h e  l i t e r a t u r e  r e l e y a n t  t o  c a l c u l a t i o n  of f i s s i o n  product 
d i f f u s i o n  revea led  much ambiguity as t o  t h e  o r i g i n s  of t h e  b a s i c  equat ions  
and their methods of a p p l i c a t i o n .  Therefore,  an e a r l y  phase of this work 

.was e s t a b l i s h i n g  t h e  t h e o r e t i c a l  b a s i s  f o r  f i s s i o n  product d i f f u s i o n  and 
d e r i v i n g  approximate equat ions  f o r  dea l ing  w i t h  i s o t o p e s  of C s  and Sr .  
Subsequently,  v a r i o u s  methods of f i n d i n g  asymptot ic  s o l u t i o n s  and approxi- 
mate s o l u t i o n s  a p p r o p r i a t e  t o  d i f f e r e n t  t imes and boundary condi t ions  
were examined. F i n a l l y ,  a  method f o r  numerical ly  i n t e g r a t i n g  t h e  t ime 
dependent d i f f u s i o n  .equat ion was developed. This  m a t e r i a l  is  being 
r epor t ed  i n  t h r e e  documents [1 ,2 ,  31. 

The s p e c i f i c  c a l c u l a t i o n s  f o r  t h i s  p r o j e c t  were f o r  r e l e a s e s  t o  t h e  
fue l -c lad  i n t e r f a c e  of noble  gases ,  and C s  and Sr  i so topes  from t y p i c a l  
PWR and BWR r e a c t o r s  a f t e r  3 yea r s  of ful-1 power ope ra t ion .  The noble 
gas r e l e a s e s  were c a l c u l a t e d  using methods developed by Y u i l l  e t  a l . ,  L41. 
The 1 3 7 ~ s ~  9 0 ~ r  and some s h o r t  l i v e d  C s  i so topes  employed methods 
developed during t h e  f i r s t  phase of t h e  p r o j e c t .  However, t h e  h e a t s  of 
t r a n s p o r t  needed i n  t h e s e  c a l c u l a t i o n s  were from ~ u i l l  L41 . 

L51 . - The r e s u l t s  a r e  presented i n  an i n t e r n a l  r e p o r t  . 

(1) H.. L. McMurry, Theore t i ca l  Basis  f o r  Calcu la t ing  Dif fus ion  of 
F i s s i o n  Products  i n  Fuel  P ins ,  ANCR-1126 (August 1973) 

(2): H. L. McMurry, Comments on So lu t ions  t o  t h e  Equation f o r  D.iffusion 
of F i s s i o n  Products  i n  Fuel  P ins ,  ( i n  p repa ra t ion ) .  

(31 E. F. Aber, A Numerical Model Describing t h e  Dif fus ion  o f . F i s s i o n  
Products  i n  Opcrarinp Fuel P ins ,  ( i n  p repa ra t ion ) .  

(4) R. A. Y u i l l ,  V. F. Bason, and J. K. McFadden, An Ana ly t i ca l  Model 
Describing t h e  Behavior of F i s s i o n  Products  i n  Operating Fuel  P ins ,  
IN-1467, (June 1971).  

(5) H.. L. McMurry and E. F. Aber, Aero je t  Nuclear Company I n t e r n a l  Report. 



DEVELOPMENT OF CAPABILITIES FOR SHIELDING CALCULATIONS 

T. E. Young 

The g e n e r a l  purpose Monte Carlo s h i e l d i n g  code, MORSE, was obta ined  
from t h e  Radia t ion  Shie ld ing  Information Center (RSIC) a t  ORNL and p u t  
i n t o  ope ra t ion  on t h e  NRTS IBM-360. This  code should be  a  va luab le  
a d d i t i o n  t o  t h e  s h i e l d i n g  c a l c u l a t i o n  c a p a b i l i t i e s  of t h e  NRTS. The 
code can t r e a t  problems of ve ry  complex geometry f o r  neutron o r  
gamma-ray s h i e l d i n g .  Combined neutron-gamma problems may a l s o  be 
so lved ,  e l imina t ing  t h e  need t o  use s e v e r a l  codes t o  s o l v e  t h e  problem 
of s h i e l d i n g  a g a i n s t  reactor-produced gamma r a y s .  The main advantage 
of t h e  code i s ,  however, t h a t  it w i l l  permit  s o l u t i o n  of s h i e l d i n g  
problems which could not be  so lved  accu ra t e ly  by p rev ious ly  a v a i l a b l e  
means. 

SUPPORT TO ICPP 

T. E. Young, J .  W. Codding 111 

Work has been done on t h e  XLACS code f o r  t h e  Idaho Chemical 
Process ing  P l a n t .  This  code was obta ined  from RSIC, and i s  t o  be  used 
t o  produce a  mult igroup neutron c ros s  s e c t i o n  l i b r a r y ' f o r  use  wi th  
va r ious  neu t ron ic s  codes a t  t h e  NRTS. XLACS has been compiled, and 
d a t a  f o r  s e v e r a l  nuc l ides  processed from t h e  ENDFIB-111 t apes .  

[l] Member of t h e  Analysis  and Programming Branch, Technica l  Se rv i ces  
Div is ion ,  Aero je t  Nuclear Company. 

GAS CORE REACTOR NUCLEAR DESIGN 

J. F. Kunze, P. J. Macbeth, J. H. Lofthouse, B. L. Rushton 

The gas core  nuc lear  rocke t  has  long been considered t h e  u l t i m a t e  i n  
s p e c i f i c  impulse c a p a b i l i t y  f o r  space  propulsion[1,21. F igu re  1 is a ' 

schematic of t h e  concept.  Recent cons ide ra t ions  of t h e  c a p a b i l i t i e s  f o r  
this consider  engines w i th  s p e c i f i c  impulses a s  h igh  a s  4400 
seconds, w i th  6000 MK power and 10 l b / s e c  hydrogen p r o p e l l a n t  flow r a t e s .  
Mass flow r a t e  l o s s  r a t i o s  of t h e  nuc lear  f u e l  ( 2 3 5 ~  o r  2 3 3 ~ )  t o  t h a t  of 
t h e  p r o p e l l a n t  a r e  hoped t o  be  i n  t h e  range of 1% o r  l e s s .  Discharge 
temperatures through t h e  nozzle  of a s  h i g h  a s  30,000°R a r e  considered 
f eas ib l e [3 ]  even though present-day chemical rocke t  d i scha rges  a r e  only  
a s  h i g h  a s  7500 '~ .  

The gas co re  nuc lear  rocke t  concept w i l l  need t o  be  t e s t e d  a t  tempera- 
t u r e  i n  a test program on an earth-based "prototype" demonstration. Three 
p o s s i b i l i t i e s  exist f o r  t h e  d c m o n s t r a t l u ~ ~  t e s t :  



A loop-type ( ~ i n i - c a v i t y )  t e s t  w i t h i n  a convent ional  t e s t  r e a c t o r  
d r i v e r  co re  t o  test some b u t  no t  a l l  of t h e  parameters  of t h e  f u l l -  
s c a l e  r e a c t o r .  

A small-scale  f u l l  r e a c t o r  t e s t .  A smal l  c a v i t y ,  nominally 4 f t  
i n  diameter ,  is  envisioned which w i l l  a l low a gaseous uranium c o r e  
b u t  a t  a reduced temperature from t h e  f u l l  s c a l e  r e a c t o r .  This  
test should a l low t e s t i n g  of most parameters  and e x t r a p o l a t i o n  of 
the remainder t o  t h e  f u l l - s c a l e  r e a c t o r .  

3.  A f u l l - s c a l e ,  10- t o  12-ft-diameter c a v i t y  t e s t ,  w i th  a l l  t h e  char- 
a c t e r i s t i c s  of t h e  rocke t  engine. This  device  would 'opera te  a t  a 
much h igher  t o t a l  power than  e i t h e r  of t h e  o t h e r  two devices .  

It is t h e  second approach t h a t  seems most reasonable.  It w i l l  t e s t  
the e n t i r e  concept a t  less c o s t  than t h e  t h i r d  approach. The ques t ion  
was, "How much. less  c o s t ?  What is t h e  sma l l e s t  s i z e d  r e a c t o r  t h a t  w i l l  
do t h e  job?" 

I n  performing t h e  des ign ,  t h e  l a r g e  nega t ive  r e a c t i v i t y  e f f e c t  of 
ho t  hydrogen became apparent .  This  is a r e s u l t  of i ts  a b i l i t y  t o  up- 
s c a t t e r  neut rons ,  l eav ing  them l e s s  e f f e c t i v e  i n  c r e a t i n g  f i s s i o n s  and 
more vu lne rab le  t o  leakage.  The nega t ive  reac t iv i ty- tempera ture  c o e f f i c i e n t  
is  i n  t h e  range of -7%Ak per  1000°K of d ischarge  p r o p e l l a n t  temperature.  
Furthermore, t h e  l a r g e r  t h e  c a v i t y  t h e  h igher  w i l l  be  t h e  system mul t i -  
p l i c a t i o n  f a c t o r  f o r  given condi t ions  of temperature,  p re s su re ,  and r a d i u s  
r a t i o .  Thus, f o r  l a r g e r  c a v i t i e s ,  h igher  ope ra t ing  temperature and d i s -  
charge temperature w i l l  b e  poss ib l e .  The c a l c u l a t i o n s  were not  done i n  
s u f f i c i e n t  number t o  c r e a t e  a family of curves of exhaust temperature 
v s  c a v i t y  s i z e  f o r  v a r i o u s  f u e l  t o  c a v i t y  r a d i u s  r a t i o s .  However, t h e  
work performed i n d i c a t e s  t h a t  t h e  temperature v s  c a v i t y  r a d i u s  c o e f f i c i e n t  
is approximately a s  g iven  above. 

From t h e  s e r i e s  of c a l c u l a t i o n s  performed f o r  t h i s  s tudy ,  t h e  70-cm 
r a d i u s  (4-112-ft diameter)  c a v i t y  s i z e  appears  t o  provide s a t i s f a c t o r y  
condi t ions .  Fu r the r  s tudy  could l ead  t o  systems of t h i s  s i z e  showing 
promise of a t t a i n i n g  c r i t i c a l i t y  through hydrogen perhea t ing  o r  r e f l e c t o r  
des ign  modi f ica t ions .  However, t h e  b r i e f  n a t u r e  of t h i s  s tudy  precluded 
f u r t h e r  i n v e s t i g a t i o n  t h a t  would a l low e x a c t l y  spec i fy ing  t h e  needed c a v i t y  
s i z e .  Severa l  i t e r a t i o n s  between t h e  nuc lea r  and r a d i a n t  h e a t  t r a n s f e r  
codes a r e  requi red .  

The thermalhydraul ic  des ign  was based on a 4-ft-diameter c a v i t y ,  a s  
were t h e  a s soc i a t ed  rough c o s t  es t imates .  It appears  t h a t  t h i s  s i z e  of 
r e a c t o r  may be adequate  f o r  a u s e f u l  demonstrat ion t e s t .  There i s  l i t t l e  
doubt,  however, t h a t  t h e  4- f t -cavi ty  diameter  s i z e  i s  indeed marginal ,  and 
a somewhat l a r g e r  s i z e  would be  d e s i r a b l e .  

Perhaps t h e  most s t a r t l i n g  r e s u l t  from t h e  s tudy  i s  t h a t  t h e  p re s su re  
c o e f f i c i e n t  of r e a c t i v i t y  i s  negat ive ,  a t  l e a s t  f o r  t h e  condi t ions  assumed 
i n  t h e  s tudy.  Th i s  f u r t h e r  i l l u s t r a t e s  t h a t  t h e  hydrogen penal ty  is indeed 
seve re ,  s o  much s o  t h a t  above 100 atm t h e  a d d i t i o n  of more f u e l  v i a  an  
i n c r e a s e  i n  p re s su re  w a s  more than  counterac ted  by t h e  nega t ive  e f f e c t  of 
t h e  corresponding i n c r e a s e  i n  hydrogen. C e r t a i n l y ,  t h e  nega t ive  p re s su re  



coeff ic ient  w i l l  not  be t rue  a t  a l l  pressures and temperatures, and a more 
complete study appears warranted. 

Finally,  the  e f f ec t  of a change i n  radius r a t i o  of f u e l  t o  cavity is 
much stronger than h i  herto assumed. Measurements of the  e f f ec t  i n  a "cold" 
c r i t i c a l  experimenti4f without hydrogen showed approximately a 6%Ak increase 
i n  r eac t iv i ty  a s  the  f u e l  b a l l  radius increased from 0.67 t o  0.80 of the 
cavity radius. With hot hydrogen as a coolant surrounding the f u e l  b a l l ,  
the  iden t ica l  change i n  radius r a t i o  was calculated t o  be 22%Ak. The 
reasons fo r  the  difference a r e  t ha t  wi th  hot hydrogen, growth of the  f u e l  
b a l l  not only has a posi t ive  geometric e f f ec t  on reac t iv i ty  but a lso dis- 
places some of t h e  extremely deleter ious  hydrogen coolant from the  cavity. 
This ne t  e f fec t  would appear t o  be a strongly pos i t ive  contribution t o  
the  reac t iv i ty  temperature coefficient However, the larger  f u e l  radius  
is probably unstable f l u i d - d y n a m i c a l l y ~ 5 ~  and should quickly reduce back 
to  i ts  or ig ina l  s ize .  Furthermore, t h e  pressure and hydrogen temperature 
coeff ic ients  of r eac t iv i ty  a r e  both negative, Thus, it would appear t ha t  
w e r a l l  the temperature e f f ec t  on r e a c t i v i t y  is negative. 
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Figure 1 Schematic of the gas cord auclear rocket. 



GA!3 CORE REACTOR FLOR STUDIES 

T h e  open cycle co-axial flowing gas core concept has been discussed 
i n  the preceding a r t i c l e .  This concept has been studied experimentally 
i n  a number of laboratories.  Pat terns  with high r a t i o s  of outer t o  inner 
gas f ow a t e s  were i n i t i a l l y  studied i n  cylindrical-geometry configura- 
t ions  il, 2f. Subsequent experiments concentrated on spherically shaped 
configurations, which would closely resemble conditions which would be 
achieved i n  ac tua l  high temperature operating engines and wfiich gave the 
most cLearly react ive con£ igurationL3 9 43 . C r i t i c a l  experiments t o  study 
the  reactor physics charac te r i s t ics  of a d i l u t e  gas core surrounded with 
hydr~gen~~ ;c&~a  low absorption moderator (heavy water) have a l so  been 
reported . Since th idea l  nuclear geometry is spherical ,  and since 
a gaseous 53x1 is  t o  be  used, nuclear considerations bear very heavily on 
the types of flow pat terns  which w i l l  be acceptable. I n  par t icu la r ,  the  
flow pat terns  must be capable of going c r i t i c a l  within an engineering 
feas ib le  operating pressure, which is generally assumed t o  be less than 
1000 atm. These recent flow tests, conducted a t  Aerojet Nuclear Company, 
have concentrated on obtaining flow configurations which expand the 
central  gas, simulating the fue l ,  i n to  a s  large a volume as possible ~ 4 t h  
as  high a s  possible volume fraction.  The goals f o r  the  conditions under 
which the system w i l l  be operated are:  minimum cavity pressures, maximum 
propellant t o  nuclear f u e l  flow r a t e  r a t i o s ,  minim- reactor s ize ,  and 
more recently,  overa l l  low flow r a t e s  t o  correspond t o  the  low thrus t  
applications which a r e  foreseen fo r  nuclear rockets of the  not too d i s t an t  
future,  

The  f i r s t  phase of teat#ng achieved $low configuratLons which gave 
h&h ~ o l - e  fractgons f o r  tlie innex gas, &cB o b u l a t e d  tk fuel gas. 
Typfcally uslng akz and a i r  8s the toso gases., _hot& sjlrmlatiag a propel- 
l an t  flowtng aronnd tIie outside and tfie f u e l  suspended tEe center,  
volmne f rac t fons  np t o  3!E tn qEierfca1 conffgurattons w e r e  ob'tained. 
T b  second pfiaae of tUs-work concentrated on Pmproving the conditions 
wfien gases of- d s f e r e n t  aens t tp  were employed, tke  cen t ra l  gas Gefng the 
heavter , Agafn, 60 tK two-dimendona1 CTQur e 11 and three-dimensfonal 
Qltgure. 22 tests were runc Tn tk two-dfmens$onal cases, the round-shaped 
c a ~ f t ~ r  was- Founded by two f l a t  wa l l s  on the  viewfng ends. TFE overal l  t e s t  
apparatus is &own fn 'Ptgure 3. 

S b c e  the l a rges t  tests were conducted on 3 f t  diameter cavities,,  
scal2ng up w i l l  B e  required t o  determine a t  the e f f ec t s  would be i n  the 
actual  gas core rocket reactor whichwt l l  have a cayitp diameter of between 
8 and 12 f t .  T h e  question of scaling from small models t o  la rger  s i ze s  was 
f v e s t i g a t e d ,  using 18 in. and 36 in.  diameter cavi t ies .  The r e s u l t s  
indicate  that n e i t b r  the 'Reynolds nor t he~nod i f i ed  Froude number a r e  sa t i s -  
factory scalfng indicfes.  Ttie most nearly equivalent flow pat terns  f o r  
d2fferent s i ze s  of c a v i t i e s  generally resulted w h  a compromise was achieved 
between attempts t o  obtain a matchfng 'Proude number i n  one case, and a match- 
ing Repoldter n d e r  2n another case. 



era1 d i f f i c u l t  and unusual aapects of conditions i n  the  flowin 
cavfty were fnvestigated. For tnstance, a dust  in jec t ion  test series was 
tun, Such tests would sfmulate s t a r tup  conditions i n  a cold reactor.  
upside down arrangements, w2 th tbe  exhost nozzle facing up w e r e  tested. 
This puts  the i n e r t f a l  forces  %n tlie opposite d t rec t ion  from those i n  an 
accelerat tag space rocket. Howeyer, the upside d m  cases could be used 
Pia~W€W&$dl~dp~ic applicatfons. In essence, containment of tbe heavy 

gas e c e l l e n t  fn tbse  trpstde down  test^, with the p t i s c i p a l  
problem bshg b w  t o  keep the  cen t ra l  gas away f r m  the  walls of the  cavity. 

or. t he  normal downfiring direct ions ,  one of the  main considerations 
method of dispersing the heavy cen t ra l  gas so  tha t  it occupies a 

l a rge  volume of high density within the cavity before it " fa l l s  out" the 
exhaust tlozzle. This r e s u l t s  from the grav i ta t iona l  e f f ec t  relative to  
the  l i g h t  propellant gas flowing around it. One mechanism tha t  waa found 
t o  be par t i c u l a r l y  e f f ec t ive  was a strong upward rec i rcu la t ion  pattern for  
the outer  gas  ( T a u r e  4). Such a pat tern could be generated by the con- 
vergence of the  annular gas streams near the ou t l e t  nozzle. Such recir- 
culat ion was most noticeable An the three-dfmensrtcmal spher ical  configura- 
t ions,  and was undoubtedly dependent on tlie shape of the lower pa r t  of the 
cavi ty4 The upward rec3zculation tended t o  prmefit the heavy center gas 
from dropping s t r a i g h t  t o  the  e x i t  nozzle, and also dispersed the  cen t ra l  
gas. Since t he  cen t r a l  gas simulated uranium fue l ,  t h i s  d i spersa l  
reduced Wie self-shielding and enhanced the nuclear r eac t iv i ty  of 
the qstem. This dependence of the  shape of the lower portion of the  
cavity on containment t ha t  can be ohtained with gases of d i f f e r en t  density 
is at  variance with r e s u l t s  reported i n  Phase I of the  study. In those 
caees, pr incipal ly  two-dimensfonal s tudies  w e r e  performed and mostly on 
gases of t he  same density, where the grav i ta t iona l  e f f ec t  was not of con- 
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1 T y p i c a l  18- in .  two-dimensional t e s t  c a v i t y  c o n f i g u r a t i o n .  


