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Abstract.

High energy, large momentum transfer hadronic réactions are
studied in the framework of a broken conformal symmetry. In the
conformal symmetry lir;lit, hadrons are assigned phenomenological
fields which belong to infinite dimensional irreducible representa-
tions of a pseudb unitary group SU (2, 2), which is homomorphic to
the conformal group, and also their effective action is conformal
‘invariant. Studying sifriple Lagrangian models, we conjecture that
the conformal symmetry is spontaneously broken and als§ that the
scalar fiel& X(the Goldstone boson), which has nonvanishing vacuum
expectation \}alué, has a scale dimensiond = -2 + 25 where S
represents deviation from the canonical dimension. We then cal- .

- culate the inverse propagator up to and including the first order in
the tadﬁole expansion explicitly and find that hadrons lie on almost
linear Regge trajectories," ‘which are determined by regular null sur-
face_s:of the inverse.propagator. The widths of resonances are con-
nected to the alnomaiodsl part of fhe dimension, S . Empirical fit
»witvh the data (baryon 'resonance's) gives S«zo. 04. In this framework
we also study inclusive reactions of the type P, + P, =4 + X in
regiofxs of high transverse momenta. On studying the absorptive
part of the six-poi‘nt conformal amplitude, we find that the single
particle distributions exhibit a parton-like structure and also obey
simple sealing laws; presently available experimental data on the

reaction pp-» 7°X support this conclusion. We also predict large

rates of heavy particles (K, 7[ ) f)roduction.
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Chapter 1

Introduction
Our object in this report is to study conformal symmetry as an
| epproximate Space-time symmetry of hadron systems in the high
energy, large momentum transfer region. As is well known, the
Poincaré group is the largest exact space-time Symmetry group
of physical systems. However, the conformal group, which con-
tains the Poincaré group as one of its subgroups, has also appeared
in various places as an exact symmetry group. Con.formai invari-
ance of Maxwell's equation was noticed by Bateman and Cunning- :

ham1 )

in 1909. On noticing a simple correspondence of ordinary
fields over Minkowski space with fielde on the four-dimensional
surface in a five-dimensional projective space, manifestly confor-
mal invariant free field equations and invariant interactions were-
first discussed by Dirac and Kastrup?), respectively. An attempt
to formulate electrodynamics based on the conformal group was
given by Page. 3) 'In relation to this, special conferma.l transfor-
mations were interpreted as transformations to constant acceler-
ating systems. The bhysical interpretaiion of conformal symmetry
and its relevance to the real world were extensively studied by
‘various authors, notably by Kastrup, Mack and Wess. 4) By now,

the more or less accepted interpretation of special conformal

transformations as local scale transformations is due to Kastrup. 1)
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A current algebraic forfnulation of studying broken conformal
symmetry known as PCDC (partially conserved dilatation cur-
rent) was given by Mack.s) In the framework of canonical Lagran-
gia.n_ field theory, it has been also shown that the conformal sym-
metry (or broken conformal symmetry) can be consistently for-
mulated and also that the scale invariance neééssarily implies
the conformal invariance too, under very general conditions.
However, recent great interest in conformal symmetry is largely
due to scaling phenomena in deep-inelastic electron prot‘on scat-
tering predicted by Bj OrkenG) and verified soon after the predic-
tion was made by the MIT-SLAC experiment’) In an effort to
explain such a peculiar behaviour of nucleon structure functions, the
Wilson's operator product expansions) ét small distances has been
extended to the light cone. 9) As originally postulated by Wilson, 8)
it has been assumed that the leading light-cone singularity may be
determined only by scale invariance. If this is the case it is also
very natural to assume conformal invariance on the light-cone
based on our previous experience with local Lagrangian field
theories. Conformal covariant operator product expansions have
been developed by Gatto and. his collaborators. 10)
In a completely soluble field theory model, likethe Thirring model,

Wilson1 1) has shown that the scale dimensions of operators depend
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on thé coupling constant. Although the results obtained from the
Thirring model do not necessarily carry over to four dimensionslz)
it is generally agreed that anomalous dimensions could play an
important role in the real world (i.e. four dimensional theories
as well. This belief is further strengthened by some perturba-
tive results in renormalizable field theory models. 13) It is known
that the results of the MIT-SLAC deep-inelastic electron proton
scattering experiment7) prefer at least near canonical dimension-
ality; the appearance of canonical scaling in ep.- eX may be due
to the fact that the dimension of a conserved current is canonical.
Howevei', it is true that there is no way to distinguish small devia-
tions from the canonical dimension with present experimental ac-
curacy. It is worth mentioning at this point that almost all calcu-
la.tions1 3) for the anomalous dimension give very small deviation
from the canonical value. In the main text we also giire an esti-
mate of the anomalous part § for a scalar tadpole mediating the
symmetry breaking. We find that § is around 0.04.
At this stage it is api:rOpriate to ask the following question: how
do we construct conforrrial invariant theory accepting the occur-
rence of énoma.loué dimensions? A big step toward this problem

14)

taken by Migdal™ */ is known under the name of bootstrap approach

to conformal symmetry which is essentially non-perturbative.

Migdal has observed that the integral equations which determine
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three-point functions admit conformal invariant solutions and
also they are free from divergences because of the presence of
anomalous dimensions. The bootstrap approach has been further

15)

developed by Mack, Symanzik and Todorov. A less specific
but in som‘e.sense more physical approach to the problem has
been_ made by Domokos and Ko6vesi-Domokos. 16) Working with
infinite dimensional representation of SU (2, 2), they have shown
that conformal invariant amplitudes satisfy weak duality in the
sense that they do not have simultaneous singulairities in overlap- -
ping ‘channels. |

Despite all the aforementioned good features, a conformal sym-
metric theory cannot be a realistic model for tile real world be-
cause of the discrete mass spectra of the physical particles.
Therefore it is important to study the breaking of the conformal
symmetry. As the title of this thesis suggests, this is one of

our main themes to investigate. It will be assumed that conformal
' symmetry is an approximate syrhmetry. When the explicit sym-
metry breaking is turned off the following two types of limiting
behaviour can 'occur: On the one hand, it may happen that the
symmetry becomes exact, so all the masses of particles involved
are zero or continuous and, of courée, there shouldn't appear
dimensional parameters. On the other hand, it may not be exact
17)

even in this limit, Instead, massless Nambu-Goldstone bosons

appear. All the masses except the mass of such a boson remain
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nonzero. This latter case has been widely studied in the
literature and it will motivate our work as well.

At this point it is instructive to study a simple Lagrangian field
theory model due to Nambu and Freund.18’ 19) Consider a Lagran-

gian consisting of two scalar fields, ?( 2) and 41 2) ;

Y > [ (=
L9= 2069 t0t)+ Alpt) s + 2, (f= 1)
where ﬂ) is the only dimensional parameter. We can define

"the improved energy momentum tensor'", @. (ll), originally sug-

20) 21)

gested by Gursey“"/ and recently rediscovered by Callan et al

With &w' in our hand, explicit representations of the scale current

D, and of the speciél conformal currents K , are concisely writ-

M

ten down in terms of the fields: :
D 22°@u %)
1
K= (22,2~ 1.52%) B, 02)

In the present case, however, the symmetry is broken explicitly by

/l

the last term in I(z), so these currents are not conserved. Let
us see whether our Lagrangian admits solutions with spontane-

ously broken symmetry. To this end, consider the action integral

Wig ¢) = [&a) d%

and take functional derivatives with respect to ‘f and 4’ , then

SwW

look for constant solﬁtions for __—~- and — . We find solutions’

9



4) 90 , 4=, |
b) G0 , ¢=2(2)"
where a) is an unstable soiution. (This can be easily established
by considering the second derivatives of the action.) Let us take
the solution b) with (’/, + { A;)J.and introduce a new field,
A 2) = ¢(z) A‘L

2( /\1/{

Evidently we now have <O , X(%) O) 0 In terms of (f and ,’t
the scale (conformal) breaking term in the Lagrangian is simply

) m x where mxr/\-,;l In the limit of switching off the
symmetry breaking (7[‘—90 with A, flxed), ’m.x-ao should be
noted”) A particularly nice feature in the case of spontaneously
broken conforxhal symmetry is that the dynamical mechanism
which gives rise to nonvanishing vacuum expectation values for
q’does not appear if we go over to the symmetry limit contrary
to other types of symmetries like SU (2) & SU (2). The Nambu-
Freund model is also a good example of the scalar dominance

of the trace of the energy momentum tensor. In the particular

model discussed here, this is easily verified by computing the

trace of @w explicitly. One finds:

@, = V3, ™ X




-

In the main text (Sec. 3.1), a generalization of the Nambu-Freund
model is found and a ﬁerturbative scheme is developed.

The plan of this reportis as follows. General propertfes of a
conformally invariant theory are treated in Chapter 2. After
defining conformal transformations (Sec. 2.1), the induction pro-
cedure for the representations of SU (2, 2) is briefly discussed
(Sec. 2.2). In Sec. 2.3 we give a plausible argument for the pres-
ence of anomalous dimensions. The concept of the effective action
is discussed and it is argued that the effective action met:hod is
best suited for studying approximate symmetries of hadronié
systems whose ''fundamental'’ dynamics is unknown. Assuming
asymptotic conformal symmetry, a set of diagram rules for the
construction of conformal invariant irreducible vertices is given
(Sec. 2.5). Some features (like the absence of ultraviolet diverg-
ences) will be briefly discussed in Sec. 2.6. Finally in Sec. 2.7,
problems involving fermions will be discussed. Breaking of con- .
formal symmetry is discussed in Chapter 3. We give a mathe-
:matical formulation of the problem in order to put physical ideas
into workable form (Sec. 3.1). Some explicit calculations are re-
ported; the inverse prdpagator will be calculated explicitly to first
order in the "tadpole expansion''. We give explicit representa-

tions of these in momentum space (Sec. 3.2 and 3.3). We then

make partial wave projections, first at integer points. Using
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Carlson's and Hartog's theorems repeatedly we prove that analy-v
“tic continuation of these expansions is possible in the two relevant
variables ( f and V=T —~0" ) (Sec. 3.4). In Sec. 3.5 we extract
the information about hadron resonances from the inverse propaga-
tor by looking for its zeroes. We find th,at':hadrons lie on almost
linear Regge trajectories. Their widths depend explicitly on the
anomaly of the dimension, of the scalar tadpole which breaks con-
formal symmetry. A fit to the épectrum of the well—e_stablishéd
baryon resonances gives a value 6 ~~ 0.04. Further examina-
tion of the singular surfaces of the Green functions shows that at
fixed angular momentum they give rise to ""dilatational trajectories"
as first conjectured by Del Giudice M.Z3) Chapter 3 is concludéd
with some remarks. ''Hadronic Scaling" is treated in Chapter 4.
We calculate to zeroth order in the tadpole and‘iﬁse the result‘s of
the first order calculation in the spectrum; this is justified since

24)

the Brillouin-Wigner "’ perturbation method used in Ch. 3 assures
the n-th order in the "'wave function" gives n + 1-th order in the eigen-
value. The necessary concepts and facts are enumerated in Sec. 4.1.
The six-point conformal amplitude is considered utilizing a Mellin -
projection technique (Sec. 4.2). It is shown that the absorptive part

of the six-point "skeleton' vanishes. This gives a natural reason

for studying the perturbative cailculations treated subsequently.

We give a first order perturbative calculation for the absorptive




part of the six-point amplitude. We find that the inclusive cross

sections obey simple scaling law. A specific form of the scaling
function is evaluated in an independent correlation model, A parton-
like structure of the cross scclions emerges naturally in this frame-
work, Combining these results with the previously obtained dimen-
sional rule we predict that at high energy and large transverse
momenta the inclusive production of "heavy particles" (K,"L etc.)
should be more frequent than pion production (Sec. 4.3, 4. 4).

Finally, this report is concluded with discussions in Chapter 5.
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Chapter 2
On Conformal Invariant Theories

2.1) Conformal Group

Even though our physical space is the four-dimensional Minkowski
space we first consider the conformal group in a general n-dimen-
sional space an:

Ry'=4 (2, o, el )

’

t‘-=real}~0°(14'<”}

with a metrie tensor

0 HEv,
g;ul/: 1 M=, [Spsh
4 M=V, mspsn,

We define conformal transformations on the space R ,'," as follows:zs)
/ v
a) ""Rotation"; y 2 M /\”y 7,
b) Translation; ‘l,'“ = l” 4-,("“, : (2.1)
c) Scale transformation; Z = A , L
. . AM—cH2
d) Special conformal transformation; 7

T |-g2ca +cat

where €. =(C#4 ZA . Since thie above transformations constitute
a (n+2) (n + 1)/2 parameter Lie group, it is easy to exhibit in a

standard way the Lie algebra of conformal transformations. They
are:s)’ 25)

(7% 9"] =0, |
(M4 F) =-c( P49 "p'34),
() (Tt o)

)
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[k K] =0,
(KA M9 (42794
.[ k“ P “T=-2:(9%D + M)
J = - pA, ’ (2.2)
[ D k" =« K4,
[ D M"‘j =0, |
where ‘Pu M ”V k'u and D are generators of translatlon,
rotation, special conformal transformation and dilatation re-
spectively. Notice that both subalgebras formed of M ”‘: P“ andl
: Mm: k” are that of E (m,N-M) - (pseudo-euclidean group). ‘This
fact is of some use when one indu.ces representatioﬁs of the 'ébn-
formal group on those of its subgfoup. As we can see in Eq. (2.1)
special conformal transformations have been realized nonlinearly
on R,'," ; however, on the extended space R:‘H these can be real-
ized linearly. We see this in a following way:
Define J'pu = MMV
]n+l,u - '!5. ( PH_KM)
™4 = L (PMekY)
J-n+l,n+2= -D

tﬁen simple manipulation using commutation relations Eq. (2.2)

(2.3)

[ ].A'B ].coJ =i (3n0j8c+ gscjno_gncjﬂo_ggpjnc)

where A, B,C and D runs from 1 to n + 2. Thus the conformal

)
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group is locally isomorphic to the group SO (m+1, n-m+1); in
fact the same relation may be shown to hold globally too. Let
us now check that conformal transformations defined in Eq.
(2.1) preserve the angle between two vectors in Rq'. Let X ,3»

be two vectors, then the angle between them is defined by:

ZA % =% (2.9
( zz ?2 . |
It‘ is now evident that translations, rotations and scale transfor-

mations preserve the angle. Note that under special conformal
xY S
xY—
d 6(x)o(Y) .9
‘ 2.2 ‘ /7 7
where O(X) = |-2CX +C'X7, 50 TpnY=2%A Y’ .

Consider, for instance, n = 2, so that the conformal group is

transformations:

SQ(3,1) or SO(2,2) depending on the metric g,ug (1,1) or (1,-1).
Notice that these groups are locally isomorphic to SL(2, C) and
SL(2,R) @ SL(2,R), | respectively. For the physical Minkowski |
space we have n= 4, m= 1, therefore its conformal group is S0(2, 4).
One important fact is that SO(2, 4) is homomorphic (2 to 1) to the
special pseudo-unitary group SU(2,2). This is important because

we are going to deal with the covering group SU(2, 2) instead of
SO(2,4). The reason for this has been discussed by Wigner2 6)

for the case of the inhomogeneous Lorentz group. Wigner's
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discussion applies - with a‘straight-forward change of the argument -
to conformal groups as well. In fact, only bilinear expressions of
half-integer spin fields are measureable and need to transform as
single valued quantities. It is also to be noted that exact conformal
symmetry necessarily implies that the mass spectrum should be
either continuous or zero because of the commutation relation

[D , P"‘J ==L P“. One should also note that the special con-
formal transformation can convert time-like to space-like vectors
and vice versa.

2.2) Induced Representatidns of SU(2,2)

Consider a four-dimensional representation of the conformal al-

gebra expressed in terms of Dirac X -matrices.
pr=-1¢4(1+k) ,
M”Vf—'i [JM)J/VJ >
K*=-Le#(1- %),
. .
D=3 ¥
where the X —matrices satisfy the standard ant commutators:
144,075 =29
We also have §°'= k__ gt e =4ty ’
ve =4, ¥ YHlana Jo=ks = AEYY , where 1

denotes hermitian conjugate. (Note: J',’. is hermitian). In order

(2. 6)

’

to be more specific, let us choose a particular representation of

3’ -matrices, namely the so-called chirdl representation. They are:

k

ve [0 -7} L, o, L}
)(5'(’1})2(2(5{ o), ? | o), "

’
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~ where o“k and 1 are 2 x 2 Pauli matrices and identity matrix

respéctively. It is now straight-forward to see that the follow-

ing subgroups of SU (2, 2):16) "
[,0 '), o
T, = M=
‘r t, ' ’ 0 ) m )

(2.8)

4 o, | ) o , N/,

correspond to translations, Lorentz transformations, special

C—("c | 7{'10

conformal transformations and dilatations respectively. Here .

# and C are 2 x 2 hermitian matrices and MESL(2, C) and A is

a real number. Let ‘f(x, x) be a field transforming according

to a representation of SU(2, 2) where X is a coordinate in Minkowski
space written in a spinor form énd X is a Gelfand-Naimark spin

label. Under § € SU(2, 2):

7)) = SYXD)P=) |,

where primed variables are transformed ones. Suppose we choose
X =0, then as is easily seen fromthe above Eq. (2.9), ?( O,z) should
belong to a representation of the stability group (little group) of

X =0Q. Note that translations are the only transformations which

can shift the origin X =0, so the structure of the stability group

is identified as (SL(2,C) ® D) ® C . Since we are going to in-

duce representations of SU(2,2) on those of the stability group
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(SL(2,C) @ D) ® C, there arise two types of representations:

a) Finite dimensional representations.27)

These are used for
elementary particles. for example in the Lagrangian field theory
such representations are assigned to the fundamental fields.

b) Infinite dimensional representations. 28) Composite systems
like hadrons are most likely to be described by the infinite dimen-
sional representations even though a conformal symmetric theory
does not contain any energy scale.

We further note that the representation matrices of the special
conformal generators K 4 should be null or nilpotent in the case
a), which follows from the fact that the generators of translations

are nilpotent in any finite-dimensional representations of the

Poincaré group. So far, the most attention has been given to re-

presentations in which the generators of special conformal trans- .

formations are represented by null matrices. In what follows we
also restrict ourselves to this case.

Let ‘f( 0, %) belong to an irreducible representation characterized

by three complex labels T, {, and 1; where T is so-called conformal

weight and (] ” 12 ) are representation labels for SL(2,C). We have

then:

I P(0,z) =Flo,x) for Jela,
and T 2 L
74) 9(0.)=ldet g e 2) icg2) > (0,2)

for } € SL(2,c) ® D (This is known as the Weyl group, hereafter




we will denote it by W)

where

1I:: 2”1 +gz,

gll X + ?22 , (2.10)
x(§z) =+, |

The bar here stands for complex conjugation. Under the trans-

lations we may choose our basis such that spin indices do not -

change:

Jee) ‘7”()( 1) ‘f()(+t 1) fo te Ta V e

Now consider :’( j) f (X 1,) where g is a general element of
’
Su(2, 2):

T(5) 9N 2)= j‘ﬁ)j(X)SP(O z)
(We have j()() P0,z) = P(X2) tromEa. (2.11))

. =j(X97(h) g;(o'x) (2.12)
where X'€T, and J(h)stands for j—’()( 17¢3) T (X)

We now claim that h €W D C 4 by choosing X' appropriately.

This is because we can always decompose g € SU(2, 2) such that
g=C 4 WT 4 We find h and X' explicitly as follows by straight-

h = ( (Xﬁlz +?zz)*.-' ?I’L ) |
| ) oy Xgll + gn )
X,-’— (X?n *?zz)ﬁ(X?li + ?u) , |

(2.13)
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where

? = ( 9” ! ?’Z . are 2 x 2 matrices.

v,
g’” ’ ?“’ ’ jk's

The matrix h can be further reduced to a product of elements in

W and C & namely:

h= I,gn‘(xjn"?u)" (Xg“+912)+:'
o, { | 0 -Xfcz%

Hereafter, let us denote N = Xg19 + 899, for brevity. We can '

(2.14)

now complete the induction procedure since we know how j(h)
acts on ?(0, X) from Eq. (2. 10) and translation 7(X')h on Y(O, x).

We have therefore

19) Pk z) = N1 S z)"',r’f") b0k 2

where X' is given in Eq. (2.13), and (2.15)
x4k,

/ n X+ Mg

xr = — [

X (Z,,Z) = j:nz + .

It is known that the representations which we have just induced

are unitary irreducible when the parameters T, j¢ andj o are as

follows:zg)
T=- +¢

?

Ji ”1 t 3z f | 2.16)

1
M
Jy 5'!1', - ‘“f
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where M is an integer and f y f 'are real numbers.
If the field f(X, X ) describes bosoné, it should transform as 7T ,
," = 1‘1 = % (real). On the other hand, %X, Z) for fermions
transform according to a reducible representation T , (jl’ jz) ()]
(j2’ jl). This is to acco‘mmpdate parity which is a good quantum
number fbr strong and electro-magnetic interactions. Further it‘
shouid be noted that finite dimensional.representations are ob- . -
tained when Y(X, Z ) becomes a polynomial in X, % .

2. 3) Anomalous Dimension

As we briefly have discussed in the intrbductory chapter in con-
nection with the Nambu-Freund model, in the framework of a re-
normalizable Lagrangian field theory it is possible to define di-
latation and conformal currents introducing the conformal energy
momentum tensor @}‘y :
DH(z) = 2, @ (z)

. w 2.17)
KHU(:!) ,zlﬂxr@fl’(z) -7 ® (z).

v ' v |
Note that 2‘, K‘a (2) = 21” 4 D (z) , which shows that the dilata-
tion invariance necessarily leads to the conformal invariance. The

respective generators of dilatation and special conformal transforma-

tioné are: ‘
p(z°) =[1V@°Vlz) d*z
K"m‘):[(zz”xf@?’(z) -2°@*°(r)) 4z '

(2.18)
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In general, D and K” depend on time, Z°, because of symmetry
breaking terms in the Lagrangian X( z).

We now use canonical commutation relations:

[‘f(z); T”ﬂ)] 4 -—4«53(1‘2) (2.19)

2L

where ﬁ( 2 ) 39—(-;;’) is the conjugate momentum, to deduce the
equal-time commutation_relatiqn between D and ?:

o — _l Jd _ | |
[D(Z)’(f(z)]—c(z-ﬁ J,)ﬁ’(z)' (220
1

Here we have to assign J,=" to a scalar field,Joz —% to a spin-_

Dirac field, etc. 30) The quantity Jo is called the canonical dimen-

sion of the field. Renormalization effecfs, however, destroy the
canonical commutation relations in a well-known manner. In fact
it is not guaranteed that we get the canonical value for the dimen-

sion of the field after renormalization, namelyd *J below:

[ D(zo) ‘f(z)] 1,. /A) ‘f (1) | (2.21)

where 7(1) is a renormalizedHeisenberg field. The quantity d,

which is called the anomalous dimension of the field, is a function

of the coupling constants contained in £ Such an occurrencé of

the anomalous dimension in a renormalizable Lagrangian field
theory has been first demonstrate;l by Wilsonll) stﬁdying the exactly
soluble Thirring model, which involves a massless Dirac field

. ' '
with a self-coupled interaction 7L ’/,fz) ]lfz) where J‘}z) is
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the current ?A“qr He has shown in particular, that
d‘r = —'.L _-,-t( | - ':-L)—l for the field ‘-,’and d= ——(("%)
X ( | _f,_i?r )’f for the composite fields (—qu and ‘c,'lr‘{' .
This has to be compared with Jo';’% and -1 for LP and q/_ l-,'
(or {F&q, ) respectively. Note d = d, only when A=o0, i.e. for
a free field theefy and also d could take any value in this speci-
fic mo&el. Let Abe small and make perturbative expansion, we
get:
Jq»’ ’1"/ +0(7\3) for ¢

‘ff‘ 7 e
d = - «rar +0(A?) for G4 or tEi4

" The fact that the elementary field q’ changes its scale dimension
. in order 7(,L_but the composite fields like LF‘-" change dimension
already in order 7\ seems to be a general phenomenon in field
theory. We only need to remember that similar phenomena appear
in the realistic four-dimensional 7L(P4(z) modefqv)here 4511) is
a scalar field.

At this point it is to be emphasized that the anomalous dimension
is an inevitable-concept if one wants to avoid the conformal invari-
aﬁt theory being a free field theory. Consider for definiteness the
propagator of a spin zero (scalar) field theory. The propagator

may be written:

_1 -
G‘f’)"’ﬂg(%;) , (2.23)
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where m is the mass of the scalar field. Suppose now that the
symmetry breaking is sufficiently gentle, namely @,a# is domi-
nated by generalized mass terms. We expect our limiting theory
to be conformally invariant when qu-voo . So Ci( p) will approach
a conformally symmetrlc propagator say (fc_( r) As we will

see in Sec. 2.5, Erc(f) o (pl) Therefore if d = -1:

q(f’) 7 rz ’ (2. 24)
which 'implies that the limiting conformally invariant theory is a

free field théory.

2.4) Effective Action32)

Let ﬁs attempt now to construct a phenomenological theory describ-
ing the observed hadrons. It is widely believed that hadrons are
""composite' objects. This view is supported e.g. by the success
of various attempts to assign excited hadron states to Regge tra-
jectories, the fact that various "parton” models are at least qhali-
tativély successful in explaining the main characteristics of had- |
ronic reactions at high energies and large momentum transfers,
and so on. Howevér, neither the exact nature of the "fundamental”
constituents of hadrons (if there are any) nor their dynamics are
known at present. At this point it is worth remembering that in a
field theoretical framework if the fundamental theory generétes |

bound states or resonances, Haag, Nishijma and ZimmermanSS)
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has shown that a local field operator could be introduced to each
bound state or resonance. So let us assume that hé.dfon_s are com-
posite objects consisting of some unknown fundamental constituents
(quarks?) and furthermore that perhaps a renormalizable Lagrangian
field theory exists to describe their fundamental interactions. Let
4 Cf( z)"be a renormalized Heise'nberg field assigned to a physical
hadron and J () be the classical c-number source of ‘?( 7).

is known that the functional Y(f)

Y1) = <°l T“f’( IJIJ”‘)?("))I > (2.25)

is the generating functional of the time ordered vacuum expecta-

tion values T (t,..... 1p):

T(n, - 7‘*) Lo| T ‘?((11) a (’i”(z«))lo>. (2.26)

Note that J (X) is a commuting or anticommuting classical field
A ;

depending on 50 ( 1) being a boson or fermion field. The connected

T-functions are generated by taking functional derivatives of X(J)

defined by: g
X(j) =—¢ dn Y(j) | (2.27)

We now define a c-number quantity (f{z) , wWhich is known as
' A
the phenomenological or effective field of the hadron to which 99( z)

is assigned, as follows:

ff('z) = —5522

(2.28)

59 11T (‘f’“’“f’ Joh5oFl)
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Let us now carry out a functional Legendre transformation on
X(J) to eliminate J in favour of $. By doing this we get a new

' functional W (Y), which is called the effective action, related to

X(J):

W(ff) X(J) /0'41 _Ilz)(f(z) (2.29)

It can be shown that W (vf) is the generating functional of the one
particle irreducible T-functions (also known as vertices). First
let us note that W (f) is extremal i§ the external source is turned

off. This can be seen from the relation:

SWg)
SY(x)

when J(® —» 0. To see more about the structure of W (‘f), we

?

take the second functional der1vat1ves of W:

Sw _§Jmm)
54:,1)55%') T qal,

where we have used Eq. (2.30). On the other hand the propagator

(2. 31)

h/z(x,l,) =

(two-point Green's function) is defined by:
A /
' (
Gap!) = ’ A
§79$T7) ~ §T0)

Next consider the following 1ntegra1

4 / y 41 $9) 5T7) |
fd ! (T(z,z)u/z(zi Z’) ;d L;(z; 5‘[”177 (2. 33)

:-——J S (1,1)5 (1 X" J‘f I 54'(1 zll

(2. 32)
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This is the definition of the inverse propagator q-' , Sowe gét:

N - _ o ’ 9 34 |
Wzm,z)— (1.,1). (2. 34) |
It should be noted that W2 is no longer singular at the poles of
’w'hich correspond to one-particle singularities. This is expected
since the irreducible vertices do not have single particle singu-

larities by definition. We may now proceed further by taking the

- third functional derivatives of W ahd find after straight-forward

célcglationj: . 53“/
W (WX = S 59 e
' 5 " gSX '
= - 4 / 4 Ly W x )
fd gAYy 4y W) W, 2ly') W ') $76) 579 5T4")

W3 is easily identified as the ordinary proper vertex. Similarly

one may éontinue the procedure to convince oneself about the ab-
sence of the one particle singularities of the irreducible vertices.
We also note that the relations between the vertices and connected
T-functions generated by W and X respectively are of the sameﬂ
type as those befween fhe action integral of a classical field theory
and the T-functions in the tree approximation. This, combined
with the previously noted stability property of W explains the
names, effective action and effective field. | |
Notice that we may now reverse the direction of the above deve-
lopment. Namely, by gueséing some - approximate - form of W

in terms of the effective fields, we may generate irreducible
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vertices. Once we accept such a purely phenomenological approach,
we may discard the specific assumptibné made in the beginning of
this section. The only purpose was to arrive at the concept of ef-
fective actions and fields in a logical way. The quantum field
theoretical framework may not exis£ for strong interactions, but
effective actions and fields may still provide a useful phenomeno-
logical framework for hadrons. In fact, Domokos gt_al_.za) has
'sho&n that a consistent space-time description of hadrons is pos-
sible by introducing an infinite dimensional phenomenological |
field forthe hadrons,
It is clear that the symmetry properties of the effective action |
play an important role, since the effective action inherits the sym-
metries of the fundamental Lagrangian although it may poésess
dynémically originated symmetries as well. _32) Let q be an in-
variance group of the Lagrangian. for definiteness we may choose
G’= SU (2) (isospin rotatioris). The Heisenberg fields (,!:( (1,)

transform as follows:

| j’?) LZ(z) = 507, (};g(z) ’ (2.36)

where g € SU (2), j (g) is the unitary operator and S is a re-
presentation matrix of g. On using the assumed invariance of
the Lagrangian under q and Egs. (2.27), (2.28) we can show

that:
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)

X(r)=Xa) , = S 942 2.5

under the transformation of the external source,

Jut2) = Ja(v) S/&o\
‘ It now follows from Eq. (2.37) that - W is invariant under the

. transformation

‘{,4(1) > xg Lf/s (z)
With this much background we describe an ideal conformally sym-
-metric hadronic system. .One assigns an effective field ff (X,%)
not to a single hadron, 'but to a sequence of hadronic states - or
father, to the object to which that sequence collapses - in the
conformé.lly invariant limit and assume that effective action,
W (f) is SU (2,2) invariant. Let us make a forimal functional

Taylor expansion of W ( ‘f)

W(‘F) = %;’,‘ ﬁf&-di-"fﬂ(;,h) la/,, X, - ---)6,&))(2.39)

, _ - -
where W, = const, W1 =0 and W2 = - ér etc. (W1 = 0 implies
the stability of the vacuum.) By the assumed invariance property

‘of ‘W under SU (2,2) we have:

W(ﬁlg) ‘f) = W((f) . (2. 40)

(2.38)
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We also assume CX C, in view of the previous discussion given
in Sec. 2.3, where. T is the canonical weight of the field. From
Egs. (2.15), (2.39), (2.40) we finally find the covariance condi-
tion for the n-point vertex W_. 16) |

R )
W, (X0, -y X X

14C(¢)
n Iouh(gx )I T (b )

xo(——) z+zfu) I/\/ (X.x,, o .,an«))

where we have used the relations:
At = [t Tegx) | fatx |
o = a(h2) < D) &5 | mTn)|”.

" 'Our next step is to construct the most general form of W, satisfy-

242/,¢4) (2.41)

(2. 42)

ing Eq. (2.41). This will be done in the next section.

16)

2.5) Construction of Conformal Amplitudes; Diagram Rules.

Following DK, we will visualize the construction of the irre-
ducible vertices Wy 'é by means of a set of simple diagram rules.
For the moment the effective fields (f’(?X'z), are assumed to
be of Boson type whiéh implies j; = j2 = _%:_ | . (We have already
_used this relation when writing the effective field as ‘f’t‘). The
.diagrani rules for Wn are as follows:

a) Draw the simplest symmetric diagram with n vertices and
attach only one external line to each vertex. Thus we see that

there are n -1 internal lines and one external line meeting at
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each vertex. For example, 1)=4;

Fig. 1

b) Associate with each internal line, joining the vertices j and k

the_ propagator gjk:

» T |
| "‘Cllf X +¢0 1 . 6;5_

" where X"&u ___x’,.'“ - X‘:‘ , and lthe complex lightlike vector nf

is given by

| n,'lz = (77', ') o4 (1Iz (2. 44)
- The conformal weight 1 ik and the Lorentz label cjk assigned

to the internal line satisfy the relations which are valid by defi-
nition:

Tjk =Ty, Chyeo,

| (2. 45)
A’"k = (5}1' ) 6-1’ =20
The normalization factor Njk are chosen to be
_- , (2. 46)

k= - -
" Tattie) PA+55e)
c) Associate with each vertex k the covariance assuring factor:

(67, )i (a7, 5)
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where the formal 5 -functions should be understood in the follow -
ing sense; we observe that the labels C,'k can be made to lie on a
single Jordan curve in the complex T plane. The latter can be

mapped onto the real line. Similarly for(z . (Let Z(£) be a

1

parametric equation of an arc where T runs through an interval
X< tf {S . An arc is called a Jordan curve if 2(X) =Z(ﬂ) and

Z(t)) =Z(ty) ontyfor t=£,). 1t is also to be noted that to
, ' 6}
“each external field & kwe have assigned its contravariant part- ’

! | Ts L6
ner, @k = - Z'k-2, 6;_,=-6‘b_ -2. Consider the two fields ‘f , )_"f .

The quantity I:

| /.1 -
1[N FTND,

. -
is an invariant if T+CT42=0 ) s -}6"-}-2 =0 . Hence we call

-2, ~G-2

¥

to an arbitrary number of amplitudes without any difficulty. It has

te |
contravariant to y . Eq. (2.47)can be generalized

been pointéd out by Montvay34) that in the construction of 'SL(2, c)
covariants one is forced to assign contrax./ariant fields in order to get

- the correct limit at the physical integer points. Our construction is a
generalization of Montvays ideas to SU(2,2). d) Multiply the expres-
sion resulting from the applicatibn of rulés a) through c) by an arbitrary
function, G{(T,t lck) , of the _interna.l labels. The function Q' has’
to satisfy certain rather mild integrability conditions. In what follows, it
will be assumed that G- is analytical around the principal series of
SU(2,2V). e) Integrate over the variables T,’k , GEL along a hyper-

contour running through the principal series of SU(2,2) in each
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internal variable. A finite deformation of the hypercontour should
be possible away from the principal series. This is because of

the assumed analyticity of Q' in the rule d).

~ As-an illustration let us work out the four point vertex, W 4 (X1 Z,5

X 4 x4), explicitly. While we go on, we will also demonstrate the
rules given here being equivalent to the rules given in DK.
Step a) is carried out in Fig. 1.

Step b)

?fn‘?l; Di s J24 V34 _ |
- T —
- I X,%L,-ho) " (”Iz'Xn)(”ll'X'z)g ILNIL T (2.48)

—_ 4
(“he M)Twi (g Ko (g ) § g

Step c):

$(T-T-Tg - Tia) § (07~ G~ Gig —Gig) -

§ (T Tay =~ Tur=Gpo) § (G~ ~12~63)

Step d) and e):

V\/ (X,M ¥211. x;xs Kflqv)
fj -}JQL A% S(G-Gyrts=Ca) - -5 (G %" #)

(2. 49)

634
X (¢ ‘h.o g - ‘
q (G, Z+) ) Ce e ('&4-1/44 (7 -Xy) Ng4 .
We have six mdependent ’Cjk and four g -functions, so there re-
main two independent pararheters after taking into account é-func-

tion constraints. Let us parametrize the solution of covariance

- equation:




as follow_s:

(2. 50)

Tgpo 5 (G 4 Gtk ).

where k_, X kz are independent channel varlables mtroduced in DK.

A particular solution when k L= k2 = 0 is denoted by Z‘] kO._ It is

not difficult to see that the 1ntegrat1ons over T. i reduce to :
0 >0

HA’Z * ())((:f)’((:)h(?tx” éf(k b, rk)( x”“) n(_'&;;ji‘j *

omitting inessential factors. The integrations over kl’ k2 can

easily be recogmzed as Mellin representatlons Slm11ar calcula-

)

tion can be done over the varlables g ik W, may now be written

in the form:

y = by, b K PRt ) LS

_ (o T é: '(2.51)
X--- ( xilfz:* ) 342 (Myy qu) (Ney- XM)S *

where hl’ hz, hl" h2 are independent harmonic ratios,

X:zx44 LR Xus”"“: le
XN M Tre X g Ve

Equation (2. 51) may be written down directly applying the rules

given in DK. This completes the deinons,tration. It is also
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straightforward to see that DX-representations reduce to the
Symanzik 35) representations for the degenerate series of SU (2,2).

2.6 Some Remarks on SU (2, 2) Invariant Amplitudes

As we can see from the construction rules, the two and three point
" vertices are special in the sense that they are determined exactly

up to an arbitrary constant which depends on the conf_ormal. weights
| and Lorentz labeis. In general we have [1(h-{ )Az internal weights

J

independent parameters remain.

T Kk and the n constraints among the weights; therefore N( n-3) / 2

a) Two-point vertex

In this case, 2(2-1)/2 = -1. We have a constraint, namely,
W, = 0 when ’(', 2 q ;‘: «; - According to the diagram

rules we find: | o X Z+‘,o"z’l ) y
w1 (Xi 2 ,XZ z,) =( - ‘;/ » {(7‘41,-)60(»,1,-%2){( (’(-Z') P( Hs))

where f;{,:fL , 6 =6y =6, (2.52)
It should be noted that the uniqueness of W2 also follows from

the fact that it is the intertwining operator for SU (2, 2)36)

b) Three-point vertex

3(3-1)/2 -3 = 0, there exists a unique solution:
4 =1 . —7. |

e =7 (1% z:)

p=b (G454 -5),

wlxere (j ki) in cyclic order. We have for W3:
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. - t.. Zn _ L
M{(X‘X'I,XLM,ngg) :'lk( I’L;“D ( X,S‘fto

1

X, +i0\ T
x( )(23: 0 ZZ{ (ﬂ;l-Xn)('ﬁ;’Xl‘l)ng{(””}(ﬂ)ﬁ’;x&ﬁg;)

X ; M;;-X:é)(ﬂqu)% %5 hln"\‘lz '\J’l’l ,

where K is a constant which can be determined only if we

_have complete solutions of dynamiés. It is worthwhile to
note that the fact that the conformal invariance alone could

' determine two and three point vertices is essentially because
we cannot form conformal scalars with less than four space-

time points. 37)

c) Absence of ultra-violet divergencesl4) 15) 16)

14 .
This has been first noted by Migdal ) in a paper where he

suggested a bootstrap approach to the construction of con-

formal invariant theory. Subsequently the absence of diver-

. gences has been further clarified by Mack and Todorov. 15)
In particular they were able to show the absence of infrared
divergences too along with ultraviolet divergences. For ex-

ample, in specific model of the pseudo-scalar Yukawa theory

if the scale dimensions satisfy the restrictions:

'3 < Cl < —’ for pseudo-scalar field, (2.55) '
-5 ¢d < -3 for Dirac field,
= 1T -
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the complete absence of ultraviolet divergences is guaranteed.

" The reason béhind this is roughly as follows; although propaga-
‘tors are more singular thah the free canonical ones, but verfex
functions (three-point) are less singular in such a way that thej
can overcompensate the éingularities occurring in the propa-
gators. Hence we have a convergent theory in the ultraviolet

. régioﬁ.

d) Connection with duality.

An interesting property, first pointed out by Domokos and

16) is that conformal covariant amplitudes '-

K6vesi-Domokos,
do not have simultaneous singularities in the overlapping
channels. It should be noted, however, fhat the structure of
the singula.rities is_quite different in the dual resonance
amplitudes and the SuU (2, 2) covariant ones; for instance ris-
ing Regge trajectories cannot be accommodated in the SU (2, 2)
covariant amplitudes simply because no energy scales exist.

It has been speculated that the dual resonance amplitudes may
go over to the SU (2, 2) covariant ones when the slope of Regge
trajectories becomes infinite. So far this is only a conjecture;
see, however, subsequent chapters, especially Ch. 3. The
argument which led the authors quoted to thé concept of weak
duality goes like this; according to our Feynman-like diagram

rules, especially Step a), it is quite evident that the structure
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of singularities is determined by symmetrical Feynman-like

38) to be free of simul-

diagrams. Such a diagram is known
taneous singularities in the overlapping channels. A fur-
ther c'onne}ction with duality has been given by Del Giudice
et al. 23) in a different context introducing the concept of

dilatation trajectories.

2.7) Problems with Fermions

In this section we briefly discuss how to modify our rules in order
to construct SU (2, 2) covariant amplitudes including fermions.
First, let us consider a spin-1/2 Dirac field, \F( ’t) . It is easily
15)

seen that the conformal invariant Dirac propagator is given by:
- +4
il g' J) 1‘9 z ‘) 4 1 .

-~ —¢0 (2.56)

where d is a scale dimension of ‘-l/ and ) ::i 4 - We have also
y 3}

chosen a normalization factor according to our rule. When the
dimension, d becomes canonical, (d= - 3/2), the propagator
(2.56) reducesto that of a free field theory. Notice that the factor

d+l2

(2-10) is just a conformal invariant propagator of a scalar -

field with a scale dimension, d + 1/2. In general it can be shown

that the conformal invariant amplitudes containing fermions re-
duce essentially to those of bosons. This is evident in the case
of propagators as we see from Eq. (2.56). In order to under--

stand how the rules -should change, we consider a three. point function
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as an example. Suppose the vertex number 1 and 2 are attached
to the Dirac field, Lll , and a scalar field, say q) , is attached
to the vertex number 3. On remembering the conservation law of
"particles of half-integer spin’, we find that there are only two
ways of satisfying fhis;
a) the internal line connecting vertices 1 and 2 should carry a
spin-1/2 quantum number, or (and), b) the internal lines connect-
1ng vertices 1 and 3, 3 and 2 are fermion lines. The case a)

~ corresponds to a coupling LTA]/(P On the other hand, if the theory

contains both ‘-Y‘-k@ and (P3 couplings, then we have to take into.

account the cases a) and b) together in constructing an ampli-
tude. The diagram rules are now simply, a) Associate the
fermion propagator with each internal fermion line. b) Make éure
that dimensions are conserved at each vertex. c¢) Add all poslsible
diagi'ams permitted after the selection rules (or conservation laws)
have been applied.

One must also notice that the above considerations can be carried
over to infinite dimensional representations of SU (2, 2) about which
we are presently concerned at least in one possible version of the
theory. Namely, in the framewérk of a relativistic orbital excita-
tion model for hadrons39) it is assumed that the spin and orbital
degrees of freedom are decoupled in the lowest order approximation.

The propagators in such a theory are simply obtained by multiply-
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ing the spin part of the propagators with the orbital part. Since
the orbital part of the propagator is well described by the boson pro-

pagator, it is easily seen that the fermion propagator is given by:

9 | '
“. (2.59)
X/’azﬂ |

)
‘where g is a boson propagator already given in Eq. (2.57).

It is to be remarked at this point that even though this is not the
rhost gener;u theory, it is certainly one of the simplest possible
theories.

Now the modification of diagram rules given in Seq. 2.5 nécessary
in order to accommodate fermions is straight-forward;

Rule bl)With each fermion internal line we associate the propagator:

P
Sik ==, 9.
J )x#-)k
L2 )
where J/‘ are Dirac matrices.
Rule Cl) At each vertex the conservation law of particles of half-

integer spin has to be taken into account; the Dirac indices car-

ried by fermion lines have to be coupled to invariants.




38-
Chapter 3
Broken Conformal Symmetry

3.1) Formulation of the Problem

We have seen many theoretically remarkable features of the con-
formal invariant theory in the preceding chapter. However it is
understandable that we have not gained much practically unless
‘we have a definite scheme to break the conformal symmétry down
in the real world. The zero (or continuous) mass spectra are
sifﬂfjly not realiged in nature. Evidently, nature does not choose
manifest conformal symmetry. However it is perfectly possible -
and ‘also véry reasonable intuitively - to expect the symmetry to
show up as an approximate spacetime symmetry in some kine-
matical region. Now the question is "'which region?'. At pre-
sent we only have a highly speculative answer; the small distance
:région, or, equivalently, the high energy, large momentum trané-
fer regions of reaction amplitudes are the most likely candidates.
The behaviour of field theories at sniall distances gas been ex-
tensively investigated. Note that in this region we are dealing

- with completely off-shell amplitudes, hence, it seems that the
knowledge of the short distance limit of a theory is of no direct
relevance to the observed amplitudes. We want to assume
confdrmal symmetry as an approximate symmetry of the strong

interactions which show up as an exact one at short distances.
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In order to establish a connection with observable amplitudes, it
is, however, necessary to discuss the possible mechanisms by
which this asymptotic symmetry is broken. This is the subject
of this chapter. In the in*roduétory chapter, we have briefly des-
cribed the well-known Nambu-Freund model involving two scalar
fields. There we have noted that manifest conformal symmetry
is broken by a non-vanishing vacuum expectation value of a com-
posite scalar field X( 1) of scale dimension equal to -2. The
Nambu-Freund mechanism provides an explicit example for a
"gentle" breaking of SU (2,2). We wish now to generalize the
Nambu-Freund model to study the hadron spectrum. Our results,
however, reflect very few of the specific features of the model;
therefore we believe that they are more general than the context
in which they are derived.
In the subsequent calculations, we will be' dealing with Bosons
only. The modifications required to accommodate Fermions are
trivial in view of our discussion in Sec. 2.7 (see, however, Sec.
3.6). Assuming that we have two kinds of Bosons, (fc‘(-x ,z) and
{,’,( X), we guéss the form of an effective action W (?t,‘c.,/) in
such a way that it reduces to the familiar Nambu-Freund model
if both ?and ‘fare canonical scalar fields. ‘In the conformal
limit the field g‘“\describes' a "collapsed tower" of hadrons and
(.|/ is assumed to be a scalar of the scale dimension d As-1.

Note that we are allowing the appearance of an anomal'y.‘ in dimen-
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sion. We now specify our model as follows:

W™ ¢)
_.W(c(“) _f.W(m +WM(4]OT¢)+W(+) 6.1)

where the functionals W (? ) and W (%}) are given by a func-
tional Tayior series as in Eq. (2.39). It is‘ to be noted that in the
construction of W ((g/) there is a slight modification of the dia-
gré.m rules1 6) because of the fact that we do not have spin vari-
ables, 1;k, to integrate over. With such a modification in mind

we find for instance:

W(*/ = conat, +5 J*Xﬂ"‘f b))
( det (Y- Y)W) r(.-g) + O(‘H A

where g is the anomalous part of the scale dimension of ‘-‘I . We

choose Wlnt as follows:

Mt (%) ] IR, ¥4 4%, ‘f()(z)‘?t{xzz)
cHha, ’ijz)‘P(Xz) b

where F is nothing but a SU (2, 2) covariant three point vertex
which may be given by Eq. (2.54) with a simple change (l:-e. ’Cs—’ Z'3+z)
because of L}'being the scalar field. We find a unique solution for

f;ﬂé‘k
I T, =1 (-T-Ttd)
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and 6y, =0, Oy3 =623=0

(3.4)
)

, 1
where d is the scale dimension of the composite field ('/ .

Therefore F is now given by:

F(X X, 2 )(3) —-’LK( dd)(u'l' )L("L(, Zz;:(})(nn Y);

(’MX:\ +10)1((’ (zd} {'Jof'X: ‘ha)l( Z“"—J) t (3.5)

5 r  / 0
X ZP(HK) P (241 (-5-6+d)) P($a-t-d)) P4 te-d) g
Finally W/ is choser as follows:

< z %z
| w(¢} A}J*X (/(nf X ) 7+ (m’) + L{'(X)) 3.9)

where A is the dimensionless coupling constant and m is a
mass parameter. The actién W‘l contains an explicit symmetry.
breaking term. This is necessary for the siudy of the spontane-
ously broken space-time symmetry as we have noted in Ch. 1.

In order to see whether our model admits nonvanishing vacuum

w
expectation values we have to look for constant solutions of 'é“"(fi-c
w
and %—‘F’ . Indeed we find two solutions:
_ Y _
a) ‘/7 () , ¢=0 4 -
- 3.7)

b) (f“;o ’ L}vzz (M‘)L

N
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Evidently the solution b) is what we want. Let us now define a

new field ’)é essent1a11y by ahlftmg the origin of Lf/ -Space :

)Mt 1) e

One must notice the complete similarity of our x-field to the
Nambu-Freund X introduced in Ch. 1. Notice also that the
vacuum expectation value of x is zero. On rewriting W in terms

- of X , we first of all find that W‘I can be expanded into a series
in powers of X . It is to be noticed that this is not possible for

W’ in terms of the field 4/ . We have

W'= 7Lm4fd‘*x{"’(,+@,)4w) + (Mm')"x(X))}

3.9)
& 2
= canef +’2+”(mz)z((+di)[d‘5( x(x) +4

We also find that W. can be written in the form:

int
!, 6 " o oTE

W;,,;(‘f’,%) = W[»f(‘f ,x) + Wait (4 )

wheie Wi;llt represents a series of "tadpole terms'":

Wint (§%°) s(m‘)'%fd‘*)(,o/zu INduwdXs
Xér (X. v) ‘fz(lez) T’(X,L,X;h)' Xg) 4

From Egs. (3.1), (3.2), (3.9), (3.10) it is easily seen that, for

example, the inverse propagators of the field (fw are given




as follows:

q:-,(Xlzl Koz, ; Z,(zo)
= =§(t5 )W, X yzz,,,w),(,,..) /ﬁ( Fx %xz’w"3)

(3.11)

+ (higher order terms in the tadpole expansmn)

where W, is the SU (2,2) covariant two-point vertex already

given in Sec. 2. 6. Two important facts should be noticed im-

mediately irom the Eq. (3.11).

a)

b

The symmetry breaking causes a dimensional- mixing; the
Green's function of the field ‘f Te is no longer diagonal

in the conformal quantum numbers, T )5 . However in

the model being studied here there is no mixing in the Lorentz
label, 0~ , to first order in the symmetry breaking.

The SU(2, 2) limit of the theory determines the two-point
vertex, - q:' , uniquely to first order in the Symmetry
breaking; the arbitrary constant K in the SU (2, 2) covariant
three—poirit function can be absorbed into fhe mass scale

1

of m.

It is also to be noted that our model indeed reduces to the Nambu-'

Freund model. This is most easily accomplished through the use

%) e
of Montvay's expression of (.f z‘o“( X , z)‘ in'terms.of a field in

the canonical basis and of the relation:




23(""’)(—}(1—“'3)V 2

A —z 21 nfL ) (3.12)
v->-n Plity) ~ )] t

where n-=23,4,.... , U . Notice that the

1“)1,0
right-hand 51de of the Eq. (3.12) is essent1a11y the residue of

(-detX + io) at /= -n.

3.2) Inverse Propagator; Zeroth Order

As one can see from Eq. (3.11) we only need to calculate W, in

the zeroth order. In a graphical notation we have:

W, = - -
Z Xﬂ./zl 't'lxl

Fig. 2
The representation in the coordinate space is given by Eq. (2.52).

Let us now Fourier-transform W2 .

P
%(F,MM}C5)=[J4X,L, W, (X, Xzz)“)e ,3.19

where the momentum P is written in a spinor form, namely,

p = rﬁ@ . We note that the Fourier transform can be readily

carried out when §~= 0, i.e. spinless particles:

/ L '-'Z't _ . ) |

where T — {42 should be made. In our subsequent calculations,
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we also use the following relation frequently:

00
Z/\_ ¢'/\ {a’ﬂ( A —ol Z
-—r'("\) 2 4 )

which is valid for Ipy Z2/2. For other values of 7 the analy-

(3.15)

tic continuation is assumed. Let us now write down an integral

representation of W9, using the relation, Eq. (3.15), we obtain:

7 ”
ztn(__t)(qz SJ‘J/SO(
P(f‘*f) r(«c)]’(l'ff)l"(-ffo (3.16)

x[d?( ezf—¢‘z~dx%fﬂ(ﬁ-)()('7-x) +p-X & ,

where the integrand always includes the usual damping factor

“ l/;—c—l ‘

W (punjes) =

exp-e(ol-fﬁ) , 67 © , which, however, will not be written out
explicitly from now on. It is to be noticed that ( nX)( n- X)
is a real number. At this point we introduce a real symmetric

second rank tensor A'h,/ :

H‘“""""‘Zw +’5{(n,.ﬁ;+n.,r7ﬂ) . (3.17)

X* B X = —aX$B(nX) (7X)

Recalling that N A are complex light-like vectors, we intro-

‘duce two more real light-like vectors k, 1:

o 1) (3], 2 ) (%)
: 1 A
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42)

A standard spinor calculus gives us the following identity:

A, + M, = - (k- 1}3,,,‘, bl +0k, (3.19)

So we now have:

fo=~tLat) g 4+ Lt +0k) o

It is easily seen that the matrix A ,uv has two distinct eigen-

values, each doubly degenerate :

o ') ,d,g(k,z) o @.21)

These are negative definite, since the time component of the

light -like vectors k, s shown to be positive; in fact k° = |1,|2+ | ,
ﬁ": EA ‘+ i . Let q be a particular vector ortho-

gonal to k, 1 and {~# = é”yrAkdlf rd A, then we see that the
vectors k, 1, q, I are eigenvectors of A:

ﬂ'“‘/k‘, (or Qu) -‘-'———Oﬂkﬂ.(”.e,u) ,

(3. 225

Y9, (v 1) =—(dt E0h0) 4, (1)
Accordingly:

v 2 ¢ '
dot B."= (a5 ckt)) o

The inverse of the matrix A is found to be:
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. ’, _ __[ - é
A pv —o((O(‘fé(kl)) 50(2“"*2,(‘5"[" 'flz"[“)} ‘(3'24)

We are now able to carry out the X-integration: v )
R Al o7 L tH e f s g WX PX
f’(l*‘)l”(—c} (H() P(-t) SJ‘J/N A Xle (3.25),

| = u . w jdddlg ﬂ,ﬁ (Jffﬂ) '? P H/,./P

Putting Eqs. (3.23), (3.24), (3 25) together we get:

- 00 . z "‘-
W _ 2 THY. )z s+| 7t j «Lp
rtl+s) i’( s) 7 z+c)l(—L} do J/S o+ ﬁ(U) (3. 26)

”hd («ﬂﬂo) («p +/5(l’k)(f’f))

Let us introduce a varlable Lq which will turn out to be the angle

between the two light-like vectors k A and 1# in the rest frame

of the mdmentum P:

Bz 1-p" ké) (3.27)
,. (rk)(pe) .

After substituting a variable )’ ﬁ( k ¢ ) / 2 , we find:

Gy Tetl -t Ly(
W, = 27 () N)IJMJJ’-

Peite) fe- 6‘) Pt - C) s (3.28)
ELT gy PG (g iintd )
Xt 4&(«#) ‘

Again we change variables t = , U=ttt , anditturns

out that the integration over t can be easily evaluated. So we have

now:
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Zc-rl_‘)'(—e-rl ‘L((cc kg} (__cf)z-_‘f
270U 14s) (6] P1247) T c) (7

(3 29)
6= 6| 6-C-
1
X(,u.w fdu" |+u) I(ll'l'% ‘9)
The integral is easily recognized as one of standard integral
43)
representations of the hypergeometric function, 2 F( :
LFI (le) C; !—Z)
‘ ' (3.30)

- |
i S du A a-c 4
= (l+u (ut2
A B(IL, C—/L} o u : /| ) ’

where B is a beta-function. So we get an explicit momentum

space representation of W2 :

T, 2 peyo, P5HTT
W =_2-(27) re-t) (=) (-5) -
1 r(z"_t) P(—() [ 6" ) ( 2 ) ( 4‘ ) (5.31)

Ry
X (4"12 -t . F (6T, ctljl; ar T

It is easily checked that we recover Eq. (3.14) from Eq. (3.31)

when O~ = 0. Equation (3.31) can be written in the form contain-
tng a Jacobi funetion: )
W, =207 pe-g) (&) )f d
1 P(24T) P-T) « ) z Z (3. 32)
x (2ar$ )5'{' ‘}7( ' 1(-6’6050

where we have used the relation:

Mﬂ)(z) = (-) (’H ) b nttfst]) o g
/34‘,) L ([*fZ))

n
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Notice, under dilatation P-yA P , that Wy —> 2 f"iwz
which assigns the scale dimension T to the field (f s |

The cut of W, should be chosen to lie along the positive real axis.

2
Even though Egs. (3.31), (3.32) are our final expressions of the
Fourier transformed W, it is necessary to derive a different ex-

pression of W, in order to avoid similar long calculations of the

2
Fourier transformed representation in the following section.
This time, we start from the representation, Eq. (3.14) and then
make use of the relation, Eq. (3.15). After some straight-for-

ward manipulations we find:

W,I/(la,lﬂz ;'Ce)

2% (2n)" g -6 2 T (3. 34)
- = dadA (« _Poo) G
i) P(-¢) P247) ¢ A LEX /‘) (-IP ) )

where {P = P+oth __/5 A is a complex four vector. Equation

(3.34) is defined in the region, ITm n"} O ,Im nk {o | .

Beyond this region it is defined by the analytic continuation. Let
us now compare two expressions, Egs. (3.32) and (3.34). We

obtain:

L 50; gl "
—f 10}

its) Pl-s) 25 ), P ) (335

-t . r) /e r 198 v6-C ! ¢

,”(,z){(c )(L ) ( L). (ewt2 ) 12__6 (-cra8)
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3.3) Inverse Propagator; First Order Correction

In our symmetry breaking scheme the first order correction term
to the inverse propagator is given by the second term of Eq. (3.11).

Xy

In a graphical notation:

Xa,%z % X,

Fig. 3
In what follows, the Fourier transform of Wzl ( = (mz)'i [ A4XS
F( X,Iq Yz 1;} X3) ) will be given explicitly along the line which
we followed to derive Egs. (3.34), (3.35). After a somewhat tedi-

'ous calculatlon we find:

W, H”l:’ufczz‘)l |
-/ ’% (27) z'-( G- (?—"J} 1 (3. 36)

'f'(l+£)i’z(") (( {(c,m—(/)) {(z+z(r,—f,+al}) (14 {((((,Mj).
0o —6-| Ji e
"j detdls (o8) ¢ J‘ﬁk (—Izzn'o)"’(__(,p..j,)l.go) 1(G15-d) -2

where TP = P-blh - /g n - The integration over k can be

carried out in a standard way; the ¢ -parametrization, Eq. (3.15)

and subsequent rescalmgs etc. We obtain:
W’ —L(M) 1—(2 LL('Q"Q'JI ’)(l('(,'(z-d))
b Tu+e) it-6) P(244(5-41d)) ] (141 (21 td)) .37

P(24d) L. z(Q*Tz‘fJ)
(—J);(HL(Hz,n)S “Jﬁ (d/g) ('TP"") .

o
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The remaining integral is now recognized as the one already given
in Eq. (3.35) with T replaced by 1/2 (T, +Zz+al ). Therefore it
is readily evaluated to give the following complete momentum

space represéntation of W2 :

| _d |
| Wz' =(m*) AT d) %(P,M;{faffﬁrd’},“)

J (zn)lrmd) ?(’{(G‘W«J )) -39
At );F"") i;(z.,i(i‘,—q—rd)) P2t ng+d))

*and’ WL( R 1,7, } ‘%_(ff‘fi}_*J),") is given by Eq. (3.32)
replacing T by 1/2 (Z,‘f‘l-lfd).

It is worthwhile to remark at this point that the canonical dimen-"

where

sionality of the symmetry breaking field 1 is not allowed in
this expression since *he coefficient A blows up when d = -2.

3.4) Partial Wave Amplitudes

We now have an eXplicit expression for the inverse pfOpagator,
Gr-' , in both coordinate and momentum space to first order in

the tadpole expansion:

Gl Xu fonjuts)

J .
. 4 "i 4. ‘ : .
Sttt ) o o) T [ 1% F ),

(3.39
Gl ats)
= —-S(tz—t,) %({’,z,z,,‘qc) |
é(m’)’% Aegnd) W, (p, 2 Ay {(tﬁfzh{)/r) |
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-1
We are now going to make partial wave expansion of q' in the

rest frame of the momenta P we write:

q_,(r Z,l“f,fzd/ E(ZP—H) C”(F,C‘TzJ)glwﬂ) (3. 40)

where B( 6‘56) is'a Legendre polynomial. First, we will con-

S1der W2 in dgtall. The angular dependent part of W2 may be
written as follows:
' 926 T, (0,25 t)
‘F(@;TS):: (w i) | ’@—6 (- wsﬁ) (3. 41)

where we have used the relation k-1= l k, IL' ( | = cos &)

which is valid in the rest frame of P The part1a1 wave amph-

tudes '("( ¢), defined svmllarly can be calculated, if T-0~ is integer
and fc (26’—()) -] , using the formula: 45)

1] ) R ) £ i) s

| - L+Mm P/o(.mu) f’(o(*t!) P({ﬂﬂ‘/) o

= ) ot omel) st em e T
( for ﬂ,m = '."feje" ) ?e"()” ) .

We find:

l
f(e;z¢) =%[’ -F(ﬂ,fte) fytast) deord
¢ ,)0 Pst]) P (ev+]) P(wﬂ)

(3.43)

Pivt]) Pls- 011) | (<4047 zwl )
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where we defined v =T-6", and also used the relation:

lom("(,/gzz :(”)M Fm(ﬂ,olg—x)

Since Eq. (3.43) is defined only in the region where Y ,§ are

integer and fe 6‘) v "I -, we need to make the analytic con-

tinuation in order to define the amplitudes, -F (ﬂ) for other values
of the variables. At this point let us note that -F(Q) is a meromor-
phic function of the complex variables l and LJ. Now the crucial
question is whether we éah apply the Carlson's theorex‘rllsi)n each
variable , L/ separately. I it is possible, then the Hartog's
theore;lr;7 )Will tell us that we have a unique analytic continuation

of the function <F ([) in both l and /. Since the above me‘ntioned
two theorems are of fundamental importance, we wish to quote

them here.

Carlson's Theorem

Let f () be an analytic functionin e 22 @ andif f ) =
0, (ellzl) with A (T, when lz,-aoo’ &z), & - Then the
function f (%) is uniquely determined by its values at the integral

valuesof 2 .

Hartog's Theorem

/ / ‘
When a function f (8,%"), for values of |2|<F andof [2/] <P’

'is a regular function of 2 everywhere within the assigned z-circle

(3.44)
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for every value of z! within its assigned circle and also is a regu-

lar function of 7! everywhere within the assigned 7/ -circle for
every value of Z within its assigned circle, it is a regular func-
* tion of Z and Z' everywhere within the indicated field of Z, Z’

variation.

Equipped with the above two theorems, let us now examine the
asymptotic behaviour of {(ﬂ) This will be done by using the

'standard asymptotic expansion for the [ -function:

~ -2 .,.1 1 -1
P(Z} =g 21 1’(21,’,1'( ’_”22 -+ )’(3.45)

r| ang z| <.
It is easily seen that Eq. (3.43) is not suitable for the analytic

continuation Since,

P(Q-v+l) | eﬁm
Ple041) 7 (+047) Plevt])

and also the factor (-1) causes trouble. However, this can be

avoided by defining signatured amplitudes when they are necessary. -

Therefore we have to recast Eq. (3.43) into a form which is suit-

able for the continuation. This can be done by using the relation:

@) peempet) P (0-6) = T

R IS

for L = integer.

We now have:
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£@;ve) - 28T PUstl) Pley+]) Pler ) Tie-e) |

T PH) P et0+2) P4ve)
We now investigate the asymptotic behaviour of Eq. (3.47) in each
variable § and V separately. |

a) (l,—700’ v

L TIE e+ T (3 4
frgve) — - 2215 2] 1o -

This is polynomially bounded, hence the Carlson's theorem is

applicable. We have a unique analytic continuation in _e .

) |V —> e Y,

(4;v - 2w Pletl) fLe-6) u"'*L
{ ) “) T Ps10t7) ' )

- The Carlson's theorem is again applicable and we have a unique

(3.49)

continuation in I) as a consequence.

- Combining a) and b) we are guaranteed to have a unique analy-
tic continuation in both vai'iables l, [) according to the Hartog's
theorem. This completes our assertions about the partial wave
amplitude of W2‘

Next we go over to thg correction term W 21. Ina similar way

~as in WZ’ the angular dependent 'part is seen to be:

Lt 4t4d ~lgegd
-[l(ﬁ,qzzr (,u. 9) ' ) (0,26 m))(s 50)

)(mgd ) -5
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. /
Evidently the partial wave amplitudes ‘F(e) is now given by Eq.
!
(3.47) with L/ replaced by oJ ,, where &/ is defined by
/ - . s .
D' = .?l: ( L,‘fz;‘l'cl ) —~ & . On applying similar steps which we
carried out for -[—(e] we can easily see that a unique continuation
/
in 4 and »/ exists for the amplitudes -F(l;v:')as well. Sum-

marizing what we obtained so far, we may write:
Q—['( % zza) — S(T,—ZL) Wz(ﬁ,f.'fuf) -
"("‘7—% H(Tctzl) “/z.(zl P i(zﬁtl*d) () )
where Wz(ﬂ’r, C,S‘) is given by
(2
7,6”(21’} I(e—C) (' )z’?,‘é”g,)e-((ﬂjt.‘)(s'52)

2 "Iz+q)i’( c,

One notices that the deﬁmtlon of cos ¥ is Lorentz invariant, and

(3. 51)

further that the vectors

k, - df?/
ﬂ,u Fz (L e} F,“

become (0 k ) and (o, 0 ) respectively in the rest frame of P ,
A
we may rewrite the partial wave amplitudes in a manifestly covari-

ant form:

W,,(Q,F;tc‘) (3.53)
= Z‘(Zﬂ)l' L) (— F)-(_s‘( L)(P(Z) -F( '('6")

O
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,
For P <0 (space-like momenta), the series, Eq. (3.40), has

to be rewritten as a Sorhmerfeld-Watsbn integral:

] |
Gr”( F x zt; r,(,,c) =% Ldﬁ E:TT;{{ZH') C";'(p ;t.t;«)is. 54)

where the contour C may be chosen, for example

@—/P\ 2 3IN_,
AU e U e U s

Fig. 4
It is .interesting to observe that q» r. is singularity free through
the entire right-half plane whén the representations are on the
principal series, therefore we can open up the contour without
piél{ing up any singularities unless we cross the line fe g - -1

3.5) Regge Trajectories; the Hadron Spectrum

The singular surfaces of the Green's function (or equivalently,
regular null surfaces of G"—' ):are investigated explicitly up to

first order in the tadpole expansion. | By doing this we are able to
obtain the spectrum of the physical particle states whichAis_ quali-
tatively very encouraging to our symmetry breaking scheme. Before
proceeding, it is to be remarked that a perturbation series expan-

sion of the Green's function in powersof the symmetry breaking param-
p

eter necessarily breaks down at its singular surfaces; on the other
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hand it is believed that the series expansion makes sense for G|'
This is essentially the reason why we are studying q'—' instead
of q' . In what follows, we study the regular null surfaces of the
inverse prOpagator by the Brillouin-Wigner variational techniques?t
As we have Seen,the symmetry breaking term mixes the conformal
weights; T is no longér a good quantum number of the perturbed
system. Hence, we have to introduce new effective fields which
diagonalize the quadratic part of the effective action. It follows
from the orthogonality property of the partial wave expansion
that each partial wave may be considered separately in the follow-
ing calculation. To begin with,we make the following ansatz for

the perturbed effective field

| _l
lo)=2" l't>+(m fdz atc')|T') (3.55)

)
where ‘PJ’JC implies that the 1ntegrat1on is extended over

the principal series, i.e (Re Z = " , and Z is a normali-

zation constant which is determined by the condition <o( l °<> = ’

‘ 4
Z=1+ 0 pde’ ac) aT) 5.5

The perturbed eigenvalue o((‘C) is chosen such that:

Lo A(T) = T (3.57)

mi- 0 )
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We also denote that the eigenvalue of the unperturbed inverse
propagator, WL( Q,P) , in the T -representation by h(t) . The
coefficients a(‘c') in Eq. (3.55) are determined by imposing
the condition that the perturbed effective fields extremize the

quadratic part of the perturbed effective action (see Sec. 3.1).

5“) = ( 3.58
Sact) Sa(c) N =7 = o

where () is the eigenvalue of q g in the c\ Trepresenta-

tion.

/
From the Egs. (3.55), (3.56), (3.58) we obtain for a(t):

/
<t W, ,p) |2 (3.59)

/
alt ) =-
) w — ') »

where u) should satisfy:

0= )+ Pfac & %’nfzf::f) 4,1 .00

and /5(() is given by: J
/ch) = h(t) +mY) 2| vvz/(ﬂ,p)l T) (3. 61)

Further, let us define the function H (2) by:

d tul 11+ Iu//
H(z)zz—/j(‘)'(”'l) Fch' (d;/?',_tzlg)‘ ",t>,<3-62)

Evidently we recover Eq. (3. 60) by setting H(w) = 0. I can be

also shown that the normalization constant Z is given by the equation,

Z= (aH)zuo. - ‘(3.63>
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These equations give the general solution to the symmetry
breaking problem as defined in the present éhapter. Now the
singular surfaces of the Green's function are given by the vanish-
ing eigenvalues, (() = () . From Eq. (3. 60), we see easily that

these are determmed by the equation: ‘
)= mz) dc’ RGLAEPA u/ 19 (3. 64
p(c’) -

It is to be pointed out that the problem treated here closely re-

sembles that of certain non-relativistic many-body systems which
exhibit spontaneous symmetry breaking. The omission of terms
higher than quadratic ones in the action corresponds to the free
quasi-particle approximation in the non-relativistic many-body
problem. We now examine Eq. (3. 64) to lowest order in the sym-
metry breaking parameter. Clearly, the results should be treated
with some caution, Nevertheless, it is reasonable to expect that
the leading singularities of the Green's function will be reproduced

up to small corrections. In this order, we have:

f(t)=0 (3. 65)
This is easily seen to be given by:
Bre) =W hpjes)] 1 +(:L) g L DDAy
0o 4m Pretv+]) Pee—vir)
where ’ - !
] _((—V‘H} Pv+l) f}(cu’)
[ (c—VH) I (v -rl)
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The physical particle states are determined by the roots of the
square bracket in Eq. (3. 66). In the SU (2, 2) limit all discrete
levels of the system must have zero mass, hence we look for
such solutions of the first asrder formula , Eg. (3. 66), which are
close to massless states. The factor ( - 4% )2' blows up when
'72..) 0 , hence the solutions must be close to the polés of the
r -functions in the denominator. We now appi'oximate r(Z) by

ﬁsing the relation:
L;»«. Z+h 2= — : .
( ) i ( ) n | (3. 67)

The other factors which depend on [ are evaluated at the position

of the poles as usual. We may also write d = -2 in every factor

where this does not give rise to infinities if the deviation from the
canonical dimensionality is really small. This is indeed the case

as we will see shortly. In this way we arrive at the following approxi-

mate equation for the leading singular surfaces which come from the

‘poles of F(Q'H/'H) : - J

B (1+v+]+n) +(_:§_:Z-_-o
i) i)

where we put § :-.F" .

(3. 68)

S.(s,Ly)=
n ’
This gives rise to a series of Regge trajectories, I, =0(,,( 5) ,

with intercept at —=)/=| ~1 . One, also, must notice that at

fixed E Eq. (3. 68) gives an almost linear relationship between




_62-

masses and scale dimensions - thereby recovering the dilata'ltional

trajectories which we mentioned before. The Regge trajectories,
ﬁ :_ og'.(S), have several interesting qualitative features.

The fact that the § -dependence occurs in a form ~ (-S)'- (we

letd= -2 + 26 ) predicts the total width over mass ratios should

~ be a universal constant. This is because the total width of a re-

sonance of mass M lying on such a trajectory is given by:

e Imda(m®) M
E”:“dﬁeo((n% “1=s tm"g'~ﬂgmz. (3. 69)

S
Evidently the ratio r;t /M depends only on the dimension of the
symmetry breaking term and hence it should be universal. In
order to test this prediction, we fitted the total widths of all the

well established baryon resonancegat)o a curve:
? 2
| r;tM =ﬂ5(M-Mo) , (3.170)

where Mo was introduced in order to take threshhold effects
roughly into account. This is shown in Fig. 5. Indeed the data
are approximately consistent with Eq. (3.70) with a universal value
of 5 ~, 0.04. A similar pattern is found in the case of meson re-
sonances. However, experimental uncertainties prevent one from
drawing any firm conclusions 2t this time. It is also interesting to
notice that the slope of the Regge trajectories tend to infinity in the

2 .
SU (2,2) limit, i.e., M=>» O . Hence all the excited states collapse




M (GeV?)
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1.2
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into an infinitely degenerate massless object. Incidentally this
is what we expected when we assigned the SU (2, 2) covariant field
g‘m;;o the hadrons. |
- As we have emphasized before, the results of the first order cal-
culation cannot be trusted seriously in a quantitative sense. In
particular, the positions of the daughter trajectories for S# O
may be substantialiy affected by higher order terms in the tadpole
expansion. (For more discussion on this point, see Sec. 3.6.)

It should be also noted that the threshhold df the Regge trajectories
lie at- 9=0. Thisis becaﬁse the tadpole e#pansion is not unitary
in each order separately'.

Einally we notice that the trajectories, 5 ’: ( S ,c, V) , wWhich
arise from the poles of r( [—V"i”) are low lying so that
they contribute to nbn-leading singularities. In fact:

S I_ A (I+0—-t/'+") +(—$)’% |

" (nt1)(n42-20) 2T (‘4) ’

Hence the leading trajectory of 5 intercepts the Q ax1s if we

(3.71)

assume d»v—i , Va "l (i. e. around canonical values). This
is around the position where the third daughter trajectory of S n

intercepts the f, axis.



3.6) Remarks

First, it should be noted that the calculations which we have per-
formed are also equally applicable to fermions. This can be seen
from the fact that thé fermion propagator in momentum space is
equal to boson propagators, multiplied only by a factor XﬂF/‘ in
the frame work of orbital excitation model which we have chosen
as a possible theory. Therefore the structure of singularities
which depends on the orbital part should be quite similar. . Even
though such a complete decoupling between a spin and orbital part
may not be the case in general, we believe the singularity structures
should not be qualitatively much different.

Secondly, we would like to speculate about the behaviour of Regge
trajectories, Eqgs. (3.68), (3. 71I). As we already noted, the first
order calculations cannot be take?n'too seriously in a quantitative
sense, however, keeping this éaﬂtion in mind, some speculations
may be helpful in understahding our results. As they stand, the
Regge trajectories rise alm‘ost lineariy with mass square; this is
an extrapolation since, strictly speaking our results Eqs (3. 68),
(3.71), are valid only in the neighbourhood of small S . In order
to see the behaviour of trajectories at higl} S . we have investi- |
gated Eq. (3. 66). Since the factor (—%ﬂ )iapproaches zero

for 'Sl-)ao, the solutions must be close to the poles of the r-
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functions in the numerator'.- In this way we find two classes of

decreasmg trajectories with §': J
d=—+/-n 4 B“‘"("J ( )/L
g ' _ Tn(n +, 2,4/)

_ Baowrg(2) /-5
= - l/’ 1 =
{=cf~V-n 1 fn(n~l+w)<4mt .

> (3.72)

- Hence it is quite tempting to conjecture - combining Eqgs. (3. 68),

(3.71), (3. 72) - that the trajectories Will rise almost linearly to
some pAc‘>int and: approach constant values asymptotically.

lIf‘turn‘i'n"g points are Sufficiéntly high-lying to give many resonances,
we would get a very complicated resonance spectrum with an in-
creasing degeneracy of the states.

Finélly wé would also like to mervlt.i.on what are the possible effects
of the highér ordver (M22) éorrection terms in the tadpole series.

One cannot be too precise on this point since the higher order

- terms contain arbitrary functions as coefficients. As is easily

seen, they are homogeneous functions of P; the general n-th

order term of the tadpole expansion is shown to be proportional
l, - -
to: (V'L)z("lnz*"d) 6
by a simple power counting argument. Our preliminary estimates
suggest that the n-th order correction term to the partial wave ampli-

tudes contains a factor typically like r(ﬂ—ya /4 ”) which would give

J

and subsequent its

a leading trajectory with an intercept at ,,_'_V*ﬂ

daughters.
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- Chapter 4

Hadronic Scaling

4.1) Introduction

Onea of the most prominent features in high energy hadron colli-

sions49) - at center of mass energies of a few GeV or more -

is that there is a 'stringent limit on the transverse momenta Aoy

of all outgoing particles. They are typically of the order 0.3

to 0.4 GeV/c and are largely independent of the incident energy

and the type of reactions studied. Therefore it is in general a

good approximation at accelerator energies to describe the de-

pendence in 9 by a shafply decreasing exponential distribution.

It is also known that most of the produced particles in such col-

lision processes are pions. (About 90% of the products at 20 GeV.)

However, there is reason to believe that the situation may be

quite different in the region of large transverse momenta. (Say,

q > 3 GeV/c). In fact, recent experimenters at CERN - 1sr°?

have discovered that the distribution in qp becomes wider, showing

a clear deviation fr"om the exponential dependence at small 9 It

is also expected that one may see more strange particle production
|

than what one wbuld expect from an extrapolation of the data at low

9 This ‘is of extreme importance since it may lead us to a new

understanding of hadronic reactiops.
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A quite remarkable property of high energy hadronic reactions

is the appearance of phenomena, called ''scaling'. Such pheno-
mena have been known for some time and have been extensively
studied f_or the .deep—inelastic lepton-hadron scattering processes. 6.7)
However, scaling in purely hadronic reactions, 50) such as

p+tp=» T+ anything, has been observed only recently. (In-

order to avoid a possible misunderstanding, we wish to emphasize

that the scaling phenomena discussed here are different from the

"Feynman scaling”51) observed at low transverse momenta. As

is well known, Feynman's scaling hypothesis states that the in-
clusive single particle distribution depends on the observed

%

longitudinal momentum only through the variable X= 7._— .
However, the magnitude of the transverse momentum reriains fixed
and is about ~0.4 GeV/c. The scalinlgr properties discussed here
lx;efer to the kinematic region where all the independent kine-

matic invariants are large, - typically 2 GeV or larger - and

thus they are analogues of the ""Bjorken scaling'' observed in in-
elastic lepton scattering.) It is well known that the scaling pheno-
mena observed in the lepton-induced reactions may be explained

by assuming that hadrons are composite and their constituents -

52)

known as ''partons" - behave as if they were point-like
Yy

particles in the infinite momentum frame of the hadrons. In
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describirg hadronic reactions at large transverse momenta, it is
‘quite tempting to apply parton concept since we are essentially
probing the short distance structure of the hadrons. In fact, vari-

53)

ous parton models  ’ have been quite successful in explaining
"hadronic scaling'’. However, it is quite conceivable that scal-
ing phenomena reflect more general aspects of the dynamics of
hadrons than is‘ suggested by the specific models.

In this chapter we propose that the hypothesis of asymptotic con-
formal invariancg,together with some additional, rather general,
assumptions leads to an understanding of at least the main qualita-
tive features of the data on hadron induced inclusive reaétions in
this, "scéling region''.

A general framework to study the inclusive reactions,

P1 + P2 — g + anything,

has been introduced by Mueller?4) Heshas observed that the cross
. o4
section of an inclusive reaction, Z -4—-—— , can be regarded as

PIE

a discontinuity in a siX-point forward scattering amplitude. This

is a generalization of the relation - known as the 'optical theorem' -

between the total cross section and the absorptive part of a forward

scattering four-point function. So we have at high energies:

where A denotes the absorptive part just mentioned.



In the following sections we study a six-point conformal

amplitude in its most general form except spins. (We have neglected
all the spins for simplicity of calculations). A scaling law follows
immediately in our scheme. However, a specific form of the scaling
function can only be obtained by making certain assumptions on the
form of the amplitude. To be more specific we assume that an ar-
bitrary generalized reduced matrix element is a completely factorizable
~ function of the independent channel variables, c;- This is a mathe-
matical interpretation of the physical assumption that the dynamics
responsible ‘or the process under consideration is a very complicated
one and hence dynamical correlation effects are cancelled out to a good
approximation; we call this an independent correllétion model.

It is found that we can fit the avaﬂable experimental data on
pp-?1°X excellently with the scaling function so obtained. We also
present the ﬁr-edicted production rates for the reactions pp - KX and

PP = R X.

4.2 Six-point Conformal Amplitude

In what follows, calculations will be done under two simplifying
assumptions;

a) We neglect all spins, so we work with a Symanzik repre-

sentation instead of the more general DK -representation pre-

viously described in Ch, 2,

b) We work to zeroth order in the symmetry breaking tadpole.

However, this is consistent with the first order calculation

of the spectrum,

We begin by drawing a six-point conformal diagram.



The conformal covariant six-point amplitude, T6’ may be

written in a straight-forward manner by the familiar construction

principles: :

Te tn ) =f§ TG0 () peye)

.gg(zﬁ:’%n?-u) Aé(o(fn'...,"'rc) , | (4.2)

where GO is an arbitrary function of scale dimensions ‘L"hand Z"k“

= .”_, M denote space-time differences. In writing this form of
T6’ we have absorbea certain constant factors, e. g. (/{ )c‘,"kinto
G,. Instead of working directly with (4. 2) we find it more convenient
to derive an equivalent form which turns out to be more suitable to

calculate the Fourier transform and to our subsequent calculations.

Consider an amplitude F:
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Fia, - %) =§ I 25 ) Freg) 0,

| 4Gt 4. gl
Af{l% ‘i () %G, wa)oap (40 "),
where in the secon

form we ave absorbed vanous L" factors into G.

(4. 3)

Evidently F does not represent a conformal amplitude unless the in-
ternalp dimensions satisfy the covariance conditions. However, we can
project out conformal portions of the amplitude F by using the Mellin
projection technique which i'eads as follows:

Let ¥(x) be an arbitrary function which is in general not

homogeneous. We can project out a "homogeneous component' of

degree f in Z by .

P JA o —
F(z = Z Nz
= ) L A ) (4. 4)

"It is easy to see that u u F( A necessar
y o Yy

generalization to functlons of many variables can be done without any

difficulty. In view of Ej, (4. 4) and its subsequ.ent generalization we

construct an amplitude FC from the amplitude F by multiplying each

ijz by ug'r”k and integrating over ﬂa for each vertex j with a factor
‘C,’-fS from 0 to 09,

(11, +g) = gwédﬂa 'c,+4S Q'(Qz )
L lﬂuu?‘%a %f’("zi“a‘ U“,}“t) . (4.5)

It is eas1ly checked that the amplitude FC is indeed a conformal
amplitude. For example, we see under a special conformal trans -

formation (2. 1)




Fit)-2) = 7’ | I-2¢2, *"' 'Cl Fy, %

Let us now introduce new variables, d(’ (l .4-(1 £6 )

and J ( [ € (14 q ) as follows:

iy = &' %G G
U jn = 85 Qfer G Giet

) (4. 6)
i . [y '
(In these equations the cyclic identification of the vertices, viz,
ll * = ‘ll y is implied.) We see now that 6 variables, (,°
st = Uyt | 1
may be eliminated by a suitable redefinition of the reduced matrix

element G, In fact, introducing new variables ﬂj by -

m1’ =ﬂa|a’o
we obtain a following representation of the amplitude FC

k%)= ﬂ"’ "“’g”""c K(Cl,_cq)

o : (4.7)

ezf —‘Z( ?f’ *, J + ’""m”m,ft Jca.ﬂ ..) )

where

Kg, - c‘f) S”‘Jg _6 G, - ug‘)
4
Tty - 00 fﬁinf‘@ﬂ)— ) - &)

(It.is understood that the arguments of G(Un . ﬂf‘) are expressed

~ through the new vanables, aJ and cJ, by means of Eq. (4.6)) In

obtaining the representation (4. 7) we have used the observation that &

vioo

" the volume element is invariant under the change of variables, Eq..



(4. 6), viz.

. !
¢ disle ¢ das 4Jca .
Ry o B (GG
7 Uik o
It is to be noticed that the reduced matrix element, K depends
only on a set of six independent channel variables and the covariance
conditions are automatically taken into account.

Next we multiply a factor
(= [0 (- 2t rms )
) A AN )

to the representation (4. 7) and subsequently rescale the variables,

mj by | |
!
. : 2l .6
Then we find an expressmn for F
(lh L) = .(oo'ﬂ'd)aK“u c“)f &4 tS "'Jg
Sf’ S(f—ti’)czf(u\ 2154 5% v,z;)
where T=7% ( C"-f‘f) and vdt L (4;'4&)

(The quantities 'UJL defined above are functmns of the cJ alone.)

|
(4. 8)
|

Let us now Founer-transform Eq. (4 8)

by ) =S g B A (F ka0
gp})\ °$ ﬂJ; {9 5(l- z;’,) mf{z)\ Zx]¢ 5% 1)34)

We put Zé_o by using translational invariance, thereby one dependent

momentum has been eliminated. (Note that we have an overall

momentum-energy conservation, ’L' 4 + gé =0 )
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_ We now define a real and symmetric 5 x 5 matrix Q by

XtQ X =& 7:;2. %’SQ U,L (4.10)

J

Where xt = | Z'l 12, ce e, %‘-) and X is a transpose of the matrix X.
From the definition it is easily seen that the element (jk) of Q is

given by
R L

As the matrix Q is real and symmetric by definition, there
exists an orthogonal matrix which diagonalizes Q. Hence the Z.-
integrations are easily carried out with the help of the standard
Gaussian integration formula:
4 —«.z‘
S d o= ‘. ‘"'

So we get:

By, fe) = ino{ "Ny 7T
fll“f z‘" 5 (l- tf)é/efQ) %f"(-,\zK @4’<)

where Q is the inverse matnx of Q and K® = ( L tt/ .

-

_; K(C',...,C'
(4.12)

L( ).

Substituting a new variable by ﬂ— ( ))
b, - 4) it §y Sk M 4557 S a-5;):

(4.13)

f H kce. ) (Ja'Q) %f(&,lath"V)

where /3=7""€ z'cj (ay %’C—IO) .

Notice that all the momenta are entirely contained in the factor,
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(K@ K)ﬁ This allows one to obtain a scaling law and a parton-like
structure of the inclusive cruss sections as we will see in the next
section,

| Evidently', the dynamics is éntirely contained in the generalized
Areduce‘d matrix element,. K(cl. - (:9') which cannot be determined by con-
fo;'mal symmetry alone. Without having a dynamical model, we are un-
able to proceed further with Eq. (4.13). In the following, however, Qvel
will study two simple models for the matrix element K(cl. .. c9); the
skeleton amplitude defined in DK and the independent correlation model.
‘We may hope that at least some qualitative aspects of the results that
we find by studying thebse models remain in a future more complete

theory.

4.3 Some General Properties and the Skeleton Amplitude

Let us begin with the kinematics of the single particle inclusive

reaction

fi+t, — ¢+ X ,
where X symbolize all the rest of the particles that we do not detect.
We also denote incident particles (say, scalar nucleons) and an outcoming
particle (say, m) by their momenta for the notational simplicity. It is
not difficult to see that the inclusive cross section is proportional to
the absorptivé part of a six point forward scattering amplitude with
momenta assigned as follows: .

ég = fl , £4 = ’rz ’

‘£2=i ; ‘ig:fﬂ, (4.14)

iz = f‘b , 'LG = ’P(

On choosing the third component of P, different from zero in the center



77

of the mass system, the following asymptotic relations are easily

shown to hold at high energies: |
fi= (P, 0,0, r) ,
lfz"(pv 9, 0, ‘,f) ' ' (4. 15)
L2 (2, & two) ;%] =Fewd

The kinematical invariants, s, t, and u are defined as usual;
S = L3 ~ T
en)t=ept,
= 2 ' 4.16
t—(f,—c) > -4Pg et ’ (4. 16)
. g
Uz (h-¢)" = -4pg 4

We also define scale vai‘iables, x y:

: -
s oy $ (4.17)
Note the following asymptotic relations:

, | L,
2ty == zg;_sl

Thus we see that x + y <»1 at the boundary of the phase space. At 0 = 90°

(4.18)

we have x = y,

Turning our attention to the conformal amplitude (4. 13) again,

we notice that the six-point function entering the expression of the inclu-

sive cross section can be written in the form with the above defined
kir_lematics. . A . ' :
Rl fu-e) s Brmy: "
RAS L Ae) =P Pizy; ™)
1,9,y 7l =S (% -
Taking the absorptive part of the amplitude (4. 19) in s, we obtain a

general scaling law for the inclusive cross section,



L )
Jt 0 ! (4, 20)

provided we are allowed to let the external masses, m} g0 to zero,

Whether this step is permissible or not depends on the function

K(Cl' ..C For the moment we assume that Eq. (4.19) is free of such

9
infrared divergences, (However, as we will see shortly, th1s is not

the case for the skeleton amplitude. ) So we have, in some sense,
demonstrated that the scaling law is a consequence of a rather general
principle like an approximate conformal invariance of the theory. In
order to get more specific information about the scaling function F(x,y),
" we need a model for K(cl. .. c9).

Before-doing this, one more interesting consequence of the con-

formal invariance of the theory is to be mentioned. Namely, we notice

that Eq (4.13) may be rewritten in the form:

where the form of the amplitude E(k" v ‘r; C") can be read off by
comparing Eq. (4.21) with Eq. (4.13). It is important to realize that

the function E(‘,,L(}' CJ') itself is a plysically meaningful (SY(2, 2)
invariant) amplitude for any set of the real numbers, 6',' ey, Cq .
Equivalently, the function K is independent of all the kinematic variables.
(From the geometricél pbint of view, this is a consequence of the fact
that conformal transformations act transitively‘on Minkowski space. If

we had required Poincar€ invariance of the amplitude'only, the reduced

matrix elements would be functions of the invariant channel energies,
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thus invalidating the whole argument. ), Therefore, the discontinuity
of Fc with i'espect to the incicdent energy and hence the inclusive cross

section may be written as follows:

'S [N |
—_— =_€° JG(CJ‘)'JW(('}') (4. 22)
diq, i*¢ .
Thus, we may look at the m;aasured inclusive cross section as an
%oJIK(C;')
7T

where the differential probability distribution of the channel correlation

incoherent superposition of "elementary' cross sections,

parameters, cj is given by

f - dey o
- JW(CI') =T,’—(:;- K“‘,"':CQ) | (4.23)
(Stri‘ctly speaking, for this interpretation to be valid, one should prove
that the elementary cross sections and the distribution dW are positive,
At thig moment, we ‘do not know of the éxistence of such a proof; how -
ever, this quesﬁon of interprétation has little effect on what follows. )
Eq. (4.22) shows us that the inclusive cross sections possess
a structure strongly reminiscent of parton models. This structure
is obtained without explicitly aésuming that partons are "particle -
like constituents' of hadrons, InT fact, our partons may be identified
with the elementary two-point correlation functions which are building
blocks of the conformal amplitudes.
So far we have endeavored to vobtain generlal consequences of the
SU(2, 2) invariant amplitude Eq. (4.13) without being involved in a
specific model. We now study siimple models for the function K(cj)

to be more practical. " As a first try, we may say that the function
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G(q‘, ... ,tfé) is very smooth and slowly varying in ’%L so that it
is approximated by a constant (say, G = 1 without loss of generality)

as a zeroth order. It is easily seen that this implies
Q'(un:, IR fé‘), - " S (u)L —’) (4. 24)

This, in turn, implies

a
Kslci,""c_‘i) ="g(cl"') , (4. 25)

as can be seen from the definition Eq. (4. 7) by some straight-forward
calculations,

Therefore, the skeleton amplitude is given By
Bk %) = ainiocpep) (s 457
. -9 , /;
: szf, £3,) (4 Q) (Kth! K) ,
where we define the matrix sty

AQS= @) Ic’.,' , 1’.e_.' Qsa" = Sa-‘ gn. — ga.g‘

We have also carried out p integration in obtaining Eq. (4.26). For-

§

(4.26)

tunately enough, it turns out that the 5 x 5 matrix, Q° can be inverted

by inspection: ‘
s ¢, | 1

(As a technical point,. it is worth mentioning at this point that even

(4.27)

though the matrix Q can be inverted in principle by a finite number of
algebraic operatio'ns, this procedure becomes quite laborious for
matrices of the order. of five or higher. Therefore, in practice we

are forced to make an approximation. We will encounter this situation




in the next section. )

We also find the deter:minant of QS:

J“Qs =§|'§2"'§6

Putting Eqs. (4.26), (4.27) and (4.28) all together, we get the following

(4.28)

. : . s .
expression for the skeleton amplitude Fc after some straight-forward

manipulations:

£k, k) = LB gy '5‘ M gf'*‘m-z;,) .
(84 44\ e -
. + -

3

Thus we learn that the skeleton amphtude is a constant, depend-
ing on the external masses, mj, only. As a particular case, the for-
ward scattering amplitude which is relevant to the inclusive cross section
has no discontinuity in the invariant energy. So the inclusive cross sec-
_tlon gets no contribution from the skeleton amplitude. We also see from
Eq. (4.29) that the "infrared limit" ( & =20 ) is finite or divergent de-
pendmg on the sign of ﬁ It is reasonable to say that the scale dimen-

sions differ little from their canonical values in view of the arguments

Zc
we presented in the prevxous chapters. In that case /S 4 z is
approximately around -1, (Note that p = -1 if all the dimensions were

candnical. ) Thus the skeleton amplitude Eq. (4.29) is in fact infrared

divergent.

4. 4 Independent Correlation Model
As we have previously stated, the model, which we describe
in this section to obtain more specific information about the scaling

function F(x, y) is oupr version of understanding of the hypothesis about
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the ""'randomness' of the dynamics. The reduced matrix element

K(c,, . ,cf) -factorizes in this model:

4 ‘.
K(c“’Cq)s Tr KJ(C’) , (4. 30)

where the functions Kj depend ona; single variable only.
Incorporating certain symmetry properties which follow from

crossing relations ancli the statistics of the external particles to the

present scalar model; we demand that all the meson-nucleon and

nucleon-nucleon distributions be equal to each other, respectively.

Hence we have:

K' ;Kl ='KQ ‘—".KS' 51/
Ky =Ke =Ky =Kq =2 V

(4.31)

(Note that K8 is a fnesonfmeson distribution. )
Assuming the validity of the interpretation of dW as a differ -
ential probability distribution, we obtain the following conditions.
” Je ” Je |
0 f —_— [4 f — V(c 09 ‘
<°CU(),OGV)< (4. 32)

Eq. (4. 32) implies that we may write in general

U(C)-:CA?(C). , V(c) =Cg%(0) ’  (4. 33)

near ¢ = 0 with positive powers A and B, where g (0), h(0) may be

finite. This is always possible by choosing A and B appropriately.
Let us now derive a useful approximation to Eq. (4. 13) which

is essentially a first ordsr perturbation formula around the skeleton.

(Remember that the function K had a form ” {(C" —') in the
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4 . calculations of the skeleton amplitude.) We start by introducing new

variables, "‘)jk as follows:

o med - Crerkeo)

(4. 34)

' The variables w. are small param'et,ei's to make a power series ex-
- pansion. It is also understood that 4() are to be expressed in terms’
of the quant1t1es 6, ,’ , e.g. to f1rst order we have |
° = - Y - C [ = C“f’ . —-’
Yig =G -1, Wy = GG T Wy !
The matrix Q can be separated into two pieces by substituting

by Eq. (4. 34):

S
where Q° is the skeleton matrix given previously and

ﬁ"‘ Q /./’4-—-:%4_

Now Q -1 can be found by a series expansion:

S -'
Q“""‘ -(Qs)-" (Qs)-'a (Q )t (4. 36)

.Since we have already found (QS)-1 in the previous secfion, Eq. (4. 36)

jk

(4. 35)

gives Q! up to first order in wjk after some straight-forward cal-

culations:
Q,L ¥ SL (1+ T 455 ) +5 (| + 7wt %e)
+¢.J63 +Wep —90 | .2
In what follows we also put
debQ = dot (Q%E) 2 detQ* -

whereas we retain terms of O('wjk) in the-rapidly varying-exponential




function.

From Eqs.. (4.13), (4. 31) and (4. 38) we obtain an approx1mate
expression for the amplitude F (kg, .kf) :
)
1o s
F(&, y )~-2L1f f ﬁg 'nlgg g” zg)
Je ‘ ‘ (4.39)
SW JK(c, (q)«fu,u ( - —7; 51‘01 ~Tbywy, )
% i, 1% )

Let us pause for a moment’to d1scuss the vahd1ty of the approx-
imate formula Eq. (4.39). Were a-ll the momenta large and non-
exceptional (i. e. no finite sum of the external momenta would vanish),‘
we would expert Eq. (4. 39) to give a good approximation to the physical

(SU(2, 2) invariant) amplitude. This is due to the fact that in the region

just mentioned, all scalar products of the momenta ‘L"-t)'are very large,

Hence, the exponential in Eq. (4. 39) oscillates very rapidly unless
wjk< 1. (This justifies the assertion that Ojk are small parameters. )
Unfortunately, however, the region just described is also highly un-
physical. (The "deep Euclidean region'.) In the physically relevant
Minkowskian region of momenta, with ka fixed, we have no reliable -.
way of estimating the accuracy of our approximation. However, by
putting ka = 0, and working out the i‘espective formulae, we arrive at
an approximate amplitude with no evidently unphysical properties.
Thus we believe that the approxima!:ion considered here gives at
least a reasonable qualitative picture of the behaviour of the amplitude.
We immediat‘ely notice that the approximation method just
derived preserves the scaiing property in every order. By consistently
neglehcting mass terms, the exponent of Eq. (4.39) may be simplified
drastically. (For instance, 5- de-pendenq’e' drops out completely. )

Hence 'we obtain:
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Exponent —?Zk)f[éj'{l = S (C'+§Lf£* -—Cr—C,) - q/
"Jt(,"c‘) -2U ( {"C_;) (4. 40)

= sL (2,9 ; ‘;')
To obtain Eq. (4. 40) we have used the first order expression of the

variables jk in terms of CJ" . Now the scaling law follows from

Eq. (4. 39) just by redefining the variable e

E(fer, -, —@)~(—s) “4ay)
where qlls given by: |

Yrz,4) = ur'" % ""g 4,5, scl-2355).
TT—JK(Q, "4)“{“—/“”"'71 a.)

( L(17 J) is ngen trivially by Eq. (4. 40).).

The §. 1ntegra1 i5 easily carried out to give a poly—l»eta function

B(Tt2,- J T+2) |

(4. 41)

Ja
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Next, the 1ndependent correlation model (4. 30) tells us that

B(q}z,/ . --,t‘fz) =
the function q/can be written in a form .
qf(z,y) = 27 CHS( qn ,<¢+Z)f i“,u
511 K (Ca) C ’Lr O,U L/%?) Ca)

where, on not1c1ng the abﬁence of Cg in the exponent L , & parameter

(4 43)

G has been introduced by the integral,

f JC‘K,(C)

Furthermore, let us change variables as follows
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G =Up (4.44)
(k43,¢)

We now obtain the following form for ¢ from Eq. (4. 43) using

Eqs. (4.31), (4.33) and (4. 44):

Y11, ;/ B (gt ,Q‘ﬂ) (ﬁ)@ag) (1(!-17)]‘1*“”5)

«Hra, 9) (4.45)

where H(x,y) is given by

frag)e & TS Lolytanas)

. -qu(zuq (:—M))] (U4, - Yy 'l)ﬂ

Evidently, the function H cannot be calculated without making

K{\ (llg(l'l'g})

further assumptions about the distribution of correlations. However,
if g(0) and h(0) are indeed finite, the behaviour of the distribution
near the boundary of the phase space ( xty =»1) should be dominated
by the power (1-x-y) A +4(ﬂ4’8) . Similarly, if the functions gand h
are reasonably smooth over a substantial range of their arguments, one
expects the factor (xy)-B to dominate over the region of small x and y.
Therefore it is not unreasonable to assume that H is a slowly varying
function in x and y. In fact, we are able to fit the experimental data
quite satisfactorily with the assumption of H being a constant, (see
Fig. 7)

Finally, calculating the discontinuity of the amp'litude Fc in the

invariant energy s, we arrive at the following expression of the single

particle distribution:

od"’o’ |
i ~ T148) Bign, Tar) §
{ . ("z’g)(lf4(ﬂ46) H (2, 9)

I8, -

9) f (4. 46)
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where we have absorbed some constant factors into the function H.
It is interesting to note that the power behaviour, (xy)-B,
in Eq. (4. 46) is of the same type as obtained in the parton model cal-
culations. Our formula Eq. (4. 46) also contains a factor,
A+4(A+R)
( l—zfg) ,
ary of the phase space (x+y-»1) when p+4 (H#K ) > o0

On combining the scaling law Eq. (4. 46) with the dimensional

which suppress the cross section at the bound-

1 L,
rule (e. g. JK Vg ~ #‘2 (ml - mﬁ ), typically M~| Crel/)obtained
in the previous chapter, we find a rather surprising prediction on the

inclusive distributions of mesons (1,"K,'7' ) at fixed x and y:
1 : ‘
& (K)

dg — A S#"( b fU’T)

d 6 (ﬂ) “ )

where €, in general, depends on x and y. Similarly for % . However,

(4. 47)

- under the ad hoc assumption that the constants A, B and the function H
are approximately independent of the nature of the particle produced,
we obtain the following expression for by using the fact that

for Spinlesé particles:

Bl =%, ) Pl-adg)

BCt, [-atq, = ) P=2) s

where o(] - { .'»;/a' . We have assumed that the nucleons have a

(-

canonical dimension i. e, VN = v'.
i

In order to test our result, in Fig. 7, we have plotted recent
CERN-ISR data on pp ~» 7° anything in three different incident energies,

Vs = 30.6, 44.8 and 52. 7 Gev. Clearly, the scaling law Eq. (4.46) is

in good agreement with the data. . Our fit is obtained by assuming
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H(x y) = const and A=B=2.7. We have also given our predictions on

K and }I productions based on Eqgs. (4.47), (4. 48) in the same figure,

At present there are no reliable data available to check these ﬁredictions.
(Preliminary data obtainebd by the CERN-Saclay group at the ISR seem to
indicate tﬁat ‘_a) the rate of ""heavy particle" production grows with the
transverse momentum aﬁd may saturate at a rati'o around ~~1.5,

b) Comparison with the 24 Gev data indicates a slow increase of heavy

- particle production with energy. This would be at least qualitatively

consistent with our theoretical prediction, However, the data are pre-
liminéry and they have been contested by the British-Scandinavian
collaboration. At present, no final conclusiqn can be dfawn concerning
the validity of this theoretical prediction ) It should be noted that our
Eq. (4. 47) suggests that at suff1c1ently high energles and large momen-
tum transfers one should See an lncreasmg number of low spin, heavy
particles produced in_a_g reaction. While this prediction is somewhat
Surprising in view of -the overwhelmipg dominance of pions at low dr

as we mentioned in Sec. 4.1, it does not seem to contradict any known

physical principle or experimental result.
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Chapter 5

Discussion
In the last two chapters we have studied conformal symmetry with
an emphasis on its broken character and its physical predictions.
Due to the lack of knowledge of the fundamental dynamics of had-
rons, we were forced to take a purely phenomenological approach
to the problem. Thereby we have developed an effective action
theory of Studying broken conformal symmetry through a spon-
taneously broken symmetry mechanism. Assigning hadrons to
infinite dimensional representations of SU (2,2), we were able to
recover some essential features of the hadron spectrum. More-
over‘we predict the‘ ratio rtot / M to be a universal cohstant
- which seems to agree with present experimental data at least in
a qualitative sense, Thi'oughout the calculations, only the quali-
tative aspects have been emphasized. This is partly because we
are not able to provide exact quantitative results within the frame-
work of the present model, and partly because in our present state
of knowledge about strong interactions any quantitative estimetes
are iiecessarily bound to change before not too long. The main
justification of our approximatiohs (based on physical intuition
rather than on a logically consistent procedure) would be the consis-

tency of the emerging physical picture with experimental facts. In
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fact, the physical picture seems to be quite attractive. Should
the qualitative aspects of the hadrvo.n spectrum be correctly des-
cribed by present theory, we would conclude that it is not physi-
cally meaningful to inquire aboutAprc‘)perties of individual hadron |
levels in the high mass region. This is because the widths of
massive hadron states are predicted to be comparable with their
rest masses in such a region. Therefore we should rather con-’
-cent‘rate on the investigation of the properties of an "average

excited hadron. "

This is a familiar concept in nuclear physics,
however its accommodation may require substantial changes in

the methods and outlook of present day hadron spectroscopy.
Broken conformal sy'mm'etryvalso appears to have a considerable
predictive power in high energy, large momentum transfer
hadronic processes. In particular we have considered inclu-

si-ve reéctions in this frémework. The predicted S(;,aling law seems
to be in reasonable agreement with the data. A far reaching conse-
quence he}s been obtained from dimensional rules (dilatational tra-
ject;)ries) and the scaling law, predicting more frequent occurence
of heavy particles (as opposed to pibns) at large transverse momenta.
Should this be borne out at least qualitatively by future experimeﬁts;
it would lend substantial support to our scheme. On the other hand,
a deeper understanding of such phenomena would be quite welcome.
Recalling that the dimensional rule ‘appears to be quite a new con-

cept in this field and prticularly, its appearance in connection

with duality, such a theoretical investigation may lead us to a
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completely new doolain of strong interactions. Clearly our ap-
proach - purely phenomenological in its spirit - is far from be-
ing a consistent theory. Yet, the present considerations lead
one to conjecture that fine details of the dynamics of complicated
relativistic systems - as hadrons appear to be - may be relatively
unimportant as far as practically observable properties are con-
c.erned.‘ One may recall in this respect that some non—relatifris;
tic many-body system‘s (e.g. an infinite ferromagnet near the
Curie-temperature) do ocoasionally exhibit such a surprising in-
sensitivity to the details of the dynamics. While there are certain
formal arialogiesbetween a non-relativistic system near the criti-
‘cal point and a conformally invariant relativistic theory, the phy-
sicel ineanihg (if there is any) of.such a.ﬁalogies is far from being
clear at present. Should it happeo that the dynamics of hadrons
somehow ''conspires'' to disguise the true nature of the "funda-
mental" constituents of hadrons (if there are any), the present
phenomenological approech may be the only effective starting
point towards a dynamical theory of hadrons - perhaps until a

radically different type of experimental data will be available.
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