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Abstract

High energy, large momentum transfer hadronic reactions are

st,idied in the framework of a broken conformal symmetry.  In the

conformal synimetry limit, hadrons are assigned phenomenological

fields· which belong to infinite dimensional irreducible representa -

tions of a pseudo unitary group SU (2,2), which is homomorphic to

the conformal group, and also their effective action is conformal

invariant. Studying simple Lagrangian models, we conjecture that

the conformal symmetry is spontaneously broken and also that the

scalar field X(the Goldstone boson), which has nonvanishing vacuum

expectation value, has a scale dimension d = -2 + 2  where   

represents deviation from the canonical dimension.  We then cal-
IA

culate the inverse propagator up to and including the first order in
the tadpole expansion explicitly and find that hadrons lie on almost

linear Regge trajectories, which are determined by regular null sur-

faces of the inverse propagator. The widths of resonances are con-

nected to the anomalous part of the dimension,   . Empirical fit

with the data (baryon resonances) gives  4/0.04.  In this framework

we also study inclusive reactions  of the type  pl  +  P2 -I q+X i n
regions of high transverse momenta. On studying the absorptive

part of the six-point conformal amplitude, we find that the single

particle distributions exhibit a parton-like structure and also obey

simple sealing laws; presently available experimental data on the

reaction pp -* Tr'X support this conclusion.  We also predict large

rates of heavy particles (K, 1  ) production.
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Chapter 1

bitroduction

Our object in this report is to study conformal symmetry as an

approximate space-time symmetry of hadron systems in the high

energy, large momentum transfer region.  As is well known, the
Poincar6 group is the largest exact space-time symmetry group
of physical systems. However, the conformal group, which con-
tains the poincar6 group as one of its subgroups, has also appeared

in various places as an exact symmetry group. Conformal invari-
ance of Maxwell's equation was noticed by Bateman and Cunning -
haml  in 1909. On noticing a simple correspondence of ordinary
fields over Minkowski space with fields on the four-dimensional

surface in a five-dimensional projective space, manifestly confor-

mal invariant free field equations and invariant interactions were
2)first discussed by Dirac and Kastrup , respectively. An attempt

to formulate electrodynamics based on the conformal group was
given by Page. 3) In relation to this, special conformal transfor-

mations were interpreted as transformations to constant acceler-

ating systems. The physical interpretation of conformal symmetry
and its relevance to the real world were extensively studied by
various authors, notably by Kastrup, Mack and Wess. By now,4)

the more or less accepted interpretation of special conformal

transformations as local scale transformations is due to Kastrup. 4)
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A current algebraic formulation of studying broken conformal

symmetry known  as PCDC (partially conserved dilatation    cur -

5)rent) was given by Mack. In the framework of canonical Lagran-

gian field theory, it has been also shown that the conformal sym-

metry (or broken conformal symmetry) can be consistently for-

mulated and also that the scale invariance necessarily implies

the conformal invariance too, under very general conditions.

However, recent great interest in conformal symmetry is largely

due to scaling phenomena in deep-inelastic electron proton scat-
6)tering predicted  by Bj orken and verified soon after the predic -

tion was made by the MIT-SLAC experiment    In an effort to

explain   such a peculiar behaviour of nucleon structure functions,   the
8)Wilson' s operator product expansion at small distances  has  been

extended to the light cone. 9) As originally postulated by Wilson, 8)

it has been assumed that the leading light-cone singularity may be

determined only by scale invariance.   If this is the case it is also

very natural to assume conformalinvariance on the light-cone

based on our previous experience with local Lagrangian field

theories. Conformal covariant operator product expansions have

been developed by Gatto and his collaborators. 10)

In a completely soluble field theory model,   like the Thirring model,

Wilsonll) has shown that  the scale dimensions of operators depend
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on the coupling constant. Although the results obtained from the

12)Thirring model do not necessarily carry over to four dimensionA

it is generally agreed that anomalous dimensions could play an

important role in the real world (i. e. four dimensional theories

as well. This belief is further strengthened by some perturba-

tive  results in renormalizable field theory models. 13)    It is known

that the results of the MIT-SLAC deep-inelastic electron proton

7)scattering experiment prefer at least near canonical dimension-

ality; the ap-pearance of canonical scaling in ep. -0 eX  may  be  due

to the fact that the dimension of a conserved current is canonical.

However, it is true that there is no way to distinguish small devia-

tions from the canonica] dimension with present experimental ac-

curacy.   R is worth mentioning at this point that almost all calcu-

lationsl 3)  for the anomalous dimension  give very small deviation

from the canonical value.   In the main text we also give an esti-

mate of the anomalous part & for a scalar tadpole mediating the

symmetry breaking.   We find that 6 is around 0.04.

At this stage it is appropriate to ask the following question:  how

do we construct conformal invariant theory accepting the occur-

rence of anomalous dimensions?   A big step toward this problem

taken by Migdal is known under the name of bootstrap approach14)

to conformal symmetry which is essentially non-perturbative.

Migdal has observed that the integral equations which determine
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three-point functions admit conformal invariant solutions and

also they are free from divergences because of the presence of

anomalous dimensions. The bootstrap approach has been further

developed by Mack, Symanzik and Todorov. A less specific
15)

but in some sense more physical approach to the problem has

been made by Domokos and Kovesi-Domokos. 16) Working with

infinite dimensional representation  of  SU  (2,2),   they have shown

that conformal invariant amplitudes satisfy weak duality in the

sense that they do not have simultaneous singularities in overlap-

ping channels.

Despite all the aforementioned good features, a conformal sym-

metric theory cannot be a realistic model for the real world be-

cause of the discrete mass spectra of the physical particles.

Therefore it is important to study the breaking of the conformal

symmetry.   As the title of this thesis suggests, this is one of

our main themes to investigate.   It will be assumed that conformal

symmetry is an approximate symmetry.   When the explicit sym-

metry breaking is turned off the following two types of limiting

behaviour can occur:   On the one hand,  it may happen that the

symmetry becomes exact,  so all the masses of particles involved

are zero or continuous and, of course, there shouldn't appear

dimensional parameters.   On the other hand,  it may not be exact

even  in this limit. Instead, massless Nambu-Goldstone bosons17)

appear.  All the masses except the mass of such a boson remain
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nonzero. This latter case has been widely studied in the

literature and it will motivate our work as well.

At this point it is instructive to study a simple Lagrangian field

theory model due to Nambu and Freund. ' Consider a Lagran-18.19)

gian consisting of two scalar fields, fr  and 472) i
1            L                                                 L

4,1, =  i fla,9, + (&.'8 + 366'40'%  1t  't,  (fl A.,) 7

where   is the only dimensional parameter.  We can define

"the improved energy momentum tensor",   C , originally sug-

gested by Gursey20) and recently rediscovered by Callan et al   . 21)

With  46,   in  our hand, explicit representations  of the scale current

D,1 and of
the special conformal

currents K/u
are concisely writ-

ten  down in terms  of the fields:

fe    =  Z..$. 6'4     ,
5'/= (:15.,f-4 f zg %(*) .

1     .In the present case, however, the symmetry is broken explicitly by

the last term in  (2), so these currents are not conserved.    Let

us see whether our Lagrangian admits solutions with spontane-

ously broken symmetry.  To this end, consider the action integral

W (9 i +) =  S t.,1)  1'*.  ,
and take functional derivatives with respect to   and  , then

Sw    SWlook for constant solutions for -.*- and  ...-.-  .  We find solutions

sT Sct
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A)    9 4,  + 30   1       1
6)      9 ee       '      '1, = 1 (At)  1.)

where a) is an unstable solution.  (This can be easily established

by considering the second derivatives of the action.)   Let us take
.1

the solution b) with ( 's  + 61 'Snd
introduce a new field,

X tz) =  (114%, - fll-
2 (.Ak) 1-

Evidently we now have
<01 X('0  O), '      In  terms   of  fl' and   ,

the scale (conformal) breaking term in the Lagrangian is simply

-740#136· 361. where
'Mt-=6 1111     In

the limit of switching  off  the

symmetry breaking  (»0  with   /L*fixed), 171,--90 should  be
22)

noted. A particularly nice feature in the case of spontaneously

broken conformal symmetry is that the dynamical mechanism

which gives rise to nonvanishing vacuum expectation values for

( /does not appear if we go over to the symmetry limit contrary

to other types of symmetries  like  SU  (2)   ®  SU  (2). The Nambu-

Freund model is also a good example of the scalar dominance

of the trace of the energy momentum tensor.    In the particular

model discussed here, this is easily verified by computing the

trace   of  ,4 explicitly. One finds:

e.'«  =  1/   Ple  X  .
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In the main text (Sec.  3.1), a generalization of the Nambu-Freund

model is found and a perturbative scheme is developed.

The plan of this report is as follows. General properties of a

conformally invariant theory are treated in Chapter 2.     After

defining conformal transformations (Sec.  2.1), the induction pro-

cedure  for the representations of SU  (2,2) is briefly discussed

(Sec. 2.2).   In Sec. 2.3 we give a plausible argument for the pres-

ence of anomalous dimensions. The concept of the effective action

is discussed and it is argued that the effective action method is

best suited for studying approximate symmetries of hadronic

systems whose "fundamental" dynamics is unknown. Assuming

asymptotic conformal symmetry, a set of diagram rules for the

construction of conformal invariant irreducible vertices is given

(Sec.  2.5). Some features (like the absence of ultraviolet diverg-

ences) will be briefly discussed in Sec. 2.6. Finally in Sec.  2.7,

problems involving fermions will be discussed. Breaking of con-

formal symmetry is discussed in Chapter  3.     We  give a mathe-

matical formulation of the problem in order to put physical ideas

into workable form (Sec.  3.1). Some explicit calculations are re-

ported; the inverse propagator will be calculated explicitly to first

order in the "tadpole expansion".   We give explicit representa-

tions of these in momentum space (Sec.  3.2 and 3.3).   We then

make partial wave projections, first at integer points. Using
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Carlson's and Hartog's theorems repeatedly we prove that analy-

tic continuation of these expansions is possible in the two relevant

variables   (        and    / = Z   -6  )   (Sec.    3.4).      In  Sec.    3.5 we extract

the information about hadron resonances from the inverse propaga-

tor by looking for its zeroes.    We find that hadrons  lie on almost

linear Regge trajectories. Their widths depend explicitly on the

anomaly of the dimension,  of the scalar tadpole which breaks con-

formal symmetry.   A fit to the spectrum of the well-established

baryon resonances gives a value    *v' 0.04. Further examina-

tion of the singular surfaces of the Green functions shows that at

fixed angular momentum they give rise to "dilatational trajectories"

23)as first conjectured by Del Giudice et al. Chapter 3 is concluddd

with some remarks. "Hadronic Scaling" is treated in Chapter 4.

We calculate to zeroth order in the tadpole and'use the results of

the first order calculation in the spectrum; this is justified since

the Brillouin-Wigner perturbation method used in Ch. 3 assures
24)

the n-th order  in the "wave function" gives  n  +  1 -th order  in the eigen-

value. The necessary concepts and facts are enumerated  in  Sec.   4.1.

The six-point conformal amplitude is considered utilizing a Mellin

projection technique (Sec.  4.2).   It is shown that the absorptive part
of the six-point "skeleton" vanishes. This gives a natural reason

for studying the perturbative calculations treated subsequently.

We  give   a  first order perturbative calculation  for the absorptive
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part of the six=point amplitude.  We find that the inclusive cross

sections obey simple scaling law. A specific form of the scaling

function is evaluated in an independent correlation model. A parton-

like structiire of the cross sect.ions emerges naturally in this frame-
work. Combining these results with the previously obtained dimen-

sional rule we predict that at high energy and large transverse

momenta the inclusive production of "heavy particles" (K,1  etc. )
should be more frequent than pion production (Sec. 4.3, 4.4).

Finally, this report is concluded with discussions in Chapter 5.
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Chapter 2

On Conformal Invariant Theories

2.1) Conformal Group

Even though our physical space is the four-dimensional Minkowski

space we first consider the conformal group in a general n-dimen-

sional space Rnm:

 n = i (4, ", 0..4.,I...Zn)   iT-*real 3 -0•<stz< 00   .
with a metric tensor B.V ,

641 KA   = A/,      I S P S  #1

i -1 B =Ij, M+'Spin.\   1
25)We define conformal transformations on the space R  as follows:

a) "Rotation"; liM = AP   V6'% ,

b) Translation; 1 '4  -*  11.B  -4 1:'i , (2.1)

c) Scale transformation; :C /A#  -   /\  11 K,
1-

d) Special conformal transformation;         /K *KA- CAA Z1 = i t
/-2(·I 40%

where       6.1   -. Cla :1 *. Since the above transformations constitute

a (n + 2) (n + 1)/2 parameter Lie group, it is easy to exhibit in a

standard way the Lie algebra of conformal transformations.   They
5).  25)are:

I 'r, p'l  =o,
IM"  fl  = 4  (T"  g' f p'11'4,

IM" M'll=  TCM'.1,41,1.fl'(-M,1'f_M'flv')I ,
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[ Ki K9 =0,
[  KA,   1'1'9  =£  Cl,vW- 1*'1<9,1- 0

[  k *,  f"J = i ( 9*"D + 1'1"F))

CD, PBJ =...i
. MA (2.2)

I D   .  k' J   =   i    B ,'

I D  .'1" 11Tv"where P k  and D are generators of translation,I ' .,

rotation, special conformal transformation and dilatation re-

spectively. Notice  that both subalgebras formed  of    MiUM   P U  and'

M"v kA' are that of E( n,Fl- 71) (pseudo-euclidean group).  This'

fact is of some use when one induces representations of the con-

formal group on those of its subgroup.   As we can see in Eq.  (2.1)

special conformal transformations have been realized nonlinearly
m+I

on R  ; however,  on the extended space Rn+2 these can be real-

ized linearly.  We see this in a following way:

Define J =    ,-1
..."W AA AA 6.

Jn+4,4 = 4£ ( PA- AR) (2.3)
Jn+ ,U =*(pU+KA')
Jn+I,n+2=-D

then simple manipulation using commutation relations  Eq.   (2.2)

shows:

I   JAjs  J c Dj  = i  (g'DJ-sc+ 1
Bc- 00   - Ac_/3D   - aD     AC ,j-2 1-13},

where  A, B, C  and D runs  from  1  to  n  +  2.     Thus the conformal
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group is locally isomorphic  to the group  SO  (m+1,   n-m+1);  in

fact the same relation may be shown to hold globally too.  Let

us now check that conformal transformations defined in Eq.

(2.1) preserve the angle between two vectors in R2.   Let  eC,  
be two vectors,  then the angle between them is defined by:

%.4
(2.4)

ZA Y = - (e )r  
It is now evident that translations, rotations and scale transfor-

mations preserve the angle.  Note that under special conformal

transformations:

X. 1 -9 I.1

6.(x) 6.(id)
(2.5)

1        Iwhere
0-(er)    =    1-  20%   +C'zt    So       ZA,=  ZA   9      .

Consider, for instance, n = 2,  so that the conformal group is
OBUSO(3,1) or SO(2,2) depending on the metric /   5  (1,1) or (1,-1).

Notice that these groups are locally isomorphic to SL(2, C) and

SL(2, R)   ®   SL(2, R), respectively.    For the physical Minkowski

space we have n =  4,  m = 1, therefore its conformal group is SO(2,4).

One important fact is that SO(2,4) is homomorphic (2 to 1) to the

special pseudo-unitary group SU(2,2).  This is important because

we are going to deal with the covering group SU(2,2) instead of

SO(2,4). The reason for  this  has been discussed by Wigner26)

for the case of the inhomogeneous Lorentz group. Wigner' s
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discussion applies - with a straight-forward change of the argument -

to conformal groups as well.   In fact, only bilinear expressions of

half-integer spin fields are measureable and need to transform as

single valued quantities.  It is also to be noted that exact conformal

symmetry necessarily implies that the mass spectrum should be

either continuous or zero because of the commutation relation

£  D,    PR J  =-i.  PU. one should  also  note  that the special  con-

formal transformation can convert time-like to space-like vectors

and vice versa.

2.2) Induced Representations of SU(2,2)

Consider a four-dimensional representation of the conformal al-

gebra expressed in terms of Dirac r -matrices.

9'1 =- k,M (l-¥ 41   ,
MR         i.     I  kx        kv  1
1-1         =   4                       '  v                         '                                                                                          (2.6)

K A= -4/ "C  1-4)  ,

0 i  L J'E 1

where the   -matrices satisfy the standard ant commutators:

1   x#   W. }     =  3 i B:
We also have loter., 'k=- Jk tand J,-4 =L,71 "i' , where t
denotes hermitian conjugate.  (Note:   is hermitian). In order

to be more specific,  let us choose a particular representation of

  -matrices, namely the so-called chiral representation.   They are:

4,(I,4   t=  04,-6-1'1   Ye=/0'' 1  (2.7)
)                 \ t,       0    1 ) \  1,0/ ,
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where  Crk and 1  are 2 x 2 Pauli matrices and identity matrix

respectively.  It is now straight-forward to see that the follow-

.16)ing subgroups of SU (2,2).

T,-<,5-, 0,               M,1r (. f .  ':)  .
+ -1

9,     0,
(2.8)

C ill   ,/1 c)

e,) At .0.4  (O   1/0, 7   0,
correspond to translations, Lorentz transformations, special

conformal transformations and dilatations respectively.  Here

tand C are 2 x 2 hermitian matrices and 771 E SL(2, C) and A is

a real number.    Let   X, x) be a field transforming according

to a representation of SU(2,2) where X is a coordinate in Minkowski

space written  in a spinor  form  and  Z is a Gelfand-Naimark  spin

label. Under €SU(2,2):

0 (1) f()(,Ot)  =,s (1, '*)1 (x,' *,   1           12.9)
where primed variables are transformed ones. Suppose we choose

X - 0,  then as is  easily  seen from.the  above  Eq. (2.9), 9(0,) should

belong to a representation of the stability group (little group) of

X = 0.    Note that translations  are the only transformations which

can  shift the origin X  =0,    so the structure  of the stability group

is identified as (SL(2, C)  0 D) 3  C . Since we are going to in-

duce  representations  of  SU(2,2) on those  of the stability group
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(SL(2, C)   ®   D)    3 C, there arise two types of representations:

a) Finite dimensional representations. These are used for27)

elementary particles. for example in the Lagrangian field theory

such representations are assigned to the fundamental fields.

b) Infinite dimensional representations. 28) Composite systems

like hadrons are most likely to be described by the infinite dimen-

sional representations even though a conformal symmetric theory

does not contain any energy scale.

We further note that the representation matrices of the special

conformal generators K,J should be null or nilpotent in the case

a), which follows from the fact that the generators of translations

are  nilpotent  in any fiitite -dimensional representations  of  the

Poincard group.  So far, the most attention has been given to re-

presentations in which the generators of special conformal trans -

formations are represented by null matrices.   In what follows we

also restrict ourselves to this case.

Let  ff( O,%) belong to an irreducible representation characteri zed

by three complex labels Z,  ,  and  1   where  I is so-called conformal
.*

weight ind (  9,1  ) are representation labels for SL(2, C).  We have

then:

1(1) 1(0,%) = 9 (O.%)     for  le (4 ,
and

21'31(1) 99(o.*)=lol'tl 10((1.*)  e<(1.z)*Ay(o,*9 )

for     €    SL(2,  c)    20   D     (This
is known  as  the Weyl group, hereafter
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we will denote it by W)

where

1       14 1   + 121I =
W I X+9 (2.10)

Ull    )

ol (9 1.)  =  1,1 X  -t  1,L   .0,
The bar here stands for complex conjugation. Under the trans-

lations we may choose our basis such that spin indices do not

change:

lit) <f(X,il =f(X+t 10)    f«  teT. (2.11)
'

Now  consider  (j   1'(,) ;*''
where g is a general element of

SU(2,2):

1  (1)   TIX,*)  =  J   (1)    1   (x)   f  (0,  *)

(We have   J(x) ff(0,1)  i  T(X,Z    from Eq.  (2.11) )

» 3(X')3(6) ff(o.%) (2. 12)

where X' E T4 and ZR stands for 9-'c X')0(1) 3 (X)     j.
We now claim that h€W      (4 by choosing X' appropriately.

This is because we can always decompose g € SU(2,2) such that

g   =   (4   W  T4.       We  find   h   and X' explicitly as follows by straight -

forward calculations:

Alt 1

h   < (X j,2 + 7*v,              li (2.13)

O      1  Xqlt + lit
3< /- C )<1 It .t 111)-1 C X 91  .P :111 ) ,
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where

2 = C 1" '1':1
\  9.1   '  1,5/   ,

 jk's  are 2 x 2 matrices.

The matrix h can be further reduced to a product of elements in

W and C4'
namely:

h =( 1,9,* (Xj'.41*1 1 /(xg„+6)+,1 0
.

 (2.14)
C    0    ,              1                                          0                  ,    Xj'z tju /

Hereafter,   let us denote    h    -  xgl2  +  g22, for brevity.     We  can

now complete the induction procedure since we know how  (h)

acts on   0, Z) from Eq.  (2.10) and translation   (X')  on  0, r ).

We have therefore:

7/9)   90(,1)     =1821"171   LCI:,44'.i;T D *1;  9(X.*)
where X' is given in Eq.  (2.13), and (2. 15)

A-

/                  Ail    x    +   1'217=
liz  +*tz hz: ,

e< (11,z) - )Tle 2 + lf'./
It is known that the representations which we have just induced

are unitary irreducible when the parameters€, j,  and j 2 are as
29)follows:

1 =
1  +5  ,

i     -  -1.   4   7,   -t t fl, (2.16)01 - 1
1    *.;        M         , - ,
ul t - -E   *t 4 f
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where    M    is an integer  and   f,      'are  real  numbers.

If the field   X, X ) describes bosons, it should transform as       f   ,
.

31 * 11    12    (real).  On the
other hand,   X, K )

for fermions& 7.
transform according to a reducible representation   f  ,    ( 1'    2)     0

U2' jl)'  This is to accommodate parity which is a good quantum

number for strong and electro-magnetic interactions. Further it

should be noted that finite dimensional representations are ob-

tained when    (X,  I ) becomes a polynomial in  X, I.

2.3) Anomalous Dimension

As we briefly have discussed in the introductory chapter in con-

nection  with the Nambu- Freund model,    in the framework  of  a  re-

normalizable Lagrangian field theory it is possible to define di-

latation and conformal currents introducing the conformal energy

momentum tensor epy:

911 (11 =- 1lva",(%)  , (2. 17)
:del'/    1

KA'V (.1)  = 21#*f ®rv (11  -  1      (1,·
Note that & /<7';tj = .21'4 D'(:51,  which shows that the dilata-

tion invariance necessarily leads to the conformal invariance.   The

respective generators of dilatation and special conformal transforma-

tions  are:

9(10)  =   11V a t'         (V      4    Z,
A°V , 11

(2.18)

K"tz·)=   (ex"*f ®p.,*) - 1*ab#·c*))  A   



I                                                 ..

-19-

In general,  D and KB depend on time, Z°, because of symmetry

breaking terms in the Lagrangian  (% .
We now use canonical commutation relations:

If c z)  ,    11'Ly) J z %*,    = i S3(x- 9 ) (2.19)- 30

,L
where li(41   -  --      is the conjugate momentum, to deduce  the

8'...9 (3011
equal-time commutation relation between D and  :

[D(79,9(191= i, 1.- -Jo)1'(%) . (2.20)
1/ 1
1  3*

Here we have to assign  dos -i to a scalar field,4 = -1 to a spin- 
Dirac field, etc. The quantity is called the canonical dimen-30)           1,
sion of the field. Renormalization effects, however, destroy the

canonical commutation relations in a well-known manner.   In fact

it is not guaranteed that we get the canonical value for the dimen-

sion of the field after renormalization, namely dtdo below:

[   pi "),   9, *,]  =1( 1.1- d)    T, I *, ,
(2.21)

where
 (Z  is

a renormalized Heisenberg field. The quantity d,

which is called the anomalous dimension of the field,  is a function

of the coupling constants contained in 4  .   Such an occurrence of

the anomalous dimension in a renormalizable Lagrangian field

11)theory has been first demonstrated by Wilson studying the exactly

soluble Thirring model, which involves a massless Dirac field

1,Awith a self-coupled
interaction    7214%) 1 (z) where     j lz)   is
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the current 'Nult.    He has shown in particular,  that
A L '| , 31

dt =-1 -f,(   1    -  LS-  1
'

for  the  field    and       d 1--j
41 L/ 11i,

-

x ( 1 +* )-1    for
the composite fields 1.* and *44-  ·

This has to be compared with   .  . and -1 for '1  and    *41.
cor *44, ) respectively.    Note d =  do   only  when   =0,  i. e.  for

a free field theory and also d could take any value in this speci-

fic model.  Let  be small and make perturbative expansion, we

get:
-L

jt  =  -1;  -   ls-      +   0  C  2)         tor     +      1
L-           4 liz (2.22)

4     =   -1     +   6       +   oct)         Ter   cf't   .r    *rt q
4 11

The fact that the elementary field C 'changes its scale dimension
1.

in order  7L  but the composite fields like L / t ' change dimension

already in order A seems to be a general phenomenon in field

theory.  We only need to remember that similar phenomena appear

in the realistic four-dimensional A.(fl  mode]NA,ere +tz) is
a scalar field.

At this point it is to be emphasized that the anomalous dimension

is an inevitable concept if one wants to avoid the conformal invari-

ant theory being a free field theory. Consider for definiteness the

propagator of a spin zero (scalar) field theory. The propagator

may be written:

1 r

62 (F,   =F'  1   C S
, (2.23)1

1 1                                                                                    1
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where  m  is the mass of the scalar field. Suppose now that the

symmetry breaking is sufficiently gentle, namely ( B1  is domi-
nated by generalized mass terms. We expect our limiting theory

to be conformally invariant when Fi,00.  So (i-(/9 will approach

a conformally symmetric propagator, say crccr) · As we will

see in Sec. 2.5, Grc(  r)    =    (f) J. Therefore  if d =  -1:

Ctcr)    --  '   7#i     ,
(2.24)

which implies that the limiting conformally invariant theory is a

free field theory.

2.4) Effective Action32)

Let us attempt now to construct a phenomenological theory describ-

ing the observed hadrons.   It is widely believed that hadrons are

"composite" objects.   This view is supported e. g.  by the success

of various attempts to assign excited hadron states to Regge tra-

jectories, the fact that various "parton" models are at least quali-

tatively successful in explaining the main characteristics of had-

ronic reactions at high energies and large momentum transfers,

and so on. However, neither the exact nature of the "fundamental"

constituents of hadrons (if there are any) nor their dynamics are

known at present.   At this point it is worth remembering that in a

field theoretical framework if the fundamental theory generates

bound states or resonances, Haag, Nishijma and Zimmerman33)
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has shown that a local field operator could be introduced to each

bound state or resonance.   So let us assume that hadrons are com-

posite objects consisting of some unknown fundamental constituents

(quarks?) and furthermore that perhaps a renormalizable Lagrangian

field theory exists to describe their fundamental interactions.  Let
/4

Y(x) be
a renormalized Heisenberg field assigned to a physical

Ill

hadron and J ( Z) be the classical c-number source of 1 (%).  It
is known that the functional  YCJ):

A·/  1 ,

Ycy'l=.Le' T 2,7 1.'fdt,1,*, ff'*9 1 '> (2.25))

is the generating functional of the time ordered vacuum expecta-

tion  values   T   (ir-···4):
/4'

T(*<  :*•) F <e l  T(flt) . . . . fc,.9 10>. (2.26)

Note that J (%) is a commuting or anticommuting classical field
ell

depending on 1(2) being a boson or fermion field. The connected

T-functions are generated by taking functional derivatives of X(J)

defined   by:

X C j)  =-2  1+  T ( T)     . (2.27)

We now define a c-number quantity f(z), which is known as
./.I

the  phenomenological  or  effective. field  of the  hadron to which 9(1)
is  assigned, as follows:

q'(%) = = -1 <0 IT(cfc,1"f''P'tj)*,9i*Jlo>
Sxci)            'LA (2.28 

Sict) ¥ci)
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Let us now carry out a functional Legendre transformation on

X(J) to eliminate  J in favour of f. By doing this we get a new

functional  W  (  ), which is called the effective action, related to

X(J):

W  ('f )  =  )(ll) -3  /1  T,%) 9 (z)    I (2.29)

It can be shown that W ( ) is the generating functional of the one

particle irreducible T-functions (also known as vertices). First

let us note that W ( ) is extremal if the external source is turned

off.  This can be seen from the relation:

SW c of )
-- =, 3(11 (2.30)

S f (Z)
when J(30  -*  0.    To  see more about the structure  of W (  ),  we

take the second functional derivatives Rf W:

1'175(X, *''I= -  1/ = 0- (2.31)
gw Sltx)

59,%) S (T,z ) 99(t,) ,
where we have used Eq.  (2.30).    On the other hand the propagator

(two-point Green's function) is defined by:

2X    99(19
9   9           1-*(*.7 -* 51(4 11(z) - 131*) .

(2.32)

Next consider the following integral:

f ali' 4*41'z,)114(15 zl = -,IA, 69(11 51(*95 1(Z)  5 <f (Z",|    (2.33)
=-

1 54(1.K,) S*(1'-,e,) J.1'.1 » -54(1&-z') I

T
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--1This  is the definition  of the inverse propagator      Or        ,    so  we  get:

-f                    /  1                                                       (2.34)4 (%,% /) -- (7 (1,1 1
1

It should be noted that W2 is no longer singular at the poles of

which correspond to one-particle singularities.   This is expected

since the irreducible vertices do not have single particle singu-

larities by definition.  We may now proceed further by taking the

third functional derivatives of  W  and find after straight-forward

calculations:                            5.;14ws ( 1,1'z")  *  54(49 4(1')  69 (zg (2.35)

SJX

=   -J    al  449 ' d'v'  '1((1,2)  "i  (*:,9 w  '*,3 9   51.1,)  511') S 3(99   .
W3 is easily identified as the ordinary proper vertex. Similarly

one may continue the procedure to convince oneself about the ab-

sence of the one particle singularities of the irreducible vertices.

We also note that the relations between the vertices and connected

T-functions generated by   W   and X respectively are of the  same

type as those between the action integral of a classical field theory

and the T-functions in the tree approximation. This, combined

with the previously noted stability property of W explains the

names, effective action and effective field.

Notice that we may now reverse the direction of the above deve-

lopment. Namely, by guessing some - approximate - form of W

in terms of the effective fields, we may generate irreducible



-25-

vertices.  Once we accept such a purely phenomenological approach,

we may discard the specific assumptions made in the beginning of

this section.  The only purpose was to arrive at the concept of ef-

fective actions and fields in a logical way. The quantum field

theoretical framework may not exist for strong interactions, but

effective actions and fields may still provide a useful phenomeno-

logical framework for hadrons.   In fact, Domokos et a128) has

shown that a consistent space-time description of hadrons is pos-

sible by introducing an infinite dimensional phenomenological

field forthe hadrons.

It is clear that the sytnmetry properties of the effective action

play an important role, since the effective action inherits the sym-

metries of the fundamental Lagrangian although it may possess
32)

dynamically originated symmetries as well. Let ( - be an in-

variance group of the Lagrangian. Rr definiteness we may choose
/V

 =  SU (2) (isospin rotations). The Heisenberg
fields       -   C Z 

transform as follows:

A' .V

lc,) t '*, = 59 10'*, , (2.36)

where  g  e SU  (2),       (g)  is
the unitary operator  and    S    is  a  re-

presentation matrix of  g. On using the assumed invariance of

the Lagrangian under (   and Eqs.  (2.27),  (2.28) we can show

that:
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X c I ') = X cl)    ,  t (*)-1
1=

ap    9, c  z)  1         '

/,1 A (2.37)

under the transformation of the external source,

LIT )    , ·3: ('0 st'.'
It now follows  from  Eq.   (2.37)  that    W is invariant under  the

transformation

(2.38)

i (%) -=  5« % cz)
With this much background we describe an ideal conformally sym-

metric hadronic system. One assigns an effective field  (X,%)
not to a single hadron, but to a sequence of hadronic states - or

rather, to the object to which that sequence collapses - in the

conformally invariant limit and assume that effective action,

W (  ) is SU (2,2) invariant.   Let us make a formal functional

Taylor expansion of W C ff):

k/(f)    =   E  -l_  f·11 A.dic  «,%,)  14(Hiz,,·   -· Y•'•) (2.39)
n   n!,4                                                                          '

where W  =
const,  Wl = 0 and W2 - - 6 r| etc.   (Wl =

0 implies

the stability of the vacuum.)   By the assumed invariance property

of    W    under  SU  (2,2)  we  have:

4/ C 3(2, 'f)  =  W (f) . (2.40)
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We also assume   < Af fc   in view  of the previous discussion given

in Sec. 2.3, where   'Z : is the canonical weight of the field.   From

Eqs.  (2.15), (2. 39),  (2.40) we finally find the covariance condi-

16)tion for the n -point vertex Wn
1           1

Wn   CHI' 74'   ,        *         *        ,    XM   1-    1
.iltf(i) 1+11,(c) (2.41)

=   1  I dek DJ.,0
1,1 0( (t,ZL)

K   o<(1(,14.12+11(il     W.  (  H, 1,   '....,   X"x.)    1
where we have used the relations:

&*X = 1014*'CiX)14(1*X', (2.42)

dE        =    6 C b) 20,   (r,*)  1   d' /1   it ill,/0   1       .
1

Our next step is to coiistruct the most general form of Wn satisfy-

ing  Eq.   (2. 41).     This  will  be  done  in the next section.

2.5)  Construction of Conformal Amplitudes; Diagram Rules.)

Following DK, we will visualize the construction of the irre-

ducible vertices Wn 's by means of a set of simple diagram rules.
..1/r

For the moment the effective fields
T    (X,z),  are assumed to

be  of  Boson type which implies  j l    =  j 2  =   -         . (W e  have  already
n'C6-

used this relation when writing the effective
field  as              ) .      The

diagram rules  for    Wn     are as follows:

a)  Draw the simplest symmetric diagram with n vertices and

attach only one external line to each vertex.   Thus we see that

there are   n -1 internal lines and one external line meeting at
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each vertex. For example,   n =4;0 /
Fig. 1

/ \
b)  Associate with each internal line, joining the vertices j  and  k

the propagator gjk:
Sk                  671.,

 .1' =  -Jet Xf ."ej 1 (,10'.ri,)(f, ·Yl-,)i
'

N ·k (2.43)/                   1,
where

X16"  = Xi  -  Wk*      '   and
the complex lightlike

vector       nik
is given by

A    kl:

l            =  (21   '   1)   0--"     1   I     .                                                             (2.44)

The conformal weight    'C jk  and the Lorentz label Crjk assigned

to the internal line satisfy the relations which are valid by defi-

nition:

lik  = St    ,   c 11 -2 , (2.45)

dj.k      -    Cki         ,           91'   -   e
The normalization factor Njk are chosen to be

N   k     -        .                            '                                                                                                       (2.4 6)

1                   1' (1+ '[ik)    f (  1  +   61 k)        .

c)    Associate  with each vertex    k the covariance assuring factor:

5 ( 4-5£   5.1 )   S  (6.-  r     r.k)k Pkl
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where the formal   -functions should be understood  in the follow -

ing  sense; we observe that the labels Ct'* can be  made to lie  on a

single Jordan curve in the complex 'C plane. The latter can be

mapped  onto  the  real line.
Similarly  for 6 k-   .      (Let  Z ( t)  be  a

parametric equation of an arc where t runs through an interval

4 5 tf (t . Anarc iscalleda Jordan curve ifz(O() =Z(18) and
Z( t,  )   =  Z(  ja   )   only.For   t,=  ta).      It  is  also  to be noted  that  to

each external field we have assigned its contravariant part-
, '4 4

ner,   fk'--- lk-2,6- --5 -2. Consider the two fields 1 16- 'fl-.'k- k , ,

The quantity I:

I   -5,19 '1   Lf'(X,4  T"pEX, A (2.47))
I

is   an  invariant   if   'C-11 42   =0,6-  +6-42 -0. Hence  we   call

-T-1,-6-2 Er
contravariant to      .   Eq. (2. 47)can be generalized

to an arbitrary number of amplitudes without any difficulty.  It has
34)

been pointed out by Montvay that in the construction of SL(2, c)

covariants one is forced to assign contravariant fields in order to get

the correct limit at the physical integer points. Our construction is a

generalization of Montvays ideas to SU(2,2). d) Multiply the expres-

sion resulting from the application of rules a) through c) by an arbitrary

function, ( (' 'k / 6 k      ,  of
the internal labels. The function     €r    has

to satisfy certain rather mild integrability conditions.   In what follows,  it

will be assumed that   is analytical around the principal series of

SU(2,2). e) Integrate  over the
variables   1 k   , dik along a hyper -

contour running through the principal series of SU(2,2) in each
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internal variable. A finite deformation of the hypercontour should

be possible away from the principa  series.  This is because of

the assumed analyticity of    in the rule   d ).

As an illustration let us work out the four point vertex,  W4 (Xl ZI ...,

X4 *4 ' explicitly. While we go on,  we will also demonstrate the

rules given here being equivalent to the rules given in  DK.

Step  a) is carried  out  in  Fig.   1.

Step  b):

lit.913   9 14'   915   3,4  934

=  (-Xii 4,0) .9.{ C,„.X'.1(ally,2)1'I'A''i ..
.

(2.48)

V t 94'

. C-,1 +'919*ic"PYX",(Wy·Y'*,i Al'* I
Step  c):

5 ( zi - ZIL- Z,7 - El,t) S (61 - dit- Gif - 61*)  · · · ·
f C £4 - 1.41  -  14:- r*G)  S  (9  - 0 -g,-641)

Step d)  and e):

Wf L X, 11,1(' x''  r' 4 '  4 4)
=      ·  -  · j  «Iz *  ·  ·  ·  ·  1 St.   S(Zi - 4,- 4, -14)    0   .   .   .S («*- 91  239 -'*S)

di*

A  ft (4..... 9*)   <-%.' ')4.· · · · . . .i (44. &*)('-*·Y,)i  N".1

We have six independent   €      and four     -functions, so there re-
jk

main two independent parameters after taking into account j-func-

tion constraints.  Let us parametrize the solution of covariance

equation:



/.

-31-

as  follows:

1:tz  = -i  C ff + ft  .rk' )  ,

1:tz  =    4-    (1 1,  4 1 T s  +  1-1· r.,  +  k, .rk: )  ,
(2.50)

f     = 4 (f: 4 5 4 1,1).lit

7,4      fit   Crt   * f"   t  k')  '
G,  =  1  (%,t+1 14  +  4+ 13  + 11 -1.kL),
'C 1(, ='  -,L.  C S,  2   T,  .1.   k* )   .

where  kl'   k2
are independent channel variables introduced  in DK.

A particular solution when kl  =  k2   =  0
is denoted  by    T 1,0.     It  is

not difficult to see that the integrations over t reduce to
jk

2 'P,                               ,   V  t.  '71,0     i        2         ' 'Fs:

ii,th.,14 C X,t)(4 )1.1  X':11 )  21.(4&.,1.0 1-., ,1   . I .1-X,47,011 v  1      1/
A I.  Bgif / 1 XI; X,3 /

' 1 2 /,
omitting inessential factors. The integrations  over kl'   k2  can

easily be recognized as Mellin representations. Similar calcula-

tion can be done over the variables 0111.  W4 may now be written

in the form:
'FL /1  /1

W- %,2+,b I
4- fr( 6, hi , 61' 6.') C-  7   / f (11"X,0 (ST, X„ff
K.....

(-S'4, 4 "95,1 C '14. s„  C i;,·  (,O
1' 

(2. 51)

1'

where  hl '   h        h   '     h   ' are independent harmonic ratios,
2'  1'  2

)(i g %14 ,         1  ",5  .)(1:1111,4 .   ) 411 '.

0        1

hi =V t v L
6 1   =    1   n". X':1   I   n,4.  Y,4 1           etc./01: Alt ,

Equation  (2. 51)  may be written  down directly applying the rules

given in DK. This completes the demonstration.   It is also

1
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straightforward to see that DK-representations reduce to the

symanzik 35) representations for the degenerate series of SU (2,2).

2.6 Some Remarks on SU (2,2) Invariant Amplitudes

As we can see from the construction rules, the two and three point

vertices are special in the sense that they are determined exactly

up to an arbitrary constant which depends on the conformal weights

and Lorentz labels. Ingeneral wehave n (n-f)/2 internal weights

'Cjk and the n constraints among the weights; therefore n (M+S)/<JL

independent parameters remain.

a) Two-point vertex

In this case,  2(2-1)/2 = -1.   We have a constraint, namely,

W2 = 0 when   S + 72,  6-1 + 9. According to the diagram

rules  we find: TZ-2                                        -1
i    Y   2.1. 61 C

W, (A; 21,& x.j = 1

-'.,2
...i 1("e Xic,T<%')f-(r(-r) ect#«1)1' 3

where  7( 5 7  - f (2.52)v' - LL  ,  6- = 67  = Wz
It should be noted that the uniqueness of W2 also follows from

the fact that it is the intertwining operator for SU (2,2)36)

b) Three-point vertex

3(3-1)/2 -3 = 0, there exists a unique solution:

'51  = 46 (5  4 4  - E.)f

(2.53)

9 k     =   i     (6 9.  4  61    -  'r'.)     ,where   (j k i)i n cyclic order.     We  have for  W3:
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0 , IM,   v i   , i' 3

  (ta *., S.%2,4 1, .i k  31·'       '- -,It..1 I
4601  -

x< -St'"al  f"f (,f'.S.'1(,2.t.ji"t (,pj'Sl,J(H 's. i  ,4,
...16 3

14

x i (,27.X,l)(iz'. f.,) 1 IN I L   :v,3   I v  23   7
625    .1             .1           Al

where K is a constant which can be determined only if we

have complete solutions of dynamics.   It is worthwhile to

note that the fact that the conformal invariance alone could

determine two and three point vertices is essentially because

we  cannot form conformal scalars  with  less  than four space -

time points. 37)

c)  Absence of ultra-violet divergences14)   15)   16)

14)This has been first noted by Migdal      in a paper where he

suggested a bootstrap approach to the construction of con-

formal invariant theory. Subsequently the absence of diver-

gences has been further clarified by Mack and Todorov. 15)

In particular they were able to show the absence of infrared

divergences too along with ultraviolet divergences.   For ex-

ample, in specific model of the pseudo-scalar Yukawa theory

if the scale dimensions satisfy the restrictions:

-3<d <-1 for pseudo-scalar field, (2.55)
-

.I<,1 <-2 for Dirac field,
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the complete absence of ultraviolet divergences is guaranteed.

The reason behind this is roughly as follows; although propaga-

tors are more singular than the free canonical ones, but vertex

functions (three-point) are less singular in such a way that they

can overcompensate the singularities occurring in the propa-

gators. Hence  we  have a convergent theory  in the ultraviolet

region.

d)  Connection with duality.

An interesting property, first pointed out by Domokos and

KBvesi-Domokos, is that conformal covariant amplitudes16)  .

do not have simultaneous singularities in the overlapping

channels. It should be noted, however, that the structure of

the singularities is quite different in the dual resonance

amplitudes and the SU (2,2) covariant ones; for instance ris-

ing Regge trajectories cannot be accommodated in the SU (2,2)

covariant amplitudes simply because no energy scales exist.

It has been speculated that the dual resonance amplitudes may

ge over to the SU (2,2) covariant ones when the slope of Regge

trajectories becomes infinite.  So far this is only a conjecture;

see, however, subsequent chapters, especially  Ch.   3.     The

argument which led the authors quoted to the concept of weak

duality goes like this; according to our Feynman-like diagram

rules, especially Step a), it is quite evident that the structure
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of singularities is determined by symmetrical Feynman-like

diagrams.  Such a diagram is known to be free of simul-38)

taneous singularities in the overlapping channels.   A fur-

ther connection with duality has been given by Del Giudice

23)et al.      in a different context introducing the concept of

dilatation trajectories.

2.7)   Problems with Fermions

In this section we briefly discuss how to modify our rules in order

to construct SU (2,2) covariant amplitudes including fermions.

First, let us consider a spin-1/2 Dirac field, 4 1(7  .   It is easily

seen that the conformal invariant Dirac propagator is given by.15)

-1         446

7( f' +  9    5,1   ( *i ''0 (2.56)
)

where d is a scale dimension of + and 3. =A" .  we have also
chosen a normalization factor according to our rule.   When the

dimension, d becomes canonical, (d= - 3/2), the propagator

(2.56)  reducesto  that  of  a free field theory. Notice  that the factor

2        d + 1/2
( £-to) is just a conformal invariant propagator of a scalar

field with a scale dimension,   d  +  1/2. In general  it  can be shown

that the conformal invariant amplitudes containing fermions re-

duce  essentially to those of bosons.    This is evident in the case

of  propagators  as   we    see  from  Eq.    (2.56). In order to under -

stand how the rules should change, we consider a three. point functiQn
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as an example. Suppose the vertex number 1 and 2 are attached

to the Dirac field, L ,  and
a scalar field,  say       , is attached

to the vertex number  3. On remembering the conservation law  of

"particles of half-integer spin", we find that there are only two

ways of satisfying this;

a)  the internal line connecting vertices 1 and 2 should carry a

spin-1/2 quantum number, or (and), b) the internal lines connect-

ing vertices 1 and 3, 3 and 2 are fermion lines.  The case  a)

corresponds to a coupling *44. On the other hand,  if the theory

contains both f,t¢and *3 couplings, then we have to take into

account the cases  a)  and b) together in constructing an ampli-

tude. The diagram rules are now simply, a) Associate the

fermion propagator with each internal fermion line.   b)  Make sure

that dimensions are conserved at each vertex.    c)  Add all possible

diagrams permitted after the selection rules (or conservation laws)

have been applied.

One must also notice that the above considerations can be carried

Over to infinite dimensional representations of SU (2,2) about which

we are presently concerned at least in one possible version of the

theory. Namely,  in the framework of a relativistic orbital excita-
39)tion model for hadrons it is assumed that the spin and orbital

degrees of freedom are decoupled in the lowest order approximation.

The propagators in such a theory are simply obtained by multiply-
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ing the spin part of the propagators with the orbital part. Since

the orbital part of the propagator is well described by the boson pro-

pagator, it is easily seen that the fermion propagator is given by:

y 3

4328 1 )
(2.59)

where   g  is a boson propagator already given in Eq.  (2.57).

It is to be remarked at this point that even though this is not the

most general theory, it is certainly one of the simplest possible

theories.

Now the modification of diagram rules given in Sec. 2.5 necessary

in order to accommodate fermions is straight-forward;

Rule  bl) With each fermion internal  line we associate the propagator:

Sjk  =  1*3-,   1  ·b
) lib     1-      ,

where      X M are Dirac matrices.
U

1
Rule C )  At each vertex the conservation law of particles of half-

integer spin has to be taken into account; the Dirac indices car-

ried by fermion lines have to be coupled to invariants.
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Chapter 3

Broken Conformal Symmetry

3.1)     Formulation  of the Problem

We have seen many theoretically remarkable features of the con-

formal invariant theory in the preceding chapter. However it is

und6rstandable that we have not gained much practically unless

we have a definite scheme to break the conformal symmetry down

in the real world.  The zero (or continuous) mass spectra are

simply not realized in nature. Evidently, nature does not choose

manifest conformal symmetry. Mowever it is perfectly possible -

and also very reasonable intuitively - to expect the symmetry to

show up as an approximate spacekime symmetry in some kine-

matical region.    Now the question is '*which region?".    At pre-

sent we only have a highly speculative answer; the small distance

region, or, equivalently, the high energy, large momentum trans-

fer regions of reaction amplitudes are the most likely candidates.
40)

The behaviour of field theories at small distances has been ex-

tensively investigated.   Note that in this region we are dealing

with completely off-shell amplitudes, hence, it seems that the

knowledge of the short distance limit of a theory is of no direct

relevance to the observed amplitudes.  We want to assume

conformal symmetry as an approximate symmetry of the strong

interactions which show up as an exact one at short distances.
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In order to establish a connection with observable amplitudes,  it

is, however, necessary to discuss the possible mechanisms by

which this asymptotic symmetry is broken.   This is the subject

of this chapter.   In the infroductory chapter, we have briefly des-

cribed the well-known Nambu-Freund model involving two scalar

fields. There we have noted that manifest conformal symmetry

is broken by a non-vanishing vacuum expectation value of a com-

posite scalar field   (Z  of scale dimension equal to  - 2.    The

Nambu-Freund mechanism provides an explicit example for a

"gentle" breaking of SU (2,2).   We wish now to generalize the

Nambu-Freund model to study the hadron spectrum. Our results,

however, reflect very few of the specific features of the model;

therefore we believe that they are more general than the context

in  which  they are derived.

In the subsequent calculations, we will be dealing with Bosons

only. The modifications required to accommodate Fermions are

trivial in view of our discussion   in Sec.  2.7 (see, however,  Sec.
€6= .,     I

3.6).  Assuming that wehave two kinds of
Bosons, f  ( ,z) and

r€
( (   ,  we guess the form of aneffective action W (9, *) in
such a way that it reduces to the familiar Nambu-Freund model

if both ff and Yare canonical scalar fields.   In the conformal
re

limit the field
1 

describes a "collapsed tower" of hadrons and

(  is  assumed to be
a scalar  of the scale dimension  d  *v-1.

Note that we are allowing the appearance of an anomaly in dimen-
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sion.     We now specify our model as follows:

w C ff '19

=w (fs) +w ('1\ + w- (ff·t) + w'ct)i/                           ,  (3.1)

fr
where the

functionals W(     ) and W (C )
are given by a func-

tional Taylor series  as  in  Eq.    (2.39).      It  is  to be noted  that  in  the

construction  of  W
(( /)

there  is a slight modification  of the  dia-

gram rules because of the fact that we do not have spin vari-16)

ables,  Zk, to integrate over.    With such a modification in mind

we  find for instance:

w (31= «"41-,   +S alx *r +cx) 96 r)·          c'.,)

i'CA«tr), i,S 1.61 + oct,) ,where     is the anomalous part of the scale dimension of ( .  We

choose W as  follows:
int

Wet C ffit) =fJ'k, Ji, Al<,Jt'. d.,4 9122'z) 9966.%)
(3.3)

K  Ril *I, Y, 43 X,)  (14 X,)  +   ·   I   ·   ·    · )

where F is nothing but a SU (2,2) covariant three point vertex

which  may be given  by  Eq.    (2.54)  with a simple change  (l.6. '9 98
because  of L  being the scalar field.     We find a unique solution for

91,9 '15   - 1 (-t,-I:-tj)  ,12 - 1
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'Ce, *1(4- 1:, --A)-2 )

.Ct S=i (-rt + Tz-- il
--il (3.4)

)

and  6-it = 6-   1 r/f    :=-  6E 3   =  0
1,

where d  is the scale dimension of the composite field   4/  .

Therefore    F    is now given  by:
\1            e

FC X, %1, X,4; )(3)  =tki-Gletfli +1 1 (-4-f'-'d)f (n'.J(,Jt'Q. Y.)1

s 1-,4, Y" 1,0 4(4- 4- )-7-Jax ·t,e lz<-4'44) -1  (3·5)1                 T                -1

A l i'( 12«j  f (22  (-4-ti vJ,1,1  /1 (  ck .  9 -JV 1' ( 1 (-4.'r,-41  j     .

Finally   W*    is  choser. 9.s follows:

--1
..1+ 1-  1    \

w'(4)=A J+X (t(·1'iX)) 1-1,(.1 't(X)j ,  0.6,
where A. is the dimensionless coupling constant and   m  is a

/
mass parameter. The action W contains an explicit symmetry.

breaking term.  This is necessary for the sludy of the spontane-

ously broken space-time symmetry as we have noted in Ch.   1.

In order to see whether our model admits nonvanishing vacuum
S W_

expectation values we have to look for constant solutions of  -

and J )/ Indeed we  find two solutions:
Sfrf

4,11 8..
-                   j- 6<                                                                      (3.7)

W

b)       1 [6   = 0        ,     * 1 =   0.47    L  .
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Evidently the solution b) is 'vhat we want.   Let us now define a
11                                                   2new field lL essentially by shifting the origin of  / -space  :

*(411-(( 91'i,(1(--1  j                    (3.8)

One must notice the complete similarity of our   -field to the
Nambu-Freund X introduced in Ch. 1. Notice also that the

vacuum expectation value of %, is zero. On rewriting  W in terms
1

of  * , we first of all find that  W   can be expanded into a series

in powers of £ .  It is to be noticed that this is not possible for

W     in terms  of the field     /    .     We have:-*

W ' = A. M *fa'X i 1 C I +149*171)) 1+ ( 14**94(1(}13
(3.9)

0-   . --- +        AA:*       / 64-.
-1.    14    C  'Ble,1.  C   1  + rit  )   r   Jl     .)JI  X)     4      -   I   .        I

We  also  find  that  W nt     can be written  in  the  form:

f 11

W,-it C fr'   =  W,-:t ( fr: X)  -t  W..d  C fs' 1
4where W represents a series of "tadpole terms":

int

11                                                      1      :4-,     &      1*V /,-nt 4%MI'A6 4Ag       (3.10)
7-6-

*1   cl(.,4  fc6(1(z 't,) ,(x,1.,1(  ; 1(,)  +  ......
From Eqs.  (3.1),  (3.2),  (3. 9),  (3.10) it is easily seen that,  for

£6example, the inverse propagators of the field   T are given
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as  follows:

044,  )G ;4 3   C, Z'* 4 (3.11)
-0

=  -6.(z,-rd 11/*  c < *'     Y' *. i Cs)  -0.,.)  .£f Af''   FI X,  z., Y, z, ;  Ki )
+ (higher order terms  in the tadpole expansion),

where  W   is the SU (2,2) covariant two-point vertex already

given in Sec. 2.6. Two important facts should be noticed im-

mediately  from the  Eq.    (3.11).

a)   The symmetry breaking causes a dimensional mixing; the
,nf6 Green's function of the

field         is
no longer diagonal

in the conformal quantum numbers, €1,6- . However in

the model being studied here there is no mixing in the Lorentz

label, 0-  , to first order in the symmetry breaking.

b)    The SU(2,2) limit of the theory determines the two-point
-1

vertex, - 6  , uniquely to first order in the symmetry

breaking; the arbitrary constant K in the SU (2,2) covariant

three-point function can be absorbed into the mass scale

of m.

It is also to be noted that our model indeed reduces to the Nambu-

Freund model.   This is most easily accomplished through the use

of Montvay's expressiol  f fS J(, *) in terms of a field in

41)the canonical basis and of the relation:
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      23'"1, c -f'' 'f) 2,,T 1           M-Ls  t K)
(3.12)

!/

V-9-4 r(2+V) -   (A-1  )!   2
where   tl =2,3,4,3,4,.... ,      rl  s.2.   .2-

. Notice that the

'-J             )143 4
right-hand  side  of  the  Eq.    (3.12) is essentially the residue  of

1/
(-detX + io) at V =  -n.

3.2) Inverse Propagator; Zeroth Order

As one car: see from Eq.  (3.11) we only need to calculate  W   in
the zeroth order.     In a graphical notation we  have:

W -1 -
Y & it, Xi1    21       1

Fig. 2

The  representation  in the coordinate space is given  by  Eq.   (2.52).

Let us now Fourier-transform W  :
2

   P·X,L
Wl.(p,1,113(4=1,14X      w.(1(,4,1(, :,jc#) e (3. 13)BIL   6

)

where the momentum    is written in a spinor form, namely,

9 = PA (6. . We note that the Fourier transform can be readily

carried  out  when  6- =  0,    i. e. spinless particles:

-2-t _1 idvicI     J    , Ir -1      7'    f  14., /-Xttt.0)(-F -to \
\      2           j     r< ,+9       =St )d    X<       1         r(-4      e                (3.14))

where     11 -9 Of Z. should be  made.     In our subsequent calculations,
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we also use the following relation frequently:

I A     f Oa
,

1

A i i   CIA   a   -idz
z    =  r(-A)  1 - -R-2-*     €                                       (3.15)

L,

which is valid  for      Im  Z  /0. For other values   of     Z the analy -

tic continuation is assumed.  Let us now write down an integral

representation of W2, using the relation,  Eq.  (3.15), we obtain:
(f

Ht·(f, xix,; 06) - 21+16.4.11
1.6+Z

\ d.(4/5 dz,&1-6-,
T('+C) ic-«) r(ZtE)7(-13)

30 (3.16)

'f"  94 f -axbc 4)(W.x) -tpx.1 
)

where the integrand always includes the usual damping factor

exp- e (06+ 2), E  0 , which, however, will notbe written out

explicitly from now  on.    It  is to be
noticed that    L n.)0 C A.. X)

is a real number.  At this point we introduce a real symmetric

p
second rank tensor AB,v   :

A-=-eli- , 1  ( 11/. K   -t  '1, i ) (3.17)
pv

*
)

then:

XMAX.1(v=  -dxlt * (n.X) (i.X)   I
Recalling that  n,F are complex light-like vectors, we intro-

I .

duce two more real light-like vectors k, 1:

.....         }le» = (Z, , I j 0-B 1 't 1 )
, i/=    (1 1,11    6.' 1.1 (3.18)
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42)
A standard spinor calculus gives  us the following identity:

n»;iv + nviB =- (k.f) 1,v -1·  Ii.4 -1-6,1:.. (3.19)

So  we  now  have:

At,v=-(4+22&.1)) L.vt  ti k,f. + 6k*) (3.20)

It is easily seen that the matrix A has two distinct eigen-
8/

'4

values, each doubly degenerate  :

-n/ '4- c k.i) (3.21)V'
)

These are negative definite, since the time component of the

light-like vectors k,  : is shown to be positive; in fact k  = | t,12-1. 1  ,
.2

10=11.1 + 1 .  Let  q  be a particular vector ortho-

gonal to  k,  1  and  ril = 6/PfA  4 1'  , then we see that the

vectors k, 1, q, r are eigenvectors of A:

A;  Itv   ( or  11, )   = -'* 14 ( ··  1,)   ,
(3.22)

It   iq (" r')  =_ (el-1 f (1.13) '4 (or r.) .
Accordingly:

la-  Ilv =  41 (4 4 4 ck.e)11
(3.23)

The inverse  of the matrix   A is found to be:

L
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-1

11- v =d (%+ f (ki)) 1 42,1  .1. £(1>" -' '4)   (3.24)

We are now able to carry out the X-integration:
A vv

"z --pcl+    )i' c-   )  r ittc)   7(-c)  5  J.(11: J+11 -64   f   rx     ei   lx·' '.'.. 1,
-lft L  (-i  )(-6                                                                                                                                  +  pX 

ti - -  1   -1       RA#  d   '     0

i     (3.256            4

-           I             I                   '                  1  ak,AVic<1      4  4-/(dd   A)    1  46   11

1. 1    'P'/     l

Putting Eqs.  (3.23), (3.24), (3.25) together we get:

W    -   1       (-1/              lifte,      · 1  Z-64<         1                   00                                                0  -1

1'  -r'i |46) i'(-6) i'(i+O ri-E) 1 J« 4/'   «4-('.d (3.26)
t

A "f 4«14+ Ii,1.1,11(«  F'+b c ek)(P.£11     -Let us introduce a varia.ble which will turn out to be the angle

between the two light-like vectors k '  and   1 B  in the rest frame

of the momentum P:

Cose = 1
, U  . (3.27)

1 (k.Q)
I

(r-k) crt)    .
After substituting a variable   ir = 13 Ck·f)/2 , we find:

\AIt =      1.S'1  (. i  f.- 6  +I,ti
1-

1  k.g\o-(   001-1 \   &,1 Y   .\.

F(  1.t €)  r(-6)   pli..,E),(-t)     2.f 1 (3.28)0

41 J.-6.-C                          '  -1                   2  6                                                 2  (9    1
e V   lodec   *2 -1     -t ok  e "    1-   K

itt 24      44* 44<Again we change variables  t  =0(   ,   U=t t    ,    and it turns

out that the integration over  t  can be easily evaluated.  So we have

now:
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itz. #7-64/
W               2             (-      )                      ,F .1.   rcer)    (19    )«    l-f,   f-«·1 =Fc 14«) F (-6) ,(1+E) pc_  2.

(3.29)
.r  Z, 00 -6-< 16-/- '16 1176

x  (4'2      -      «dv  .,:           2  1 +u) '(Utlk  i j
The integral is easily recogni zed as one of standard integral

r  43)
representations of the hypergeometric function,  1,1:

115(4,63(31-1)
00                                                              (3.30)

=           1                            14    11 64-1 6 1+U/1  4-6( u + z)

-4.

B (A,  c-6)      .
where B  is a beta-function.  So we get an explicit momentum

space representation of W :
2                 0 2 E-r

41   =        21  (24)

1

r (6--1a) thze )' t- ST )   I
T (1#t) 7(-C) 2 (3. 31)

24 1
%     (  614  )  B- ti   Fi     (  6-- C ,   c + 1    3     1    ;     C.,1        -L   /It is easily checked that we recover Eq.  (3.14) from Eq.  (3. 31)

when Cr = 0. Equation (3.31) can be written in the form contain-

ing a Jacobi function:

, ., =.  f  '
™)'

.
T c ' 0 ()   ty   1.   1  f }.  r - 6

1  (2.t /,  F(-E) i (3.32)
A (0, 16--C)

x c '.1. frE 1;_, ( -cose 1
J

where we have used the relation: 4)

7.                     (%)     =    (-1)        C         Al''i.  ,   (-'t   'nt.(.'1,-'  1

; (3.33)
l<.B ) n/n+3\

11+1 ) 11(1+ 1 ))
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Notice, under dilatation  .4 h f,  that W2  -5   714 -6 W2
which assigns the scale dimension    . t    to the

field    l '
/- <67

The cut of W  should be chosen to lie along the positive real axis.

Even though Eqs.  (3.31),  (3.32) are our final expressions of the

Fourier transformed WZ,  it is necessary to derive a different ex-

pression of W  in order to avoid similar long calculations of the

Fourier transformed representation in the following section.

This time, we start from the representation,  Eq.  (3.14) and then

make  use  of the relation,    Eq. (3.15). After some straight-for-

ward   manipulations  we  find:

M 1' (  f,   7t,  X:    ;  te)
-

1,  C(lli) flat, t«1'1  (-p
6  2 7

*                                                                                                                                                                        - & 0              (3.34)

T(1+61  ?1-6,  i (11/)  i    Jo ,     )

where
 3  =   '+elM -  R     is

a complex four vector. Equation

(3.34) is defined  in the region,   Im    n° >  0     ,  Im    I l k<   0      .

Beyond this region it is defined by the analytic continuation.   Let

us now compare two expressions,  Eqs.  (3.32) and (3.34)., We

obtain:

1                                       1.,i  SA»' c
#,1 1       /t*44,0 -F-'.o)

(3.35)
f

=    2     -".  rc,»,)   t'#z&   )     t-'£')          c  42,1.)«-c '17('."- c )

E- 6

1(-r) (- Uvs)S-€
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3.3) Inverse Propagator; First Order Correction

In our symmetry breaking scheme the first order correction term

to the inverse propagator is given  by the second term  of  Eq.    (3.11).

In a graphical notation:                ) 3

WL 3
)(2,;C, *„X,
Fig. 3

In what follows, the Fourier transform of W2 '(=(»,1-4  J  & 44
F(X, 11  r, Xej X3 ) ) will be given explicitly along the line which

we followed to derive Eqs.  (3.34), (3.35). After a somewhat tedi-

ous   calculation  we  find:

 1  (F, Z, X, j f, L,6'   
.- ·1                     (2·nj 1  Z i C-r,- 4-Gill  -F L (3.36)

= (Mi    i
'fc 1 *) f 1-e i'(  f ( 4+T, -4) i'( 1+1 (r-4 +,1), i'(1+ t c li-1  +31)Lz

'F 6-/ C
2     -    1 11(4 ·tr, -Jil  -L

x  )  1«4(*Af       44kt-k.co)d (-CIR)-,«)        ,
whe re '  -.  )  =ly' -1 ff   .    The integration over  k  can be
carried out in a standard way; the ol-parametrization,  Eq.  (3.15)

and subsequent rescalings, etc. We obtain:

W '---i(wh)-ic,11)+  21(-t,-ILJ  J   ?(1(-4- r,-J))1
r( 1-16'1 ft-6) ic,·11(A-4.td)) f (,+1-ct;-r*do  (3. 37,

i' C  1+81
i                                                                             (064  Ap   t«F)- 6-1    (-ipz i 0)#tf«,+1  )

i'(-a  )   r  (1  -t £(J  + 4+1:)         0
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The remaining integral is now recognized as the one already given

in Eq.  (3.35) with 'C replaced by 1/2 ( TI + Iztj ). Therefore it

is readily evaluated to give the following complete momentum
1

space representation of W   :

HZ'  = 0.9-i ACT,r, d) 44 C f,4'4 ,  (414+J), 6,)
where

(211)Li'11+61) T (-l(14411+J))
(3.38)

Act:,Iza)   =    i'c.J)   ?(1+ic 4.z,-t,1))      f'   cz-,1.c<,+4+  J))
and   W (F z,11;.1-(441*+A),6.)

isgiven by  Eq.   (3.32)

replacing     f   by  1/2   ( f, + ZZ + 1 ).

It is worthwhile to remark at this point that the canonical dimen-

sionality of the symmetry breaking field    is not allowed in

this expression since +he coefficient A blows  up  when  d  =   -2.

3.4)   Partial Wave Amplitudes

We now have an explicit expression for the inverse propagator,

( -|, in both coordinate and momentum space to first order in

the tadpole expansion:

C--' (X, 24   )(* 11  j  Z, 1, 6-)                           d

= - SCF-c,)  116 C K 4  163, j t .)  -(,•fs Pl(3   F C Y, L  Y",  ; 4),(3.39)

4.-1 (r, 14 11 3  Zi r,r)

= 49444 (r, 1, , ; C,6-11
-(M:)-4 /1(c,r, d) Wi (F,141*; ttr,+r,+J)'c)

. .      1
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-1We are now going to make partial wave expansion of     in the
rest  frame  of the momenta     , we write:

 F,%,1,1 0, r, « 1= I (21461 611( f;Ar,<1)Itc'**)  (3.40))

where     2 (C4>8   is a Legendre polynomial. First,  we will  con-

sider   W  in detail. The angular dependent  part   of     W        may   be

written as follows:

f<19 1  = (6'*% f»-,t ( -cos/          (3.41)
- (0,26-I)

'

where we have used the relation k·1=
1  k i I LI  C  I  - C's 8)

which is valid in the rest frame  of     . The partial wave ampli-

tudes,f(e), defined si milarly  can be calculated,   if 7-0-is integer

and   fe (:G-T)   _  ,    using the formula: 45)

1('         COL 1
Z 11    CAL'f)<fl.    ",c„st)   4 („sa)  i„579

'14' i' (01.th,+1)  1'  (441)  i  ( e-f"•+ 11
(3.42)

= (-11
P (.+1)  T(,(-1-1·1'•+1)  T (0'+2 +...111 ici-,4+1)

We  find: (    for       Q,M=  1 .teler     ,  *e ob  k  _I        ,
P I

fce ird = ie)-1 f (#ic€) P,= e) d-  ,
(3.43)

=u,Q f(6+1) F (C-U +I) f(f+ 4 +1)C /1

Tlvt))    f(4--9-1,1)    i'(r.1  Q.,1)    ru-v.,1) '
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where we defined      1/   ='E-6-  ,    and  also  used the relation:

iMLE'B)
(8,4) 1

c,). c,r f. (-X, (3.44)

Since Eq.  (3.43)is defined only in the region where U ,    are

integer and     G   U -        ,  we need to make the analytic con-

tinuation in order to define the amplitudes, f (£) for other values

of the variables.   At this point let us note that 4(Q) is a meromor-

phic function of the complex variables  / and U.   Now the crucial
46)

question is whether we can apply the Carlson's theorem in each

variable  , L/ separately.     If it is possible,   then the Hartog's
47)

theorem will tell us that we have a unique analytic continuation

of the function ·((1) in both   and 1/. Since the above mentioned

two theorems are of fundamental importance, we wish to quote

thern here.

Carlson's Theorem

L et    f   (Z)   be an analytic function  in     <2  Z   J    a        and   if  f   (Z)   =

0(ell: with ll<11, when  Z -900, &2$ 4  .   Then the
function f (Z) is uniquely determined by its values at the integral

values of   Z.

Hartog's Theorem

When a function   f (Z,Z  ), for values of   |2|6 r    and of  1 2'1  6 r'
is  a regular function  of Z everywhere within the assigned Z-circle
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for every value of Z' within its assigned circle and also is a regu-
Ilar function of Z everywhere within the assigned Z

' -circle for

every value of Z within its assigned circle,  it is a regular func-
I                                                                                                         I

tion of Z and Z everywhere within the indicated field of Z,  Z

variation.

Equipped with the above two theorems, let us now examine the

asymptotic behaviour of · (f   This will be done by using the

standard asymptotic expansion for the r-function:

1         -1

 V - 2--221-i (2'4 *(1+1 4 .... ) (3.45)l

for 1=„1 < ff.
It is easily seen that Eq.  (3.43) is not suitable for the analytic

continuation since,

rce-,+1) Alel
) €

pc c-Q+1) T (C+Q;1) i'c e-V+I)
and also the factor (-1) causes trouble. However,   this  can  be

avoided by defining signatured amplitudes when they are necessary.

Therefore we have to recast Eq.  (3.43) into a form which is suit-

able for the continuation.   This can be done by using the relation:

(.1) e.t, rcr-1+,) 7 (9-61  =-  , (3.46)1T

144 fr r  ,
for / = integer.

We  now  have:

-
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f-(Q. v '1  =-Aill'€  i'(C+1)  p<<4 +1)  r (e+u +1)   rtr-i)(3.47)
r l v +l)  i'( 6.-1,Qt 1)  i'(0-v +1)

We now investigate the asymptotic behaviour of Eq.  (3.47) in each

variable /  and V separately.

a)  1 9 1 --1 00      u'

,_ *- 71(  2/6-+1)   WI
-L6-lu -L

(3.48)4(2;v4  li Tl
This is polynomially bounded, hence the Carlson's theorem is

applicable.  We have a unique analytic continuation in   .

b)  |U| -9 Do /  /
/                                (3.49)

f (ki"G)     , . '*•· 116 1'(6+1,11,(f-6-   1,Jj-+L
11                 T(6*te -tel

The Carlson's theorem is again applicable and we have a unique

continuation in   1 as a consequence.

Combining a)  and b)  we are guaranteed to have a unique analy-

tic  continuation in both variables 1, 1 according to the Hartog's

theorem. This completes our assertions about the partial wave

amplitude  of  W2.
1

Next we go over to the correction term W   .   In a similar way
2

as in W ' the angular dependent part is seen to be:

/                                           '2(-1(4.'re+J 7<o, 16-
 Cl 

. so)

lf-(12 3 14.0,4-)  = („:,1) (-4'9
4(41941)-6-

9/
---
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Evidently the partial wave amplitudes    f (t) is now given  by  Eq.
./I

(3.47)  with L/ replaced  by     Lj ', where     V is defined  by

D'=11(Lt·til+6 )-6 .   On applying similar steps which we

carried out for - fej we can easily see that a unique continuation
I I

in   /    and  U  exists for the amplitudes f (t ),r)a well. Sum-

marizing  what we obtained  so  far,   we may write:

Cili-|(f i 14 1,16-1  - -S (17,-rz-) 114(42'f ;1,16) - (3. 51)

-(eft ALI,I,J) W*(t,pillt,+Ii+J) r)  ,
where

I'll ( e, Ir;  , f) is given by

w »        .' -IP (-£) c '6' wi)-4(94*,0
·lf  ilti)i T, Ir€. (3.52)

2              fh,1 -4,)  FC- Ed  *
One notices that the definition of cos 0 is Lorentz invariant,  and

further that the vectors

4-  ck.r) EL ,

12 -     Jr  (k.el    6.   ,
become  (0,k)    and  (0,     ) respectively  in the rest frame  of   p  ,

we may rewrite the partial wave amplitudes in a manifestly covari-

ant fornn:

1'1: ( 1, f;fr)
= 2.&011)1

(3.53)

AL·, 9 f(-I) i                                            l    f i. rcet) (_542)1-« ,(F"(Fe))6-fce i·,•) 0
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2

For   <o (space-like momenta), the series,  Eq.  (3.40),  has

to  be  rewritten  as a Sommerfeld-Watson integral:

(i:'(fil,·; fir'.9 = j   df  4,-," 1't.'1'14-,1,;11"S)(3.5,)
..d  Jc Al 11 2

where the contour  C  may be chosen, for example

/3\ '
LJ .0-.. \-/  11

Fig. 4

4It is interesting to
observe that    9.  is singularity free through

the entire right-half plane when the representations are on the

principal series, therefore we can open up the contour without

picking up any singularities unless we cross the  line        =  -1.

3.5) Regge Trajectories; the Hadron Spectrum

The singular surfaces of the Green's function (or equivalently,

regular null surfaces of   -1  ) i are investigated explicitly up to

first order in the tadpole expansion. By doing this we are able to

obtain the spectrum of the physical particle states which is quali-

tatively very encouraging to our symmetry breaking scheme. Before

proceeding,  it is to be remarked that a perturbation series expan-

sion of the Green's function in powers of the symmetry breaking param-

eter necessarily breaks down at its singular surfaces; on the other
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hand it is believed that the series expansion makes sense for   ( -1.

This is essentially the reason why we are studying ( -1 instead

of (  .   In what follows, we study the regular null surfaces of the
24)

inverse propagator by the Brillouin-Wigner variational techniques.

As we have seen,the symmetry breaking term mixes the conformal

weights; f is no longer a good quantum number of the perturbed

system. Hence, we have to introduce new effective fields which

diagonalize the quadratic part of the effective action. It follows

from the orthogonality property of the partial wave expansion

that each partial wave may be considered separately in the follow-

ing calculation. To begin with, we make the following ansatz for

the perturbed effectip e field:

l et> =  ff Ir) i" C.,1-1 ffk 'aC E ')  I r '> 1 (3.55)

1 )

where   T jd C
' implies that the integration is extended  over

the principal series,  i. e.,    e  E  = - <     ,  and Z   is a normali-

zation constant which is determined by the condition   <0(   0(   =     :

z= C  + L.,9-1. fdc'acr') 5721 (3.56)

The perturbed eigenvalue     0< ( 1;  is chosen   such  that:

A- 4 (4 = I. (3.57)

 .9 0
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We also denote that the eigenvalue of the unperturbed inverse

propagator, |4 ( ,F ,  in the t-representation by    1 (t  .   The

coefficients   £1 ( 0    in  Eq.   (3.55) are determined by imposing

the condition that the perturbed effective fields extremize the

quadratic  part  of the perturbed effective action  (see  Sec.   3.1).

= S      <# 1  4€-11 9,>  = 0   , (3.58)

Satt')        S Rce)
where   Q  is the eigenvalue of   1 |   in the  * -representa-

tion.
f.From the Eqs.  (3.55),  (3.56), (3.58) we obtain for  a (t  :

t.            <Ti  ,<'(2, 0  1 S> (3.59)d (r ,=-
14,1   -  /1 (c/ )where LJ should satisfy:

CO  = B< 4  + $9-#fac'  LT  |   %'1  t;<r'|  w,"|
T) (3.60)

u -5(t,)
and       3 (t)

is given  by:

-d

Fir)  = 1, c c)  i" 019   'LI I  49<LF) I r> (3.61)
.

Further,  let us define the function H ( 2) by:

Hc')=2-4(4+7 fjdc'
2   - & C c')

.,-J e . a l 44/1 r,> <II I </I t> (3.  62)

Evidently we recover Eq.  (3.60) by setting H(60) = 0.   It can be

also shown that the normalization constant Z is given by the equation,

Z=(LK)ilz /Z=LO . (3.63)
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These equations give the general solution to the symmetry

breaking problem as defined in the present chapter.  Now the

singular surfaces of the Green's function are given by the vanish-

ing eigenvalues,  (U =0  .   From Eq. (3. 60), we see easily that

these are determined by the equation:

is cr) = cm'f(p  c ' <r 1 w*'1 r ') < *v '1 <' 1 'E> (3.64)

Oct,)
It is to be pointed out that the problem treated here closely re-

sembles that of certain non-relativistic many-body systems which

exhibit spontaneous symmetry breaking. The omission of terms

higher than quadratic ones in the action corresponds to the free

quasi-particle approximation in the non-relativistic many-body

problem.       We  now  examine  Eq.    (3.  64) to lowest order  in  the  sym-

metry breaking parameter. Clearly, the results should be treated

with some caution. Nevertheless, it is reasonable to expect that

the leading singularities of the Green's function will be reproduced

up to small corrections.    In this order,  we  have:

B (f)= O. (3.  65)

This is easily seen to be given by:

4,4 =1< (ifire){ 1   +Czf: 1415  f<Q+'41) F ce-»Ocl
 1.  66)

4Nt)
=01 pc f*#+ 1) 7< i<v4 PJ

where
I'((-v41)  Pld +1)      -

.         /1(st j8 = fww+1) rte,+1/1
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The physical particle states are determined by the roots of the

square bracket in Eq.  (3.66).   In the SU (2,2) limit all discrete

levels of the system must have zero mass, hence we look for

such solutions of the first order formula ,  Eq. (4.66), which are

,   Fe \4close to massless states. The factor  I - - 1- blows up when
< 4mv1

   -* 0,  hence the solutions must be close to the poles of the

 ' -functions  in the denominator.     We now approximate  f-(Z)  by

using the relation:

6  (z+n)Flz) -

(3.  67)
(4)4

2-9-n - TTi

The other factors which depend on   are evaluated at the position

of the poles as usual.  We may also write d = -2 in every factor

where this does not give rise to infinities if the deviation from the

canonical dimensionality is really small.  This is indeed the case

as we will see shortly.   In this way we arrive at the following approxi-

mate equation for the leading singular surfaces which come from the

poles of rce+V+I) :
-

-\*

Sncs,2, P)= 16
(9+v+1+n) +  S)-i= e

(3.68)

0+1 )(n -1'1/)  2411(J)
)

where we  put   5 =  t.
This  gives  rise  to a series of Regge traj ectories,      0   =04 c s)      ,

with intercept at -l/-  -4  .  One,  also, must notice that at

fixed       Eq. (3.68) gives an almost linear,relationship between
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masses and scale dimensions - thereby recovering the dilatational

trajectories which we mentioned before. The Regge trajectories,

2  = 0(,(S), have several interesting qualitative features.
14

The  fact  that  the S -dependence occurs  in  a form -- (-5       (we

let d =   -2  + 2   ) predicts the total width  over mass ratios should

be a universal constant.   This is because the total width of a re-

sonance   of  mass M lying  on  such  a traj ectory is given  by:

Ly' 0(n (MV             11
CM   =         3 40(*cs) 1-&

=---t.14  - TrS M
Z

(3.  69)

ds
Evidently the ratio rw/M depends  only  on the dimension of the

symmetry breaking term and hence it should be universal.  In

order to test this prediction, we fitted the total widths of all the

well established baryon resonance  o a curve:

r    M    =irs   (MT-Mo,) , (3.70)

where M   was introduced in order to take threshhold effects
0

roughly into account.     This is shown in  Fig. 5. Indeed  the  data

are approximately consistent with Eq.  (3.70) with a universal value

of ,v 0.04. A similar pattern is found in the case of meson re-

sonances. However, experimental uncertainties prevent one from

drawing any firm conclusions at this time.   It is also interesting to

notice that the slope of the Regge trajectories tend to infinity in the

SU (2,2) limit,  i. e.,  mi, O . Hence all the excited states collapse
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into an infinitely degenerate massless object. Incidentally this

is what we expected when we assigned the SU (2,2) covariant field

  to  the   hadrons.
As we have emphasized before, the results of the first order cal-

culation cannot be trusted seriously in a quantitative sense.  In

particular, the positions of the daughter trajectories for  S #0

may be substantially affected by higher order terms in the tadpole

expansion.      (For more discussion     on this point,    see  Sec.   3.6: )

It should be also noted that the threshhold of the Regge trajectories

lie at S = 0.      This is because the tadpole expansion is not unitary

in each order separately.

Finally we notice that the trajectories, Si (S  A, v), which

arise from the poles of r(#-p'+1) are low lying so that

they  contribute to non-leading singularities.     In fact:

1,- 716 (I+Q-v'-1* n)
-J

 " - C ,+1)(111,-2,) AA:T, C-4),  + 13'j  *-
0 (3.71)

Hence the leading trajectory of
5,1

intercepts the   axis if we

assume d.-3, U 4'- 0  (i. e. around canonical values).  This

is  around the position where the third daughter traj ectory  of    SrI

intercepts the   axis.
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3.6)  Remarks

First, it should be noted  that the calculations which  we  have  per -

formed are also equally applicable to fermions.  This can be seen

from the fact that the fermion propagator in momentum space is

equal to boson propagators, multiplied only by a factor         in
a.&

the frame work of orbital excitation model which we have chosen

as a possible theory. Therefore the structure of singularities

which depends on the orbital part should be quite similar.  Even

though sucli a complete decoupling between a spin and orbital part

may not be the case in general, we believe the singularity structures

should  not be qualit atively much different.

Secondly, we would like to speculate about the behaviour of Regge

trajectories, Eqs.  (3.68),  (3.71).  As we already noted, the first

order calculations cannot be taken too seriously in a quantitative

sense, however, keeping this caution in mind, some speculations

may be helpful in understanding our results.  As they stand, the

Regge trajectories rise almost   line arly  with mass square;  this   is

an extrapolation since, strictly speaking our results Eqs. (3.68),

(3.71), are valid only in the neighbourhood of small S . In order

to   see the behaviour of trajectories at hig   S,    we   have   inve sti-

gated  Eq. (3.66). Since the factor (-A.f approaches  zero

for  S -/00, the solutions must be close tothe poles of the r -
1
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functions in the numerator. in this way we find two classes of

decreasing trajectories with S:

8  44; 11 C --JL)       i -zi  j  9 -* --1  + 4 -n   +
W n(n+I_ w)  C   *my , (3.72)

i   =   -1  -,/  '-11       +           6 &*111  C -ti )         /29-   1  -t
lin In-1 +Lv) C *m:/    .Hence it is quite tempting to conjecture - combining Eqs. (3.68),

(3.71),  (3.72) - that the trajectories will rise almost linearly to

F some point and approach constant values asymptotically.

If turning points are sufficiently high-lying to give .111 any resonances,

we would get a very complicated resonance spectrum with an in-

creasing degener·acy of the states.

Finally we would also like to mention what are the possible effects

of the higher order ( 71 31) correction terms in the tadpole series.

One cannot be too precise on this point since the higher order

terms contain arbitrary functions as coefficients.  As is easily
2,

seen,  they are homogeneous functions of    ; the general n-th

order term of the tadpole expansion is shown to be proportional

to:       0 1(flf tz•+nol,11 -6-
tr

by a simple power counting argument. Our preliminary estimates

Suggest that the n-th order correction term to the partial wave ampli-

tudes contains a factor typically like  '(Q-v -nd -   which would give

a leading trajectory with an intercept at...  *V   and
subsequent its

daughters.
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Chapter 4

Hadronic Scaling

4.1) Introduction

One of the most prominent features in high energy hadron colli-

49)
sions - at center of mass energies of a few GeV or more -

is that there is a stringent limit on the transverse momenta qT

of all outgoing particles.   They are typically of the order 0.3

to 0.4 GeV/c and are largely independent of the incident energy

and the type of reactions studied. Therefore it is in general a

good  approximation at accelerator energies to describe  the  de -

pendence in qT by a sharply decreasing exponential distribution.

It is also known that most of the produced particles in such col-

lision processes are pions. (About 90% of the products at 20 GeV. )

However, there is reason to believe that the situation may be

quite different in the region of large transverse momenta.  (Say,

q'r >  3 GeV/c).  In fact, recent experimenters at CERN - ISR 50)

have discovered that the distribution in q.r becomes wider, showing

a clear deviation from the exponential dependence at small q .  It
is also expected that one may see more strange particle production

than what one would expect from an extrapolation of the data at low

qT.   This is of extreme importance since it may lead us to a new

understanding of hadronic reactiops.
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A quite remarkable property of high energy hadronic reactions

is the appearance of phenomena, called "scaling". Such pheno-

mena have been known for some time and have been extensively

6,7)studied for the deep-inelastic lepton-hadron scattering processes.

50)
However, scaling in purely hadronic reactions,     such as

p + p.'  W + anything,  has been observed only recently.   (In

order to avoid a possible misunderstanding, we wish to emphasize

that the scaling phenomena discussed here are different from the

„51)
"Feynman scaling observed at low transverse momenta.  As

is well known, Feynman's scaling hypothesis states that the in-

elusive single particle distribution depends on the observed
%"

longitudinal  momentum  only through the  variable   '* 5
=  -Ts.

However, the magnitude of the transverse momentum remains fixed

and is about - 0.4 GeV/c. The scaling properties discussed here

refer  to the kinematic region where  all the independent  kine -

matic invariants are large, - typically 2 GeV or larger - and

thus they are analogues of the "Bjorken scaling" observed in in-

elastic lepton scattering. )  It is well known that the scaling pheno-

mena observed in the lepton-induced reactions may be explained

by assuming that hadrons are composite and their constituents -

„52)known as "partons -  behave  as  if they were point -like

particles in the infinite momentum frame of the hadrons.   In
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describirg hadronic reactions at large transverse momenta, it is

quite tempting to apply parton concept since we are essentially

probing the short distance structure of the hadrons.   In fact, vari-

ous parton models have been quite successful in explaining
53)

"haironic scaling". However, it is quite conceivable that seal-

ing phenomena reflect more general aspects of the dynamics of

hadrons than is suggested by the specific models.

In this chapter we propose that the hypothesis of asymptotic con-

formal invariance,together with some additional, rather general,

assumptions leads to an understanding of at least the main qualita-

tive features of the data on hadron induced inclusive reactions in

this, "scaling region".

A general framework to study the inclusive reactions,

 1 + P2 , q + anything,

has been introduced by Mueller. He has observed that the cross54)

nodirsection of an inclusive reaction,  1 --    - can be regarded as
dis ,

a discontinuity in a six-point forward scattering amplitude.  This

is a generalization of the relation - known as the "optical theorem"  -

between the total cross section and the absorptive part of a forward

scattering four-point function.      So  we  have  at high energies:

%0 ds&* ...  |  /1
4%3 3,

where A denotes the absorptive part just mentioned.
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In the following sections we study a six-point conformal

amplitude in its most general form except spins.  (We have neglected

all the spins for simplicity of calculations). A scaling law follows

immediately in our scheme. However, a specific form of the scaling

function can only be obtained by making certain assumptions on the

form of the amplitude.  To be more specific we assume that an ar-

bitrary generalized reduced matrix element is a completely factorizable

function of the independent channel variables,  ci.    This  is a mathe -

matical interpretation  of the physical assumption  that the dynamic s

responsible cor the process under consideration is a very complicated

one and hence dyna mical correlation effects are cancelled  out  to  a   good

approximation; we call this an independent correlation model.

It is found that we can fit the available experimental data on

pp-.AOX excellently with the scaling function so obtained.  We also

present the predicted production rates for the reactions pp -D KX and

pp „ 9 X.

4.2 Six-point Conformal Amplitude

In what follows, calculations will be done under two simplifying

assumptions;

a) We neglect all spins, so we work with a Symanzik repre-

sentation instead of the more general DK-representation pre-

viously described in Ch. 2.

b) We work to zeroth order in the symmetry breaking tadpole.

However, this is consistent with the first order calculation

of the spectrurn.

We begin by drawing a six-point conformal diagram.
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\          T.

*/1                           4/2

4         14Fig. 6

The conformal covariant six-point amplitude, T 6' rnay be
written in a straight-forward manner by the familiar construction

principles:

12(4'...,4,1 =f·"·f 11'j91 (119'< f(-54) '

TS (f St+5 +4) 90< fie,-· , 92) (4.2)

where G  is an arbitrary function of scale dimensions
1 kand   ;2 *11

--i< 4  denote space-time differences.   In writing this form of

T 6' we have absorbed certain constant factors, e. g.
N  1.kinto

GO.  Instead of working directly with (4.2) we find it more convenient

to derive an equivalent form which turns out to be more suitable to

calculate the Fourier transform and to our subsequent calculations.

Consider an amplitude F:
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6 Aft
F(F'..,f)   =fl.f'.Is,     c'5'9 5#.pc-gr)    4-cg',*f)

(4.3)

=..
1 T-      11"-2   (11,4        4(94.ra) 9  (-C E tts)
.    zii   i41&twhere in the secon   form we have absorbed various  gifactors into G.

Evidently F does not represent a conformal amplitude unless the in-

ternal dimensions satisfy the covariance conditions. However, we can
project out conformal portions of the amplitude F by using the Mellin

projection technique which reads as follows:

Let  F(x) be an arbitrary function which is in general not

homogeneous.  We can project out a "homogeneous component" of

degree 4 in i by

00 JA

6,4 - fe  s A-4 FcAL) (4.4)

It is easy to see that E,(:1#   =   u Ec:4.     A  necessary
generalization to functions of many variables can be done without any

difficulty.  In view of E.i.  (4.4) and its subsequent generalization we

construct an amplitude FC from the amplitude F by multiplying each

7   by 'li kand integrating over#' for each vertex  j with a factor
1

11  + S   from  0  to  00.
1                  6 J '&

Fc'4'..' *') A 00#ti,iri'+ S,Iii,  4 (fi,-   744  .r 00   6           .         -al
. i     -11.  r.   11.1.-eip 6', *31 ,1,4  u,1,) I (4.5)
JO  446 94      0
It is easily checked that the amplitude FC is indeed a conformal

amplitude. For example,  we see under a special conformal trans -

formation (2.1)
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C.+4
f          / 6/ : 21/

lic 4 ' . .  16)   =  IT    1    1 -1 c·Z,·  + c  i '
1 Fc,ZI'... )0 1

Let us now introduce new variables, 5   ( 1 S t 16  )
and

tic'Si-€4 ) as  follows:

j1
11 '  41=   aa' qi.'1   9.,

111   Jrt:    =   ai  Qj'·, t.   69 ·  C'.+ 1      , (4.6)

 d 1+3 1 Qi all+3 (6,1  .
(In these equations the cyclic identification of the vertices, viz.

'5:6+L  = 712.£
is implied. ) We see now that 6 variables,  dj.

may be eliminated by a suitable redefinition of the reduced matrix

element G.  In fact, introducing new variables  10 . by

1#i =01 ai
we obtain a following representation of the amplitude Fc:

E.(11' ..,4'1. f:.,f  .   mgTI,4 f'116 K (9, ·  4)
O 4 (4.7)

1                                        i
.  ex'r  -i I.  (  *ij,1  mit'11*1 CL  + 1,44*'Ini'mi,1. Cd Ci,1   · .)     ,

where

K (e C     1    _   r"  6  J41.     -9'-4

,        i,  /2    1,   - ,)0   'IT  12: 42· Gr (11/1 , I II,US 6  '

i &514.  F52
9  ( 11'11  .  ..,11 e  --   S  ll    iii£   Cuil) 4(9"...,  4-6 )

(It is understood that the arguments of G( 1/", - '   11<6) are expressed

through the new
variables, a  and c , by means of Eq. (4.6).)   In

obtaining the representation (4.7) we have used the observation that      ,t
#4

the volume element is invariant under the change of variables, Eq.
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(4.6), viz.

6
dttlk 6   Aa:     4  J caH -   = H J.  71 -

144 €/1.k 41  7 9   I
/,

It is to be noticed that the reduced matrix element, K depends

only on a set of six independent channel variables and the covariance

conditions are autornatically taken into account.

Next we multiply a factor

1.  1-4  (1-  ". -,",  )6

to the representation (4.7) and subsequently rescale the variables,
m. by]

m  = AT210
( 1'4, · -,6  )

Then we find an expression for FC:

16,71, -,z,) - rifft,kcf,·-,«1 f,"f'A' f. 11"al'. .
(4.8)

5/1,3SCI- rli) ef (-'A I 9 4,5, 194.)  ,
16 1

where 1  .T(   9,4 4)         and    VJk   -   *2£   ( djuk)-|,
(The quantities lij.t defined above are functions of the

c  alone. )
Let us now Fourier-transform Eq. (4.8):

Ii'(4,' .,4'1 - 5 fati  e..3 4..9 f" Ifi Kee., · · ·,4)  .(4.9)

i'»i',1.4.1 6(1.ES,) 9 60,*rxls'.11 v'.i )'4-
5.+1

3  i                      :,4 1
Ve Put   16 -A by using translational invariance, thereby one dependent

momentum has been eliminated.   (Note that we have an overall

momentum-energy conservation,  1 1 +        it  6  == 0  )
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We now define a real and symmetric 5 x 5 matrix Q b y

X*Q X    =   E  '52 1'. ric vil (4.10))

where Xt = ( Z,1/ *2, 0· . ,  *r ) and X i s a transpose of the matrix X.

From the definition it is easily seen that the element (jk) of Q is

given by

Gnit   -  dit  I I,· 1,·, Sz     -  li  1,3.t  S k (4.11)

As the matrix Q is real and symmetric by definition, there

exists an orthogonal matrix which diagonalizes Q. Hence the i-

integrations are easily carried out with the help of the standard

Gaussian integration formula:

S atte-Z-2% L                   1= i' 1
So we get:

T (9    Li = l·,t,o('°Jl, 2+ T.5.  5,1\ je9kcc.'..., e4).C       10. ,- 1 jo A
1.                                                               (4.12)

f , dil.4*Sict-rs,·  Cae,Glft'9' C·i,Kb'K),0 33
where Q.1 is the inverse matrix of Q and Kt = (  1 11, :, · · ·,1 r )·
Substituting a new

variable by  1/ =  C  AS )- ,

FI ,91, ··,4) = .2'6'li:·ti" tticBS:'11 Jt,·%;  Rfr).
'r..·f &

0    10-11  t'   kcd'.    0  ")    (i«Oftif ('e  k'Q'x) ,

(4.13)

where
B + :+2 Z·9  ("' 4,-1.) .Notice that all the momenta are entirely contained in the factor,
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(Kk K)0. This allows one to obtain a scaling law and a parton-like

structure of the inclusive cross sections as we will see ih the next

section.

Evidently, the dynamics is entirely contained in the generalized
reduced matrix element,. K(cl. ' ' cg) which cannot be determined by con-
formal symmetry alone. Without having a dynamical model, we are un-
able to proceed further with Eq. (4.13).  In the following, however, we
will study two simple models for the matrix element K(cl... c9); the
skeleton amplitude defined in DK and the independent correlation model.

We may hope that at least some qualitative aspects of the results that

we find by studying these models remain in a future more complete

theory.

4.3 Some General Properties and the Skeleton Amplitude

Let us begin with the kinematics of the single particle inclusive

reaction

f, +F i- -4% +X '
where X symbolize all the rest of the particles that we do not detect.

We also denote incident particles (say, scalar nucleons) and an outcoming

particle (say, Tr) by their momenta for the notational simplicity.  It is
not difficult to see that the inclusive cross section is proportional to
the absorptive part of a six point forward scattering amplitude with

momenta assigned as follows:

i.= 1/ 44=-4 ,I '

lit=t, '4 =-i, (4.14)

11 -A,   46 " -PI I
On choosing the third component of Pl different from zero in the center
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of the mass system, the following asymptotic relations are easily
shown to hold at high energies:

f. -*(F, o, , r) ,
fs -(1,  o,  0,   .r) I (4.15)

i  S   (i,     r        % c„ 0)       ;    1  irl    =  f 64'.494/ 1
The kinematical invariants,  s,  t,  and u are defined as usual:

s .  c 4 +  1, ) 1  -.   4 p t.,

t= (Al-,)L 3 -4ri 44-zi ,
(4.16)

14 = (li- £)2 . -4't c•sz 4. .We also defii,e scale variables, x y:

t U1 6 -,
     /                                                  (4.17)9-*...0'..

Note the following asymptotic relations:

Z%
1

14 9    = - 'u - €T
1/r

7 ' -+.--

(4.18)S    ·
Thus we see that x+y-*1 at the boundary of the phase space.  At 0= 90°

we have x = y.

Turning our attention to the conformal amplitude (4.13) again,
we notice that the six-point function entering the expression of the inclu-
sive cross section can be written in the form with the above defined

kinernatics.

n -

lic A#,0 40 -4,-5,   -g'. 0 (*,9  3    1 1)     .
(4.19)

Taking the absorptive  part of the amplitude  (4.19)  in  s, we obtain a

general scaling law for the inclusive cross section,

1104
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tr€ --1  +5     r0 -r  = b f-(X, 9

dit      '            ' (4.20)

provided we are allowed to- let the external masses, m  go to zero.
Whether this step is permissible or not depends on the function
K(cl. . . cg).  For the moment weassume that Eq. (4.19)is free of such
infrared divergences. (However, as we will see shortly, this is not
the case for the skeleton amplitude. )  So we have, in some sense,
demonstrated that the scaling law is a consequence of a rather general
principle like an approxirnate conformal invariance of the theory.  In
order to get more specific information about the scaling function F(x, y),                1
we need a model for K(cl. ' ' c9).

Before doing this, one more interesting consequence of the con-
formal invariance of the theory is to be mentioned. Namely, we notice
that Eq,  (4.13) may be rewritten in the form:

0-

11(11'..,4).fl'.61<(cl, ·· (1) lict,··trj ci) ,  (4.21)
where the form of the amplitude E(4, ·· tr; 9)  can be read off by
comparing Eq. (4.21) with Eq. (4.13).  It is important to realize that
the function E(4.:63 9.) itself is a plysically meaningful (SU(2,2)
invariant) amplitude for any set of the real numbers, 6 1, · · · ,C l·
Equivalently, the function K is independent of all the kinematic variables
(From the geometric61 point of view, this is a consequence of the fact
that conformal transformations act transitively on Minkowski space.  If
we had required Poincar6 invariance of the amplitude only, the reduced
matrix elements would be functions  of the invariant channel energies,
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thus invalidating the whole argument. ). Therefore, the discontinuity

of Fc with respect to the incident energy and hence the inclusive cross

section may be written as follows:

o.  J.-          e ,  f Ji,-CE,)
b-----  J"j C ti)

(4.22)alt         dit
Thus, we may look at the measured inclusive cross section as an

incoherent superposition of "elementary" cross sections, to  Ji'R  Ci 1pi
where the differential probability distribution of the channel correlation

parameters, c. is given by)

el

Aw  (ci)   --  1 12   K(*,.     .cq) (4.23)
1

(Strictly speaking, for this interpretation to be valid, one should prove
that the elementary cross sections and the distribution dW are positive.

At this moment,  we  do  not know  of the existence  of  such a proof;  how -

ever, this question of interpretation has little effect on what follows. )
Eq. (4.22) shows us that the inclusive cross sections possess

a structure strongly reminiscent of parton models. This structure

is obtained without explicitly assuming that partons are "particle-

like constituents" of hadrons.  In fact, our partons may be identified

with the elementary two-point correlation functions which are building
blocks of the conforrnal amplitudes.

So far we have endeavored to obtain general consequences of the

SU(2,2) invariant amplitude Eq. (4.13) without being involved in a

specific model.  We now study simple models for the
function K(c )

to be more practical.  As a first try, we may say that the function
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G('E :, . . . , ffb ) is very smooth and slowly varying in '2 6 so that it
is approxirnated by a constant (say, G=1 without loss of generality)
as a zeroth order.  It is easily seen that this implies

cir (11,1,  I ..,  11r• )  = 11  5  C 11,/4 -1 ) (4.24)

This, in turn, implies

4

K s(4,   ···,cq)      =11   9   (cl.-1  )
(4.25)

as can be seen from the definition  Eq. (4.7) by some straight-forward

calculations.

Therefore, the skeleton amplitude is given by
-6

06'-f 3

Hc  (lt,..:4)   =  2.,11'ol# r (-B)    S    1TAli S.'      . (4.26)

·9(1-Eli) (detqsfl<ths#K)'l ,
where we define the matrix      by

Q = Q ici= f , t:e.  Qsit = 44 1, - r,16  .
We have also carried out B integration in obtaining Eq. (4.26).  For-
tunately enough, it turns out that the 5 x 5 matrix, QS can be inverted

by inspection:
-1

CQ'l·£   =  Sit 1     +  4-U
52.

56 . (4.27)

(As a technical point, it is worth mentioning at this point that even

though the matrix Q can be inverted in principle by a finite number of

algebraic operations, this procedure becomes quite laborious for

matrices of the order of five or higher. Therefore, in practice we
are forced to make an approxirnation.  We will encounter this situation
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in the next section. )

SWe also find the deterininant of Q  :

 6*Q  =11'12'''56 .           (4.28)
Putting Eqs.  (4.26), (4.27) and (4.28) all together, we get the following

expression for the skeleton amplitude F  after some straight-forward

manipulations:

9+ i
E 5,4,..,41  - 2'4ilr" Fc- )  5.4 Tr Jf . 5, 9(1- Ir,31.

. ( 4,-t.. li I B (4.29)

f _-0
'%4                 16       ·

Thus we learn that the skeleton amplitude is a constant, depend-

ing on the external masses, m , only.  As a particular case, the for-

ward scattering amplitude which is relevant to the inclusive cross section

has no discontinuity in the invariant energy.   So the inclusive cross  sec -

tion gets no contribution from the skeleton amplitude.   We also see from

Eq.  (4.29) that the "infrared limit" ( 1 · -4 0 ) is finite or divergent de-

pending on the sign of iB .  It is reasonable to say that the scale dimen-
sions differ little from their canonical values in view of the arguments

E.tl.we presented in the previous chapters.  In that case /3=2., 1     is
approximately around -1.  (Note that    = -1 if all the dimensions were

canonical. )  Thus the skeleton amplitude Eq. (4.29) is in fact infrared

divergent.

4.4 Independent Correlation Model

As we have previously stated, the model, which we describe

in this section to obtain more specific information about the scaling
function F(x, y) is our Version of understanding of the hypothesis about
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the "randomness" of the dynamics. The reduced matrix element

k (4 ' . . '9) factorizes in this model:

K (4,· ··, cq) =  fr K:· c ci)  ,
(4.30)

where the functions K. depend on a single variable only.3

Incorporating certain symmetry properties which follow from

crossing relations and the statistics of the external particles to the

present scalar model, we demand that all the meson-nucleon and

nucleon-nucleon distributions be equal to each other, respectively.

Hence we har,e:

K,   - Kz  =  K,  =  kr   S U
)

(4.31)Ki  = KG  = Kl  = Kg  2  V

(Note that K8 is a meson-meson distribution. )

Assurning the validity of the interpretation of dW  as a differ -

ential probability distribution, we obtain the following conditions.

1                                                  0    4     fr   al  U  l  cl       ,      fr     ac    .  A0 -E      (c)     C 00
(4.32)

Eq. (4.32) implies that we may write in general

U (c)-CAl (c) , V(*) =c; 0 (c) , (4.33)

near c=0 with positive powers A and B, where g (0), h(0) may be
finite.   This is always possible by choosing A and B appropriately.

Let us now derive a useful approximation to Eq. (4.13) which

is essentially a first order perturbation formula around the skeleton.

(Remember that the function K had a form
11 9,9.-1) in the
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calculations of the skeleton amplitude. ) We start by introducing new
variables W as follows:

'   jk

W,*     =   19 i -1 ( 1 6 %:1 4 6)
(4.34)

The variables Wjk are smal] parameters to make a power series ex-
pansion.  It is also understood that 4)   are to be expressed in termsjk

of the quantities  6j' -1    ,  e. g. to first order we have
I

4>'141   -9. -1  ,   41'042  =  9. 4 941  -2  ,      95.,41   =  cc,1.-1     .
The rnatrix Q can be separated into two pieces by substituting

jk
by Eq. (4.34):

Q= (95+2,
(4.35)

where QS is the skeleton matrix given previously and

e.-      -     (2)      I    dit,  =  41,/4.         .
Now Q -1  can be found by a series expansion:

0-1. (Q9-1- (Q*f'e (Q'f'+  . . .'                                                               (4.36)
Since we have already found ( s)-1 in the previous section, Eq. (4.36)
gives Q -1 up to first order in &4)jk after some straight-forward cal-

culations:

Ql,   *  1.  Sig  (1+ * 5, 5,)  t t  C 1  +  i«la  ,)
1. -51

(4.37)

+ 604 + WGk -iJiL
In what follows, we also put

jet Q     .    Jek     (QS+e.)       s    Jet  Q   S
,             (4.38)

whereas we retain terms  of 0( W   )   in the -rapidly varying-exponentialjk
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function.

From Eqs.. (4.13), (4.3]) and (4.38) we obtain an approximate

expression for the amplitude Eckl'....4):

liclt,-,<f) '2211,0  (*18  '.-B  S '  1115.15+2< c,-Ili) .104 r    0    1 31                 1.                (4.39)

f  11 '2,     cg,..ce *f '>   c I .t.  - 3  * '0'1·  t   -        i,  •i,· c,· )      .
Let us pause for a moment to discuss the validity of the approx-

imate formula Eq. (4.39).  Were all the momenta large and non-

exceptional (i. e. no finite sum of the external momenta would vanish),

we would expert Eq. (4.39) to give a good approximation to the physical

(SU(2,2) invariant) amplitude.   This is due to the fact that in the region
just mentioned, all scalar products of the momenta

<6'·1 'are
very large.

Hence, the exponential in Eq. (4.39) oscillates very rapidly unless

W., < 1. (This justifies the assertion that 4 k are small parameters. )JK

Unfortunately, however, the region just described is also highly un-

physical.  (The "deep Euclidean region". )  In the physically relevant

Minkowskian region of momenta, with
k  fixed, we have no reliable

way of estimating the accuracy of our approximation. However, by

putting k  s 0,
and working out the respective formulae, we arrive at

an approxirnate amplitude with no evidently unphysical properties.
Thus we believe that the approximation considered here gives at

least a reasonable qualitative picture of the behaviour of the amplitude.
We immediately notice that the approximation method just

derived preserves the scaling property in every order. By consistently

neglecting rnass terms, the exponent of Eq. (4.39) rnay be simplified
drastically. (For instance,

%i
dependence drops out completely. )

Hence we obtain:
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Exponent   -7 I <J  Y    '  fJ j =  s  (c,4- Ctt 61 -Cr- cl-(9 

-it( 1-CG) -JU C 1-Cl) (4.40)

5 51- C *'9 3  5.)
To obtain Eq. (4.40) we have used the first order expression of the
variables

in terms of 1 ' -    .  Now
the scaling law follows fromjk

Eq.  (4.39) just by redefining the variable B:

FLE,<4,-4,-i)=&0'4(1.,), (4.41)

where *is given by:

+Ci,91 - 14'1'°   6'"6*A-/ 5 'al '1·5.t ts<I- E f'.).
·   f 11 1 , KI,...,4) .:, 0, C '11, 3   'a·)     .( L (i,, j cj·)   is given trivially by Eq. (4.40). ).

The  . integral is easily carried out to give a poly- eta function

B(r'+2'... Z:6+1) ,
1T  pc 9.+ f)

B(z#+6 ···,r*ft) = = -
1'(t (1+'c'.)) .

(4.42)

Next, the independent correlation model (4.30) tells us that

the function 4'can be written in a form  .

41<,)  =    1, 11'.   Grls< 14+11.-·,Te'l)  f *t»-8.0
J4                                        (4.43)

f 11 K.(9) F 9 0 L,z, i c,) ,441 j
where, on noticing the abnence of c 8 in the exponent  L, a parameter

G has been introduced by the integral,

4  =   1  :'   t  4  ,  ")    .
Furthermore,  let us change variables as follows:
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W  (1-11)     eli
4                       X

.  -*1 3  I 9-1-9 , 161-111 (1:41,6 ) ,

- (7 =11 C6 -*#6     -1-  66 = 71&2   (4.44)

We now obtain the following form for * from Eq. (4.43) using
Eqs. (4.31), (4.33) and (4.44):

-/3/ +ig (Atll 01,11  -    S (9,4··,%·1*j ft-,) 69)     L, (1-z,)1 B
0    1'1/1.  ,)     ,

(4.45)               1

where H(x, y) is given by

Id · r·u,Al (2 d,11-1-2))  ... la,B t (viC<4'-' _  ,11, 11).   4"f  ·11. '5'.   4
· · ·lif 1211„(1-7-9))  ( 11,+112+

· -Uq -1)B   .
Evidently, the function H cannot be calculated without rnaking

further assumptions about the distribution of correlations. However,
if g(0) and h(0) are indeed finite, the behaviour of the distribution
near the boundary of the phase space C x+y -)1) should be dominated

by the power (1-x-y) .  Similarly, if the functions g and h
B+4(M +B)

are reasonably smooth over a substantial range of their arguments, one
-Bexpects the factor (xy) to dominate over the region of small x and y.

Therefore it is not unreasonable to assume that H is a slowly varying
function in x and y.  In fact, we are able to fit the experimental data
quite satisfactorily with the assumption of H being a constant. (see
Fig. 7)

Finally, calculating the discontinuity of the amplitude Fc in the
invariant energy s, we arrive at the following expression of the single
particle distribution:

1                        -lfs

< l'VT'll.' 18(9*1'...C.6+1 
9 (19)-8.

(4.46)

.   (1.1-')0*t 4(A+6)   H  <7,  9 )      1
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where we have absorbed some constant factors into the function H.

B
It is interesting to note that the power behaviour, (xy) - ,

in Eq.  (4.46) is of the sallie type as obtained in tile. parton niodel cat-

culations. Our formula Eq. (4.46) also contains a factor,

(1-z-,  *44 (A-, 1 )
which suppress the cross section at the bound-

ary of the  phase  space  (x+y-Vl) when 5+4(A-te)>°
On combining the scaling law Eq.  (4.46) with the dimensional

rule Ce. g. J'  -1,1r ....  1 ( 1'41 - 1,11; ). typically  1,1 *v 1 42,) obtained
in the previous chapter, we find a rather surprising prediction on the

inclusive distributions of mesons ('F,K 11 ) at fixed x and y:

dia-(K )
- "-   c   s.li . (  1/K -"Ir)

&16- (11) (4.47)
)

where C, in general, depends on x and y. Similarly for  1  . However,
under the ad hoc assumption that the constants A, B and the function H

are approximately independent of the nature of the particle produced,

we obtain the following expression for C by using the fact that

for spinless particles:

86 1, 1-°IK, ··   ) T'(-LOGi)
C=

g  (  f,   1 -411,  . -       )   2(-24% ) (4.48)

where  O( 0 = f lf: .  0  We
have assumed that the nucleons have a

canonical dimension i. e. 4 =-1.
In order to test our result, in Fig. 7, we have plotted recent

CERN -ISR  data  on pp  -* Tr° anything in three different incident energies,

6. = 30.6,  44.8 and 52.7 Gev. Clearly, the scaling law Eq.  (4.46) is

in good agreement with the data.  Our fit is obtained by assuming
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H(x y) = const and A =B = 2.7.   We have also given our predictions on

K and * productions based on Eqs.  (4.47),  (4.48) in the same figure.
At present there are no reliable data available to check these predictions.

(Preliminary data obtained by the CERN-Saclay group at the ISR seem to

indicate that  a) the rate of "heavy particle" production grows with the
transverse momentum and rnay saturate at a ratio around  -1.5.

b) Comparison with the 24 Gev data indicates a slow increase of heavy

particle production with energy. This would be at least qualitatively
consistent with our theoretical prediction. However, the data are pre-

liminary and they have been contested by the British-Scandinavian

collaboration. At present, no final conclusion can be drawn concerning
the validity of this theoretical prediction. ) It should be noted that our

Eq. (4.47) suggests  that at sufficiently high energies and large momen -

tum transfers, one should see an increasing number of low spin, heavy

particles produced in any reaction. While this prediction is somewhat

surprising in view of the overwhelming dominance of pions at low qT
as we mentioned in Sec.  4.1, it does not seem to contradict any known

physical principle or experimental result.
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Chapter 5

Discussion

In the last two chapters we have studied conformal symmetry with

an  emphasis  on its broken character   and its physical predictions.

Due to the lack of knowledge of the fundamental dynamics of had-

rons, we were forced to take a purely phenomenological approach

to the problem. Thereby we have developed an effective action

theory of studying broken conformal symmetry through a spon-

taneously broken symmetry mechanism. Assigning hadrons to

infinite dimensional representations of SU (2,2),  we were able to

recover some essential features of the hadron spectrum.   More-

over we predict the ratio fi#t/M  to bea universal constant

which seems to agree with present experimental data at least in

a qualitative sense. Throughout the calculations,  only the quali-

tative aspects have been emphasized.  This is partly because we

are not able to provide exact quantitative results within the frame-

work of the present model, and partly because in our present state

of knowledge about strong interactions any quantitative estimates

are necessarily bound to change before not too long.   The main

justification of our approximations (based on physical intuition

rather  than  on a logically consistent procedure) would  be the consis -

tency of the emerging physical picture with experimental facts.   In
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fact, the physical picture seems to be quite attractive. Should

the qualitative aspects of the hadron spectrum be correctly des-

cribed by present theory, we would conclude that it is nat physi-

cally meaningful to inquire about properties of individual hadron

levels in the high mass region.   This is because the widths of

massive hadron states are predicted to be comparable with their

rest masses in such a region. Therefore we should rather con-

centrate on the investigation of the properties of an "average

excited hadron. "  This is a familiar concept in nuclear physics,

however its accommodation may require substantial changes in

the methods and outlook of present day hadron spectroscopy.

Broken conformal symmetry also appears to have a considerable

predictive power in high energy, large momentum transfer

hadronic processes. In particular we have considered inclu-

sive reactions in this framework. The predicted scaling law seems

to be in reasonable agreement with the data.  A far reaching conse-

quence has been obtained from dimensional rules (dilatational tra-

jectories) and the scaling law, predicting more frequent occurence

of heavy particles (as opposed to pions) at large transverse momenta.

Should this be borne out at least qualitatively by future experiments,

it would lend substantial support to our scheme.   On the other hand,

a deeper understanding of such phenomena would be quite welcome.

Recalling that the dimensional rule appears to be quite a new con-

cept  in this field  and pa rticularly, its appearance in connection

with duality, such a theoretical investigation may lead us to a
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completely new domain of strong interactions. Clearly our ap-

proach - purely phenomenological in its spirit - is far from be-

ing a consistent theory.  Yet, the present considerations lead

one  to conj ecture  that fine details  of the dynamics of complicated

relativistic systems - as hadrons appear to be - may be relatively

unimportant as far as practically observable properties are con-

cerned.   One may recall in this respect that some non-relativis-

tic many-body systems (e. g. an infinite ferromagnet near the

Curie-temperature) do occasionally exhibit such a surprising in-

sensitivity to the details of the dynamics. While there are certain

formal analogies between a non-relativistic system near the criti-

cal  point   and a conformally invariant relativistic theory,    the  phy -

sical meaning (if there is any) of such analogies is far from being

clear at present. Should it happen that the dynamics of hadrons

somehow "conspires" to disguise the true nature of the "funda-

mental" constituents of hadrons (if there are any), the present

phenomenological approach may be the only effective starting

point towards a dynamical theory of hadrons - perhaps until a

radically different  type of experimental  data  will be available.
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