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CREEP DEFORMATION AND BUCKLING OF A CIRCULAR 
CYLINDRICAL SHELL UNDER AXIAL COMPRESSION

by

Ake Samuelson

SUMMARY
In a recent paper, FFA Report No. 100, a theory of elastic deformation and secondary creep of a cir­

cular cylindrical shell under axisymmetrical loads was derived, and an approximate criterion for 
buckling was proposed. The theory was based on the “1-membrane” analogy, and numerical solutions 
were derived for the special case of a “double-membrane” shell. In the present report, the general 
equations were solved for an arbitrary, odd number of membranes and the results were compared with 
those of the previous report.

It was found that the double-membrane analogy yields an over-estimate of the deflection and stress 
rates, but the effect on the creep buckling time as calculated from the approximate method was small 
in comparison with the scatter normally obtained at creep buckling tests. Therefore, the double-mem­
brane shell was found to provide sufficiently accurate results for practical use. However, if a higher 
degree of accuracy is wanted, the 3-flange model was found to yield a very close approximation to the 
solution provided by a multi-membrane shell.

A few creep buckling experiments were carried out on thin aluminium-alloy cylinders under various 
stress levels. The number of circumferential lobes developed on collapse was found to decrease with a 
decreasing load level, and at a very low axial mean stress an axisymmetrical buckling configuration was 
noted.

The approximate buckling condition proposed in FFA Report No. 100 was applied to the test cylin­
ders and fairly good agreement with the experimental results was found.

Stockholm, November 1966
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KRIECHYERHALTEN UND AUSBEULEN EINES KREISZYLINDERS 
ENTER AXIALER DRUCKBELASTUNG

von

Ake Samuelson

ZUSAMMENFASSUNG

In einem friiheren Bericht, FFA Nr. 100, wurde eine Theorie einerelastischen Verformungundsekun- 
daren Kriechens an einer Kreiszylinderschale bei axisymmetrischen Belastungen aufgestellt und ein 
Naherungsverfahren fur die Yerbeulung angegeben. Die Theorie baute auf der „/-Membran“-Analogie. 
Fur den besonderen Fall der „Doppelmembranschale“ wurden ziffernmassige Losungen gegeben. In 
dem gegenwartigen Bericht werden die allgemeinen Gleichungen fiir eine beliebig gewahlte ungerade 
Anzahl von Membranen gelost und die Ergebnisse mit denen des friiheren Berichts verglichen.

Es ergab sich, dass die Doppelmembran-Analogie eine Uberbewertung der Verformungsanderung und 
der Beanspruchung liefert. Die Wirkung auf die Kriechbeulungszeit, wie in dem Naherungsverfahren 
berechnet, war aber im Verhaltnis zu der normalerweise bei Kriechbeulungsversuchen erhaltenen 
Streuung gering. Die Doppelmembranschale wies daher geniigend genaue Ergebnisse fiir den prakti- 
schen Gebrauch auf. Wenn jedoch ein bedeutend hoherer Grad von Genauigkeit gewiinscht wird, bringt 
das 3-Flanschen-Model eine sehr genaue Annaherung an die Losung, die mit der Multimembranschale 
erhalten wurde.

Einige Kriechbeulungsversuche wurden an Zylindern aus einer Aluminiumlegierung unter verschie- 
denen Beanspruchungen durchgefiihrt. Die Zahl der ringsherum beim Bruch entstandenen Fetzen 
nahm mit abnehmender Belastung ab und bei einer sehr geringen axialen Mittelbeanspruchung ergab 
sich ein axisymmetrisches Ausbeulen.

Das in dem Bericht Nr. 100 vorgeschlagene Naherungsverfahren fiir die Yerbeulung wurde auf die 
Versuchszylinder angewandt, wobei eine ziemlich gute Cbereinstimmung mit den praktischen Ver- 
suchen erhalten wurde.

DfiFORMATION PAR FLUAGE ET FLAMBAGE D’UNE VOILE 
CYLINDRIQUE SOUMISE A UNE COMPRESSION AXIALE

par

Ake Samuelson

RfiSUMfi

Une communication recente, le rapport n° 100 de la FFA, a <5tabli une theorie de la deformation 
dlastique et du fluage secondaire d’une voile cylindrique circulaire soumise h des efforts axio-sym6tri- 
ques, et propose un critfere approximatif du flambage. On a base cette theorie sur 1’analogie avec la 
« membrane l»et on en a tire des solutions numeriques pour le cas special du cylindre h double membrane. 
Dans le rapport actuel, les Equations generales ont et<i resolues pour un nombre impair et arbitrairement 
choisi de membranes et les resultats ont ete compares avec ceux du rapport precedent.

II est apparu que I’analogie avec la double membrane fait surestimer les taux de deformation et 
d’efforts, mais 1’effet qu’elle provoque sur le temps de flambage par fluage, tel qu’il a ete calcule par la 
m^thode approximative, est faible par rapport h la dispersion normalement obtenue lors des experiences 
de flambage par fluage. On a trouv<5 par consequent que la voile & double membrane fournit des resultats 
suffisamment precis pour les usages pratiques. Cependant, quand on veut obtenir un plus grand degre 
d’exactitude, le modeie ii trois ailettes permet d’approcher tres prfes de la solution fournie par la voile ii 
plusieurs membranes.

Quelques experiences pratiques de flambage par fluage ont ete realis6es sur des cylindres minces en 
alliage d’aluminium k differentes intensites d’effort. On a constate que le nombre d’ondes perimetriques 
qui se forment au moment du gauchissement, diminue avec 1’abaissement du niveau des efforts. Pour 
un effort axial moyen trfes bas, la configuration du flambage est axio-symetrique.

Le processus approximatif de flambage propose dans le rapport n° 100 de la FFA a ete applique aux 
cylindres d’essai et une assez bonne concordance avec les resultats experimentaux a pu etre degagee.
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CREEP DEFORMATION AND BUCKLING OF A 
CIRCULAR CYLINDRICAL SHELL UNDER AXIAL COMPRESSION

AND INTERNAL PRESSURE

h

Ake Samuelson

1. INTRODUCTION
In a previous paper, the governing 

equations for the state of deflections and 
stresses of a circular cylindrical shell sub­
jected to secondary creep were derived. The 
external loads considered were uniform 
axial compression and constant internal or 
external pressure. Only axially symmetrical 
deformations were assumed to occur, and 
therefore the resulting equations depended 
on the coordinate x along a shell generator 
only. In order to be able to solve the pro­
blem, the “multi-membrane” analogy was 
proposed. The shell was substituted for an 
equivalent multi-membrane shell, where a 
membrane was supposed to carry normal 
forces in its own plane only, the stresses 
being constant across each membrane. The 
membranes were connected by a core 
capable of carrying shear forces only. The 
equations were solved numerically for a 
few combinations of external loads and 
boundary conditions in the special case of 
a double membrane shell.

A few possible extensions of the calcula­
tions were discussed in the paper. It was 
pointed out that a considerable error might 
have been introduced by the use of the 
double membrane analogy. It was supposed 
that a few calculations using various num­
bers of membranes might yield an estimate 
of the degree of approximations which are 
introduced in the double-membrane case.

In the present paper, the general system 
of equations for such a multi-membrane 
shell is derived, the only limitation being the 
condition that the number of membranes 
must be odd.

An experimental investigation of creep 
buckling of thin circular aluminium cylin­

ders was described in a previous paper. A 
few more tests have been carried out since 
then, and the results are given in the present 
paper.

2. LIST OF SYMBOLS
R Radius of middle surface, mm.
L Length of shell, mm
h Wall thickness, mm
j Membrane number
A, (Ah,) Thickness of membrane No. j.
<5/ Distance between membrane 

No. j and middle surface, mm. 
Positive outwards

b Distance between two adjacent 
membranes

l Total number of membranes
k Middle membrane
u Axial displacement, mm
w Radial displacement, mm
E Modulus of elasticity, kg/mm2
V Poisson’s ratio
k, n Constants of the creep law, 

Eq-(1)
a Stress, positive in tension, 

kg/mm2
e Strain, positive in tension
I Second invariant of the stress 

deviation tensor
sn Stress deviation component
x, y, z Coordinate system. Fig. 2
<P Circumferential direction
t Time
Ax Step length in the x-direction
At Step length in time t
mx,m9 Local bending moments, 

kgmm/mm
Local forces in the plane of the 
middle surface, kg/mm

tz,t9 Local shear forces, kg/mm
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P Applied axial force, kg/mm
p Internal pressure, kg/mm2
m Middle, index
p. Mesh point number, index
(•) Differentiation with respect to t
(') Differentiation with respect to

x

The dimensions of m, kg and hr were 
applied to the specific problems given be­
low, but any other measuring system is 
applicable since the equations derived are 
not in any sense restricted to the given 
dimensions. Thus, when data are entered in 
the computer program, lengths and stresses, 
for example, may be given in in. and psi.

3. THEORY
The theory has been presented in Ref. [2], 

and the deductions will therefore be re­
viewed only briefly. However, a few exten­
sions are introduced, which may be of use 
later on. Thus, the axial load and the exter­
nal pressure are allowed to vary slowly with 
time, and the axial displacement u is 
calculated in addition to the radial displace­
ment w.

3.1. Assumptions
The assumptions are the same as those 

made in Ref. [2]:
(a) The deflections, axial and radial, are 
axisymmetrical up to the time when buck­
ling occurs.
(b) The radial deflections are small in the 
prebuckling stage.
(c) The radial stresses are small.
(d) Deformations are caused by elastic 
strain and secondary creep.
(e) Plane sections remain plane.

middle axis of

SURFACE CYLINDER

MEMBRANE

CORE

Fig. 1. Definition of the multi-membrane model.

(f) The real shell may be replaced by an 
idealized multi-membrane shell according 
to Fig. 1. Each membrane (j) has the thick­
ness Aj and is placed a distance dj from 
the middle surface of the shell. It is sup­
posed to carry forces in its own plane only. 
The number (/) of membranes should be 
odd. The core that separates the membranes 
is infinitely rigid against shear forces but 
carries no load in its own plane.

3.2. Coordinate system
The definition of the coordinate system is 

given in Fig. 2.

Fig. 2. Coordinate system.

3.3. Relation between stress, strain, and 
strain rate

The creep law is given in the unidirec­
tional case by:

a = |+*-crn (1)

In the general case it may be written as: 

1 at
fi, = £<**-+ <*.)) + T(3f)(n~1>/2«, (2)

3.4. Conditions of equilibrium
According to Section 4.3. in Ref. [2], and 

Figs. 3 and 4, equilibrium in the axial and 
radial directions, respectively, yield:

Nx = —P(0 (3)

pR-Ny- PRw’ - f?r; = 0 (4)

Moreover, Fig. 4 gives the condition of 
momentum equilibrium:

M' = TX (5)
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(4) and (5) yield

Nv—pR + PRw" + RM"X =0 (6)

3.5. Deflections
From assumption No. 5 and Fig. 5, the 

relations between the strains and the deflec­
tions are deduced:

, 1,
w = ~ ~ (£xl — eio)

^ £(po)

(7)

(8)

(9)

(10)

Fig. 5. Deformation of a shell element.

3.6. Elastic deflections and stresses
Eqs. (2) to (10) yield the following 

differential equation for the deflection w(x):

P
DlwIV+^+m)w^+PD <n>

The solution is given in the case of a fairly
** -672821 FFA 108

(Nx+ dNx)Rdt

dx dx^
(Tx+dTx)Rdt

AXIS OF 
CYLINDER

L___UNDEFORMED
\\ | MIDDLE SURFACE

'DEFORMED
pRdfdx lUNfdddx MIDDLE SURFACE

N.Rdt

Fig. 4. Forces acting in the radial direction.

long clamped or simply supported cylindri­
cal shell:

(a) Clamped edges: 

w = w' = 0a.tx = 0,L

w = wn 1 — e sin fix + cos /fccj 

_ ettI |7? sin fjL~ g cos fSL q.

+ ^}nJL+lcosJLcosSicU_.L

sm fix

J®*)1

(12)

(b) Simply supported edges: 

w — Mx = 0 at x = 0, Z.

w = wn\l- e~xx C*LV- sin fix + cos
2<x.f}

- exx[(2af> sin fjL - (a2 - ff) cos (jL) sin fix 

+ ((a2 - fi2) sin /5L + 2a/S cos flL) cos fix] 

e“ail
X2«/JJ (13)

Here

iv, R2 ( vP\
\p+r)0 Eh

Eh\ (14)

D = Eh3
12(1-D2)

The moments and normal forces are
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obtained from the results above through the 
relations:

Mx =Dw" (15)

■e

II (16)

N^ — w-vP (17)

These equations describe the elastic state 
of stresses and strains which is obtained on 
load application, and forms the starting 
condition for the creep calculation.

dk-iW” + -g (<7xk i - vdyk-i - axk + va^)

= — Jk-l sxk-l + ^k sxk = H/c-ll 

j? 1 rd'xfe-i (jf/k ~ V^xk)

~ — Jk-1 s<pk-l + Jk stpk = Hk-12

^k+1 ^ ^ j? (.^zk ■ 1 VG<pk+l Gxk ~ VGfpk)

= — ^*+1 szfc+l + Jks(pk = Hk + n

j? (.0<pk+l ' VO'xk+1 O'gk d" V&xk)

3.7. Creep deflections and stresses
In Ref. [2] it was shown that Eqs. (2), (3), 

(6) and (7)-(9) may be combined to yield 
the following system of equations for a 
multi-membrane shell:

(<5, d- g (.&xj r(7,vy (7Zi -l- rd-y,)

= Ji(<Jxi ~ ia<pd ~ dj(axj — \aqj) (18) 

j? (d^ V^xj &<pi d" VGxd

— Ji(,a<pi — i0Xd~Jt(.Gip)—h0Xi) (19)

/ . 1 /1 . 1 ,\ 1
— G<pl~ v j — ILi Ji(Gq>j — \^xj)

(20)

±i*«=-K0 (21)
i-1

Jk+1 sxk+l d" Jk sipk ~ Hk ! 12

diw” + £ (<ixl - varfl - axk + vaqk)

jl sxi d" Jk S,lk — Hn

’ (d^j voxl oqk d" vGxk)

— Jis<pi —Ha
l . 1 . . .

].z (dyl rO”xi + <7q2 • • ■ Gyl ^^xl)

== *?>1 d" d2S^2 + ... JlS(f:l = G

PRiv" -RACSj^d-xi + d2dX2+ ... +diah)

+ A(d,^1 + dvg + ... + dyi) = — PRw’ 

IPOxi + vxz+ ■■■+6xl= ~-r

(23)

A 2 + PRw"-i?A 2 a"xi6,= -PRw" (22)
i=i >=i

Here the following notations have been in­
troduced:

Now assume a given odd value for the 
integer /. The system above then takes the 
following form, where the integer k denotes 
the middle membrane: (/r = (Z + l)/2)

dlw d" g(dzl VGql Gxk ' VGqk)

1
E (d^i -vaxl

— J1SxlJr Jk Sxk Hv

Ggk d“ VGxk)

Jls<pl d" JkS<pk ~ H:

Ji = *(3 Jtr-  ̂= k(al + o* - <rx a,)^

(24)

^xi Gxi “ \ Gq>i> S<pi Oq,i ^ axi (23)

It is preferable to eliminate the stress 
rates a in the equations (23) above. This is 
easily done in the following way: If the 
circumferential stress rates are eliminated 
from Eqs. (23) a,b; c,d; ... and so on in 
pairs, we obtain the following set of equa­
tions:
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(26)

1 -V2
dlW ^ ((Txl — <yxk) = ^11 + v^12

1 -
^2 w" H ^ (d’l2 — o’jj;) = H2i + vH22

l-v2d, iv" H -g (ffj; — d^) = i/jj +

The last one of Eqs. (23) yields with No. 3 
from the bottom:

El . _ Ivf* /-nns6<n + <?/l,2+ ■■■ + d<pi=-&w-EG—j- (27)R

Inserting this expression in the equation 
of equilibrium (No. 2 from the end) we find:

PRw" — J?A(^1 (Txl + ^2 6x2 + • • • + <5i <Txi)

+ ~w-EAG-I^=-PRw" (28) 
R h

Now solve the last one of Eqs. (23) for 
dxfc and insert the result in Eqs. (26):

dtiv"
l-v2+ —g— (2d,! + dx* + • ■ • + d*, + ... + dxi)

lP(l-V2)
‘11 I >'‘•‘12

<5, tv"

E

^21 ^22

8,w"
l-v2,.

^ 2? (o'xi"

= Hll + vHl2-

Eh

2dxa+ ••.. + dxi + . • • + dxi)

IP{1- v2)
Eh

dx2+ ••• + dxi + .. • + 2dji)

lP(l- »'2)
Eh

j=¥k

(29)

Multiply each of the equations by the 
coefficient of w" and add:

{j.d'^iv"+ ^-—(d1aIl + d2ax2+... +<5,dxi)

28^ + vH^ (30)

j=l,2,3...k—l,k + l, ...l

Differentiating (30) twice with respect to 
x, it is possible to eliminate the stress rate 
terms with the aid of Eq. (28), and the final 
equation may be written:

PR(l-v2).„ (1 — v2)Al ■w™ h-----^-=----- w + ^^— wE R

= A(1 - v2)G + i?A 2 Wn + vHh) 1=1

lAvP(l —v2) (l-v2)PRw"
+ ^ £ • *** W

The bending stiffness of the shell may be 
determined from the condition that the 
moment of inertia of the multi-membrane 
shell is to be the same as that of the real 
shell. Considering Fig. 1, it is readily seen 
that:

D = Eh* m 2dl

where

12(1 —v2) l-v2fli 

I-2J+1 b, yielding: (32)

b =
f*4 A3

(/-2y + l)2
(33)

Using (32), Eq. (31) is somewhat simplified:

P-. , Eh . _12(l-v*)Jwlv + g tn + R2D w = Rh* G

12A 1 P vP+ -^2W1 + vH^)--w"+Vm (34)

If it is assumed that the deflection rate has 
been solved from Eq. (34), the axial stress 
rates are given by:

axk~-
E i(Hn + vHJ (35)

where

«W),ti 

Hkl + vHk2 = 0. 

Edji dx* + j _ (.H^ + vHj2 6) w");

j=¥k (36)

Eq. (35) was obtained through adding 
Eqs. (26) together with the terms

±-E
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WAX

UNDEFORMED 
MIDDLE SURFACE

Fig. 6. Axial displacement due to rotation.

and Eq. (36) through substitution of the 
value thus obtained back into Eqs. (26).

The circumferential stress rates av may 
be calculated in the same manner. First, 
eliminate the d^’s from the first 2(/—1) of 
Eqs. (23) and add the equations. The result 
is:

**-/**) + (37)

where the term

l-v2 .
£ 0<Pk

has been added and subtracted. Here again 
v Hia + Hk2 =0.

If now Eq. (27) is introduced into Eq. 
(37), the following expression is found for

_E . EG vP 
a<p*-Rw ~T ~h

~ K\ ^ + (38)
/fl -v

and with Eqs. (23):

OVy = (Tpfc + 1 _^2 (yH)y + Hj2 — dj w") (39)

Finally, the axial deflection is calculated 
from the following equation, where the 
first two terms describe the axial displace­
ment due to elasticity and creep, and the 
third yields the displacement due to the 
rotation of a shell element by iv' according 
to Fig. 6.

1 1 1
h' = £ (<iim - vdyj + 7 ^ ^ sx) - w' (40)

shell during creep. The system is solved 
numerically by the method of finite dif­
ference approximations, as it was used in 
the preceding report. Ref. [2].

It may be suitable to review the procedure 
of calculation: On load application, elastic 
strains and stresses are obtained, which are 
calculated from Eqs. (12), or (13) and (15) 
to (17). The stresses of each individual mem­
brane are given by:

^xj GXm j Uj (41)

Gym bp where (42)

I = h- 
12 (43)

azm = —P/h (44)

a<Pm —Ny/h (45)

The stresses are then introduced into Eq. 
(34) through Eqs. (23)-(25), and Eq. (34) 
is solved for the deflection rate w. After­
wards, the deflection rate ii and the stress 
rates a are solved from Eqs. (35), (36), 
(38) and (39).

This first cycle of calculation thus yields 
the initial state of elastic stress and strain 
and the stress and strain rates due to creep. 
An estimate of the state of stress and strain 
at a subsequent time tx = t0 + At is then 
obtained from the formula:

f(x> h) —f(.x> t0) + Af|(x,f0)+0(AO (46)

The procedure may be repeated for as 
many time steps as are needed, and the 
result is the state of stress and strain at the 
time intervals t = 0, At, 2At, 3At, ...

3.8. Difference equations
Using the five point formula for the sec­

ond and fourth derivatives of w:

Eqs. (34), (35), (36), (37), (39) and (40) 
constitute the final system of differential 
equations describing the behaviour of the

= 72^2 ( " “V-a + 16«Vi “ ZOw,,

+ 16u>„+1 — u(„+2) (47)
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^=^4 (^-2-4^-l

+ 6wl,-4wtl+i + wft+2) (48) 

and the three point formula for H:

E
** tip — Gvkp + j _ ^2 vHn+Hi2u

(55)

(49)

Eq. (34) takes the form:

«i u^-2 + «2 + a3 + a2 + aj ih^+2

= Ax4//^ (50)

with the same notations as in Ref. [2]. 
is here given by:

H.. 12(1-r2) 
Rh* G + 12A

h3Ax2

A vA
-DA55<:il’'“1-2“’' + “’'*l) + iiB l’r‘11

Eq. (50) constitutes a system of linear 
difference equations which are solved nu­
merically by the same method as was used 
in Ref. [2], Having obtained the deflection 
rates w^, the axial deflection rate and the 
stress rates a^ are derived from (40), (35), 
(36), (38) and (39), which read in the 
following way in difference form:

«/.(*, 0 ~

- ^2 On - “>n-l)On “ «Vl) 

E 1
aikn = ” /(I -v2)^

Ax

j+k

— + l —v2 \L^nn +

_E . _EGe vP
a'tkK~ RWH l h

E 1
~~ — jj2)Hup)> y 4= k

(51)

(52)

(53)

(54)

The fortran iv program is given in the 
appendix together with a brief description.

4. THEORETICAL RESULTS
A number of calculations were carried 

out in order to demonstrate theoretically the 
behaviour of a multi-membrane shell under 
various conditions of shell geometry, load­
ing, boundary conditions, and integrational 
variables, such as the number of mem­
branes and the step lengths in the difference 
equations.

4.1. Influence of the number of membranes
Four calculations were carried out for a 

thin cylinder under pure axial compression, 
where the numbers of membranes were 
2, 3, 5 and 11, respectively. The results of 
the first, second, and last calculations are 
given in Figs. 7-9, and the deflections and 
stresses at the time f = 1.6 h are plotted in 
Fig. 10 for comparison. The calculations 
are identical except for the number of 
membranes.

It will be seen that the deflection and 
stress rates are functions of the number of 
membranes, the double membrane yielding 
the highest values. However, the differences 
are not very great, and in the present exam­
ples, a difference of approximately 30% 
is found between the maximum radial de­
flections as obtained with the 2- and 11- 
membrane shells after 1.6 hours. As a higher 
number of membranes is supposed to yield 
a better estimate of the real state of stress 
and strain in a creeping shell, it should be 
justifiable to use the double membrane 
analogy in creep calculations, especially 
as an over-estimate of the stress and strain 
rates will then result.

The solution approaches an asymptotic 
distribution very rapidly when the number 
of membranes is increased. This is evident 
from Figs. 10 and 11. In the latter of these
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Mx
kgmm
mm 0,2

mm 2.0

Fig. V. Deflections and stresses of a double membrane 
shell as functions of the time, h = 0.4, <r = 12.

w, mm

kg mm

mm

Fig. 8. Deflections and stresses of a 3-membrane shell, 
ft = 0.4, cr = 12.

w,mm

mm 0.2

Fig. 9. Deflections and stresses of an 11-membrane shell, 
/i = 0.4, (7 = 12.

w, m m

kg mm

x, mm

Fig. 10. Comparison between the deflections and stresses 
of a 0.4 mm shell at the time f = 1.6, obtained with 

different numbers of membranes.
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U5. T

0 0.4 0.8 1.2 1.6
t, h

Fig. 11. The maximum deflections of Figs. 7-9 plotted 
as functions of the time.

figures, the peak values of the deflections 
are plotted as functions of the number of 
membranes. Practically, the asymptotic val­
ues are reached with only three mem­
branes.

The wave length of the solution does not 
vary much with the number of membranes, 
which is rather natural if it is considered 
that the left hand side of Eq. (50) does not 
depend on l.

Although the solutions are similar, there 
are slight differences in the shape of the

mm 2

40 x mm 48

Fig. 12. Deflections and stresses of a double membrane 
shell as functions of the time, ft = 1.4, 0 = 12.

w,mm

mm 2

t=0, 8,16

Fig. 13. Deflections and stresses of an 11-membrane 
shell, ft = 1.4, or = 12.

curves, especially in a region close to the 
edges. It appears that the bending moments 
of the double membrane solution do not in­
crease as rapidly at the boundary as further 
out along a generator. In the multi-mem­
brane solutions, however, they are higher at 
the boundary during the period covered by 
the calculation. The same result was ob­
tained for a thicker cylinder, as can be seen 
in Figs. 12 and 13.

4,2. Stress distribution
The stress distribution at a few points of 

the shell of Fig. 9 are demonstrated in Fig. 
14. It is interesting to notice that the curves 
are very nearly straight lines except in the 
neighbourhood of the boundary. This might 
not have been expected as the creep law 
used in the calculations is highly non­
linear (n = 5.8).

The linearity is, however, dependent on 
the radius to thickness ratio of the shell, and
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x, mm

Fig. 14. Stress distributions at a few x-stations of the 0.4 mm shell of Fig. 9. Number of membranes f = ll.

for the thicker shell of Fig. 13, the stress 
distributions of Fig. 15 were obtained. It 
may be noticed that these are more curved 
than those depicted in Fig. 14, which in 
part is a consequence of the fact that the 
creep time is greater.

The deviations from linearity in the stress 
distribution are so small that the assumption 
of linearity may be justified when a problem 
of creep is treated by the use of energy or 
energy dissipation methods, at least in the 
regions where the creep deflections are of

the same order of magnitude as the elastic 
deformations.

4.3. Time dependent load
In most of the practical cases of creep in 

a cylindrical shell, load and temperature 
vary with time. Here the variation of the 
load is considered only, but the two varia­
bles have similar influences on the creep 
deflections and stresses.

A frequently occurring loading case is 
stress relaxation due to creep. Then the load

<Sf
j'x

-0—

w, mm

Xj mm

Fig. 15. Stress distributions at a few x-stations of the 1.4 mm shell of Fig. 13. Number of membranes 1 = 11.



FFA REPORT 108 15

u, w, mm

0.2

0.1

0
-0.1

Mx
kg mm 0.2

0.1

0
-0.1

0.2

0.2

Ny>
kg 2
mm

1
0

-1
-2

w, compression ^
u, tens! on

.3
<0

w, tensi on

u.

Jension

.12 
max

fij

\i>v
c \

Tens
1 0

ion
10

C 1 1 2 3 4 5 6

C°
^6
So
on

<>
/Tens
/0
10_

-10
^6
^0

/ s

40 48
x, mm

Fig. 16. Deflections and stresses of a double membrane 
shell subjected to a varying axial force. h = 0A.

decreases with time, as the boundary con­
ditions require that the total elongation of 
the shell is zero. A similar case is presented 
in Fig. 16, where the axial load decreases 
rapidly at the start and approaches an 
asymptotic value within some time. It is 
evident that the result does not differ much 
from that obtained with a constant axial 
load.

5. EXPERIMENTAL RESULTS

An experimental investigation of the creep 
behaviour and buckling of cylindrical shells 
under axial compression was described in 
Ref. [1]. Cylinders with radius to thickness 
ratios varying between 30 and 150 were 
exposed to creep at a few relatively high 
stress levels, and the time until buckling

occurred was observed. Thus the depen­
dence of the creep buckling time on the 
geometry of the shell and the load was 
mapped within a certain domain. It was 
pointed out, however, that an extension of 
the series of tests was under preparation, 
where shells of a given geometry were to be 
exposed to highly different stress levels. 
These tests have now been carried out, and 
the results are presented below.

5.1. Testing equipment

The tests were performed in the same 
loading device and furnace as were used 
in the previous series and are described in 
Ref. [1]; the reader is therefore referred to 
that report for further details.

The test specimens, machined from a 
tube of Swedish made 51S-T aluminium 
alloy, are depicted in Fig. 17. This tube and 
those used in the previous test series were 
not taken from the same batch of material. 
The creep properties are therefore not iden­
tical, and the constants of Eq. (1) are 
different. By the use of Fig. 18, an approxi­
mate creep law may be established as:

a
5800 + 0.835 xl0~8a4-75,

F0= 2800, (7 = 4 (56)

5200 + 0.835 x 10-V-75,

E0 = 3000, <7 = 6 (57)

j

L =

93.8

Fig. 17. Creep buckling test specimen.
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8 kg/mm2---------- t-t-----

Fig. 18. Results of the 8 creep buckling experiments.

4700 + 0.835 x 10-V'75,

£0 = 3500, <7 = 8 (58)

^ = 4^0 + 0-835x 10_V'75’

£„ = 3700, cr=10.3 (59)

5.2. Scope of investigation
A total of 8 creep buckling tests were 

carried out. The temperature was held at a 
constant level of 225°C, and four levels of 
axial stress were applied, namely 4, 6, 8 and 
10.3 kg/mm2, two tests at each stress level. 
The load was also constant through each 
test.

As the primary object of the investigation 
was to determine the creep buckling time, 
only the total end shortening of the test 
specimens was measured, in order to be able 
to map the creep properties of the material.

No automatic registration of the time of 
collapse was employed. In some of the tests 
buckling occurred at night, or during a 
week-end, which means that the values 
obtained for some of the creep buckling 
times may contain an error of about 10%.

5.3. Time of creep buckling
The creep curves for the 8 tests are presen­

ted in Fig. 18. It may be noticed that the 
scatter between the pairs of tests at the same 
load is of a moderate magnitude, as was 
also the case in Ref. [1], The creep buckling 
times are listed in Table 1. It may be noticed 
that log /or seems to be a linear function of 
the stress level <7. The point corresponding 
to the stress <7 = 10.3 lies slightly under the 
line that can be drawn through the rest of 
the experimental points. This is, however, 
explained by the fact that this stress level 
is close to the yield point of the material 
and a lower buckling stiffness should be 
expected.

5.4. Modes of buckling
The cylinders of the configuration under 

consideration were in the previous investiga­
tion found to develop 7 circumferential 
buckles on collapse. The same result was 
obtained in the present tests for the two 
higher load levels, whereas only 6 buckles 
appeared at the load levels of 6 and 4 
kg/mm2. Moreover, one of the cylinders 
loaded at 4 kg/mm2 developed an axi-
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Fig. 19 a.

symmetrical buckle pattern over about 1/3 
of the circumference. This is illustrated in 
Fig. 19, where three of the test specimens 
are depicted.

6. COMPARISON BETWEEN 
THEORY AND EXPERIMENTS

An approximate approach to the estima­
tion of a critical time for a circular cylinder 
subject to creep under an axial load was 
given in Ref. [2]. The considerations were 
based on the assumption that buckling 
occurs when the maximum radial deflection 
reaches some critical value, which may be 
determined from the classical buckling 
theory of elastic shells. The method seemed 
to yield fairly good agreement between 
theoretical and experimental results.

Fig. 19. Post buckling deformations of three cylinders 
subjected to 8, 6 and 4 kg/mm2, respectively. The 
numbers of circumferential lobes are 7, 6 and 6. Note the 
partially axisymmetrical deflection pattern of the last 

test specimen.

Fig. 19 b.

Fig. 19 c.
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Table 1. Experimental mean values of the 
creep buckling time compared with theory, 

h = 0.4, R = 45, X. = 100 mm, T = 225°C.

Creep buckling 
time, hours

Mean stress 
kg/mm2 Experiment Theory

4.0 350 250
6.0 65 25
8.0 8.5 5

10.3 0.5 0.8

Furthermore, the number of circum
ferential buckles obtained on collapse was 
also predicted by means of the classical 
theory, and for the thinner shells, theory and 
experiments showed a fair agreement.

6.1. Estimation of the creep buckling 
time

By use of the creep law given in Section 
5.1 and the geometrical data for the tubes 
used in the tests, the creep deflections were 
calculated for each stress level. After that the 
critical deflection for the cylinder under the 
load in question was calculated according 
to Ref. [2] and was compared to the pre­
viously calculated creep curve. The inter­
section between the two curves defined the 
critical time.

The theoretical and experimental values 
are listed in Table 1.

It is evident that the theory yields a some­
what conservative estimate of the critical 
time, and the differences between calculated 
and measured values are of the same order 
as those reported in Ref. [2].

6.2. Estimation of the number of 
buckles

The method for the prediction of the 
buckling behaviour of the shell as given in 
Ref. [2] yields the number of circumferen­
tial lobes presented in Table 2. The results 
of Ref. [2] are included for comparison. 
Apparently, the method does not describe 
the dependence of the buckling configura­
tion on the applied axial load very well.

The theory predicts an increase in the num­
ber of buckles as the load level decreases, 
a condition that is contradicted by the 
experimental evidence.

7. DISCUSSION
The improvements achieved by the use of 

a multi-membrane shell in comparison with 
the results provided by the double-mem­
brane approximation are of a fairly modest 
order, and it may be stated that the double 
membrane analogy is to be preferred be­
cause it minimizes computational time and 
over-estimates the stress and strain veloci­
ties. If a higher degree of accuracy is want­
ed, a “3-membrane” shell should suffice as 
it proved to yield a result that is very close to 
that obtained with an “11-membrane” 
shell.

It was shown that the wave length of the 
stress and deflection curves does not vary 
significantly with the number of mem­
branes. The discrepancy noted in Ref. [2] 
between the measured wave length and that 
predicted by the theory thus still prevails, 
and should be attributed to the creep law 
chosen here. A better estimate should be 
obtained if the primary creep term is added 
to Eq. (1).

In Ref. [4], Rabotnov describes a method 
of solution for the problem of a double­
layered cylindrical shell under axisym­
metrical loading conditions and subjected

Table 2. Number of circumferential buckles 
of a 0.4 mm cylinder as a function of the 

load level.

Mean stress 
kg/mm2

Number of buckles

Experiments Theory

4.0 6° 9
6.0 6 9
8.0 7 9

10.0 7 8
10.3 7 8
11.0 7 8
12.0 7 6

° One of the cylinders developed an axi-symmetric 
mode of buckling over part of the circumference.
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to stationary creep. The solution is attained 
through the use of a potential function and 
a variational method is applied in order to 
establish an approximate solution. This 
solution is assumed to be of the same type as 
that given by the equations of an elastic shell. 
No examples were given in the paper and 
thus it is somewhat laborious to work out a 
specific solution in order to carry out a com­
parison with the present method.

Byrne and Mackenzie, Ref. [5], carried 
out an investigation on essentially the same 
subject as Rabotnov, but they did not im­
pose the restriction of a double membrane 
shell and set up the governing equations in 
a direct way. However, the dependence of 
the rates of strain and curvature was based 
upon the relations proposed in Refs. [9] and 
[10], which in fact lead to approximations 
analogous to those provided by the double 
layer model. The equations were solved by 
means of finite difference methods, the 
results showing good agreement with those 
of Refs. [2] and [7].

A recent report on the present subject by 
Diamant, Ref. [6], utilized a different creep 
law based on the time or strain hardening 
concept in order to account for primary 
creep. The results obtained are in many 
respects the same as those obtained here 
as far as the distributions of deflections 
and stresses are concerned. As the deduc­
tions are based on a different creep law, 
the results are not directly comparable, 
however, and may in a way be regarded 
as two solutions valid for different intervals 
of the creep life of a cylinder, the material 
of which features both primary and sec­
ondary creep.

Ref. [8] describes an experimental in­
vestigation of creep buckling of circular 
cylindrical shells under axial compression, 
where radius to thickness ratios of sub­
stantially higher values than those of Ref. 
[1] were used. The buckling configuration 
obtained differed from that of Ref. [1] and 
the present report as the buckles developed 
far away from the edges. This fact indicates 
that the theory of the present report (and 
Ref. [2]), which is based on the growth of

the stress concentrations at the edges, is not 
applicable in that case. Evaluation of the 
creep lifetime of cylindrical shells of very 
high radius to thickness ratios must be 
based on a theory that takes into account 
the initial imperfections of the shell, which 
will increase with time due to creep and 
induce buckling. As the load level must be 
very low (low buckling strength), the pertur­
bations caused by the boundaries may be 
considered negligible for such thin shells.

8. CONCLUSIONS
The multi-membrane analogy was app­

lied to the problem of a circular cylindrical 
shell under secondary creep, subjected to 
a uniform axial compressive force, and the 
system of equations was solved numerically 
using 2, 3, 5 and 11 membranes.

It appeared that, all other parameters 
being held constant, the deflection rate be­
came greater with a decreasing number of 
membranes. The difference in the maximum 
deflection was of the order of 30% between 
the 2 and 3-membrane solutions in a speci­
fic example, and a further increase of the 
number of membranes seemed to yield only 
a few per cent extra accuracy. In any case, 
3 membranes gave a fully tolerable error 
level.

The use of the double-membrane analogy 
for the computations should be preferred 
as it gave an overestimate of the deflection 
and stress rates. It thus counteracts the effect 
of choosing a large steplength in time, and 
minimizes the computer time.

The stress distribution through the wall 
thickness was studied in the special case of 
two 11-membrane shells. It was found that 
the stress curves of the thinner shell at a 
number of x-stations were all practically 
linear during a large part of the creep life of 
the cylinder, the only exception being the 
highly stressed area in the neighbourhood of 
the clamped edge. An essential component 
of non-linearity was found to develop only 
after the critical time that was predicted 
from the approximate buckling condition.
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However, the thicker shell showed highly 
non-linear stress distributions.

These observations seem to justify the 
assumption of a linear stress distribution 
which is frequently done in the creep analy­
sis of plates and shells by the use of energy 
and energy dissipation methods, at least in 
the cases where the creep and elastic 
deflections are of the same order of magni­
tude. An example of this kind of investiga­
tion was provided in Ref. [3].

An experimental investigation of the 
creep buckling behaviour of 8 geometrically 
identical cylinders subjected to highly dif­
ferent load levels showed that the logarithm 
of the creep buckling time is a nearly linear 
function of the applied axial compressive 
stress level. This fact might have been antici­
pated, as the creep rate is a power function 
of the stress, and a reasonably small varia­
tion of the initial deformation level (elastic 
deformations on load application) has a 
modest influence on the critical time, as was 
shown for instance in Ref. [3], where the 
critical time was found to depend logarith­
mically on the initial deflection.

Application of the approximate buckling 
criterion given in Ref. [2] gave a fair, slightly 
conservative estimate of the critical time.

It was shown experimentally that the 
number of circumferential lobes obtained 
on buckling is also a function of the load 
level, the higher the load, the higher was the 
number of buckles. If the classical buckling 
theory was applied according to Ref. [2], an 
increase of the number of lobes was pre­
dicted for a decreasing load level. Thus the 
approximate estimate of the post buckling 
behaviour is rather rough.

APPENDIX: BRIEF 
DESCRIPTION OF THE 
COMPUTER PROGRAM

The computer program is essentially the 
same as that described in Ref. [2] from 
which the two routines main and coef were 
retained in their original form as they per­
form exactly the same calculations. The

subroutines zerdef and rhandm were re­
written so as to meet the requirements for 
the multi-membrane shell equations. The 
buck routine was designed to perform an 
upper limit check of the maximum deflec­
tion.

The feature of a time variable axial force 
is not included in the version of the program 
presented here.

The general block diagram of the flow of 
calculations is given in Fig. Al, and the 
fortran iv program lists follow in Figs. 
A2 to A6. As the main and coef routines 
were described in Ref. [2], they are only 
listed below and the reader is referred to 
that report for details. The new routines are, 
however, described as follows:

Subroutine ZERDEF
Provision has been made to take up to 11 

membranes, the total number used in a 
separate calculation being denoted by L. 
The elastic deflections, forces and bending 
moments are first calculated from Eqs. (12) 
(or (13)) and (15) to (17). After that, the 
stresses of each individual membrane are 
determined from Eqs. (41) to (45). Control 
is then transferred to the subroutine rhandm 
for the calculation of the right hand mem­
bers according to Eq. (51).

In the fortran list, Fig. A 4, the follow­
ing symbols are used:

Variable: Meaning:

L Total number of membranes, l.
B Distance between two consecutive

membranes, Eq. (33)
DEL(J) Distance between the middle surface 

and membrane No. j.

The variables defined in statements 8 to 
45 are used in Eqs. (12) or (13), and 
(14) to (17), the designations being fairly 
obvious.

In the output, both the total forces and 
moments and the stresses of each mem­
brane are given at prescribed (in input) 
mesh points.
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MAIN PROGRAM SUBROUTINES

Input. Def. of 
constants and 
steering variables COEFF

Elimination sweep on 
the left hand side 
of Eqs. (50) ZERDEF

RHANDM

I Cent. of the elimination
I sweep on the right-hand | 

_____ I

hVio Ij Determination of the 
j deflection rates w^ 
j through succ. insertions

Set T - T + BELT 
(tj=t1+ilt) and increase 

"NCYCL" by 1

Is "NCYCL">"NSTOP" O

Is "ILAST" > 0

Check if the maximum 
deflection has been 
exceeded

Calc, of the elastic 
state from Eqs. (12)
(or (13)),(14)-(17) 
and (4l)-(45)

Calculation of the 
coefficients ot^. 
of Eq. (50)

rates from Eqs.(52)-(55)
Calc, of the stress

hand members of Eq
Det. of the right-

dt from Eq. (46) j

Fig. Al. Block diagram for the numerical treatment of the finite difference equations.
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MAIN VERSION FOUR
CREEP DEFORMATION AND BUCKLING OF CYLINDRICAL SHELL

1 DOUBLE PRECISION A
2 DIMENSION A(499,5),H(499),V(499)
3 COMMON A,H,V
4 READ (5,5) NDIMjNSTOP,DELX,DELT,DTWR,ILAST,NBC
5 FORMAT(2I3,3F5.2,2I2)
6 EL=DELX*FLOAT(NDIM+l)
7 WRITE (6,8) ELjDELX,DELT
8 FORMAT!1H1,17HDATA MAIN PROGRAM/1H0,2HL=F6.2,2X5HDELX=F4.2,2X5HDEL

IF(NBC ) 500,500,502
500 WRITE (6,501)
501 FORMAT(1H0,13HCLAMPED EDGES)

GO TO 9
502 WRITE (6,503)
503 FORMAT(1H0,22HSIMPLY SUPPORTED EDGES)

9 NCYCL=1
10 T=0.
11 TWRIT=0.
12 CALL COEFF(NDIM,NBC,DELX)
13 NY=NDIM-2
14 DO 321 L=1,NY

114 IF(L-NY)15,115,115
115 IF(NBC)15,15,121

15 A(L+1,3)=A(L,4)/A(L,3)-A{L+l,3)/A{L+1,2)
16 A(L+1,4)=A(L,5)/A(L,3)-A(L+l,4)/A(L+1,2)
17 A(L+1,5)=-A(L+1,5)/A(L+1,2)
18 A(L+2,2)=A(L,4)/A(L,3)-A(L+2,2)/A(L+2,l)
19 A(L+2,3)=A(L,5)/A(L,3)-A(L+2,3)/A(L+2,l)
20 A(L+2,4)=-A(L+2,4)/A(L+2,l)
21 A(L+2,5)=-A(L+2,5)/A(L+2,l)

120 GO TO 321
121 A(L+1,3)=A(L,4)/A(L,3)-A(L+1,3)/A(L+1,2)
221 A(L+1,4)=A(L,5)/A(L,3)-A(L+1,4)/A(L+1,2)
321 CONTINUE

22 A(NDIM,3)=A(NDIM-1,4)/A(NDIM-1,3)-A(NDIM,3)/A(NDIM,2)
125 CALL ZERDEF(NDIM,NBC,T,DELX)
126 CALL RHANDM(NDIM,NCYCL,NBC,T,TWRIT,DELX,DELT)
226 IF(NCYCL-1000) 27,42,27
27 DO 329 L=1,NY

127 IF(L-NY) 28,128,128
128 IF(NBC) 28,28,229

28 H(L+1)=SNGL(H(L)/A(L,3)-H(L+1)/A(L+1,2))
29 H(L+2) = SNGL(H(L)/A(L,3)-H(L+2)/A( L+2,D)

129 GO TO 329
229 H(L+1)=SNGL(H(L)/A(L,3)-H(L+l)/A(L+l,2))
329 CONTINUE
30 H(NDIM) = SNGL(H(NDIM—1 )/A(NDIM-l,3)'-H(NDIM)/A(NDIM»2))
31 V(NDIM)=SNGL(H(NDIM)/A(NDIM,3))
32 V(NDIM-1)=SNGL( (H(NDIM-1)-A(NDIM-1,4)>!=V(NDIM) )/A(NDIM-l,3) )
33 DO 435 L=1,NY
34 J=NY+1-L

134 IF((NDIM+l)/2-J) 35,35,135
35 V<J)=SNGL((H(J)-V(J+1)*A(J,4)-V(J+2)*A(J,5))/A(J,3))

235 GO TO 435
135 V(J)=V(L+2)
435 CONTINUE

36 T =T+DELT
37 IF(T—TWRIT) 40,40,38
38 TWRIT=TWRIT+DTWR
39 CALL BUCK(NCYCL,DELX)
40 NCYCL=NCYCL+1
41 IF(NCYCL-NSTOP) 126,126,42
42 IF(ILAST) 43,4,43
43 STOP 
46 END

Fig. A2. MAIN program. For description, see Ret. [2],

Subroutine RHANDM
The first time the rhandm routine is 

called, (ncycl = 1), the constants needed 
are read in and the program constants are 
calculated. After that the right-hand mem­
bers of Eq. (50) are evaluated. On any sub­
sequent call, the approximate state of de­
flections and stresses at the time ti+1 = fj + 
At is first determined from Eq. (46) be­
fore the new right-hand members are calcu­
lated. The new fortran symbols introduced 
in this routine, depicted in Fig. A 5, are:

Variable:
SX(I, J)

SFI(I, J) 
DEL(I)
PAR(I)
HLI(I), HL2(I)
SXDOT(I),
SFIDOT(I)

Meaning:
ax of membrane No. i at mesh 
point No. j.
ra

Ji according to Eq.(24).
Hjj and Hj2 of Eq.(23). 
dx and a(f, respectively, of 
membrane No. i.

H1(I, J), H2(I, J) Ha +vHii and vHa +Hi2 of 
Eqs. (35) and (37).

G(J) G of Eq.(23) at mesh point
No. j.

L
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SUBPROGRAM COEFF VERSION FOUR 
SUBROUTINE COEFF(NDIM.NBC,DELX)

1 DOUBLE PRECISION A,ALFA1,ALFA2,ALFA3
2 DIMENSION A(499,5)
3 COMMON A
4 READ (5,5) POI,P,E,HH,R
5 F0RMAT(2F5.2,F5.0,2F5.2)
6 WRITE (6,7) POI,P,E,HH,R
7 FORMAT(1H0,25HDATA SUBPR COEFF NO FOUR /1H0,4HP0I=F5.2,2X2HP=F5.2, 

12X2HE=F5.0,2X3HHH=F5.2,2X2HR=F5.2)
8 DD=E*HH**3/(12.*(l.-POI*POI))

10 BB=E*HH/(R*R*DD)
9 AA=P/DD

11 ALFA1=1.D0-DBLE(AA*DELX**2/12.)
12 ALFA2=-4.D0 + DBLE(4.=i>AA*DELX**2/3. )
13 ALFA3=6.D0-DBLE ( 2.5=f=AA*DELX=i'=!=2)+DBLE( BB^DELX^^A )

113 IF(NBC) 14,14,120
14 A(1,3)=18.D0
15 A(1,4)=-9.D0
16 A(1,5)=2.D0
17 A(NDIM,1)=A(1,5)
18 A(NDIM,2)=A(1,4)
19 A(NDIM,3)=A(1,3)

119 GO TO 20
120 A(1,3)=-2.D0
121 A(1,4)=l.DO
122 A(1,5)=0.00
123 A(NDIM,1)=A(1,5)
124 A(NDIM,2)=A(1,4)
125 A(NDIM,3)=A(1,3)

20 N1=NDIM-1
21 DO 26 1=2,N1
22 A(1,1)=ALFAl
23 A(I,2)=ALFA2
24 A(I,3)=ALFA3
25 A(I,4)=ALFA2
26 A(1,5)=ALFAl
27 RETURN
28 END

Fig. A3. Subroutine COEFF, previously described in Ref. [2].

Nl, N2, NDEL First and last mesh points

N3, N4, N5

The meaning if these variables is given by

ram list.

Input of data

listed below:

Program:

MAIN

COEFF
ZERDEF

RHANDM

OUTPUT

along the shell for which w. the list below:
Mx, My, and Ny are wanted 
as print out. NDEL defines NDIM Total number of mesh points,
the step length. (NDIM +l)x Ax =L.
The same meaning as above NSTOP Total number of calculation
but defining output mesh for cycles to be carried out.
the stresses. DELX Ax

DELT Af
details are given in the prog- DTWR Time step between output

ILAST
cycles.
ILAST >0 is to be punched

NBC
into the last card deck
NBC < 0 => Clamped edges,

E, POI
NBC >0 Simple support. 
E,v.

ds are to be loaded in the
EN, CR n, k of Eq.(l).
P P, axial force per unit of the

, and contain the variables circumference.
PN p, internal pressure, force per

Input variables: R
unit area.
R

HH h
NDIM, NSTOP, DELX, L Number of flanges, l. Must be
DELT, DTWR, ILAST, NBC an odd integer.
POI, P, E, HH, R Nl, N2, NDEL, See the variable list of the
POI, P, R, HH, E, PN, Nl, N3, N4, N5 RHANDM routine.
N2, NDEL, L, N3, N4, N5 NCH Number of mesh points to be
POI, P, R, HH, E, CR, EN, checked for the condition
PN, Nl, N2, NDEL, N3, N4, w >mmax, starting with /= 1.
N5 WMAX Max. permissible radial de­
NCH, WMAX flection.
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C CALCULATION OF THE ELASTIC DEFLECTIONS AND STRESSES OF AN 
C N-MEMBRANE SHELL IMMEDIATELY AFTER LOAD APPLICATION

SUBROUTINE ZERDEF{NDIM,NBC,T,DELX)
1 DOUBLE PRECISION A
2^DIMENSION A(499,5),H{499),V(499),W(250),SX(11,251),SFI<11,251),DEL
3 COMMON A.H,V,W,SX»SFI,DEL»L,B
4 READ(5,5) POI,P,R,HH,E,PN.Nl,N2,NDEL,L,N3,N4,N5
5 FORMAT(4F5.2»F5.0,F5.3,313,12,313)
6 WRITE(6,7) POI,P,R,HH,E,PN,L
7 FORMAT(1H0,25HDATA SUBPR ZERDEF NO FIVE/1H0,4HP0I=F5.2,2X2HP=F5.2, 

12X2HR=F5.2,2X3HHH=F5.2,2X2HE=F5»0,2X3HPN=F5.3/1H0,20HNUMBER OF MEM 
2BRANES=,I2)

8 WO=R*R=!'(PN + POI*P/R)/(E*HH)
9 D=E*HH**3/(12.*<l.-POI*POI))

10 ALFA=SQRT(.5*(-P/(2.*D)+SQRT(E*HH/(R*R*D))))
11 BETA=SQRT(.5*(P/{2.*D)+SQRT{E*HH/{R*R*D))))
12 EL=DELX*FL0AT(NDIM+1)
13 DELTA=ALFA**2-BETA**2
14 GAMMA=2.*ALFA*BETA '

214 SIGM=P/HH
16 C3=P*R/D
17 MY=(NDIM+1)/2
18 SUM=0,
19 DO 20 J = l, L
20 SUM=SUM+FL0AT((L-2*J+1)*(L-2*J+l))
21 B = SQRT ( (HH** 2) AFLOAT (D/O.^SUM))
22 DO 23 J=1,L
23 OEL(J)=.5*B*FLOAT(L-2*J+l)
24 TR0EG=HH*=i=3/12.
25 S1=SIN(BETA*EL)
26 S2=C0S(BETA*EL)
27 S3=EXP(-ALFA*EL)
28 IF(NBC) 29,29,34
29 AX=-ALFA*WO/BETA
30 BX=—WO
31 CX=-W0*(BETA*S1-ALFA*S2)*S3/BETA
32 0X=-W0*( ALFA*Sl+BETA=fS2)5i!S3/BETA
33 GO TO 38
34 AX=-DELTA*WO/GAMMA
35 BX=-WO
36 CX=-W0*S3*(GAMMA^S1-DELTA*S2)/GAMMA
37 DX=-W0*S3=M DELTA=S=S1+GAMMA*S2) /GAMMA
38 AY = {DELTAS AX+GAMMA'i'BX >*0
39 BY=<DELTA*BX-GAMMA*AX)*D
40 CY=(DELTA=l=CX-GAMMA*DX)*D
41 DY=(DELTA^DX+GAMMA^CX)*D
42 AZ=C3*AY+R*(DELTA*AY+GAMMA*BY)
43 BZ=C3*BY+R*(DELTA*BY-GAMMA*AY)
44 CZ=C3*CY+R#(DELTA*CY-GAMMA*DY)
45 DZ=C3=i'DY+R*( DELTA^DY+GAMMA^CY)
46 WRITE(6,47) T
471F0RMAT<1H1,20X2HT=F6.2/1H0,3X1HX,12X1HW,13X3HEMX,12X4HEMFI,10X4HEN
48 NWRIT=N1
49 DO 67 1=1,MY
50 X=DELX*FLOAT<I)
51 FA=SIN{BETA^X)
52 FB=COS(BETA*X)
53 FC=EXP(ALFA*X)
54 W(I)=WO+(AX*FA+BX*FB)/FC+(CX*FA+DX*FB)*FC
55 EMX=(AY=i=FA+BY*FB)/FC+{CY=4=FA+DY=i=FB>4FC
56 EMFI=POI*EMX
57 ENFI=PN*R-(AZ*FA+BZ*FB)/FC-(CZ=KFA+DZ*FB)*FC
58 DO 61 J=l,L
59 SX(J,I)=-SIGM-EMX*DEL(J)/TROEG
60 SFIO=ENFI/HH
61 SFI(J,I)=SFIO-EMFI*DEL(J)/TROEG
62 IF(I-NWRIT)67,63,67
63 IF(NWRIT-N2)64,64,67
64 NWRIT=NWRIT+NDEL
65 WRITE(6,66) X,W(I),EMX,EMFI,ENFI
66 FORMAT(1H0,F7.2,4E15.5)
67 CONTINUE
68 WRITE (6,69) L.L
69 FORMAT(1H0,///1H0,3X1HX,12X9HSX(1)-SX{,12,1H)/1H0,24X11HSFI(1)-SFI 

1(,12,1H ) )
70 DO 74 I=N3,N4,N5
71 X=DELX«FLOAT(I)
72 WRITE(6,73) X,(SX(J,I),J=1,L)
73 FORMATt1H0,F7.2,5E15.5/1H ,7X,5E15.5/1H ,7X,5E15.5)
74 WRITE (6,75) (SFI<J,I),J=1,L)
75 FORMATl1H0,12X,5E15.5/1H ,12X,5E15.5/1H ,12X,5E15.5)
76 RETURN
77 END

Eqs. (14)

Det. of b from Eq. 
(33)

Eq. (32)
Eq. (43)

Det. of the elastic 
state from Eq. (12), 
or (13) and (15) to 
(17). Calc, of the 
coeff.

Final evaluation of 
the deflections and 
stresses

Calc, of the stresses 
of each membr. from 
Eqs. (41) to (45)

Output operations

Fig. A4. Subroutine ZERDEF used to calculate the elastic deflections and stresses of an n-membrane shell.
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C CALCULATION OF THE RIGHT HAND MEMBERS OF EQ.(64) IN THE
C CASE OF AN N-MEMBRANE SHELL

SUBROUTINE RHANDM(NDIM,NCYCL,NBC,T,TWRIT,0ELX,DELT)
DOUBLE PRECISION A
DIMENSION A(499,5),H(499),_V (499),W(250) ,SX (11,251),SFI(11,251),DEL 

1(11),PAR(11),HL1(11),HL2(11),SXD0T(11),SFID0T(11),H1(11,251),H2(11 
2,251),G(251)

COMMON A,H,V,W,SX»SFI,DEL,L»B 
IF(NCYCL—1)1,1,10

1 READ (5,2) POI,P,R,HH,E,CR,EN,PN,N1,N2,NDEL,N3,N4,N5
2 F0RMAT(4F5.2,F5,0,E10.3,F5.2,F5.3,6I3)

WRITE (6,3) POI,P,R,HH,E,CR,EN,PN
3 FORMAT(1H1,25HDATA SUBPR RHANDM NO FIVE/1H0,4HP0I=F5.2,2X2HP=F5.2, 

12X2HR=F5.2,2X3HHH=F5.2,2HE=F5.0/1H0,3HCR=E10.3,2X3HEN=F5.2,2X3HPN= 
2F5.3)
02=12.*(1,-P0I**2I^DELX^^A/(R^HH^HH*FLOAT(L))
C3=HH/FL0AT(L)
C4=12.*DE LX**2/(HH*HH*FLOAT(L))
C10=E/((l.-P0I**2)*FL0AT(L))
Cll=E/(l.-P0I**2)
C12=E/R
SIGM=-P/HH
EM=(EN-l.)/2.
MY=(NDIM+l)/2 
MY1=MY+1 
NY=NDIM-1 
K=(L+l)/2 
C5=E/FL0AT(L)
C6=1./(DELX**2)
GO TO 50

10 DO 17 1=1,MY 1
SXDOT(K)=0.
SF IDOT(K)=0.
DO 11 J=l,L
SXDOT(K)=SXD0T(K)+H1(J,I)

11 SFID0T(K) = SFID0T(K)+H2U,I)
SXDOT(K)=-C10*SXD0T(K)
SFID0T(K) = C12*V(I)-C5*G(I)-C10*SFIDOT (K)
IF(I-l) 12,12,13

12 WBISS=C6*(-2.*V(I)+V(I+1))
GO TO 14

13 WBISS=C6*(V(I-1)-2.*V(I)+V(I+1))
14 DO 15 J=1,L

SXDOT(J)=SXD0T(K)+C11*(H1(J,I)-DEL(J)*WBISS)
15 SFIDOTl J) = SFID0T(K)+C11*(H2U,I )-DEL( J)*WBISS)

DO 16 J=l,L
SX(J,I) = SX(J,I)+DELT*SXDOT( J)

16 SFI(J,I)=SFI(J,I)+DELT*SFIDOT(J)
17 W(I)=W(I)+DELT*V(I)

IF(T-TWRIT+DELT/2.) 50,18,18
18 WRITE (6,19) T
19 FORMATt1H1,20X2HT=F6.2/1H0,3X1HX,12X1HW,13X3HEMX,12X4HEMFI,10X4HEN 

IF I )
DO 220 I=N1,N2,NDEL 
X=DELX*FLOAT(I)
EMX=0.
EMF1=0.
ENF1=0.
DO 20 J= 1, L
EMX=EMX-C3*DEL(J)*SX(J,I)
EMFI=EMFI-C3*DEL(J)*SFI(J,I)

20 ENFI=ENFI+SFI(J,I)*C3
220 WRITE (6,21) X,W(I),EMX,EMFI,ENFI
21 FORMATt1H0,F7.2j4E15.5)
22 FORMAT(lHof///iHO,3XlHX,12X9HSXIl)-SX(,I2,1H)/1H0,24X11HSFI (D-SFI 

1 (, 12,1H) )
DO 24 I=N3,N4,N5 
X=DELX*F LOAT(I)
WRITE (6,23) X,(SX(J,I),J=1,L)

23 F0RMAT(1H0,F7.2,5E15.5/1H ,7X,5E15.5/1H ,7X,5E15.5)
24 WRITE (6,25) (SFI(J,I ) ,J=l,L)

„ 25 FORMATt1H0,12X,5E15.5/1H ,12X,5E15.5/1H ,12X,5E15.5)
50 DO 51 J=1,L 

SX(J»MY+1)=SX(J,MY-1)
51 SFI(J,MY+1)=SFI(J,MY-1)

DO 58 1=1,MY1
PARU)=CR*I(SX(J,I)*SX(J,I)+SFI(J,I)*SFI(J,I)-SX(J,I )*SFI(J,I ))**EM 
IF(PAR(J)—l.E+10) 53,52,52

52 NCYCL=1000 
GO TO 67

53 CONTINUE
DO 56 0=1,L 
IF(J-K) 55,54,55

Def. of constants 
used in Eq. (31) 
and the following

Evaluation of the 
stress rates from 
Eqs. (35), (36), (38) 
and (39)

Det. of the state 
at f^+i, Eq. (46)

Local forces and 
moments recalc, 
from Eqs. (41)-(45)

Output

Eq. (24)
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54 HL1(K)=0.
HL2(K)=0.
GO TO 56

55 HL1(J)=-PAR( J)*ISXU,I )-.5^SFH J, I))+PAR{K)*(SX(K,I )-.5*SFHK,I )) 
HL2( J)=-PAR< J)*(SFI (JfI )-.5*SX( J, I) )+PAR1K-) *MSFT (K11) -.5 *SX (K» I ) )

56 CONTINUE 
G(I)=0.
00 57 J=1» L
G(I)=G(I)+PAR(J)*(SFI(JtI)-.5*SX(J,HI 
Hl(JfI)=HLl(J)+P0I*HL2(J)

57 H2tJ»I)=P0I*HH(J)+HL2(J)
58 CONTINUE

IF(NBC) 59,59,60
59 H(1)=0•

GO TO 62
60 H(1)=0»

DO 61 J=1,L
61 H{1)=H(1)+C4*DEL{J)*HI(J,1)
62 DO 66 I=2,NDIM

IF(I—MY) 63,63,65
63 H (I )=C2!*:G (I)

DO 64 J=l,L
64 HU)=H(I)+C4*DEL(J,I-1)-2.*HI(J,I)+Hl(J,1+1))

GO TO 66
65 J1=NDIM+l-I 

H( I )=H(JI)
66 CONTINUE
67 RETURN 

END

H of Eqs. (23)

Calc, of the creep 
terms of Eq. (34)

Def. of the right 
hand members corr. 
to the boundary 
conditions

Evaluation of the 
right hand members 
of Eq. (34).

Fig. A5. Subroutine RHANDM for the calculation of the right hand members of Eq. (34).

C PROGRAM FOR DETERMINATION OF THE CRITICAL TIME
SUBROUTINE BUCK(NCYCL,DELX)
DOUBLE PRECISION A
DIMENSION A(499,5),H(499),V(499),W(250>
COMMON A,H,V,W 
1F(NCYCL—1) 1,1,3

1 READ(5,2) NCHjWMAX
2 FORMAT(15 »F10.5)
3 DO 4 1=1,NCH 

IF(W(I)-WMAX) 4,4,6
4 CONTINUE 

GO TO 10
6 NCYCL=1000 

WRITE(6,7)
7 FORMAT(1H1,23H MAX. DEFLECTION REACHED)

10 RETURN
END

Fig. A 6. Subroutine BUCK. The total deflections wt are compared with a prescribed upper limit value. If this is
exceeded, the calculations are interrupted.
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