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by

Ake Samuelson

SUMMARY

In a recent paper, FFA Report No. 100, a theory of elastic deformation and secondary creep of a cir-
cular cylindrical shell under axisymmetrical loads was derived, and an approximate criterion for
buckling was proposed. The theory was based on the ‘“l-membrane’ analogy, and numerical solutions
were derived for the special case of a ‘“double-membrane’ shell. In the present report, the general
equations were solved for an arbitrary, odd number of membranes and the results were compared with
those of the previous report.

It was found that the double-membrane analogy yields an over-estimate of the deflection and stress
rates, but the effect on the creep buckling time as calculated from the approximate method was small
in comparison with the scatter normally obtained at creep buckling tests. Therefore, the double-mem-
brane shell was found to provide sufficiently accurate results for practical use. However, if a higher
degree of accuracy is wanted, the 3-flange model was found to yield a very close approximation to the
solution provided by a multi-membrane shell.

A few creep buckling experiments were carried out on thin aluminium-alloy cylinders under various
stress levels. The number of circumferential lobes developed on collapse was found to decrease with a
decreasing load level, and at a very low axial mean stress an axisymmetrical buckling configuration was
noted.

The approximate buckling condition proposed in FFA Report No. 100 was applied to the test cylin-
ders and fairly good agreement with the experimental results was found.
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KRIECHVERHALTEN UND AUSBEULEN EINES KREISZYLINDERS
UNTER AXIALER DRUCKBELASTUNG

von
Ake Samuelson

ZUSAMMENFASSUNG

In einem fritheren Bericht, FFA Nr. 100, wurde eine Theorie einer elastischen Verformung und sekun-
diren Kriechens an einer Kreiszylinderschale bei axisymmetrischen Belastungen aufgestellt und ein
Néaherungsverfahren fiir die Verbeulung angegeben. Die Theorie baute auf der ,,-Membran‘‘-Analogie.
Fiir den besonderen Fall der ,,Doppelmembranschale’ wurden ziffernmissige Losungen gegeben. In
dem gegenwirtigen Bericht werden die allgemeinen Gleichungen fiir eine beliebig gewihlte ungerade
Anzahl von Membranen gelést und die Ergebnisse mit denen des fritheren Berichts verglichen.

Es ergab sich, dass die Doppelmembran-Analogie eine Uberbewertung der Verformungsinderung und
der Beanspruchung liefert. Die Wirkung auf die Kriechbeulungszeit, wie in dem Niherungsverfahren
berechnet, war aber im Verhiltnis zu der normalerweise bei Kriechbeulungsversuchen erhaltenen
Streuung gering. Die Doppelmembranschale wies daher geniigend genaue Ergebnisse fiir den prakti-
schen Gebrauch auf. Wenn jedoch ein bedeutend hoherer Grad von Genauigkeit gewiinscht wird, bringt
das 3-Flanschen-Model eine sehr genaue Annédherung an die Losung, die mit der Multimembranschale
erhalten wurde.

Einige Kriechbeulungsversuche wurden an Zylindern aus einer Aluminiumlegierung unter verschie-
denen Beanspruchungen durchgefiithrt. Die Zahl der ringsherum beim Bruch entstandenen Fetzen
nahm mit abnehmender Belastung ab und bei einer sehr geringen axialen Mittelbeanspruchung ergab
sich ein axisymmetrisches Ausbeulen.

Das in dem Bericht Nr. 100 vorgeschlagene Niherungsverfahren fiir die Verbeulung wurde auf die
Versuchszylinder angewandt, wobei eine ziemlich gute Ubereinstimmung mit den praktischen Ver-
suchen erhalten wurde.

DEFORMATION PAR FLUAGE ET FLAMBAGE D’UNE VOILE
CYLINDRIQUE SOUMISE A UNE COMPRESSION AXIALE

par
Ake Samuelson

RESUME

Une communication récente, le rapport n° 100 de la FFA, a établi une théorie de la déformation
élastique et du fluage secondaire d’une voile cylindrique circulaire soumise a des efforts axio-symétri-
ques, et proposé un critére approximatif du flambage. On a basé cette théorie sur 1’analogie avec la
«membrane ! » et on en a tiré des solutions numeériques pour le cas spécial du cylindre 4 double membrane.
Dans le rapport actuel, les équations générales ont été résolues pour un nombre impair et arbitrairement
choisi de membranes et les résultats ont été comparés avec ceux du rapport précédent.

Il est apparu que l’analogie avec la double membrane fait surestimer les taux de déformation et
d’efforts, mais I’effet qu’elle provoque sur le temps de flambage par fluage, tel qu’il a été calculé par la
méthode approximative, est faible par rapport 4 la dispersion normalement obtenue lors des expériences
de flambage par fluage. On a trouvé par conséquent que la voile & double membrane fournit des résultats
suffisamment précis pour les usages pratiques. Cependant, quand on veut obtenir un plus grand degré
d’exactitude, le modéle a trois ailettes permet d’approcher trés prés de la solution fournie par la voile a
plusieurs membranes.

Quelques expériences pratiques de flambage par fluage ont été réalisées sur des cylindres minces en
alliage d’aluminium & différentes intensités d’effort. On a constaté que le nombre d’ondes périmétriques
qui se forment au moment du gauchissement, diminue avec I’abaissement du niveau des efforts. Pour
un effort axial moyen trés bas, la configuration du flambage est axio-symétrique.

Le processus approximatif de flambage proposé dans le rapport n° 100 de la FFA a été appliqué aux
cylindres d’essai et une assez bonne concordance avec les résultats expérimentaux a pu étre dégagée.
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CREEP DEFORMATION AND BUCKLING OF A
CIRCULAR CYLINDRICAL SHELL UNDER AXIAL COMPRESSION
AND INTERNAL PRESSURE

by

Ake Samuelson

1. INTRODUCTION

In a previous paper, the governing
equations for the state of deflections and
stresses of a circular cylindrical shell sub-
jected to secondary creep were derived. The
external loads considered were uniform
axial compression and constant internal or
external pressure. Only axially symmetrical
deformations were assumed to occur, and
therefore the resulting equations depended
on the coordinate « along a shell generator
only. In order to be able to solve the pro-
blem, the *“‘multi-membrane’” analogy was
proposed. The shell was substituted for an
equivalent multi-membrane shell, where a
membrane was supposed to carry normal
forces in its own plane only, the stresses
being constant across each membrane. The
membranes were connected by a core
capable of carrying shear forces only. The
equations were solved numerically for a
few combinations of external loads and
boundary conditions in the special case of
a double membrane shell.

A few possible extensions of the calcula-
tions were discussed in the paper. It was
pointed out that a considerable error might
have been introduced by the use of the
double membrane analogy. It was supposed
that a few calculations using various num-
bers of membranes might yield an estimate
of the degree of approximations which are
introduced in the double-membrane case.

In the present paper, the general system
of equations for such a multi-membrane
shell is derived, the only limitation being the
condition that the number of membranes
must be odd.

An experimental investigation of creep
buckling of thin circular aluminium cylin-

ders was described in a previous paper. A
few more tests have been carried out since
then, and the results are given in the present

paper.

2. LIST OF SYMBOLS

R Radius of middle surface, mm.
L Length of shell, mm

h Wall thickness, mm

J Membrane number

A, (AR)) Thickness of membrane No. j.

4 Distance between membrane
No. j and middle surface, mm.
Positive outwards

b Distance between two adjacent
membranes

l Total number of membranes

k Middle membrane

u Axial displacement, mm

w Radial displacement, mm

E Modulus of elasticity, kg/mm?

v Poisson’s ratio

k, n Constants of the creep law,
Eq.(1)

o Stress, positive in tension,
kg/mm?

£ Strain, positive in tension

1 Second invariant of the stress
deviation tensor

Sy Stress deviation component

x, Y,z Coordinate system, Fig. 2

@ Circumferential direction

t Time

Ax Step length in the x-direction

At Step length in time ¢

M M, Local bending moments,
kgmm/mm

NN, Local forces in the plane of the
middle surface, kg/mm

T,T, Local shear forces, kg/mm
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Applied axial force, kg/mm
Internal pressure, kg/mm?
Middle, index

Mesh point number, index
Differentiation with respect to ¢
Differentiation with respect to
T

TR R Ny

~N
N’ N

The dimensions of m, kg and hr were
applied to the specific problems given be-
low, but any other measuring system is
applicable since the equations derived are
not in any sense restricted to the given
dimensions. Thus, when data are entered in
the computer program, lengths and stresses,
for example, may be given in in. and psi.

3. THEORY

The theory has been presented in Ref.[2],
and the deductions will therefore be re-
viewed only briefly. However, a few exten-
sions are introduced, which may be of use
later on. Thus, the axial load and the exter-
nal pressure are allowed to vary slowly with
time, and the axial displacement u is
calculated in addition to the radial displace-
ment w.

3.1. Assumptions

The assumptions are the same as those
made in Ref. [2]:

(a) The deflections, axial and radial, are
axisymmetrical up to the time when buck-
ling occurs.

(b) The radial deflections are small in the
prebuckling stage.

(¢) The radial stresses are small.

(d) Deformations are caused by elastic
strain and secondary creep.

(e) Plane sections remain plane.

MIDDLE
Sl.LRFACE

AXiS OF
CYLINDER

|
|

Fig. 1. Definition of the multi-membrane model.
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(f) The real shell may be replaced by an
idealized multi-membrane shell according
to Fig. 1. Each membrane (j) has the thick-
ness Aj and is placed a distance ; from
the middle surface of the shell. It is sup-
posed to carry forces in its own plane only.
The number (I) of membranes should be
odd. The core that separates the membranes
is infinitely rigid against shear forces but
carries no load in its own plane.

3.2. Coordinate system

The definition of the coordinate system is
given in Fig. 2.

A

Fig. 2. Coordinate system.

3.3. Relation between stress, strain, and
strain rate

The creep law is given in the unidirec-
tional case by:

g=gp+kon (1)

In the general case it may be written as:

i 3k
&= 5(6:—9(d,+ 6)) + 5 BD™s, (2)

3.4. Conditions of equilibrium

According to Section 4.3. in Ref. [2], and
Figs. 3 and 4, equilibrium in the axial and
radial directions, respectively, yield:

N.=—-P(t) 3)
pR—N,— PRw" — RT, =0 4)

Moreover, Fig. 4 gives the condition of
momentum equilibrium:

le‘ = Tz (5)
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(Mg + dMy) dx (Mx‘dM{) Rde
(Ng+ dNg) dx /((wanx)nd,

(Ty+dTy)dx

Fig. 3. Definition of the system of internal forces.

(4) and (5) yield
N,—pR + PRw” + RM, =0 (6)

3.5. Deflections

From assumption No. 5 and Fig. 5, the
relations between the strains and the deflec-
tions are deduced:

W~ (e~ t) @
~ =2 (et ®)
Ego =I%) (9)

(10)

Fig. 5. Deformation of a shell element.

3.6. Elastic deflections and stresses

Eqs. (2) to (10) yield the following
differential equation for the deflection w(x):
P Eh

IV L~ gp” I

_vP

P
=5+ (11)

D

The solution is given in the case of a fairly
** —§72821 FFA 108

(N, *+ SN JRde

dw , d°w

&
(TE+](1|‘X)Rd9

AXIS OF
CYLINDER

UNDEFORMED
MIDDLE SURFACE

)
J——" DEFORMED
Nededx MIDDLE SURFACE

w

Fig. 4. Forces acting in the radial direction.

long clamped or simply supported cylindri-
cal shell:
(a) Clamped edges:

w=w=0atx=0, L

w= wo{l - e““’(g sin fx + cos ﬂx)

e (/3 sin 8L — « cos BL sin

B
+asinﬁL+ﬁcosﬁL
B

cos ﬂx) e‘“L}

(12)
(b) Simply supported edges:

w=M,=0atx=0,L
w=w, {1 —e [%;Eﬁiz sin fx + cos ﬁx]
— e [(2ap sin BL — (o — %) cos BL) sin px
+ ((o* — B%) sin BL + 2B cos BL) cos fx]
X m} (13)
Here
R? yP
Wo=Eh (P + ﬁ)
o 1/ P 'Eh
d-Vieam V) o

_ ER®
T12(1-D?)

D

The moments and normal forces are
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obtained from the results above through the
relations:

M,—Dw" (15)

M, =vM, (16)
Eh

N, =7 w—»P 17

These equations describe the elastic state
of stresses and strains which is obtained on
load application, and forms the starting
condition for the creep calculation.

3.7. Creep deflections and stresses

In Ref. [2] it was shown that Eqgs. (2), (3),
(6) and (7)~(9) may be combined to yield
the following system of equations for a
multi-membrane shell:

. 1
(6} - 6i)w” + E(dzj - 'Vd"p} - dz‘ + 'Vd'q,i)
=J(o,— 30, —J(0,—d0,y) (18)
1 .. .
E (dw T V0 Oy + 1’6:{)
= Ji(awi - %Uzi) - Jl(atp} - %0'2}) (19)
l . 1 1 4 1
FW—5| 2 6g—v 2 65} =2, (0 — }02)
R~ E\;G j=1 =1
(20)

AS b= —B(D) 1)
i=1

1 1
AT 6,4+PRw"—RA S 676,= — PRw" (22)
j=1 i=1

Now assume a given odd value for the
integer I. The system above then takes the
following form, where the integer k denotes
the middle membrane: (k= (I +1)/2)

A . .
6" + B (02— V0 — G +v0g1)

= —dy 8y +Jpsu=Hy

1. .
E (Utpl T V01— Ogk + va‘zk)

= —J18p + IS =H,,

FFA REPORT 108

L, 1 . . .
01" + E(Gﬂrl —VOr-1— Oz + VO'q;k)

=—Jp a1+ hsu=Hen

1. . . .
E (Gqﬂc—l T VOz-1— Ogx + vczk)

= —Ju 181+ S =Hy_12

. 1
O " + E (Ozk+1 = VO gis1— e+ Vo)

= —~Jpu Ser+1 +Jk3¢k= Hy.

1. . . .
E (Og+1— V041~ g + 90 )

= —Jyr18m+1 T I Spe=Hyi1p

(23)

a1 . . .
61w +E(O'zl_"}0'¢1_0'zk+"’0'¢k)
= —Jdisy+ S =Hy

E (d¢l - ’del - dcpk + 'dek)

=—-J;s

1Sgu+ 18 =Hyp

r. 1. .o . .
R 5 (6p—v0n T 6. + 65— 702)

=J,8Sp T oSyt .. +d15,=G
PRw" — RA(8, 671+ 85652+ ... +8,67)
+A(Ggy + Gyt ... +6,) = — PRW"

o . P
Gyt Opt...To,u= K

Here the following notations have been in-
troduced:

Ji= (3T = k(3 + o= 0,0, "V
(24)

(25)

It is preferable to eliminate the stress
rates ¢ in the equations (23) above. This is
easily done in the following way: If the
circumferential stress rates ¢, are eliminated
from Egs. (23) a,b;c,d;... and so on in
pairs, we obtain the following set of equa-
tions:

Sy =0 % Oty Sy =0 g1~ % Oy
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L 1=
o w +T(Gzl_czk)=H11+vH12

L, 1=
) +T(°’z2—0'zk)=H21+”H22

(26)

e
6w +—E“"(0'zt_0'uc)=Hu+VH12

The last one of Eqgs. (23) yields with No. 3
from the bottom:

El WP
G+ GpatorntOpy=mw—EG-2—

R A 27

Inserting this expression in the equation
of equilibrium (No. 2 from the end) we find:

PRw" — RA(8; 671+ 8,652+ ... +6,62)

EAL . IAvP

= —PRw" (28)

Now solve the last one of Egs. (23) for
G4 and insert the result in Egs. (26):
S

-9 0. . . :
+—E—(20,1+a,2+... + 6yt ... T 65)

[P(1-+%)

=H,, +vH,,— ER

n"

Sy w
1-9% | . . .
+T(a,l+2o,2+...+a,j+... +6.1)

[P(1—1?)
Eh

r (29)

=H, +vH,,—

81"
1—42

TTE

(G FOppt oo+ 0yt ... +26,)

[P(1—1?)

=H11+VH12_ Eh

J*k

Multiply each of the equations by the
coefficient of w” and add:

7 . 1_ 2
(jzl(sjz)w"-l-———E—v(ﬁld'ﬂ‘f'azd'ﬂ-F see +6l&.‘01)

1
=2151(H11+”H12) (30)
j=1,2,3...k—1,k+1,..1

9

Differentiating (30) twice with respect to
x, it is possible to eliminate the stress rate
terms with the aid of Eq. (28), and the final
equation may be written:

(1 —DAl

! . PR(1 —4?%) . .
§ )i PO A=A,
-1

| -

J
i
=A(1 -G+ RA’Z1 8,(Hjy +vHy,)

+ IAvP(l - ,‘)2) _ (1 - v2)PRw”_
Eh E ’

j+k (31)

The bending stiffness of the shell may be
determined from the condition that the
moment of inertia of the multi-membrane
shell is to be the same as that of the real
shell. Considering Fig. 1, it is readily seen
that:

_ Em EA L,
D_12(1—v2)_1—'p2,-2=:-16 ’
where a,=—’;2_éilb, vielding: (32)

h3
b=V3A,§ (1-2j+1) (33)

Using (82), Eq. (81) is somewhat simplified:

. P..  Eh . 12(1—)
WY+ [0 =g~ ¢

12A 2 P P

+F2161(H;1+11H;'2)—5wﬂ+}—ﬁ) (34)

If it is assumed that the deflection rate has
been solved from Eq. (34), the axial stress
rates are given by:

E 1

G = ) ?:1 (H,+vHy,)  (35)
where H,+vH,,=0.
. . E .,
Gzj=0nt+ i‘:;z(Hn""’sz“‘sjw );
j+k (36)

Eq. (35) was obtained through adding
Eqgs. (26) together with the terms

1_2
+ o Gy

- E
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UNDEFORMED
MIDDLE SURFACE

Fig. 6. Axial displacement due to rotation.

and Eq. (36) through substitution of the
value thus obtained back into Eqgs. (26).

The circumferential stress rates ¢, may
be calculated in the same manner. First,
eliminate the ¢,’s from the first 2(I-1) of
Egs. (23) and add the equations. The result
is:

1—p2 (L ' 1
E (Z O'W_I%k) =IZ=1(”H/1+H12) 37

j=1
where the term

1—%
TUWk

has been added and subtracted. Here again
vy H 1 + H, o =0.

If now Eq. (27) is introduced into Eq.
(37), the following expression is found for

O'q)k:
. E. EG P
=RV T Tk
E ! .
- I(l———vg)zl (vH, +Hy); j+k (38)

and with Eqgs. (23):
. ] E .
Ggps=Ope T Tvz(”Hn + Hyp—o,w") (39)

Finally, the axial deflection is calculated
from the following equation, where the
first two terms describe the axial displace-
ment due to elasticity and creep, and the
third yields the displacement due to the
rotation of a shell element by w’ according
to Fig. 6.

W = L (=10 5 Ty = w' i (40)
j=1
Eqgs. (34), (35), (36), (37), (39) and (40)

constitute the final system of differential
equations describing the behaviour of the

FFA REPORT 108

shell during creep. The system is solved
numerically by the method of finite dif-
ference approximations, as it was used in
the preceding report, Ref. [2].

It may be suitable to review the procedure
of calculation: On load application, elastic
strains and stresses are obtained, which are
calculated from Egs. (12), or (13) and (15)
to (17). The stresses of each individual mem-
brane are given by:

0= Oen— 15, (41)

Cgi= Opm— A#’é,, where (42)
3

I= 5 (43)

O,n=—Plh (44)

Tom =No/h (45)

The stresses are then introduced into Eq.
(34) through Eqgs. (23)-(25), and Eq. (34)
is solved for the deflection rate w. After-
wards, the deflection rate & and the stress
rates ¢ are solved from Eqs. (35), (36),
(38) and (39).

This first cycle of calculation thus yields
the initial state of elastic stress and strain
and the stress and strain rates due to creep.
An estimate of the state of stress and strain
at a subsequent time t, ={, + Af is then
obtained from the formula:

R, ) =, ty) + Atg—’; (x, 1) +0(AE))  (46)

The procedure may be repeated for as
many time steps as are needed, and the
result is the state of stress and strain at the
time intervals ¢t =0, A, 2At, 3At, ...

3.8. Difference equations

Using the five point formula for the sec-
ond and fourth derivatives of w:

- 1

w,= ﬁA_xé( - w#_g + 16&)‘,_1 - 30w”

+ 16t — Wees)  (47)
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1
.1V . .
wY=—w,..,—4w,_

v f(l?4( w—2 n-1

6, — AW+ D,00)  (48)

and the three point formula for H:
|
H,= A—xz(Hﬂ—l -

2H,+ H,,,) (49)

Eq. (34) takes the form:
oy Wy F g Wy + ot Wy oty W1 0ty Wyse
=Ax*H, (50)

with the same notations as in Ref. [2]. H,
is here given by:

12(1 — 92 12A
H# (R )G+h3A 22 6}
x[Hy, ,—2H, +H,,
+v(Hyp, —2H, + ;z,”l)]
p P
—m(w#~1 - 2wﬂ+ w”+1) + I";—D ({)1)

Eq. (50) constitutes a system of linear
difference equations which are solved nu-
merically by the same method as was used
in Ref. [2]. Having obtained the deflection
rates w,, the axial deflection rate u, and the
stress rates ¢, are derived from (40), (35),
(36), (38) and (39), which read in the

following way in difference form:

] v 1 1!
ulx, H~ 3 [E(dmn_”"’wmn) 72_: in Szl

n=1

1 . .
—A—mz(wn_wn—l)(wn_wn—l):l Ax (Ol)
. E !
T Y(T——F)Z 1 (Hjl“ * WH”#);
j*xk (52)
. . E
O.I]” = szﬂ +tr—s 1—- Hjl,u + ‘VHJZ#
O . .
- A_xé(w"“l ~2w,+w,.,)| (53)
. E . EG” P
S RO TR
E
1(1 ~ B Z (VH11”+ Hpu); j+k (54)

11

%01 = Tol, ™ 1

E
+ Tvé |:ij1”+ Hﬂu

& . L
_A_;z(w”_l—-2w,,+wu+1)] (55)

The FORTRAN IV program is given in the
appendix together with a brief description.

4. THEORETICAL RESULTS

A number of calculations were carried
out in order to demonstrate theoretically the
behaviour of a multi-membrane shell under
various conditions of shell geometry, load-
ing, boundary conditions, and integrational
variables, such as the number of mem-
branes and the step lengths in the difference
equations.

4.1. Influence of the number of membranes

Four calculations were carried out for a
thin cylinder under pure axial compression,
where the numbers of membranes were
2, 3, 5 and 11, respectively. The results of
the first, second, and last calculations are
given in Figs. 7-9, and the deflections and
stresses at the time f=1.6 h are plotted in
Fig. 10 for comparison. The calculations
are identical except for the number of
membranes.

It will be seen that the deflection and
stress rates are functions of the number of
membranes, the double membrane yielding
the highest values. However, the differences
are not very great, and in the present exam-
ples, a difference of approximately 30%
is found between the maximum radial de-
flections as obtained with the 2- and 11-
membrane shells after 1.6 hours. As a higher
number of membranes is supposed to yield
a better estimate of the real state of stress
and strain in a creeping shell, it should be
justifiable to use the double membrane
analogy in creep calculations, especially
as an over-estimate of the stress and strain
rates will then result.

The solution approaches an asymptotic
distribution very rapidly when the number
of membranes is increased. This is evident
from Figs. 10 and 11. In the latter of these
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figures, the peak values of the deflections
are plotted as functions of the number of
membranes. Practically, the asymptotic val-
ues are reached with only three mem-
branes.

The wave length of the solution does not
vary much with the number of membranes,
which is rather natural if it is considered
that the left hand side of Eq. (560) does not
depend on [

Although the solutions are similar, there
are slight differences in the shape of the
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Fig. 13. Deflections and stresses of an 11-membrane
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curves, especially in a region close to the
edges. It appears that the bending moments
of the double membrane solution do not in-
crease as rapidly at the boundary as further
out along a generator. In the multi-mem-
brane solutions, however, they are higher at
the boundary during the period covered by
the calculation. The same result was ob-
tained for a thicker cylinder, as can be seen
in Figs. 12 and 13.

4.2. Stress distribution

The stress distribution at a few points of
the shell of Fig. 9 are demonstrated in Fig.
14. It is interesting to notice that the curves
are very nearly straight lines except in the
neighbourhood of the boundary. This might
not have been expected as the creep law
used in the calculations is highly non-
linear (n =5.8).

The linearity is, however, dependent on
the radius to thickness ratio of the shell, and
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for the thicker shell of Fig. 13, the stiress
distributions of Fig. 15 were obtained. It
may be noticed that these are more curved
than those depicted in Fig. 14, which in
part is a consequence of the fact that the
creep time is greater.

The deviations from linearity in the stress
distribution are so small that the assumption
of linearity may be justified when a problem
of creep is treated by the use of energy or
energy dissipation methods, at least in the
regions where the creep deflections are of

the same order of magnitude as the elastic
deformations.

4.3. Time dependent load

In most of the practical cases of creep in
a cylindrical shell, load and temperature
vary with time. Here the variation of the
load is considered only, but the two varia-
bles have similar influences on the creep
deflections and stresses.

A frequently occurring loading case is
stress relaxation due to creep. Then the load

e =]

12

|-0

16 40

4

mm

Fig. 15. Stress distributions at a few z-stations of the 1.4 mm shell of Fig. 13. Number of membranes [ =11.
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Fig. 16. Deflections and stresses of a double membrane
shell subjected to a varying axial force. h =0.4.

decreases with time, as the boundary con-
ditions require that the total elongation of
the shell is zero. A similar case is presenfed
in Fig. 16, where the axial load decreases
rapidly at the start and approaches an
asymptotic value within some time. It is
evident that the result does not differ much
from that obtained with a constant axial
load.

5. EXPERIMENTAL RESULTS

An experimental investigation of the creep
behaviour and buckling of cylindrical shells
under axial compression was described in
Ref. [1]. Cylinders with radius to thickness
ratios varying between 30 and 150 were
exposed to creep at a few relatively high
stress levels, and the time until buckling

15

occurred was observed. Thus the depen-
dence of the creep buckling time on the
geometry of the shell and the load was
mapped within a certain domain. It was
pointed out, however, that an extension of
the series of tests was under preparation,
where shells of a given geometry were to be
exposed to highly different stress levels.
These tests have now been carried out, and
the results are presented below.

5.1. Testing equipment

The tests were performed in the same
loading device and furnace as were used
in the previous series and are described in
Ref. [1]; the reader is therefore referred to
that report for further details.

The test specimens, machined from a
tube of Swedish made 51S-T aluminium
alloy, are depicted in Fig. 17. This tube and
those used in the previous test series were
not taken from the same batch of material.
The creep properties are therefore not iden-
tical, and the constants of Eq. (1) are
different. By the use of Fig. 18, an approxi-
mate creep law may be established as:

.__O -8 _4.75
B +0.835x 107047,
E,=2800, o=4  (56)
£= =0 10.835 x 10-84T
5300 " ’
E,=3000, o=6  (57)
. H=0.4
|
| L=100
|
93.8

Fig. 17. Creep buckling test specimen.
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Fig. 18. Results of the 8 creep buckling experiments.

‘o o -8 4.75

¢= gao5+0-835x 107347,
E,=3500, ¢=8  (58)

e=—9 1 0.835x 10547

1200 ’

E,=3700, 0=10.3 (59)

5.2. Scope of investigation

A total of 8 creep buckling tests were
carried out. The temperature was held at a
constant level of 225°C, and four levels of
axial stress were applied, namely 4, 6, 8 and
10.3 kg/mm?, two tests at each stress level.
The load was also constant through each
test.

As the primary object of the investigation
was to determine the creep buckling time,
only the total end shortening of the test
specimens was measured, in order to be able
to map the creep properties of the material.

No automatic registration of the time of
collapse was employed. In some of the tests
buckling occurred at night, or during a
week-end, which means that the values
obtained for some of the creep buckling
times may contain an error of about 10%.

5.3. Time of creep buckling

The creep curves for the 8 tests are presen-
ted in Fig. 18. It may be noticed that the
scatter between the pairs of tests at the same
load is of a moderate magnitude, as was
also the case in Ref. [1]. The creep buckling
times are listed in Table 1. It may be noticed
that log {,, seems to be a linear function of
the stress level o. The point corresponding
to the stress ¢ =10.3 lies slightly under the
line that can be drawn through the rest of
the experimental points. This is, however,
explained by the fact that this stress level
is close to the yield point of the material
and a lower buckling stiffness should be
expected.

5.4. Modes of buckling

The cylinders of the configuration under
consideration were in the previous investiga-
tion found to develop 7 circumferential
buckles on collapse. The same result was
obtained in the present tests for the two
higher load levels, whereas only 6 buckles
appeared at the load levels of 6 and 4
kg/mm?. Moreover, one of the cylinders
loaded at 4 kg/mm? developed an axi-
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Fig. 19 a.

symmetrical buckle pattern over about 1/3
of the circumference. This is illustrated in
Fig. 19, where three of the test specimens
are depicted.

6. COMPARISON BETWEEN
THEORY AND EXPERIMENTS

An approximate approach to the estima-
tion of a critical time for a circular cylinder
subject to creep under an axial load was
given in Ref. [2]. The considerations were
based on the assumption that buckling
occurs when the maximum radial deflection
reaches some critical value, which may be
determined from the classical buckling
theory of elastic shells. The method seemed
to yield fairly good agreement between
theoretical and experimental results.

Fig. 19. Post buckling deformations of three cylinders

subjected to 8, 6 and 4 kg/mm?2, respectively. The

numbers of circumferential lobes are 7, 6 and 6. Note the

partially axisymmetrical deflection pattern of the last
test specimen.

Fig. 19b.

Fig. 19¢c.
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TaBLE 1. Experimental mean values of the
creep buckling time compared with theory.
h=0.4, R=45, L=100 mm, T=225°C.

Creep buckling

time, hours
Mean stress
kg/mm? Experiment Theory
4.0 350 250
6.0 65 25
8.0 8.5 5
10.3 0.5 0.8

Furthermore, the number of circum-
ferential buckles obtained on collapse was
also predicted by means of the classical
theory, and for the thinner shells, theory and
experiments showed a fair agreement.

6.1. Estimation of the creep buckling
time

By use of the creep law given in Section
5.1 and the geometrical data for the tubes
used in the tests, the creep deflections were
calculated for each stress level. After that the
critical deflection for the cylinder under the
load in question was calculated according
to Ref. [2] and was compared to the pre-
viously calculated creep curve. The inter-
section between the two curves defined the
critical time.

The theoretical and experimental values
are listed in Table 1.

It is evident that the theory yields a some-
what conservative estimate of the critical
time, and the differences between calculated
and measured values are of the same order
as those reported in Ref. {2].

6.2. Estimation of the number of
buckles

The method for the prediction of the
buckling behaviour of the shell as given in
Ref. [2] yields the number of circumferen-
tial lobes presented in Table 2. The results
of Ref. [2] are included for comparison.
Apparently, the method does not describe
the dependence of the buckling configura-
tion on the applied axial load very well.
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The theory predicts an increase in the num-
ber of buckles as the load level decreases,
a condition that is contradicted by the
experimental evidence.

7. DISCUSSION

The improvements achieved by the use of
a multi-membrane shell in comparison with
the results provided by the double-mem-
brane approximation are of a fairly modest
order, and it may be stated that the double
membrane analogy is to be preferred be-
cause it minimizes computational time and
over-estimates the stress and strain veloci-
ties. If a higher degree of accuracy is want-
ed, a ‘‘3-membrane’’ shell should suffice as
it proved to yield a result that is very close to
that obtained with an ‘‘11-membrane”
shell.

It was shown that the wave length of the
stress and deflection curves does not vary
significantly with the number of mem-
branes. The discrepancy noted in Ref. [2]
between the measured wave length and that
predicted by the theory thus still prevails,
and should be attributed to the creep law
chosen here. A better estimate should be
obtained if the primary creep term is added
to Eq. (1).

In Ref. {4], Rabotnov describes a method
of solution for the problem of a double-
layered cylindrical shell under axisym-
metrical loading conditions and subjected

TABLE 2. Number of circumferential buckles
of a 0.4 mm cylinder as a function of the
load level.

Number of buckles

Mean stress — ~
Theory

kg/mm?2 Experiments
4.0 6% 9
6.0 6 9
8.0 7 9
10.0 7 8
10.3 7 8
11.0 7 8
12.0 7 6

% One of the cylinders developed an axi-symmetric
mode of buckling over part of the circumference.
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to stationary creep. The solution is attained
through the use of a potential function and
a variational method is applied in order to
establish an approximate solution. This
solution is assumed to be of the same type as
that given by the equations of an elastic shell.
No examples were given in the paper and
thus it is somewhat laborious to work out a
specific solution in order to carry out a com-
parison with the present method.

Byrne and Mackenzie, Ref. [5], carried
out an investigation on essentially the same
subject as Rabotnov, but they did not im-
pose the restriction of a double membrane
shell and set up the governing equations in
a direct way. However, the dependence of
the rates of strain and curvature was based
upon the relations proposed in Refs. [9] and
(10], which in fact lead to approximations
analogous to those provided by the double
layer model. The equations were solved by
means of finite difference methods, the
results showing good agreement with those
of Refs. [2] and [7].

A recent report on the present subject by
Diamant, Ref. [6], utilized a different creep
law based on the time or strain hardening
concept in order to account for primary
creep. The results obtained are in many
respects the same as those obtained here
as far as the distributions of deflections
and stresses are concerned. As the deduc-
tions are based on a different creep law,
the results are not directly comparable,
however, and may in a way be regarded
as two solutions valid for different intervals
of the creep life of a cylinder, the material
of which features both primary and sec-
ondary creep.

Ref. [8] describes an experimental in-
vestigation of creep buckling of circular
cylindrical shells under axial compression,
where radius to thickness ratios of sub-
stantially higher values than those of Ref.
[1] were used. The buckling configuration
obtained differed from that of Ref. [1] and
the present report as the buckles developed
far away from the edges. This fact indicates
that the theory of the present report (and
Ref. [2]), which is based on the growth of
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the stress concentrations at the edges, is not
applicable in that case. Evaluation of the
creep lifetime of cylindrical shells of very
high radius to thickness ratios must be
based on a theory that takes into account
the initial imperfections of the shell, which
will increase with time due to creep and
induce buckling. As the load level must be
very low (low buckling strength), the pertur-
bations caused by the boundaries may be
considered negligible for such thin shells.

8. CONCLUSIONS

The multi-membrane analogy was app-
lied to the problem of a circular cylindrical
shell under secondary creep, subjected to
a uniform axial compressive force, and the
system of equations was solved numerically
using 2, 3, 5 and 11 membranes.

It appeared that, all other parameters
being held constant, the deflection rate be-
came greater with a decreasing number of
membranes. The difference in the maximum
deflection was of the order of 30% between
the 2 and 3-membrane solutions in a speci-
fic example, and a further increase of the
number of membranes seemed to yield only
a few per cent extra accuracy. In any case,
3 membranes gave a fully tolerable error
level.

The use of the double-membrane analogy
for the computations should be preferred
as it gave an overestimate of the deflection
and stress rates. It thus counteracts the effect
of choosing a large steplength in time, and
minimizes the computer time.

The stress distribution through the wall
thickness was studied in the special case of
two 11-membrane shells. It was found that
the stress curves of the thinner shell at a
number of x-stations were all practically
linear during a large part of the creep life of
the cylinder, the only exception being the
highly stressed area in the neighbourhood of
the clamped edge. An essential component
of non-linearity was found to develop only
after the critical time that was predicted
from the approximate buckling condition.
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However, the thicker shell showed highly
non-linear stress distributions.

These observations seem to justify the
assumption of a linear stress distribution
which is frequently done in the creep analy-
sis of plates and shells by the use of energy
and energy dissipation methods, at least in
the cases where the creep and elastic
deflections are of the same order of magni-
tude. An example of this kind of investiga-
tion was provided in Ref. [3].

An experimental investigation of the
creep buckling behaviour of 8 geometrically
identical cylinders subjected to highly dif-
ferent load levels showed that the logarithm
of the creep buckling time is a nearly linear
function of the applied axial compressive
stress level. This fact might have been antici-
pated, as the creep rate is a power function
of the stress, and a reasonably small varia-
tion of the initial deformation level (elastic
deformations on load application) has a
modest influence on the critical time, as was
shown for instance in Ref. [3], where the
critical time was found to depend logarith-
mically on the initial deflection.

Application of the approximate buckling
criterion given in Ref. [2] gave a fair, slightly
conservative estimate of the critical time.

It was shown experimentally that the
number of circumferential lobes obtained
on buckling is also a function of the load
level, the higher the load, the higher was the
number of buckles. If the classical buckling
theory was applied according to Ref. [2], an
increase of the number of lobes was pre-
dicted for a decreasing load level. Thus the
approximate estimate of the post buckling
behaviour is rather rough.

APPENDIX: BRIEF
DESCRIPTION OF THE
COMPUTER PROGRAM

The computer program is essentially the
same as that described in Ref. [2] from
which the two routines MaIN and COEF were
retained in their original form as they per-
form exactly the same calculations. The
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subroutines ZERDEF and RHANDM were re-
written so as to meet the requirements for
the multi-membrane shell equations. The
BUCK routine was designed to perform an
upper limit check of the maximum deflec-
tion.

The feature of a time variable axial force
is not included in the version of the program
presented here.

The general block diagram of the flow of
calculations is given in Fig. A1, and the
FORTRAN Iv program lists follow in Figs.
A2 to A6. As the mMaiN and COEF routines
were described in Ref. [2], they are only
listed below and the reader is referred to
that report for details. The new routines are,
however, described as follows:

Subroutine ZERDEF

Provision has been made to take up to 11
membranes, the total number used in a
separate calculation being denoted by L.
The elastic deflections, forces and bending
moments are first calculated from Eqs. (12)
(or (13)) and (15) to (17). After that, the
stresses of each individual membrane are
determined from Eqgs. (41) to (45). Control
is then transferred to the subroutine RHANDM
for the calculation of the right hand mem-
bers according to Eq. (51).

In the rorTrAN list, Fig. A4, the follow-
ing symbols are used:

Variable: Meaning:
L Total number of membranes, [.
B Distance between two consecutive

membranes, Eq. (33)
Distance between the middle surface
and membrane No. j.

DEL(J)

The variables defined in statements 8 to
45 are used in Egs. (12) or (13), and
(14) to (17), the designations being fairly
obvious.

In the output, both the total forces and
moments and the stresses of each mem-
brane are given at prescribed (in input)
mesh points.
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MAIN PROGRAM SUBROUTINES

——i Input. Def. of
| constants and

—

steering variables |
L COEFF
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13
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Elimination sweep on —}
the left hand side I
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state from Egs. (12)

(or (13))((131)-(17)

and (41)-(45
RHANDM
M - lEalc. of the stress —{
’ |rates from Eqs.(52)-(55)|
! and the state of w, 0" at

o~ r Det. of the right- _—]
! hand members of Eq. l
T | (50) from Eq. (51)

| I
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Fig. Al. Block diagram for the numerical treatment of the finite difference equations.
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Fig. A2. MAIN program. For description, see Ret. [2].

Subroutine RHANDM

Meaning:

Variable:

The first time the RHANDM routine is
called, (NcycL=1), the constants needed

are read in and the program constants are
calculated. After that the right-hand mem-

o, of membrane No. i at mesh

point No. j.

SX(I, J)

o~

b

o

~

o

&3

Q

)

an

£

=]

-

[=]

(3]

. <

oy «

SEPN
o~

nea

S N

S aE

m A<

v AN

bers of Eq. (50) are evaluated. On any sub-

H,, and H,, of Eq.(23).

HLI(I), HL2(I)

SXDOT(I),
SFIDOT(I)

sequent call, the approximate state of de-
flections and stresses at the time f, , =1¢ +

6, and g, respectively, of

membrane No. i.

H1{, J), H2(1, J) H, +vH,, and vH, +H; of

At is first determined from Eq. (46) be-

fore the new right-hand members are calcu-

Egs. (35) and (37).

G of Eq.(23) at mesh point

No. j.

G(J)

lated. The new FORTRAN symbols introduced
in this routine, depicted in Fig. A5, are:
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ROGRAM COEFF VERSION FOUR
GUTINE COEFF (NGIMyNBCyDELX)
LE PRECISION AsALEAl;ALFA2,ALFA3
NSION A(49945)
ON A
(595) POI4PyEgHHsR
AT(2F5424F5.042F522)
E (6y7) POI4PsEyHHIR
AT(1M0,25HDATA SUBPR COEFE NO
E=F5,012X3HHH=F5, 2, 2X2HR=F542)
FHHE%3 /(12 %( 1e~POI%P0OI))
#HH/ (R¥R*0D)
1=1.D0=-DBLE { AAXDELX*%2/12, )
2=-4,D0+DBLE(4s *AAXDEL X¥% 2/34 )
526 oDO~DBLE (24 SxAA%DEL X¥%2) *DBLE( BB*DEL X#%4 )
BC) 14yl4y120
3)=18.D0
%)==9.D0
5)=2.00
iM, 1)=A(1y5)
IM12)=A(ly4)
IMy3)=A(1;3)
g 20
3)522.D0
4)=1.00
5)=0.D0
IM,l)zA(lys)
IM12)=A(114)
IMs3)=A(133)
DIM=1
6 I=2,N1
1)=ALEAL
2)=ALFA2
3)=ALFA3
4)=ALFA2
5)=ALFAL
RN

Fig. A3. Subroutine COEFF, previously described in Ref. [2].

First and last mesh points
along the shell for which w,
M., M, and N, are wanted
as print out. NDEL defines
the step length.

The same meaning as above
but defining output mesh for
the stresses.

Some further details are given in the prog-

ram list.

Input of data

The data cards are to be loaded in the
following order, and contain the variables

listed below:

Program:

MAIN

COEFF
ZERDEF

RHANDM

ouUTPUT

Input variables:

NDIM, NSTOP, DELX,
DELT, DTWR, ILAST, NBC
POL P,E,HH, R

POL P, R, HH, E, PN, N1,
N2, NDEL, L, N3, N4, N5
PO, P, R, HH, E, CR, EN,
PN, N1, N2, NDEL, N3, N4,
N5

NCH, WMAX

The meaning if these variables is given by

the list below:
NDIM

NSTOP

DELX

DELT

DTWR

ILAST

NBC

E, POI

EN, CR

P

PN

R

HH

L

N1, N2, NDEL,

N3, N4, N5
NCH

WMAX

Total number of mesh points,

(NDIM +1)x Az =L.

Total number of calculation

cycles to be carried out.

Azx

At

Time step between output

cycles.

ILAST >0 is to be punched

into the last card deck

NBC <0 = Clamped edges,

NBC >0 = Simple support.

E,».

n, k of Eq.(1).

P, axial force per unit of the

circumference.

p, internal pressure, force per

unit area.

R

h

Number of flanges, I. Must be
an odd integer.

See the wvariable list of the

RHANDM routine.

Number of mesh points to be

checked for the condition

W > Wy, starting with j=1.

Max. permissible radial de-

flection.
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Fig. A4. Subroutine ZERDEF used to calculate the elastic deflections and stresses of an n-membrane shell,
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HL1{(K)=0,
HL1(J)=<PAR({JI*{SX{JyI)=e5%SFI{J,1))+PAR
HL2(J)=~PAR{J)*(SFI(Jg1)=e5%SX{JyI)}+PAR
CONT INUE
G(I)=0,
DO _57 J=1,L
GLIN=G{I)+PAR(J)IX(SFI(Jy1)-e5%SX{Jy1))
H1(Js1)=HL1(J)+POI*HL2({J)
H2(Js1)=POI*HL1(J)+HL2(J)
CONT INUE
IF(NBC) 59459,60
H(1l)=0.
GO TO 62
H{1)=0.
DO 61 J=1,L
H{1)=H(1)+C4*DEL{J}*H1(J,y1)
DO 66 1=24NDIM
IF(I-MY) 63,63465
ety

k' 3 4
H(I)=H({I)+C4*DEL(J)*(H1{JsI~1)=24%H1(JyI)+H1(JsT+1))
GO 10 66
J1=NDIM+1~1
H{I)=H(J1)
CONT INUE
RETURN
END
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H of Egs. (23)

Calc. of the creep
terms of Eq. (34)

Def. of the right
hand members corr.
to the boundary
conditions

Evaluation of the
right hand members
of Eq. (34).

Fig. A5. Subroutine RHANDM for the calculation of the right hand members of Eq. (34).

c PROGRAM FOR DETERMINATION OF THE CRITICAL TIME

SUBROUTI
DOUBLE PRECISION A

=

y 230 MAX.

ol o W
MANEZ2QOO=ONO=O0
CEAQOAHA-AZIZOZZ

1

ZMOxOOOTOOMMOM
THAOHL Z~ O~

NE BUCK(NCYCL4sDELX)
995)3H(499),V{499),W({250)

DEFLECTION REACHED)

Fig. A6. Subroutine BUCK. The total deflections w; are compared with a prescribed upper limit value. If this is
exceeded, the calculations are interrupted.
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