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ABSTRACT " .  . .. 

This memorandum contains notes on nine lectures  delivered a t  Sandia Cor- 
poration in August 1957. As  indicated in the table of contents, three main subjects 
were discussed. P a r t  One contains the manuscript of a paper concerning a judging 
problem. P a r t  Two is concerned with finite Markov-chain theory and discusses  
regular Markov chains, absorbing Markov chains, the classification of s ta tes ,  appli- 
cation to the Leontief input-output model, and semimartingales. ,  P a r t  Three con- 
tains notes on game theory and covers  mat r ix  games, the effect of psychological 

& 

attitudes on the outcomes of games, extensive games, and mallbix game theory 
applied to mathematical economics. These notes vary in completeness, but in 
most  ca ses  references to the l i terature a r e  given. 
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PART ONE 

ON METHODS OF OBTAINING A RANKING' FROM A PAIRWISE 
REDUNDANT ORDERING .OF MEMBERS OF A SET 

INTRODUCTION 

Consider a finite s e t  of objects and an  irreflexive, binary ordering relation defined for  
some pa i rs  of elements in the set .  F o r  example, the se t  could consist of chickens, chess  
players,  production processes ,  football teams, e tc . ,  and the corresponding ordering relations 
would be pecks, defeats, is superior  to, beats, etc.  Such situations have recently been of 
interest  to statisticians (see References 1- 7) and sociologists ( see  References 8 and 9). (See 
also Reference 1 0 . )  The question to he answered in such cases  is that of determining, when 
possible, a rank ordering o r  ranking of the objects in the se t  using only the more  o r  l e s s  in- 
complete information given by the ordering relation. One important special case  is paired 
comparisons in which the ordering is defined between every pair  of objects in the se t .  

This paper presents  mathematical treatment of the Wei-Kendall method (Reference 3)  
of obtaining the ranking and gives i t  two different characterizations.  This pa r t  a lso presents  
a new ranking method and shows that i t  contains the Wei-Kendall procedure a s  a. special case .  
Computational procedures,  involving the solution of certain mat r ix  games, a r e  given fo r  these 
methods. 

Although the methods presented here  a r e  not directly related to those previously con- 
s idered by some statisticians fo r  analyzing paired-comparison data, such a s  the Mosteller- 
Thurstone method (Reference 6) o r  the rankit method (Reference 2), the resu l t s  seem to be 
nearly the same (see  Chapter 111, Section 3) .  

P a r t  of the mater ial  presented here  i s  based on the elementary but important mathe- 
matics of o rde r  relations that has  recently been included in some experimental mathematical 
writing for  sophomores ( ~ e f e r e n c e  11). In fact,  a n  ear ly  version of this mater ia l  appears  
there.  This writing.was prepared under the sponsorship of the Committee on the Under- 
graduate Program of the Mathematical Association of America. Readers  who find this ma-  
ter ia l  of interest  may also wish to support the introduction of such experimental mater ial  
into the undergraduate curriculum. 



CHAPTER I 

THE REGULAR CASE 

A. Definitions and Notation 

Consider a set  X and a binary ordering relation R.  The relation is reflexive if xRx 
fo r  a l l  x in X: i t  is irreflexive if xRx is false  fo r  a l l  x in X. The relation is 
symmetr ic  if xHy implies yRx; it is asymmetr ic  if  xRy implies "not yRx. " The r e -  
lation is transitive if xRy and yRz imply xRz. It is pairwise complete if, f o r  x f y, 
exactly one of the relations xKy o r  yKx holds. It is pairwise redundant if, fo r  x y, 
a t  least  one of the relations xRy o r  yRx holds. Thus a pairwise complete relation is 
a l so  pairwise redundant. 

C o n s i d e r a s e t  A of n objects A1, A2, . . . ,  An, and a n  irreflexive binary o rde r -  
ing relat ion >> , called a dominance relation. The effect of the dominance relation can be 
completely summarized by means of an  n x n dominance mat r ix  D with entr ies  

. -  

dii where dii = 1 if Ai >> Ai and is ze ro  otherwise. Because the relation i s  i r r e -  
flgxive, .we havk 

(a) (Irreflexive) F o r  a l l  i, dii = 0. 

If the relation is pairwise complete o r  pairwise redundant, we will have 

(b) (Pairwise completc) F o r  i f j, d . .  = 1,. if  and only if d .  = 0. 
'J J i  

(c) (Pairwise redundant) F o r  i f j, i f  d. = 0, then d..  = 1 
l j  ~1 

Note that the nonzero entr ies  in  the ith row of D indicate the members  that Ai domi- 
nates  and the nonzero entr ies  in the jth column of D indicate the members  that domi- 
nate Aj . 

In Chapter I, the only assumption consistently made about the dominance relation i s  that 
i t  is irreflexive. A special  assumption will be made about the mat r ix  D, namely that it is 
regular  . (see below), but this assumption will be dropped in Chapter 11. Note that it i s  not r e -  
quired that the relation be transitive,  and most interest  l i es  in cases  in which it is not. 

Say that Ai has  a k-stage dominance over  Aj  (see Reference 10, page 309) if  there  ' 

is a chain of relations 



with elements Aip chosen from the se t  A. If the elements in  the chain a r e  a l l  distinct, 
call  the k-stage dominance nonredundant; otherwise call i t  redundant. It is easy  to show (see 
Reference 10, page 309) that the i ,  jth entry of D~ gives the total number of (redundant and 
nonredundant) k-stage .dominances that Ai has  over Aj . Methods of counting the number of 
nonredundant k-stage dominances have been developed by Ross and Harary  in Reference 9.  

In the seque1.a theorem (essentially due to Frobenius) is needed about nonnegative ma-  
t r ices  that a r e  regular .  

DEFINITION. A matrix A is said to be regular  if AP> 0 fo r  some positive 
integer p. 

THEOREM 1. - - If A i s  a nonnegative regular  mat r ix  then 

(a) It has  a unique positive character is t ic  value k of la rges t  absolute value (the 
principal character is t ic  value). 

(b) To k can be associated a row character is t ic  vector x > 0 and a column 
character is t ic  vector y > 0. 

' .  (c) F o r  certain such character is t ic  vectors  

We outline a proof of this theorem based on References 12 and 13. Theorem I of Refer- 
ence 12 and i t s  proof c a r r y  over  verbatim if the word "indecomposable" is replaced by the 
word "regular.  " If k is not the unique character is t ic  vector of la rges t  absolute value, then 
there a r e  m (  2 2) such character is t ic  values of equal absolute value. By Theorem "11 in 
Reference 12 (proved in Reference 13, p 646-7), there is a permutation II s o  that 

= B.. 

- 1 -1 P 
But then A = TI BIT is clearly not regular  since A' = IT B IT and I1 is a permu- 
tation matr ix.  This outlines a proof of (a) and (b). 



To prove (c), write A in Jordan canonical form a s  

where T is a suitable nonsingular complex matr ix.  Also 

bh&re  the ails a r e  character is t ic  roots  o f .  A with (ai 1 ck.  Since AT-1 = T-Ic, 
the.f i rs t ,column of 'T-I  is a character is t ic  vector associated with k.  And since TA = CT, 
the f i r s t  row of T is a character is t ic  vector associated with k. Because AP = T - ~ C P T  
is positive f o r  p large,  these character is t fc  vectors  are pusilive, call  them x (the filrot 
row of T )  and y _(the f i r s t  column of ' I ' - ~ ) .  Now from the  above equaliuus and the fact 
that 1 a i  ( < k, w,e have lim I An = l im . 1 = yx, coiiipleting the pruuf. 

kn Im 

B. The Wei-Kendall Ranking Method 
J 

The usual method of obtaining a ranking f rom an  ordering of a s e t  of objects is to give a 
method of assigning a numerical s co re  to each of the objects and then rankirig them according 
to the sco re .  Wei and Kendall have proposed (see  Reference 3)  the following method for  a s -  
signing sco res .  A's an, inl t la l  score, assign to each rnernler Lhe l~uinber  of othcr members  of 
the se t  over  whom he has a one-stage dominance, plus a s co re  of 112 for  dominating himself.  
The assignment of 112 fo r  dominating himself i s ,  of course,  a rb i t ra ry  and it will be seen 
la te r  that it does not mat te r  what this number is a s  long a s  it is positive. It can be seen  that 
the  initial s co re  vector is given by 



where e is the n-component column vector each of whose components is equal to one. Theq 
a s  a second score ,  assign to each member one-half his  own initial score  plus the initial s co re s  
of each of the people he dominates in one stage; the second-score vector is given by 

Now keep iterating this procedure until there is no change in the ordering of the people by the 
sco res  so  obtained. Thus, af ter  m iterations the sco re  vector is 

After the mat r ix  is ra i sed  to a sufficiently high power, the o r d e r  of the components of the 
scoring vector will remain fixed, a t  least  if the mat r ix  is indecomposable and i ts  principal 
column character is t ic  vector has  distinct components .(Kendall, Reference 3). The next 
theorem establishes this resul t  by a different method than Kendall used and a l so  provides an  
independent characterization of the sco re  vector. 

THEOREM 2 .  - -  Let D be the mat r ix  of an  irreflexive binary ordering relation, 
assume that D f % I is a regular  matrix,  let  k be i t s  principal character is t ic  root, 
and let y be a character is t ic  column vector of D + $ 1  associated with k. Then if we 
assign a s  a s co re  t l ~  the members  of A the components of the vector y, and if the com- 
ponents of y a r e  distinct, the ordering determined in this manner will ag ree  with the final 

. f 

ordering a s  determined by Equation 4. 

PROOF. - -  If D + 4 I is regular,  Theorem 1 implies 

where k and y a r e  a s  in  the statement of the theorem, x is the character is t ic  row 
vector associatedwith k, and c is a constant equal to xe. Therefore,  fo r  m large, 
the entr ies  of the vector (D + $ - ~ ) ~ e  must be ordered  in the s a m e  way a s  a r e  the en t r ies  
of the vector y. This completes the proof. 

If two of the components of . y a r e  equal, then the behavior fo r  large m of the 
corresponding components of sm is not c lear .  In any case, we assign y a s  the sco re  
vector and the corresponding individuals a r e  tied in the ranking. 

The only -- ad hoc thing about this method of obtaining the ranking is the a rb i t ray  choice 
of giving each member  half of his old score  plus the sco res  of the people he dominates. The 

e e - 4  &; n i  la 009 11 



next theorem shows that the number 112 might be chosen to be any other positive number with- 
out changing the final scoring.  

THEOREM 3. '- - If each person is givi?n a positive multiple r of his old score  plus . 

the s co res  of the members  he dominates on each s tep of the scoring, the final ranking is the / 

same  a s  that obtained with r = 112. 

PROOF. - - Under the assumptions of the theorem, the sco re  vector a f te r  m iterations 
will be 

Since the en t r ies  of D + r I  are nvr~r~egative i l  is obvious that D + r I  will be regular .if 
1 

and only i f  D + - I is regular .  Hence, by the s a m e  kind of proof a s  that of Theorem 1, 
2 

m (h)m (D + rOm = yxe = cy, 
m+m 

where k is the principal character is t ic  value of D + rI ,  x and y a r e  the associated 
row and column character is t ic  vectors,  and c = xe. However, since (D + rI)y = ky 
implies Dy = (k - r)y,  we s e e  that y is also a character is t ic  column vector of D a s -  
sociated with k - r.  It is easy to s e e  that k - r is the principal character is t ic  value of 
D since otherwise k would not be the principal character is t ic  value of D -f r I .  This 
show's that the ordering is independent of the value of r and completes the proof. 

COROLLARY 1. - -  The Wei-Kendall scoring vector may be obtained by computing a 
charac te r i s t ic  column vector associated with the principal character is t ic  value of the mat r ix  
D. . 

This corollary gives a characterization of the Wei-Kendall scoring vector and also a 
method of computing i t .  A second characterization i s  given in the next section. 

C .  The Dominance Hankine Method . 

Here a new method is proposed f o r  obtaining a ranking from a n  ordering ol a se t .  It is 
a generalization of the methods proposed in Exerc ises  10-12 on pages 314-15 of Reference 10 .  
Initially the method will depend upon a regularity assumption but the la t te r  will be removed 
in Chapter 11. 'Theorem 6 shows that the Wei-Kendall method is a special case  of the domi- 
nance method. 

The dominance method is the following: P ick  a positive number r ,  and then consider 
the infinite sum D + r ~ 2  + r 2 ~ 3  + r 3 ~ 4  + . . . . If the value of r was chosen so  that 
this infinite sum converges, then the scoring vector fo r  the members  of the se t  A is de- 
fined to be 



Observe that this method of judging gives a s  a s co re  to each member  the number of members  
of the s e t  he dominates in one stage, plus r t imes the number he dominates in  two stages,  
plus r2 t imes the number he dominates in  three s tages,  e tc .  Conditions fo r  the conver- 
gence of the infinite sum and an  expPession for  i t s  sum a r e  given in the next theorem. 

THEOREM 4. - - Let D be the mat r ix  of an irreflexive binary ordering relation. As -  
sume that D is regular ,  k i t s  principal character is t ic  value, and let  r be any positive 
number.  Then 

(a) A necessary and sufficient condition that the infinite sum in Equation 8 converges 
1 is that r < - 
k '  

(b) If the sum converges, then the scoring vector is 

PROOF. - - The following identity may be established by a n  induction argument: 

1 1 
If r < -, we see  that - cannot be a character is t ic  root of D, hence the mat r ix  

k r 
I - r D  has a nonzero determinant and a l so  has an inverse,  If Equation 10 is multiplied by 
that inverse the resul t  is 

Since (11 kIn > rn,  we see  from Theorem 1 that the te rm r?In tends to zero.  Hence, 

for  n sufficiently large, we have 0 ( I - r?In 5 I which implies that 

Therefore the infinite sum converges, s ince i t  has  a l l  positive t e r m s  and is bounded above. 
If we look again a t  Equation 11, we see  that the infinite sum converges to the value claimed 
fo r  i t  in Equation 9, which proves (b) and the sufficiency par t  of (a).  F o r  the necessity par t  
of (a), observe that if r = l / k  then the nth t e rm of the infinite sum in Equation 8 tends 
to a nonzero value; and if  r > l / k  i t  tends (by Theorem 1) to infinity. In ei ther  case the 
infinite sum does not exist .  This completes the proof of (a).  

A s  was seen  in Corollary 1, the Wei-Kendall scoring vector is proportional, to the 
character is t ic  column vector associated with the principal character is t ic  root of D. The 
next theorem shows that the dominance scoring vector is proportional to the vector D y  
where y is the optimal strategy vector for  the column player in  the mat r ix  game 
G = I - rD. It a lso shows that if  we only wish the ranking, not the actual s co res  of the 
members ,  we can orde r  them according to the components of the ~ e c t o r  y. F i r s t  we need 
a definition. 



DEFINITION. - -  Let H be an  n x n mat r ix  with en t r ies  h i j ,  and let  H - .  be 
the cofactor of the element hij Denote by H* the transposed cofactor mat r ix  

1J 

H* = 11 . . 1 1  t r .  ( ~ e k a l l  that lf det H # 0, then H-1 = -1- 
H l ~  (det H )  H*.) 

THEOREM 5. - -  Under the assumptions of Theorem 4, fo r  r sufficiently smal l  (for' 
example, r < l / ( n  - 1) is always sufficient), the scoring vector Equation 9 is proportional 
to the vector Dy, where y i s  the unique optimal s t rategy for  the column player in the 
ma t r ix  game G = I - rD.  Moreover, the components of Dy and the components of y 
a r e  ordered  in the s a m e  way. 

PROOF. - -  If we use the transposed cofactpr matrix,we can write the sco re  vector 
Equation 9 a s  s = ---1- Dz, where z = G * ~ .  Thk vector z has a s  enteies the 

(det G) 
s u m s  of the cofactors of the columns of the mat r ix  I - rD. These entr ies  will, in turn, be 
proportional to the components of the optimal s t rategy for  the column players  of the matrix* 
game G = I - rD, providing that the mat r ix  itself is a kernel of the game (see McKinsey, 
Reference 14). We shal l  show that r can be chosen smal l  enough that the whole mat r ix  is 
the kernel  of the game G .  We f i r s t  show that r can be chosen small  enough that the value 
of G is positive. Observe that the game G is not more  unfavorable to the row player 
than the game C which is an  n x n mat r ix  with ones on the main diagonal and a l l  entr ies  
off the main diagonal equal to -r .  It  is easy to show (see Reference 10, page 293, Exer -  
c ise  8) that the value of the game C is equal to l / n  - [(n - l ) / n ]  r. Therefore i f  
r < l / ( n  - 11, the value of G is certainly positive. We next show that for  smal l  r every  
optimal s t rategy for  the row player in  the game G puts positive weight on each r o 6  of the 
matr ix.  Suppose, on the contrary; that he had an  optimal s t rategy that put ze ro  weight on 
the f i r s t  row (say).  If the column player counters with the (not necessar i ly  optimal) s t rategy 
that chooses the f i r s t  column with probability one, the row player 's  expectation is a t  mos t  
zero,  contradicting the fact that the value of the game G is positive fo r  sma l l  enough r .  
Hence fo r  r sufficiently small ,  the kernel of the game is the whole mat r ix  and optimal 
s t ra teg ies  fo r  each player a r e  unique. 

The column player 's  optimal strateg;y y is 

where 

and Gij = (I -rD)ij  is the cofactor of the , i, jth element of the matr ix G = I - rD.  
The quantity K is nonzero because the whole mat r ix  i s , a  kernel of the game. Thus 
s = (det G ) D ( I  - r ~ ) " e  = tDy, where t = K(det G) is a constant. Therefore 
s is proportional to Dy. 

F r o m  the identity (I - rD)y = y - rDy, we obtain - ,Dy = (111-1 r y  - (I - r ~ ) ~ . ]  . 
Since the kernel of the game is the whole matrix,  we have (I - rD)y = v, where v is ,' 

a n  n-component column vector each of whose entr ies  is equal to the value of the game G. 



Each component of y is grea te r  than o r  equal to the value of the game G = I - r D  since 
y is an optimal stategy in that game. Hence y - v is a nonnegative vector.  Therefore the 
members  of the se t  A a r e  ranked in the same way by the vectors  s and y. (To get the 
actual scores,one must  compute the quantity tUy which is ,  in general,  different f rom y . )  
This completes the proof of the theorem. 

Theorem 5 gives another computational procedure f o r  finding the ranking, namely, to 
solve the mat r ix  game I - r D  for  the column player 's  optimal s t rategy.  It a l so  shows that 
the actual s co re  vector obtained by the dominance method may depend upon the value of r 
chosen. 

COROLLARY 2. - - Under the assumptions of Theorem 4, if r < l / ( n  - 11, then 
r < l / k ,  where k is the principal character is t ic  root of D. Therefore,  if y is the 
column player 's optimal strategy in the game 

then Dy o r  y gives a ranking of the members  of the se t  A. (Remark: observe that the 
game Equation 15 can be computed for  any problem without finding k, a fact  that substantial- 
ly reduces computing time, if only a ranking, not the actual score ,  is des i red . )  

PROOF. - - We showed in the proof of Theorem 5 that if r < 1 - 1 then 
G = I - r D  has positive value and i t s  only kernel i s  the whole matr ix.  The value under these 
conditions is .(det G) /K where K is a s  in Equation 14. Therefore,  
det G = det (I - rD) f 0, and l / r  is not a character is t ic  root for  any r < l / ( n  - 1 ) .  
Therefore r < l / k .  

We do not, a s  yet, have any connection between the Wei-Kendall ranking method and the 
dominance method. To find a closer  connection, reconsider Equation 10. If we multiply i t  on 
the right by G*. = (I - r D P ,  we obtain 

(det G)(D + rD2 + . . . + rn- ID") = D(1 - r%")(1 - rD)*. 

This equation holds fo r  any n and any r. Hold r < l / k ,  and let n tend to infinity 
in Equation 16; we obtain 

2 * 
(det G)(D + r D  + . . .) = D(l - rD) . (17) 

Although the infinite sum in  the second fac tor  on the left-hand aide of Equation 17 does not 
exist  if r = l / k  (since, by Theorem 1, i t s  nth te rm does not tend to zero),  the right- 
hand side of Equation 1 7  and hence the left-hand side. tend to l imits  a s  r approaches I l k  
f rom below. (Observe that det G tends to zero.  ) We therefore define 'the dominance 
sco re  vector for  r = l / k  to be 



where y is the column player 's  optimal strategy in the game I - 1 and K 1s a s  
1 

in  Equation 14. Since det I - - D ( ) = 0, the value of the game is zero .  F o r  

r < l / k ,  w e h a d  ( I - r D ) y  = .v; hence, in  the limit we have = 0 .  But this '  

means that Dy = ky s o  that y is a character is t ic  vector of D associated with k. We 
conclude that the dominance method and the Wei-Kendall method agree  when r = l / k .  
These resu l t s  a r e  summarized in the following theorem. 

THEOREM 6. - - F o r  r = 1 / k both the dominance method and  the Wei-Kendall 
method ass ign  a s  a s co re  vector H where H is a constant and y is: 
(a) a character is t ic  vector of D associated with its principal character is t ic  value k, and 1 
(b) an  optimal s t rategy for  the column player in the game I - - D. 

lc 

A question that the author has been unable to set t le  is the following: 
Is  the ordering given by the dominance method fo r  0 < r < l / k  the same  a s  it gives fo r  
r = l/k? In al l  the examples computed this has  been the case, bul: no proof has a s  yet 
been found. If the answer is yes,  then i t  would be sufficient mere ly  to solve the gar'fle 111 
Equation 15 in  o rde r  to get the unique ranking. 



CHAPTER I1 

THE GENERAL CASE FOR PAIRWISE REDUNDANT RELATIONS 

A. More on Order  Relations 

Some of the mater ial  in this paragraph is covered in more  detail  in Section 1-5 of 
Unit I1 of Reference 11. A binary o rde r  relation R that is reflexive and transitive (see 
Chapter I, Section A) i s  called a weak ordering.  Let  u s  define a relation E s o  that AiEAj 
means " A ~ R A ~  and Aj RAil'; then it can be shown that E i s  an  equivalence relation; 
that is ,  it is reflexive, symmetr ic ,  and transitive. Let U be the se t  of equivalence c lasses  
of A determined by E.  We can also define a preference relation P where AiPAj 
means "AiRAj and it is false  that Aj RAi. " P is reflexive and transitive.  This pre-  
ference relation induces a par t ia l  o rder  Po on the s e t  U of equivalence c lasses .  Thus 
if X and Y belong to U,.. then XPOY if and only if AiPAj fo r  a l l  Ai in X and 
a l l  Aj in  Y. Po is also irreflexive and transitive.  

In our  case, we define AiRA. to mean "Ai can dominate Aj in a cer tain number 
of s tages."  We shall  s ta te  this verdally a s ,  Ai is comparable to Aj . By definition, we 
shall  say  that AiRAi for  a l l  i; that i s ,  each member  is comparable to himself.  By defi- 
niton, R is reflexive and transitive and hence is a weak ordering relation. The co r re -  
sponding equivalence relation E i s  defined a s  IIAiRAj and A.RA. " Verbally, we say  
that AiEAj if and only if  Ai and A a r e  mutually comparadle: ' ~ e t  U be the se t  of j 
equivalence c lasses  defin'ed by E .  The corresponding preference relation P is defined 
verbally a s  AiPAj ; that i s ,  Ai is prefer red  to A .  if Ai is comparable to A . ,  but 

J J 
A is not comparable to Ai. Finally, the induced partial  ordering Po on the equivalence J 
c lasses  is XPOY if equivalence c lass  X is preferred to Y; that i s  every element in 
X is prefer red  to every element in Y.  

In Section 2, we shall  show that the induced partial  ordering Po of equivalence 
classes  is actually a l inear ordering in the case  of a pairwise redundant ordering relation. 
Then we show that the mat r ix  of a n  equivalence c lass  is regular ,  except in the case that the 
c lass  contains one, two, o r  three elements.  A ranking is then obtained a s  follows: Elements 
in different equivalence c lasses  a r e  ordered  by the relation P and elements  in the same 
equivalence c lass  a r e  ordered by one of the ranking procedures described in P a r t  I. We 
thus obtain a complete ranking in nearly a l l  cases .  The cases  for  which the method fails, 
namely those in which one o r  more  members  a r e  tied, a r e  discussed fur ther  in Chapter 111, 
Section B. 

B. Equivalence Classes  and Their Par t ia l  Ordering 

Here we c a r r y  out the program outlined a t  the end of the last  section. 

THEOREM 7. - -  If >> is a pairwise redundant ordering, then the 'bar'tial ordering 
Po of the s e t  U of equivalence c lasses  is a l inear ordering. 



PROOF. - -  Let X and Y be two equivalence c lasses  in U, and let  Ai be any 
element of X and Aj be any element of Y.  Since the relation >> i s ,pa i rwise  redundant, 
we have ei ther  Ai >> A o r  Aj >> Ai. Suppose i t  is the fo rmer .  Then Ai >>Ak fo r  

j 
eve ry  Ak in Y, s ince otherwise Ak would belong to X. Hence we conclude that 
X P T .  Since every pair  of equivalence c lasses  is comparable under Po and since P o  is 
transitive,  we s e e  that it gives a l inear  ordering of these classes ,  completing the proof. 

In par t icular ,  Theorem 7 means that the maximal and the minimal equivalence c lasses  
under the part ia l  o rde r  a r e  unique. It a lso shows that if we can rank the elements in each 
equivalence c lass ,  we will then have a ranking of a l l  the members  of the s e t  A. We will 
s e e  that i t  is not always possible to order  e lements  within a given equivalence c lass  (see 
Chapter 111, Section B), but Theorem 9 below shows that the methods of P a r t  I can be ex-  
tended to make a s  complete a ranking a s  is possible within such equivalence c lasses .  

DEFINITION. - -  Let X be an  equivalence c lass  and let DX be the dominance ma- 
t r i x  that the members  of X define. We shall  cal l  DX the dominance mat r ix  associated 
with X. 

Obviously DX is the submatrix of D obtained by taking oilly those rows and columns 
corresponding to members  of the equivalence c lass  X. If X is a unit c lass ,  that i s ,  con- 
s i s t s  of one member,  then the mat r ix  DX is the 1 x 1 mat r ix  with entry zero.  We next 
prove some resu l t s  that show that DX is regular  if there a r e  a t  least  four elemerlts i n  lhe 
equivalence c lass  X. 

LEMMA 1. - -  Assume >> is a pairwise redundant ordering, and let  X be an  equiva- 
lence c lass  and DX be i t s  associated dominance matr ix.  If there' is an entry, say  the 
i, jth entry, of D? that is positive f o r  a l l  sufficiently large powers of DX, then DX 
is regular .  

m 
PROOF. - -  If f o r  a l l  m >_ M the i, jth entry of DX is positive, then it is possible 

t o g o f r o m  Ai to Aj  in  M steps,  M +  1 steps, M + 2  s t e p s ,  e tc .  Let N be 
the la rges t  number of s teps  required to go from Aj to any other element of X; such a 
number ex is t s  since i t  is possible to go from Aj to every individual in X. Then i t  is 
possible to go from Ai to every other s ta te  in M + N o r  more  s teps s o  that the ith row 

of ~ g + ~  has, a l l  positive en t r ies .  L e t  K be the largest  number of s teps required to go 
M+N+K has  a l l  positive entr ies  . ' f rom any element in X to Ai; then the ith column of DX 

since we can go from any s tate  in X' t6 A i  in PC o r  fewer s teps ,  and w e  can go from 
Ai to any other s ta te  in  M + N o r  more  s teps.  Now the square of a mat r ix  having a l l  
positive en t r ies  in i t s  ith row and i t s  ith column will have al l  i t s  entr ies  positive. 
Therefore D ~ ( ~ + ~ + ~ )  x a n d  a l l  higher powers  of DX a r e  positive and DX is regular .  

THEOREM 8. Let >> be a pairwise redundant domina.nce relation. If X is an 
equivalence c lass  containing four  o r  more elements,  and D x is i t s  associated matrix,  
then DX is regular .  



PROOF. - -  The graph of a pairwise redundant dominance relation defined on a s e t  of n 
individuals means a se t  of n points in the plane with each pair  of points being connected by 
a line segment, and on each line segment one o r  two a r rows  indicating the direction of domi- 
nance. There a r e  only four pairwise complete dominance relations on a s e t  of four elem@nts. 
The graphs of three of these a r e  shown in.Fig. 1; the fourth dominance. relation is simply 
the transitive ordering of the four individuals. If X is an equivalence c lass  containing 
exactly four members  then i t s  graph must  be that of F ig .  l ( a )  since the other two graphs 

F igure  1 

(and that of the transitive relation) contain two o r  more  equivalence c lasses .  By direct  com- 
9 . putation it can be shown that DX > 0 if X is the equivalence c lass  whose graph is shown 

in Fig.  l (a j .  If X is an equivalence c lass  containing five o r  more  members  then i t  contains 
an intransitive triple, that i s ,  a triple with Ai >> Aj >> Ak >> Ai. This holds because a l l  
tr iples can be transitive if and only if the dominance relation itself is transitive.  Consider 
such a triple and then consider the relation of each of the other elements of X to the triple.  
If there is an  element whose relation to the triple is a s  in F ig .  l (a) ,  then the submatr ix 
of DX defined by these four elements is positive fo r  ninth and grea te r  powers so  that 
Lemma 1 implies that DX is regular .  If a l l  the other elements of X have to the in- 
transitive triple the relation depicted in Fig. l (b)  o r  a l l  have the relation of Fig.  l (c) ,  
Then these elements cannot belong to the same equivalence c lass .  Therefore,  if none of the 
elements a r e  related a s  in ,Fig.  l ( a )  then there is a t  least  one a s  in F ig .  l (b)  and a t  least  one 
a s  in Fig.  l (c) .  Moreover, i t  i s  possible to choose one of each type s o  that the resulting 
graph is a s  in F ig .  2; otherwise these elements cannot a l l  belong to the same equivalence 
class .  But now we see that the el.ements A1, A2, Aq, and Ag have a graph cquiva- 
lent to that of F ig .  l ( a )  s o  that again Lemma 1 applies and DX is regular .  



Figure 2 

THEOREM 9. - -  If >> is a pairwise redundant ordering, X is an equivalence class 
and DX is not regular, then there a r e  three possibilities: 

(a) X contains only one element, 

(b) X contains two elements A and B, ordered A >r B >> A .  

(cj X contains three elements, A, B, and C, ordered A >> B >> C >> A.  

PROOF. - - By Theorem , 8 ,  X cannot have more than three elements. (a) If' X 
has one element, then, a s  already observed, i t s  matr ix  is simply the number 0 and is not 
regular.  (b) If X has two elements A and , then necessarily A >> B and 
B > >  A - since they must be mutually comparable. It is easy to check that DX is not 
regular.  (c) If X has three elements A, B, and C, then necessarily 
A ?? B >? C >> A, .so that they belong to the same equivalence class. Wlth oiiiy these 
relations among them i t  is easy to show that DX is not regular. With any further relations 
it  is easy to show that DX is regular, proving (c). 

Observe that Case (b) is a two-way tie and Case (c) is a three-way tie. It is evident 
that there is no way of breaking such ties with only the information given. Other kinds of ties 
a r e  discussed in Chapter 111, Section B. 

The way in which the results  of this section can be used to extend the ranking methods 
given in Chapter I is now obvious. Given a pairwise redundant ordering relation on the 
members  of a se t  A, f i r s t  separate the members into equivalence classes by means of the 
mutually comparable relation. To compare members of different equivalence classes, use 
the linear ordering relation Po. To compare members of the same equivalence class, use 
one of the. scoring methods of Chapter I. In some cases (as, for  example, in (b) and (c) of. 
Theorem 9) t ies will have to be allowed. In practice, such ties a r e  r a r e  and a complete 
ranking will usually be obtained. Ties may be broken by submitting the tied individuals to 
another judge, (see Chapter 111, Section A). 



CHAPTER I11 

EXTENSIONS, EXAMPLES, AND COMPARISONS 

A. Multiple Judgments. 

We can think of the binary relation discussed in Chapters I and I1 a s  being given by a 
single judge who compares the members  of the se t .  Suppose, a s  is often the case,  that the 
members  of a given se t  a r e  rated by two o r  more  judges. F o r  example, we may be interested 
in testing which of a number of production processes  is best for  a cer tain job, and we apply a 
battery of tes ts  to compare each pair  of processes .  Kendall (Reference 3) has proposed add- 
ing the dominance mat r ices  of each judge and then using his scoring method on the sum ma-  
trix.  This resul t  could also be interpreted a s  the resu l t  of a single judge who can .cast  a 
variable number of votes for  members  of a pair,  instead of just one vote. Here we wish to 
propose a modification of Kendall's procedure. Suppose we have m judges, and each 
judge has a dominance mat r ix  D l  . . . , Dm that indicates how he r a t e s  the members  of 
the set .  Suppose, in turn, that we can r a t e  the judges according to how important we fee l  
their judgments a r e ;  let the weight we give to judge k be Ak, where Ak is a positive 
r ea l  number. Then we form the matrix,  

The resulting mat r ix  will not, in general, have only 0 and 1 entr ies ,  but i t  will have zeros  
on i t s  main diagonal. However, we shall  s ay  that Ai is comparable to Aj if there is a 
nonzero entry in the i, jth entry of F; by definition we say  that Ai is comparable to 

Ai, and then extend the notion of comparability by making it transitive.  As  in Chapter 11, we 
define equivalence classes and then use either one of the judging methods of Chapter I to s e t  
up an o rde r  among member of an  equivalence class .  The theorems previously proved hold; 
in some cases  a slight modification is necessary.  The mat r ix  F will usually define fewer 
equivalence c lasses  and there will be fewer t ies than fo r  the relation defined by any indi- 
vidual mat r ix  Dk . Again the mat r ix  J? may be interpreted a s  the mat r ix  of a single judge 
who can cast  a variable number of votes fo r  the members  of each pair .  An example of a 
multiple judgment is worked out in the next section. 

B. Examples 

1. Comparison - of - the Scoring Methods of Chapter I. - -  Consider the dominance ma- 
t r ix  (20) fo r  the graph of Fig. l ( a ) .  It i s  the <atrix of theonly pairwise complete dominance 



relation on four  objects whose mutually comparable relation defines a single equivalence 
class .  The character is t ic  equationof D is x4 - 2x - 1 = 0 and i t s  principal charac-  
te r i s t ic  root is 1.395. Table I shows the sco res  obtained f rom the dominance method, 
wri t ten a s  deviations f rom the mean score  divided by s l .  The. las t  score ,  corresponding to 
r = 0.717 = 111.395, is a l so  the score  given by the Wei-KendalI scoring method. The 
s c o r e s  always place the members  in  the same  o rde r  although the actual.numerica1 sco res  
vary  with r. The exact numbers  obtained depend upon the weight given to higher o rde r  
dominances . 

TABLE I 

2. Multiple Judging. - -  Suppose that two different judges of four individuals ra te  them 
according to the dominance ma t r i ce s  in (21). 

If the judges a r e  given weights of one each, the F mat r ix  is 

To find the s c o r e s  of the individuals we solve the game I - F (f i r s t  checking that 114 
is l e s s  than the principal character is t ic  root of I?) and find that the optimal s t rategy for  the 
column player has  components s l  = 0.349, s 2  = 0. 233, s3 = 0.225, and s4  = 0. 193. 
Hence the composite judgment of the two judges ranks the individuals A1A2A3A4. 



3. Ties. - -  As observed earl ier  there sometimes a r e  ties among members of the same 
equivalence class which cannot be broken by the scoring methods developed. Figure 3(a) 
shows a three-way tie whose dominance matrix i s  not regular (cf. Theorem 9); F ig  3(bj shows 
a five-way tie whose dominance matrix is necessarily regular (cf. Theorem 8). The reader 

(b) 

Figure 3 

may wish to construct analogous seven-way and larger  odd-number ties. It can be shown that 
a four-way tie is impossible with a pair-wise complete relation. It is probably true that even- 

. ' ,  number ties greater  than four a r e  also impossible in this case. 

Figure 4(a) shows the graph of a dominance relation among five individuals that contains 
a three-way tie (A3, A4, and A5 a r e  tied. The graph in Fig. 4(bj is that of a dominance 
relation among six individuals. By considering the equations satisfied by a characteristic 
matrix of the corresponding D matrix, o r  those satisfied by an optimal strategy vector, 
we can show that A4 and A5 a r e  tied by both the scoring methods of Pa r t  I. This is 
clear graphically since they each dominate the other and also dominate the same individuals. 
There seems to be no, reasonable way to break these ties with only the information given. But 
if we could submit the same individuals to another judge, it  is quite likely that the combination 
of their two judgments would break the tie. 

(b) 
Figure 4 

These examples show some of the difficulties that can a r i se  in judging problems. 



C. Comparisons and Extensions 

The methods discussed he re  do not depend upon the assumption of a n  underlying psycho- 
logical scale  a s  do those of Thurstone-Mosteller (References 4, 5, and 6). Nor do they de- 
pend upon an  underlying s tat is t ical  model, a s .  does Scheffels model (Reference 7). In Refer- 
ence 6, Mosteller has applied his  model to the analysis of baseball data where certainly the 
judging method is impersonal and there is no psychological scale .  On the other  hand, the 
Wei-Kendall method, together with other methods, was used by Bliss, Greenwood, and White 
(Reference l j o n  a case in which t a s t e r s  were asked to compare pa i rs  of various kinds of 
applesauce. That case s e e m s  very  well suited to the assumption of a psychological scale .  
F r o m  s i x  judgments by each of 2 5  tas te rs  they obtained the following matrix,  in  which the 
entry a t  the i, jth .spot indicates the number of t imes i was preferred to j. 

In Table I1 we reproduce some of the data from ~ e f e r e n c e  1 that compares the various 
methods of ranking the kinds of applesauce, together with the row player 's  optimal s t rategy 
vector in the game I - -1 D. They a r e  written as deviations f rom the mean sco re  divided 

0 by the la rges t  s co re .  0b59rve that a l l  methods give the same  ranking, but that the actual 

TABLE I1 

Mean normal  deviate, Mosteller 1.000 0.108 -0.409 -0. 699 

Degree of preference, ranks,  Scheffe 1. UUU U. U 4 4  -0 .294 - 0 . 7 5 0  

Optimal s t rategy in game I - (11500)D 1.000 0.130 -0.435 -0. 696 

numerical s c o r e s  differ somewhat. Bliss, e t  a l ,  s ta te  a preference for  the Thurstune- 
Mosteller technique because of computational ease,  and probably also because i t  is a famil iar  
kind of computation. 

The solytion of a four-by-four game by t r ia l -and-er ror  methods is not difficult and can 
be done with a desk computer in  l e s s  than 2 hours.  Methods of computing the solutions of 
very la r&e games have been coded t o r  electronic computers and would allow the applicativrl 
of the dominance method to la rge  problems. 

It should be remarked that only a reinterpretation i s  necessary  in o rde r  to modify the 
o r d e r  relation discussed here  to one that expresses  degree of preference in  the sense of - 
Scheffe (Reference .7). Thus the entr ies  of the mat r ix  could be 0, 1, 2,  e t c . ,  the numbers 
indicating how much one member  of the pair is prefer red  over the other.  



A final remark should be made which has relevance to footnote 15 of Reference 7.  
Although the various models for  obtaining the ranking a r e  derived from widely differing 
rationales - -psychological, statistical, sociological, o r  graph-theoretic- -the final mathe- 
matical model in many cases has been applied with impunity to situations in which the ration- 
ale of the model does not apply. The'fact that the results  of the various methods a r e  in close 
agreement indicates, perhaps, that they each extract approximately the same information 
from the data gathered, regardless of how they were developed. 
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PART TWO 

NOTES ON FINITE MARKOV CHAINS 

CHAPTER IV 

REGULAR MARKOV CHAINS 

A probability vector (row o r  column) is a vector with nonnegative components~whose 
sum i s  one. A stochastic mat r ix  is a nonnegative square mat r ix  whose row sums  a r e  equal 
to one. 

Let S be a finite s e t  containing n. eleinents called s ta tes .  Let p(0) be a proba- 
bility vector, the initial probability vector.  I ts components give the probabilities of being 
a t  each of the s tates  initially. Let P = (Ip.. ( 1  be an  n x n stochastic matrix,  the mat r ix  
of transition probabilities, whose en t r i e s '  p . .  give the probabilities of going from state  i - 1J 
to s ta te  j .  A finite Markov chain is a stochastic (time-dependent) process  defined by the 
initial probability vector p(0)nd the transition matr ix P. 

Let p(m) be the probability of being a t  s ta te  j af ter  m steps,  given that the 
1J 

process  s tar ted at state i .  It can be shown that p(m) = p ( 0 ) ~ ( m )  = p ( 0 ) ~ m ,  where P m  
is the ordinary matr ix power, ~ ( m )  = I IP!Jrn)l 1 ,  and p(m) is the probability of being in each 
of the s ta tes  af ter  m steps.  

A stochastic matr ix i s  said to be regular if some power of the mat r ix  has  a l l  positive 
components.. 

THEOREM 1. - - If P i s  a regular  stochastic matr ix,  then 

(a) The powers P m  approach a matr ix T. 

(b) Each row of T i s  the s ame  probability vkctor t. 

(c) The components of t a r e  positive. 

\ .  
The proof depends upon the Frobenius theorem (see Theorem 1 of P a r t .  One). 

/ 

THEOREM 2 .  - - If P ,  T and t a r e  a s  in Theorem 1, then 

( a )  If p is any probability vector, p Pm-t. 

(b) The vector t sat isf ies  t P  = t, i .  e . ,  it is a fixed vector of P; t is the . . 
unique such fixed probability vector.  . . 



This theorem has the following important interpretation: Call a Markov chain regular 
if i t s  transition matr ix P is regular .  Then p(m) = p ( 0 ) ~ m t ,  s o  that, after, a large 
number of s teps,  the probability of being in s ta te  j is very nearly t .  regardless  of the . 

J initial probabilities p(0). The quantity t j  i s  the limiting probability of being in s ta te  j.  ' .  

(Fo r  examples s e e  Chapter 15 of Reference 1,' o r  Chapters V and VII of Reference 2 . )  

THEOREM 3. - -  F o r  a regular  Markov chain,the avkrage tim,e it takes to re turn  to a 
s ta te ,  having once been there,  is the reciprocal  of the limiting probability of being in that 
s ta te .  

Theorems 2 and 3 answer the two most  important questions concerning regular  Markov 
chains. (Proofs  may be found on pages 221 and 323 of Reference 2. ) 



CHAPTER V 

NONREGULAR CHAINS 

A .  The Classification of States 

The classification here  is s imi la r  to the classification of members  of .a s e t  discussed 
in ,the judging problem (Pa r t  One of this monograph). Let us  say  that s ta te  i can communi- 
cate with s ta te  j in one s tep if p . .  ';. 0 .  Similarly, s ta te  i can communicate with s tate  j 

13 
in  m steps if there is a chain of s ta tcs  i = i l ,  i2,  . . . , i h  = j s u c h  that ik can communi- 
cate with ik+l in one s tep.  By definition we shall  say  that s ta te  i can communicate with 
itself (in zero  steps,  say) .  The communication relation, which we symbolize by C, is then 
reflexive and transitive--therefore a weak ordering. The related equivalence relation E is 
defined so  that iE j  means "iCj and jCi." Let U be the se t  of equivalence c lasses  of 
s ta tes  determined by E .  The related preference relation P is defined a s  "iPj if iCj and 
not jCi. I '  Preference relation P induces a partial  o rde r  Po on the se t  U of equivalence 
c lasses .  Thus, if  X and Y belong to U then XPOY if  and only if i P j  for  a l l  i in X 
and al l  j in Y. 

EXAMPLE. - -  Consider the Markov chain with transition matr ix:  

Here a r e  three equivalence classes ,  one containing States 1 and 2 ,  one containing State 3,  
and one containing States 4 and 5. They a r e  ordered by Po according to the graph' below: 

B. Definitions 

DEFINITION. - -  The minimal equivalence c lasses  under the partial  ordering Po a r e  
called ergodic c lasses .  The s ta tes  in ergodic c lasses  a r e  ergodic s ta tes .  If an  ergodic c lass  
contains exactly one s tate  then that state i s  called an  absorbing s tate .  All s ta tes  that a r e  not 
ergodic a r e  called transient s ta tes .  



In the example above, 1 and 2 a r e  transient s ta tes;  3,  4 and 5 a r e  ergodic s tates;  and 3 
is an  absorbing s ta te .  

DEFINITION. - -  If X is an  equivalence c lass  with k s tates ,  then PX i s  the 
k x k submatr ix of P whose entr ies  have indices of s ta tes  in X. 

LEMMA 1. - -  If X is an ergodic class, then PX is a stochastic mat r ix  

DEFINITION. - -  An ergodic c lass  X is regular  if PX is a regular  matr ix.  
An ergodic c lass  that is not regular  is periodic. States in ergodic c lasses  a r e  regular  o r  
periodic according to the type of their c lass .  

Obviously, a n  absorbing s tate  is regular .  

(The notation given he re  differs somewhat f rom that used by Fe l l e r  in Reference 1. 

DEFINITION. - -  An absorbing Markov chain is one for  which each ergodic s tate  is 
absorbing. In such a chain it is always possible to go f rom any s tate  to an  absorbing s tate  
(in one o r  m o r e  s teps) .  

EXAMPLE. - - The Peter -Paul  matching-pennies game is an absorbing Markov chain. 
I t s  matr ix ,  fo r  the .case when the total fortune is three pennies, is given below. The s tates .  
a r e  P e t e r ' s  fortune. 

The behavior of PX f o r  X a regular  ergodic c lass  has  been discussed previously. 
If X is a periodic ergodic class ,  then there is a positive integer p 2 such that if wc 
I t  look at" the process  only a t  t imes p, 2p, 3p, . . . , then i t s  behavior is like that of a 

/-- regular class, We shall  content ourselves with this sketchy discussion of periodic classes .  
(More information is available in Reference I) .  

Regular and periodic c lasses  ac t  like absorbing c lasses  since once the process  en ters  
such a c lass  it never leaves i t .  If we want to know only what the chances a r e  of i t  entering 
such a c lass  and not what happens a f te r  that, we can replace such regular  o r  periodic c lass  
by absorbing c lass  (s ta te) .  ' l 'herefore the r e s t  of the discussion w i l l  center on absorbing 
Markov chains. 

C. Absorbing Markov Chains 

Three  important questions a r e  to be answered fo r  absorbing Markov chains. 

(a) What is the probability that the process  will end up in a given absorbing s ta te?  

(b) What is the average length of time f o r  the process  to reach some absorbing s ta te?  

(c) On the average, how many times will the process  be in each transient s ta te  before 
final absorption? 



Contrary to the case  of regular Markov chains, the answer to these questions may de- 
pend on the s tar t ing s tate .  

Suppose there a r e  m absorbing s ta tes  i l ,  i2,  . . . ,  lm. Let d .( i  j be the proba- 
J k bility of being absorbed a t  s ta te  ik if the process  s t a r t s  a t  s ta te  j. Because i t  is impossi- 

ble to leave a n  absorbing state,  it is obvious that 

d . ( i )  = 0 i f ' h  f k, a (24) 
lh 

and 

Let  d(ik) be the vector with components dj(ik).  F r o m  a s tate  j the process  goes 
b to s ta te  u with probability p .  af ter  which there is probability du(ik) of being absorbed 

J U  
a t  ik; hence, pjudu(ik) is the probability of going f rom j to ik via s ta te  u. The sum 
of a l l  these t e rms  gives the, total probabilily of going f rom j to ik. This can be written a s  

. a mat r ix  product s o  that 

It can be shown that there is a unique probability vector solution to Equations 24-26. Note that 
the solution d(ik) is a fixed column probability vector of the transition mat r ix  P. F r o m  
the fact that the process  must be absorbed it is easy to s e e  that 

(Recall that e is the n-component column vector each of whose en t r ies  is one.)  
J 

The components of the vector d(ikj give the answer to Queation (a) above. Thus the 
jth components of the vectors d(ik) give the probabilities of being absorbed in each of the 
absorbing s tates ,  given that the process  s ta r ted  in s ta te  j.  

EXAMPLE, - -  In the Pe ter -Paul  matching-pennies game above, it is easy  to s e e  that 
the .two fixed vectors  a r e  

Thus, i f  P e t e r ' s  fortune is one, he has 213 chance of losing the game and 113 chance of 
winning, and s o  forth.  



We next study Question (cj  and develop resu l t s  that will answer both Questions (bj and 
(c).  If i and j a r e  transient s ta tes ,  let t i j  be the expected number of t imes the pro-  
c e s s  will be in  s ta te  j given that it s tar ted in s ta te  i. Let u s  derive the relations that the 
t i j  mus t  satisfy.  

F r o m  i the process  goes to s ta te  k with probability1 pik. If k is an absorbing 
s tate ,  then the process  never  goes to j; but if  k is transient ' then we expect it to go to j 
a n  average of tkj t imes. We must therefore sum pik tkj 'over the transient s ta tes  k. 
In case i = j, we must a lso add one to this sum since we s ta r ted  in j. To write these r e -  
lations in ma t r ix  form let Q be the submatrix of P consisting of the entr ies  whose in- 
dices  a r e  those of the transient s ta tes .  Let T = [itijll. Then T and Q a r e  of the same  
s ize  and the above rela'tions can be written 

This car1 be rewritten a s  

It  can be shown that the mat r ix  I - Q is nonsingular s o  that 

T = ( I -  Q ) - ~ .  (30) 

The en t r ies  of the ma t r ix  I - Q give the answers  to Question (cj. They also give 
the answers  to Question (b). If we want to know how marly sleps thc procccs makes before 
absorption, given that i t  s ta r ted  a t  a transient s ta te  i, we observe that, before absorption, 
the process  must  always be in a transient s ta te .  If it s ta r ted  a t  i ,  i t  will be in each of the 
transient. s t a t e s  the average number of t imes given by the entr ies  of the ith row of T. 
Hence, the average number of t imes before absorption is the sum of the  entr ies  in the ith 
row. Thus the components of the vector t, where 

provide the answers  to Question (b). 

EXAMPLE. - -  In the Pe ter -Paul  matching-pennies example above, we have 



F r o m  this we s e e  that the average number of plays before the game ends i s  two, of which 
a n  average of 413 of the plays a r e  made in the s tar t ing s tate  and 2 1 3  in  the other transient 
s ta te .  



CHAPTER VI 

T ~ E  OPEN LEONTIEF MODEL! 

The Leontief input-output model considers an economy in which there a r e  r industries 
with the simplifying assumption that each industry produces exactly one kind of good. We re -  
gard the natural  factors  of production such a s  land, t imber ,  minerals ,  e tc . ,  a s z f r e e  and do 
not consider them a s  entering into the cost of finished goods. In general, the industries a r e  
interconnected in the sense  that each must buy a certain amount (positive o r  zero)  of the 
o ther ' s  products in  order  to run  i t s  industry.  We define technological coefficients a s  follows: 

a i j  is the dollar value of the amount of the output of industry j that iaust  be purclitiscd by 
industry i in o rde r  that industry i may produce $1 worth of i t s  own goods. Let A be 
the r x r mat r ix  with entr ies  a i j  . By their definition the techriolvgical coefficients a r e  
nonnegative; hence, A 2 0. (Here and elsewhere a n  equality o r  inequality relation between 
two vectors  o r  mat r ices  is assumed to hold if and only if it holds componentwise. ) 

It is easy  to s e e  that ' the sum of the aij, fo r  i fixed, gives the total value of the 
inputs needed by the ith industry in order  to produce $1 worth of i t s  goods. If the ith 
industry is to be profitable, o r  a t  l eas t  to break even, this sum must be l e s s  than o r  equal to 
the value of i t s  output; i. e . ,  a i l  + ai2 + . . . + ai,: 2 1 fo r  i = 1, 2, . . . , r .  F o r  obvious 
reasons,  we shal l  call the i th industry profitable i f  the s t r i c t  inequality holds and profitless 
if the equality holds. We make the assumption that every industry is either profitable o r  
profit less and thus rule out the possibility of unprofitable industries.  

If we let  e be the r-component column vector each of whose entr ies  is 1, we can 
res ta te  the above conditions a s  

A 2 0, (32) 
and 

Ae f e .  (33) 

Having discussed the inputs of the industries,  w e  next discuss  their outputs. 
denote the monetary value of the output of the ith industry and let x = (x I' X2, . - r 
be the row vector  of outputs. Since the ith industry needs a n  amount xiaij ul  Lhe output 
of the jth industry, and this is true for  i, j = 1, 2,  . . . , r ,  the vector of inputs needed 
by the industr ies  is simply xA. Then the jth component of xA gives the total value of 
the output that must  be produced by the jth industry in o rde r  to meet  the interindustry 
demand fo r  i t s  product. 

* This chapter repor t s  on recent (unpublished) work by J. , G .  Kemeny, J. L. Snell, and 
G .  L. Thompson. 



Assume that the economy supplies f o r  consumption an  amount. hi of the output of the 
ith industry. Let h = (hl, h2. . . . . hr) be the row consumption vector.  We shal l  require  
that 

that is ,  the consumption vector i s  nonnegative. 

The requirement that the production vector of the economy be adjusted so that the in te r -  
industry needs a s  .Gel: a s  the donsumption needs .be fulfilled is now easy  to write in vector 
form a s  

Rewriting Equation 35 a s  

we s e e  that it is a s e t  of r simultaneous equations in r unknowns. 

To be economically meaningful, we must  find nonnegative solutions to Equation 36.  
Since the demand vector h may be a rb i ta rary ,  Equations 36 a r e  in general nonhomogeneous 
and will have a solution if and only if the mat r ix  I - A has an  inverse.  Moreover, the solu- 
tions to Equation 36 will be nonnegative for  every h if  and only if I - A -  1 h a s  a l l  non- 
negative components. We must  therefore s ea rch  f o r  necessary and sufficient conditions that 
the inverse of I .  - A be nonnegative. 

We will now imbed our model in  a Markov chain, to be able to use Markov chain methods 
in proofs . 

DEFINITION. - - By the Markov chain associated with an  input-output model we shall  -- 
mean a Markov chain M with the following propert ies:  

(a) The s ta tes  of M a r e  the r processes  of the model plus one additional absorb- 
ing s tate  [the (r + 1)st  state], called the banking s ta te .  

(b) The transition matr ix P of M is defined a s  follows: 

Pij = ai j  for  i , j  = 1 , 2  , . . . ,  r 

Pi, r + l  = 1 - a ,  f o r  i = 1, .... r 
j= 1 

= 0, for  j = 1 ,  . . . , .  r p r  + 1, j . . . . &'. . 
. - . g. , . & '  :. . -. , . .  

P r +  1, r +  1 = 1. 



The intuitive interpretation of M is the following: If Industry i receives a dollar 
fo r  i t s  use,  then it spends it by buying ail from Industry 1, ai2 from Industry 2, e t c . ,  
and r. a i r  f rom Process  r .  The remainder  of the dollar,  if any - -  that i s ,  the amount 

1 -x a i j  - -  is the profit, and we may think of i t  a s  being deposited in a bank. The fact that 
j = 1 

the las t  row of the transition matrix,  the one corresponding to the banking s tate ,  has a l l  z e ros  
except fo r  the one on the main diagonal, means that the bank r ep resen t s  an absorbing s tate .  
The bank gets  money but does not spend it .  

THEOREM 1. - -  Let A  be a mat r ix  satisfying Equations 32 and 33. A nonnegative 
solution to Equation 35 exists for  every h 2 0 if and only i f  the associated Markov chain 
M i s  absorbing with the banking s tate  a s  i t s  only absorbing s tate .  

PROOF. 

Sufficiency. - -  If M is an  absorbing Markuv  chain wit11 the banking s ta tc  a s  ~ t s  only 
absorbing s tate ,  then Q = A  where Q i s  the submatr ix with indices corresponding to 
transient s ta tes .  Also T = I - Q = 1 - A is the mat r ix  whose entr ies  give the mean 
number of t imes the process  is in each transient s ta te .  Sirice L11e mean number of t imes in a 
transient s ta te  is necessar i ly  finite and nonnegative, the components of I - A a r e  non- 
negative, which is the desired conclusion. 

Necessity. - -  If M is not an  absorbing chain with only a single absorbing state,  then 
there is another ergodic c lass  whose indices a r e  those of en t r ies  in A. But then (I - ~ j - l  
cannot exist .  If i t  did, i t  would have the interpretation a s  above; that i s ,  i t s  entr ies  would 
give the mean number of t imes in each s tate ,  and the mean number of t imes the process  is in 
a n  ergodic s ta te  is infinite. Hence I - A does not exist .  

(A nonprobabilistic proof of the theorem cat1 a l so  be provided.) 



CHAPTER VII 

SEMIMARTINGALES OF MARKOV CHAINS 

A martingale relative to a stochastic process  is a function on the s ta tes  of the process  
such that the expected value of the function af ter  one s tep  is equal to the value of the function 
a t  that s ta te .  An upper (lower) semimartingale is a function on a s ta te  whose expectation 
af ter  one s tep is grea te r  (smaller)  than the value of the function a t  the state,  Here we shal l  
assume that the stochastic process  is an  absorbing Markov chain. 

Recall that an  absorbing Markov chain is one a l l  of whose ergodic s ta tes  a r e  absorbing 
s tates .  Assume that there a r e  r absorbing s ta tes  which we shal l  call  boundary s tates .  
Let B be the se t  of boundary s ta tes .  The remaining (transient) s ta tes  will be called 
inter ior  s ta tes .  Assume there a r e  s inter ior  s ta tes ,  and let I be the s e l  of inter ior  
s ta tes .  

Let P be the (r + s )  x (r + s) transition matr ix.  A function on the s tatds  may 
be represented by a column vector z .  Such a z i.s a martingale i f  P z  = z; i t  is an  
upper semimartingale if P z  2 z; and it is a lower semimartingale if P z  2 z.  

A one-person game inte'rpretation makes these definitions c l ea re r .  If z is a column 
vector, let zi be the value to the player of being a t  s ta te  i. Suppose he plays the following 
game: If he is a t  s ta te  i €  B, he receives the value zi; if he is a t  a s ta te  i 1 he may 
ei ther  accept the value , zi o r  move to another s ta te  with the transition probabilities of the 
Markov chain. Then a martingale is a fa i r 'game,  a n  upper semimartingale a favorable game, 
and a lower semimartingale a n  unfavorable game. Wc shall  use this game interpretation to 
give intuitive proofs of certain resu l t s  that follow. 

We shall  concentrate on nonnegative semimartingales.  Suppose that nonnegative bound- 
a r y  values have been assigned to the boundary s ta tes  j . Let U be the se t ,  of a l l  
nonnegativeupper semirnartingales z with z .  = v for  j .  Thus U is the s e t o f  

J j a l l  z satisfying 

(b) z L. 0, and 

(c) z = V.  fo r  j € B. 
j J . 

Similarly, L is the se t  of a l l  lower semimartingales,  that is, vectors  z satisfying (b) 
and (c) and condition .(a) with the inequality sign. reversed.  e 

* This chapter summar izes  some recent (unpublished) work of J. G .  Kemeny and 
J. L.  Snell. 



We shall develop a representation theorem for  nonnegative semimartingales having the 
prescribed boundary values. Every such martingale can be represented a s  a combination of 
certain basic martingales. 

Let T be a subset of I, and denote by P(T) the transition matrix obtained from 
P by changing the states in T into absorbing states.  Let Q(T) = d%_ [P (T) I~ .  . The 
entry qij(T) of Q(T) represents  the probability that, starting a t  state 1, the process 
will reach state  j before reaching any element of T. Let qj(T) denote the jth column 
of Q ( T ~ ;  then, since Q ( T ~  = P ( T ~  Q(T), and since 

Pq.(T) 2 q.(T) for  j € B. 
J J 

Thus, qj (T) for  j €: B is an  upper semimartingale. Its value is one a t  j and zero a t  
al l  other absorbing states and a t  all  s tates  in T. Then-the vector 

io a nonncgntive upper semimartingale with the prescrtbed boundary values; hence z ( T ) c  U. 
We shall call  z ( ~ j  a basic upper semimartingale. ' 

The game represented by the semimartinglae z(T) is the following: If the player is 
a t  a state j in B, the game is stopped and he receives z j  (T). If he is at a state i in 
T, the game stops and he receives z; 5 0. Il' l ~ i  is at a otate iE,'T - T, he may quit and 
receive z i  o r  he may move to another state with the transitioll pi-.ubabilitico of the M~larknv 
chain. This interpretation makes the following lemma obvious: 

LEMMA 1. - -  Let T1 and T2 be subsets of I with T1 C T2. Then 
z(T1) 2 z(T2). 

EXAMPLE. - -  Consider. the Markov chain whose transition matrix i s :  



The se ts  of states a r e  B = 11, 2) and I = 3 4 .  Assume that vl = 2 and "(2) = 1. 
The basic semimartingales a r e  

Lemma 1 partially orders  the basic semimartingales. The maximal element in the 
partial ordering is z(0) (where 0 is the empty set), and the minimal element is ~ ( 1 ) .  
It is easy to see  that z($) is a martingale with the proper boundary values. 

We now make a sp,ecial assumption that is to hold,for the r e s t  of the discussion. It can 
be relaxed but we shall not go into the details. 

HYPOTHESIS A. --  The boundary values vj for  j € B a r e  al l  positive and, for  any 
interior state i € I there is a t  least one j € B so that pij > 0 .  (In other 'words, one- 
step transition from' any interior s tate  to the boundary is always possible.) 

LEMMA 2 .  - -  If Hypolhesis A holds, then 

(i) {PZ(T))~  = (z(T)) i > 0 for  i € I  - T, 

and 

(ii) {PZ(T)]~ > { Z ( T ) ) ~  = 0 for  i C T .  

This can easily be proved from the game interpretation. Lemma 2 shows that for  each 
z(T) exactly one of the equalities (i) o r  (ii) holds. 

LEMMA 3 .  - -  Let xl, x2, . . . ; xn be distinct nonnegative vectors, and let Wi 
be the se t  of components of xi that a r e  equal to zero.  Assume that if Wi G Wk then 
X i  2 xk. Then the vectors a r e  convexly independent; that is,  no one vector xi can be 
written in the form xi = C ak xk with ak > o and c ak = 1. 

k #i k 



PROOF. - - If the contrary holds, then a component of xi can be zero only if-all the 

.Xk have this component zero. Hence Wi & Wi, and xi 2 xk for  al l  k. But his can' 
only be true if xi = xk for al l  k, contrary to hypothesis. 

DEFINITION. - - A convex n-dimensional polyhedron is cubic if in every j-dimensional 
face, for  every ( 5  - 1)-dimensional subface there is a unique nonintersecting l j  - 1)- 
dimensional subface ( j  = 1, . . . , n). 

THEOREM 1. - -  If Hypothesis A is satisfied, then U is a.convex cubic polyhedron 
with 2' corner points. These corner points a r e  the Z(T) for T G I. 

THEOREM 2 (The representation theorem). - -  If Hypothesis A is satisfied, then U 
may be divided into s! simplices each of dimension j. These simplices intersect only in 
faces of lower dimension. Every upper semimartingale l ies  in a. unique smallest simplex of 
dimension j = 0 1 . . . , s. These simplies a r e  either the s-dimensional ones mentioned 
above, o r  the i r  faces. Every upper semimartingale z0 may be .,written uniquely a s  

where To 5 T1 G . . . , 2 Tn and the z (T j )  a r e  the corners of the unique smallest 
simplex containing zO. . . 

This theorem can be extended. to the case where' Hypothesis A does not hold. It can 
a lso  be extended to give a representation theorem for  lower semimartingales. Application 
of these' resul ts  to sequential games, statistical decision functions, and harmonic function 
theory is possible. 

EXAMPLE. - -  In the example above, the third ancl fourth components of the hasir. semi- 
martingales can be plotted a s  in Fig.. 5. 



The four darkened points a r e  the basic semimartingales, and I and I1 a r e  the two simplices. 
Area I11 is the se t  of lower semirnartingales. The point (715, 915) is both an upper and a 
lower semimartingale; hence, is a 'martingale. 

I 
?. 
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PART THREE 

NOTES ON GAME .THEORY 

CHAPTER VIII 

MATRIX GAMES 

A. Introduction 

If G is a real-valued x n matrix, i t  can be considered a two-person mat r ix  game 
between the row player R and the column player C. Player  R chooses a row index i, 
C chooses a column index j, and then C pays an  amount gij to R. (If gij is nega- 
tive, then it represents  a positive payment f rom R to C. ) 

A probability, vector is a nonnegative vector, the sum of whose' components is one. 

Mixed s trategies  for  the players a r e :  fo r  R, an m-component probability vector p; 
and fo r  C, a n  n-component probability vector q. A solution to the game consists of a 
r ea l  number v, the value of the game, and optimal strategy vectors  pO fo r  R and 
qO for  C that satisfy 

fo r  a l l  p and q. The principal (minmax) theorem of game theory s ta tes :  Every mat r ix  
game has a solution. Two proofs of i t  a r e  given in Section B. - -- 

The following facts  may be establi'shed (cf. Chapter VI of Reference 1 ) .  

) The value of .a game is unique. 

(b) v = pOGqO, hence v is an  expected value. 

(d The value v is the most  R can a s s u r e  himself and the least  C can a s s u r e  
himself. 

(d) A matr ix  game is s tr ic t ly  determined if there i s  a n  entry gij i n  G that is the 
minimum entry in the ith row and the..rnaximum entry in  the jth . column. A str ic t ly  deter- 
mined game may be solved by pure s t rategies ,  i. e . ,  s t ra tegies  that choose a row o r  column 
with probability one. 

, The s e t s  of optimal s t rategies  fo r  the players  a r e  convex, closed, polyhedral se t s .  



(f) Let  E be the m x n matrix,  each of whose entr ies  i s  equal to one. Let h be 
a positive number and k be any number.  Then the se t s  of optimal s t rategies  in the games 
G and hG + kE a r e  identical. If the value of G is v, then the value of hG + kE is 
hv + k. By this transformation, which can be interpreted a s  a monetary scale change plus a 
s ide  payment, any mat r ix  game can be changed to a f a i r  game, that i s ,  one with value zero,  - 
and with ma t r ix  entr ies  having absolute value l e s s  than one. (Such a change is convenient for  
putting games on machines.)  

B. Proofs  of the Main Theorem 

The minmax theorem fo r  mat r ix  games is true when the mat r ix  entr ies  a r e  from an 
ordered  field (such a s  the rationals) a s  well a s  when they a r e  rea l .  This observation was due 
to H. Weyl. Actually the theorem has  been extended in another direction to continuous games 
on tho squasp and  on generalized spaces of analysis.  We shall  present two proofs of the 
original theorem, one analytic and one algebraic.  Each Will duperlrl 1311 rcaultn in the l i t e ra -  
ture .  

1. The f i r s t  proof valid for  a r ea l  mat r ix  G is due to J. Nash (see Reference 2 ,  
p 288). Let  h i  ahd p be pure s t rategies  of the players  fo r  i = 1, . . . , m and 

J 
j = 1, . , , , n. If P and Q a r e  the s e t s  of mixed s trategies  for  the players,  consider 
S = P x Q. F o r  s = (p, q), a point in S defines continuous functions: 

r . b )  = max (0, hiGq - pGq) 
1 

c.(s)  = max (0, pGq - pGp.;). 
J J.: 

Then we define a modified strategy vector s t  = (pl,  q') a s  follows: 

We thus have a continuous mapping T of S into i tself .  The Brouwer fixed-point theorem 
now implies that there is a t  least  one fixed point of the mapping, i. e . ,  a vector s such that 
s' = s. 

We must  show that such a fixed point yields a ,pa i r  of optimal strategy vectors  fo r  the 
game. If s = (p, q) is a fixed point, consider the vector p. Some nf the components . 
of p a r e  positive and among the positive ones there must be one, say  the ith one, that i s  
I I 

. l eas t  profitablet1 so  that hiGqzpGq. This makes r i (s)  = 0. Now pi>O, and p is 
fixed under the mapping s o  that the weight put on the ith row must  not decrease under T .  
Since r i ( s )  = 0; this mea'ns that the denominator of the f i r s t  quotient above must  equal the 
one. But that means .x rk(s )  = 0; i . e . ,  r k ( s )  = 0; hence, AkGqcpGq fo r  k = 1, . . . , m.  
In the s a m e  way, p ~ q . i p ~ p  j' f o r  j = 1, . . . , n. F r o m  these two inequalities it is c lear  
that v = pGq, and p and q a r e  optima1,strategies.  



2 .  The second proof, valid for  a mat r ix  G with en t r ies  in an  ordered field, is due 
to Gale, Kuhn, and Tucker (Reference 3, p 84) and depends on a resul t  of Stiemke (Refer- 
ence 4).  

A mat r ix  game G is symmetr ic  if G is skew-symmetric;  i. e . ,  gij  = - gji. 
An optimal s t rategy fo r  one player i s  optimal for  the other in a symmetr ic  game. The value 
of a symmetr ic  game is zero .  Every game G can be symmetr ized by replacing i t  by the 
square symmetr ic  game, 

where G~~ is the transpose of G. The solutions of G may be deduced from the solu- 
tions of S ( see  Reference 3, p 83). 

STIEMKE'S THEOREM. - -  Let A be an  m x n matr ix.  Then, e i ther  uA >_ 0 
(proper inequality fo r  somc component) for  some vector u, o r  e l se  Av = 0 for  some 
vector v > 0. 

If S is an  n x n skew-symmetric game, apply Stiemke's resul t  to the mat r ix  
S I where I is the n x n identity matrix.  Then, e i ther  there exis ts  a u 2 0 such 
that US 2 0, o r  there exis ts  a v > 0 with Sv < 0. Since S is skew sym'metric and 
m = n, we s e e  that Sv<O implies v'S = -v'S1 > 0, s o  that the second alternative cannot 
happen. If we normalize the u 2 0 obtained f rom the f i r s t  alternative s o  that ui = 1, 
then we have found an  optimal s t rategy for  the game S. 

C. Other Theorems 

1. The Strong Minmax Theorem. - -  Although the minmax theorem, proved above, 
gives the existence of solutions to mat r ix  games, a s t ronger  version of i t  is frequently useful. 

THEOREM (The s trong minmax theorem). - -  If G is a mat r ix  game, there exist  
optimal strategy vectors p* and q* such that 

f p * ~ I j  0 if a n d o n l y  if  qj = 0, 

\ - 0 if and only if q. . 0, 
{P'G , j  J 

and 

{ G ~ * ) ~  0 if and only if p = 0, 
i 

o r  equivalently 

{Gq*} . = O if and only if pi > 0. 
.1 

Reference 5 contains a good proof of this theorem by A .  W. Tucker. 



2 .  Dimension Theorems.  - -  Because the optimal s t rategy spaces of the players a r e  
determined by the same  matr ix,  it is reasonable that there should be a connection between 
the dimensions of these spaces.  The connection was found independently by Gale and Sherman 
and by'Bohenblust, Karlin; and Shapley (References 6 and 7).  

Call a pure s t rategy essent ial  i f  it occurs  with positive probability in some optimal 
mixed s trategy,  and call  it superfluous if it does not. Denote by e r  and e c  (sr and s,) 
the number of essential  (superfluous) pure s t rategies  for  the two players.  Let dr and dc 
be the dimensions of the s e t s  of optimal s t rategies  f o r  the players .  Call a (d - 1)- 
dimensional bounding face of the se t  of optimal s t rategies  fo r  a player an  inter ior  face, if i t  
does not l ie on a (d - 1)-dimensional face of the simplex of a l l  optimal s t rategies  fo r  that 
player .  Let  E, and fc be the number of inter ior  s t rategies  for  each player (these num- 
b e r s  a r e  defined to be ze ro  if the optimal s t rategies  a r e  unique). 

THEOREM. - -  A pair  of convex polyhedra a r e  the se t s  of optimal s t rategies  f o r  an  
m x n game i f  and only if  

fl, 5 s c  and f 5 s . 
C 1' 

3 .  Kernels.  - -  A basic optimal s t rategy is a n  extreme point of a se t  of optimal s t ra te -  
gies.  Each player has a finite number of basic optimal s t rategies .  Because of geometric 
interpretations,  basic optimal s t rategies  .are  the intersections of hyperplanes and hence 
should have algebraic formulas .  These were  discovered by Shapley and Snow (see . 
Reference . 8 ) .  

If A is an  h x h mat r ix  le t  A* be the transposed cofactor mat r ix  of A, let  f 
be an  h-component row vector each of whose entr ies  is one, and let  e be an h-component 
row vector each  of whose en t r ies  is one. 

THEOREM. - -  A necessary  and sufficient condition that p0 and q 0  be basic optimal 
s t ra teg ies  i n  a mat r ix  game G is that there is an h x h square submatrix A of G 
such that the en t r ies  df p 0  and q0 agree  with the components of the vectors  

* 

when res t r ic ted  to A, and the value v of the game G is given by 

det A 
v - - *  

f A  e 

This theorem give's a (not very practical) method of solving a mat r ix  game. Thus, by 
trying out a l l  possible square  submatr ices  of G, we could eventually find a pair  of basic 
optimal s t ra teg ies  by using these formulas .  



4. Linear  Programming. - - Let A be an m x n matr ix,  b be an m -component 
column vector,  and c an  n-component row vector, and consi,der the following two .problems: 

a .  Minimum Problem. - -  De.termine a row vector x that minimizes the l inear  
form xb subject to the inequalities x 2 0 and xA >. - .  c .  

b. Maximum Problem. - -  Determine a column vector y that maximizes the 
l inear fo rm cy subject to the inequalities y 0 and Ay 5 b. 

These a r e  the so-called "dual" problems of l inear programming. The principal theorem 
'of l inear programming s ta tes  that these problems ei ther  both have o r  both have not a solution, 
and when they do have a solution, the minimum value in a. equals the maximum values 
in b. 

The. format  of these two problems is reminiscent of the requirements f o r  optimal s t ra te -  
gies in  a game. The following theorem shows that there is a close connection. It is>due to 
Gale, Kuhn, and Tucker (see Reference 9, p 327 ) .  

THEOREM. - -  The dual l inear programs have a common solution if and only i f  the 
symmetr ic  mat r ix  game 

has an  optimal mixed s trategy vector whose las t  component is positive. 

PROOF. 

Sufficiency. - -  Let (x, ytr, d) be such a solution, where x is a row vector, y 
a column vector, and d a positive constant. Then 

and 

and 

01- xb f cy. 

1 
F r o m  the f i r s t  two inequalities we deduce xb 3 (xAy) 2 cy, . and hence xb = cy. 

1 1 Therefore a x  and a y  provide 'the solutions to the dual l inear programs ., 



Necessity.  - -  Let x and y be solutions to the dual l inear programs;  then x 2 0, 
xA )c ,  y ) 0, Ay 2 b, and xb = cy. Consider the vector (x, ytr ,  1). If we divide it 
by the positive constant X = xi + x y  + 1, i t  i s  easy to show that i t  is an optimal strategy j 
in the'above mat r ix  game, and that i t s  las t  component is positive. 

D. Com~uta t iona l  Methods 

Many methods have been proposed fo r  the computation of solutions to mat r ix  games. 
The.most  widely used such method is the simplex method which we will not discuss  here 
(cf. Reference 9, p 359). Instead we shall  discuss  the fictitious play method. 

The fictitious play method of solving games was invented by G. Brown (cf. Reference 9, 
p. 374) and i t s  convergence established by J. Robinson (cf. Reference 10, p 296). Because 
i t  involves only comparisons of numbers  and additions, it is particularly well suited to high- 
speed machine computation even though i ts  convergence is probably not very rapid. It can be 
modified s o  that it converges m o r e  ripidly. Here we present a brief descriptrvr~ of the 
method, together with i t s  application to a simple example. 

Let  A be m x n mat r ix  considered a s  a two-person zero-sum. game. We shall  
denote the ith row of A by Ai and the jth column by Aj . A marginal  vector systerr~ 
.(U, V) fo r  A shall  mean a sequence 0 1 2 . . . , of n-dimensional vecloi-s 
and a sequence V(O), V(1), 2 . . . , of m-dimensional vector satisfying the ~ol lowing 
conditions : 

(a) The minimum component of U(0) = the maximum component of V(0). (Fo r  ex- 
ample we.could always choose U(0) and V(0) a s  being zero  vectors.  Except f o r  this 
condition, these initial vectors  a r e  a rb i t r a ry .  ) 

(c) V(t + 1.) = V(t) + A..  
3 

The indices i and j satisfy 

(d) i is the index of a maximal component of V(t). 

(e) j is the index of a minimal component of Uit). 

The above collection of ru les  defines simultaneous fictitious play. Alternate fictitious 
play is derived from the above by replacing (el by 

(el) j is the index of a minimal component of U(t + 1). 

It h a s  been suggested that a l ternate  fictitious play converges rnore rapidly than simultaneous. 

J. Robinson (Reference 10) has  proved the followir~y theorein. 

THEOREM. - -  If (U, V) is a vector system for  a mat r ix  game A, then 

lim min U(t) - l im m a x V ( t )  = v. - -  
t - a ,  t t 00 t 



This theorem gives no clue a s  to how to compute optimal strategies. However, i t  is 
obvious that an. approximate optimal strategy can be computed by remembering how often 
each row o r  each column has been added during the course of the fictitious play and dividing 
by the number of iterations. 

EXAMPLE. - -  Consider the nonstrictly determined game whose matrix is 

The alternate fictitious play computation is su.mmarized in the tableau below: 
/ 

The exact solution was obtained after eight steps and is 



Observe that the exact solution fo r  C was obtained in  four s teps,  and the exact solution 
fo r  R was obtained in s ix  s teps,  although the.process  moved away from these solutions 
a s  i t  went on. Such "cycling" phenomena a r e  common in this method and can be taken 
advantage of. Kemeny and Thompson have a modified fictitious play procedure f o r  the 
IBM 704 that does exactly that. 



CHAPTER IX 

THE E F F E C T  O F  PSYCHOLOGICAL ATTITUDES 
ON THE OUTCOME OF GAMES* 

A. Characterization of S t r a t em-Pre se rv ine  Utility Functions 

Le t  G be a n  m x n ma t r i x  game with ma t r i x  Ilgijll; we define v a l [ ~ ]  to be the 
value of G, and X[G] to be the s e t  of optimal s t ra teg ies  for  the f i r s t  p layer  in G .  A 
utility function f shal l  mean a real-valued (nonconstant) monotone increasing function. If 
f i s  a utility function and G a game, then by f(G) we shal l  mean the ma t r i x  game whose 
ma t r i x  is (If (gij ) I (  . 

DEFINITION. - -  We shal l  say  that the utility function f is s t ra tegy preserv ing  if and 
only if f o r  a l l  ma t r i x  games  G and a l l  r e a l  constants h we have 

where E is the m x n ma t r i x  a l l  of whose en t r ies  a r e  unity. 
r 

The intuitive interpretation of a s t ra tegy preserving utility function is the following: 
Suppose that the row player has  a fortune of h dol lars  a t  the t ime he is to play the game G; 
his  fortune a t  the end of the game will be gij + h, where gij is the actual payoff he receives  
f rom the game; the utility which he ass igns  to this outcome is f(gij + h); then a s t ra tegy-  
preserving utility function is such that every s t ra tegy  optimal in the game f(G + hE) is 
optimal in the game f(G) and conversely; in other  words,  i t  is such that the way in  which 
the row player plays a ma t r i x  game G is independent of the s ta te  of h i s  fortune when he 
plays it.. The purpose of this section is to character ize  such functions. 

Two important types of utility functions a r e  the l inear  and exponential ones  given by 

Here  the l e t t e r s  a ,  b, and c indicate pa rame te r s  and the conditions on the pa rame te r s  a r e  
chosen s o  that f x  > U f o r  a l l  x. 

* This chapter summar i ze s  .some recent  work by J. G. Kemeny and G. L .  Thompson 
published in Contributions to the Theory of Games,  Vol. 111, Annals of Mathematics 
Studies, Number 39, Princeton, 1957, pp 273-298. 



I ! Several  facts  about elementary mat r ix  game theory will be needed subsequently. F i r s t ,  
\ we reca l l  that adding the same  constant to every entry in the mat r ix  does not change the se t s  

of optimal s t rategies ,  nor  does the multiplic$tion of every entry by the same  positive constant. 
\ (These two fac.ts a r e  sufficient to show that l inear utility functions a r e  s t rategy-preserving.)  
\ Secondly, we reca l l  that a 2 x 2 matr ix game is nonstrictly determined if and only if  

e i ther  the inequalities I 
g l l >  812' g21 

and g 
22 > 812. 821, 

o r  the inequalities obtained f rom these by reversing the inequality signs, a r e  satisfied. 
Finally, the f i r s t  component of the optimal s t rategy fo r  the row player in the 2 x 2 non- 
s t r ic t ly  determined case i s  given by the formula 

LEMMA 1. - -  If f is a s t rategy-preserving utility function, then f is differentiable 
and f t (x )>  0 fo r  a l l  x. 

PROOF. - -  If f is monot'one increasing but not s t r ic t ly  increasing (and nonconstant), 
then there exis t  rea l  numbers  a ,  b, and h, with a < b, so that f(a) = f(b) and 
f(a  + h) < f ( b  + h). If we se t  g l l  = 822 = b and g12 = gzl = a ,  then every strategy 
fo r  the row player is optimal in the game f(G), but the game f(G + hE) has a unique 
optimal s t rategy,  s o  that f is not s t rategy preserving. 

If f is monotone s t r ic t ly  increasing, theii, by a well-known [heorern i t  is d l f fe re~~l lab le  
almost  everywhere. Hence f has  a derivative a t  two points, say a t  a and b, where 
a >  b. Set g l l  = a and glq = g g i  = b; .if g22 = x where x > b ,  thenthe  2 x 2  
game G = [lgijll is nonstrictly determined. If f is strategy-preserving, '  we have from 
Equation 49 that 

is the f i r s t  component of the optimal strategy for  the row player in the game f(G); 
s imilar ly,  

is the analogous quantity for  the game f(G + hE). F o r  these two to be equal, we must have 
that 



Using the idetitity that if d $ f, then c / d  = elf  implies (c  - e ) / ( d  - f j  =. c/.d, we 
subtract corresponding t e rms  on the right-hand side of this expression f rom those.on the left. 
If we then divide numerator and denominator of the left-hand side of the resul t ingexpression 
by h, we obtain . . 

which is true f o r  a l l  values of h .  Letting h tend to zero, and using the fact that f has  
a derivative a t  a and b, we s e e  that f has  a derivative f o r  a l l  x >  b. To show that . f 
has a derivative fo r  a l l  x cb, we choose any two r e a l  numbers c and d where 
c > d > b, s e t  g l l  = d, g12 = g2'1 = C, and g22 = x 2 b, and use reasoning analogous 
to the above. Because f is s tr ic t ly  increasing, f l (x)  > 0 for  a l l  x. This concludes the 
proof of the lemma.  

THEOREM 1. - -  A necessary and sufficient condition that a utility function should be 
strategy preserving is that i t  should be ei ther  l inear o r  exponential a s  in Equation 48, 

PROOF 

Sufficiency. - - We have already observed that l inear functions a r e  strategy-preserving. 
If f is exponential, then, using the elementary facts  about mat r ix  games mentioned above, 
we have 

bg.. + bh [ I i j  + ] = ~ C I l a e  y + dl\.]  

Necessity. - -  Let G = gij be a nonstrictly determined 2 x 2 mat r ix  game so  
that it has  a unique optimal s t rategy fo r  the row player.  By the lemma, f is s tr ic t ly  
increasing, s o  that f (G) and f (G + hE) a r e  also nonstrictly determined and have unique 
optimal s t rategies .  By an  analysis s imi la r  to that car r ied  out in the lemma,  fo r  the f i r s t  
components of the optimal s t rategies  for  the row player in each of these games to be equal, . 
we must  have 



Observe that obvious l inear  solutions to this identity a r e  l inear functions of the form 
f(x) = a x  + c, where we requi re  a > 0 to make f l (x )  > 0. To find other solutions, use 
the identity mentioned in the proof of the lemma and subtract numerator and denominator of 
the right-hand side from the corresponding quantities on the left-hand side. Dividing through 
the resulting expression by h, letting h tend to zero,  and using the differentiability of 
f a s  given by the lemma, we obtain the following differential equation 

which must be t rue for a l l  nonstrictly determined games G. Observe that this equation be- 
comes indeterminate f o r  the l inear  solutions found above. After cross-multiplying the la t ter  
identity, setting the resul t  equal to a constant and solving, we see  that f sat isf ies  

f '  (x) .= bf(x) + d, (56) 

f o r  a l l  x, where b and d . a r e  constants. The unique nonlinear solution of this differ- 
ential  equation is the exponential one 

where c = -d/b.  To satisfy the condition that f1 (x )>  0, we require  that a b  > 0, complet- 
ing the proof of the theorem. 

B. Psychological Attitudes and Utility Functions 
b 

In this section we shal l  discuss  various types of psychological attitudes. F o r  conven- 
ience we shal l  give names to them and leave to the reader  the judgment of the suitability of 
these names.  

By an  attitude of the -- f i r s t  kind, we shall  mean one which depends only on the payoffs 
involved. Such attitudes can always be represented by means of a utility function. Attitudes 
of the second kind depend on fac tors  other than the payoff and hence cannot be described by 
means of a utility function. All but one of our  examples will be of utility functions of the 
f i r s t  kind. 

When discussing atti tudes of the f i r s t  kind, we shall  usually require  that f (0) = 0 
since, by a l inear (strategy preserving) transformation, we can always make f have this 
property.  F igure  6 shows s i x  types of continuous utility functions and two discontinuous ones. 

The f i r s t  such attitude is the "fair attitude" of a person who judges his utility to be 
directly proportional to the payoff. Since a n  additive constant can be ignored, we can think of 
the l inear  function f(x) = .  x. . ,- 

Next there is the " reckless  o r  gambler 's  attitude" of a person who concentrates on 
winning large sums .  To him a large win looks even l a rge r  and a large loss  is discounted. 
The resu l t  is a utility curve that is concave upward over i t s  ent i re  range. The exponential 
functions satisfying Equation 48 with a > 0 a r e  of this type. F o r  example, the function 
f(x) = ex  - 1 is such. . , 



F a i r  Reckless  

Cautious Poor  
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I 
Winning 

Common 

Desperate  

F igure  6 



The "cautious attitude" is that of a person who concentrates on avoiding large losses .  
He exaggerates  large lo s ses  and correspondingly discounts large wins. Thus his utility curve 
is convex downward over  i t s  ent i re  range. The exponential functions satisfying Equation 48 
with a < 0 a r e  of this type. F o r  example, f(x) = 1 - e-X is such. 

All functions satisfying Equation 48 represent  one of these three types, hence we know 
that other attitudes must not satisfy Equation 48. It is interesting to note that utility curves 
s imi l a r  to these three were  observed in the Mosteller-Noges utility experiment. (See 
pages 386-395 of Reference 11. ) 

The "poor man's  attitude" is that of a person for  whom large sums,  either positive o r  
negative, a r e  exaggerated. His utility curve is concave upward for  positive x, and concave 
downward fo r  negative x. 

The "r ich man's  attitude" is that of a person to whom large sums,  either positive o r  
negative, a r e  discounted. His utility curve is concave downward fo r  positive x and concave 
upward fo r  negative x. 

The "common attitude" is that of a person who is reckless  enough to play games in 
which the payoff entr ies  a r e  small ,  but when payoffs become large, he becomes cautious. 
Thus, f o r  a range about zero  his utility curve i s  convex upward, but i t 'becomes concave down- 
ward a s  the absolute value of x becomes la rge .  

In addition to the continuous utility functions discussed above, a large number of dis- 
continuous ones can also be distinguished. Here we mention just two interesting cases .  

The "winning attitude" is that of a person who, besides considering how much he wins 
3r loses ,  puts a positive premium on winning and a negative premium on losing. We shall  
assume that he has a f a i r  attitude otherwise, s o  that his  utility curve is the line y = x, 
with the positive half move up and the negative half moved down. By means of this utility 
function we a r e  able to "explain" the paradoxial sequence game discussed in Section 4 
page 61. 

The "desperate attitude" is that of a person who must  win a given sum of money. Any 
amount of money l e s s  than this is of no value to him and any amount in  excess  does not have 
g rea t e r  value. His utility curve i s  a step function, positive f rom some sum on, and negative 
otherwise. (In this case we do not require  that f(0) = 0 . )  

The reader  will doubtless be able to think of other intuitively interesting utility curves.  
The ones mentioned above a r e  sufficient to discuss some interesting examples, severa l  of 
which a r e  described in the next two sections.  

. 1. The Lottery Game. - -  A player of the lottery game purchases from a banker a smal l  
chance of winning a large sum of money. Let s be the pr ice of the lo t te ry  ticket, let  K 
be the amount of the win, and le t  p be the probability of win. The expectation of the banker 
is 



The banker will adjust p s o  that h i s  expectation is ,positive and hence s o  that the player 's  
\ expectation is negative; i. e . ,  he will choose 

Here p is smal l  since K is large compared to s. 

Suppose the player has a .  utility function f .  He then evaluates his expected u t i1 i ty . a~  

Let us assume that he.will play only if his expected utility is positive, and will not play if  i t  
is negative o r  zero. Then we can make a l i s t  of typical decisions to play o r  not to play by the 
various players,  depending upon their utility functions. It is to be emphasized that not a l l  
utility functions of a given type will make the same  ,decision in the same situation; this will 
happen only' when their shapes a r e  sufficiently extreme.  

Play Not play 

Reckless F a i r  , 

Poor 

Common (K small)  

Cautious 

Common (K large)  

Desperate (K grea te r  than Desperate (K l e s s  than discontinuity 
discontinuity point) point) 

Winning 

Rich 

The r e a d e r  may check with his' intuition a s  to whether the various decisions made on the basis 
of the utility functions a r e  consistent w-ith the names we have given them. 

2 .  The Insurance Game. - -  Here the player owns property worth K dollars,  and 
there is a smal l  probability p of losing i t  by accidental means.  The insurance company 
offers to pay the player K dol lars  if the property is destroyed in re turn  f o r  a premium of 
s dol lars  which the player pays to the company. The expectation of the insurance company 
is (1 - p)s  + p(-K + s ) ,  and clearly they will adjust s so  that this expectation is nega- 
tive; i. e . ,  they will require  that s > pK. A simple computation shows that this makes the 
player 's  monetary expectation negative. Suppose, however, the player has  a utility function 
f ;  then his expected utility is ' (1 - p) f (-s) if  he insures,  and pf(-K + s) if he does not 
insure; the difference of these two is 

Let us assume that he will insure  only if D is positive. Again typical (but not necessary)  
decisions by persons having the above utility functions a r e  a s  follows: 



Insure 

Cautious 

Poor 

Common (if K large)  

Not insure 

F a i r  

Reckless 

Common (if K small)  

Rich 

Winning 

Desperate 

Again the r eade r  can check whether these decisions agree  with his intuition. By adjusting s, 
the insurance company can appeal to people having different kinds of utility functions. 

. 3 .  Colonel. .Blot@. - - The attitudes i l lustrated above were a l l  of the f i r s t  kind and con 
tinuous. Here  we wish to i l lustrate  a discontinuous attitude of the f i r s t  kind and an  attitude of 
the second kind. 

That famed military leader ,  Colonel Blotto, has four divisions available and is contest- 
ing two mountain passes  with a n  inferior enemy who has only three divisions. Assume that 
whichever s ide  has the most divisions a t  a pass  takes the pass  and the opponent's divisions, 
except that in case of a tie neither side takes the pass  and neither loses  a division. 

Blotto' has  three s t ra teg ies  corresponding to three possible ways of dividing his  troops 
into two pa r t s :  4 + 0, 3 + 1 and 2 + 2. His opponent may divide his  divisions in  either 
of the two ways, 3 + 0 o r  2 + 1. We assume that, having decided on the partitioning of 
the troops, the actual assignment to the passes  is done a t  random. 

I 

Given a choice of a s t rategy by each player we can calculate the expected outcome. F o r  
example, if  Blotto plays 3 + 1 and his  opponent plays 2 + 1 we must distinguish two 
cases :  (1) Blotto's three divisions go against the opponents' two; then Blotto wins one pass  
and t ies  f o r  the other; (2) Blotto's three divisions go against the opponents' one; then Blotto 
wins one pas s  and loses  one. 'l 'hese possibilities a r e  equally likely, s o  blotto's payoff is 112. 
Proceeding in this way we obtain the following payoff table: 

The resulting mat r ix  game is str ic t ly  determined and Blotto should always play 3 + 1 and 
h is  opponent should always play 3 + 0. The value of the game to Blotto is 112, indicating 
his  numerical  superiority.  If both players play optimally, there is probability 112 that . 

Blotto will lose  a division. 

But now let us suppose that Blotto takes into account not only the number of passes  that 
he can capture but also worr ies  about the number of his men who a r e  captured; in other words 
he has  a n  attitude of the second kind. To be specific, assume that to Blotto a division lost i s  



a s  bad a s  a pass  lost .  The resulting payoff table can be computed to be the following: 

The solution to this game i s  that Blotto should play the f i r s t  row with probability 617 and 
the last  row with probability 117; his opponent should play the f i r s t  column with probability 
1 / 7 and the second column with probability 6 /  7. The value of the game to Blotto is 117, 
indicating that his concern over loss  of troops has  decreased his expectation in the,game. If 
both players play optimally, then Blotto's probability of losing a division i s  only 1/49 a s  
compared with probability 112 in the preceding example. Thus his new strategy i s  suc- 
cessful in reducing the probability of troop loss .  

As a final variant, assume that Blotto has the desperate attitude and wants a t  a l l  costs 
to capture one pas s .  To be definite, assume that regardless  of losses ,  he puts value one on 
capturing one o r  more  passes  and zero  on not capturing a pass .  It is easy to s e e  that this 
makes a l l  entr ies  in the payoff table equal to one s o  that any strategy for  Blotto is optimal. 
Thus the desperate attitude obscures  s t rategic  differences. 

D. A Seauence Game . 

As a more  complicated example of an  application of utility functions, let us consider 
the game of matching pennies in which the players  have agreed to quit af ter  N plays, and 
in which the row player is given the option of quitting sooner if he wishes. According to 
ordinary .game- theoretic arguments,  this game is fa i r  and hence a "rational" person should 
not be unwilling to accept the role of either player in the game. Yet most people would gladly 
play the role  of the .row player, and would refuse the role of the column player.  

Let the game G be given by the mat r ix  

where the row of ze ros  corresponds to the optional stop privilege of the row player.  The 
ru les  of the game a r e :  After the Nth play of G the game stops; af ter  fewer than N 
plays of G the game continues if the row player has  chosen one of the f i r s t  two rows of 
the matr ix but stops if he has  chosen the third row. 

If the row player has the winning attitude given by the utility function 

[ x + ~  for  x . 0  

f(x) = 0 I for  x = 0 

x - A  for  x < O  



where A >O, then i t  can be shown that his optimal strategy is a s  follows: 

(a)  Refuse to play with a positive fortune. 

(b) Play with a nonpositive fortune. 

(c) Stop if  h i s  fortune r i s e s  to one. 

Thus the winning attitude produces behavior somewhat like that of many persons.  



CHAPTER X 

GAMES IN EXTENSIVE FORM 

Because of the complexity of detail of the subject we shal l  confine ourselves to the s tat-  
ing of definitions and theorems of extensive game theory. In particular we shall  re ly heavily 
on examples to clarify concepts. Our basic reference will be Reference 12. 

A t r ee  is a finite, partially ordered se t  that does not contain cycles.  A rooted t ree  is 
a t ree  with a distinguished vertex. A game tree K is a finite, rooted t ree with root 0 
imbedded in an ordered  plane. The vertex C) corresponds to the. s t a r t  of the game, and lhe 
orientation of the plane is used to number the edges of the t r ee  a t  a vertex. F r o m  any vertex 
X of K there is a unique path to 0. The edges of the t r ee  (if any) incident to X and 
not lying on the path from 0 to X a r e  the al ternat ives .at ,  X. Vertices that have a l te r -  
natives a r e  called moves and those that. do not (the "end points" of K) a r e  called plays. 

The alternative partition means the partition of the moves of K into s e t s  A j ,  j = 1, 
2, . . . , where Aj contains al l  of the moves with j alternatives.  The player partition 
means the partition of the moves of K into n + 1 s e t s  Po ,  Pi, . . . , Pn . The moves 
in Po a r e  called chance moves, and the moves in Pi a r e  called the personal moves of 
player i, fo r  i = 1, . . ., n. 

The information partition means a partition of K into information s e t s  U, which is 
a refinement of both the alternative and the player partitions, and such that no information 
s e t  contains two moves on the same path from 0 to a play. Thus each U is contained 
in Pi n Aj for  some i and j. Let Ui be the se t  of information se t s  for  the ith 
player, and let be the se t  of a l l  information se t s .  

The pair  (K, 21) will be called a game structure.  

On the information se t s  in v O ,  the chance player,  a probability distribution p(U) 
is defined. Thus, if U € v0 and U C PO f? Aj , then there is a positive function pi (U), 
i = 1 . . . , j defined on the alternatives a t  U, such that x4 (U) = 1. These a r e  the 
chance probabilities. (In ordinary games these probabilities a r e  realized by shuffling cards,  
rolling dice, e tc .  ) 

Finally, on the play W of K there is defined a vector valued payoff function 
h(W) = <h. (W), . . . , hn (W)> . The game s t a r t s  a t  U and ends a t  some play W, w h r r r -  
upon the players  receive the amounts hi(W), . . . , hn(W). ) 

Given a choice of K , h, and p, we define an  n-person game to be the col- 
lection K , h 1 .  Most ordinary parlor  games, providing that they have a rule  that 
prevents infinite play (i. e . ,  chess but not tennis), have ru les  that determine each of the above 
quantities, and hence determine an  n-person game. 



The way the game proceeds i s  now obvious. It s t a r t s  a t  0 and proceeds from move 
to move through the t ree .  The successor  of a move is selected by the player in whose in- 
formation s e t  the move l ies  (by a chance device in the case of the chance player).  After pass -  
ing through a finite number of steps,  a play is reached and the players  receive payments a s  
indicated by the payoff vector defined for  that play. 

DEFINITION. -- A pure strategy a i  f o r  player i is a function from the se t s  U 
in i to the positive integers  such that if UC Aj  , then ni (U) ( j .  The value of ni (U) 
is the index of the alternative chosen by the player a t  that information se t .  

Let  IIi be the s e t  of pure s t ra teg ies  for  i. Let a = (al ,  . . . , an) denote an 
n-tuple of pure s t rategies ,  one f o r  each personal player, and le t  TI be the se t  of a l l  a .  

Given an  n-tuple a , the chance probability distributions on chance moves induce a 
probability distribution p,(W) on the plays W ~f K. Thus, if  the pure s t rategies  a 
choose a l l  the alternatives of: personal moves on the path from U to W, then p,(Wj is 
the product of the chance probabilities on that path; otherwise p,(W) is zero .  'l'hen the 
expected payoff to player i if  strategy a is used can be computed a s  
Hi(r) = p n ( ~ ) h i ( ~ ) .  Also we can denote by H(n) = <H~(T) ,  . . , , H,(T)> the n- tuple of 
payoffs if a is used. Note that H(r)  depends on each ri and when expressed in mat r ix  
notation is a n  n-dimensional a r r a y  with vector entr ies .  In the two-person, zero-sum case 
the a r r a y  reduces to a n  ordinary mat r ix  game. Let us  call  the a r r a y  H(a) the normal fo rm 
of the game. The above discussion establishes the following resul t :  

THEOREM 1. - -  Every n-person game can be normalized, that is, put in normal  form. 

It  is intuitively obvious that some a r e  easy to solve; for  example: board games (chess,  
checkers) ,  tick-tack-toe, and other games in which each player can see  the other player 's  
I! hand" and his moves. The players  in these games possess  perfect iiiformation. 

DEFINITION. - -  An n-person game is said to have . perfect . .. .. ..- .. . . information .. -., - . .. . . . . , .. . if all  i ts  per -  . 

sonal  information se t s  U a r e  unit s e t s ,  that i s ,  contain a single move. 

To indicate what is meant by a solution of an n-person game, equilibrium points will 
be discussed.  

DEFINITION. - -  Let alpi denote the vector (a1, . . . , 9 - 1 .  pi) 9 + 1  2 . . . a  an). 
Then a i s  a pure s t rategy equilibrium i f  and only if 

f o r  a l l  pure s t rategies  p i  and i = 1, . . . , n. 

Intuitively, an equilibrium point i s  one a t  which no player can improve his  own position 
by shifting to another of his pure s t rategies  if the other players keep their s t rategies  fixed. 

THEOREM 2.  - -  Every game with perfect information possesses  a pure strategy equi- 
l ibr ium point. 

This theorem can be proved by s tar t ing a t  the end of the game and "working backwards" 
by an  induction argument.  

Not a l l  games have perfect information; hence,the above concepts must be broadened. 



DEFINITION. - -  A mixed strategy pi for  player i is a probability distribution on 
the pure s t rategies  in Xi .  Let p = <pl, . . . , pn> be an  n-tuple of mixed s trategies .  
Let p, (p) be the product of the weights given to the ni in  n = <nl, . . . , n .  Then  
the expectation of the ith player i s  

if mixed s trategy p is used by the players.  

DEFINITION. --Let  p/vi be the n-tuple<pl, . . . , p i  - vi, pi+ l ,  
Then p i s  a mixed s trategy equilibrium point if and only if 

. . . ,  Pn) * 

. . 

hi(p/vi) 5 hi(p) 

fo r  a l l  mixed s trategies  p i  and i = 1, . . . , n. 

THEOREM 3 .  - - Every.  n-person game has  a mixed strategy equilibrium point. 

This can be proved by a n  extension of the fixed-point proof of the minmax theorem 
given in Chapter I, P a r t  B1. 

F o r  a two-person, zero-sum game,Theorem 3 reduces to the minmax theorem. There 
a r e  objections to equilibrium-point solutions to n-person games because .the solutions a r e  
not necessar i ly  unique. Although many other solution concepts have been proposed f o r  
n-person games, the equilibrium point theorem is the only general theorem that. has been 
established. Hence,. a solution from now on shal l  mean a n  equilibrium-point soiution. 

One of the interesting problems in n-person game theory i s  the way in which informa- 
tion i s  distributed among the players.  We shall  study this problem, making use of the dia- 
g rams  of games t h a t  appear in Figs .  7 and 8. A number of definitions a r e  necessary.  

DEFINITION. - -  Let U, be the se t  of moves in K that follow moves in U. by the 
vth alternative. Then U is a signaling information se t  for  player i if, f o r  some. v 
and comc information se t  V of player i ,  w e  have Uv n V # 4 and V U, . 

DEFINITION. - -  A game i s  said to have perfect recal l  if none of the players  possesses  
signaling information se t s .  

Any game with perfect information obviously has  perfect recal l .  Poker,  Kriegspiel, 
gin rummy, e tc . ,  have pe,rfect recal l  (but not perfect information). If the par tners  in bridge 
a r e  regarded a s  a single player, then bridge is a two-person game that does not have perfect 
recal l .  The reader ,  may check that the various games il lustrated in F igs .  7 and 8 ei ther  do 
urt do not have perfect reca l l  a3 indicated there.  



I Both players  have 
perfect information 
and perfect recal l .  

(a) 

Both players have effectively 
perfect information and 
perfect recal l .  

(b) 

Neither player has  e 
perfect information. 
have perfect recal l .  

ffectively Neither player has  perfect 
Both . . -  recal l .  Both have' effectively 

perfect information. 

Figure 7 



P has effectively perfect infor- Neither player has 
2 

mation but P does not. P has 1 
either perfect reca l l  o r  

1 
perfect recal l  but P does not. 

2 
effectively perfect infor- 

Figure 8 



DEFINITION. - -  A behavior s t rategy for  player i is an  assignment, . to  each infor- 
mation s e t  U in l i ,  of a probability distribution on the alternatives at  U.  

To every  mixed s trategy for  a player, there corresponds a behavior s t rategy.  This is 
a many-one correspondence since the dimension of the s e t  of mixed s trategies  i s  l a rger  than 
the dimension of the s e t  of behavior s t rategies .  Thus, if a game can be solved in behavior 
s t ra teg ies ,  i t  is eas i e r  than solving i t  in mixed s t ra teg ies .  

THEOREM 4. - -  A necessary  and sufficient condition that the n-person game 
(K, 21, h, p) has  the same  mixed s trategy and behavior s t rategy equilibrium points fo r  
a l l  h . and p is that every player have perfect recal l .  

Thus poker, Kriegspiel, e t c . ,  may be solved using behavior s t rategies .  

DEFINITION. - -  A pure signaling s t rategy for  player i is a function 6 i f rom his - 
signaling information s e t s  U to the positive integers  such that 11 U C Ai, then ai (U) cl_ j. 
A mixed signaling s t rategy v fo r  player i is a probability distributibn on the pure 
signaling s t ra teg ies  f o r  i .  

A pure signaling s t rategy ei singles out (for player i) a subtree Kdi of K.  
Let  be the set  4 of information s e t s  fo r  player i relativized to K a 

i' 

DEFINITION. - -  An associated behavior s t rategy is an  assignment, to each information 
s e t  in  qq , of a probability distribution on the alternatives a t  that information set .  

DEFINITION. - -  A composite strategy is a pair  consisting of a mixed signaling s t rategy 
and a s e t  of associated behavior s t ra teg ies .  

THEOREM 5. - -  Every n-person game has  the same mixed strategy aucl c u l ~ ~ p v s i l e  
s t rategy equilibrium points. Hence every two-person, zero-sum game can be solved using 
composite s t rategies .  

In o rde r  to use a composite strategy, the agents of a player meet  before the game arid 
decide, by a chance device, which signaling s t rategy to use. Their choice is kept s ec re t  
f rom the other  players.  Then the agents who control signaling information s e t s  make their 
choices according to the signaling s t rategy chosen,and the other agents use the associated 
behavior s t ra tegy  on the nonsignaling information se t s .  

In bridge, for  example, players use the o r d e r  in which they lead o r  discard cards  to 
signal what the other ca rds  in  their hands a r e  - -  o r  a t  least  to indicate what the other cards  
a r e .  They must  a lso be careful not to signal to their opponents any more  information than 
necessary .  

A final question is related to the concept of perfect  information. It was remarked 
e a r l i e r  that a game with perfect information could be solved using pure s t rategies .  This is 
a sufficient but not necessary  condition. 

DEFINITION. -- A game i s  said to have effectively perfect  infor~nation when, fo r  
every  pair  of personal information se t s  U, V such that ' VC q k ,  k # i, 
if U < V  then VCU, f o r s o m e  v .  

Intuitively, effectively perfect  information exis ts  if, whenever i t  is a player 's  turn, he 
r e m e m b e r s  every previous move of his personal opponents and knows a t  least  a s  much a s  they 
knew when they made these moves. 



DEFINITION. - -  A game is essentially determinant if it has an  equilibrium point in 
pure s t rategies  for  every assignment of h and p. 

THEOREM 6. - -  A necessary and sufficient condition that a game be essentially deter-  
minant is that i t s  complete inflation have effectively perfect information. 

We shall  not define the complete inflation of a game, but simply r e m a r k  that it is an 
equivalent game which, in a sense,  has  the fewest information s e t s .  All the games in  Figs.  7 
and 8 a r e  completely inflated. 

. It should now be possible fo r  the reader  to check, in F igs .  7 and 8, that the above defi- 
nitions a r e  o r  a r e  not satisfied a s  indicated. 



CHAPTER XI 

MATHEMATICAL ECONOMICS AND MATRIX GAME THEORY 

A. Introduction 

This chapter w i l l  be concerned with two examples i n  which mat r ix  game theory was 
used, purely a s  a mathematical tool, in an  economic model. These models were  formulated 
solely f o r  use in economic theory, yet it turned out that game theory was the cor rec t  kir~d of 
mathematics  needed to solve the problems ar i s ing  in the model. 

B. A Generalization of the Von Neumann Model of an  Expanding Economy 

(This section summar izes  Reference.  13, a paper by the same  title by J. G. Kemeny, 
0. Morgenstern, and G.  L. Thompson. ) 

1. We consider a s  a model of an economy a finite s e t  of m processes  which operate 
a t  d i scre te  t ime intervals and which produce a finite number n of differentgoods. F r o m  
a n  economic point of view one usually has m > n because, for  most goods, there a r e  a l te r -  
nate ways of production s o  that there is a choice among production processes .  F r o m  a mathe- 
matical point of view we need not, and do not, assume any relationship between m and n. 
The processes  may be manufacturing processes ,  but they may also represent consumption, 
s torage,  and (as  we show la te r )  outside demand. We assume constant re turns  to scale  and 
the unlimited availability of the natural factors  of production such a s  labor and land. The 
inputs needed f o r  the processes  a t  any time t a r e  the goods produced during the preceding 
t ime period t - 1, plus the natural factors  of production. 

Each process  operates  a t  any intensity x, where x i s  a r e a l  nonnegative number.  
Intensities a r e  normalized s o  that the ith process  operates  a t  intensity xi 
where O 5 xi '1 and fj xi = 1. Thus the intensity vector (a row vector) x = (xl. . . . , xm) 

i =  1 
shal l  be viewed a s  an m-dimensional probability vector.  When the ith process  is operating, 
it requi res  aij  units of good j ( j  = 1, . . ., n) and produces bik units of good 
k (k = 1, . . . , n) per  unit of good i. Since only the ra t ios  of these numbers a r e  significant, 
the units may be chosen arb i t ra r i ly .  It is assumed that a i j  and bij a r e  nonnegative r ea l  
numbers  f o r  a l l  i and j. Symbolically, physical production change during one time period 
can be represented a s  

(time t - 1) xA - xB (time t), 

where A = 11 aij(( and B = 1 1  hi 11 . The  component.^ of the vector xA give the amounts 
of inputs used up in production, and'the components of the vector xB give the amounts pro- 
duced. 



I Each good* is assigned a pr ice y, where y i s  a nonnegative r e a l  number. P r i c e s  
a r e  also normalized so  that the jth good is assigned price yj, where 

0 5 yj  5 1 and 2 yj = 1. Thus the pr ice vector (a column vector)  y = (yl. . . . , yn) 
j = 1  

is an n-dimensional probability vector.  Symbolically value changes during one time period 
can be represented a s  

(time t - 1) AY -*BY (time t). 

The components of the vector Ay give the value of the input entering into the processes ,  
and the components of the vector give the value of goodsproduced by the 

It is assumed that there is a n  interest  r a t e  b (percent) f rom which the interest  factor  
p = 1 + 'b1100 is derived. Interest  is paid by a n  outside s.ource, and investment is always 
possible. It is also assumed that there is an  expansion ra te  a f rom which the 
expansion factor a.'.= 1 + a1100 is derived. Because of the assumed unlimited supplies of 
I t  land and labor,  I' i. e i ,  the original means of production, expansion can continue indefinitely. 

- 
We a r e  looking f o r  vectors x and y and numbers a and f3 which satisfy the 

following five conditions. The f i r s t  one is a conservation condition which says  that no more  
goods can be used during any time period than were produced during the preceding time 
period.. In equation form this reads  

CONDITION 1 xBzaxA o r  x(B -aA)  2 0 .  

(Here and elsewhere we shall  use the convention that, i f  u and v a r e  vectors,  then 
u 2 v shall  mean that the corresponding inequalities shall  be t rue  fo r  the components of 

. u  and v. Also, we do not distinguish between the number zero and the zero  vector since 
the context will always be c l ea r . )  The second condition makes the economy a profit less one; 
i. e . ,  one in which a process  cannot yield a re turn  grea te r  than that yielded by the going 
interest  ra te;  in equation form this reads  

The third condition requi res  that a zero  pr ice be charged fo r  goods that a r e  overproduced; 
in other words, 

CONDITION 3 x(B - aA)y = 0. 

The fourth condition is 

CONDITION 4, x(B - p A)y = 0, 

which says  that inefficient processes  must be used with zero  intensity. 

* Labor, land, and other natural factors  must be treated a s  f ree ,  since they a r e  not pro- 
duced. But there a r e  simple means fo r  dntering the costs  connected with these fac tors  
in  the model; e .  g . ,  the cost of labor can be introduced in t e r m s  of the consumption of 
the worker and his family. In this approach consumer goods would be among the inputs 
of a l l  p rocesses ,  



Without fur ther  assumptions about the mat r ices  A and B there will, in general, be 
no solution satisfying these conditions. Von Neumann made the following additional assump- 
tion 

(*) a . .  + b. .  . 0, fo r  a l l  i and j. 
1J 1J 

Intuitively, this assumption means that every process  must e i ther  consume o r  produce a posi- 
tive amount of every good. Von Neumann made this assumption to insure the uniqueness 
of a and to prevent the economy from breaking up into disconnected par t s .  If we observe 
that the numbers  aij and b..  can be made very  small ,  this assumption does not seem 

1J 
unreasonable; however, i t  has  been crit icized by economists. The condition is natural when 
the model i s  highly aggregated. 

Observe that the following uninteresting economies satisfy a l l  of the above conditions : 

EXAMPLE 1. - - Let A and B be mat r ices  with a i j  = 1 and b. .  = 0 for  a l l  
11 

i and j; let a = p = 0, and let  x and y be a rb i t r a ry  probability vectors .  11: is 
easy  to s e e  that these quantities satisfy Conditions 1-4 and ( 8 ) .  This i s  an  economy which 
uses  raw mater ia l s  but produces nothing. 

EXAMPLE 2 .  - -  Let A and B be mat r ices  with a . .  = 0 and bi,j = 1 for  a l l  
1J 

i and j; let  a = p = oo, and let  x and y be a rb i t r a ry  probability vectors .  It is 
easy  to s e e  that these quantities satisfy Conditions 1-4 and (*).' This i s  an  economy which 
produces goods without using raw mater ials .  

Neither of these examples corresponds to economic reality; they do, however, fit into 
the von Neumann model a s  special  limiting cases .  Here we want to'weaken the (*) assumption; 
when we do so,  we w i l l  find that examples like those mentioned above will become very an-  
noy ing. We therefore impose a n  additional condition not contained in the original von Neumann 
model, namely 

CONDITION 5 xBy > 0. 

Intuitively, this condition means that the total value of a l l  goods produced must  be positive. 
Observe that Example 1 does not satisfy this condition while Example 2 does. 

Although we shall  occasionally use Assumption (*) in this chapter, our  principal assump-  
tions will be the following pair  of (to us, economically plausible) assumptions: 

(i) ' eve ry  process  uses  some inputs, i. e . ,  goods produced in the preceding time period, 
and 

(ii) every good can be produced in the economy; i. e . ,  given a good, there exis ts  a t  least  
one process  which can produce i t .  

These assumptions a r e  much weaker than the von Neumann (*) assumption. They can be stated 
m o r e  precisely a s  follows: 

* (i) every row of A has  a t  least  one positive entry, 

(ii) every column of B has a t  l eas t  one positive entry. 

Observe that neither of the examples above sat isf ies  these conditions. 



The analysis that follows makes use of concepts and theorems from the theory of games 
of strategy. It will be assumed that the reader  has- a certain familiarity with game theory, 
especially with mat r ix  games.  We should like to point out that game theory is he re  used a s  
la mathematical tool in o rde r  to obtain mathematical resu l t s  (of which only those having eco- 
nomic meaning a r e  admitted). Game theory appears  therefore a s  a mathematical technique, 
comparable to, say, the calculus of variations o r  group theory. This use of the theory does 
not preclude i t s  application to a large stationary o r  expanding economy in a very different 
sense,  i. e . ,  when the participants in the economy a r e  viewed a s  playing a nonzero-sum, 
n-person game. In the la t ter  case,resul ts  may be obtained that a r e  different f rom those 
shown in this chapter, especially because of the possibility of the formation of coalitions 
among the players.  The emergence of the theory of games a s  a s t r ic t ly  mathematical tool 
lor  the airalyeis of more  conventional economic situations, besides i t s  role  a s  a model of eco- 
nomic reality,  is a noteworthy phenomenon and gives i t  added significance fo r  the economist. 

We now res ta te  Assumptions (**) in game theoretical t e rms :  Consider B and -A 
a s  mat r ix  games, where the maximizing player controls the rows and the minimizing player 
controls the columns. Let v(B) ,and  v(-A) be the values of each of these games. Then, 
remembering that the entr ies  of A and ,B a r e  nonnegative, i t  is easy to s e e  that the 
(**) Assumptions a r e  equivalent to the conditions 

v(-A) < 0, and 

V (  B) > 0. 

If we have !umbers a and p ahd vectors  x and y which satisfy Conditions 1-5, . 

then these quantities will provide solutions to the economic model which hold in every time 
period. We shall  then say  that the economy is in equilibrium. 

2 .  We now interpret  the whole problem in game-theoretic t e rms .  It will become clear  
to the reader  that some pa r t s  of the problem which a r e  of game-theoretic interest  a r e  not of 
economic interest .  We need the following lemma: 

LEMMA 1. - -  If x, y, a ,  and $ a r e  solutions of Conditions 1-5, then 

PROOF. - - F r o m  Condition 5, we s e e  that xBy > 0; hence, f rom Conditions 3 and 4, 
xBy = a xAy = p xAy > 0. F r o m  the las t  equation xAy > 0 s o  that a = p = xBy/xAy. 

Thus we need look only for  solutions in which a = f3 ; i. e . ,  the model requi res  that the 
interest  ra te  should equal the expansion ra te .  Under this assumption Condition 4 becomes 
the same a s  Condition 3 .  Making the abbreviation Ma = B - a A, Conditions 1, 2,  and 5 
be come 

CONDITIONS 1 

' May <_ 0, and 



Observe that we have omitted Condition 3 (and i t s  equivalent, Condition 4) .  This i s  permiss i -  
ble since, if we have a solution to Condition 1' and Zt,  then such solutions must  satisfy Con- 
dition 3 a s  well. To s e e  this, multiply Condition 1' by y, obtaining xM,y : 0; and 
multiply Condition 2' by x, obtaining xM a y 5 0; these two expressions imply that 
xM .y = 0 which is Condition 3 .  

If we in te rpre t  Ma a s  a mat r ix  game, where the maximizing player controls the rows 
and the minimizing player controls the columns, we s e e  that Conditions 1' and 2' imply that 
vMa)  = 0. . Moceover, Conditions 1' and 2'  show that the solutions x and y to the economic 
problem a r e  optimal s t rategies  in the game M a. We now restate  our  problem in game- 
theoretic t e r m s .  

PROBLEM. - -  Given nonnegative m x n mat r ices  A and B such that v(-A) < 0 
and v(B) > 0; s e t  Ma = B .+ a(-A), and find an a so  that v(M,) = 0; then find a pair 
of probability vectors  (x, y) such thal xBy > 0 and such that x i s  optimal. for  the 
maximizing player,  and y i s  optimal for  the minimizing player in the game M. 

We shal l  call  an a such that v(M ,) = 0 a n  allowable a .  Even if we can find a n  
allowable a ,  we will have to distinguish between two types of pa i r s  of optimal s t rategies  in 
thc game M ,. If (x, y) is a pair  of optimal s t rategies  fo r  Ma ,  such that xBy > 0, 
we shal l  cal l  these economic solutions to the game M a ;  on the other hand, if (x' , y t )  i s  
a pair of optimal s t rategies  fo r  M a ,  such that x tByt  = 0, we shall  call them noneconomic 
solutions to the game.  M ,. It w i l l  turn out that if the expansion ra te  is not unique (and per -  
haps even if i t  is unique) then there always exis t  noneconomic solutions to the game. Since 
we a r e  not interested in  finding noneconomic solutions we shall  not mention them again, and 
in  this sense  our problem becomes more  economic than game-theoretic.  

3 .  The purpose of this section is to discuss,  under Assumptions (**), the existence of 
economic solutions to Conditions I t ,  2', and 5' .  

Let  Sm be the se t  of all in-dimer~siuual plobability vcctoro, and let S he t.he 
s e t  of a l l  n-dimensional probability vectors .  In what follows, we shall  usc x CS, to denote 
a s t rategy f o r  the maximizing player in Ma ,  and y € S, to denote a s t rategy for  the mini- 
mizing player in Ma.  

LEMMA 2 .  - -  If at and a" ( C u l l  a r e  two distinct allowable values of a 
[.i. e . ,  v(Mat ) = v(M,tt) = 0 1, then v(Ma) = 0 fo r  a in  the interval ut 2 a 2 dl. 
Moreover,  if x t  is  optimal in Mat and yt t  is optimal in M a  then the pair  (xt ,  y " )  
is optimal in  M a  f o r  a l l  a in the same  interval. 

PROOF. - -  Let xt  be a n  optimal strategy f o r  the maximizing player in the game 
Mat ; then x tMa  1 0. If a is 'any number l e s s  thali a t ,  we havc 

x tMa  = x t ( B - a A )  = x l ( B -  atA) + x t ( a t . - a ) A L 0 ;  

hence, 



Similarly,  let y" be optimal for  the minimizing player in Mat' ; then ~ , l t y "  <_ 0. 
If a i s  any number grea te r  than at' ,  we have 

hence, 

The inequalities obtained a t  the conclusion of each of the two paragraphs above show 
that v(Ma) = 0 and a l so  show that . (XI, y t t )  a r e  optimal s t rategies  in  the game 
Ma for  at 2 a 2 a". This concludes the proof of the lemma. 

COROLLARY. - -  If (*) holds then there is a t  most one allowable a . 

PROOF. - -  Suppose there were two such, a and a ' ,  with a > a ' .  Let (x, y) 
and (XI, y ' )  be two economic solutions corresponding to these allowable a 's.  By the 
lemma, the pair  (x, y ')  is optimal a t  a and a ' ,  so  that 

and 

Subti--acting these two equations, we have 

( a '  - a)xAyt  = 0; 

subtracting a t imes the second from a' t imes the f i r s t ,  we get 

hence, we see  that xAy' = xByl = 0. Since x and y'  a r e  probability vectors,  we can 
choose indices i and j such that xiy; > 0; then necessar i ly  

so  that a = bij = 0 which contradicts assumption (*.) 
1J 

THEOREM 1. - - There a r e  a t  most min (m, n) allowable a 's  for  which economic 
solutions to Ma exist. 

PROOF. - -  F o r  each such a, there i s  a pair  (x, y) so  that xBy > 0; hence, fo r  
each such a, we can choose components . (xi, Yj )  s o  that xibijyj > 0; hence, XBJ  > 0, 
and then Conditions 1 and 3 imply that xAJ > 0. (A single 'superscript j on a mat r ix  in- 
dicates t he .  jth column of that matrix.  ) We next show that the indices of the components s o  
chosen a r e  different for  different such allowable a's. Let y and b be two such allow- 
able a's with y > b ,  and let  the corresponding component pa i r s  (xi, yj) and (xh, yk) 
be such that 

x.b. .y.  > 0 and 
1 11 J 

51bhkyk > 0. 



We must  show that i # h and j f k. We shal l  show j # k, and the proof of the other 
as,sertion is s imi la r .  Suppose, on the contrary, that j = k. By Lemma 2, there  is a 
s t ra tegy  x (corresponding to a = y )  . f o r  the maximizing player which is optimal in 
Ma f o r  b 2 a 2 y . Then, letting M& be the jth column of M a ,  we have 

j ~ ~ ' ~ 2 0  and x M b , O .  

However, s ince 

and s ince 

we s e e  that 

By Condition 3,  this implies that yk = 0 which, in turn, implies xhbhkyk = 0, contrary 
to the way in which yk w a s  chosen. 

Since to each allowable a f o r  which there a r e  economic solutions there corresponds 
a n  en t ry  bij > 0 in the mat r ix  B, and since the indices of two such entr ies  a r e  pairwise 
distinct, we s e e  that the maximum number of such allowable a's is equal to the longest 
diagonal which can be chosen in B. Because B is an  m x n matrix,  the longest such 
diagonal is min (m, n). This completes the proof of the theorem. 

THEOREM 2 (Existence theorem). 

la) T f  * *  holds, then there is a t  least  one and a t  mos t  a finite riirinber uf alluwable 
a's fo r  which the game M has economic solutions. 

(b) (von Neumann) If (*) holds, then there is a unique allowable a 

(c)  If (*) and (**) hold, then there is a unique allowable a ;  moreover ,  fo r  that 
a, the game Ma has  economic solutions. 

4. We shall  now add to the von Neumann model the requirement that a t  each time 
period the economy should supply to a n  outside consumer a vector d of goods already being 
produced by the economy. Hence, d is an  1 x n row vector.  We assulne that d is 
always a constant fraction of the output a t  any given time; i. e . ,  the outsidc additional demand 
is expanding a t  the s ame  r a t e  a s  the economy. 

The introduction of outside demand into the model opens up severa l  new avenues of ap-  
proach, some  of which shall  be studied o r  a t  least  mentioned. The outside demand may be 
physically outside the economy, but i t  may also represent  additional consumption by the 
workers  within the economy. If viewed in the la t ter  sense, we have removed the objection 
(noted in  the introduction) to the original assumption that the model requires  the restr ic t ion 
of the consumption by workers  to the level of subsistence. As  we shall  see ,  the r a t e s  of 
expansion and the s ize  of ' the outside demand can be closely connected. The resul t  demon- 
s t ra ted  below that decreasing the outside demand will allow a f a s t e r  growth of the economy 



is economically very plausible and. indeed, cgrroborated from observations pertaining to 
economic development and the role of savings. The phenomenon has consequently been 
treated in business cycle analysis.  

To simplify our  equations, we assume that this external demand a t  t ime t . is supplied 
out of the production of time t - 1. This assumption is consistent with the interpretation of 
the outside demand a s  added consumption; i. e . ,  a s  the economy expands, the percentage of 
the total production going to the consumers r e m a i n s  constant. Our expressions now become 

EXPRESSIONS 1 x(B - aA) 2 ad, 

4 x(B - pA)y = $dy, and 

In Expression 2 the vector e is an  n x 1 (column) vector, each of whose en t r ies  is one. 
These expressions may be more  briefly stated if we make greater  use of the vector e .  
Observe that ed is a n  m x n matrix, each of whose rows is the vector d. Then we 
can write the above expressions a s  

EXPRESSIONS 1' X[B - a(A + ed)] 2 0, 

2' [B - $(A + edUy 5 0, 

Observe that these expressions correspond to Conditions 1-5 in Section B. 1 if we substitute 
the mat r ix  A' = A + ed fo r  A. Hence, a l l  of the preceding work holds and the existence 
theorem insures  that a t  least  one economic solution exists.  . 

. THE-OREM 3 .  - -  The introduction of outside demand into the economic model has  the 
following effect. Consider a subeconomy of the economy having a unique expansion factor.  

(a) If the outside demand includes any good (produced by the subeconomyj which has a 
positive price,  thcn the expansion factor of the (sub) economy must  be dec'reased in o rde r  to 
supply the outside demand. 

The possibility of introducing cyclical components into the outside demand and hence into 
the behavior of the cnt.&c system easily' sugges l s  itself, but we chose not to proceed in 

... that direction at .present .  
+ 



(b) If the outside demand fo r  goods (produced by the subeconomy) having a positive 
pr ice is decreased,  then the expansion factor can correspondingly be increased. 

C.  The Walras -Wald Economic Model 

(This is a summary  of unpublished work by G .  L. Thompson and i s  closely related to 
work by H. W. Kuhn. See Reference 14. ) 

I. The equilibrium theorem of A .  Wald was one of the f i r s t  rigorous existence theo- 
r e m s  in economics and aler ted economists to the fact that the m e r e  counting of the number of 
equations and variables was not an adequate method of establishing the existence of solutions 
to s e t s  of equations. Waldls original papers a r e  difficult to read and have been largely in- 
accessible .  Therefore the recent  elegant reformulation by H. W. Kuhn of these resu l t s  is to 
be welcomed. K~thn was able to achieve 3. great  simplification in the statements and proofs 
of theorems by using the recerilly developud lheory of l inear  programming arid Lhe Icakutani 
fixed-point theorem. He a l so  extended Waldls resu l t s  by relaxing some of the conditions and 
assumptions that Wald required.  

In reading Kuhnls paper, I was s t ruck  by a cer tain asymmetr-y in  the formulation of the 
economic model and was led to t ry  to generalize the model to make it more  symmetr ic .  This 
section r epor t s  on that generalization. I begin with Kuhnls formulation and obtain a new model 
by relaxing some of h is  conditions. It is to be emphasized, however, that the present paper 
paral le ls  Kuhnfs development in the main; the importance of the generalization given he re  i s  
largely economic ra ther  than mathematical.  

The economic model i s  formulated in Section C. 2 and the economic meaning of the new 
conditions a r e  discussed in Section C. 3 .  The assumptions necessary  for  and the proof of the 
existence theorem a r e  given in Section C. 4. 

2 .  Consider the following model uT ali economy: There are m fac tors  of production 
and n goods. The quantity of the ith f'ac:l.ur. ulilized by tho economy i s  indicated by ri 
(units a rb i t r a ry )  and i t s  p r ice  by p i  ; simila~. ly ,  Llie quaritily of the jth gnnd prodi~ced by 
the economy is indicated by s j  (units a rb i t ra ry)  and i ts  pr ice by 6. ' the profit made on J '  
(or  charged to) the jth good is n. . finally the quantity of the jth good that is stockpiled by J '  
the economy is q j. It is assumed that a . .  units of the ith lactor  a r e  needed to prodlice 

1J 
one unit of the jth good, where 1 = 1, . . . 1 a d  - 1 , , . The m x n mat r ix  A 
is the technological mat r ix  of the economy. 

To keep these various quantities s t raight  we summar ize  them in.vecLor form in Table 111. 
Also included for  future use a r e  [he constant vectors e and f which have each of their 
components equal to 1. 

In the economy, the quantities s and p a r e  the independent va~. iables .  Once they 
a r e  fixed, the other quantities a r e  de t e rminedas  functions of them. Thus, if s is fixed, 
then the pr ice  of t h e  jth good is determined by Lhe jth dcmand function dj ; that is 
a = aj (5); a lso,  the profit made on the jth good is determined by the jth profit function J 
'7rj ; that i s ,  r j  = r j  (s). Similarly,  if p is fixed, then the quantity of the ith factor  used 
is determined by the ith factor  endowment (or supply) function r i ;  that i s ,  ri = ri ( p ) ;  
also,  the quantity of the ith factor  that is stockpiled is determined by the ith stoc.kpiling 
function qi; that is, qi = qi (P) .  



TABLE I11 

Vector Kind Description 

P row m-vector factor pr ice vector 

r . column m-vector factor endowment vector 

q .  column m-vector factor stockpiling vector 

e column m-vector a l l  components equal to 1 

s column n-vector goods quantity vector 

d row n-vector goods pr ice vector 

n row n-vector goods profit vector 

f row n-vector a l l  components 'equal to 1 

The functions 6, n, r, , and q and the mat r ix  A a r e  assumed given and fixed for  the - - - - -  
economy. By an  equilibrium in the economy we shall  mean vectors  r ,  s ,  q, p, 6, and 
that satisfy the s ix  conditions given below. (In stating these conditions, we use  the convention 
that if u and v a r e  vectors  with the same number of components, then u 2 v shall  
mean that the inequality holds for  corresponding components of these vec tors . )  

. . 

CONDITIONS 

Let u s  interpret  these equations economically. Condition 1 says  that to have economic 
.significance, p r ices  and quantities must be nonnegative. Condition 2 requi res  that the cost 
of making a good be a t  l eas t  a s  great' a s  i t s  pr ice l e s s  the profit made on it. Condition 3 
states  that the amounts.of the factors  used be a t  most the factor  endowment.less the amounts 
stockpiled. Condition 4 may be restated a s  follows: if pi [ a i j  - (aj  - 7t-j > 0, then 

1 

.sj 
= 0; that i s ,  i f  the cost of producing a good is grea te r  than i t s  p r ice  l e s s  i t s  profit, then 

it is not produced. Similarly, Condition 5 may be res la l rd  r r  : [aij - (r i  - qi)] sj 0, 
J 

then p i  = 0; , that is, factors  that a r e  present in excess  get zero  pr ice.  Finally, Condition 6 
s ta tes  that the pr ices  of goods and the profits made on goods a r e  functions of the quantity of 
goods produced, .and the factor endowments and amounts stockpiled a r e  functions of the pr ices  
of the factors .  



REMARKS. - -  F o r  the moment, s e t  a and q equal to zero, and se t  r equal to 
a positive constant vector; then Conditions 1, 3 ,  4, 5, and 6 appeared in a s imi la r  way in 
Wald's formulation, while Condition 2 appeared a s  an  equality ra ther  than an inequality. The 
inequality form of Condition 2 is due to Kuhn. The functions a (s ) ,  r(p),  and q(p) a r e  new 
in the present  paper.  F r o m  a mathematical point of view, the function a could be absorbed 
in the function 6, and the function q could be absorbed in r. However, for  economic 
interpretations i t  is desirable to keep them separate .  Note that the model does not require  
that a and q be nonnegative s ince negative profits ( losses  o r  subsidies) and negative 
stockpiles ( imports)  have obvious interpretations.  

3 .  The most important of the new functions introduced he re  is the factor limitation 
(or  supply) function r ( p ) .  In the Wald model this function is constant, which for  some eco- 
nomic interpretations is a reasonable restr ic t ion,  but not for  all .  F o r  example, if  s tee l  and 
concrete a r e  considered a s  factors  for  building construction, then there i s  a fixed amount of 
e a c h  available, and when ei ther  is used up construction must stop. Here a constant factor 
limitation function is applicable. On Lhe other hand, zf reinfo~-cerl c~c~r1t:rete a n d  concrete- 
encased g i rde r s  a r e  regarded a s  factors  of production, then, in f i r s t  approxinlation, these 
mater ia l s  can continuously be substituted fo r  each other in buildings, and a l inear  type of 
limitation function is in  order .  Again, in  cases  where there is substilulability hetwccn goods, 
a s  fo r  example between wood and metal,  o r  wood and plastic, fo r  certain uses,  then a non- 
constant limitation function is suitable. In general,  wherever there is substitutability o r  
interchangeability among factors ,  a nonconstant faclor limitation function a r i s ~ s .  

The stockpiling function q (p )  is introduced to take case of cer tain fac tors  whose 
production and.price a r e  not determined by equilibrium conditions in the economy. F o r  ex- 
ample, in the United States,  gold, uranium, and cer tain f a rm products a r e  s tored by the 
government. Also, if the economy is receiving outside aid in the form of goods, then this 
can be expressed by making some components of q negative. ' 

The profit function s(s) is introduced s o  that cer tain unprofitable goods that other- 
wise might not be produced may be subsidized by the economy. Such a r e ,  fo r  example, cer -  
tain f a r m  products, r e sea rch  products, military weapons, e tc .  

There is a close relationship between the functions q and a and the quantities p 
and f on page 124 of Reference 15. They each permit  a little s lack in  what otherwise 
would be very  rigid pr ice and production rules .  

- - -  - 
4. Given a technological imatrix R and fixed vectors  I-, 6, q, and n, w e  call 

define (following Kuhn) the following pair  of dual l inear programs:  

(i) Maximum Problem. - -  Maximize the quantity ( - ) s subject to the con- 
s t ra in ts  s : 0 and As 5 ? - q. 

(ii) Minimum Problem. . - - Minimize Lhe quantity p (r - q), subject to the constraints 
p :  0 and p A  2 6  - ?r. 

These problems have the following economic interpretations: The quantity ( 2  - a s  is 
the net value of the goods produced by the econon~y,  Lllat is, their total va1i.i~: l a s s  the profit 
charged on them. The quantity (r - q) gives the net factor  cost, that i s ,  the cost of a l l  
fac tors  l e s s  the cost of those stockpiled. These two problems taken together indicate that the 
economy is trying to maximize the net value of the goods it produces, while, a t  the s ame  time, 
minimizing the net cost of the fac tors  necessary to produce them. 



It is well-known that if e i ther  of these problems i s  solvable then both a r e ,  and there is 
a common value fo r  the maximum value found in (i) and the minimum value found in (ii). 
Thus if s and p solve (i) and (ii), respectively, then 

. - - 
Conversely, if s and p satisfy the constraints given in (i), and (ii) above, and i f  
they a l so  satisfy Assumption (*), then they solve the maximum and minimum problems 
stated above. In economic te rms ,  Assumption (*) means that, a t  equilibrium, the net value 
of goods produced equals the net cost of factors  used. 

THEOREM 1. 

- - - - -  
(a) 1f r ,  s ,  q, p ,  0 ,  and ; satisfy Conditions 1-5, then they solve the dual 

l inear programs (i) and (ii), stated above. 

(b)_ If s,- and p - solve the dual l inear programming associated with the vectors - 
r 2 0, 0 2 0, q P and n, then Conditions 1-5 a r e  satisfied. 

PROOF. 

- - 
(a)  F r o m  Conditions 1, 2, and 3 ,  the vectors  s and p satisfy the constraints of 

the l inear  programming problems. F r o m  Conditions 4 and 5, we have 

- - 
which i s  (*), so  that, by the theorem refer red  to above, the vectors  s and solve -. the dual programs (i) and ( i i ) ,  

(b) conditions 1, 2,  and 3 hold f rom the assumptions stated in (b). and the fact that 
thc constraints of the l i t ~ e a r  programs a r e  satisfied. 'L'o show that Conditions 4 and 5 hold, 
we observe that 

- - - - 
PAS,(< - i ) ;  E: p ( r -  9) 2 j A& 

where we have used successively Expressions 2 ,  (*), and 3 .  Since the f i r s t  and last  t e rms  
of this, chain of inequalities a r e  equal, equality holds throughout. If two of the equalities thus 
obta inedare  rewritten, it is easy to show that Conditions 4 and 5 hold. 

An equilibrium need not exist  unless additional assumptions a r e  made. In his original 
paper,  Wald made assumptions sufficiently s t rong to get a unique equilibrium. Here we make 
a number of assumptions but only enough to give the existence, not the uniqueness, of an  equi- 
l ibrium. K i l h n l s  modifications of the Wald modcl a lso has the lattei. pl.uper.ly. 

Our assumptions may be stated a s  follows: 

(A) The entr ies  of the technological mat r ix  a r e  nonnegative; i. e . ,  a i j  2 0 fo r  a l l  
i and j. 



(B) F o r  every i there is a j such that a i j  > 0, and for  every j there is an 
i such that a , .  > 0; that i s ,  every factor produces a t  l eas t  one good and every good is 
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produced by a t  least  one factor .  

(C) The functions r ( p ) ,  q( p), 6(s), and a ( s )  a r e  defined, bounded and continuous, 
and r and d a r e  nonnegative, f o r  a l l  nonnegative p and s. 

(D) The inequalities r ( p )  - q(p )  2 0 and ~ ( s )  - a(s )  2 0 a r e  satisfied for  a l l  
nonnegative ' p and s. In other words, i t  is ' impossible  to stockpile l a rge r  quantities of 
fac tors  than exist ,  and no profit on a good can be charged in excess'of the pr ice  of that good. 

(E) There a r e  n functions t . ( s )  such that, f o r  each s > 0, there is a p 
J 

satisfying the inequalities 

Moreover, the functions t a r e  defined and bounded for  a l l  nonegalive s. 'l'his requirement 
prevents unbounded inflationary p re s su res  on factor pr ices  and insures  the possibility of de - 
termining factor pr ices  in the economy. 

THEOREM 2 .  - -  If A, r ,  q, 6 ,  and a satisfy Assumptions (A)- (E), then an 
economic equilibrium exis ts .  



REFERENCES FOR PART THREE 

Kemeny, J .  G . ,  Snell, J. L . ,  and Thompson, G. L .  
~ntrodbct ion to Finite Mathematics, 
Prentice-Hall, New York, 1957. 

Nash, John 
Non-Cooperative Games, 
Annals of Mathematics. (2)' 54,) pp 286-295, 1951. 

Gale, D.,  Kuhn, H. W., and Tucker, A. W. 
On Symmetric Games, 
Contributions to the Theory of Games, Vol I, Annals of Mathematics Studies, 
Number 24, Princeton University P r e s s ,  Princeton, N. J. , 1950. 

Stiemke, E .  . 

Uber positive Ltjsungen homogener l inearer  ~ l e i chungen ,  
Mathematische Annalen, 76, 1915, pp 340-342. 

Tucker, A. W. 
Dual, Systems of Homogeneous Linear Relations, 
Linear  Inequalities and Related Systems, Annals of Mathematics Studies, 
Number 38, Princeton University P r e s s ,  Princeton, N. J . ,  1956. 

Gale, D., and Sherman, S. 
Solutions of Finite Two-Person Games, 
Contributions to the Theory ,of Games, Vol I, Annals of Mathematics Studies, 
Number 24, Princeton Universily P r e s s ,  Princeton, N. J . ,  1950. 

Bohnenblust, H. F.,  Karlin, S . ,  and ~ h a ~ l e ~ ,  L .  S. 
Solutions of Discrete, Two-Person Games, 
C o ~ ~ l r ~ i L u l i u ~ ~ s  lu Lhe Theory of Games, Vol I, Annals of Nlathematics Studies, 
~ u m b e , r  24, Princeton University P r e s s ,  Princeton, N. J . ,  1950. 

Shapley, L. S.,  and Snow, R. N. 
Basic Solutions of Discrete Games, 
Contributions to the Theory of Games, Vol I, Annals of Mathematics Studies, 
Number 24, Princeton University P r e s s ,  Princeton, N. J . ,  1950. 

Cowles Commission for  Research in Economics . 

Activity Analysis of Production and Allocation, edited by T. C. Koopmans, 
Wiley, New York, 1951. 



10. Robinson, J. 
, An Iterative Method of Solving a Game, 

" . Annals of Mathematics, (2) 54, 1951. 

11. Mosteller, Frederick and Nagel, Philip - , a < *  < -  

: > .  - .An ~ k ~ e r i m e n t i l  . ~ e a s b r e  of Utility, ' 
The Journal of Political Economy, Vol LIX, Number 5, October 19 5 1, pp 37 1- 404. 

12. Games in  Extensive F o r m  
Contributions to the Theory of Games, Vol 11, Annals of Mathematics Studies, 
Number 28, edited by H. W. Kuhn, and A. W. Tucker, Princeton University 
P r e s s ,  Princeton, N. J . ,  1953. 

13. Kerneny, J. G. ,  Morgenstern, O.,  and Thompson, G. L. 
A Generalization of the Von Neumann Model of an  Expanding Economy, 
Econornetrica, 24, 1956, pp 115-135. 

14. Kuhn, H. W. 
On a Theorem of Wald,  
Linear  Inequalities and Related Systems, Annals of Mathematics Studies, 
Number 38, Princeton University P r e s s ,  Princeton, N. J . ,  1956. 

15. Kemeny, J. G . ,  Morgenstern, O., and Thompson, G. L. 
A Generalization of the Von Neumann Model of an  Expanding Economy, 
Econornetrica, Vol 24, Number 2, April  1956. 



Issued by 
Technical Information Division 

Sandia Corporation 
Albuquerque, New Mexico 




