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LECTURES ON GAME THEORY, MARKOV CHAINS, AND RELATED TOPICS

by
GERALD L. THOMPSON

Assistant Professor in Mathematics
Dartmouth College
and
Sandia Corporation Consultant

ABSTRACT

This memorandum contains notes on nine lectures delivered at Sandia Cor-
poration in August 1957. As indicated in the table of contents, three main subjects
were discussed. Part One contains the manuscript of a paper concerning a judging
problem. Part Two is concerned with finite Markov-chain theory and discusses

regular Markov chains, absorbing Markov chains, the classification of states, appli- -

cation to the Leontief input-output model, and semimartingales. Part Three con-
tains notes on game theory and covers matrix games, the effect of psychological
attitudes on the outcomes of games, extensive games, and malrix game theory
applied to mathematical economics, These notes vary in completeness, but in
most cases references to the literature are given.
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PART ONE

ON METHODS OF OBTAINING A RANKING FROM A PAIRWISE
REDUNDANT ORDERING -OF MEMBERS OF A SET

INTRODUCTION

Consider a finite set of objects and an irreflexive, binary ordering relation defined for
some pairs of elements in the set. For example, the set could consist of chickens, chess
players, production processes, football teams, etc., and the corresponding ordering relations
would be -pecks, defeats, is superior to, beats, etc. Such situations have recently been of
interest to statisticians (see References 1-7) and sociologists (see References 8 and 9). (See
also Reference 10.) The question to be answered in such cases is that of determining, when

possible, a rank ordering or ranking of the objects in the set using only the more or less in-
" complete information given by the ordering relation. One important special case is paired
comparisons in which the ordering is defined between every pair of objects in the set.

This paper presents mathematical treatment of the Wei-Kendall method (Reference 3)
of obtaining the ranking and gives it two different characterizations. This part also presents
a new ranking method and shows that it contains the Wei-Kendall procedure as a special case,
Computational procedures, involving the solution of certain matrix games, are given for these
methods.

Although the methods presented here are not directly related to those previously con-
sidered by some statisticians for analyzing paired-comparison data, such as the Mosteller-
Thurstone method (Reference 6) or the rankit method (Reference 2), the results seem to be
nearly the same (see Chapter III, Section 3).

Part of the material presented here is based on the elementary but important mathe-
matics of order relations that has recently been included in some experimental mathematical
writing for sophomores (Reference 11). In fact, an early version of this material appears
there. This writing was prepared under the sponsorship of the Committee on the Under-
graduate Program of the Mathematical Association of America. Readers who find this ma-
terial of interest may also wish to support the introduction of such experimental material
into the undergraduate curriculum.

. 7
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CHAPTER 1

THE REGULAR CASE

A. Definitions and Notation

Consider a set X and a binary ordering relation R. The relation is reflexive if =xRx
for all x in X; it is irreflexive if xRx is falseforall x in X. The relation is
symmetric if xRy implies yRx; itis asymmetric if xRy implies "not yRx.'" The re-
lation is transitive if xRy and yRz imply xRz. It is pairwise complete if, for x %y,
exactly one of the relations xRy or yRx holds. It is pairwise redundant if, for x = vy,
at least one of the relations xRy or yRx holds. Thus a pairwise complete relation is
also pairwise redundant.

Consider a set A of n objects Aj, Ag, .., Anp, and an irreflexive binary order-
ing relation >»> , called a dominance relation. The effect of the dominance relation can be
completely summarized by means of an n xn dominance matrix D with entries
dij where dij = 1 if Aj>> Aj and is zero otherwise. Because the relation is irre-
flexive, .we have

(a) (Irreflexive) For all i, d],]. = 0.

If the relation is pairwise complete or pairwise redundant, we will have

]
(=]

(b) (Pairwise complete) For i + j, dij = 1, if and only if dji

(c) (Pairwise redundant) For i # j, if dij = 0, then dji = 1.
Note that the nonzero entries in the ith row of D indicate the members that A; domi-

nates and the nonzero entries in the jth column of D indicate the members that domi-
nate A . ’

In Chapter I, the only assumption consistently made about the dominance relation is that
it is irreflexive. A special assumption will be made about the matrix D, namely that it is
regular (see below), but this assumption will be dropped in Chapter 1l. Note that it is not re-
quired that the relation be transitive, and most interest lies in cases in which it is not.

Say that Ai has a k-stage dominance over Aj (see Reference 10, page 309) if there
is a chain of relations

A. = Ai >> Ai >> P-4 A. . = A. (1)



with elements Aip chosen from the set A. If the elements in the chain are all distinct,
call the k-stage dominance nonredundant; otherwise call it redundant. It is easy to show (see
Reference 10, page 309) that the i, jth entry of Dk gives the total number of (redundant and
nonredundant) k-stage dominances that A; has over Aj. Methods of counting the number of
nonredundant k-stage dominances have been developed by Ross and Harary in Reference 9.

In the sequel,a theorem (essentially due to Frobenius) is needed about nonnegative ma-
trices that are regular.

DEFINITION. -- A matrix A is said to be regular if AP> 0 for some positive
integer p.

THEOREM 1. -- If A is a nonnegative regular matrix then

(a) It has a unique positive characteristic value k of largest absolute value (the
principal characteristic value). '

(b) To k can be associated a row characteristic vector x > 0 and a column
characteristic vector y > 0.

(c) For certain such characteristic vectors

lim 1. A" = yx.
n—o kN0

We outline a proof of this theorem based on References 12 and 13. Theorem I of Refer-
ence 12 and its proof carry over verbatim if the word ""indecomposable" is replaced by the
word "regular." If 'k is not the unique characteristic vector of largest absolute value, then
there are m( 2> 2) such characteristic values of equal absolute value. By Theorem 1I in
Reference 12 (proved in Reference 13, p 646-7), there is a permutation I so that

0 A
12 0 0
A
0 0 23 0
n An-l = = B.
0 0 0
m-1,m
Aml 0 0 0
But then A = H-lBII is clearly not regular since AP - H—prH and II is a permu-

tation matrix. This outlines a proof of (a) and (b).



To prove {c), write A 1in Jordan canonical form as

k 0 - 0
J, 0
_1 :
TAT = 0 0 : I 0 = C,
0 0 J
q

a, 1 0 0
i
0 a, 1 0
1
J. =
i
0 0 0 a.
i
Whé,re the aj's are characteristic foots of A with |a,| <k. Since AT-1 = T'1C,

the first column of 'T-1 is a characteristic vector associated with k. And since TA = CT,
the first row of T is a characteristic vector associated with k. Because AP = T-1lgPT
is positive for p large, these characteristic vectors ure pusilive, call them x (the firot
row of T)and y (the first column of '1'=1), Now from the above eyualivns and the fact

that |aj| <k, we have lim _]i_n An . lim -}lc—n 1r-lety = yx, completing the proof.

B. The Wei-Kendall Ranking Method

The usual method of obtaining a ranking from an ordering of a set of objects is to give a
method of assigning a numerical score to each of the objects and then ranking them according
to the score. Wei and Kendall have proposed (see Reference 3) the following method for as-
signing scores. As an-initial score, asgigh to each member the number of othcr members of
the set over whom he has a one-stage dominance, plus a score of 1/2 for dominating himself.
The assignment of 1/2 for dominating himself is, of course, arbitrary and it will be seen
later that it does not matter what this number is as long as it is positive. It can be seen that
the initial score vector is given by -

A | N
s = (]?+§I)e, (2)

10



where e is the n-component column vector each of whose components is equal to one. Then
as a second score, assign to each member one-half his own initial score plus the initial scores
of each of the people he dominates in one stage; the second-score vector is given by

_ 1.2 ‘
Sy = (D+21) e. (3)

Now keep iterating this procedure until there is no change in the ordering of the people by the
scores so obtained. Thus, after m iterations the score vector is

s = (D+lI)me. | : (4)
m 2

After the matrix is raised to a sufficiently high power, the order of the components of the
scoring vector will remain fixed, at least if the matrix is indecomposable and its principal
column characteristic vector has distinct components (Kendall, Reference 3). The next
theorem establishes this result by a different method than Kendall used and also provides an
independent characterization of the score vector. .

N

THEOREM 2. -- Let D be the matrix of an irreflexive binary ordering relation,
assume that D+ 11 isa regular matrix, let k be its principal characteristic root,
and let y be a characteristic column vector of D + 41 associated with k. Then if we
- assign as a score tuo the members of A the components of the vector vy, and if the com-
ponents of  y are distinct, the ordering determined in this manner will agree with the final
ordering as determined by Equation 4.

PROOF. --If D + % I is regular, Theorem 1 implies

1i 1 \m 1 m
r;r_n’w(-llz) (D +§'I) e = yxe = cy, (5)

where k and y are as in the statement of the theorem, x is the characteristic row
vector associated with k, and c¢ 1is a constant equal to xe. Therefore, for m large,
the entries of the vector (D + 2I)™e must be ordered in the same way as are the entries
of the vector y. This completes the proof.

If two of the components of .y are equal, then the behavior for large m of the
corresponding components of s, is not clear. In any case, we assign y as the score
-vector and the corresponding individuals are tied in the ranking.

The only ad hoc thing about this method of obtaining the ranking is the arbitray choice
of giving each member half of his old score plus the scores of the people he dominates. The

£
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next theorem shows that the number 1/2 rmght be chosen to be any other positive number with-
out changmg the final scoring.

THEOREM 3. -- If each person is givén a positive multiple r of his old score plus
the scores of the members he dominates on each step of the scoring, the final ranking is the

same as that obtained with r = 1/2.

PROOF. -- Under the assumptions of the theorem, the score vector after m iterations
will be

s = (D+ rD)Me. ‘ (6)
m .

Since the entries of D + rlI are nonnegative il is obvious that D + rI will be regular if

and only if D + % 1 is regular. Hence, by the same kind of proof as that of Theorem 1,

1 m m
lim (_) (D + rl)
m-—Q0 k '

yxe = cy, (7)

where k is the principal characteristic valueof D + rlI, x and 7y are the associated
row and column characteristic vectors, and c¢ = xe. However, since (D + rl)y = ky
implies Dy = (k - r)y, we see that y is also a characteristic column vector of D as-
sociated with k - r. Itis easy to see that k - r is the principal characteristic value of
D since otherwise k would not be the principal characteristic value of D + rI. This
shows that the ordering is independent of the value of r and completes the proof.

COROLLARY 1. -- The Wei-Kendall scoring vector may be obtained by computing a
characteristic column vector associated with the principal characteristic value of the matrix
D. ) A N

This corollary gives a characterization of the Wei-Kendall scoring vector and also a
method of computing it. A second characterization is given in the next section.

C. The Dominance Ranking Method

Here a new method is proposed for obtaining a ranking from an ordering of a set. It is
a generalization of the methods proposed in Exercises 10-12 on pages 314-15 of Reference 10. .
Initially the method will depend upon a regularity assumption but the latter will be removed
in Chapter 1lI. Theorem 6 shows that the Wei~Kendall method is a special case of the domi-
nance method. '

The dominance method is the following: Pick a positive number r, and then consider
the infinite sum D + rD2 + r2D3 + r3D4 + ... . If the value of r was chosen so that
this infinite sum converges, then the scoring vector for the members of the set A is de-
fined to be

s ¢ ': (D -+ rD2 + r2D3 + .. .)e. (8)

12
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Observe that this method of judging gives as a score to each member the number of members
of the set he dominates in one stage, plus r times the number he dominates in two stages,
plus r2 times the number he dominates in three stages, etc. Conditions for the conver-
gence of the infinite sum and an expression for its sum are given in the next theorem.

THEOREM 4. -- Let D be the matrix of an irreflexive binary ordering relation. As-
sume that D 1is regular, k its principal characteristic value, and let r be any positive

number. Then

(a) A necessary and sufficient condition that the infinite sum in Equation 8 converges
is that r < - '

(b) If the sum converges, then the scoring vector is

(D+ r"D2 + r'2D3 + ...)e

S =
- ol - D) le. 9)
PROOF. -- The following identity may be established by an induction argument:
(P+d®+ ...+ D) a-rp) =D - "D (10)

I r we see that % cannot be a characteristic root of D, hence the matrix

1
< =

k)
I - rD has a nonzero determinant and also has an inverse. If Equation 10 is multiplied by
that inverse the result is

D + rD + . L | rnDn)(I - rD)_l. | (11)

Since (1/k)r1 > rn, we see from Theorem 1 that the term rnDn tends to zero. Hence,

for n sufficiently large, we have 0 =21 - r'p" £ I which implies that

D+rD>+ ...+ " D¢ (I - rD) L. (12)

Therefore the infinite sum converges, since it has all positive terms and is bounded above.
If we look again at Equation 11, we see that the infinite sum converges to the value claimed
for it in Equation 9, which proves (b) and the sufficiency part of (a). For the necessity part
of (a), observe thatif r = 1/k then the nth term of the infinite sum in Equation 8 tends
to a nonzero value, and if r >1/k it tends (by Theorem 1) to infinity. In either case the
infinite sum does not exist. This completes the proof of (a).

As was seen in Corollary 1, the Wei-Kendall scoring vector is proportional to the
characteristic column vector associated with the principal characteristic root of D. The
next theorem shows that the dominance scoring vector is proportional to the vector Dy
where y is the optimal strategy vector for the column player in the matrix game
G =1-rD. Italso shows that if we only wish the ranking, not the actual scores of the
members, we can order them according to the components of the yector y. First we need
a definition, : :

13
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DEFINITION. -- Lef H be an nxn matrix with entries h;;, and let Hij be
the cofactor of the element h;;. Denote by H* the transposed cofactor matrix
* . .|| tr. ) -1 - *
H HHlJ“ (Recall that if det H = 0, then H (det ) H)
THEOREM 5. -- Under the assumptions of Theorem 4, for r sufficiently small (for’

example, r < 1/(n - 1) is always sufficient), the scoring vector Equation 9 is proportional
to the vector Dy, where y is the unique optimal strategy for the column player in the
matrix game G = I - rD. Moreover, the components of Dy and the components of Yy
are ordered in the same way. '

PROOF. -- If we use the transposed cofactor matrix,we can write the score vector
Equation 9as s = 'ﬁl(—} Dz, where 2z = G*y. The vector z has as entries the

sums of the cofactors of the columns of the matrix I - rD. These entries will, in turn, be
proportional to the components of the optimal strategy for the column players of the matrix
game G = I-rD, providing that the matrix itself is a kernel of the game (see McKinsey,
Reference 14). We shall show that r can be chosen small enough that the whole matrix is
the kernel of the game G. We first show that r can be chosen small enough that the value
of G is positive. Observe that the game G  is not more unfavorable to the row player
than the game C whichisan n xn matrix with ones on the main diagonal and all entries
off the main diagonal equal to -r. It is easy to show (see Reference 10, page 293, Exer-
cise 8) that the value of the game C is equalto 1/n - Ln - 1)/n)r. Therefore if

r <1/(n - 1), the value of G 1is certainly positive. We next show that for small r every
optimal strategy for the row player in the game G puts positive weight on each row of the
matrix. Suppose, on the contrary; that he had an optimal strategy that put zero weight on
the first row (say). If the column player counters with thé (not necessarily optimal) strategy
that chooses the first column with probability one, the row player's expectation is at most
zero, contradicting the fact that the value of the game G is positive for small enough r.
Hence for r sufficiently small, the kernel of the game is the whole matrix and optimal
strategies for each player are unique. '

The column player's optimal strategy y is

'y = ft-) | (13)
y - R- -r e, X
where
K = 24G,, | (14
1, 4 ’
and Gij; = (I —rD)ij is the cofactor of the i, jth element of the matrix G = 1- rD.
The quantity K is nonzero because the whole matrix is a kernel of the game. Thus
s = {(det G)D(I - rD)*e = tDy, where t = K(det G) 1is a constant. Therefore

s 1is proportional to Dy.
From the identity (I - rD)y = y - rDy, we obtain Dy = (1/r) [y - (I - rD)y].

Since the kernel of the game is the whole matrix, we have (I - rD)y = v, where v is"
an n-component column vector each of whose entries is equal to the value of the game G.

14



Each component of y is greater than or equal to the value of the game G = I-rD since
y 1is an optimal stategy in that game. Hence vy - v is a nonnegative vector. Therefore the
members of the set A are ranked in the same way by the vectors s and y. (To get the
actual scores,one must compute the quantity tDy which is, in general, different from y.)
This completes the proof of the theorem. :

Theorem 5 gives another computational procedure for finding the ranking, namely, to
solve the matrix game I - rD for the column player's optimal strategy. It also shows that
the actual score vector obtained by the dominance method may depend upon the value of r
chosen. :

COROLLARY 2. -- Under the assumptions of Theorem 4, if r < 1/(n - 1), then
r <1/k, where k is the principal characteristic root of D. Therefore, if y is the
column player's optimal strategy in the game

1

G = I-=D, . (15)
n

then Dy or vy gives a ranking of the members of the set A. (Remark: observe that the
game Equation 15 can be computed for any problem without finding k, a fact that substantial-
ly reduces computing time, if only a ranking, not the actual score, is desired.)

PROOF. -- We showed in the proof of Theorem 5 thatif r <1/(n - 1), then
G = I-rD has positive value and its only kernel is the whole matrix. The value under these
conditions is (det G)/K where K is as in Equation 14. Therefore,
det G = det(l-rD)# 0, and 1/r is nota characteristic root for any r < 1/(n - 1).

Therefore r < 1/k.

We do not, as yet, have any connection between the Wei-Kendall ranking method and the
dominance method. To find a closer connection, reconsider Equation 10. If we multiply it on
the right by G* = (I - rDJ, we obtain

et @D+ rp% + ... + ™% = Dt - £V - r>)”. (16)

This equation holds for any n and any r. Hold r <1/k, andlet n tend to infinity
in Equation 16; we obtain

@et YD + rD% + ...) = DU -rD) . a7

Although the infinite sum in the second factor on the left-hand side of Equation 17 does not
exist if r = 1/k (since, by Theorem 1, its nth term does not tend to zero), the right-
hand side of Equation 17 and hence the left-hand side, tend to limits as r approaches 1/k
from below. (Observe that det G tends to zero.) We therefore define the dominance
score vector for r = 1/k to be

s = D(I-iD)we = KDy, : (18)

3 ¥ o . <
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where y is the column player's optimal strategy in the game 1 - (1/k)D and K is as

in Equation 14. Since det(I - %D) = 0, the value of the game 1 - %D is zero. For
r <1/k, wehad (I -rD)y = .v; hence, in the limit we have (I -%D)y = 0. But this

means that Dy = ky sothat y is a characteristic vector of D associated with k. We
conclude that the dominance method and the Wei-Kendall method agree when r = 1/k.
These results are summarized in the following theorem.

THEOREM 6. -- For r = 1/k both the dominance method and the Wei-Kendall
method assign as a score vector H where H is a constantand y is:
(a) a characteristic vector of D associated with its principallcharacteristic value k, and
(b) an optimal strategy for the column player in the game 1 - T D.

A question that the author has been unable to settle is the following:
Is the ordering given by the dominance method for 0 < r < 1/k the same as it gives for
r = 1/k? In all the examples computed this has been the case, bul no proof has as yet
been found. If the answer is yes, then it would be sufficient merely to solve the game in
Equation 15 in order to get the unique ranking.

16 4



CHAPTER 1II

THE GENERAL CASE FOR PAIRWISE REDUNDANT RELATIONS

A. More on Order Relations

Some of the material in this paragraph is covered in more detail in Section 1-5 of
Unit II of Reference 11. A binary order relation R that is reflexive and transitive (see
Chapter I, Section A) is called a weak ordering. Let us define a relation E so that AiEAj
means "A;RA; and A;RA;"; then it can be shown that E 1is an equivalence relation;
that is, it is reflexive, symmetrlc, and transitive. Let U be the set of equivalence classes
of A determined by E. We can also define a preference relation P where A;PA;
means "AjRAj and it is false that AjRAj." P is reflexive and transitive. This pre-
ference relation induces a partial order P° on the set U of equivalence classes. Thus
if X and Y belongto U,.then XP°Y if and onlyif A;PA; forall A; in X and

J
all Aj in Y. P° is also irreflexive and transitive.

In our case, we define A;RA; tomean '"A, can dominate A; in a certain number
of stages.' We shall state this vergally as, A; is comparable to Aj . By definition, we
shall say that AjRA; for all 1i; that is, each member is comparable to himself. By defi-
niton, R is reflexive and transitive and hence is a weak ordering relation. The corre-
sponding equivalence relation E is defined as "A;RA; and A;RA;." Verbally, we say
that A;EA; if andonlyif A; and A; are mutually comparable. Let U be the set of
equivalence classes defined by E. The corresponding preference relation P is defined
verbally as A;PA;; thatis, A, is preferredto A; if A; 1is comparable to A;, but
Aj is not comparable to A;. Finally, the induced partial ordering P° on the equivalence
classes is XP°Y if equivalence class X is preferred to Y, that is every element in
X 1is preferred to every element in Y.

In Section 2, we shall show that the induced partial ordering P° of equivalence
classes is actually a linear ordering in the case of a pairwise redundant ordering relation.
Then we show that the matrix of an equivalence class is regular, except in the case that the
class contains one, two, or three elements. A ranking is then obtained as follows: Elements
in different equivalence classes are ordered by the relation P and elements in the same
equivalence class are ordered by one of the ranking procedures described in Part I. We
thus obtain a complete ranking in nearly all cases. The cases for which the method fails,
namely those in which one or more members are tied, are discussed further in Chapter III,
Section B,

B. Equivalence Classes and Their Partial Ordering

Here we carry out the program outlined at the end of the last section.

THEOREM 7. -- If >> is a pairwise redundant ordering, then the’ part1a1 ordering
P°® of the set U of equivalence classes is a linear ordering.

17



PROOF. --Let X and Y be two equivalence classesin U, andlet A; be any
element of X and Aj be any element of Y. Since the relation >» is pairwise redundant,
we have either A; >> Aj or Aj >> A;. Suppose it is the former. Then A;>>Ajp for
every Ay in Y, since otherwise Aj) would belong to X. Hence we conclude that
XP°Y. Since every pair of equivalence classes is comparable under P° and since P° is
transitive, we see that it gives a linear ordering of these classes, completing the proof.

In particular, Theorem 7 means that the maximal and the minimal equivalence classes
under the partial order are unique. It also shows that if we can rank the elements in each
equivalence class, we will then have a ranking of all the members of the set. A. We will
see that it is not always possible to order elements within a given equivalence class (see
Chapter III, Section B), but Theorem 9 below shows that the methods of Part I can be ex-
tended to make as complete a ranking as is possible within such equivalénce classes.

DEFINITION. -- Let X be an equivalence class and let Dy be the dominance ma-
trix that the members of X define. We shall call Dy the dominance matrix associated
with X. - -

Obviously Dx is the submatrix of D obtained by taking only those rows and columns
corresponding to members of the equivalence class X. If X is a unit class, that is, con-
sists of one member, then the matrix Dy isthe 1 x 1 matrix with entry zero. We next
prove some results that show that Dy 1is regular if there are at least four elements in Lhe
equivalence class X.

LEMMA 1. -- Assume >> is a pairwise redundant ordering, and let X be an equiva-
lence class and DX be its associated dominance matrix. If there is an entry, say the
i, jth entry, of D% that is positive for all sufficiently large powers of Dy, then Dy
is regular.

PROOF. -- If forall m > M the i,jth entry of Dr}? is positive, then it is possible
to go from Aj to Aj in M steps, M+ 1 steps, M+ 2 steps, etc. Let N be
the largest number of steps required to go from Aj to any other element of X; sucha
number exists since it is possible to go from Aj to every individual in X. Then it is
possible to go from A; ‘to every other statein M + N or more steps so that the ith row
of D%V([fN has all positive entries. Let K be the largest number of steps required to go
from any element in X to A;; then the ith column of DX+N+K has all positive entries
since we can go from any state in X' t6 A; in K or fewer steps, and we can go from
A;j to any other state in M+ N or more steps. Now the square of a matrix having all
positive entries in its ith row and its ith column will have all its entries positive.

Therefore D%((M+N+K) and all higher powers of Dyx are positive and Dy is regular.

THEOREM 8. - Let > be a pairwise redundant dominance relation. If X 1is an
equivalence class containing four or more elements, and Dy is its associated matrix,
then Dy is regular.
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PROOF. -- The graph of a pairwise redundant dominance relation defined on a setof n
individuals means a set of n points in the plane with each pair of points being connected by
a line segment, and on each line segment one or two arrows indicating the direction of domi-
nance. There are only four pairwise complete dominance relations on a set of four elements.
The graphs of three of these are shown in Fig. 1; the fourth dominance relation is simply
the transitive ordering of the four individuals. If X 1is an equivalence class containing
exactly four members then its graph must be that of Fig. 1(a) since the other two graphs

— < <
(a) (b) } (c)

Figure 1

(and that of the transitive relation) contain two or more equivalence classes. By direct com-
. putation it can be shown that D% >0 if X is the equivalence class whose graph is shown
in Fig. 1(a). If X is an equivalence class containing five or more members then it contains
an intransitive triple, that is, a triple with Aj >> Aj >> Ak >> Aj. This holds because all
triples can be transitive if and only if the dominance relation itself is transitive. Consider
such a triple and then consider the relation of each of the other elements of X to the triple.
If there is an element whose relation to the triple is as in Fig. 1(a), then the submatrix

of Dx defined by these four elements is positive for ninth and greater powers so that
Lemma 1 implies that DxX 1is regular. If all the other elements of X have to the in-
transitive triple the relation depicted in Fig. 1(b) or all have the relation of Fig. 1{c),

Then these elements cannot belong to the same equivalence class. Therefore, if none of the
elements are related as in Fig. 1(a) then there is at least one as in Fig. 1(b) and at least one
as in Fig. 1(c). Moreover, it is possible to choose one of each type so that the resulting
graph is as in Fig. 2; otherwise these elements cannot all belong to the same equivalence
class. But now we see that the elements Aj, A2, A4, and Az have a graph equiva-
lent to that of Fig. 1(a) so that again Lemma 1 applies and DX is regular.
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TFigure 2

THEOREM 9. -- If >> is a pairwise redundant ordering, X is an equivalence class
and Dyx is not regular, then there are three possibilities:

(a) X contains only one element.
(b) X contains two elements A and B, ordered A > B > A,
(¢) X contains three elements, A, B, and C, ordered A > B> C > A,

PROOF. -- By Theorem 8, X cannot have more than three elements. (a) If X
has one element, then, as already observed, its matrix is simply the number 0 and is not
regular. (b) If X has two elements A and B, then necessarily A >> B and
B >> A - since they must be mutually comparable, It is easy to check that DX is not
regular. (c) If X has three elements A, B, and C, then necessarily
A > B >> C > A, so that they belong to the same equivalence class. With oniy these
relations among them it is easy to show that Dy is not regular. With any further relations
it is easy to show that Dy is regular, proving (c). ‘

Observe that Case (b) is a two-way tie and Case (c) is a three-way tie. It is evident
that there is no way of breaking such ties with only the information given. Other kinds of ties
are discussed in Chapter III, Section B. ’

The way in which the results of this section can be used to extend the ranking methods
given in Chapter I is now obvious. Given a pairwise redundant ordering relation on the
members of a set A, first separate the members into equivalence classes by means of the
mutually comparable relation. To compare members of different equivalence classes, use
the linear ordering relation P°. To compare members of the same equivalence class, use
one of the scoring methods of Chapter I. In some cases (as, for example, in (b) and (c) of
Theorem 9) ties will have to be allowed. In practice, such ties are rare and a complete
ranking will usually be obtained. Ties may be broken by submitting the tied individuals to
another judge, (see Chapter III, Section A).
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CHAPTER III

EXTENSIONS, EXAMPLES, AND COMPARISONS

A. DMultiple Judgments.

We can think of the binary relation discussed in Chapters I and II as being given by a
single judge who compares the members of the set. Suppose, as is often the case, that the
members of a given set are rated by two or more judges. For example, we may be interested
in testing which of a number of production processes is best for a certain job, and we apply a
battery of tests to compare each pair of processes. Kendall (Reference 3) has proposed add-
ing the dominance matrices of each judge and then using his scoring method on the sum ma-
trix. This result could also be interpreted as the result of a single judge who can.cast a
variable number of votes for members of a pair, instead of just one vote. Here we wish to
propose a modification of Kendall's procedure. Suppose we have m judges, and each
judge has a dominance matrix Dj, ..., Dy, thatindicates how he rates the members of
the set. Suppose, in turn, that we can rate the judges according to how important we feel
their judgments are; let the weight we give to judge k be X\, where Ay is a positive
real number. Then we form the matrix,

F = 2D, + MDD+ ...+ AD =21:< Dy (19)
The resulting matrix will not, in general, have only 0 and 1 entries, but it will have zeros
on its main diagonal. However, we shall say that A; is comparable to A; if there isa
nonzero entry in the i, jth entry of ¥; by definition we say that A; is comparable to

A, and then extend the notion of comparability by making it transitive. As in Chapter II, we
define equivalence classes and then use either one of the judging methods of Chapter I to set
up an order among member of an equivalence class. The theorems previously proved hold;

in some cases a slight modification is necessary. The matrix ¥ will usually define fewer
equivalence classes and there will be fewer ties than for the relation defined by any indi-
vidual matrix Dk . Again the matrix F may be interpreted as the matrix of a single judge
who can cast a variable number of votes for the members of each pair. An example of a
multiple judgment is worked out in the next section.

B. Examples

1. Comparison of the Scoring Methods of Chapter I. -- Consider the dominance ma-
trix (20) for the graph of Fig. 1(a). It is the matrix of the only pairwise complete dominance
0 1 1 0
1
D - °o o (20)
0 0 0 1
1 0 0 0
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relation on four objects whose mutually comparable relation defines a single equivalence
class. The characteristic equationof D is x¥* - 2x -1=0 andits principal charac-
teristic root is 1.395. Table I shows the scores obtained from the dominance method, ’
written as deviations from the mean score divided by s;. The last score, corresponding to
r = 0.717 = 1/1.395, is also the score given by the Wei-Kendall scoring method. The
scores always place the members in the same order although the actual numerical scores
vary with r. The exact numbers obtained depend upon the weight given to higher order
dominances.

TABLE I
r s1 _ gz s-;3 s4
0.100 1.000 0.834 -1.008 -0. 826
0.200 1.000 0.718 -1.028 -0.690
0.300 1.000 0.635 -1.054 -0.581
0.400 1.000 0.574 -1,085 -0.489
0.500 - 1.000 - 0.529 -1.118 -0.412
0.600 1.000 0.496 -1.151 " -0.345
0. 700 1. 000 - 0.471 -1.185 -0.285
0.717 1.000 0.467 -1.191 ~ -0.276
2. . Multiple Judging. -- Suppose that two different judges of four individuals rate them
according to the dominance matrices in (21). '
0 1 1 1 0 1 0 1
0 0 0 1 0 0 1 1 )
D, = 0 1 0 0 D, = 11 0 0 0 (21)
0 0 1 0 0 0 1 0
If the judges are given weights of one each, the F matrix is
0 2 1 2
0 0 1 2
F = 1 1 0 0 (22)
0 0 2 0

To find the scores of the individuals we solve the game I - % F.  (first checking that 1/4
is less than the principal characteristic root of F) and find that the optimal strategy tfor the
column player has components s; = 0.349, s9 = 0.233, s3 = 0.225, and s4 = 0.193.
Hence the composite judgment of the two judges ranks the individuals A{AgAgzA,.
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. 3. Ties. -- As observed earlier there sometimes are ties among members of the same
equivalence class which cannot be broken by the scoring methods developed. Figure 3(a)
shows a three-way tie whose dominance matrix is not regular (cf. Theorem 9); Fig 3(b) shows
a five-way tie whose dominance matrix is necessarily regular (cf. Theorem 8). The reader

PN
Y

(a) (b)

Figure 3

may wish to construct analogous seven-way and larger odd-number ties. It can be shown that
a four-way tie is impossible with a pair-wise complete relation. It is probably true that even-
number ties greater than four are also impossible in this case.

Figure 4(a) shows the graph of a dominance relation among five individuals that contains
a three-way tie (A3, A,, and A are tied. The graph in Fig. 4(b) is that of a dominance
relation among six individuals. By considering the equations satisfied by a characteristic
matrix of the corresponding D matrix, or those satisfied by an optimal strategy vector,
we can show that A, and A_. are tied by both the scoring methods of Part I. This is
clear graphically since they each dominate the other and also dominate the same individuals.
There seems to be no reasonable way to break these ties with only the information given, But
if we could submit the same individuals to another judge, it is quite likely that the combination
of their two judgments would break the tie,

Ay

As

A3

Y

(a) (b)
Figure 4

These examples show some of the difficulties that can arise in judging problems.
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C. Comparisons and Extensions

The methods discussed here do not depend upon the assumption of an underlying psycho-
logical scale as do those of Thurstone-Mosteller (References 4, 5, and 6). Nor do they de-
pend upon an underlying statistical model, as.does Scheffe's model (Reference 7). In Refer-
ence 6, Mosteller has applied his model to the analysis of baseball data where certainly the
judging method is impersonal and there is no psychological scale. On the other hand, the
Wei-Kendall method, together with other methods, was used by Bliss, Greenwood, and White
(Reference 1)on a case in which tasters were asked to compare pairs of various kinds of
applesauce. That case seems very well suited to the assumption of a psychological scale.
From six judgments by each of 25 tasters they obtained the following matrix, in which the
entry at the 1i,jth spot indicates the number of times i was preferred to j.

1 2 3 4
1 0 81 95 103
2 69 0 81 81
3 55 69 0 78 - (23)
4 47 69 72 0

In Table II we reproduce some of the data from Reference 1 that compares the various
methods of ranking the kinds of applesauce, together with the row player's optimal strategy
vector in the game I - D. They are written as deviations from the mean score divided
by the largest score. Obgggve that all methods give the same ranking, but that the actual

TABLE II
1 2 3 4
Mean normal deviate, Mosteller 1.000 0.108 -0.409 -0.699
Degree of preference, ranks, Schette 1.000 U.u44 -0.294 -0.750
Optimal strategy in game I - (1/500)D 1. 000 0.130 -0.435 -0.696

numerical scores differ somewhat. Bliss, et al, state a preference for the Thurstone-
Mosteller technique because of computational ease, and probably also because it is a familiar
kind of computation.

The solution of a four-by-four game by trial-and-error methods is not difficult and can
be done with a desk computer in less than 2 hours. Methods of computing the solutions of
very large games have been coded for electronic computers and would allow the application
of the dominance method to large problems.

It should be remarked that only a reinterpretation is necessary in order to modify the
order relation discussed here to one that expresses degree of preference in the sense of
Scheffe (Reference ‘7). Thus the entries of the matrix could be 0, 1, 2, etc., the numbers
indicating how much one member of the pair is preferred over the other.
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A final remark should be made which has relevance to footnote 15 of Reference 7.
Although the various models for obtaining the ranking are derived from widely differing
rationales--psychological, statistical, sociological, or graph-theoretic- *the final mathe-
matical model in many cases has been applied with impunity to situations in which the ration-
ale of the model does not apply. The fact that the results of the various methods are in close
agreement indicates, perhaps, that they each extract approximately the same information
from the data gathered, regardless of how they were developed.
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PART TWO

NOTES ON FINITE MARKOV CHAINS

CHAPTER IV
REGULAR- MARKOV CHAINS
A probability vector (row or column) is a vector with nonnegative components whose

sum is one. A stochastic matrix is a nonnegative square matrix whose row sums are equal
to one.

Let S be a finite set containing n- eleinents called states. Let p(0) be a proba-
bility vector, the initial probability vector. Its components give the probabilities of being
at each of the states initially. Let P = ||pij|l be an nxn stochastic matrix, the matrix
of transition probabilities, whose entries - p;; give the probabilities of going from state i
to state j. A finite Markov chain is a stochastic (time-dependent) process defined by the
initial probability vector p{0) and the transition matrix P.

Let p{m) be the probability of being at state j after m steps, given that the

process started at state i. It can be shown that p(m) = p(0)p(m) = p(0)Pm, where Pm
is the ordinary matrix power, p(m) - Hpgﬂ)“, and p(m) is the probability of being in each

of the states after m steps.

A stochastic matrix is said to be regular if some power of the matrix has all positive
components.

THEOREM 1. --If P is a regular stochastic matrix, then
(a) The powers PM approach a matrix T
(b) Each row of T is the same probability vector t.
(c) The components of t are positive.
The proof depends upon the Frobenius theorem (see ’l}heofem 1 of Part: One).
THEOREM 2. --If P, T and t are aé in The/.orem 1, then
(a) ¥ p 1is any probability vector, pPM_,t,

(b) The vector t satisfies tP =1t, 1i.e., itis a fixed vector of P; t is the
unique such fixed probability vector. ' R
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This theorem has the following important interpretation: Call a Markov chain bregular
if its transition matrix P is regular. Then p(m) = p(O)Pm,——>t, so that, after a large
number of steps, the probability of being in state j is very nearly t. regardless of the

initial probabilities p(O). The quantity tj is the limiting probability of being in state j.

(For examples see Chapter 15 of Reference 1, or Chapters V and VII of Reference 2.j
THEOREM 3. -- For a regular Markov chain,the avérage time it takes to return to a
state, having once been there, is the reciprocal of the limiting probability of being in that

state.

Theorems 2 and 3 answer the two most important questions concerning regular Markov
chains. (Proofs may be found on pages 221 and 323 of Reference 2.)
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CHAPTER V

NONREGULAR CHAINS

A. The Classification of States

The classification here is similar to the classification of members of a set discussed
in the judging problem (Part One of this monograph). Let us say that state i can communi-
cate with state j in one step if Pij * 0. Similarly, state i can communicate with state j
in m steps if there is a chain of states 1= 1, iy, ..., iy =] such that iy can communi-
cate with ip,; in one step. By definition we shall say that state i can communicate with
itself (in zero steps, say). . The communication relation, which we symbolize by C, is then
reflexive and transitive--therefore a weak ordering. The related equivalence relation E is
defined so that iEj means '"iCj and jCi.'" Let U be the set of equivalence classes of
states determined by E. The related preference relation P is defined as 'iPj if iCj and
not jCi." Preference relation P .induces a partial order P° on the set U of equivalence
classes. Thus, if X and Y belongto U then XP°Y if andonly if iPj forall i in X
and all j in Y. ' :

EXAMPLE. -- Consider the Markov chain with transition matrix:
1/4 1/4 1/3 0 1/6
1/3 1/6 1/6 1/3 0
0 0 1 0 0
0 0 0 1/4 3/4

0 0 0 2/3 1/3

Here are three equivalence classes, one containing States 1 and 2, one containing State 3,
and one containing States 4 and 5. They are ordered by P° accordmg to the graph below:

DEFINITION. -- The minimal equivalence classes under the partial ordering P° are
called ergodic classes. The states in ergodic classes are ergodic states. If an ergodic class
contains exactly one state then that state is called an absorbing state. All states that are not
ergodic are called transient states.

B. Definitions
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In the example above, 1 and 2 are transient states; 3, 4 and 5 are ergodic states; and 3
is an absorbing state.

DEFINITION. -- If X is an equivalence class with k states, then Px is the
k x k submatrix of P whose entries have indices of states in X,

LEMMA 1. --If X is an ergodic class,then Py 1isa stochastic matrix.

DEFINITION. -- An ergodic class X is regular if Py is a regular matrix.
An ergodic class that is not regular is periodic. States in ergodic classes are regular or
periodic according to the type of their class.

Obviously, an absorbing state is regular.
(The notation given here differs somewhat from that used by Feller in Reference 1.

DEFINITION. -- An absorbing Markov chuin is one for which each ergodic state is
absorbing. In such a chain it is always possible to go from any state to an absorbing state
(in one or more steps).

EXAMPLE. -- The Peter-Paul matching-pennies game is an absorbing Markov chain,
Its matrix, for the.case when the total fortune is three pennies, is given below. The states.
are Peter's fortune.

1 0o o0 o0

1/2 0 1/2 0
o 1/2 o0 1/2
o 0o 0 1

w N = O

The behavior of Py for X a regular ergodic class has been discussed previously.
If' X is a periodic ergodic class, then there is a positive integer p> 2 such that if we
"look at'' the process only at times p, 2p, 3p, ..., then its behavior is like that of a
“regular class, We shall content ourselves with this sketchy discussion of perlodlc classes.
(More information is available in Reference 1).

Regular and periodic classes act like absorbing classes since once the process enters
such a class it never leaves it. If we want to know only what the chances are of it entering
such a class and not what happens after that, we can replace such regular or periodic class
by absorhing rlass (state), ''herefore the rest of the discussion will center on absorbing
Markov chains.

C. Absorbing Markov Chains

Three important questions are to be answered for absorbing Markov chains.

(a) What is the probability that the process will end up in a given absorbing state?
(b) What is the average length of time for the process to reach some absorbing state?

(c) On the average, how many times will the process be in each transient state before
final absorption?



Contrary to the case of regular Markov chains, the answer to these questions may de-
pend on the starting state.

Suppose there are m absorbing states il, 12, ey A Let d~(ik) be the proba-

bility of being absorbed at state iy if the process starts at state j. Because it is impossi-
ble to leave an absorbing state, it is obvious that

diéik) = 0if h + k, . (24)
and
dik(i.k) = 1. (25)

Let d(iy) be the vector with components d-(ik). From a state j the process goes
to state u with probability Pju after which there is probability du(ik) of being absorbed
at iy; hence, pjudu(ik) is the probability of going from j to iy via state u. The sum
of all these terms gives the total probabilily of going from j to iy. This can be written as
a matrix product so that ’

di,) = Pd(i). | (26)

It can be shown that there is a unique probability vector solution to Equations 24-26. Note that
the solution d(iy) 1is a fixed column probability vector of the transition matrix P. From
the fact that the process must be absorbed it is easy to see that

m

Z d(ik) = e, ' (27)
k=1

(Recall that e is the n-component column vector each of whose entries is one.)

~

The components of the vector d(ik) give the answer to Question (a) above. Thus the
jth components of the vectors d(iy) give the probabilities of being absorbed in each of the
absorbing states, given that the process started in state j.

EXAMPLE. -- In the Peter-Paul matching-pennies game above, it is easy to see that
the .two fixed vectors are

1/3
2/3

and

Thus, if Peter's fortune is one, he has 2/3 chance of losing the game and 1/3 chance of
winning, and so forth.
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We next study Question (c) and develop results that will answer both Questions (b) and
(¢). If i and j are transient states, let ti; be the expected number of times the pro-
cess will be in state j given that it started in state i. Let us derive the relations that the
tij must satisfy.

From i the process goes to state k with probability' pjx- If k is an absorbing
state, then the process never goes to j; but if k is transient then we expect it to go to j
an average of tkj times. We must therefore sum p;i tkj ‘over the transient states k.
In case i = j, we must also add one to this sum since we started in j. To write these re-
lations in matrix form let Q be the submatrix of P consisting of the entries whose in-

dices are those of the transient states. Let T = Htij“' Then T and Q are of the same
size and the above relations can be written ’ ’ :

T = QT + L. (28)
This can be rewritten as

I-QT =1 (29)
It can be shown that the matrix I - ‘Q is nonsingular so that

T = 1-@° . (30)

The entries of the matrix (I - Q)-1 give the answers to Question (c). They also give
the answers to Question (b). If we want to know how many steps the procece makes hefore
absorption, given that it started at a transient state i, we observe that, before absorption,
the process must always be in a transient state. If it started at i, it will be in each of the
transient states the average number of times given by the entries of the ith row of T.
Hence, the average number of times before absorption is the sum of the entries in the ith
row. Thus the components of the vector t, where

t =.Te = (I = Q)'le, (31)

provide the answers to Question (b).

EXAMPLE. -- In the Peter-Paul matching-pennies example above, we have
0 1/2
> o)
1/2 0
1-Q ( 1 —1/2) ,
-1/2 1/
(4/3 2/3)  and
2/3 4/3

0

—
"
=]
'
O
1
-
1
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From this we see that the average number of plays before the game ends is two, of which
an average of 4/3 of the plays are made in the starting state and 2/3 in the other transient
state.
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CHAPTER VI

*
THE OPEN LEONTIEF MODEL.-

The Leontief input-output model considers an economy in which there are r industries
with the simplifying assumption that each industry produces exactly one kind of good. We re-
gard the natural factors of production such as land, timber, minerals, etc., as'free and do
not consider them as entering into the cost of finished goods. In general, the industries are
interconnected in the sense that each must buy a certain amount (positive or zero) of the
other's products in order to run its industry. We define technological coefficients as follows:
ajj is the dollar value of the amount of the output of industry j that must be purchased by
industry 1i in order that industry i may produce $1 worth of its own goods. Let A be
the r xr 'matrix with entries a;;. By their definition the technological coefficients are
nonnegative; hence, A 2 0. (Here and elsewhere an equality or inequality relation between
two vectors or matrices is assumed to hold if and only if it holds componentwise. )

It is easy to see that the sum of the a;;, for i fixed, gives the total value of the
inputs needed by the ith industry in order to produce $1 worth of its goods. I the ith
industry is to be profitable, or at least to break even, this sum must be less than or equal to
the value of its output; i.e., aj; + ajp + ... + ajp <l1fori=1,2, ..., r. For obvious
reasons, we shall call the ith industry profitable if the strict inequality holds and profitless
if the equality holds. We make the assumption that every industry is either profitable or
profitless and thus rule out the possibility of unprofitable industries.

If we let e Dbe the r-component column vector each of whose entries is 1, we can
restate the above conditions as

A 20, (32)
and
Ae fe. . (33)

Having discussed the inputs of the industries, we next discuss their outputs. Let x.
denote the monetary value of the output of the ith industry and let x = (x,, Xg, iy X ;
be the row vector of outputs. Since the ith industry needs an amount X8 ol the output
of the jth industry, and this is true for i, j =1, 2, ..., r, the vector of inputs needed
by the industries is simply xA. Then the jth component of xA gives the total value of
the output that must be produced by the jth industry in order to meet the interindustry
demand for its product.

* This chapter reports on recent (unpublished) work by J. 'G. Kemeny, J. L. Snell, and
G. L. Thompson,
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) Assume that the economy supplies for consumption an amount. hi of the output of the
ith industry. Let h = (hl, h2, cey hr) be the row consumption vector. We shall require
that ’

h 2 0; ‘ ‘ (34)
that is, the consumption vector is nonnegative.

The requirement that the production vector of the economy be adjusted so that the inter-
industry needs as .well as the consumption needs .be fulfilled is now easy to write in vector
form as ' ' ’

x = xA + h, (35)
Rewriting Equation 35 as
x(I - A) = h, . (36)
we see that it is a set of r simultaneous equations in r unknowns.

To be economically meaningful, we must find nonnegative solutions to Equation 38.
Since the demand vector h may be arbitarary, Equations 36 are in general nonhomogeneous
and will have a solution if and only if the matrix I - A has an inverse. Moreover, the solu-
tions to Equation 36 will be nonnegative for every h if and only if (I - A)-1 has all non-
negative components. We must therefore search for necessary and sufficient conditions that
the inverse of 1 - A be nonnegative.

We will now imbed our model in a Markov chain, to be able to use Markov chain methods
in proofs.

DEFINITION. -- By the Markov chain associated with an input-output model we shall
mean a Markov chain M with the following properties:

(a) The states of M are the r processes of the model plus one additional absorb-
ing state [the (r + 1)st state], called the banking state.

(b) The transition matrix P of M is defined as follows:

le = aij for i, J = 1, 2, vee, T
r
Pi, r+1 = 1 -Z ajj, for i =1, ..., r
=1
Pr+1,} = 0, for j =1, ..., r

g

"
ot

Pryi1, r+1
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The intuitive interpretation of M is the following: If Industry i receives a dollar
for its use, then it spends it by buying a;; from Industry 1, a;j9 from Industry 2, etc.,
and . aj, from Process r. The remainder of the dollar, if any -- that is, the amount
1 —Zl ajj -- is the profit, and we may think of it as being deposited in a bank. The fact that
the Jlast row of the transition matrix, the one corresponding to the banking state, has all zeros
except for the one on the main diagonal, means that the bank represents an absorbing state.
The bank gets money but does not spend it. :

THEOREM 1. -- Let A be a matrix satisfying Equations 32 and 33. A nonnegative
solution to Equation 35 exists for every h 2 0 if and only if the associated Markov chain
M is absorbing with the banking state as its only absorbing state.

PROOF .

Sufficiency. -- If M is an absorbing Markuv chain with the banking statc as 1its only
absorbing state, then Q = A where Q is the submatrix with indices corresponding to
transient states. Also T = (I - Qrl = (I - A)l is the matrix whose entries give the mean
number of times the process is in each transient state. Since the mean number of times in a
transient state is necessarily finite and nonnegative, the components of (I - Ayl are non-
negative, which is the desired conclusion. ‘

Necessity. -- If M is not an absorbing chain with only a single absorbing state, then
there is another ergodic class whose indices are those of entries in A. But then (I - A)-1
cannot exist. If it did, it would have the interpretation as above; that is, its entries would
give the mean number of times in each state, and the mean number of times the process is in
an ergodic state is infinite. Hence (I - A)~1  does not exist.

(A nonprobabilistic proof of the theorem can also be provided.)

t
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CHAPTER VII

SEMIMARTINGALES OF MARKOV CHAINS

A martingale relative to a stochastic process is a function on the states of the process
such that the expected value of the function after one step is equal to the value of the function
at that state. An upper (lower) semimartingale is a function on a state whose expectation
after one step is greater (smaller) than the value of the function at the state. Here we shall
assume that the stochastic process is an absorbing Markov chain. .

Recall that an absorbing Markov chain is one all of whose ergodic states are absorbing
states. Assume that there are r absorbing states which we shall call boundary states.
Let B be the set of boundary states. The remaining (transient) states will be called
interior states. Assume there are s interior states, and let I be the set of interior
states.

Let P bethe (r + s) x (r + s) transition matrix. A function on the statéds may
be represented by a column vector z. Sucha 2z is a martingale if Pz = z; itisan-
upper semimartingale if Pz 2 z; and it is a lower semimartingale if Pz 2 z.

A one-person game interpretation makes these definitions clearer. If 2z is a column
vector, let z; be the value to the player of being at state 1i. Suppose he plays the following
game: If he is at state i€ B, he receives the value z;; if he is at a state i€.I, he may
either accept the value z; or move to another state with the transition probabilities of the
Markov chain. Then a martingale is a fair game, an upper semimartingale a favorable game,
and a lower semimartingdle an unfavorable game. Wc shall use Lhis game interpretation to

give intuitive proofs of certain results that follow.

We shall concentrate on nonnegative semimartingales. Suppose that nonnegative bound-
ary values v, have been assigned to the boundary states j&€ B. Let U be the set of all
nonnegative upper semimartingales z with z, = Vj for jCB. Thus U is the set of

all z satisfying . . , : i

(a) Pz >

Z’
(b) =z >0, and

(c) 2 =V for j€B.

Similarly, L is the set of all lower semimartingales, that is, vectors z satisfying (b)
and (c) and condition ‘(a) with the inequality sign reversed. .

* This chapter summarizes some recent (unpublished) work of J. G. Kemeny and
J. L. Snell. '
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We shall develop a representation theorem for nonnegative semimartingales having the
prescribed boundary values. Every such martingale can be represented as a combination of

certain basic martingales.

Let T bea subsetof I, and denote by P(T) the transition matrix obtained from
P by changing the states in T into absorbing states. Let Q(T) = nlimoo [P(T)Jn. .The
T ,

entry q;i(T) of Q(T) represents the probability that, starting at state

the process

will reach state j before reaching any element of T. Let qj(T) denote the jth column

of Q(T); then, since Q(T) = P(T) - Q(T), and since

Z» Py (T if idT

0 it i€ T,

wec see that

qu(T) > qJ.(T) for j € B.

Thus, q;i(T) for j€E€ B is an upper semimartingale. Its value is one at
all other absorbing states and at all states in T. Then the vector

r

™ = S vqlT

=1

j

(37)

(38)

and zero at

(39)

io a nonnegative upper semimiartingale with the preseribed boundary values; hence z(T)€ U.

We shall call z(T) a basic upper semimartingale.

The game represented by the semimartinglae z(T) is the following: If the player is
at a state j in B, the game is stopped and he receives z; (T). If he is at a state i in
T, thc game stops and he receives Zi = 0. Il Le is at o otate i€T - T, he may quit and
" receive zj or he may move to another state with the transition probabilitico of the Markov

chain. This interpretation makes the following lemma obvious:

LEMMA .1. -- Let T; and Ty be subsets of I with T; & Ty. Then

z(Ty) 2 z(Ts).

EXAMPLE. -- Consider the Markov chain whose transition matrix is:
1 0 0 0
_ 0 1 0. 0
! { o 1/3 1/3 1/3
1/2 0 1/4 1/4
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The sets of states are B = ‘{1, 2_} and I = {3, 4}. Assume that vy = 2 and v(2) = 1.
The basic semimartingales are

2 2

2@ = | 55 , , z({3}) = 0
9/5 - L 4/3

2 2

. 1 1
z({4}) /2 2({3,4h = | |
0 0

It is clear that z({3, 4}) is-also a martingale.

Lemma 1 partially orders the basic semimartingales. The maximal element in the
partial ordering is z(§) (where 0 is the empty set), and the minimal element is z(I).
It is easy to see that z(§) is a martingale with the proper boundary values.

We now make a special assumption that is to hold-for the rest of the discussion. It can
be relaxed but we shall not go into the details.

HYPOTHESIS. A. -- The boundary values v; for j€B are all positive and, for any
interior state i€ I there is at least one j€ B 'so that pj; > 0. (In other words, one-
step transition from any interior state to the boundary is always possible.)

LEMMA 2. -- If Hypolhesis A holds, then

0 {Pz(T}

i

= fm}, > 0 for i€I-T,
and

(ii) .{Pz('r)}i > {z(T)}, = 0 for i€T.

i

This can easily be proved from the game interpretation. Lemma 2 shows that for each
z(T) exactly one of the equalities (i) or (ii) holds.

n be distinct nonnegative vectors, and let Wj
be the set of components of x; that are equal to zero. Assume that if W; © Wi then
xi 2 Xk. Then the vectors are convexly independent; that is, no one vector x; can be
written in the form x; = Z ak Xk Wwith ak >0 and 3} ak = 1.

K +i k

LEMMA 3. -- Let xj, X3, ...; X

41
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PROOF . -- If the contrary holds,then a compon‘e_ntv of xj " can be zero only if-all the
X} have this component zero. Hence W, c Wk’ and x; > xy for all k. But his can’
only be true if x; = x; for all k, contrary to hypothesis. o

DEFINITION. -- A convex n-dimensional polyhedron is cubic if in every j-dimensional -
face, for every (j - 1)-dimensional subface there is a unique nonintersecting G- 1)-
dimensional subface (j=1, ..., n).

THEOREM 1. -- If Hypothesis A is satisfied, then U is a convex cubic polyhedron
with 28 corner points. These corner points are the z(T) for T CL

THEOREM 2 (The representation theorem). -- If Hypothesis A 1is satisfied, then U
may be divided into s! simplices each of dimension j. These simplices intersect only in
faces of lower dimension. Every upper semimartingale lies in a. unique smallest simplex of
dimension j=0, 1, ..., s. These simplies are either the s-dimensional ones mentioned
above, or their faces. Every upper semimartingale 2z may be written uniquely as

Za7(T) a, > 0, Za. = 1,
] -J 4

where Tg € Ty € ...,& T, and the z(Tj) are the corners of the unique smallest
simplex containing z.

This theorem can be extended.to the case where Hypothesis A does not hold. It can
also be extended to give a representation theorem for lower semimartingales. Application
of these results to sequential games, statistical decision functions, and harmonic function
theory is possible.

EXAMPLE. -- In the examplé above, the third and fdurth components of the hasic semi-
martingales can be plotted as in Fig.. 5. -

Figure 5
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The four darkened points are the basic semimartingales, and I and II are the two simplices.
Area III is the set of lower semimartingales. The point (7/5, 9/5) is both an upper and a
lower semimartingale; hence, is a martingale. -
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PART THREE

NOTES ON GAME THEORY

CHAPTER VIII-

MATRIX GAMES

A, Introductiqn

If G isareal-valued mx n mafrix, it can be considered a two-person matrix game
R and the column player C. Player R chooses a row index i,

between the row player
to R. (If gij 1is nega-

C chooses a column index j, and then C pays an amount gij
tive, then it represents a positive payment from R to C.)

A probability vector is a nonnegative vector, the sum of whose components is one.

Mixed strategies for the players are: for R, an m-component probability vector p;
and for C, an n-component probability vector q. A solution to the game consists of a

real number v, the value of the game, and optimal strategy vectors p° for R and
q® for C that satisfy
p°Gq 2 v > pGq® (40)

for all p and q. The principal (mihmax) theorem of game theory states: Every matrix
game has a solution. Two proofs of it are given in Section B. :

The following facts may be established (cf. Chapter VI of Reference 1).

(a} The value of 2 game is unique.

{(b) v = p°Gq°, hence v is an expected value.

(c) The value v is the most R can assure himself and the least C can assure

himself.
(d) A matrix game is strictly determined if there is an entry gi; in G thatis the

minimum entry in the ith row and the inaximum entry in the jth-column. A strictly deter-
mined game may be solved by pure strategies, i.e., strategies that choose a row or column

with probability one.

('ei.”) The.sets of optimal strategies for the players are convex, closed, polyhedral sets.
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(f) Let E be the m xn matrix, each of whose entries is equal to one. Let h be
a positive number and k be any number. Then the sets of optimal strategies in the games
G and hG+ kE are identical. If the value of G is v, then the value of hG + kE is
hv + k. By this transformation, which can be interpreted as a monetary scale change plus a
side payment, any matrix game can be changed to a fair game, that is, one with value zero,
and with matrix entries having absolute value less than one. (Such a change is convenient for
putting games on machines.)

B. Proofs of the Méin Theorem

The minmax theorem for matrix games is true when the matrix entries are from an
ordered field (such as the rationals) as well as when they are real. This observation was due
to H, Weyl. Actually the theorem has been extended in another direction to continuous games
on the gquare and an generalized spaces of analysis. We shall present two proofs of the
original theorem, one analytic and one algebraic. Each will depend on resulta in the litera-
ture.

1. The first proof valid for a real matrix G 1is due to J. Nash (see Reference 2,
288). Let A; and Mj be pure strategies of the playersfor i =1, ..., m and
=1, ..., n. If P and Q are the sets of mixed strategies for the players, consider
PxQ. For s = (p, q, apointin S defines continuous functions:

P
J
S

ri(s) max (0, kqu - pGq)

Cj(S) max (0, pGq - pG;ﬁ,‘:).
Then we define a modified strategy vector s' = (p', q') as follows:

p. + ri(s)-
P8 = Ty @
k

q, + cj(s)
k

qj(s)

We thus have a continuous mappihg T of S into itself. The Brouwer fixed-point theorem
now implies that there is at least one fixed point of the mapping, i.e., a vector s such that
s' = s, .

We must show that such a fixed point yields a pair of optimal strategy vectors for the
game. If s = (p, q) is a fixed point, consider the vector p. Some of the components
of p are positive and among the positive ones there must be one, say the ith one, that is
''least profitable" so that A\;Gq<pGq. This makes rij(s) = 0. Now p;>0, and p is
fixed under the mapping so that the weight put on the ith row must not decrease under T.
Since rj(s) = 0, this means that the denominator of the first quotient above must equal the
one. But that means E rk(s) = 0; i.e., rk(s) = 0; hence, \\Gq<pGq for k =1, ..., m.
In the same way, pGq<pGu. for j=1, ..., n. From these two inequalities it is clear
that v = pGq, and p and q are optimal-strategies.
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2. The second proof, valid for a matrix G with entries in an ordered field, is due
to Gale, Kuhn, and Tucker (Reference 3, p 84) and depends on a result of Stiemke (Refer-
ence 4).

A matrix game G is symmetric if G is skew-symmetric;i.e., gij = - &ji-
An optimal strategy for one player is optimal for the other in a symmetric game. The value
of a symmetric game is zero. Every game G can be symmetrized by replacing it by the
square symmetric game,

0 G -1
s - |- o 1|,
1 -1 o0

P

where Gtr is the transpose of G. The solutions of G may be deduced from the solu-
tions of S (see Reference 3, p 83).

STIEMKE'S THEOREM. -- Let A bean m xn matrix. Then, either uA 20

(proper inequality for somc component) for some vector u, or else Av = 0 for some
vector v > 0, '

If S isan nxn skew-symmetric game, apply Stiemke's result to the matrix
(S, I), where I isthe nxn identity matrix. Then, either there existsa u 2 0 such
that uS > 0, or there existsa v > 0 with Sv < 0. Since S is skew symmetric and
m =n, we see that Sv<0 implies v'S = -v'S'> 0, so that the second alternative cannot
happen. If we normalize the u 2 0 obtained from the first alternative so that E u = 1,
then we have found an optimal strategy for the game S.

C. Other Theorems

1. The Strong Minmax Theorem. -- Although the minmax theorem, proved above,
gives the existence of solutions to matrix games, a stronger version of it is frequently useful.

THEOREM (The strong minmax theorem). -- If G is a matrix game, there exist
optimal strategy vectors p* and q* such that ‘
*
{p G}j > 0 if and only if g = O,
or eqﬁivalently
* l . S
{p ij - 0 if and only if qj » 0,
and
*
{Gq }i > 0 if and only if p; ~ 0,
or equivalently
*
{Gq }i = 0 if and only if P, >0,

Reference 5 contains a good proof of this theorem by A. W. Tucker.
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2. Dimension Theorems. -- Because the optimal strategy spaces of the players are
determined by the same matrix, it is reasonable that there should be a connection between
the dimensions of these spaces. The connection was found independently by Gale and Sherman
and by Bohenblust, Karlin, and Shapley (References 6 and 7).

Call a pure strategy essential if it occurs with positive probability in some optimal
mixed strategy, and call it superfluous if it does not. Denote by e, and e, (s and sc)
the number of essential (superfluous) pure strategies for the two players. Let d, and d.
be the dimensions of the sets of optimal strategies for the players. Calla (d - 1)-
dimensional bounding face of the set of optimal strategies for a player an interior face, if it
does not lie ona (d - 1)-dimensional face of the simplex of all optimal strategies for that
player. Let f. and f. be the number of interior strategies for each player (these num-

bers are defined to be zero if the optimal strategies are unique).

THEOREM. -- A pair of convex polyhedra are the sets of optimal strategies for an
m x n game if and only if

[ - d = [ ] - (,] ; L (41)
r r c c :
f <s and f < s_. : ' : (42)
r C c = r
3. Kernels. -- A basic optimal strategy is an extreme point of a set of optimal strate-

gies. Each player has a finite number of basic optimal strategies. Because of geometric
interpretations, basic optimal strategies are the intersections of hyperplanes and hence
should have algebraic formulas. These were discovered by Shapley and Snow (see.
Reference - 8).

‘ If A isan hxh matrixlet A* be the transposed cofactor matrix of A, let f
be an h-component row vector each of whose entries is one, and let e be an h-component
row vector each of whose entries is one.

THEOREM. -- A necessary and sufficient condition that p°® and q° be basic optimal
strategies in a matrix game G is that there is an h xh square submatrix A of G
such that the entries of p° and . q° agree with the components of the vectors

¥
* £A.
= . 4
P A% (43)
* A* '
- € (44)
q fA%e ’

when restricted to A, and the value v of the game G is given by

det A

s (45)
fA e

This theorem gives a (not very practical) method of solving a matrix game. Thus, by
trying out all possible square submatrices of G, we could eventually find a pair of basic
optimal strategies by using these formulas.

48

G
cl
(on)
WS
W



4. Linear Programming. -- Let A bean mxn matrix, b be an m-component
column vector, and ¢ an n-component row vector, and consider the following two problems:

a. Minimum Problem. -- Determine a row vector x that minimizes the linear
form xb subject to the inequalities x >0 and xA > c. - '

b. Maximum Problem. -- Determine a column vector y that maximizes the
linear form «cy subject to the inequalities y > 0 and Ay < b.

These are the so-called ''dual" problenis of linear programming. The principal theorem
‘of linear programming states that these problems either both have or both have not a solution,
and when they do have a solution, the minimum value in a, equals the maximum values
in b,

The format of these two problems is reminiscent of the requirements for optimal strate-
gies in a game. The following theorem shows that there is a close connection. It is*due to
Gale, Kuhn, and Tucker (see Reference 9, p 327). ' :

THEOREM. -- The dual linear programs have a common solution if and only if the
symmetric matrix game '

0 A -b
-AtIr 0 ctr
btr -c 0

has an optirhal mixed strategy vector whose last component is positive.

PROOF .

Sufficiency. -- Let (x, ytr, d) be such a solution, where x is a row vector, vy
a column vector, and d a positive constant. Then .

~yTAT ' T 0 or A(% y) < b,
and
xA - dc 20 . or'<%x>A3c,
and
- xb + ytrctr‘: 0 or xb 2 cy.

From the first two inequalities we deduce xb > L (xAy) > cy,  and hence xb = cy.
Therefore gx and é—y provide the solutions to the dual linear programs.
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Necessity. -- Let x and y be solutions to the dual linear programs; then x > 0,
XA >c, y>20, Ay>Db, and xb = cy. Consider the vector (x, ytr, 1). If we divide it
by the positive constant X\ = Y x; + 2y; + 1, it is easy to show that it is an optimal strategy
in the above matrix game, and that its last component is positive.

D. Computational Methods

Many methods have been proposed for the computation of solutions to matrix games.
The most widely used such method is the simplex method which we will not discuss here
(cf. Reference 9, p 359). Instead we shall discuss the fictitious play method.

The fictitious play method of solving games was invented by G. Brown (cf. Reference 9,
p. 374) and its convergence established by J. Robinson (cf. Reference 10, p 296). Because
it involves only comparisons of numbers and additions, it is particularly well suited to high-
speed machine computation even though its convergence is probably not very rapid. It can be
modified so that it converges more rapidly. Here we present a brief description of the
method, together with its application to a simple example.

Let A be mxn matrix considered as a two-person zero-sum. game. We shall ~
denote the ith rowof A by Aj andthe jth columnby Aj. A marginal vector system

(U, V) for A shall mean a sequence U(0), U(1), U(2), ..., of n-dimensional vectors
and a sequence V(0), V(1), V(2), ..., of m-dimensional vector satisfying the [uvllowing
conditions:

(a) The minimum component of U(0) = the maximum component of V(0). (For ex-
ample we could always choose U(0) and V(0) as being zero vectors. Except for this
condition, these initial vectors are arbitrary.)

(b) Ut + 1) = U({) + 'Ai.

(c) Vit + 1)

Vit) + A..
J
The indices i and j satisfy:
(d) i is the index of a maximal component of V(t).

(e} j is the index of a minimal component of U(t).

The above collection of rules defines simultaneous fictitious play. Alternate fictitious
play is derived from the above by replacing (e) by

(e') j 1is the index of a minimal component of Uf(t + 1).

It has been suggested that alternate fictitious play converges rore rapidly than simultaneous.
J. Robinson (Reference 10) has proved the following theorem.
THEOREM. --If (U, V) is a vector system for a matrix game A, then

lim min U(t) _ lim max V() _ V. (46)

t — o t {t — o t
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This theorem gives no clue as to how to compute optimal strategies. However, it is
obvious that an approximate optimal strategy can be computed by remembering how often
each row or each column has been added during the course of the fictitious play and dividing
by the number of iterations.

EXAMPLE. -- Consider the nonstrictly determined game whose matrix is

()

The alternate fictitious play computation is summarized in the tableau below:

V(0) V(1) V(2) V(3) : » V(8)
T
1 { 3) o 1| 4| 7 |10 |13 |[16]17 |20
4| 2 o af 6| 8 |10 |12 |14 |18 |20
vl o | o Ny 1| 2] 2|2 2|2 1] 2

u1)| 4 2 2

U(2) 8 4 2

Uu@3)| 12 6 2

13 9 1

14 12 1

15 15 1

19 17 2

u(s) | 20 20 1

The exact solution was obtained after eight steps and is

o _ (1 1
p - (2: 2)
1
q° = 2 (4
3
4
v = 20 _ 5
8 2°
346 048
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Observe that the exact solution for C was obtained in four steps, and the exact solution
for R was obtained in six steps, although the process moved away from these solutions
as it went on. Such "cycling" phenomena are common in this method and can be taken
advantage of. Kemeny and Thompson have a modified fictitious play procedure for the
IBM 704 that does exactly that.
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CHAPTER IX

THE EFFECT OF PSYCHOLOGICAL ATTITUDES
ON THE OUTCOME OF GAMES*

A. Characterization of Strategy-Preserving Utility Functions

Let G bean m xn matrix game with matrix gi-”; we define val[G] to be the
value of G, and X[G] to be the set of optimal strategies for the first player in G. A
utility function f shall mean a real-valued (nonconstant) monotone increasing function. If
f is a utility function and G a game, then by f(G) we shall mean the matrix game whose
matrix is “f(gij )| -

DEFINITION. -- We shall say that the utility function f is strategy preserving if and
only if for all matrix games G and all real constants h we have

X[f(G + nE)] = X[t(G),
where E isthe m xn matrix all of whose entries are unity.

The intuitive interpretation of a strategy preserving utility function is the following:
Suppose that the row player has a fortune of h dollars at the time he is to play the game G
his fortune at the end of the game will be gij t h, where g;; 1is the actual payoff he receives
from the game; the utility which he assigns to this outcome is f(g;; + h); then a strategy- .
preserving utility function is such that every strategy optimal in the game (G + hE) is
optimal in the game {(G) and conversely; in other words, it is such that the way in which
the row player plays a matrix game G is independent of the state of his fortune when he
plays it. The purpose of this section is to characterize such functions.

Two important types of utility functions are the linear and exponential ones given by

ax + c, a> 0,

f(x) = _ (48)

b
aex+c, ab > 0.

Here the letters a, b, and c indicate parameters and the conditions on the parameters are
chosen so that fi(x) > 0 for all x.

* This chapter summarizes some recent work by J. G. Kemeny and G. L. Thompson
published in Contributions to the Theory of Games, Vol. 1II, Annals of Mathematics
Studies, Number 39, Princeton, 1957, pp 273-298.
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Several facts about elementary matrix game theory will be needed subsequently. First,
we recall that adding the same constant to every entry in the matrix does not change the sets
of optimal strategies, nor does the multiplication of every entry by the same positive constant.
(These two facts are sufficient to show that linear utility functions are strategy-preserving.)
Secondly, we recall thata 2 x 2 matrix game is nonstrictly determined if and only if
either the inequalities '

B11” 8120 B3 and gy9 > €19, 8y;

or the inequalities obtained from these by reversing the inequality signs, are satisfied.
Finally, the first component of the optimal strategy for the row player in the 2 x2 non-
strictly determined case is given by the formula

¥, - o (49)
1 811 " 812 " 81t 8y :

LEMMA 1. --If f is a strategy-preserving utility function, then f 'is differentiable
and f'(x)>0 for all x. : ‘

PROOF. -- If f is monotone increasing but not strictly increasing (and nonconstant),
then there exist real numbers a, b, and h, with a<b, sothat f(a) = f(b) and
f(a + h) <f(b + h). If weset g;; = g99 = b and 'gjp = go; = a, then every strategy
for the row player is optimal in the game f(G), but the game f(G + hE) has a unique
optimal strategy, so that f 1is not strategy preserving.

If t is monotone strictly increasing, then, by a weil-known theorem it 1y differentlable
almost everywhere, Hence .f has a derivative at two points, say at a and b, where
a> b. Set gy; =a and gj9 = go1 = b; .if g99 = x where x >Db, thenthe 2x2
game G = | gij“ is nonstrictly determined. If f is strategy-preserving, we have from
Equation 49 that

_ f(x) - f(b)
1 T @) - 2f(b) + f(x) : o)

is the first component of the optimal strategy for the row player in the game f(G);
similarly, ‘ ' :

*® f(x + h) - f(b + h) 51)
I T T@a+h) - 2t(b + h) + f(x + h)

is the analogous quantity for the game f(G + hE). For these two to be equal, we must have
that

fx + ) - fb+h) _ f(x) - f(b) (53}

fa + h) - f(b + h) =~ f(a) - f(b) "’
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Using the identity that if d # f, then c¢/d = e/f implies (c - e)/{d - f) = c/d, we
subtract corresponding terms on the right-hand side of this expression from those. on the left.
If we then divide numerator and denominator of the left-hand side of the resulting expression
by h, we obtain ' : ‘ R

(1/n)ff(x+h) - f(x)] - (/h[f(b+h) - £(b)] _ f(x) - f(b) (53)
(1/h){f(a + h) - f(a)] - (1/n[f(b+ h) - £(b)] ~f(a) - £(b) ’ :

which is true for all values of h. Letting h tend to zero, and using the fact that f has
a derivative at a and b, we see that f has a derivative for all x> b. To show that  f
has a derivative for all x <b, we choose any two real numbers ¢ and d where
c>d>b, set gy; =4d, g9 = g2A1 = ¢, and go9 = Xx<b, and use reasoning analogous
to the above. Because f is strictly increasing, f'(x)>0 for all x. This concludes the
proof of the lemma. ' '

THEOREM 1. -- A necessary and sufficient condition that a utility function should be
strategy preserving is that it should be either linear or exponential as in Equation 48,

PROOF.
Sufficiency. -- We have already observed that linear functions are strategy-preserving.

If f 1is exponential, then, using the elementary facts about matrix games mentioned above,
we have ) '

X[ ”aebgij * bh + c”]

x[|lttg;; + ||

x[ e . ™

X[” aebgij + c H]

x[ Hf(gij)H].

Necessity. -- Let G = gij be a nonstrictly determined 2 x 2 matrix game so
that it has a unique optimal strategy for the row player. By the lemma, f is strictly
increasing, so that f(G) and f(G + hE) are also nonstrictly determined and have unique
optimal strategies. By an analysis similar to that carried out in the lemma, for the first
components of the optimal strategies for the row player in each of these games to be equal,
we must have

‘f(g22 + h) - f(g12 + h) I(gzz) - I(glz)

= (54)
f(g11 + h) - f(g21 + h) f(gll) - f(g21)
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Observe that obvious linear solutions to this identity are linear functions of the form
f(x) = ax+ ¢, where we require a>0 tomake f'(x)>0. To find other solutions, use
the identity mentioned in the proof of the lemma and subtract numerator and denominator of
the right-hand side from the corresponding quantities on the left-hand side. Dividing through
the resulting expression by h, letting h tend to zero, and using the differentiability of
f as given by the lemma, we obtain the following differential equation

: f'(gzz) - f'(glz) _ f(g22) - f(g12) , (55)
f'(gll) - f'(g21) f(gll) - f(g21) ‘

which must be true for all nonstrictly determined games G. Observe that this equation be-
comes indeterminate for the linear solutions found above. After cross-multiplying the latter
identity, setting the result equal to a constant and solving, we see that f satisfies

f1(x) = bf(x) + d, (56)

for all x, where b and d .are constants. The unique nonlinear solution of this differ-
ential equation is the exponential one

f(x) = ae™ + ¢, (57)

where ¢ = -d/b. To satisfy the condition that f'(x)> 0, we require that ab> 0, complet-
ing the proof of the theorem.

B. Psychological Attitudes and Utility Functions

In this section we shall discuss various types of psychological attitudes. For conven-
ience we shall give names to them and leave to the reader the judgment of the suitability of
these names.

By an attitude of the first kind, we shall mean one which depends only on the payoffs
involved. Such attitudes can always be represented by means of a utility function. Attitudes
of the second kind depend on factors other than the payoff and hence cannot be described by
means of a utility function. All but one of our examples will be of utility functions of the
first kind.

When discussing attitudes of the first kind, we shall usually require that £(0) = 0
since, by a linear (strategy preserving) transformation, we can always make f have this
property. Figure 6 shows six types of continuous utility functions and two discontinuous ones.

The first such attitude is the '"fair attitude'" of a person who judges his utility to be
directly proportional to the payoff. Since an additive constant can be ignored, we can think of
the linear function f(x) = x. '

Next there is the "reckless or gambler's attitude' of a person who concentrates on
winning large sums. To him a large win looks even larger and a large loss is discounted.
The result is a utility curve that is concave upward over its entire range. The exponential
functions satisfying Equation 48 with a > 0 are of this type. For example, the function
f(x) = e* - 1 is such. o S
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The "cautious attitude' is that of a person who concentrates on avoiding large losses.
He exaggerates large losses and correspondingly discounts large wins. Thus his utility curve
is convex downward over its entire range. The exponential functions satisfying Equation 48
with a <0 are of this type. For example, f(x) = 1 - e ¥ is such.

All functions satisfying Equation 48 represent one of these three types, hence we know
that other attitudes must not satisfy Equation 48. It is interesting to note that utility curves
similar to these three were observed in the Mosteller-Noges utility experiment. (See
pages 386-395 of Reference 11.)

The ''poor man's attitude' is that of a person for whom large sums, either positive or
negative, are exaggerated. His utility curve is concave upward for positive x, and concave
downward for negative - x, '

The '"rich man's attitude" is that of a person to whom large sums, either positive or
negative, are discounted. His utility curve is concave downward for positive x and concave
upward for negative x.

The "common attitude' is that of a person who is reckless enough to play games in
which the payoff entries are small, but when payoffs become large, he becomes cautious.
Thus, for a range about zero his utility curve is convex upward, but it becomes concave down-
ward as the absolute value of x becomes large.

In addition to the continuous utility functions discussed above, a large number of dis-
continuous ones can also be distinguished. Here we mention just two interesting cases.

The "winning attitude'' is that of a person who, besides considering how much he wins
or loses, puts a positive premium on winning and a negative premium on losing. We shall
assume that he has a fair attitude otherwise, so that his utility curve is the line y = x,
with the positive half move up and the negative half moved down. By means of this utility
function we are able to "explain' the paradoxial sequence game discussed in Section D,
page 61.

The 'desperate attitude' is that of a person who must win a given sum of money. Any
amount of money less than this is of no value to him and any amount in excess does not have
greater value. His utility curve is a step function, p051t1ve from some sum on, and negative
otherwise. (In this case we do not require that f(O) 0.)

The reader will doubtless be able to think of other intuitively interesting utility curves.
The ones mentioned above are sufficient to discuss some interesting examples, several of

which are described in the next two sections.

C. Examples

. 1. The Lottery Game. -- A player of the lottery game purchases from a banker a small
chance of winning a large sum of money. - Let s be the price of the‘lottery ticket, let K
be the amount of the win, and let p be the probability of win. The expectation of the banker
is

p(-K) + (1 - p)s.
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The banker will adjust p so that his expectation is positive and hence so that the player's
expectation is negative; i.e., he will choose A
-s

€ — <
P K - s 0.

Here p 1is small since K 1is large compared to s.
~ Suppose the player has a. utility function f. He then evaluates his expected utility as
E = pf(K) + (1 - p)f(-s). -
Let us assume that he-will play only if his expected utility is positive, and will not play if it
is négative or zero. Then we can make a list of typical decisions to play or not to play by the
various players, depending upon their utility functions. It is to be emphasized that not all

utility functions of a given type will make the same decision in the same situation; this will
happen only when their shapes are sufficiently extreme.

Play Not play
Reckless ' Fair
Poor ‘ Cautious
Common (K small) . Common (K large)
Despefate (K greater than Desperate (K less than discontinuity
discontinuity point) . point)
' Winning
Rich

The reader may check with his intuition as to whether the various decisions made on the basis
of the utility functions are consistent with the names we have given them. :

2. The Insurance Game. -- Here the player owns property worth K dollars, and
there is a small probability p of losing it by accidental means. The insurance company
offers to pay the player K dollars if the property is destroyed in return for a premium of
s dollars which the player pays to the company. The expectation of the insurance company
is (1 - p)s + p(-K + s), and clearly they will adjust s so that this expectation is nega-
tive; i.e., they will require that s >pK. A simple computation shows that this makes the "
player's monetary expectation negative. Suppose, however, the player has a utility function
f; then his expected utility is” (1 - p) (-s) if he insures, and pf(-K + s) if he does not
insure; the difference of these two is

D = f(-s) - pf(-K).

Let us assume that he will insure only if D is positive. Again typical (but not necéssa;-y)
decisions by persons having the above utility functions are as follows: '
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Insure . Not insure

Cautious . Fair

Poor ' . Reckless

Common (if K large) Common (if K small)
Rich ‘
Winning -
Desperate

Again the reader can check whether these decisions agree with his intuition. By adjusting s,
the insurance company can appeal to people having different kinds of utility functions.

.3. Colonel Blotto. -- The attitudes illustrated above were all of the first kind and con
tinuous. Here we wish to illustrate a discontinuous attitude of the first kind and an attitude of
the second kind. :

That famed military leader, Colonel Blotto, has four divisions available and is contest-
ing two mountain passes with an inferior enemy who has only three divisions. Assume that
whichever side has the most divisions at a pass takes the pass and the opponent's divisions,
except that in case of a tie neither side takes the pass and neither loses a division.

Blotto has three strategies corresponding to three possible ways of dividing his troops
into two parts: 4+ 0, 3 + 1 and 2 + 2. His opponent may divide his divisions in either
of the two ways, 3 + 0 or 2 + 1. We assume that, having decided on the partitioning of
the troops, the actual assignment to the passes is done at random. ‘

Given a choice of a strategy by each player we can calculate the expected outcome. For
example, if Blotto plays 3 + 1 and his opponent plays 2 + 1 we must distinguish two
cases: (1) Blotto's three divisions go against the opponents'-two; then Blotto wins one pass
and ties for the other; (2) Blotto's three divisions go against the opponents' one; then Blotto
wins one pass and loses one. ‘T'hese possibilities are equally likely, so Biotto's payon 18 1/2.
Proceeding in this way we obtam the following payoff table:

3+ 0 . 2+ 1
a+0. | 1/2 0
341 .| 172 1/2
2 + 2 0 1

The resulting matrix game is strictly determined and Blotto should always play 3 + 1 and
his opponent should always play 3 + 0. The value of the game to Blotto is 1/2, indicating
his numerical superiority. If both players play optimally, there is probability 1/2 that
Blotto will lose a division.

But now let us suppose that Blotto takes into account not onIy the number of passes that

he can capture but also worries about the number of his men who are captured; in other words
he has an attitude of the second kind. To be specific, assume that to Blotto a division lost is

60



as bad as a pass lost. The resulting payoff table can be computed to be the following:

3+ 0 2 + 1
4+0 1/2 0
3+ 1 0 0
5 2 + 2 -2 1

The solution to this game is that Blotto should play the first row with probability 6/7 and
the last row with probability 1/7; his opponent should play the first column with probability
1/7 and the second column with probability 6/7. The value of the game to Blotto is 1/7,
indicating that his concern over loss of troops has decreased his expectation in the game. If
both players play optimally, then Blotto's probability of losing a division is only 1/49 as
compared with probability 1/2 in the preceding example. Thus his new strategy is suc-
cessful in reducing the probability of troop loss.

As a final variant, assume that Blotto has the desperate attitude and wants at all costs
to capture one pass. To be definite, assume that regardless of losses, he puts value one on
capturing one or more passes and zero on not capturing a pass. . It is easy to see that this
makes all entries in the payoff table equal to one so that any strategy for Blotto is optimal.
Thus the desperate attitude obscures strategic differences.

D. A Sequence Game - : -

As a more complicated example of an application of utility functions, let us consider
the game of matching pennies in which the players have agreed to quit after N plays, and
in which the row player is given the option of quitting sooner if he wishes. According to
ordinary game-theoretic arguments, this game is fair and hence a ''rational" person should
not be unwilling to accept the role of either player in the game. Yet most people would gladly
play the role of the row player, and would refuse the role of the column player.

Let the game G be given by the matrix

1 -1
-1 1
0 0

where the row of zeros corresponds to the optional stop privilege of the row player. The
rules of the game are: After the Nth play of G the game stops; after fewer than N
plays of G the game continues if the row player has chosen one of the first two rows of
the matrix but stops if he has chosen the third row.

If the row player has the winning attitude given by the utility function

x +X for x>0
f(x) = 0 for x =0

x -xN for x <0
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where A >0, then it can be shown that his optimal strategy is as follows:

(a) Refuse to play with a positive fortune.
(b) Play with a nonpositive fortune.

(c) Stop if his fortune rises to one.

Thus the winning attitude produces behavior somewhat like that of many persons.
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CHAPTER X

GAMES IN EXTENSIVE FORM

Because of the complexity of detail of the subject we shall confine ourselves to the stat-
ing of definitions and theorems of extensive game theory. In particular we shall rely heavily
on examples to clarify concepts. Our basic reference will be Reference 12.

A tree is a finite, partially ordered set that does not contain cycles. A rooted tree is
a tree with a distinguished vertex. A game tree K is a finite, rooted tree with root 0
imbedded in an ordered plane. The vertex 0 corresponds to the start of the game, and Lhe
orientation of the plane is used to number the edges of the tree at a vertex. From any vertex
X of K there is a unique path to 0. The edges of the tree (if any) incident to X and
not lying on the path from 0 to X are the alternatives at X. Vertices that have alter-
natives are called moves and those that do not (the "end points' of K) are called plays.

The alternative partition means the partition of the moves of K into sets Aj , J-= 41,
2, ..., where Aj contains all of the moves with j alternatives. The player partition
means the partition of the moves of K into n+ 1 sets PO, Py, ., Pn. The moves
in Pq are called chance moves, and the moves in P; are called the personal moves of
player i, for i=1, ..., n.

The information partition means a partition of K into information sets U, which is
a refinement of both the alternative and the player partitions, and such that no information
set contains two moves on the same path from 0 to a play. Thus each U is contained
in P; N Aj for some i and j. Let ui be the set of information sets for the ith
- player, and let u be the set of all information sets.

The pair (K, 1) will be called a game structure.

On the information sets in U, the chance player, a probability distribution p(U)
is defined. Thus, if U€ Uy and UCP; N A;, then there is a positive function p;(U),
i=1, ..., Jj, defined on the alternatives at U, such that Zpl(U) = 1. These are the
chance probabilities. (In ordinary games these probabilities are realized by shuffling cards,
rolling dice, etc.)

Finally, on the play W of K there is defined a vector valued payoff function
h(W) =<h, (W), ..., hn_(W)> . The game starts at 0 and ends at some play W, where-
upon the players receive the amounts h;j(W), ..., h (W).)

Given a choice of K, ’I,A h, and p, we define an n-person game to be the col-
lection (K, 'u , h, p). Most ordinary parlor games, providing that they have a rule that
prevents infinite play (i.e., chess but not tennis), have rules that determine each of the above
quantities, and hence determine an n-person game.
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The way the game proceeds is now obvious. It starts at 0 and proceeds from move
to move through the tree. The successor of a move is selected by the player'in whose in-
formation set the move lies (by a chance device in the case of the chance player). After pass-
ing through a finite number of steps, a play is reached and the players receive payments as
indicated by the payoff vector defined for that play.

DEFINITION. -- A pure strategy m; for player i is a function from the sets U
in U to the positive integers such that if UCA;, then m;(U)<j. The value of m; (V)
is the index of the alternative chosen by the player at that information set.

Let II; be the set of pure strategies for i. Let = = (ry, ..., m) denote an
n-tuple of pure strategies, one for each personal player, and let TI be the set of all .

Given an n-tuple 7, the chance probability distributions on chance moves induce a
probability distribution p,(W) on the plays W of K, Thus, if the pure strategies 7
choose all the alternatives of personal moves on the path from U to W, then p,{(W) 1s
the product of the chance probabilities on that path; otherwise p,r(W) is zero. ‘l'hen the
expected payoff to player i if strategy = 1is used can be computed as
H(r) = Zp,,,(W)hi(W). Also we can denote by H{(m) =<H1(7r), e, Hn(ﬂ?> the n-tuple of
payoffs if = is used. Note that H(r) depends on each =; and when expressed in matrix
notation is an n-dimensional array with vector entries. In the two-person, zero-sum case
the array reduces to an ordinary matrix game. Let us call the array H(s) the normal form
of the game. The above discussion establishes the following result:

THEOREM 1. -- Every n-person game can be normalized, that is, put in normal form.
It is intuitively obvious that some are easy to solve; for example: board games (chess,
checkers), tick-tack-toe, and other games in which each player can see the other player's

"hand" and his moves. ‘The playeérs in these games posséss pértect information.

DEFINITION. -- An n-person game is said to have perfect information if all its per-
sonal information sets U are unit sets, that is, contain a single move.

To indicate what is meant by a solution of an n-person game, equilibrium points'will
be discussed.

DEFINITION, -- Let w/p; denote the vector <y, ..., T _ 1, Pis Ti4+]1 » ---2 T -
Then = is a pure strategy equilibrium if and only if -

h(r/p.) <h_ ()
i i i
for all pure strategies p; and 1 =1, ..., n.

Intuitively, an equilibrium point is one at which no player can improve his own position
by shifting to another of his pure strategies if the other players keep their strategies fixed.

THEOREM 2. -- Every game with perfect information possesses a pure strategy equi-
librium point.

This theorem can be proved by starting at the end of the game and "working backwards"
by an induction argument,

Not all games have perfect information: hence,the above concepts must be broadened.
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DEFINITION. -- A mixed strategy u; for player i is a probability distribution on
the pure strategies in II;. Let u = <u1, I S be an n-tuple of mixed strategies.
Let p,(u) be the product of the weights given tothe #; in =7 = my, ..., "r>- ‘Then
the expectation of the ith player is ’

h () = ;hi(w)p”(u),

if mixed strategy p is used by the players.

DEFINITION. --Let P‘/vi be the n—tuple<p1, vy Hio 1o Vi Bi41s oo “n> .
Then u is a mixed strategy equilibrium point if and only if

<
hi(u/vi) < h )
for all mixed strate'gies pi and i = - 1, ..., n.
THEOREM 3. -- Every n-person game has a mixed strategy equilibrium point.

This can be proved by an extension of the fixed-point proof of the minmax theorem
given in Chapter I, Part B1. ' '

For a two-person, zero-sum game, THeorem 3 reduces to the minmax theorem. There
are objections to equilibrium-point solutions to n-person games because the solutions are
not necessarily unique. Although many other solution concepts have been proposed for
n-person games, the equilibrium point theorem is the only general theorem that has been
established. Hence,. a solution from now on shall mean an equilibrium-point solution.

One of the interesting problems in n-person game theory is the way in which informa-
tion is distributed among the players. We shall study this problem, making use of the dia-
grams of games that appear in Figs. 7and 8. A number of definitions are necessary.

DEFINITION. -- Let U, be the setof moves in K that follow moves in U by the
vth alternative., Then U is a signaling information set for player i if, for some v
and comc information set V of player i, wehave U,NV % ¢ and V ¢ u,.

DEFINITION. -- A game is said to have perfect recall if none of the players possesses
signaling information sets. ' :

Any game with perfect information obviously has perfect recall. Poker, Kriegspiel,
gin rummy, etc., have perfect recall (but not perfect information). If the partners in bridge
are regarded as a single player, then bridge is a two-person game that does not have perfect
recall. The reader may check that the various games illustrated in Figs. 7 and 8 either do
or do not have perfect recall as indicated there,
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. Both players have Both players have effectively
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and perfect recall. perfect recall.
| (a) : (b)

Neither player has effectively , Neither player has perfect
perfect information. Both . recall. Both have effectively
have perfect recall. perfect information.

(c) (d)

Figure 7
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P, has effectively perfect infor-
mation but Pl does not. P1 has

perfect recall but P2 does not.

(a)

Figure 8

Neither player has

either perfect recall or

. effectively perfect infor-

mation,

(b)
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DEFINITION. -- A behavior strategy for player i 1is an assignment, to each infor-
mation set U in ui: of a probability distribution on the alternatives at U.

To every mixed strategy for a player, there corresponds a behavior strategy. This is
a many-one correspondence since the dimension of the set of mixed strategies is larger than
the dimension of the set of behavior strategies. Thus, if a game can be solved in behavior
strategies, it is easier than solving it in mixed strategies.

THEOREM 4. -- A necessary and sufficient condition that the n-person game
(K, U, h, p) has the same mixed strategy and behavior strategy equilibrium points for
all h -and p is that every player have perfect recall.

Thus poker, Kriegspiel, etc., may be solved using behavior strategies.
DEFINITION. -- A pure signaling strategy for player i isafunction ¢; f{rom his
signaling information sets U to the positive Integers such thatd U CA;, then 6;(U) ).

A mixed signaling strategy v; for player i is a probability distribution on the pure
signaling strategies for 1i. ‘ :

A pure signaling strategy o¢; singles out (for player i) a subtree Ko; of K.
Let ﬂd, be the set 2| of information sets for player i relativizedto K S..
i

DEFINITION. -- An associated behavior strategy is an assignment, to each information
set in udi , of a probability distribution on the alternatives at that information set.
DEFINITION. -- A composite strategy is a pair consisting of a mixed signaling strategy

and a set of associated behavior strategies.

THEOREM 5. -- Every n-person game has the same mixed strategy and composite
strategy equilibrium points. Hence every two-person, zero-sum game can be solved using
composite strategies,

In order to use a composite strategy, the agents of a player meet before the game and
decide, by a chance device, which signaling strategy to use. Their choice is kept secret
from the other players. Then the agents who control signaling information sets make their
choices according to the signaling strategy chosen,and the other agents use the associated
behavior strategy on the nonsignaling information sets.

In bridge, for example, players use the order in which they lead or discard cards to
signal what the other cards in their hands are -- or at least to indicate what the other cards
are. They must also be careful not to signal to their opponents any more information than
necessary.

A final question is related to the concept of perfect information. It was remarked
earlier that a game with perfect information could be solved using pure strategies. This is
a sufficient but not necessary condition.

DEFINITION. -- A game is said to have effectively perfect information when, for
every pair of personal information sets U, V such that UEU;, VEYy, k + i,
if U<V then VCU, for some V.

Intuitively, effectively perfect information exists if, whenever it is a player's turn, he
remembers every previous move of his personal opponents and knows at least as much as they
knew when they made these moves.

68

346 (85



- DEFINITION. -- A game is essentially determinant if it has an equilibrium point in
pure strategies for every assignment of h and p. ’

THEOREM 6. -- A necessary and sufficient condition that a game be essentially deter-
minant is that its complete inflation have effectively perfect information.

We shall not define the complete inflation of a game, but simply remark that it is an
equivalent game which, in a sense, has the fewest information sets. All the games in Figs. 7

and 8 are completely inflated.

It should now be possible for the reader to check, in Figs. 7 and 8, that the above defi-
nitions are or are not satisfied as indicated.
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CHAPTER XI

MATHEMATICAL ECONOMICS AND MATRIX GAME THEORY

A. Introduction

This chapter will be concerned with two examples in which matrix game theory was
used, purely as a mathematical tool, in an economic model. These models were formulated
solely for use in economic theory, yet it turned out that game theory was the correct kind of
mathematics needed to solve the problems arising in the model.

B. A Generalization of the Von Neumann Model of an Expanding Economy

(This section summarizes Reference 13, a paper by the same title by J. G. Kemeny,
O. Morgenstern, and G. L. Thompson.)

1. We consider as a model of an economy a finite set of m processes which operate
at discrete time intervals and which produce a finite number n of different goods. From
an economic point of view one usually has m>n because, for most goods, there are alter-
nate ways of production so that there is a choice among production processes. From a mathe-
matical point of view we need not, and do not, assume any relationship between m and n.
The processes may be manufacturing processes, but they may also represent consumption,
storage, and (as we show later) outside demand. We assume constant returns to scale and
the unlimited availability of the natural factors of production such as labor and land. The
inputs needed for the processes at any time t are the goods produced during the preceding -
time period t - 1, plus the natural factors of production.

Each process operates at any intensity x, where x is a real nonnegative number.
_Intensities are normalized so that the ith process operates at intensity x;

where 0<x; £l and g x; = 1. Thus the intensity vector (a row vector) x = (xj, ..., Xy
i=1 ' :

shall be viewed as an m-dimensional probability vector. When the ith process is operating,

it requires ajj units of good j (j =1, ..., n) and produces b;; units of good

k(k=1, ..., n) per unit of good i. Since only the ratios of these numbers are significant,

the units may be chosen arbitrarily. It is assumed that aj; and bj; are nonnegative real
numbers for all i and j. Symbolically, physical production change during one time period
can be represented as

(time t - 1) xA — xB (time t),
where A = ”aij“ and B = ||bij|| . The components of the vector xA give the amounts

of inputs used up in production, and'the components of the vector xB give the amounts pro-
duced.
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Each good* is assigned a price y, where Yy 1is a nonnegative real number. Prices
are also normalized so that the jth good is assigned price i where
0< ¥j < 1 and i yj = 1. Thus the price vector (a column vector) y = (y;, ..., ¥p)
Jj=1
is an n-dimensional probability vector. Symbolically value changes during one time period
can be represented as

(time t - 1) Ay—»By (time t).

. The components of the vector Ay give the value of the input entering into the processes,
and the components of the vector By give the value of goods produced by the processes.

It is assumed that there is an interest rate b (percent) from which the interest factor
B =1+ b/100 is derived. Interest is paid by an outside source, and investment is always
possible. It is also assumed that there is an expansion rate a (percent) from which the
expansion factor a”= 1 + a/100 is derived. Because of the assumed unlimited supplies of
"land and labor,' i.e., the original means of production, expansion can continue indefinitely.

We are looking for vectors x and y and numbers a and B  which satisfy the
following five conditions. The first one is a conservation condition which says that no more
goods can be used during any time period than were produced during the preceding time
period. In equation form this reads ‘

CONDITION 1 xB2axA or x(B-aA)2 0.

(Here and elsewhere we shall use the convention that, if u and v are vectors, then

u > v shall mean that the corresponding inequalities shall be true for the components of

u and v. Also, we do not distinguish between the number zero and the zero vector since
the context will always be clear.) The second condition makes the economy a profitless one;

i.e., one in which a process cannot yield a return greater than that yielded by the going
interest rate; in equation form this reads

‘CONDITION 2 BAy>By or (B-BA)y<O.

The third condition requires that a zero price be charged for goods that are bverproduged;
in other words,

CONDITION 3 ' x(B - aA)y = 0.

The fourth condition is
CONDITION 4 x(B - BA)y = 0,

which says that inefficient processes must be used with zero intensity.

* Labor, land, and other natural factors must be treated as free, since they are not pro-
duced. But there are simple means for éntering the costs connected with these factors
in the model; e. g., the cost of labor can be introduced in terms of the consumption of
the worker and his family. In this approach consumer goods would be among the inputs
of all processes,
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Without further assumptions about the matrices A and B there will, in general, be
no solution satisfying these conditions. Von Neumann made the following additional assump-
tion

(*) a..+ b, >0, for all i and j.

1 1)
Intuitively, this assumption means that every process must either consume or produce a posi-
tive amount of every good. Von Neumann made this assumption to insure the uniqueness
of a and to prevent the economy from breaking up into disconnected parts. If we observe
that the numbers a;; and bj; can be made very small, this assumption does not seem
unreasonable; however, it has been criticized by economists. The condition is natural when
the model is highly aggregated.

Observe that the following uninteresting economies satisfy all of the above conditions:

EXAMPLE 1. -- Let A and B be matrices with aj; = 1 and b;; = 0 for all
i and j; let a = =0, and let x and y be arbitrary probahility vectors. It is
easy to see that these quantities satisfy Conditions 1-4 and (*). This is an economy which
uses raw materials but produces nothing.

EXAMPLE 2. -- Let A and B be matrices with aj; = 0 and by; = 1 forall
i and j; let a =f = o, and let x and y be arbitrary probability vectors It is
easy to see that these quantities satisfy Conditions 1-4 and (*). This is an economy which
produces goods without using raw materials,

Neither of these examples corresponds to economic reality; they do, however, fit into
the von Neumann model as special limiting cases. Here we want to weaken the (*) assumption;
when we do so, we will find that examples like those mentioned above will become very an-
noying. We therefore impose an additional condition not contained in the original von Neumann
model, namely

CONDITION 5 xBy > 0.

Intuitively, this condition means that the total value of all goods produced must be positive.
Observe that Example 1 does not satisfy this condition while Example 2 does.

Although we shall occasionally use Assumption (*) in this chapter, our principal assump-
tions will be the following pair of (to us, economically plausible) assumptions:

(i) .every process uses some inputs, i.e., goods produced in the preceding time period,
and

(ii) every good can be produced in the economy; i.e., given a good, there exists at least
one process which can produce 1it.

These assumptions are much weaker than the von Neumann (*) assumption. They can be stated
more precisely as follows:

(**) (i) every row of A has at least one positive entry,
(ii) every column of B has at least one positive entry.

Observe that neither of the examples above satisfies these conditions.
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The analysis that follows makes use of concepts and theorems from the theory of games
of strategy. It will be assumed that the reader has a certain familiarity with game theory,
especially with matrix games. We should like to point out that game theory is here used as
a mathematical tool in order to obtain mathematical results (of which only.those having eco-
nomic meaning are admitted). Game theory appears therefore as a mathematical technique,
comparable to, say, the calculus of variations or group theory. This use of the theory does
not preclude its application to a large stationary or expanding economy in a very different
sense, i.e., when the participants in the economy are viewed as playing a nonzero-sum,
n-person game. In the latter case,results may be obtained that are different from those
shown in this chapter, especially because of the possibility of the formation of coalitions
among the players. The emergence of the theory of games as a strictly mathematical tool
for the analysis of more conventional economic situations, besides its role as a model of eco-
nomic reality, is a noteworthy phenomenon and gives it added significance for the economist.

We now restate Assumptions (**) in game theoretical terms: Consider B and -A
as matrix games, where the maximizing player controls the rows and the minimizing player
controls the columns. Let v(B) and v(-A) be the values of each of these games. Then,
remembering that the entries of A and B are nonnegative, it is easy to see that the
(**) Assumptions are equivalent to the conditions-

(1) . , v(-A) < 0, and

(ii) v(B) > 0.

If we have numbers a and 8 and vectors x and y which satisfy Conditions 1-5,
then these quantities will provide solutions to the economic model which hold in every time
period. We shall then say that the economy is in equilibrium.

2. We now interpret the whole problem in game-theoretic terms. It will become clear
to the reader that some parts of the problem which are of game-theoretic interest are not of
economic interest. We need the following lemma:

LEMMA 1. --If x, y, @, and B are solutions of Conditions 1-5, then
@ = B = xBy/xAy.

PROOF. -- From Condition 5, we see that xBy> 0; hence, from Conditions 3 and 4,
xBy = a xAy = B xAy > 0. From the last equation xAy>0 so that a = B = xBy/xAy.

Thus we need look only for solutions in which a= B; i.e., the model requires that the
interest rate should equal the expansion rate. Under this assumption Condition 4 becomes
the same as Condition 3. Making the abbreviation M(1 = B -aA, Conditions 1, 2, and 5
become

CONDITIONS 1! xMu > 0,
91 - ) ‘ : Muy < 0, and
51 xBy > 0.
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Observe that we have omitted Condition 3 (and its equivalent, Condition 4). This is permissi-
ble since, if we have a solution to Condition 1' and 2', then such solutions must satisfy Con-
dition 3 as well. To see this, multiply Condition 1' by y, obtaining xMg y > 0; and
multiply Condition 2' by x, obtaining xMg,y £ 0; these two expressions imply that

XM 4y = 0 which is Condition 3.

If we interpret M, as a matrix game, where the maximizing player controls the rows
and the minimizing player controls the columns, we see that Conditions 1' and 2' imply that
vMg) = 0. Moreover, Conditions 1' and 2' show that the solutions x and y to the economic
problem are optimal strategies in the game M ,. We now restate our problem in game-
theoretic terms.

PROBLEM. -- Given nonnegative m xn matrices A and B such that v(-A)<0
and v(B) > 0; set M, = B'+ a(-A), and find an a so that v(M,) = 0; then find a pair
of probability vectors (x, y) such that xBy > 0 and such that x is optimal for the
maximizing player, and y is optimal for the minimizing player in the game M.

We shall call an a such that v(Mg) = 0 an allowable a. Even if we can find an
allowable o, we will have to distinguish between two types of pairs of optimal strategies in
the game Myg4. If (x, y) is a pair of optimal strategies for Mg, such that xBy > 0,
we shall call these economic solutions to the game Mg; on the other hand, if (x', y') is
a pair of optimal strategies for Mg, such that x'By' =.0, we shall call them noneconomic
solutions to the game: M,. It will turn out that if the expansion rate is not unique (and per-
haps even if it is unique) then there always exist noneconomic solutions to the game. Since
we are not interested in finding noneconomic solutions we shall not mention them again, and
in this sense our problem becomes more economic than game-theoretic. T

3. The purpose of this section is to discuss, under Assumptions (**), the existence of
economic solutions to Conditions 1', 2', and 5'. :

Let 8§, be the set of all m-dimensivual probability vectorg, and let S, be the
set of all n-dimensional probability vectors. In what follows, we shall usc x CSm to denote
a strategy for the maximizing player .in Mg, and y & S, to denote a strategy for the mini-
mizing player in - Mgq.

LEMMA 2. --If o and a" (<) are two distinct allowable values of a
[i.e., v(Mg1) = v(Mg1) = 0], then v(My) = 0 for a inthe interval o > a> d'.
Moreaver, if x' is optimalin Mg and y" is optimal in Mgy, then the pair (x', y')

is optimal in M, for all @ in the same interval.

PROOF. -- Let x' be an optimal strategy for the maximizing player in the game
Mgt ; then x'Mgq2>0. If e is'any number less than o', we have

x'M

a x'(B -aA) = x'(B-a'A) + x'(a'.-a)A 2 0;

hence,

viMg) 2

v
(=]
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Similarly, let y" be optimal for the minimizing player in Mgu; then Mg uy" < 0.

If o is any number greater than ¢', we have

Mgyy" = (B-aA)y" - (B- a"A)y". +(a" -a)Ay" <0;
hence,
v(Mq) <0.
The inequalities obtained at the conclusion of each of the two paragraphs above show

that v(Mg) = 0 and also show that = (x', y') are optimal strategies in the game
M, for a' > a > d'" This concludes the proof of the lemma.

a
COROLLARY. -- If (*) holds then there is at most one allowable a.
PROOF. -- Suppose there were two such, a and a', with a > a'. Let (x, ¥)

and (x', y') be two economic solutions corresponding to these allowable a's. By the
lemma, the pair (x, y') 1is optimalat a and a', so that '

xMgyy' = xBy' - axAy' = 0
and

xMg,v' = xBy' - a'xAy'. = 0.
Subtr‘gcting these two equations, we have |

(a' - a)xAy'

0;
subtracting a times the second from o' times the first, we get
(a' - a)xBy' = O0;

hence, we see that xAy' = xBy' = 0. Since x and y' are probability vectors, we can

choose indices 1 and j such that x:;y! > 0; then necessaril
iY] Y

Rt T LoV
so that ajj = bj; = 0 which contradicts assumption ().
THEOREM 1. -- There are at most min (m, n) allowable a's for which economic
solutions to M, exist.
PROOF. -- For each such a, there is a pair (x, y) so that xBy> 0; hence, for

each such o, we can choose components  (x;, yj) so that Xibijy' > 0; hence, xBJ>0,
and then Conditions 1 and 3 imply that xAd >0, (A single superscript j on a matrix in-
dicates the - jth column of that matrix.) We next show that the indices of the components so
chosen are different for different such allowable a's. Let y and & be two such allow-
able a's with y > %, and let the corresponding component pairs (x;, yj) and (xp, yy)
be such that . '

Xibijyj >0 and xhbhkyk > 0.
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We must show that i # h and j # k. We shall show j # k, and the proof of the other
assertion is similar. Suppose, on the contrary, that j = k. By Lemma 2, there is a
strategy - x (corresponding to 6 = y) for the maximizing player which is optimal in

M, for & <a<y. Then, letting MY} be the jth columnof M,, we have

xMJy >0 and xMjb > 0.
However, since
xMjzs - (xB - Y.xAj) + (y-s)xald = xMjY+ (v - b)xAj,
and since
(y - 8)xAl> 0,
we see that
xMly = xM > 0.

By Condition 3, this implies that yy = 0 which, in turn, implies xpbpxyk = 0, contrary
to the way in which y,  was chosen.

Since to each allowable a for which there are economic solutions there corresponds
an entry bj; >0 in the matrix B, and since the indices of two such entries are pairwise
distinct, we see that the maximum number of such allowable a's is equal to the longest
diagonal which can be chosen in B. Because B isan m xn matrix, the longest such
diagonal is min (m, n). This completes the proof of the theorem.

THEOREM 2 (Existence theorem}.

(@) T (**) holds, then there is at least one and at most a finité number of allowable
a's for which the game M has economic solutions.

(b) (von Neumann) If (*) holds, then there is a unique allowable a.

(¢) - If (¥) and (**) hold, then there is a unique allowable a; moreover, for that
a, the game M, has economic solutions.

4., We shall now add to the von Neumann model the requirement that at each time
period the economy should supply to an outside consumer a vector d of goods already being
produced by the economy. Hence, d isan 1xn row vector. We assume that d is
always a constant fraction of the output at any given time; i.e., the outsidc additional demand
is expanding at the same rate as the economy.

The introduction of outside demand into the model opens up several new avenues of ap-
proach, some of which shall be studied or at least mentioned. The outside demand may be
physically outside the economy, but it may also represent additional consumption by the
workers within the economy. If viewed in the latter sense, we have removed the objection
(noted in the introduction) to the original assumption that the model requires the restriction
of the consumption by workers to the level of subsistence. As we shall see, the rates of
expansion and the size of the outside demand can be closely connected. The result demon-
strated below that decreasing the outside demand will allow a faster growth of the economy
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is economically very plausible and, indeed, cgrroborated from observations pertaining to
economic development and the role of savings., The phenomenon has consequently been
treated in business cycle analysis. :

To simplify our equations, we assume that this external demand at time t . is supplied
out of the production of time t- 1. This assumption is consistent with the interpretation of
the outside demand as added consumption; i.e., as the economy expands, the percentage of
the total production going to the consumers remains constant, Our expressions now become

EXPRESSIONS 1 x(B - aA) > ad,
2 (B - BA)y £ Bel(dy),
3 ' x(B - aA)y = ady,
4 : x(B - BA)y = Bdy, and
5 xBy > 0.

In Expression 2 the vector e isan n x 1 (column) vector, each of whose entries is one.
. These expressions may be more briefly stated if we make greater use of the vector e.
Observe that ed isan m x n matrix, each of whose rows is the vector d. Theh we
can write the above expressions as ‘

EXPRESSIONS 1! x[B - oA+ ed)] >0,
2! [B - B(A + ed)y <o,
3 x[B - a(A + ed)y = 0,
4! x[B - B(A + edly = o, ancj
5! | ) xBy > 0.

Observe that these expressions correspond to Conditions 1-5 in Section B.1 if we substitute
the matrix A' = A + ed for A. Hence, all of the preceding work holds and the existence
theorem insures that at least one economic solution exists.

THEOREM 3. -- The introduction of ocutside demand into the economic model has the
following effect. Consider a subeconomy of the economy having a unique expansion factor.

(@) If the outside demand includes any good (produced by the subeconomy) which has a
positive price, then the expansion factor of the (sub) economy must be decreased in order to
supply the outside demand.

* The possibility of introducing cyclical components into the outside demand and hence into
the hehavior of the cntirc system easily supgesls itself, but we chose not to proceed in

- that direction at present.
—f
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(b) If the outside demand for goods (produced by the subeconomy) having a positive
price is decreased, then the expansion factor can correspondingly be increased.

C. The Walras-Wald Economic Model

(This is a summary of unpublished work by G. L. Thompson and is closely related to
work by H. W. Kuhn. See Reference 14.)

1. The equilibrium theorem of A. Wald was one of the first rigorous existence theo-
rems in economics and alerted economists to the fact that the mere counting of the number of
equations and variables was not an adequate method of establishing the existence of solutions
to sets of equations. Wald's original papers are difficult to read and have been largely in-
accessible. Therefore the recent elegant reformulation by H. W. Kuhn of these results is to
be welcomed. Kuhn was able to achieve a great simplification in the statements and proofs
of theorems by using the recenlly developcd theory of linear programming and the Kakutani
fixed-point theorem. He also extended Wald's results by relaxing some of the conditions and
assumptions that Wald required.

In reading Kuhn's paper, I was struck by a certain asymmetry in the formulation of the
economic model and was led to try to generalize the model to make it more symmetric. This
section reports on that generalization. I begin with Kuhn's formulation and obtain a new model
by relaxing some of his conditions. It is to be emphasized, however, that the present paper
parallels Kuhn's development in the main; the importance of the generalization given here is
largely economic rather than mathematical.

The economic model is formulated in Section C.2 and the economic meaning of the new
conditions are discussed in Section C.3. The assumptions necessary for and the proof of the
existence theorem are given in Section C.4.

2. Consider the following model of ain economy: There are m factors of production
and n goods. The quantity of the ith factor ulilized by the economy is indicated by rj
(units arbitrary) and its price by p;; similarly, (e quantity of the jth gond produced by
the economy is indicated by s; (units arbitrary) and its price by o¢;; the profit made on
(or charged to) the jth good is ™ finally the quantity of the jth good that is stockpiled by
the economy is q;. It is assumed that aj; units of the ith factor are needed to produce
one unit of the jth® good, where 1 =1, ..., wmu and j -1, ,.., n. The mxn matrix A
is the technological matrix of the economy. '

To keep these various quantities straight we summarize them in.veclor form in Table III.
Also included for future use are the constant vectors e and f which have each of their
components equal to 1.

In the economy, the quantities s and p are the independent variables. Once they
are fixed, the other quantities are determined as functions of them. Thus, if s is fixed,
then the price of the' jth good is determined by the jth dcmand function o;; thatis
¢; = d:(s); also, the profit made on the jth good is determined by the jth profit function
7j; thatis, = 7j (s). Similarly, if p is fixed, then the quantity of the ith factor used
is determined by the ith factor endowment (or supply) function rj; thatis, ri = rj(p);
also, the quantity of the ith factor that is stockpiled is determined by the ith stockpiling
function q;; thatis, q; = q; (P).
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TABLE III

Vecfor . Kind | ’ ' Description
P row m-vector factor price vector
r column m-vector factor endowment vector
q. column m-vector factor stockpiling vector
e column m-vector all components equal to 1
s column n—véctor . goods quantity vector
¢ row n-vector : _ goods price vector
4 row n-vector ‘ goods profit vector
‘f row n-vector . : all components equal to 1

The functions o, m, r, and q and the matrix A are assumed given and fixed for the
economy. By an equilibrium in the economy we shall mean vectors f', 5, <-1, E, 8, and 7
that satisfy the six conditions given below. (In stating these conditions, we use the convention
that f u and v are vectors with the same number of components, then u 2 v shall
mean that the inequality holds for corresponding components of these vectors.) '

CONDITIONS 1 _ r>0 s >0, p>0, ‘3 go.
2 pA>G- T
3 : As <r - q.
4 B[A-e(a—‘;r)‘]::;:O.
5 ola-@¢-a1s-=o.
6 a= af), =), F=or(p), a-= alp)

Let us interpret these equations economically. Condition 1 says that to have economic
‘significance, prices and quantities must be nonnegative. Condition 2 requires that the cost
of making a good be at least as great as its price less the profit made on it. Condition 3
states that the amounts of the factors used be at most the factor endowment.less the amounts
stockpiled. Condition 4 may be restated as follows: if 3 p; [aij - (o5 - "J)] > 0, then

. 1

.8: = 0; that is, if the cost of producing a good is greater than its price less its profit, then
_it is not produced. Similarly, Condition 5 may be restaled as : 3 [‘aij - (r; - q)) s; <0,
- . 3

then p; = 0; thatis, factors that are present in excess get zero price. Finally, Condition 6
states that the prices of goods and the profits made on goods are functions of the quantity of
goods produced, -and the factor endowments and amounts stockpiled are functions of the prices
of the factors.
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REMARKS. -- For the moment, set 7 and q equal to zero, and set r equal to
a positive constant vector; then Conditions 1, 3, 4, 5, and 6 appeared in a similar way in
Wald!'s formulation, while Condition 2 appeared as an equality rather than an inequality. The
inequality form of Condition 2 is due to Kuhn. The functions w(s), r(p), and q(p) are new
in the present paper. From a mathematical point of view, the function 7 could be absorbed
in the function ¢, and the function g could be absorbed in r. However, for economic
interpretations it is desirable to keep them separate. Note that the model does not require
that # and q be nonnegative since negative profits (losses or subsidies) and negative
stockpiles (imports) have obvious interpretations.

3. The most important of the new functions introduced here is the factor limitation
(or supply) function r(p). In the Wald model this function is constant, which for some eco-
nomic interpretations is a reasonable restriction, but not for all. For example, if steel and
concrete are considered as factors for building construction, then there is a fixed amount of
each available, and when either is used up construction must stop. Here a constant factor
limitation function is applicable. On the other hand, if reinforcved concrete and conerete-
encased girders are regarded as factors of production, then, in first approximation, these
materials can continuously be substituted for each other in buildings, and a linear type of
limitation function is in order. Again, in cases where there is substitulability between goods,
as for example between wood and metal, or wood and plastic, for certain uses, then a non-
constant limitation function is suitable. In general, wherever there is substitutability or
interchangeability among factors, a nonconstant facior limitation function arises.

The stockpiling function q{p)} 1is introduced to take case of certain factors whose
production and price are not determined by equilibrium conditions in the economy. For ex-
ample, in the United States, gold, uranium, and certain farm products are stored by the
government. Also, if the economy is receiving outside aid in the form of goods, then this
ran be expressed by making some components of q negative.

The profit function #(s) 1is introduced so that certain unprofitable goods that other-
wise might not be produced may be subsidized by the economy. Such are, for example, cer-
tain farm products, research products, military weapons, etc.

There is a close relationship between the functions q and 7 and the quantities p
and f on page 124 of Reference 15. They each permit a little slack in what otherwise
would be very rigid price and production rules.

4. Given a technological matrix A and fixed vectors r, E|, and 7, we cau
define (following Kuhn) the following pair of dual linear programs:

(i) Maximum Problem. -- Maximize the quantity (o - 7)s, subject to the con-
straints s 2 0 and As <r - Q.

(ii) Minimum Problem. -- Minimize the quantity p(r - q), subject to the constraints
p>0 and pA > o ~ 7.

These problems have the following economic interpretations: The quantity (6 - 7)s is
the net value of the goods produced by the economy, that is, their total value less the profit
charged on them. The quantity (r - q gives the net factor cost, that is, the cost of all
factors less the cost of those stockpiled. These two problems taken together indicate that the
economy is trying to maximize the net value of the goods it produces, while, at the same time,
minimizing the net cost of the factors necessary to produce them.
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It is well-known that if either of these problefns is solvable then both are, and there is
a common value for the maximum value found in (i) and the minimum value found in (ii).
Thus if s and p solve (i) and (ii), respectively, then

(*) “ (s-mMs = p@ - a.

Conversely, if s and p satisfy the constraints given in (i) and (ii) above, and if
they also satisfy Assumption (*), then they solve the maximum and minimum problems
stated above. In economic terms, Assumption (*) means that, at equilibrium, the net value
of goods produced equals the net cost of factors used.

THEOREM 1.

(@) I r, s, <_:1 ;) ¢, and 7 satisfy Conditions 1-5, then they solve the dual
linear programs (i) and (ii), stated above.

_ (b) ¥ é,_ and B_ solve the dual linear programming associated with the vectors
r 20, ¢ 20, q, and w, then Conditions 1-5 are satisfied.

PROOF.

(a) From Conditions 1, 2, and 3, the vectors s and p satisfy the constraints of
the linear programming problems. From Conditions 4 and 5, we have

pAs = plr-q = (o6-ms,

which is (%), so that, by the theorem referred to above, the vectors s énd p solve
the dual programs (i} and (ii). '

(b) Conditions 1, 2, and 3 hold from the assumptions stated in (b), and the fact that
thc constraints of the linear programs are satisfied. To show that Conditions 4 and 5 hold,
we observe that

FAR > (G - M5 = plr- @ > pAB,
where we have used successively Expressions 2, (*), and 3. Since the first and last terms
of this chain of inequalities are equal, equality holds throughout. If two of the equalities thus
obtained are rewritten, it is easy to show that Conditions 4 and 5 hold.

An equilibrium need not exist unless additional assumptions are made. In his original
paper, Wald made assumptions sufficiently strong to get a unique equilibrium. Here we make

a number of assumptions but only enough to give the existence, not the uniqueness, of an equi-
librium. Kuhn's modifications of the Wald modcl also has the latter property.

Our assumptions may be stated as follows:

(A) The entries of the technological matrix are nonnegative; i.e., ajj 2 0 for all
i and j.
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(B) For every i thereisa j suchthat aj; > 0, andfor every j thereis an
i such that aj; > 0; thatis, every factor produces’at least one good and every good is
produced by at least one factor. ’

(C) The functions r(p), gq{p), o(s), and 7(s) are defined, bounded and continuous, .
and r and ¢ are nonnegative, for all nonnegative p and s.

(D) The inequalities r(p) - q(p) > 0 and d(s) - n(s) > 0 are satisfied for all
nonnegative " p and s. In other words, it is'impossible to stockpile larger quantities of
factors than exist, and no profit on a good can be charged in excess of the price of that good.

(E) There are n functions tj(s) such that, for each s > 0, thereis a P
satisfying the inequalities
o(s) - 7 (s) < pA < t(s).
Moreover, the functions t are defined and bounded for all nonegalive s. 'I'his requiréement
prevents unbounded inflationary pressures onfactor prices and insures the possibility of de-

termining factor prices in the economy.

THEOREM 2. --If A, r, q, ¢, and 7 satisfy Assumptions (A)-(E), then an
economic equilibrium exists.
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