P-¢7 <Z”
uf)

QUANTUM CHEMISTRY GROUP
FOR RESEARCH IN ATOMIC, MOLECULAR AND SOLID-STATE THEORY
UPPSALA UNIVERSITY, UPPSALA, SWEDEN

Angular Momentum Wave Functions
Constructe(l l)y Projection Operators

By
Per-Olov L(’iw&in

Technical Note No. 12

May 10, 1958

The research reported in this document has been sponsored in part by
AERONAUTICAL RESEARCH LABORATORY
WRIGHT AIR DEVELOPMENT CENTER of the AIR RESEARCH
AND DEVELOPMENT COMMAND,

United States Air Force, through its European Office

under a contract witl] Upp.mla Univetsity.

e e (T



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



' QUANTUM CHEMISTRY GROUP
UPPSALA UNIVERSITY, UPPSALA, SWEDEN.

Angular Momentum Wave Functions

Constructed by Projection Operators.

‘By

PER-OLOV LOWDIN

Contract No. AF 61 (514)-1200,

Technical Note No. 12

May 10, 1958

The research reported in this document |
: has been sponsored in part by the : :
- AERONAUTICAL RESEARCH LABORATORY, ' |
’ WRIGHT AIR DEVELOPMENT CENTER of the AIR RESEARCH
and DEVELOPMENT COMMAND
United States Air Force, through its European Office
under a contract with Uppsala University.

g 182 col’




‘W—-w—w—-‘«w—'~m<<"“‘ PR

Abstract.

The conventional method of constructing wave functions
of pure angula: mcmentum for a composite system is based
on the idea of coupling the angular momenta of the con-.

stituents. Instead of this synthetic method, an analytical -

approach is here introduced. It is pointed out that an
arbitrary trial wave function for'ﬁhe total system in a
'unique way must be resolvable into orthogonal components
of pure angular momentum associated with different
quantum numbers. A particular component can be selected by
means of certain "projection operators”; which annihilate

. all components except the one desired. Such a projection

operator is simply a product of commuting factors, each
one of which annihilates a specific eigenfunction to the
angular momentum under consideration.

Physically this idea is of importancey since one can
new start out from a rough model ““wave function based
essentially on qualitiative arguﬁents, for instance of’
the independent-particle type, and then obtain a mathe-
matically and physically much better trial function by
selecting the particular component of the original function
which has the. correct symmetry type desired.

The,projection operators are studied in some detail

both as products and in expanded form. The case of

degenerate subspaces of the samé angular momentum quantum
numbers is discussed, and the problem of constructing

an orthogonal subset of functions is solved by a simple
elimination procedure; the connection with the conventional
se@iority idea is briefly discussed.




- ful work has been carried out by Wigner

I. INTRODUCTION.

The/angular momentum for a composite system 1s con-
ventionally studied by coupling the angular momenta for
the constituents. The treatment of the operators is
elementary and straightforward, whereas the construction
of the associated wave functions in this approach represents
a rather complicated problem. In combining two angular
momenta, JVE1 and 4ﬁﬁk2_ s the wave functions
associated with the operator M = M, +M2. are
obtained from the wave functions belonging to 4, and

M, respectively, by means of the vector-coupling
formulas containing the so-called Clebsch-Gordon or Wigner
coefficients 3). This problem has been investigated

1 For a survey of the conventional theory of angular:

momentum, see eog.‘A.R, Edmonds, "Angular Momenta in
Quantum Mechanics" .(Princeton University Press,
Princeton 1957) or M.E. Rose, "Elementary Theory of
Angular Momentum" (Wiley and Sons, New York 1957).

extensively by several authors, and particularly beaﬁtio
by
2) by means of

2) g,p, Wigner, "Gruppentheorie und ihre Anwendung auf
die Quantenmechanik der Atomspektren" (Vieweg und Sohn,
Braunschweig 1931).

group theory.

The wave functions belonging to a total angular
momentum 4\ = M| + My+ MV, + could now, in
principle, be obtained from the wave functions of the
separate terms by means of the vector-coupling formula by
starting out from a certain component and then successive-
ly adding all the other components, one at a time. This
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3.

method becomes complicated already with three components,
since there is no unique way of carrying out this coupling:
one may combine M, and MZ, to a resultant Mll. |
and couple this to M_,, s OF one may couple M' to
the resultant #M\,, of combining AN, and M4 E
One obtains in this way two different sets of wave functions

to I\ , which are, of course, connected by a unitary
transformation the elements)of which are essentially the
3 :

famous Racah coefficients

3) G, Racah, Phys. Rev. 62, 438 (1942); 63, 367 (1943).

The'éoupling of four angular momenta becomes still more
complicated.

It should be stressed that the vector-coupling
formalism is basically a synthétic method for constructing
wave functions of pure angular momentum for a composite '
system. In contrést to this approach, we will here describe
a method of an analytic character which considers the
composite system as an entity to which the various compo-

" nents contribute in an equivalent and not necessarily in an
ordered way. We believe that such a treatment of the system
as a collective without subgroups of components coupled

'in a perhaps artifical arrangement will be of essential
physical importance, for instance in treating such properties
as the total energy. The starting'point is the fact that

an arbitrary trial function for the total system must be
resolvable in a unique way into orthogonal components of

pure angular momentum I\ associated with different
quantum numbers. Each one of these components may in

principle be found by ineans of the projection operatog
T )9 o

formalism recently developed by the present autho
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*) p.0, Léwdin, Phys. Rev. 97, 1509 (1955).

5) P.0. Lowdin, Adv. Physics 5, 1 (1956), particularly
Sec, 3,1,

The basic idea is that the component .of the symmetfy type
desired should be obtained from the original wave function
by means of an operator () which annihilates all other
components but lets the selected term survive the opération
in an unchanged .form; such a projection operator may here
be constructed simply as a product of commuting factors
each one of which annihilates a term of a specific symmetry

type.

The method was first used for investigaﬁing the spin
degeneracy problemh) and explicit formulas for the singlet
state were worked out; a complete treatment of this problem
for all types of multiplicity will be given in a forth-.
coming paper”’., In this connection we note that the

6)

A preliminary report of some results have already been
given in P.0. Lowdin, "Nature of Valence Bond Functions",
Technical Note from the Quantum Chemistry Group of
Uppsala University, 1957; Proc. Paris Symposium "Calcul
des Fonctions d‘Onde Moléculaires", 1957.

projection operator method has an essential physical
importance, since it may be used to give a mathematically
correct symmetry form also to a rough model wave “unction
which is otherwise essentially based on qualiﬁative
arguments. In this way it is, for instance, possible to
generalize the simple independent-particle-model toAinclude,
certain correlation and exchange polarizatioh effectsu’7),




7) P.0. Lowdin, "Generalizations of the Hartree-Fock
Scheme", Technical Note from the Quantum Chemistry
Group of Uppsala University; Annales Academiae Regiae
Scientiarum Upsaliensis 2, (1958).

by pérmitting different orbitals for different spins.

The projection overator method has also been successfully
used for treating the translational symmetry 5) occurring
in crystals. | '

We will now use this simple method for calculating
the wave functions of the total angular momen tum M\ of
a composite system. The associated projectioﬁ-operators
will be studied in some detail both as products and in
expanded form. The purpose of the present paper is to
present the basic theory with a few illustrating examples,
whereas the main applications have appeared elsewhere
or are reserved for forthcoming publications.

The applications.to'spin and isotOpic spin have
actually turned out %. be very simple and, in the case
of orbital angular momentum, the atomic state wave functions
for the8§onfigurations 13"\ and ﬁxn. have already been
derived ‘. Further applications on the atomic configuration

8) R. Fieschi and P.0. Ltwdin, "Atomic State Wave Functions
Generated by Projection Opérators",'Technical Note
from the Quantum Chemistry Group of Uppsala University,
1957). |

‘%ﬁl and on the nuclear shell-model are now also in
progress. For more complicated many-particle systems, -the
method is further being programmed for the electronic
computer of the type Alwac III-E in the Quantum Chemistry
Laboratory.
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TI. GENERAL PROPERTIES OF ANGULAR MOMENTUM.

Let us start by giving a brief review of such basic’
properties of angular momentum as are of importance. in
constructing the projection opsrators. The treatment in.
this section follows essentially the ideas developed by
Dirac9), but avoids the explicit introduction of matrices.

9),P°A;M° Dirac, "Principles of Quantum Mechanics",
(Clarendon Press, Oxford 1935), 2nd ed., p. 147.

A general angular momen tum = (“M- \Mg Q-M;{\
measured in units of ﬁi is defined by the commutation

relation M x M = LM or

Sl — g, = ity (72 ()
Fixing our attenﬁion on ijl , we will, in place of
the two other components, introduce the auxiliary operators

QJA% *‘xii&a ’

N
| < (2)
<M =S, K

forming a pair of hermitean adjoint operators. The square
of the total angular momentum is then given by the three
relations

QSV\,& _ Q\A’Ll“‘f '”\M(;ﬂ' KNL: _ | (@
M, + My, = (»)

R VU RN Far N (P ()
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Since (i&z commutes with <JMJ , 1t is feasible to consider

the combined operator Qﬂk ‘j& )haVing the eigenfunctions
TXT (sji <Jk2f) assoc¢ated with the eigenvalue pair -
@jk)l» and gﬂLz . From (1) and (2) follows fuf ther

the commutation relations

QM,ZQ’M._‘_ = QMI_‘, (&u‘_g-’r ‘) \
qﬂ&quu_-==<dn“(§MQ——t)
and (ﬁﬂ and QJ““+ have therefore been called step-up

and step-down operators, respectively, with respect te
Mz . Using (6), we obtain

Ul {9, Y ()} = L (g ) Y () =
(gM 1) {Q\M KM\ME)} (7>

)

()

)

showing that <Jmnk transforms the eigenfunction associated
with the pair (\M/;RM€23 into an eigenfunction
associated with the pair CUM/ Qﬂtz + 1) . Assuming that
the function SK'CKM ‘&&E.S is properly pormalized

and using (%), we obtain the normalization integral for the

ALY (W) [ (%) =
=Ygy i, Y () (a) =

2,

() = () = )

I

A corresponding theorem holds for (Jﬂ_, o
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Because of the step~-up and step-down properties, one
could be inclined to draw the conclusion that the number
of eigenvalues QM,/‘E associated with & particular
KM,’ would be unlimited, but this is not the case.
According to (&) and (5), tlie eigenfunctions to ((JM,Q',\MZ)
are also eigenfunctions to the operators KM_§M+= \Mj\j/h_
and MM _ = WM_T<M _ and, since such operators
can never have negative eigenvalues, one obtains the
inequalities

(W)= (Y=t >0,
(WY — (W) + Wy =0

(&)

showing that there definitely exist a largest and a smallest
eigenvalue for U\ltz s Which will be denoted by N‘Q>
and NYL< s respectively.

Let us now consider the functions QM,.\.Y (‘MC (YVL>>
and <MN_Y (qu/, o, ) . From (7) it follows that,
unless these functions are vanishing identically, they are
eigenfunctions associated with the eigenvalues (“Yl> + '>
and (’m< -1 ) sy respectively, which is a contradictory
result, Hence they must be vanishing and, taking their
normalization integrals according to (8), we obtain

A S =
Q)= em, =y =0, )

(@Y= —om =0,

which leads to M, = — Ml) . By means of (7) and
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(9), it is then easily shown that the assumption that 1
(PNL7——IVW< ) is not an integer leads to a conftra-
diction,land hence we have ‘

. (10)

'M)“"’Y‘\< = &Q’e )

and further M, = Se , ‘Y“<=“)&' .y and

G = Vae(k+1) ()

If the value of 4R  is fixed, the possible values
of (J&;A are thus

= Je o=, de=2, —leri =k | (12)

giving the multiplicity (-ﬂk*ﬂ .

In the following we will, instead of the eigenvalues
(&M/,KM/;:) , use the quantum numbers (Q&:)‘Wls as
index in the eigenfunctions which hence will be denoted
vy Y (&ngn) . Equation (8) may be written

‘ I, Yty | () = (femm) (k1) ()

and shows how the normalization integral is changed in
the step-up procedure. For the properly normalized eigen-
functions, we hence get the connection formulas




10,

*’“]LQ\[ (Qe,w\) = { (’k-—w‘)(iﬁm*m}yz K(k,‘“\*"))

| | /. (f‘*>
Y e = {(WM‘\»(%‘”“*WX (i)

0f course, the normalization condition leaves actually

the eigenfunctions undetermined with respect to a phase
factor fg”u' , but this factor is here chosen to be unity
leadirg tc the Dirac phase convention which is implicltly

consained ia CT4).

In conclusion we note the existence of the addition
theorem for angular momentas if M = <Wﬁ‘ﬁ—dNﬁ2“

iXT. CEFTINITION OF PROJECTION OPERATORS.

Let us now consider an arbitrarily given function

\(' , and let us try to resolve it into compcnents
C:kwnTEZLemq , which are eigenfunctions to <M?*  and
W .y SO that
A 5
£< v,

wr.ewe Lthe summation goes over all possible values of A,
and Yo . This can be done by observ;ng that the
eigenvalue relations for <% and <LNL2. may be
written in the form -
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{‘Mz‘—"‘“}ykmio) Ué)

)

{0 ()} Y, = 0

which means that the eigenfunction j[@eq“ is apnnihilated

by the operator iQJA, ze($e+4> § or the operator
<JA2-—”W\} . It is hence possible to get out a

specific component C;kw“kaewﬂ in (15) by annihilating

all other components, and this is actually accomplished

by means of the two operators @m (KMQ) and @ (\MZ>

defined by the products

@Qe (QMD"> _ {KWL ’Q \ﬂ

»@%e@ Reller) — X (1) )

(17)

o —u}
Ou (Ug)= T AHaTpid (o)
MEm ‘ “Mr—/b
- The numerators are products of the eleméntary annihilation
operators defined by (16) over all quantum numbers except
those characterizing the component desired, and the denomi-
nators have been chosen so that the operators have the

value 1 when working on the term Clkmﬂiﬁzbeﬁn, By
using eqs. (16)-(18), we hence obtain

@1& (KMlB (Drw\ (Q\Az> Y = Cl&mw—y:wrw\ ) (\j)

giving the uniquely defined component of :Z;_ "~ having
a pure zngular momentum with the quantum numbers AR, and
o, .

One can visualize the expansion problem (15) by
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12,

thinking about a Hilbert space spanned by the mutually

orthogonal unit vectors Tﬁfu w in which it is required
)

(WL .

_ to resolve an arbitrary vector
A ‘ET T}Z into component vectors .
along the axes. Geometrically

~ this is done by an orthogonal

projection, and the operators
€  in the left-hand side of
| (19) are therefore called
/| projection operators. We note
that a repeatéd'use of G)
i would not change the result,
N1 i‘e:'m which leads to the relation

0*= 0 @

which is characteristic for the projection Operators1o).

10) 7.4, Neumann, Math. Grundlagen der Quantenmechanik
(Dover Publications, New York 1943); p. 41.

We note that this relation is also of essential importance

in simplifying the calculations of the energy and its

matrix elements 13).

jj) P.0., Ldwdin, Phys. Rev. 97, 1509 (195%); see particularly

eq. (37).

By means of the addition theorem, it is usually possible

to calculate which eigenvalues (ﬂe,‘Tﬂ ) may occur

in the system, and the product (17) can then be restricted
to contain only a finite number of fachrs. It 1s worthwhile

18 13




noting ,however, that even the infinite product is convergent,
which is easily seen by writing (17) in the form

@k@\ﬁ> _ \:E; [1 . — Xe(‘k-\»ts ) | (QO

(XY X+ 4o+ )

For only integral values of A2 , the speéial case
k=0 has the particularly simple form

O ) = (- ) (- 1) @

In the right-hand member, the first factor will annihilate
the triplet component, the second factor the quintet, the
third thelseptet, etc., and only the singlet component

will survive the operation being multiplied by the factor 1,

Since there are usually no difficulties in constructing
eigenfunctions to Qj&z , there is comparatively little use

of the operator @,w\ (&&\LZ) except in an actual component

analysis. In the following, we will therefore as:sume that,
from the beginning, the.given function 3[ is an eigen-
function to <JNZ with the specific quantum number Y] ,
For the sake of simplicity, we will further introduce

the condition ™M= () ; the case of a negative ~M =-value
is then handled by reversing the Z-axlis. The only possible
MR -values range now from =om to a certain = zcw
evaluated from the addition theorem, and, since only the
corresponding factors have to be included in the product
(17), we obtain, after replacing X by X + M ,
that o

18 014




(K#=&F’”“>

©, @) =T

=01

= (el D
{ (o) — ((rm)l+™ W},

where ’Y\==XKMM%‘““V“ - Since this operator is actually

supposed to operate only cn functions }[ s which are
eigenfunctions to QJKZ assoclated with the eigenvalue
o , Wwe have the freedom to write (23) under the

form

@ _}Kfﬁ-m> {&S\!le (QM; K)(KM y+ Rt >}
ke,

|

‘ —— 3 (Q’O
X=0 M (’*ﬁ‘-”‘“*-’i\(%“‘““”(*‘ )
i.e. we have replaced MM by ‘Qﬂmz» in the numerator
but left the denominator unchanged.

In the applications, the product forms (17) and (23)
often convenient for direc’ practical use, and it seems
as 1f these products also would render a good basis for the
programming of the method for an electronic computer. In
other cases, it is sometimes better to use an expanded
form of the projection operator which will now be derived
starting from the expression (24). |

IV.  EXPANSION OF THE PROJECTION OPERATORS.

Let us study the operator in the numerator of the
product (24%) by introducing the notation

182



15,

Using (4), we obtain the special relation -'F; z\,M_.QM..;,
By means of (6), we can further derive the more general
commutation relations .

’%{\QMXQMF - < ‘% (&M2H> )

). = - 1)

(Qé>

for any poljnomial function -%. of ijz . Starting
from .ﬁﬂiﬁ_'* ;? and using (26), we then obtain

successively
.

M by ‘“+ !
WM = QM'.“F;;KM+ = WS, = -F :FT
imfwwf-—«w;(xﬁ:)xm - WL T SFET
&MN\A ‘*«-quu (®F 2...¢;,_l§&u*.=

=<MW, (TR, r_%«t) =

=+ ¥+, i—g-—l . ("-?7>




By means of the last formula, we can'now expand the

projection cperators.

This case is not only particulariy simple but it forms
also a convenient starting point for a study of the lower
(M -values by means of the step-down procedure based
on the use of < _ . The projection operator (24) takes
|

|
Let us first consider the principal case =i . |
\
|

now the special form

0 o b5 S e
Yele, K= 1 (—-»Q (.,2%-\- X+ >.»

Q4>>\@£+\+1§ B

|
=

~ TR, T
() (Re)! Lf(im«w)! ) @)

where (= gfﬂw".’ 3 . From the definition (25) follows
directly

l_q: = T—;-—-. Qo(gq\kiﬁ'ga—i—'w ‘) (Q‘Q

and, by repeated use of this formula and (27) for
.fz M, N1, M= 1, we can then expand the product
in (28):
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17,

q~%+.2,+;3"'a = .,
=5+ . .5 -T5. T, M (et =

1

H

%Lﬂwu'~mwﬁm{ww§?¥%~?mﬁ=

QML“Q’LJ( — M (;Ml oty <M_ A ‘&M :
| (éOB

+ o (M-1) (;z,&Mz + o+ \> (g -+ M>Q\A_M-Q&M+m*; &

4 e 0 . . . , . . )

For the projection operator (28), we hence obtain

m! (Qlerm+)! (1)) (20e+n).

G) e QQ&Q 1> {. ‘Jﬂ Q&ﬁ4. (fo -‘QJM QJW +‘.f}

Muxb@ |
N N T T ¢

= Q}Q+1 [ \ -
( ) fi:z ( > ))! CQQQ+J)‘“1> ) |

which is the expansion desired.

Let us now also consider the more general case
0« m < & . By means of (24)-(27) and the ex-
ansion of (28) f =M R, = e
pansion of (283) for ‘f M, — AR+ M, % ey Je&)}

we obtain
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(’("‘k“’(\n)
@ = | QM —_ M2+K>(&Mz+>/\+1)

ko !
)\'O,f‘r /QQ(‘QQ+\> —_— (nm_\_y\ (W‘_‘_K_‘_J‘)

(KF k-—m)

=T "X

X=0,mM ("’3""“~>0Ue+m+y\+ y

(l

."—"‘U&-H‘m)' ﬁx’,'{-’ +/‘f€ =1 A= o+ W — |
. Uﬁ-m\)\ Q%)I ( > (Q%-H) \ {.%-NVIH:F;;JWH.I T_”
E=S Q/H-M\ : - (m*k*"m)! (318 = =
(2%~ ( AL o sy
e T .
, (’Q'Q ( \> . "'ie-rm-o—s :F; - +le e
L e plakepr
(- L {(‘4)(? AR Q'FE) o
: f (Qk*'c»n) } KM-x— = |
= (QQQH ﬁq_v_l_)l_ - (- " \
>($€—'-rw\)l i {EE( ) < UVI ) fo-m
) ef"mw le - Y. (Q%H)'H)l )
( fo+m) -+
, J)KM (m+gM %_(m-'_))
+

(32)

(@e—rm)" 5 |
=0 Pl <Q0€+))+|)l




The application of the operator expansion (32) to a
given function '3[ is a sﬁraightfcrward procedure, since
the action of the operators M_ and Q&Kﬁ. can always
be found by elementary methods for a specified type of
angular momentum. For more complicated many-particle systems,
the calculations may.be lengthy and somewhat tedious, but
they are never difficult and can be carried out by routine
procedures. After evaluating the function SL(()I&"M Y § ’
the final expression 1s conveniently checked by investiga-
ting whether i1t is annihilated by the operator

[SJ&2-4©(2e+I) 1 .. By means of (%), the checking re-
lation may also be written in the form

[, = (em)emed] § 0 Y J =0, (58

In theoretical investigations of expanded forms of angular
momentum wave functions, this relation is also of basic
importance for deriving recursion formulas between the
coefficients. We note that, in the principal case (W1==%€ ’
a still simpler check is provided by the relation

Uy { O Y } =0, (aw

which is also of theoretical wvalue,

— ‘
If the system is composed so that M =2 M«. s
L
we have

A, = S (), S = ()

)

M) Y
and the operators (¥AK*_ and Q\Nt__ may then be
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expanded b; means of the polynomial'thebrem in an entirely
symmetric way. Choosing a starting function -BZ 9
which céntains the various parts in an equivalent way, we
can then by projection derive a function of pure}totai
angular momentum to which the different constituents con-
“tribute symﬁetfically. This can be done even in the case
of a degeneracy but, since one ig usually interested in
finding only a sufficiently large subset for calculating
the energy, it is nct always worthwhile to put in the
amount of work required. We will return to this problem
in the following section.

In the special case when " = M\""Mz_ , cne
can'by means of the binomial theorem obtain a projection
~ operator expansion which is equivalent in the two con-

stituents. By means of the relations (i4), one can then
derive an exprescion for the total wave function which
corresponds to the ordinary vector-coupling fomula. More
‘details about the connection with the conventional theory
will be given in a forthcoming paper.

V. COMPLETE MATRIX REPRESENTATION .
OF THE PROJECTION OPERATORS. ;

In order to study the theoretical properties of the
projection operators 6) in greater detail, we will
now introduce an orthonormal set of basis functions
C¢>,)<ﬂ:3_,<i?3... <i>f all having <Mz =™ , which
, is complete enough to span the part of Hilbert space under
consideration. In treating a many-particle system, this
set is usually chosen to consist of Hartree products or

182 (21




29,

Slater determinants built up from one-particle functions,
but even more elaborate basis functions are possible. The
matrix elements of the projection operator Q) with
respect to this basis are given by the relation

Cpp = JCP; O b, () (36)

and forr an hermitean matrix @ =, which is idempotent

as a consequence of the relation (20). The matrix relation
@2. = C implies that .
S CuuCup = C (3%)
Lo o~y T JaR
< M /" |
It follows ~urtherthst the matrix C has only the
elgenvalues 'C) or 1 , and the latter has a multiplicity
=;1rlf$ y»+ which 1s usually derivable in advance by

means of simple combinatoric arguments. In the case when
3 =1 , we speak about a non-degenerate projection
problems otherwise abou®t a2 degenerate one.

From relation (37) follows directly that each one 6f
the column vectors '

’ Cy |
C.y .
C,=1C» (38)

\Q@)/
is an eigenvector to the matrix (@ associated with
the eigenvalue 1, but of these eigenvectors €, C, ... @:S)
can, of course, only j be linearly independent.

bk
&
D
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Let us now consider the projected functiuns

,) z',» @3) D @03 s which are defined by

@pz©¢,=§:$cp. )

This relation implies that the vectors €, C,, .

are nothing but discrete representations of the functions
(:Z) (:L_) Ce in a system with the basis Ctyb -
In order to study the linear dependence of these functions,
one has to investigate their overlap matrix:

eSO

By means of the gquantum-mechanical "turn-over rule" and (20),
we obtain directly '

A/‘u) -r-/(@da«)* (OP,) (&) =
=SB OF B, () = 4
=S ep 0, (M) = Cur | ()

i.e. the overlap matrix A is identical with the
matrix < . This means that the overlap matrix has
. Z elgenvalues equal to 1 and (f —_ ) equal

to zero. Between the functions (:L))there are hence
(@>~—-g ) linear relations, whereaS"i% of them
are linearly independent.
/
- A fundamental problem 1s now the construction of an
orthonormal subset of order 3 from the functions
. T

C),) C)Q_ (:)€> e solution is unique except
y rt .

i82 ro2g3
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» for a uritary transformation, but the special choice is
not exceedingly important if the subset will be used for
calculating the energy, since another unitary transformation
will then be carvied out anyway. It would, of course, be
of value if one could directly construct a subset which

dlagonalizes the Hamiltonian of order in an exact
or approximate way, and this would also prove the
existence of %, extra good quantum numbers. So far,

such an approach has been successful in some special cases,
and particularly the use of seniority numbers in the
nuclear shell-model should be mentioned 1n this connection.

Here we will first leave the question of approximate
good quantum numbers aside and concentrate our interest
) ' on the orthogonalization procedure. In constructing the

subset of order s Wwe could elther try to treat all
the functions (>|;()z‘<>3)~~ GDf in an equivalent

way, or we could orthogonalize them successively in order
by means of the Schmidt processiz). It should be observed

12) For a discussion of the relation between symmetric
and successive orthogonalization, see e.g. P.0.Ldwdin,
Adv. Phys. 5, 1 (1956), particularly Sec. 3,2.

that, in the treatment of projections, the latter may be
replaced by a very simple elimination procedure, which

is based on (20) and thé "turn-over rule" used in (41).
Let us start by considering a degeneracy of order

=2, . The two functions @Dl and C)Q‘ 9
defined by

182 (24




2L,

®i = ®<¥>\ = Chcn«r—diczlq-d—ngﬁ“‘“ )
(H2)

@.’L = ®<b.z,= Chc’m+<$>1c&+ <£>3.C3Q+M )

may be assumed to be linearly independent13). It is then

13)If @L happens to be proportional to @. s We will
instead consider ®3, )®q , -+ ete, until we find a functior
which is not proportional to @, ; this must be the
case, since otherwise % = 1

possible to find two multipliers, A’u. and J“,ZQ_, 50 that
Cbl can be eliminated from the second expansion:

@“ - d>‘ C, -+ d}_z,cl\ -+ CiDSC3l+" ,

, (H:s)
/ /.

@;“‘ @l&'f"@z&u: O + Ci:.q,cz. + B, Chy+

The relation required is C“ &m“" Cu“&uu = O

with C/JRQ,: C%I &11‘4‘ CQ&L&QQJ for = 2
7

We can now directly conclude that ®L must be

orthogonal to (), , since we have

J®F @ () = (0R) 0 (dur hds) (1)-
= b (B Echr M=o ()
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The orthogonality is here accomplished simply by ellminating
CiDI from the expansion of (:)2

In the case of a degeneracy of order =3 g We

proceed analogously. Starting out from the rélations

@;: ®<b, = CHC"-t-CiD&Cm"*- Cé»c3'+”' )
@zz ©d3,,‘>\,= d)i-cu."' <b-‘bc2—'l T Cb&c‘”“%”) (%> |
@3 = @CE = Cb.C,:,)#déCzs*‘ dﬁC33+"' )

we can, by introducing convenient multipliers,'eliminate
\ from the second expansion and <#>l and a2,

from the third expansion:

@;=®,‘Q‘§* ®.z.&.23*@3&33 = O '+ O +<1%C;3+.,

as before, one can then directly prove that the three

functions
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are mutually orthogonal.

The case of a general degeneracy of order is
treated analogously by means of a Gaussian elimination
procedure which can be carried out straightforwardly. The
successive orthogonalization can hence be performed in a
way which becomes exceedingly simple because of the general
properties of the projections.

Let us finally consider the normalization integrals.
By means of ‘the "turn-over rule" and (20), we obtain

J‘ @»‘2‘(&“) =Cy, |
SO )= Cuda ()
SO, () = Cadss

as is seen from the following typical éxample:

-

182 c27



27.

1O () =/ 10 (R B dsr ) 1
=J(d>, d\s+ 42,&»“5‘* =3 &33>*(<§c’33+ bl (i

*
=Css d‘&s

1

The orthonormalization required is hereby concluded.
It should be observed that the functions ®P are above
taken in a definite order and, in the examples, we will °
show that there 1s a close connection between this approach
and the conventional "senjority" idea. '

VI. PARTIAL CONSTRUSTION OF THE PROJECTION
" OPERATOR MATRIX.

In the previous section, we have assumed that the
complete matrix represéntation C of the projection
operator @ with respect to the basis Cb“da,
1s available, at least in principle. This matrix is definite-
ly of essential theoretical interest, but, from the practi-
cal point of view of constructing wave functions, it 1s
hérdl}r worthwhile to evaluate the entire matrix. The
s:ilm_p]f.gsg‘, way oif getting the complete matrix for @ s
probably. by reﬁeated matrix multiplication according to
(17) or (23), étarting out from the complete matrix for

2 .(However, if the latter is explicitly known,

P
i
i
H
i

b
o

3
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one -an directly get all the eigenfunctions simply by
solving the linear equation system corresgonding to the
eigenvalue problem, and the projeétion opérators would then
no longér be needed - except for theoretical considerations.

However, it should be observed that, in constructing
the wave functions by means of the projection nperator

GD , the entire matrix C is by no moans needed
and that it is sufficient to know a rectangular submatrix
of order X , provided that the column vectors

contained are linearly independent. This means a considerable
simplification of the problem. In a practical application,
one starts out by taking the projections of the basis
functions Ctﬁ,Ci2z)<i?3).«- successivély in order combined
with the elimination procedure (46) and, unless there are
accidental linear dependencies early in the projected system,
the whole process is concluded after projecting

functions9 where is the order of the degeneracy
usually derivable in advance by simple combinatorial
arguments. Adjusting the normalization constants by means

of (48), we obtain a convenient orthonormal subset of

pure angular momentum wave functions describing the
degenerate state. | )

Finally a few words should be said about the matrix

elements of the energy, provided that'Q&tz‘ commutes with
the Hamiltonian é}ﬂ%r . Introducing the notation

Ry S B E BN )
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and using the expansion (39), we obtain

) = f
SO 4) - Tl ey,

which is a fairly complicated double sum. Using the
" "turn-over rule" and (20), we get instead

O R 0, (%) =S Ry B (B -

- Zi; g{{w)g%) | (52)

a single sum which is more easily evaluated, particularly
-since only a rectangular submatrix of order GDXZB of

éﬁza}) is now.needed. \ ,

The son-iiagonal matrix elements 1in (52) are usually
fairly large, since the sum in the right-hand mzmber
contains the quantity<‘5%uu(;a . If one gbes
over to the orthonormal subset C>') C):ﬁ ; y ey
the corresponding non-dlagonal elements will come cut
considerably smaller, even if they are not always small
enough to render good or approximately good extra guantum
“numbers. All the basis functions Ctﬂ)ciﬁz)<j?3,,
are assumed to be eigenfunctions to <M wu. associated
with the quantum number YN , andy if they are built
up from Hartree products or Slater determinants of
one=particle functions with the individual quantum numbers

om () , they must differ in at least two of these
numbers, since _; om(i) = M . This means that,
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if /u,:k)) , the one-particle operators in fthe
Hamiltonian do not contribute to eﬁyu) y which depends
only on the two-particle operators or higher interactions
in Eﬁwf~ . Simplifying the non-~diagonal elements of
. 14 ’
3t with respect to the set C),)CDZ, ™5 )
by means of the "turn-over rule" and (20), we obtain

WAOKE © ()= B R (Rl

/ L
= K, Chp * HieC 2t HuCha™

The coastruction is such that one will never get a diagonal

element ‘gﬁuq in the eipansion in the right-hand member,
which prevents the non-diagonal eleme ts from becoming
large.

VII. A SPIN EXAMPLE.

In order to give some-jillustrations of the projection
operator formalism, we will in conclusion give some very
simple examples. Let us start by considering the total
spin of a four-electron system with Oz = 1 . Denoting
the elementary spin functions by and /45 s We may
use a basic set consisting of the four functions:



31.
Cbl:oam(/s, dﬁg=0</$0<°<,
P, = EXpA DB = A =)

where the implicit spin coordinates in order are L,,él‘}-j )
and (QH . According to the addition theorem, one has

S =2 and S = 1 , and straightforward application
of formula (32) gives then

" D(Q(Q(/j, = —:—?—- iO(o(e(/s ——é—,—(uu/sd-'— °</¢0&0L+/5°<ocox)} -(55‘,
©z\°(°<°(/$ = —L'r (guoafg,-p SRS /50@(0() -

The compléte matrices of ©n and @2\ have hence the
form v ’

/ N 7 y N
3 -1 =1 =1] (IR
~| 3 — = 4 1A
| . ' 111
- X - _-— — X 1
®H H - =1 2~ ®.z| H 1l
—) -3 b
L / \ ’
- (57)
We note that @H ~+ 2 = 1’ , giving the "resolution
of the identity" for this simple case. The case \S =2 |
is non-degenerate ( =1\ and is characterized by a
uniquely determined function. The case S-—' ‘( is

triply degenerate ( =3) , and, by successive
elimination, we obtain the orthogonal subset
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The last function is of particular interest, since it may
be written in the form

@; = d%“ch-: B &/&w AN e
= (o(/s ——ﬁot)cxx = (S*O)X(S“O ‘ |

It is hence the product of a pair singlet function and a
pair triplet function and has the seniority AJ =2, |,

7 4
whereas @. and ®& both have the seniority AJ=H .

Since the spin projection operator commutes with
the antisymmetrization operator, the formalism is directly
generalizable to Slater determinants and has proven
particularly valuable in studying the problem of the
separation of space and spin . Further details will be
given elsewhere.
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VIII. AN ORBITAL ANGULAR MOMENTUM EXAMPLE.-

The atomic state wave functions for the configurations
' and ;{ﬁ] have been treated in detail bg the

projection operator formalism in another paper °, and here
we will give only a single typical example of a degenerate
case, namely the 2ﬂ> state of the conflguratlon ct .
Denoting the orbital angular momentum by Ls s we will
study the principal case qu =L =2 by means of a
basis consisting of the six Slater determinants:

P = (10l1)
N (22 l2) (40)
@U'\‘)f q;;é:(ﬂ"\i)

d@* N 4
T
S e
.
= -
~—— ~—"

which span the subspace under consideration. We note that
the notation (;LI\& > is an abbre=iation for the Slater
determinant ' )

(QWTEs;(m&am,m&1u, WQfDa) C (61)

where each one-electron function is characterized by four
quantum numbers (\ﬁlﬂ,ﬂ“ om, .

By stralghtforward applicationf the expansion (31)

applied to the different basic functions Cﬁ}y y We
obtain the complete matrix representationb
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| 3k,
15«15 9 366 -3 -6
~15 15 .9 36 3 6
' -9 11 -6 13 2
6322 = &2 X 3J_- -3/6 -6 12 56 46 (QQ>
| -3 3 =13 5/6 23 -10
-6 6 2 46 <10 8
L J

The Qj) . state of AlS is doubly degenerate, and the‘
idempotent matrix (62) has hence .two eigenvalues equal
to 1 and four eigenvalues equal to zero. In carrying out
the elimination procedure (43), we note that G)Ci{L is
proportional to G)cbl and that the projection of <i§L
thus should be omitted. As basic subset, we will instead
choose the following functions

b, b, b, <, <, b,
Op P, =5z x(—6 ¢ 2 -HwT —p & )

(62)
O (e +aR)=1x (1 =1 1 0~10)

where Ci>e has been eliminated in the second function.

In order to flnd out whether there is a connection with the

uenlorlty appfoqch, we note that, for the conflguration
,CLQ’ o there is a 15 function of the form

{olo) + @15) = (@)~ ([T = (1)} /s, (09

182 r3s




which may be obtained from (Q\Zl) by the operator @00 .
Starting out from the function (2,! corresponding
to the %j) gtate of a one-electron system, we can then

construct a =D  function with the seniority A = 1 )

D(a) xS (4) = )
=:{KQON)+(Q@jZX—fQQHT>"-(QTM>}/$>

~ hamelys

where the “product" in the left-hand member has a symbolic
character. Except for the facﬁor——:% , this expression is
identical with the second function in (63).

This example is typical for the connection with the
seniority approach in treating the configuration AE“ N
which has been investigated in detail in its entirety. In
the elimination procedure (46), the basic functions may
always be chosen in such an order that the subset gives
also the functions of lower seniority. We note that, with
decreasing seniority, the number of projected determinants
is increasing, and the functions of lowest seniority are
hence *i»~ most complicated mathematicéllyn The simplest
way of getting their energy.is probably to express them
as sums of projected determinants and to simplify the
integrals by means of the "turn-over rule" and (20) .
Particularly cumbersome are the valence bond functions in
gquantum. chemistry, which are singlet spin functions of
seniority zero ), and the non-orthogonality problem connected
with these functions 1is not yet fully solved.

The projection operator method for deriving wave
funct:ins has so far given several useful applications, and
it is hoped that this approach in the future will contribute ;
also to our theoretical understanding of the baisic physicsl |
guantity called angular momentum.






