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Abstract. 

The conventional method of constructing wave functions 
of pure angulai me-mentum for a composite system ~s based 
on the idea of coupling the angular momenta of the con-. 
sti tuents. Instead of this synthetic method, an analytical ' 
approach is here introduced. It is pointed out that a·n 
arbitrary trial wave function for the total system in a 
unique way must be resolvable into orthogonal components 
of pure angular momentum associated with different 
quantum numbers. A. particular component can be selected by 
means of certain "projection operators", which annihilate 
all components except the one desired. Such a projection. 
operator is simply a product of commuting factors, each 
one of which annihilates a specific eigenfunction to the 
angular momentum under consideration. 

Physically this idea is.of importance9 since one can 
new start out from a rough modc•l ·.:·wave function based 
essentially on quali tiative arguments 9 for instance or·· 
the independent-particle type 7 and. then obtain a mathe= 
matically and physically much better trial function by· 
selecting the particular component of the original function 
which has the. correct symmetry type desired. 

' 
The projection operators are studied in some detail 

both as products· and in expanded form. ·The case of 
degenerate subspaces of the same angular momentum quantum 
numbers is discussed 9 and the problem of constructing 
an orthogonal subset of functions is solved by a simple 
elimination procedure; the connection with the conventional 
se~iority idea is briefly discussed. 
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2. 

I. INTRODUCTION. 

The angular momentum for a composite system is con­
ventionally studied by coupling the angular momenta for 
the constituents. The treatment of the operators is 
elementary and straightforward, whereas the construction 
of the associated wave functions in this approach represents 
a rather comr:licated problem. In combining two angular 
momenta, ~ 1 and Llv\ .2.. 9 the wave functions 
associated with the operator 4'-'\ = tflfou \ + /1.2... are 
obtained from the wave functions belonging to ~ 1 and 
~~ respectively, by means of the vector-coupling 

formulas containing the so-called Clebsch-Gordon or Wigner 
coefficients I). This problem has been investigated 

1) li'or a su.r,rey of the conventional theory of angular· 
m~·Jffientum, see e.g. A.R. Edmonds, "Angular Momenta in 
Quantum Mechanics" .(Princeton University Press, 
Princeton 1957) or M.E. Rose, "Elementary Theory of 
llngular Mome.ntuni" (viiley and Sons, New York 195'7). 

extensively by several authors, and particularly beauti­
ful -vrork has been carried out by \.Jigner 2) by means of 

-,..--~-- .. .:. ,..._....__ 
2) . 

E.P. WigrH::r, "Gruppentheorie und ihre Anwendung auf 
die Quantenmechanik der Atomspektren" (Vieweg und Sohn 7 

Braunschweig 1931). 

group theory. 

The wave functions belonging to a total angular 
momentum .dV\ = ~I+~~+ ~.3 -4-•· could now, in 
prlnciple, bn obtained from the wave functions of the 
separate terms by means of the vector-coupling formula by 
starting out from a certain component and then successive­
ly adding all the other components, one at a time. This 
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method becomes complicated already with three components, 
since there is no unique way of' carrying out this coupling; 

one may combine ~ 1 and ~ L to a resultant ~ 1.:2.. 
and couple this to A 3 , or one may couple ~ 

1 
_ to 

the resultant l"t:>-3 of combining . ~~ and ~ 3 
One obtains in this way two different sets of wave functions 
to ~ , which are, of course, connected by a unitary 
transformation the elements of which are essentially the 
famous Racah coefficients 3) 

3) Go Racah~ Phys .·Rev. 62, lt38 (1942l; QJ, 367 (1943). 

The coupling of four angular momenta becomes still more 
complicated. 

It should be stressed that the vector-coupling 
formalism is basically a synthetic method for- constructing 
wave functions of pure angular momentum for a composite 
system. In contra:;;;t to this approach, we will here describe 
a method of an analytic character which considers the 
composite system as an entity to which the various compo~ 
nents contribute in an equivalent and not necessarily in an 
ordered way. We believe that such a treatment of the system 
as a collective without sutgr,oups of components coupled 
in a perhaps artifical arrangement will be of essential 
physical importance, for instance in treating such properties 
as the total energy. The startin6 point is the fact that 
an arbitrary trial function for the total system must be 
resolvable in a unique way into orthogonal compone~ts of 
pure angular momentum ~ associated with different 
quantum numbers. Each one of these components may in 
principl~ be found by rn.eans of the .nro.i ection. opera tor 
formalism recently developed by the present author4,5). 
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4) P.Oo Lowdin 7 Phys. Rev. 22, 1509 (1955)o 

5) P.O. Lowdin, Adv. Physics .2, 1 (1956), particularly 
Sec. 3,1 o 

The basic idea is that the component .of the symmetry type 
desired should be obtained from the original wave function 
by means of an operator «) which annihilates all other 
components but lets the selected term survive the operation 
in an unchanged ::form; such a projection operato·r may here 
be constructed s~.mply as a product of commuting factors 
each one of whicq annihilates a term of a specific symmetry 
type. 

The method was first used for investigating the spin 
degeneracy problem4) and explicit formulas for the singlet 
state were worked out; a complete treatment o~ this problem 
for all types of multiplicity will be given in a forth-. 
coming paper6). In this connection we note that the 

6) A preliminary report of some results have already been 
g.i.ven in P.O. Lowdin, "Nature of Valence Bond Functions", 
Technical Note from the Quant~ Chemistry Group of 
Uppsala University~ 1957; Proc. Paris Symposium "Calcul 
des Fonctions d POnde Moleculaires", 19.5'7. · 

projection operator method has an essential physical 
importance, since it may be used to give a mathematically 
correct symmetry form also to a rough model wave ~\mction 
which is otherwise essentially based on qualite:1tive 
arguments. In this way it is, for instance, possible to 
generalize the simple independent-particle-model to include 
certain correlation and exchange polarization effects4-,7), . 
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7) P.O. Lowdin, "Generalizations of the Hartree-Fock 
Scheme", Technical Note from the Quantum Chemistry 
Group of Uppsala University; Annales Academiae Regiae 
Scientiarum Upsaliensis ~' (1958). 

by permitting \.~.ifferent orbitals for different spins. 
The projection operator method has also been successfully 
used for treating the translational symmetry 5) occurring 
in crystals. 

We will now use this simple method for calculating 
the wave functions of the total angular mome~tum ~ of 
a composite system. The associated projection operators 
will be studied in some detail both as products and in 
expanded form. The purpose of the present paper is to 
present the basic theory with a few illustrating examples, 
whereas the main applications have appeared elsewhere 
or are reserved for forthcoming publications. 

The applications to spin and isotopic spin have 
actually turned out· t::; be very simple and, in the case 
of orbital angular momentum, the atomic state wave functions 
for the 

8 
configurations f If\ a~d A tY\ have already been 

derived ) • Further applications on the atomic configuration 

8) R. Fieschi and P.O. Lowdin, "Atomic State Wave Functions 
Generated by Projection Operators", ·Technical Note 
from the Quantum Chemistry Group of Uppsala University, 

(1957). 

J._CY\ l and on the nuclear shell-model are now also in 
progress& For more complicated many-particle systems, ·the 
method is further being programmed for the electronic 
computer of the type Alwac III-E in the Quantum Chemistry 
Laboratory. 
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II. GENER~L PROPERTIES OF ~NGULAR MOMENTUM. 

Let us start by giving a brief review of such basic· 
properties of angular momentum as are of importance in 
constructing the projection op0:ca tors g The treatment in 
this section follows essentially the ideas developed by 

Dirac9), but avoids the. explicit introduction of matricesc 

9) P.AgM. Dirac, "Principles of Quantum Mechanics", 
(Clarendon Press, Oxford 1935} 9 2nd ed., p. 147. 

A general angular momentum ~ := (~x. ;JV\~ ~\A.~) 
measured in units of ~ is defined by the commutation 
relation ~ x ~ = L~ or 

(cyclic) 

Fixing our attention on '-.JIA..l!. , we will, in place of 
the two other components, introduce the auxiliary operators 

<:..M, + - ~\tlx + ~ '-.NLJ 

<:JIL = '-.J\fl ~ - ~ '-l'vl d J 

forming a pair of.hermitean adjoint operators. The square 
of the total angular momentum is then given by the three 
relations 
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Since~~ commutes with ~VL~ 7 it is feasible to consider 

the combined operator ~~) "-.3\'\..t) having the eigenfunctions 

.Y (<Jt 1 ;~~.) 
1 

associated with the eigenvalue_pair · 

~).2.. and '-..!~ ~ • From (1) and (2) follows fur t.her 

the commutation relations 

- <J\IL+ ('-ll~ + 0 ) 

- ~- (<:JA~-1) 

and cJVL. and ~+ have therefore been called step-up 

and step-down ope;ca tors 7 respectively, with respect to 

~~ • Using (6), we obtain 

'-At~ t '-"t-ty l<J\l11~~) \ = U/L~ (<JA~+t) y ~~~'-.\l~) ~ 

= ('-M~+t) { ~"y (~';-!t~)} (1) 

showing that <.Jil + transforms the eigenfunction associated 

with the pair l'~/,"-.!'u\. 1~) into an eigenfunction 
associated with the pair ( c;JIJl/, ~~~ + l ) . Assuming that 

the function Y ('-M.))~ ~ ) is properly normalized 

and using (4), we obtain the normalization integral for the 

new function 

f~l ):l.- ~) 
\ 2: ~ ' 

~ corresponding theorem holds for ~- 0 
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8. 

Because of the step-up and step-down properties, one 
could be inclined to draw the conclusion that the number 

) 

of eigenvalues '-M .. ~ associated with a particular 
~ would be unlimited, but this is not the case. 

According to (4) and ( 5'), t~!.e eigenfunctions to ( '-'~.2.;'-lll~) 
are also eigenfunctions to the operators ~-'-.M+ = '*1,+ t'-.11,+ 
and '-..M, +<:..M, _ = ~- t <.JVl_ and , since such opera tors 
can never have negative eigenvalues, one obtains the 
inequalities 

(~/ )~ (~~ )2-QJL~ ~ 0 ' 

(~) :t- ('~~ ).2 + ~ ~ ~ 0 ) 
(&') 

showing that there definitely exist a largest and a smallest 
eigenvalue for ~\A.~ , which will be denoted by rNl. > 
and rot< , respectively. 

Let us now cons'ider the functions ~+ ~:{_ (~'v\/, NY\.> ) 

and <:JJ\._ Y ('-M.J, m'\<. ) • From (7) it follows that, 
unless these functions are vanishing identically, they are 
eigenfunctions associated vTi th the eigenvalues ( I"N\.) + I) 
and ( l'tYl<. - 1 ) , respectively, which is a· contradictory 
result o Hence they must be v·-=tnishing and, taking their 
normalization integrals according to (8) 9 we obtain 

('-M.' y~- ('('f} >~ - ('('(\ > - 0 

( ~VL' ) ~- r«t ~ - f'\1'\ < == 0 ) 

which leads to --- • By means of (7) and 
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(9), it is then easily shown that the assumption that 
( NY'L, -.M <.. ) is n.,Q.:t an integer leads to a contra-

diction, and hence we have 

) ." . 

and further . , and 

If the value of ~ 
.- 1\A I 

is fixed, the possible values 

of '-l~\..~ are thus 

giving the multiplicity (-~-~+_1) . 

9. 

(u) 

In the following we will, instead of the eigenvalues 
('-M 1/'-M/~.) ·, use the quantum numbers ( ~lrw\) as 

index in the eigenfunctions which hence will be denoted 
by Y l te, t't'Y\) • Equation (8) may. be written 

and shows how the normalization integral is changed in 
the step-up procedure. For the properly normalized eigen­
functions, we hence get the connection formulas 
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10. 

,~~--- i.t ~ ~ rwt) 

Of cou.rse, the normalization condition leaves actually 

the eigenfunctions undetermined with respect to a phase· 
factor e -\,~..( ' but this factor is here chosen to be unity 

le~.dir~.g tc the Dirac .Il~.Qll.Y .. m:ttion which is implicitly 

c :· ::. ; :l i .r.;e0. lii. ( "1 4·) • 

In conclusion we note the existence of the addition 

tr .. eorem· for angular momenta: if <fv'tl -= ~ 1 + 4\t 2.. · 
then ..k = ~1+ k'l 

1 
~ 1 + kl. -I ) · · . l ~\- tt.l.j o 

i:t:I ., DEFIHITION OF PROJECTION OPERATORS. 

Let us now consider an arbitrarily givenfunction 
y· , and let us try to resolve it into components 

C tef\IY\ Y ,t.efY'(l 7 which are eigenfunctions to '-J\Jl--4 and 
~ tH . , so that 
'-Ill\,':! ..... 

y 
) 

v.fr_::;:.'e i;ht! sununation goes_ over all possible values of ~ 
and •"t"f\... • This can be done by observing that the 

eigenvalue relation~ fo::- '-..Jlt .2.. and "-J\.fL~ may be 

'l:Jri tten in the form · 
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11. 

whir.h means that the eigenfunction Y~ "Y'!\ is .ru:.m..._i..h1lat..e.Q. 
~ . I 

by the opera tor t <:Ji\ - ~ l ~ + \) } or the opera tor 
{ ~~- rn\} . It is hence possible to get out a 

specific component C ~1\'V\ V te,""'\. in ( 1 5) by annihilating 
all other components 9 and this is actually accomplished 

by means of the two operators (0-fz ~A-2.) and (0/W\ l~-<) 
defined by the products 

; . 

- 1r { <JJl ~-=-~-(~~---
)\=/=~ .k\ ~+I)- \ (\+I_) 

( 17) 

[)~(~~)=If 
JL=Frm 

· The numerators are products of the elementary annihilation 
operators defined by (16) over all quantum numbers except 
those characterizing the component desired, and the denomi­
nators have been chosen so that the operators have the 

value 1 when working on the term C.te/W\ Y ~CW\... . By 

using eqs. (16)-(18)~ we hence obtain 

giving the uniquely defined component of ~ . having 
a pure ~ngular momentum with the quantum numbers ~ and 

f'W\., 

One can visualize the expansion problem (15) by 
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thinking about a Hilbert space spanned by the mutually 
orthogonal unit vectors Y t.e rm. ·7 in which it is required 

) 

to resolve an arbitrary vector 
~ into component vectors 

along the axeso Geometrically 
this is done by an orthogonal 
projection 7 and the operators 
(0 in the left-hand side of 

(19) are therefore called 
~roiection operators, We note 
that a repeated· use of CD 
would not change the result 7 

which leads· to the relation 

(~o) 

which is characteristic for the projection bperators10). 

10 ) J.vg Neumann, Hath. Grundlagen der Quantenmechanik 
(Dover Publications, New York 1943); p. 41. 

We note that this relatlon is also of essential importance 
in simplifying the calculations of the energy and its 
matrix elements ~ 1 ). 

11) 
P.O. Lch·rdin~ Phys. Rev. 22., 1509 (1955); :3ee particularly 
eq. (37). 

By means of the addition theorem, it is usually possible 
to calculate which eigenvalues ( J!e, f"N\. \ may occur 
in the system, and the product (17) can then be restricted 
to contain only a finite number of fadors. It is worthwhile 

182 013 



r----------------------------------------------------------------

13. 

noting,however, that ev·:.:;n the infinite product is convergent, 
which is easily seen by writing (17) in the form 

For. only integral values of k , the special case 
.k::: 0 has the particularly simple form 

(90 l~'-) = l1-~ )( 1-~ )( 1 - ~: ), . 
In the right-hand rnember, the first factor will annihilate 
the triplet component, the second factor the quintet, the 
third the ~eptet, etc., and only the singlet component 
will survive the operation being multiplied by the factor 1~ 

Since there are usually no difficulties in constructing 
eigenfunctions to ~~ , there is comparatively little use 
.of the operator (01'\1\'\ (c;J\l_z) except in an actual component 
analysis. In the following, we will therefore asfume that, 
from the beginning, the.given function ~ is an eigen­
function to '-Jl~ with the specific quantum number f'Nl o 

For the sake of simplicity, we will further introduce 
the condition l""f1\ ~ 0 ; the case of a negative f"'((l -value 
is then -handled by reversing the Z-axis. The only possible 
~ -values range now from .te = "r<\ to a certain ..&t == -k~ 

evaluated from the addition theorem, and, since only the 
corresponding factors have to be included in the product 
( 1 7), we obtain, after replacing )\_ by \ + t'1Yl , 
that 
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14. 

1..rhere ri\:::: te~- CV'1l • Since this opera tor is actually 
supposed to operate only en functions ~ 9 which are 
eigenfunctions to ~~ associated with the eigenvalue 

f"'{Y)~ 9 1..re have the freedom to write (23) under the 
form 

= l1t"") i <Jll.i- (c.J\t~+ !()~:)!-;-)\+I) 1 
~:: 0 ,-n ( ~- "1'1\- \ ) ( ~ + "r<\ + )(_ -+ \ ) 

) 

i.eo we have replaced rYY\, by ~JL~ in the numerator 
but left the denominator unchanged. 

In the applications, the product forms (17) and (23) 

often convenient for direcJ.; practical use~ and it seems 
as if' these products also would render a good basis for the 
programming of the method for an electronic computer. In 
other cases, it is sometimes better to use an expanded 
form of the projection operator which will now be derived 
starting from the expression (24)~ 

IV •. EXPANSION OF THE PROJECTION OPERATORSo 

Let us study the operator in the numerator of the 
product (2t~o) by introducing the notation 
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Using (4) ~ we obtain the special relation ~ = '-M._'M.+ 
By means of· (6), we can further derive the more general 

commutation relations 

~t ~ .:z. ) ~ + . . '-l\il + -1 ( <J.t < + 1 ) 

) (<J.t~) <JC - <0Jl_ i ~~-1) 
for any polynomial function 

from '-.JV\._<J\1,+ = ~ 
SUCCE:SSi vels;· 

\... 

~\1_~Vt+ ·=· +0 I 

{ of 'J\IL~ o Starting 
Uand using. (26), we then obtain 

'-J\{:~+.z..= \JVL:.. ~ '-JJt + = ~sJJL+ +, == ~ ~ ) 
CJ\1\.3 '-.J~ : = '-J\t ~ (+~ T, )'-J~ i- = '-.JA_'JJL + T, :r.G ~ +;~li. ) 

'-M__~ '-Mi! = '-.fyt __ (~+I +2 · · · ~-2_ J \JJ T . 

~--=- c;:J\1->J\it+ ( :p; :t="2· ' " . +;-I ) . === 

- ..... +.- ...,--
- ;-0 I+ :Z., . · · T ~-I . 
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By means of the last formula, we can now expand the 
projection ~perators. 

16 •. 

Let us first consider the nrincipal case ("(Y\, == te 
This case is not only particularly simple but it forms 
also a convenient starting point for a study of the lower 

rN1 -values by means of the step-down procedure based 
on the use of <:Jft .. _ • The projection operator (24) takes 
now the special form 

~~~ 

co = 1( 
~Q_ ' 

-Y(j 1\ -=·1 

~~~ 

11 
>(-=! 

'.J\Jt~- (<JA~ +\ )~~~ +\+1). 

(-~) ( .2~+ ~\+I ) 

l ) ~ -\ \l-2..~+\-t-1) 

) 

where r(\.':::: ~"'~~ ~ • 'From the definition (25) follows 

directly 

and, by repeated use of this formula and (27) for 
. f = tYl J l'()-1 ) "1-.:t > • • , 1 , vJe can then expand the product 
in (28): 

182 . 01'1 



\' .. 

.-

= fi ~ . . ~1-1+-: -+I+: . +:-, l'fl ( .'1,'-M;< + 1'1'\ + 1) = 
c l\A ""' 1"-f\. ( +": -
'-Jvl_ <J\'l + · - rf1 ~'JVL ~ + N\ + \) ~ ::V-<. · · · f'tl-1 -

~1 · "<\ '\'\-1 rn -t 
- c:JJl_ (jy~ + ~ M ( c:2..<.JJ\~ +('(\ + l) ~- '-.JJL+ + 

(30) 
+ 1'1\ l rll-1) ( .Q,'-l\t~ + Cf1. + 1) ( ~~ + ('(\) <-.M._"'-~'-M.+""-.<. + 

+If I 

which is the expansion desiredo 

Let us now also consider the more general case 
0 L ('.r(). < ~ . By mea~s of (24)-(27) and the ex-

pansion of (28) for f = rn - t,.. + l'ffL = . ~ - o_ " Ill\., •J ~ -11(. ) 

we obtain 
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The application of the operator expansion (32) to a 
given function ~ is a straightforward procedure, since 

the action of the operators ~- and ~+ can always 
be found by elementary methods for a specified type of 
angular momentum. For more complicated many-particle systems, 
the calculations may.be lengthy and somewhat tedious, but 
they are never difficult and can be carried out by routine 
procedures. A.fter evaluating the function { (!)~'Yil Y ~ , 
the final expression is conveniently checked by investiga­
ting wh~ther it is annihilated by the operator 
L <:JVL~·- --k (~+I) ] · o By means of (4), the checking re­

lation may also be written in the form 

In theoretical investigations of expanded forms of angular 
momentum '\IJave functions·, this relation is also of basic 
importance for deriving recursion formulas between the 
coefficients. We note that, in the principal ca'se 0\1 = ~ , 
a still simpler check is provided by the relation 

which is also of theoretical value. 

If the system is composed so that 
we have 

~ lA }) 
and the operators ~\+ 

~ AA _>) 
and "-JVL_ 

o· 
) 

M= 

may then be 
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I 

expanded bJ means of the polynomial theorem in an entirely 
symmetric way. Choosing a starting functton Y 1 

-
which contains the vario?s parts in an equivalent way, we 
can then by projection derive a function of pure.total 
angular momentum to which the different constituents con-

, .. 
·tribute symmetrically. This can be done even in the case 
of a degeneracy but, since one is usually interested in 
finding only a sufficiently large subset· f~')r calculating 
the energy, it is net always worthwhile t·o put in the 
amount of work required. We will return to this problem 
in the following section. 

In the special case when .tf"t = <f1,+Jt2. , ::·.ne .· 
can by means of the binomial theorem obtain a projectio,n 
operator expansion which is equivalent in the two con- · 
stituents. By means of the relations (14), one ca~ then 
derive an expres~ion for the total wave function which . 
corresponds to the ordinary vector-coupling formula. More 

. details about the connection with the conventional ·theory 
will be given in a forthcoming paper. 

V. COMPLETE M~TRIX REPRESENTATION 
OF THE PROJECTION OPERATORS. 

In order to study the theoretical properties of the 
projection operators ~ in greater detail, we will 
now introduce an orthonormal set of basis functions 
¢, J ¢ 21 cP3 . . . cPr all havi~g '-.M.~ = f'Nl 9 which 
is complete enough to span the part of Hilbert space under 
consideration. In treating a many-pa,rticle system, this 
set is u.sually chosen to consist of Hartree products or 
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Slater determinants built up from one-particle functions, 
but even more elaborate basis functions are possible. The 
matrix el~ments of the projection operator () with 
respect to this basis are given by the relation 

(36) 
\ 

and forrr. an hermitean matrix «: , which is idempotent 
as a consequence of the relation (20). The matrix relation 

C 2.. =- C implies that . 

It follows :..~urthe! th~ t the matrix <C. has· only the 
eigenvalues 0 or. 1 , and the latter has a multiplicity 
~ = 1,.2 ,..3 1 • • • which is usually derivable in advance by 

m~ans of simple combinatoric arguments. In the case when 
<!- = 1 > we speak about a non-degenerate projection 

p~oblem; otherwise abou~ a degenerate one. 

From relation (37) follows directly that each one of 
the column vectors 

Cu.> 
c.t~ 

c = )J c3.v (3~) 

\Cr.~ I 

is an eigenvector to the rr.atrix «; associated with 
the eigenvalue 1 , but of these eigenvectors C 1 , <C..:l. ) ... <C 0 
can, of course, only d be linearly independent. 
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Let us nmv consider the projected functl.·:.ms 
£.3'\ ~ · fH\ 'i4' , which are defined by 
\!.:.), ) ~~ ·' C/.3} . ' . ~f 

8 -
J) 

'I'his relation implies that the ~ectors C 1 > C 2 > . · • · 
are nothing but discrete representations of the functions 

®1 > ®.a.. > • • . . in a system with the basi.s cD~ · Q 

In order to study the linear dependence of these functions 9 

one has to investigate their overlap matrix: 

By means of the quantum-mechanical 11 turn-ov€·:::' rule" and ( 20) , 

we obtain directly 

i .. e. the overlap matrix & is identical vrith the 

matrix ~ • This means that the overlap matrix has 

. 4 eigenvalues equal to 1 and ( f - % ) _equal 
to f4ero. Between the functions ®) >there are hence 

(f- ~ ) linear relations~ whereas q, of them 

are linearly independents d 

A fundamental problem 

orthonormal subset of order 

®, ) @.l_) . . . e r 

/ 

is now the construction of an 

~- from the functions 
T~e solution is unique except 
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23. 

for a u~itary transformation, but the special choice is 
not exceedingly important if the subset will be used for 
calculating the energy, since another unitary transformation 
will then be car1·ied out anyway. It would, of course~ be 
of value if one could directly construct a subset which 
diagonalizes the Ham:tl tonian of order ~ in an exact 
or approximate \vay, and this \..rould also prove the 
existence of ~ extra good quantum numbers. So far, 
such an approacfi·has been successful in some special cases, 
and particularly the use of seniority numbers in the 
nuclear shell-model should be mentioned in this connection. 

Here we will first leave the question of approximate 
good quantum numbers aside and concentrate our interest 
on the orthogonalization procedure. In constructing the 
subset of order ~ , we could _either try to treat all 
the fUnCtiOnS ®1) ®4 1 @3) .. · ef in an eqUiValent 
way, or we could orthogonalize them successively in order 
by means of the Schmidt process 12). It should be observed 

12 ) For a discussion of the relation between symmetric 
and successive orthogonalization, sec e.g. P.O.Lowdin, 
Adv. Phys. ~' 1 (1956), particularly Sec. 3,2. 

that, in the treatment of projections, the latter may·be 
replaced by a very simple ~ination procedure, which 
is based od (20) and the "turn-over rule" used in (41). 

Let us start by considering a degeneracy of order 
~ = ~ ., The two functions @I and G)~ , 

defined by 
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(0
1 

= (!) cp, = ~ c,, + ~c._,+ ~ c2., + · ; 
. l~~) 

8.1.. = (D ~ = ~ c, .. + c\:>.1.. col.,_+ ~c3<-+ · > 

may be assumed to be linearly independent13>. It is then 

13>rr @2.. happens to be proportional to 

instead consider e3) ®4}... etc. until 

which is not proportional to @, ; this 

case, since otherwise ~ = 1 

~1 , we will 

we find a functior 

must be the 

possible to find two multipliers, d.l.l.. and J,.<.:t, so that 

~1 can be eliminated from the second expansion: 

_i I ¢ / 0 -t- c..p.l. c .2..1 + .3 c .3.1. + . ' . 

The relation required is C 11 &.1.1.. + C 1-l. d...t~ = 0 
with C

1 ~~::: Cte1 cl,:t. + ctR~ a-<-!t. for ~ ~ ~ • 
. We can now directly conclude that ®~ must be 

orthogonal to ~1 , since we have 

J @~ @~ ( <1-i) = J ( <D¢. )'t <D { ¢; &,,_+<t;l &~) (~)= 

= /~*(cP.c1 +¢·c~,+ .. · )l4)=0. (44) J ' I .l. .ll .3 
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The orthogonality is here accomplished simply by eliminating 
cp

1 
from the expansion of @~ . 

In the case of a degeneracy of order a = ~ , we 
proceed analogously. Starting out from the relations 

8\ = CD<=P, -

e~ = (0~:: 

~ cu + c:Pc:t c::tl + ~ c-3, +,. > 

cP. c + ~ c .. 'I + ~.3 c 3 ~ + ". ) I l.t ~ ~ ""' 

we can, by introducing convenient multipliers, eliminate 
ci:>~ from the second expansion and c::F-1 and ~..:L 

from the third expansion: 

(0 
I 

=¢c + ~c +~c +·-· 
I II J,. ..1\ ...3 31 . 

0 
I I f 

+ c +~C. +··· .t <.:t .3 3<_ 

(4b) 

0 

as before, one can then directly prove that the three 
functions 
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@ -· CD c:P, 
I 

0)' 
).... 

(0 ( ~ ell~ + ~ t.2_) I ( !17) 
, 

CD ( ~ cil3 + cP~ &.,_~ + ~ &._,s) @ -
.3 

are mutually orthogonal. 

. The case. of a general degeneracy of order % is 
treated analogously by means of a Gaussian elimination 
procedure which can be carried out straightfor\vardly. The 
successive orthogonalization can hence be performed in a 
way which becomes exceedingly simple because of the general 
properties of the projections. 

Let us finally consider the normalization integrals. 
By means of'the "turn-over rule" and (20), we obtain 

~10,1'-(ck) - (II ) 

J \ 8: \-:t ( c4) 
, * c .u.. d...Zl. ) . (4g) 

I * J I e: I ~ l <4-) &.3.3 - (33 

as is seen from the following typical example; 
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27. 

Ji e: 1
2 

( 4_) =JI CD (c:Rct,3+~ ~+ ~ct33)!
2

(~) 

=J ( <P, &.13 + <P2-<t~!>+cj::>J ~3 )*( ~ c~3+ cB,c~3+ .. )(~ 
_l * . 

- c3.3 ~3~ 

The orthonormalization required is hereby concluded. 
It should be observed that the functions ED~ are above 
tak~n in a definite order and, in the examples, we will · 
show that there is a close connection between this approach 
and the conventional "seniority" idea. 

I. 

VI. PARTIAL CONSTRUCTION OF THE PROJECTION 

OPERATOR Mt\TRIX. 

In the previous section, we have assumed that th~ 
complete matrix representation «: of the projection 
operator CD with respect to the basis cPu c:b-2.

1 
••• ¢r 

is available, at least in principle. This matrix is definite­
ly of essential theoretical interest, but, from the practi­
cal point of v~ew of constructing wave functions, it is 

: . . i . 

hardly worthwhile to evaluate the entire matrix. The 
! I . 

sfmp~~s~ way o~ getting the complete matrix for <D . is 
probably-by repeated matrix multiplication according to 
(17) or. (23), ~tarting 'out from the complete matrix for 

(Jl~ . However, if the latter is explicitly known, 
. I • 



28. 

one .'w.n directly get all the eigenfunctions simply by 
solving the linear equation system corresr...~onding to the 
eigenvalue problem, and the projection operators would then 
no longer be ne8ded - except f~r theoretical considerationsQ 

Hmr1ever·, it should be observed that, in constructing 
the 1vave functions by means of the projection opera tor 

C) , the entire matrix ~ is by no m0ans needed 
and that it is sufficient to know a rectangular submatrix 

Of order f X ~ ' prOVided that the ~ COlUmn VeCtorS 
contained are linearly independent. This means a considerable 
simplification of the problemo In a practical application, 
one starts out by taking the projec.tions of the basis 
functions cP1, ci:>.2.., <::::j::>

3 
> ••. successively in order combined 

with the elimination procedure (46) and, unless there are 
acc.idental linear dependencies early in the projected system, 
the whole process is concluded after projecting ~ 

functions~ where .J..}n is the order of the dereneracy 
usually derivable _ advance by simple combinatorial 
arguments. ~djusting the normalization constants by means 
of (48), we obtain a convenient orthonormal subset of 
pure angular momentum wave functions describing the 
degenerate state. 

Finally a few words should be said about the matrix 
elements of the energy, provided that Q/L 2., commutes with 

the Hamiltonian ~O o Introducing the notat:ton 

~> =J cp; ~r cJ=>Y l4) (so) 
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and using the expansion (39)? we obtain 

which is a fairly complicated double' sum. Using the 

. "turn-over rule" and (20)' we. get instead 

29. 

(-.st) 

a single sum which is more easily evaluated~ particularly 

·since only a rectangular SUbmatriX of order r X q Of 

~.J is now needed. (J 

The .:a.on."-c)iagonal matrix elements in (52) are usually 

fairly large., since the sum in the right-hand m·2.mber 
contains the quantity. dt<XcX.. Cc:~. f; . If one g'oes 

over to the orthonormal subset @, J 0: > 8~ > .. , ~ 
the corresponding non-diagonal elements will come out 

considerably smaller~ even if they are not always small 

enough to render good or approximAtely good
1 

extra quantum 

numbers. A.ll the basis functions cP1 > ~2 , cP3 J • • . · 

are ass'UI!':,ed to be eigenfunctions to ~~ . associated 

with the quantum number ("("(\_ , and 9 if they are built 

up from Hartree products or Slater determinants of 

one~particle functions with the individual 

('(Y1 ( .\,) , they must differ in at least 
~ f•\ • numbers, since t-~ ~ NY\.\ 11. ) = rv'l\. • Th~s 

182 

quantum numbers 

two of these 

means that, 
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if )L =I=;..-) , the one-particle opera tors in the 

Hamiltonian do not contribute to ~..)..> , which depends 

only on the b . ..ro-particle opera tors or higher interactions 

in ~0[1 . Simplifying the non-diagonal elemHnts of 

<:seor with respect to the set @, ) e: ) (E-)~ 
by means of the "turn-over rule" and (20), we obtain 

I . . I 
- "fO c) + del2 C.3., + ~ lli c H.t,-+ ' .. 
- ~~~ l.:t. -.J ...... 

The construction is such that one will never get a diagonal 

element ~otOt. in the expansion. in the right-hand member, 
which prevents the non-diagonal elerup·ts from becoming 
large. 

VII. A SPIN EXAMPLE. 

In order to give some· illustrations of the pr'ojection 

operator formalism~ we will in conclusion give some very 

simple examples. Let us start· by considering the total 
spin of a four-electron system· with ~~ =: 1 • Denoting 

the elementary spin functions by <:X. and (3 , we may 

use a basic set consisting of the four functions: 
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cPI ::: tX, ~ .. CZ f ' 
cp.:t .::. C>{ C( f <)( I 

31. 

where the implicit spin coordinates in order are ); 1 , f;2, .f:j , 
and ~.., 9 According to the addition theorem, one has 

..£ = 2_. and $ = 1 , and straightforward application 

of formula (32) gives .then 

CD" c::f,<>(y = ~ t ~'*1~ - ~· ( ol."'foi.+- "fr:J..<X.+ f"'"'"') l '\S.S~ 
(0 .l. 1 c::J, cl. ol. f = ~ ( ol."" "'f' + cx"'f ol. + ""f """"' + f o<. rx"' ) . (..s.; 

The co~plete ~atrices of <DII and CD~I have hence the 

form 
/ ' / ' I 

,, 
\ 

.3 -1 -1 -1 1 

-I 3-1 -\ I 1 1 \ 
I CD =1..>< 1 1 I 1 

~=-X -\ -1 -3 -1 
II ~ .2.1 ~ 

- \ ~ \ ...:.I 3 1 I 1 1 
' 

, 

(£+) 

We note that (0 11 + (!)~\ = ~ , giving the "resolution 

of the identi tyn for this simple case •. The cane ~ = 2_ 
is non-degenerate ( ~ = 1) and is characterized by a 

uniquely determined ~unction. The case ~ = 1 is 

triply degenerate ( O = 3) , and, by successtve 

elimination, we obta~n the orthogonal subset 
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• 

cb>l q:,.'l. ~ 4:-> 32. 
~ 

..3 I I r 
@ -- ---- ~ ~ ~ 'i 

I 

I Q I 0 ~ 0 1 I I --
~58) @ = H .-+ H ·- .{, .t 

l... ,~ .tl. 

, 
8, +G)~+@.)·.(. 0 0 1 -1 8 --

3 

The last f1L~ction is of particular interest, since it may 
be written in the form 

4-c:P 
.3 . l..j 

cXfc-A~ -to!.~~ -
- {s~o)x(S-=1) (~f -to~-. )ex~ 

It is hence the product of a pair singlet function and a 
. pair triplet function and has the seniority A.] = ~ 7 , p 

whereas @1 and 0 <.. both have the seniority fij ::: l.J 

Since the spin projection operator commutes with 
the antisymmetrization operator, the formalism is directly 
generalizable to Slater determinants and has prove~ 
particularly valuable in studying the problem of the 
separation of space and spin o). Further details will be 
given elsewhere • 
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VIII.. A.N ORBITAL A.NGULAR N0!•1ENTUM EXAMPLE.· 

The atomic state wave functions for the configurations 
f.rf, and ,d,rrt have been treated in detail b) the 

projection operator formalism in another paper8 , and here 
we will give only a single typical example of a degenerate 
case, namely the .2.._.D state of the configuration cl-2 
Denoting the orbital angular momentum by 16! 9 we will 
study the princi~al case L,c = L = 2. by means of a 
basis consisting of the six Slater determinants: 

4! == (;t\ \1) cp~ ( 10\ I) 

~ = (-2010) ¢..5 (~."i\~) . ( \ - . bO I 
.,{. 

~ = (~T \1) cp~ (1T\~) 

'l.vhich span the subspace under consideration. We note that 
the notation (~I \ T) is an abbr<:r';·:t.ation for tb.a Slater 

determinant 

where each one-electron function is characterized by four 

quantum numbers l m t cn[-t nn4 ) 

By straightforward application r:£ the expansion (31) 

applied to the different basic functions cpv 9 we· 
obtain the complete matrix representation~ 
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3/6 
34. 

15' -15 9 -3 -6 
-15' i 5 -·9 ~3{6 3 6 

9 - 9. 1 ., - l6 -13 2 

(022 = ¢2 X 316 -316 -16 12 
,-

-4/6 (bel) 5v6 
5/6 ~3 3 -13 23 -10 

-6 6 2 -416 ~10 8 

2 j\3 
The :..D { state of A is doubly degenerate, and the 

idempotent matrix (62) has hence.two eigenvalues equal 

to 1 and four eigenvalues equal to zero. In carrying out 

the elimination procedure (43), we note that (0 c:f::>.:z.. is 
proportional to (0c::P

1 
and that the projection of ¢-<... 

thus should be omittedo As basic subset, we will instead 
choose the following functions 

I --

1 

where cpb has been eliminated in ·the second functiono 

In order to find out whether there is a connection with the 

seniority appr1oa~h, we note that, for the configuration 

A .2.. , there is a 1 
S function of the form 

182 ras 
·j 

j 



. .. 

• 

j . 
~ r .. _. .... 

Hhich may be 
Starting out 
to the 2._1) 
co~struct a 

35. 

obtained from (..Q.\.3:) by the operator CDoo . 
from the function (~I corresponding 

state of a one-electron system, we can then 
.2.J) function with the seniority AJ ::::::: 1 ) 

a1_l) ( ct1) X.~$ ( ct·~) 
/ 

(£S) 

(~I)T)- (~111)~/~ > 

where the "product11 in the le:.-·ft-hand member has a symbolic 
character Q Except for the fae:·tor- ~ ~ this expression is 
identical with the second function in (63). 

'fuis Example is typical for the connection 'ltri. th the 
'I"'{\ seniority appro~ch in treating the configuration ~ , 

which has been investigated in deta:i.l in its entirety. In 
the elimination procedure {46), the basic functions may 
always b~ chosen in such an order that the subset gives 
also the functions of lower seniority. We note that, with 
decreas:i.ng seniority, the number of projected determinants 
is increasing, and the functions of lov.rest seniority are 
hence trr..:-! most complicated mathematically. The s:lmplest 
way of getting their energy is probably to express them 
as sums of projected determinants and to simplif~r the 
integrals by means of the "turn-over rule" and (20). 
Particularly cumbersome are the valence bond f'unctions in 
quantum. chemistry-, which are singlet spin functions of 
seniority zero6), and the non~orthogonali ty pr·)blem connected 
with these functions is not· yet fully solved~ 

The projection operator method for deriving wave 
func't:;.:. .. ns has so far given seve1"al us.eful applications, and 
it is hope& that this approach in the future will contribute 
also to our theoretical understanding of the ba,3ic physical 
quantity called angular momentum. 

.·~ 
I 

1 
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