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June, 1958
ABSTRACT
The alpha decay of a deformed odd-mass nucleus, U?33, is treatcd

by the use of numerical integration on an IBM=-650 computer. The results

of this treatment are compared with the theory of Bohr, Frdman, and

-Mottelsoﬁ.

Approximate analytic methods are developed for calculating the
amplitudes of alpha partial waves at the surface of deformed even-even
nuclei, A two-term expansion modifying the ordinary Coulomb function to
account for nuclear quadrupole coupling is applied. The amplitudes4of
alpha partial waves at the nuclesr surface are tabulated for elght choices
of phase and three values of the intrinsic nuclear guadrupole moment., The
analytic method is develéped to predict the intensities of the'higher
members of the ground rotational band. ‘A

A.comparison is made between the numerical integration and the
experiments of Roberts, Dabbs, and Parker, in which they examine the
233

angular distribution of alpha particles from aligned U nuclei,

A detailed comparison is made between the analytic treatment de-
veloped here, that of Frfman, and the numerical integration of Rasmussen
and Hansen for szhz. The results of the numerical integration of U233

are presented in matrices analogous to those of Frmen.
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THEORETICAL STUDIES OF THE ALPHA DECAY OF DEFORMED NUCLEI
I. INTRODUCTION

When we consider the interaction of an emitted alpha particle
with the daughter nucleus in the heavy element region, the nonsphericity

of the nucleus plays an important role, Because the emitted alpha parti-

‘cle may interact with the qﬁadrhpole field of the nculeus, the experi-

mental intensities which are observed for decay to various states of the
daughter are not the same as the intensities at the nuclear surface,
after making a simple coulomb-barrier penetration correction, This
quadrupole interaction complicates the .solution of the differential
equations describing the alpha-decay process because it couples the
alpha partial waves that differ from each other in angular momentum by

. two units. From a numerical integration of these equations, based on

experimental alphafgroup intensities, one may obtain the emplitudes of
the glpha partial waves at the nuerlear surface; as well as the amounts
of the phase shifts due to the quadrupole terms.

The theory of Bohr-Frémen-Mottelson (B.F.M.) mekes definite pre-
dictions concerning the emplitudes of alpha partisl waves at the nuclear

surfece, in the case .of deformed nucle1,l It was decided to test the

‘'validity of their predictions in the case of the alphs decay of U233 by

carrying out extensive numerical integrations of the alpha wave equation
including the nuclear quadrupole interaction, The relative intensities
of'the alpha perticles to the low-lying states of Th229 have been meas-
ured;2 there is a good deal of confidence in the spin assignmehﬁé of
these levels, and there are estimates of the nuclear gquadrupole ﬁoment.3’
We use the estimates for the quadrupole moment of U233, a8 there are none
available for Th229. We expect the quadrupole moment of Th229 to be
roughly the same as that of U233. This informetion is summarized in

Fig. 1.

The study of U233 is of interest for reasons other than the com-
parison with B, F.M. At the time the problem was undertaken, alphe in-
tensities had been reported for higher members of the ground rotational
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Figure 1. Alpha decay of U233,
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band,5',intensities which differed considerably from B.F.M,.. predictions.
Since that time, however, the gamma rays following the alpha decay have
been examined, and the large intensity of high-energy gamma rays indi-
cates that the higher levels populated by the alpha decay are not all
members of the ground rotatlonal band,

Roberts, -Dabbs, and Parker7
temperatures in single crystals of Rb(UOz)(NO3 3 and examined the anigo—
" tropy of emitted alpha particles, They interpret their results as
indicating that the £ = 2 wave is out of phase .with the £ = O alpha

233

have aligned U nuclel at low

partial wave in the alpha group to ground, Their experiment also puts
- limits on the amount of the £ = 2 wave which populates the ground state
of Th229
We might hope that either the intensity limits of Robsert, Dabbs,
and Parker or the boundary conditions at the nuclear surface of B.F.M.
will eliminate one of the phase choices for the £ = 2 partial wave re-

lative to the £ =

II., FORMULATION OF THE ALPHA-DECAY PROBLEM

The problem of alpha decay in the region of uranium is cqﬁpli—
cated, as contrasted to the region of lead; by the existence of iarge
quadrupole moments which interact with the escaping alpha particle.
Favored alpha decay, i.e. decay between parent and daughter states
having the same nucleonic wave functions and hence the seme K (K is the
projection of the nuclear spin on the nuclear symmetry axis), has been
treated in this region. of large qugdrupole moments by seversgl authors,
both by numerical integrations8’9’lo and by analytic approximationsll
fof the case of even-even nuclei, The quantum mechaniéal treatment of
an odd-even nucleus is quite similar to that of the even-even nucleus.

,We start from Schroedinger* s equatlon

HY = EY | . | | ' (1)

\

Here we have H=T+ V + H ue where T is the kinetic energy of the

system, V its potentlal energy, and H ue the Hemiltonian for the .internal
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energy of the recoil nucleus, We expand the potentiasl V in spherical

coordinates. Msking the usual multipole- expansion, we obtain

p_l X—O

where r gives the position of the alpha partlcle; rp glves the position

of the pth proton in the daughter nucleus, and vy is the angle between

r and rp in the system of the recoil nucleus, In our treatment of the

problem, we include the central and guadrupole terms of the potential

We next construct.a solution of Schroedinger's equation’ of the form

I,M
f

.o 1
= =) U r) Y 6.
\l/‘ Zz',l%,‘]}' ( ) 23 Iv (r) f",I%}T' ( ‘?¢,Xi)

as £he first step in the solution. Here
I,M ' 0
Y 6,p =j{1 P,IY m®, M-m®|I,M Y
ERT bt a2 (0

d M-m?

I%,T'

(%)

£' is the angular momentum of the alpha particle, and m* is the component

(3)

(4)

of its angular momentum on a space~-fixed axis, If' and I are lhe final

and initial nuclear angular momenta, and M - m? and M are projections of

If‘ and I on the space-fixed axis, Here

o Mem?*
(X;)
1S3 LU

describes the intrinsic state of the,daughtér-nuCleus:andvthe bracketed.

symbol is a Clebsch-Gordan coefficient, The orthogonality condition on

the YI M, function is
£,I5,T
Jf I,M* I,M , ‘
Y Y a6d¢dy, = 6 5 oy
l',I’,T' 4,I,,T I FIARE I

S

T,T .

(5)

.
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We next substitute ¥ into. Schroedinger s equation, multiply by

I,M
Y
£,1e,T
and then integrate over all varlables but r. We do this for each value
of 2, If of interest in the daughter nucleus and we are left with a set
of coupled ordinary differential equations of the form
e
4 2 L 1 2 .
A ) g ol - E u, i
- 4 - + | ————s— 2(4+1) + E ) £,T
a2 a r? ('2 M r? IesT E '
o, ; (6)
: Z e N\ /1 ,M¥ e I,M
2 — ¢ ’ . ’
+ T uz,xf *Z uz",x} <Y —?—Q—T P, (cos 1) :
L,1f £,Ie,T r 24,1, T

All ‘terms but the last summation describe the interaction of two charged
particleso‘ The last term gives a mixing of states, due to the.pertur-

bation ihduced by the nuclear quadrupole moment.

III. A TEST OF THE B.F.M. HYPOTHESES

The hypotheses of B.F.M, may be states as follows: any alpha

partial wave has a projection of its angular momentum on the nuclear-

>o

symmetry axis which is equal to K. * K, at the nuclear surface, Kf and -

f i 4
K, -are the projections qf the spins of the final and initiasl nuclear

siates on the nuclear-symmetry axis, For (Kf + Ki) > £ there is but one
permissibLe value of mys which is zero in the case of favored alpha
‘decay, Lookling at the B.F.M. hypothesis in an |If, £ ). representation,
one sees that a givenhz-wae will be apportioned among the states that
it populates in proportion to the Clebsch-Gordan coefficient

<Ii’ £, K, O lIf’ K ) at the nuclear surface. This hypothesis will

be referred to as B, F.M. - 1, Furthermore, B.,F.M. makes the approxi-

gation that the relative intensities of alpha decay to the various

levels from population by a given £ wave will be given by the square
.of the Clebsch-Gordan coefficient <Ii’ £; K, O \If, K ) times the
barrier penetration factor for the particular alpha energy. This ap-
proximation, which we shall refer to as B,F.M. - 2; would be exact only
in the 1imit of infinite moment of inertis, In.the case -of favored

alpha decay of even-even nﬁcleiy a gifen alpha partial . 'wave populates
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just one level of the daughter nucleus and so affords us no test of

the B.J.M. hypotheses.

In.the numer ical work to be described, B F, M
- 2 are tested separately for the first time,

even nuclei, we may utilize B.F.M;

the nuclear surface for solutions of the alpha wave equatlons and then

compare the alpha intensities from numerical integration with the ex-

perimentally observed intensities,

though our calculatlons did not include £ =
region of'Udjj,'the £ = 4 contribution should not be very significant,

Iv.

To return to the specific problem of U233, the equations de-

4 contrivbutions.

- 1 to set boundary conditions at

This gives us a test of B.F.M,
In the

NUMERICAL INTEGRATION AND BOUNDARY CONDITIONS

scribing the alpha particles'as they leave the nucleus are:

v
H
w
=
o
'_l
oﬁ

'
H l!—‘
w

e )

[
-3
O’:

~ where r is in units of 10

2 . <
d w, ’
__;1‘13.2. [ 910 -
dr .
1
3

;[;69.3 uy - 2.4 u, - 76k u, - 18,1 u3‘J

48.78

T

48,78

r

r

-13

cm; —% is the radial

1
- —— lolu
3

6 |
=-=§:f: U.l
r

+ 38,71 u - 76.0 u, - 26 .4 u3:]‘

w,_@]
) 2
r

- 76.0 u, - 2.58 u, - 76.3 ug :l

u

]

1 - L7 u, +693u3jl 0,

0,

function of the £ =

- 1 and B.F.M.
In the case of odd-

(7a)

(7o)

(Te)

(7d)
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A 229, ul 2 _3

wave populating the<5/2 state of Th . 7; and —, » T3 and are the
radial functions of the £ = 2 wave populating the 5/2, 7/2 and 9/2
levels -of Th 9, respectively, This set: of equations includes only the
£ = 0-and 4 = 2 alpha partial waves, In this treatment we use a value
of 13.2 barns for Qy, and the alpha-decay energies are 4,900, 4.857,
and 4,801 Mev. : ' o

We note that as r approaches « the coupling term, which has. a
l/r3 dependence, becomes negligible, When we can ignore -this term, the
equations are»decoupled, and their solutions are given by linear com-
binations of regular (Fz) and irregular (GZ) Coulomb functionso Be-
cause the alpha particles are outgoing waves, the solution must be of

1 - t
the form Ce’ikx and not have any component of the form e Thex , Where

x'= p-n nzp -4 4o . L - (®
The notation i1s that of the géneral usage in Coulonb functions.13 We
riote that as r approaches w,-Fz approaches sin x’', and,Gz approaches
cos x'. Therefore, at large distances, our solutions must be of the
form (A + i B) (Gz + 1 Fz), where A and B are real constants.,

'The determination of the radial wave functions was accomplished -
by numerical integration on an IBM-650 computer in the region where the
coupling could not be neglectea. As we have four second-order differ-
ential equations, there are eight boundary conditions which must be
applied. We begin by looking at the imaginary part of the solution.

The procedure adopted was to glve one of the wu's an amplitude .
of one at the nuclear surface and the other three were given amplitudes
of zero. The nonzero function was started off as a regular Coulomb
function, and the other three were kept at zero by conditions used on
the derivatives. Carrying out the numerical integration for this set
of boundary conditions, we obtain oneiset of solutions. When u, = 1

at the nuclear surface, at infinity we have uJ = A F + Bij .. The

13
coefficients Ai and Bij are obtained by fitting the numerical values
from the computer program to linear combinations of Coulomb functions
-12

at large distances in this case'8.5 x 10 cn.. By separately setting
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each of the four u's equal to one, we obtain four independent solutions
of the differential equations. The imaginary part of the solution'of
the physical problem will be some linear combinsation of these four solu-

tions, i.e., our solutions of physical interest have the form
J () = Zaj (A Fy + By G, . (9)

where ¢, is some real number. We make use of the experimental intensities
of alpha ﬁeftieleéfpdpuiating the various levels by noting that the in-

tensity is

N . e
I, ﬁ . (10)

The experimental intensities give us three boundary conditions, a trivial

condition of over-all normalization and two relative intensities. For the
final boundary condition, we make use of B.F.M. - 1 to obtain the ratio of
amplitudes of the £ = 2 wave at the nuclear surface popuiating the,5/2 and
7/2 states of Th229 for the real part of the solution. -Finally, as a test
of B.F.M. - 1, we may examine the relative amplitudes at the nuclear sur-
face of the real part of the £ = 2 wave populating the 5/2 and 9/2 levels
of Th229. If the B.F.M. - 1 hypothesis is valid, ali five conditions will"
be satisfied. We have calenlated the real part of the wave'function by
using our knowledge of the asymptotic form of real and imaginary conponents

of the wave function to obtain

3
ﬁ(ui) =Z a (Aji G, - By F,) ' ‘ (11)
j=0
at r =8.5x 1072 en. We integrate inward numerlcally A,; and Byy will
be the same . constants as were obtalned from the 1mag1nary nirt of the
solutlons, and the set of 4 aJ ‘values that comes closest to satlsfylng the
three intensity :conditions and the .two constraints put on the real part of
the solutlon by B.F.M. - 1 is used. Only the real parf need be considered
as obeylng B.F.M. - 1, as the 1mag1nary part is negllglbly small at the

nuclear surface.
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V. RESUL'I‘S OF NUMERICAL INTEGRATION

We found a set of ajivalues which approXimately sétisfies the,con-
ditions mentioned previously for the £ = 2 wave both in phase and out of
phase with the £ = O wave at the nuclear-sqrfécé. Thefcohditions were not
satlsfied exactly in either case, but wefe satisfied approximafely in both
cases. The results for the amplitudes of the real parts of the waﬁe funct-

ions at the nuclear surface are given in Table I. .

Table I

£ = 2 partial wave

I . B.F.M. -1 £ =.2 in ‘phase’ . :: . £ = 2 out -of phase
£ _ s s
Prediction : )
5/2 i -0.86 : -0.86- -0.88
7/2 - 1 1 1
9/2 -0.59 - -0.55 : -0.51,

Another way of stating B.F.M. -1 is as follows: 1in an |£,’mz )'
representation‘only the component having m, = 0 -will be present in favored
alpha decay. We transformed the wave functions to an Iﬁ, m, ) represen-
tation and found'the,mz = O component of the £ = 2 wave to be some two
orders of magnitude larger than the other mz components, The deviations
from perfect agreement with B.F.M. - 1 may be attributed to slight in-
accuracies in the reported alpha intensiﬁies, and incorrect choicelof
quadrupole moment in.this,calculation, or, finally, to the neglect of
alphae particles with angular momenta greater than £ = 2. Our éaiculations~
support the validity of B.F.M. - 1, |

Finally we give in Tables ITI and I1I numerical values of the radial

wave functions uI for several values of r.
f

s 2’
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Table II

Real part of alpha wave functions for U233 decay with £=0 and £=2 in phase

rx10 3 | 5/2,0) | 5/2,2) T2y 19/2.2)
9.0 ‘1.52(17)% 1.26(17)% - -L.ae(a7)® - 8.08(16)
9.2 9.89(16) 8.23(16) -9.47(16) - 5.22(16)
9.6 I.28(16) 3.54(16) -4.07(16) " 2.24(16)
10.0 1.80(16) ©1.55(16) -1.79(16) y.81(15)
10.4 8.55(15) 6.99(15) -8.02(15) 4.39(15)
11.0 2.70(15) - 2.18(15) -2,51(15) - - 1.37(15)
12.0 4.32(1k) 3.45(1k) «3.95(1h)  2.1h(1h)
1k.0 1.49(13) . 1.16(13) -1.32(13) 7.05(12)
16,0 - 7.08(11) 5.39(11) -6.11(11) 3.23(11)
18.0 4, 42(10) 3,30(10) -3.72(10) - 1.94(10)
20.0 3.48(9) 2.55(9) -2.86(9) 1.47(9)
25.0 ©1.50(7) 9.87(6) . =1.09(7) - 5.42(6)
30.0 1.51(5) 1.03(5)  -1.11(5)- 5.35(5)
35.0 3.74(3) 2.49(3) -2,60(3) 1.20(3)
40.0 1.98(2) 1.29(2) -1.29(2) 5.68(1)
45.0 2.29(1) 1.45(1) -1.38(1) 5.61(0)
50.0 6.51(0) 3.99(0) -3.54(0) 1.30(0)
55.0 2.17(0) 1.38(0) ' -1.36(0) 5.39(-1)
60.0 -2.65(0) -1.51(0) 1.03(0) -2.25(-1)
65.0 -8.95(-1) 6.58(-1) 8.61(-1) 4.01(-1)
70.0 2.62(0) 1.61(0) -=1.50(0) 4,39(-1)
75.0 -2.66(0) -1.55(0) .1.09(0) - -2.16(-1)
80.0 2.14(0) 1.19(0) -6.18(-1) " 2.31(-3)

SNumber in parentheses indicates power of ten to which function is raised.
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Table IIT

Real part of alpha functions for'U233 decay with £=0.and £=2 out of phase

rx 10713 cn | 5/2,05 . |5/2,2) 1+7/2,2 ) | 9/2,2 ).
9.0 5.65(17)* -6.76(17)% - 7.68(1)*  -3.92(17)°

9.2 - 3.81(17) b b5(17) 5.05(17)  -2.58(17)
19.6 1.75(17) -1.95(17) 2.22(17) -1.13(17)
10.0 8.16(16) -8.78(16) '9,98(16) -5.08(16)
10.4 3.87(16) -4,02(16)  L.57(16) -2.32(16)
11.0 1.30(16) -1.3o(i6)} CL.(16)  -7.b5(15)
12.0- 2.26(15) -2.12(15) 2.41(15).." . -1.22(15)
1%.0 8.79(13) - -7.58(13) 18.59(13) ~k.31(13)
16.0 k.55(12) -3.71(12) 4.18(12) -2.08(12)
18.0 3.02(11) -2.36(11) 2.64(11) o =1.31(11)
20.0 2.48(10) -1.88(10) 2.10(10) .  -1.03(10)
25.0 1.08(8) - =7.67(7) 8.u2(7) - -4, 0L(7)
30.0 1.22(6) - =8.33(5) 8.97(5) - -4.18(5)
35.0 3.13(%) -2.07(4) 2.17(k) -~ =9.79(3)
%0.0 . 1.70(3) -1.09(3) 1.11(3) -k.79(2)
45.0 2.01(2) -1.26(2) 1.21(2) - -4,92(1)
50.0 5.83(1) -3.56(1) 3.22(1) - . -1.19(1)
55.0 1.70(1) -1.10(1) 1.14(1) -4.34(0)
60.0 -2.50(1)" 1.42(1) -1:01(1)) ¢ .3.29(0)
65.0 6.96(0) 5.22(0) £7.30(0) . . 3.25(0)
70.0 2.35(1)  -L.A(1) 1.29(1) -l.27(0)
75.0 -2.47(1) 1.43(1) -1.05(1)- - 2.62(0)
80.0

2.05(1) -1.14(1) 6.45(0) -7.69(-1)

éNumber in parentheses indicates power of ten to which function is raised.

From our wave functions, we may calculate the phase shifting of
the alpha partial waves caused by the nuclear quadrupole moment., This
information will be of interest in the case of ah'odd;even nucleus, be-

cause it emters into calculations of angular distribufions from angular
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correlation experiments and nuclear alignment and nuclear polarization
experiments. The phase shlftlng of the ith alpha partlal wave by the

nuclear quadrupole moment is given Dby the relatlon L I

a, A, | - (12)

where 9 is given in radlans

The calculated phaqe shifts are glven in Table IV in degrees

able TV K

Phase shifts caused by nuclear guadrupole moment

If,£ | | ‘£=O and‘£=2 in phase | £=0 and 2%2 out of pﬁaee
5/2,0 ~11° B -
5/2,2 | s - 4° +0.87°
7/2,2 - 5.3° - 0.179°
- 2.8° - +.7.16°

9/2,2

These phase shifts mey be compared with those calculated for
even-even ualpha emitters.in this region, =~ -30 for the £ = 2 wave when
it is in pﬁase with Lhe £ = O wave, In nuclear-alignment experiments,
only the differcuce in phace shift of the |5/2,2) eand |5/2,0) is of
direct‘interest. The interference term contributing to anisotropy has
g factor cos (90 - 92). The phase shiftling duc to angular‘momentum is
o~ —70 and, correcting for the quadrupole interaction, we have =~ ~lOO
for the £ =0 parfial wave in phase with the £ = 2 wave, and =~ -6o'partial
wave out of phase with the £ = 2 wave, ‘

. Next let us exemine the bearing of this calculation on the validity
of B.F.M. - 2 approximafidn From B.F.M, - 2, one may predict the amount
of 4 = 2 wave and the amount of Z 0 wave populatingethe 5/2 state of
Th 229

independent -of nuclear-aligmment experiments. Using data from
neighboring even-even nuclei, B.F.M. conclude that 81% of the ground-state )
intensity is due to the £ = O wave, and 19% comes from the 4 = Z'alpha

wave.l .In the ﬁumérical calculatidn, our modified ﬁrediction is that only
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75% of the ground-state intensity is.due to the £ .= O wave, and 25% 1s
due to the £ = 2 wave. This conclusion holds for. both choices of phase
of 'the £ = 2 wave, under the constraint that B.F.M. = 1 and the inten-
sity conditions hold. This discrepancy suggested that one might find
some other approximation that is superior to B.F.M..-.Z ‘but simpler than
numerical integration to predict unseen intensities of 6dd7even nuclei

and partial wave amplitudes at the nuclear surface for.even-even nuclei.

VI. AN APPROXIMATE TREATMENT OF ALPHA DECAY

An approximate method .that was developed and was used to treat
even-even nuclei will be described. The equations'for favored alpha

decay of even-even nﬁclei, which have been derived previously,2 are

2 2mE, \. amQ.e” u, (r)
4mZe =00 QO 2
u' (r) - - u, (r) = s ' (13a)
0 hzr hz 0 h2r3 J_E—' :
' 2 2mE 2mq eZ r) 2 u (r) 6 u (r)
w (r) ﬁmg i TP N NS 2. £ |130)
\ﬁ r . p ol .r , B r3 \/ NLT 7 N
. hmze?  2ME) 54 'EmQOe 6u (r) “20uh(r) 15u (r)
uy (r) - = -5t | Y, (r) =. 3 (13c)
S\Br ! by h . \7~ 5 T7 ll NI
2 HE, 2ng o2 (150, (r) - L (r)
hmze® “TU6 k2 0 .. L 6 (13)

v () A s e ] ug (2) = —
6 '. hzri ﬁ2 rz 6 h_zr& 114 13 55
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Here only the alpha partial wafes-having‘angular momenta O, 2, 4, and 6
are included, Z is the charge of the daughter nucleus; m is-the reduced
mass of the system, E

£
and Q is the intrinsic nuclear quadrupole

is the total decay energy of the lth alpha wave,

We can see that the solutions of -the- set of equations . (13) would
be regular or irregular Coulomb functions were it not for the quadrupole
moment, that is, the right hand side of 'the equations  would vanish if
Qo.werezero° From an examination of the series expansion .of the W.K.B.
integrand, we surmised that the -radial wave functlons of the alpha
partial waves mlght be well represented by functions of the form

B, (
: r
S
in the regibh of the nuclear surface., Here dé and Bz are parameters fixed
over all r values, and Gz is the irregular Coulomb function. It is clear
- that Bz/r3/2 approaches zero as r approaches «, so one.may.identify a, as
the square root of the quotient of the alpha partial-wave intensity inten-
"sity and its velocity. We determine B2 by substituting the approximate
solution into the dliterential equations and demanding that they be ex-
actly satisfied at some arbitrary 1ntermed1ate dlstancg,(Z.O x 10 -12 cm
seemed tb be optimum). The equatione which one obtains are algecbraic;
their right-hand sides are the same as those of equations (13), with
' By :
Ct‘e+'?7§ G,Z,(r)

simplyf substituted for u, (r).

| =38y (1) g G'(r) 4
By ______375_ + = right hend side of Eq, 13a, (1ha)

3G§‘(r) 15 Gy (r

Pz 57t X
- 36 (r)

(r
Bu r5/2 * ]—% r7/ 2 )

= right hand side of Eq. 13b,  (1.b)

]

right hand side of Eq. 13c, (1he)

o (F3e®) g g ()
B + =
6 57*' i ~1/2

right hand side of Egq, 13d. (14a)
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When we obtain the values of aﬂ and Bz, we may readlly compute

the alpha partial wave amplltudes at the nuclear surface by simply set=:.
ting r = r, in the gpproximate solution,
The distance at which we demand that the approximate solutions

satisfy the differential equations is somewhat arbitrary; the reasons for

. choosing 2.0 x lO-12 cm are completely pragmatic — using this'value, we..

found that we could get best agreement with results of detailed numerical

inteérations for bo‘c.h_sz)'L2 9 and U233. If we choose l.Subr 2.5 x‘lO-12

cm, the variations in; surface amplitudes over this range is about 10%.

It seems quite reusonablé that if we were to add another term to the ap-

proximste solutions, i e., (az + 6£/r3/2 + Yz/r3) G, (r), these varia-

tions could be minimized.

+

VII. AMPLITUDES OF ALPHA PARTIAL WAVES AT THE NUCLEAR SURFACE.

As quadrupole moments are not known very well in the heavy-element
!
region, we have calculated the surface amplitudes for several values of

the nuclear quadrupole moment. Because'az is the .square root of the in-

tensity of the £ wave, divided by its velocity, there 1s a sign ambiguity.

We have included all eight phase choices here, Angular correlation work

on Amzul 1k seems to indicate .that the‘D wave 1s in phase with the S

33

wave .within the barrier, but the interpretation of the U

T

alignment ex-
periment is somewhat ambiguous.

The data used in this analysis (Table V) come from two summary

_compilatibns.z’15 Results of the analysis are shown in Table VI.
Table V
Data used in analysis of alpha-decay of even-even heavy elements
: &
. :Isotope Energy Abundance . J_f_-
(Mev) .. . . (%) .
5.421 ! . 8.426
5.338 28 - 5.292
228 : ~ ! '
90-Th 5.173 A 0.2 0.448

L83 . .o . . o P
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- Table V (continued) .

-9

Isotope Energy © . "Abundance ' = a
(Mev) | (%) Nt
4.682 : 76 .- “8.718
230 L. 615 2k . 4,899
90™ k. 467 _ 0.2 - .0 b2
4,206 0 P
5,884 - 67.2 1 8.197
230 5.013 32 5.656
92” 5.685 0.3 © 0.550
5.380 e o P
5.318 68 8.246
232 5.261 ‘ 32 5.656
92Y ©5.134  0.32 0.566
%.919 o P
4. 768 | 72 8.1485
23} bora7 28  5.292
92U L 59k ‘ 0.3 0.550
4,397 | 0 o P
4. 499 73 854k
236 bl
92 B9 L 27 . 5.196
k.339 0.5 0.71
5.763 69 8.306
5.716 S 31 5.567
uPu236 ‘ | |
5.610 | 0.2 0.4472
5.hk2 0.002 0,04k
_ 5.495 ' T2 8.485 N
238 - 5.h52 28 5.292
ouF" 5.352 0.09 0.300
' 5.20k 0.00k ©0.0632
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Table V (continued)

Isotope ’Energy ) Abundance —~ a
| (Mev) (%) NI
5.162 6 - 8.718
210 ‘ 5.118 . 24 . 4 899
oy 5.014 0.1 . 0.316
. b.851 0.003 ., . 0.055
N 4.898 6 - 8.8
9k 4.858 ) 2 . 4,899
6.110 73.7 R 8.585
o 22 6.066 ' 26.3 75,130
96 5.965 ©0.035 - ‘ 0.187
‘ 5.806 ‘ 0.006 0.0775
\ 5.802 76.7 - 8.758
ol 5.760° ‘ 23.3 4,83
96Cm 5.662 . .0.017 : 0.13
| 5.510 o 0.004 ' - 0.0632
6.753 .18 8.832
‘ 6.711 22 4.690
246 _
98t 6.615. a 0.16 0.k
6.469 '0.015 0.123
0250 . 6.02k 83 . 9.11
98 5, 980 17 4. 120
6.112 | R : - 9.055
252 6.069 15 3.872
98 " . 5.969 0.2 © 0.7
5.811 0 0 P
7.20 85 9.22
254 7.16 | 15 3.872 -
1007 7.06h 0.4 ' 0.632
6.96 0 o P

a'The difference in velocity of the various waves was Ignored in calcu- '
lating these boundary conditions.

bNo o intensity given.
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Table VI

Results

The first two columns of the data compilation give the chéfge Z and mass
A of the parent nucleus;' The next four columus giveithe féiative ampli-
tudes of thé alpha partial waves on the spherical surface given by

R =R, Al/3 (where R, is 1.45 x lO-l3icm). The amplitudes are given
for all eight choices of phase and three values of .the intrinsic quadru-

pole moment, QO,‘are'used in the calculation for each phase .choice.
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Relative phase

Plus Plus Plus Plus
2 A =0 t=2 1=4 1=6
Q, =38
9o 228 10000 11,5541 08884 ° 02156
90 230 10000 14577 09354 02215
92 230 1,0000 15048 07491 01779
92 232 1.0000 14742 0,7948 01773
va 234 10000 14113 - 08359 0,1838
“92 236 1.0000 14378 - 10522 02368
94 236 1,0000 13350 05678 03233
94 238 1.0000 12568 04598 03757
94 240 1.0000 L2045 04874 04456
94 242 1.0000 11671 02095 00183
96 242 1,0000 11400 03409 03160
96 244 1.0000 L1241 03053 02RAT
IR 346 w000 10819 04245 03763
98 250 10000 09750 01693 00151
98 252 11,0000 0.9640 0,4155 0.0820
100 254 1.0000 09282 04403 0.0913
Q, =11 ;
) 228 11,0000 L6016 09661 02932
90 230 1,0000 L5162 10028 02994
92 230 1,0000 15527 08291 02451
92 232 1,0000 15242 08676 02423
92 234 1.0000 11,4688 09021 02498
92 236 11,0000 15002 14,1090 03175
94 236 1.0000 c1.3923 06512 03605
94 238 1.0000 1,31 69 0.5443 04014
94 240 1,0000 12702 05694 04723
g4 242 ,0000 12227 02833 00341
96 242 1.0000 L2078 04234 0,3360
ve 244 10000 11910 03851 03041
v8 246 10000 11622 . 0.5057 04048
98 250 1.0000 L0489 02338 00288
93 zun 10000 L0504 0.4770 01175
100 254 1,0000 L0236 05037 01303
QO = 14
9o 28 10000 1,64 46 10410 03716
90 230 1.0000 15691 11,0685 03770
92 230 1.0000 15965 . 09064 03146
9z 232 1.0000 15696 09382 0.308 4
y2 234 10000 15210 09668 03162
Y 236 10000 . L5563 11647 03964
v4 236 1.0000 14454 07323 04017
V4 238 10000 1,3729 0.626R 04314
94 240 1.0000 13315 06499 05028
94 242 1.0000 12749 03564 0.0551
96 242 10000 w2712 05052 0,3610
96 244 10000 L2539 04644 -03263
98 246 10000 12374 05871 04374
98 250 1.0000 11188 02999 00475
98 252 10000 1,1318 05405 01564
100 264 10000 1,11 34 0.5698 01731
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Relative phase

10003

Plus ‘Plus* " Minus Plus

A t =0 1 =2 t =4 Lt =6

PX] 228 10000 14181 02691 01530
90 230 1,0000 1,3030 04027 01721
vz 230 10000 1,3947 01543 01158
92 232 1,0000 13511 02420 01256
vz 234 1.0000 12748 03363 01398
vz 236 1,0000 23,2510 05682 01962
V4 236 10000 1,2630 00232 01562
94 238 14,0000 11,2088 00623 0,267 4
4 240 1.0000 11480 00120 03194
94 242 1,0000 11,1671 02095 00183
Yo o4 10000 1,11 a7 01351 02590
V86 244 1,0000 1a082 01496 02450
o8 246 1L0v00 14,0327 00335 02671
ve 250 ,0000 0.9750 01693 00151
vg 252 11,0000 09020 00954 00536
100 . 254 11,0000 0BE6S ‘01241 00622

~Q° 11

90 228 1,0000 14321 01511 01796
90 230 1,0000 13215 02971 02095
ve 230 1,0000 1,4154 00442 01320
92 232 11,0000 1,3699 01367 01481
g2 334 1,0000 14,2965 02386 01695
92 236 10000 12641 04679 02440
94 ‘236 11,0000 13015 00749 01442
v4 238 1,0000 1,2558 01551 2606
U4 240 1,0000 11979 01022 03076
94 242 1,0000 13287 02833 00341
vé 243 14000 11,1754 02206 02614
V6 244 1,0000 11668 02318 02493
98 246 LUV0O 1LNIRY 01184 02613
98 250 10000 10489 02338 00288
u8 252 1,0000 09695 00332 ¢ 00630
100 254 10000 Uy 99 0NAa2o 00743
90 228 10000 14481 00405 v1929
90 230 1,0000 13412 01973 02352
92 230 1,0000 14372 00599 01361
92 232 1,0000 13899 00373 01597
92 234 10000 13188 01456 oi892
92 236 10000 12780 03733 02809
94 236 10000 13388 01694 01412
04 238 1,0000 13009 02453 0,261~
94 240 10000 12458 01903 0,303
94 242 10000 1,27 49 03564 00551
¥ o 242 16000 L2328 03052 Q2703
V6 244 1,0000 L2251 03127 02596
us 246 10000 11619 02034 02625
98 250 10000 11,1188 02999 00475
98 252 1,0000 10341 0,0308 0,066 4
100 254 10000 00029 00799
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Relative phaee °

Miaus Plus Minus

Z A 2 =0 122 L =4 2 =6

90 228 10000 11,7168 - 05373 02771
.90 B30 10000 14269 S 07083 02861
92 230 11,0000 16578 - 03310 02095

92 =32 10000 l15605 - 04628 02179

‘92 . 234  _1,0000 13735 - 05858 02284

92 236 . 10000 13348 - 09460 03154

94 236 1,0000 13202 - 00876 ‘02452

s ....94 _ . 238 10000, 11906 - 00490 04062
94 240 10000 10631 - 00256 04675

94 242 1.0000 11017 T 02661 0.0232

96 =242 1,0000 09800 - 01509 03747

96 244 10000, 09612 - 01714 03491

98 246 1,0000 08024 - 0.0009 03720
.98 350 . _18000.. 07132 - 01859 00166
98 . 252 10000 05943 - 01662 00739

100 © 254 10000 04914 - 02069 00849

Q°=l] ............ ’

90 228 10000 19144 - 04715 04187

: .. .90 230 __ 10000 15204 - 06958 04286
92 . 230 11,0000 18500 - . aR304 03098

92 232 10000 1ruy7 - 0,4007 03243

‘ 92 234 10000 14591 - 05589 03388
92 236 “1.0000 13917 - 09798 04734

94 236 1,0000 14205 - 00357 02636

94 238 1,0000 12637 - 01826 04607

94 240 10000 11025 - 00847 05167

94 zaz2 10000 11633 - 03968 00478

96 242 11,0000 L0134 - 02765 04313

96 244 10000 09906 - 02925 04028

98 246 10000 07935 - 0,0907 0.4073

i .98 250 11,0000 07008 - 02671 00329
98 252 10000 05479 - 01315 01017

100 254 10000 04267 - 01817 01180

Q=14 ‘

“9o 11,0000 21911 - 03815 05985

. 90, . ... . 1,0000 16419 - 06813 _05030
92  _ 14,0000 21195 - - 00930 c4314

92 '.0000. 19120 - 03193 04542,
~ . 10000 . 15697, - 05262 04714
92 1.0000 | 14623 - 10236 06660

94 11,0000 15545 . 01925 - 02970

. X B 1,0000__ 13604 - 03482 - 05369
94 10000 11548 - 02172 - 05827

94 10000 "1L2433 - 05547 - 00858
. 9s 10000 10589 - 04268 - 05070 _
‘96 1.0000 10306 - 04361 -~ 04740

98 L0000 07867 - 01957 04539

. 98 10000 . 06894 - 03576 00566 _ -
98 1,0000_ . 04965 . - 00964 . . 01301
100 1,0000 . 03547 - 01583 .,01527




-25-

Relative Phase
_Plua Minus Miuus Minus
z A ‘l=0, l=; 1=4 1=6
)
vo 228 16000 20118 - 15490 03846
20 230 11,0000 10284 - 15163 "0.3"663
0z 230 10000 18933 - 11,2802 03120
92 232 1,0000 18119 - 1,3218 0,3010
92 234 1,000.01. 16326 - 11,3229 02969
92 236 11,0000 16865 - 11,6749 0,3830
94 236 1,0000 14557 - 06685 05186
94 238 1,0000 12760 - 06641 05768
94 240 1,0000 11584 - 06819 06594
va A 1.0000 11017 - 02661 su232
95 242 10000 10221 - 04540 0460U
Ry 244 1.0000 0,9919 - 03970 04104
9K 244 10000 08806 - 05546 05300
98 250 11,0000 07132 - 0ldbw 00166
90 252 1,0000 UE839 - 05084 01048
100 254 1.0000 05936 - 05306 01153
Q, =11 .
90 228 1.0000 24274 - 2a17s 06653
90 230 1,0000 20221 - 19731 06078
vz 230 1,0000 22571 - 17621 05414
a2 232 10000 31360 - 17709 05121
92 234 1.0000 11,8859 < 1,7122 0,48Y8
92 236 10000 19695 - 21290 06256
va 236 1,0000 1,64 29 - 11736 06966
94 238 10000 1,4009 - 09030 07272
y4 240 10000 12532 - 09019, 0DN130
94 242 100Uy 11633 - 13968 00478
96 242 10000 10797 - 06261 05624
96 244 1.0000 10386. - 03310 0A9AA
5 246 1,0000 09146 - 07251 06478
ne 250 14,0000 07008 - 02671 " 00329
98 252 10000 06829 - 06204 01631
100 254 10000 05800 - 0.6401 01779
Q, =4
90 228 10000 30635 ' 20673 11087
90 230 10000 24425 - 26080 09602
92 230 1,0000 28055 - 204689 09011
g2 232 14,0000 26105 - 24103 0,8300
92 234 1,0000 22416 - 22417 07663
92 236 1,0000 23687 - 27510 09711
94 236 10000 12,9029 - 15796 09471
94 238 1,0000 1,5694 - 12080 09300
94 ‘240 10000 13791 - 11754 10138
‘94 242 10000 11,2433 - 05547 00858
96 242 1.0000 11570 - 06357 0,696 3
96 244 1.0000 11012 - 07362 05085
98 246 10000 0.9625 - 0,9285 07971
98 250 10000 06894 - 03576 00566
9g 252 1,0000 06861 - 0471 02356
100 254 10000 05690 - 07629 02550
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Relative phase
Plus Plus Plus Minus
Z A 1 =0 1 =2 1 =4 L =6
Q=8 : )
94 236 10000 "13331 05217 01090 -
94 238 10000 12543 03958 02254 -~
94 240 1,<')poo 12015 04117 02810 -
96 242 1,0000 11377 02834 02198 -~
96 244 10000 1,1219 02527 02086 -
98 246 1.0000 10751 03579 02294 -
Qo=ll
94 236 1,00.00 1,3891 05915 00572 -
94 238 11,0000 L3125 04610 o,1825 -
94 240 1,0000 L2650 04705 02361 -
96 242 1,0000 L2036 03480 oi880 -
96 244 10000 11873 03159 01810 -
98 246 10000 11572 04180 01900 -
Q, = 14
V4 236 10000 14405 0.6604 060024 -
94 238 1.0000 13662 05260 01360 -
V4 240 1.0000 13236 05298 01879 -
96 242 1.0000 1R 649 04134 04513 -
96 244 1.0000 12482 03800 od487 -
98 246 1.0000 1R298 04801 01460 =
Relative phase
Plus Plus Minus Minus
z A 1 =0 =2 1 =4 1 =6
Q, =%
94 236 10000 12612 0.0696 02781 -
94 238 1.0000 12062 0.0019 03355 -
94 240 10000 11450 0.0640 0ko097 -
26 242 1.0000 11123 00774 02777 -
926 244 1.0000 11031 - 0.0969 02510 -
98 246 10000 1.0299 00334 03405 -
)
Q, =11
V4 " 236 10000 L2983 00145 02770 -
94 238 10000 12513 00712 03265 -
94 240 1.0000 11927 00025 04053 -
96 242 1.0000 11712 01449 02641 ~
96 244 1.0000 1,1630 01621 02368 -
98 246 1.0000 10939 00300 03369 -
Qn=l4
V4 236 1.0000 13338 00963 %2681 -
94 238 10000 L2940 01434 03110 -
94 240 1.0000 12377 0p687 03945 -
96 242 10000 12264 02128 02443 -
96 244 10000 11,2193 02280 02170 -
923 246 1.0000 11541 00950 03264 -
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Relative phase

Plus . Minus . Plus Plus
Z A l:=0 1 =2 Y AN - 1 =6
Q, = 8
94 236 1,0000 13168 - 01618 04495
94 238 14,0000 11861 - 00496 05189
94 240 1,0000 L0581 -, 00377 06082
9.6 242 11,0000 09761 - 00664 04107
96 244 10000 09577 - 0,0954 03655
98 246 '1,0000 07980 - 00952 04844
Q, = 11
94 _236 ,0000 14127 - 00806 054869
94 238 10000 22537 - 00302 0,604 3
94 240 11,0000 10917 - 00863 07055
96 242 11,0000 10049 - 01477 04606
Y6 244 1,0000 0,5831 - 01771 00,4048
ag 246 1,0000. 07841 - dusld' 05547
QO=]4
94 236 1,0000 L5391 - 00211 06609
94 238 L0000 13411 - 01269 07016
94 240 L0000 11343 - 00271 08160
96 242 11,0000 1,04 29 - 02428 0,5130
V6 .244 1.0000‘ 10166 - 02721 0,4440
vg 246 14,0000 0691 - 00042 06302
Relative Phase
Pius Minus Miaus Plisa:s
s oz A L =0 L=2 L=4 L=6
Q=8 .
o4 236 1.0000 14522 - 07935 01812
24 238 1,0000 12714 - 0564y 03526
94 240 1,0000 1,1534 - 05690 04218
ve D4z 10000 Lo182 - 03693 03273
96 244 10000 09885 - 03208 0,305 4
98 246 1.0000 08161 - 04598 03303
236 10000 1,63 49 - 10549 oa270
94 238 10000 11,3908 - 07486 03484,
94 240 10000 12421 - 07285 04225
96 242 1,0000 10711 - 04964 03340
96 244 10000 10311 - 04351 03136
98 246 1,0000 09050 - 05812 03230
Q0'14
94 236 10000 .1.8865 - L4011 0,040
94 238 1.0000 1,5494 - 08812 03318
94 240, 1,0000 13579 - 09245 04137
96 24z 1,0000 11407 - " 06494 03332
96 244 1,0000 10870 - 05707 03156
98 246 1,0000 09444 - 07240 03060
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VIII. APPROXIMATE METHOD FOR OBTAINING PHASE SHIFTS

Although the phase shifting due to the gquadrupole interaction
does not affect any experimehtal‘observables in alpha decay of even-even
nuclei, it will enter into such things as alpha-gemma angular correlations
and alpha angular distributions for aligned nuclei in Oddfmass nuclei,
A ‘We may obtain approximate relations for the phase shifting due to
the quadrupole intéraction by ﬁoting a few things. The‘main,contribution
to the quadrupole. phase shifting.comes when u"i = 0, (i.e., near the
classical turning point). When this is the case, the functions uy may
be represented by straight lines. On the other hand, the ui‘sAare also
representeble as Coulomb functions in this region. Using this information,
we may estiﬁate the quadfupole phése shifting. We set u, =aq; (r - ri), ‘
where a, is the square root of the intensity and r; is the point at which
the Coulomb function: of this E and £ would have its node. As the formu-
lae are well known for the phése shifting due to angular.momentum, we

treat the quadrupole interaction as a pseudo-angular momentum. We then

set 2 :
‘ ZmQOe u,
1 t —_ . :
£y (85 +1) =2, (zi +1) + o z YR , (15)
Hlr . i ,
J .
Evalﬁating the second term at the point where u" = 0, that is, rgg we
. . . i .
obtain '
; ‘ ZmQOez aj.(rg = rj)
2378 +1) = £, (£, +1) + ———-z a,, —~——% . (16)
11 i1 £or® L, 13 % (£9 L)
i g o i 1

The numerical coefficients éij are given on the right-hand side of
equations.(l3). . To determine the points ry and ri, we make the re-

lations given for irregular Coulomb functions at the turning point,l

_Gi_ _ I (2/3) pz' -1/3 L, £y (£ + 1) |13 a7
6 r (3 \ 3 - e ]
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Because the functions u:.L are also straight lines in this region, we have

v . _ . o $ o
G} =a,/k; 9% =k, 7. »We caleulate p, (the point at which uf = 0) by
the relation®

o . :2 . .uA‘ 1/ - | g
o, = n+ 0"+ 8 (zi + 1) B (18)

and by the use of an iterative procedure. Fiist we)calcuiate pz neglect-

ing the quadrupole interaction; we then put in the quadrupole interaction

to calculate ﬂ{ (z; + 1) and then calculate pg, We then calculate another
value for Ei (Z% + 1) and continue until Di does not change, p? - pzl is

the quadrupole phase shift.

We may compure phsse shifts calnulated‘in this manner with those

obtained through the detailed calculations ol Rasmussen and Hansen9 for
szhz assuming all alpha partial wavés in phase, (Table VII).
Table VII
Quadrupole phase shifts ?(raﬁ»ian-s)

R and H Approximation A R and H Approximation
60 -0.009 ‘=O°O3 90 - 92 - 0,051 0.07
92 -0.060 «0.10 6o - Oy 0.67 ©0.67
eh“ -0.68 -0.70 6o - b5 0,066 | 0.06
96 =0,075 -0.09

We note that the agreement is fairly good for the differences in phase
shift. It is the cosine of the difference in phase shift that enters in-
to angular-correlation experiments, and the approximation seems useful

for calculations of correlations .for odd-mass nuclei.

IX. APPLICATION OF APPROXIMATE METHOD TO U233

This method was also applied in treating the alpha partial-wave

229

intensities in the decay of U233 to form Th To determine the values

of the coefficients a?"lf’ and B?,If, we apply B.F.M. - 1 to obtain two
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conditions, i.e., the partition of the £ = 2 alpha wave bétﬁeen the,5/2,
7/2, and 9/2 states at the nuclear surface. We then substitute the
analytic approximation into the differential equations and demand that

the equations be satisfied exactly at some arbitrary intermediate distance
(2.0 x lO-12 cm) to obtain four more conditions. The over-all normaliza- .
tion gives us a seventh condition. To obtain the final condition we may
do one of two things: (a) we can use the ratio of the £ = 2 wave to the

£ = 0 wave aﬁ the nuclear surface obtained from a neighboring even-even

g?3e o 234

or U™, or (b) we can use the ratio of any two experimental

nucleus,
intensities, bearing in mind that the observed alpha intensity to any

level T is equal to £ |a Using (b) to obtain the final condition,

IZ
¢ ble
we are then able to check the approximation with the third experimental
intensity and with the amount of £ = 2 wave calculated to populate the
5/2 state in the numerical integration. .We compare the intensity pre-
dictions of this treatment with the predictions.of B.F.M. We may compare
several things in the following manner. We may use B.PF.M. - 1 as a A
boundary condition at the ﬁuclear surface and then use B.F.M. - 2 and the’
analytic method described here to calculate intensities af the nuclear
surface. We may also use the results of the numerical integration to
provide boundary conditions at the nuclear surface. We shall adjust the
B.F.M. intensity prediétions by the use of the relative intensities of

the 5/2 and 7/2 states. The comparisons are found in Table VIII.

Table VIII

Test of B.F.M. ~ 2

Boundary conditions at nuclear surfaces

. B.F.M, - 1 . Numerical integration

I E*perlm?ntal Analytic ‘ Analytic

t intensity B.F.M. - 2 _approx. B.F.M. -2 approx.

5/2 1004 . 100% 100% - 1009 - 100%
7/2 17.9% 1798 17.9% 17.9% o 17.9%

9/2 1.9 2.54% 2.35% 2.29% 1.85%
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"The agreement with experiment is fairly good for £ = 2 alpha partial waves,
‘using the B.F.M. - 2 approximation; hoﬁever, this method does not take into
account different phase choices for the alpﬁa partial waves, If we con-
sider an £ = 4 wave, the terms in the radial equatiohs'aue to the nonvani-
shing nuclear quadrupole moment may be important in ‘an intensity prediction
of alpha decay, and the predictions may vary gonsidérably, déﬁending on the
choice of partial wave phases, It is for this application that we feel
that the approximate method described here has a considerablé'advantage
over the B,F.M. - 2 approximation..

A A calculation was made by the use of the anaiytic approximation in-
cluding the £ = L partial wave in the alpha decay of y?33 to form 22
We can then predict the alpha intensities populating the 11/2 and 13/2
states of Th229 that are members of the ground-state rotational bend. If
we neglect the £ = 6 contributions (and including them would be a Herculean
task) and apply the data on relative amplitudes of alpha partial ﬁaves from
‘the neighboring even-even nuclides, we obtain the intensity predictions for
four phase choices. We compare these with B.F.M. - 2 and experimental ob-

servation in Table IX.

Teble IX

Intensity predictions

Relative Phase ' ' 4 B.F.M, Experi-

if
4 =0 + + " " mental
‘ L =2 o + - -
£ =h + - + -
5/2 ' 100 100 100 100 100 100
T/2 16 18.3 16.8 15.5 13 17.9
9/2 246 3.0L 2,70 2,37 1.8 1.9
11/ 0.036 0.286 0.180 0.016 . 0.2 7 @
13/2 ‘ ~ 0.007T 0.020 0.012 0.0035 2.

-aThe large limits quoted on this experimental intensity make it useless

for distinguishing between possible phase choices.
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X. COMPARISON WITH NUCLEAR-ALIGNMENT EXPERIMENT -

Some ekperimental data are available on the relative phases of -
the £ = O and £ = 2 alpha partial waves. Roberts, Dabbs, and Parker
have aligned,U233:nudlei' in a single crystal of'Rb(UQZ)(NO3)3 and have

T

obtained an angular distribution'of alpha particles.  They have inter-
nreted their results as indicating that the £ = 2 partial wave populating
the ground state of Th229

at this conclusion, they make the assumption that the quadrupole coupling

is out of phase with the £ = O wave. To arrive

constant ) ] 3 e
spec
- LT (21 - 1)
is negative. Here e is the electronic unit of charge, Qspec. is the
spectroscopic value .of the nuclear “quadrupole moment and

3% v (o)
: ‘3 2%
is the gradient of the electronic field evaluated at the surface of U

233

The calculations of;EiﬁnsteﬁrandITyéelr are‘interpreted by Roberts et al.

as indicating that ///
' : 2y (02::>

is positive in the UO ++ ion. This conclusion does not seem to be com-

pletely warranted, as we have found that for both unscreened nonrelatiy-:.

vistlc and screened relat1v1stlcl8 wave functions 3:> is negatlve,
64,Ts

"s80 there is a possibility that g will be pos1t1ve If we deflne the per-
cent of £ = 2 admixture in the populatlon of the 5/2 state as 100 3 /l+5

Roberts et al. show from the measurements that they have made that

. . .
0.795 8~ + l+-‘11+5 2 + 0.226 . % = 0,0625 ¢ ,0025 . (19)
1+0.835 8 -

Using the values of ® which we obtained in the numerical integration of

33, we may ‘then calculate a value for qg. If the £ = 2 wave is in phase

with the £ = O wave, we have ® = 0,577; if the £ = 2 wavenis out of phase
with the £ = O wave, we have &=-=0,577. For the £ = 2 wave in phase we
calculate % = O.OZ??OK;Afor the £ = 2 wave out of phase, we calculate
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%-—JJJOhlBO Roberts et al. give a value for lkl of O .0388 + ,0086°k
from specific heat measurements, but the sign is not determined in these

measurements. Roberts et al. argue.that-the sign of ¢ is negative in a

237 19

. From paramagnetic-

237

manner analogous to Bleaney et al. for Np
resonance measurements, Bleaney shows that the magnetic moment of Np
and the quadrupole coupling constant of Rb(NpOz)(NO3)3 must have opposite
signs. Bleaney suggests.that the magnetic moment, p, is positive and

q is negative on theoretical grouuds, Our valuc-caloulated for the

£ = 2 wave vut of phase with the £ = O is well within the limits of error
of their measurement,Aand the value for the 4 = 2 wave .in phase with the
£ = 0 seems to be outside the limits of error,

We will be able to make & definlite phase choice only when more
experimental data beceme ‘available, Elther a h1gh-prec151on determina-~-
Atlon of the populations of the 11/2 and 13/2 levels of Th 29 by alpha
decay, or. a measurement of the sign of
d° Vgo)
d 22 ' 4 B
will definitely determine the relative phases of the £ = O and the £ =

partial waves,

XI. COMPARISON OF EVEN-EVEN APPROXIMATE
TREATMENT WITH FROMAN'S TREATMENT

If we let az' be the expansion coefficients of the Legendre funct-

ions on our spherical nuclear surfacee and b, 6K be the reciprocal of the

‘ £
product of the hindrance factor and the centrifugal-barrier reduction

factor, there exists a matrix such that b for all

2 =% Bpp (B) 2y
phase choices of bz. Fr¥man has ‘derived.the elements of such matrices
in his. treatment of the alpha decay of spheroidal nuclei.ll To calculate
the value of B, we use Frdman's equation (VI-9), leaving out the unity
term in the final factor and using (VI-2) to obtain his q. This matrix
has been calculated for szhz alpha decay as-well as an equivalent

matrix -derived. by Rasmussen .and Hansen. from numerical-integration of .the

9

wave equations. In Table X we compare these two matrices to the one

obtained from our analytic approximation developed here,
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Table.X

Comparison of Fr8man—like'matrices

- . R R o . o < a
Matrix derived from numerical integration by Rasmussen and Hansen

2 =0 £ =2 2 =14 ' L =6
1.01540.01161 _-o.167h-o;0176i' 0.01166+0.00217i -0,0005093~-0.000130i
-0;2107-0,045631 0,9542-0,001581. ~o,1195-o.oqs9zi 0.007260+0.0006791
0.0211440,01351 -0.1899-0.0595i 0.9191-0,003601  -0,1008-0.001871i

-0,001089-0.00216i 0.01885+40.0187i -0.2052-0.08931  0,9086-0.02411

Matrix derived .from Frlman’®s treatmentb

£ =0 4 =2 £ =1L L =6
1.019 | -0.193 . o.0lk 0.0005
-0.193 0.908 -0,158 . . ,0,01k
0.01k4 ~0.158 0.917 . .. =0.155
-0,0005 . 0.01k -0.155 0.917
Matrix derived from snslytic trestment of this paper’

£ =0 L .=.2 . £ =k 4 =6
1.034 ' -0.1855 0.0166 , -0.00121
-0.2405 0,9181" - -0.1213 " 0,00879
-0.0358 © -0,2010 0.9197 - - -0.0979

-0.0068Y - 10,0383 " -0,2579 © 0,9070

& QO =9 x.lO-zh cm2; R

o = 10.1 x 1073 ca,

‘b.B = -0,455.

c

o 8.9 x 10-13 cm.

QO~='8 x,lO—zlL cmz; R

It is interesting to note that phe.Fr8man treatment gives a matrix
which corréesponds rather closely to the real elements of the numerical inte-
gration treatment, although.Feran“s treatment necessitates a symmetric
matrix, which is not the case in the numerical treatment.A The .present
treatment corresponds more nearly to the sum of the real and imaginary parts

.of the matric elements of the numerical treatment, and the matrix is not

symmetric,
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XITI. RESULTS OF THE NUMERICAL INTEGRATION OF U233

The results of the numerical integrations of U233 may be expressed
in several ways. In analogy with TFrdmen, we give matrices through which
one may convert amplitudes of partial waves at the nuclear surface of ampli- _
tudes at infinity which are (intensity/velocity)l/z.

Let at' be a column vector giving the amplitudes of partial waves
at the nuclear surface, where t denotes indices £ and If. We may relate

this to a column Vector bt’ which gives the amplitudes of the partial

waves at infinity, by an equation of the form b, = %, LT We then
) ’
factor kt,t' into two matrices, '
L o > -1 S ! .
kt‘,t': = t" [th (R) "t,t"] k t",t" (20)

in the case of the real (irregular) camponents, and in the case of the

-imaginary parts,

-1
kt,tl = %" [Ft" (R) at’t"] kl!t""tl . (21)
In both cases the Coulomb functions are evaluated at the nuclear radius,
in our work chosen to be 9.0 x 10—%3cm, The matrices k"t g1 8re similar
9 b

to those given hy Froman” and by Rasmussen and. Hansen and are & con-
venient way of displaying the detailed effects of the quadrupole inter-
action. The matrices kvt,t‘ become eimple unit matrices SL,t' in the
limit of zero nuclear quadrupole moment. It should be pointed out that
these matrices apply to a spherical surfacé at the nucleus whereas
Froman's matrices are given for a spheroidal nuclear surface.

From the imaginary part of the numerical integration we obtain

the matrix k', Table XI).

o €
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Table XI
k't £ matrix from imaginary part of numerical integration
2

C 2'==0 2 =2 g=2 =2

T _ ) T _ . [ . 8o

.I,f-s/? I'.=5/2 I'.=7/2 _ 1'.=9/2
f' Ais'(/)'z 1,000 <0.0101  0.150 <0.0301 -0.180 +0.043i 0,118 -0.0301
% ' . : -
f fsiz 0.1541 -0,01951 . 0.886 -0.010i -0.111 40.022i -0.05k +0,00L49i

. 0 .

! f7;2 -0.173 +0.0271  -0.106 40,0131 . 0:849 -0.0353i -0.110 +0.022i
£ ’ o
f f9?2 0.096 =0.0067i -0.021 40.0024i -0.099 +0.00761  0.85L +0.0006i

Table XII shows the matrix k't £ obtained- from the real part of the numerical
, ' .

integration.
Table XII "
k'£ y matrix from real part of numericaliintegratibn
2 L ) . .
£' =0 L' =2 L' =2 L' =2
T'p=5/2 N I'p=5/2 I'f=7/? I'.=9/2
£ =0 , . '
If—5/2 1.000 +0.0131 -0.166 -0.016i 0.1953 +0.013i- -0.1024 -0.0037i
L =2 : , o
If=5/2 -0.1948 -0,0221 0.9053 +0,012i 0,116 +0.00681 0.059 +0.0058i
42=2 \ ¥ . -
If=7/2 0.2421 +0.022i 0.128 +0.,0052i 1.007 -0,027i 0.126 +0.0005i

-O.lﬁ3 -Q.048i 0.057 +0.0321 _ 0.093 4+ 0,0151 0,911 +0.0191i
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_ XLII. SUMMARY

In summary we . belleve this dctalled numerlcal 1ntegratlon of the
alpha-decay wave equation for U 233 shows the valldlty of the Bohr-Fréman-
Mottelson-hypothes1s (B.F.M. - l) that for favored alpha decay there is
zero proJjection of alpha angular momentum on the nuclear symmetry axis .o
while the alpha is near the surface., The approx1mat10n (B.F.M. - 2) that
the proJjection remeins zero " near the cla551cal turnlng point is shown
to be g fairly good approximation for the relatlvely abundant £ = 2 wave
but a.very poor approximastion for the weak £ = 4 wave, The analytical
approximation based on modified Coulomb functions is shown tofgive,results
nearer those of the numerical integration than does the B,F.M. - 2 ap—A
proximatioh. The éxtra.phase shifts due to the quadrupole .interaction
~were derived, and the shifts most significant to the interpretation cf
nuclear-alignment experiments were shoﬁn“to be negligibly small.

Through approximate methods, we are able to obtain information
concerning the alpha decay cf deformed nuclei which was heretofore ob-
tainable only through detailed numerical integration. We have developed
approximate mcthods for calculating both alphs partial wave amplitudes
at the nuclegr surfaCe end phase shifting caused by nuclear-quadrupole
deformation, using a.small fraction of the computer time.ihvclved in a

numerical integration.
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