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THEORETICAL STUDIES Ol? TIE ALI'HA DECAY OF DEFQRMED NUCLEI 

Richard R .  Chasman 

Radiation Laboratory and Department of Chemistry 
University of California,  Berkeley, California 

June, 1958 

The alpha decay of a deformed oddmass nucls~ls ,  u ~ ~ ~ ,  is treated 

by the use of numerical integration on an IBM-650 computer. The r e su l t s  

of t h i s  treatment m e  compared with the theory of Bohr, Fr6man, and 

Approximate analytic methods are developed fo r  calculating the 

amplitudes of alpha p a r t i a l  waves a t  the surface of deformed even-even 

nuclei. A two-tern expansion modifying the ordinary Coulomb function t o  

account fo r  nuclear quadrupole cou,pling i s  applied. The amplitudes of 

alpha p a r t i a l  waves a t  the nuclear surface are tabulated f o r  eight choices 

of phase and three values of the Sntrinsfc nuclear quadrupole moment. The 

analytic method i s  developed t o  predict  the in t ens i t i e s  of the higher 

members of the ground ro ta t iona l  band. 

A comparison i s  made between the numerieaP integrat ion and the 

experiments of Roberts, Dabbs, and Parker, i n  which they examine the 

angular d is t r ibut ion  of alpha par t ic les  from aligned u~~~ nuclei. 

A detai led comparison is  ma6.e between the analytic treatment de- 

veloped here, t ha t  of Framan, and the numePiea1 integrat ion of Rasmussen 

and Hansen fo r  C!m242. The results of the numerical integration of U 233 

are presented i n  matrices analogous t o  those of Framan. 
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I 

THEORFATCAL SWIES OF THE ALPHA DECAY OF PIEFORM3D WCUI  

I : INmODUCTION 

When we consider the in te rac t ion  of an =mitted alpha p a r t i c l e  

with t he  -daughter nucleus i n  the  heavy element region, the  nonspherici ty 

of the nucleus plays an important ro le .  Because the  emitted alpha p a r t i -  

c l e  .may i n t e r a c t  with the  qiadrupole f i e l d  of the  nculeus, the  experi-  

mental i n t e n s i t i e s  which are  observed f o r  decay t o  various s t a t e s  of the  

daughter &e not  the  same a s  the  i n t e n s i t i e s  a t  the  nuclear surface, 

a f t e r  making s simple coulomb-barrier penetrat ion correct ion.  This 

quadrupole in te rac t ion  complicates the  solut ion of the  d i f f e r e n t i a l  

equations describing the  alpha-decay process because it couples the  

alpha p a r t i a l  waves t h a t  d i f f e r  from each other  i n  angular momentum by 

two un i t s .  From a numerical in tegra t ion  of these  equations, based on 

experimental alpha-group i n t e n s i t i e s ,  one may obtain the  amplitudes of 

the  alpha p a r t i a l  waves a t  the nii .nlaar surface, a s  wel l  a s  the  ~iiliounts 

of the  phase s h i f t s  due t o  the  quadrupole terms. 

The .theory of Bohr -Frban-~ot te l son  (B.F.M,) makes de f in i t e  pre-  

d ic t ions  concerning the  amplitudes of alpha p a r t i a l  waves a t  the  nuclear 

surface, i n  the  case of deformed nuclei .  It w a s  decided t o  t e s t  the  

v a l i d i t y  of t h e i r  predictions i n  the  case of the  alpha decay of u~~~ by 

carrying out extensive numerical integratjlons of the  alpha wave equation 

including the  nuclear quadrupole in te rac t ion .  The r e l a t i v e  i n t e n s i t i e s  

of t he  alpha p a r t i c l e s  t o  the  low-lying s t a t e s  of have been mesa- 

ured;2 there  i s  a good dea l  of confidence i n  the  spin ass iwehts  of 

these  l eve l s ,  and there  a re  est imates of the  nuclear qusdrupole ioment. 314 

We use the  est imates f o r  the  quadrupole moment of u ~ ~ ~ ,  as there  a r e  none 

avai lable  f o r  ThZ2'. We expect t h e  qua&upole moment of ~h~~~ t o  be 

roughly the  same as t h a t  of u ~ ~ ~ .  !Chis information i s  summarized i n  

Fig. 1. 

The study of u~~~ i s  of i n t e r e s t  f o r  reasons other  than t he  com- 

parison with B,F.M. A t  the  time the  problem was undertaken, alpha i n -  

t e n s i t i e s  had been repor ted f o r  higher members of the  ground r o t a t i o n a l  
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band,5 i n t e n s i t i e s  which d i f f e r ed  considerably from B.F.M. predictions.  

Since t h a t  time, however, the  gamma rays following the  alpha decay have , 

been examined, and the  l a rge  i n t ens i t y  of high-energy gamma rays i nd i -  

ca tes  t h a t  the higher l eve l s  populated by the  alpha decay are  not  a l l  

members of the  ground r o t a t i o n a l  band. 
6 

Roberts, .Dabbs, A d  parker7 have aligned u~~~ nucle i  a t  low 

temperatures i n  s ing le  c ry s t a l s  of R ~ ( U O ~ ) ( N O  ) and examined the  aniso- 
3 3 

t ropy of emitted alpha p a r t i c l e s .  They i n t e rp re t  t h e i r  r e s u l t s  as 

ind ica t ing  t h a t  the  1 = 2 wave i s  .out of  phase .with t h e  .4 = 0 alpha 

p a r t i a l  wave i n  the  alpha group t o  ground. Their experiment a l so  puts  

l i m i t s  on t he  amount of the' 1 = 2 wave which ,populatks the  ground s t a t e  

We might hope t h a t  e i t h e r  the  i n t e n s i t y  l i m i t s  of Robsert, Dabbs, 

and Parker o r  the  boundary conditions at the  nuclear surface of B.F.M. 

w i l l  e l iminate ,one of the  phase choices f o r  the  1 = 2 p w t i a l  wave .re-  

l a t i v e  t o  the  1 = 0. 

11, FORMULATION OF THE ALPHA-DECAY PROBLEM 

The problem of alpha decay. i n  the  region of uranium is  compli- 

cated, a s  contras ted t o  the  region of lead, by the  existence of large  

quadrupole moments which i n t e r a c t  with the  escaping alpha pa r t i c l e .  

Favored alpha.decay; 1.e. decay between parent and daughter s t a t e s  

having the  sqme nucleonic wave functions and hence t he  same K (K i s  t he  

project ion .of the  nuclear spin  on the  nuclear symmetry ax i s ) ,  has been 

t r e a t e d  i n  t h i s  region. of . large quadrupole moments by severa l  authors, 

both by numerical in tegra t ions  8999i0 and by ana ly t ic  approx&nations 
11 

f o r  the  case of even-even nuclei .  The quantum mechanical treatment of 

an odd-even nucleus i s  qu i te  s imi la r  t o  t h a t  of the  even-even nucleus. 
12 

We s.tar:t; from Schroedinger . '~  equation 
. . 

Here we have H = T + V + Hnuc where T i s  the  k ine t i c  energy of t he  

system, V i t s  po t en t i a l  energy, and Hnuc the  Hamiltonian f o r  the  i n t e r n a l  



energy of the r e c o i l  nucleus. We expand tkie potent ial  V i n  spherical 

coordinates. Making the usual multipole- expansion, we obtain 
. . 

z 'qo ,, . e  r A 

1 C p p PA (cos y) ,  ( 2 )  V = 2 e  
P 

Ad-1 
p=l 

where r gives the posit ion of the alpha p&ticle;  r gives tke position 
P 

of the pth proton i n  the daughter nucleus, tuld y  i s  the angle between 

r and r i n  the system of the r eco i l  nucleus. In  our treatment of the 
P 

problem, we Include the cent ra l  and gultdrzpole terms of the potential. 

We next construct-a  soLutfon o f  SchroedSngergs equa%ion'of the form 

as  the f i r s t  s tep i n  the solution. Here 

1' i s  the angular momentum of the alpha par t ic le ,  and m' i s  the camponent 

of i t s  angular momentum on a space-fixed &is, If' a.rid2 I are Lhr Plnal 

and i n i t i a l  nuclear angular momenta, and M - m.u and M are projections of 

Ift  and I on the  space-fixed axis ,  Here 

describes the in tp ins ic  s t a t e  of tne daughter .nudeus  :and the bracketed " 

symbol i s  a Clebsch-Gordan coeff ic ient .  The orthogonality condition on 
the y I ~ M  i function i s  

P 9 I;, T 



We next subst i tute  Y in to  Schroedingerus equation, m u l t " i p l y  by 
I 7 M  

Y , , ~ f 7 ~  

and then integrate over all variables but r ,  We do t h i s  f o r  each value 

of 1, If r3f i n t e re s t  i n  the daughter nucleus and we are l e f t  with a s e t  

of .  coupled. .. .. ,o&inary' d i f f  erentf a1 equatf ons of the form 
a2- UX,  If 2 , '.. 

. - "  fi' .. 
. . 2.M 2 1(1+1) + EI , T . ,  

d r f 
(6) 

Z e 
2 2 

+ Z  r u 
,,If 3 

r o TP a 9 f 7  

A l l  terms but the l a s t  summation describe the interact ion of two charged 

par t ic les , '  The last term gives a mixiilg of s ta tes ,  due t o  the .pertup- 

bation induced by the nuclear quadPupole moment. 

111. A TEST OF THE B,F,M. HYPOTHESES 

The hypotheses of B.F.M, may be s t a t e s  as follows: any alpha 

p a r t i a l  wave has a projection of i t s  angular momentum on the,nuclear-  

symmetry axis which i s  equal t o  Kf f Ki a t  the nuclear surface. Kf and 

K .are  the projections qf the spins of the f i n a l  and i n i t i a l  nuclear 
i 

s t a t e s  on the nuclear-symmetry ar$s. For ( K ~  + K ~ )  > 1 there i s  but one 

permissible value of mA, which i s  zero i n  the case of favored alpha 

:decay. looking a t  t h e  B.F.M. hypothesis i n  an I If, 1 ). representation, 

one sees tha t  a given 1 w ve w i l l  be apportioned among the s t a t e s  t h a t  , 8 . .  
it populates in proportion t o  the Clebsch-Gordan coeff ic ient  

( If, 1, K, 0 I If9 K ) a t  t h e  nuclear surface. This hypothesis w i l l  

be r e f b r r e d t o  as B,F,M. - 1. Furthermore, B,F.M, makes the approxi- 

mation tha t  the r e l a t ive  in t ens i t i e s  of alpha decay t o  the various 
I 

levels  from population by a given ,4 wave w i l l  be given by the squme 

of the Clebsch-Gordan coeff ic ient  ( Ii, 1, K9 0 \ If, K ) times the 

ba r r i e r  penetration factor  fo r  the par t icu lar  alpha energy. This ap- 

proximation, which we s h a l l  r e f e r  t o  as B.F.M. - 2, would be exact only 

i n  the lfmft of i n f i n i t e  moment of ineskia,  In  the case of favored 

alpha decay of even-even nuclei, a given alpha p a r t i a l  'wave populates 



j u s t  one l e v e l  of the  .daughter nucleus and so affords  us no t e s t  of. 

' , $he B:p.M, hypotheses. ., I.i . . . 

In , t he  numerical work t o  be described, B.F,M, - 1 and B.F.M. 

- 2 are  t e s t e d  separate ly  f o r  the  f i r s t  time. I n  the  case of odd- 

even nucle i ,  we may u t i l i z e  B,F.Md - 9 t o  s e t  boundary conditions at b. 

t he  nuclear surface f o r  solut ions  of t he  alpha wave equations and then 

compme t h e  alpha i n t e n s i t i e s  from numerical in tegra t fon  with the ex- 

perimentally.observed i n t e n s i t i e s .  This gives' us a t e s t  of B.F.M. - 1, 
though our calcula t ions  did not  include 1 = 4 contribu+ions. I n  the  

a- . 
region of 'UcJ3, the  1 = 4 con t r i bu t i on  should not be very s ign i f ican t ;  

IV, NUMEWICAL LN'EGRATION ANH) B O m A R Y  COlVIXl'I'IUlVS 

To re tu rn  t o  the  spec i f i c  problem of u ~ ~ ~ ,  t he  equations de- 

scrib;ing the  alpha p a r t i c l e s  a s  they leave the  nucleus are: 

u 0 where r i s  i n  u n i t s  of 10-l3 cm; - i s  the  r a d i a l  function of the  1 = 0 
r 



u u 
1 2  229 - wave populating the. 512 s t a t e  o f  Tn . , and --, r, 3 are the and r 

rad ia l  functions .of the a = 2 wave populating the 512, 712, and 912 

levels  o f  Thzi9, respectively. This. set :  of equations includes only the . : 

a = 0 ,and a = 2 alpha p a r t i a l  waves. I n  t h i s  treatment we use a value 

of 13.2 barns f o r  %, and the alpha-decay energies are 4.900, 4.857, 

and 4.801 Mev. 

We note tha t  as r approaches w the coupling term, which has a 
3 l/r dependence, becomes negligible,  When we can ignore t h i s  term, the 

equations are decoupled, and t h e i r  solutions are  given by l inear  com- 

binations of regular (Fa) and i r regular  ( G ~ )  Coulomb fqnctions. Be- 

cause the alpha par t ic les  are  outgoing waves, the solution must be of 
-ikx ' the forp Ce ih" p d  not have any component Of the form e , where 

The notation i s  tha t  of the general usage i n  ~ o u l o i b  functions .I3 We 

riote tha t  as r approaches w ,  .F approaches s i n  x', and .G approaches a a .  
cos xl. Therefore, a t  large distances, our solutions must be of the 

form (A + , i  B) ( G  + 9 F ), where A and B are  r e a l  constants.. a a 
'The .determination of the radia1,wave functions .was accomplished . 

by numerical integration on an DM-650 computer i n  the region where the 

coupling could not be neglected. As we have four second-order d i f f e r -  

e n t i a l  equations, there are  eight  boundary conditions which must be 

applied. We begin by looking a t  the imaginary part  of the solution. 

The procedure adopted was t o  give one of the u% an amplitude 

of one a t  the nuclear surface and the other three were given amplitudes 

of zero. m e  nonzero function was  s ta r ted  off as a regular Coulomb 

function, and the other three were kept at zero by conditions used on 

the derivatfves. Carrying out the numerical integration f o r  t h i s  s e t  '. 

of boundary conditions, we obtain one s e t  of solutions.  When ui = 1 
. . 

a t  the nuclear surface, at i n f i n i t y  we have u 
= Ai j  Fj  + Bij Gj .  The 

j 
coeff ic ients  A and B are  obta%ned by f i t t i n g  the numerical values 

i j f j  
from the computer program t o  l inear  combinations of Coulomb functions 

-12 ' 
a t  large distances i n  t h i s  cas@ 8.5 x 10 cm. By separately se t t ing  



each of t h e  four u ' s  e q u a l ' t o  one, we obta in  four  indegen'dent solut ions  

of t he  . d i f f e r e n t i a l  equations. The imaginary pa r t  of the  solut ion of 

the  physical  problem w i l l  be some l i n e a r  combination of these four solu- 

t i ons ,  i'<e., our solut ions  of physical  i n t e r e s t  have the  form 
2 

where a i s  some r e a l  number. We make use of the  experimental i n t e n s i t i e s  
ii . . . . . .  

of alpha p&t'icl.es' ':p~pulating the  various iesrels by noting t h a t  the  i n -  

The experimental i n t e n s i t i e s  give us three  boundary conditions, a t r i v i a l  

condition of over -a l l  normalization and two r e l a t i v e  i n t e n s i t i e s .  For the  

f i n a l  boundary condition, we make use of B.F.M. - 1 t o  obtain the  r a t i o  of 

amplitudes of the  1 = 2 wave at  t he  nuclear surface populating the ,512 uld 

712 s t a t e s  of ~h~~~ f o r  the r e a l  pa r t  of the  solut ion.  F i n a l l y ,  a s  a t e s t  

of B.F.M. - 1, w e  may examine t he  r e l a t i v e  amplitudes at  the  nuclear sur-  

face o f  t h e  r e a l  part of the  1 = 2 wave populating t h e  512' and 912 l eve l s  
8 ,  

of !ChZdy. I f  t he  B.F.M. - 1 hypothesis i s  va l id ,  a l l  f i v e  conditions w i l l  

he s~). t . l .s f i ,~~.d. .  WE! ba.ve ce.,l.cll.l.a.taed the  rm.1. part, n f  t h e  wave function by 

using our knowledge.of the  asymptotic form of r e a l  and imaginary components 

of the  wave function t o  obtain 

j =O 
at r = 8.5 x 10-l2  cm. We in tegra te  inward numerically. Aji  and Bji w i l l  

be the  same.constants a s  .were .obtained from the  imaginary p a r t  of the  

. solution?,  and t he  s e t  of 4 a .  ' values t h a t  comes c l o s e s t  t o  s a t i s fy ing  the  
J 

th ree  intensity:condit ions and the  two cons t ra in t s  put on the  r e a l  p a r t  of 
* 

the  solut ion by B.F.M. - I. i s  used. Only the  real. par t  need be  considered 
. . 

a s  obeying B.F.M. - 1, as  the  imaginary part i s  negl igibly  small a t  the  

nuclear surface .  



V. RESULTS OF NUMERICAL INTEGRATION 

. . . .  . 

We found a s e t  of a. '.values which approxiniately s a t i s f i e s  the  ,con- 
J 

d i t ions  mentioned previously fo r  the  a = 2 .wave both i n  phase and out of 
. .  . 

phase ,with the  a = 0 wave at  the  nuclear surface.  The .'conditions were .not . . .  
s a t i s f i e d  exact ly  i n  e i t h e r  case, but  were s a t i s f i e d  approximately i n  both 

cases. The r e s u l t s  f o r  the  amplitudes of the  r e a l  pa r t s  of t he  wave funct-  

ions at  the  nuclear surface are  given i n  Table I. , 

Table I 

a = 2 p a r t i a l  wave 
. . 

If  
B.F.M. - 1 1 = 2 i n  :phase:'.- . r :  . 1 = 2 out...of. phase. 
Prediction 

Another way' Of s t a t i n g  B.F.M. - 1 i s  a s  follows: i n  an I 1, me ) ' 

representa t ion only the  component, having m. = O . w i l l  be present i n  favored a 
alpha decay. We transformed the  wave functions t o  an I a, m ) , represen- a 
t a t i o n  and found the.ma = 0 component of the  a = 2 wave t o  be some two 

orders of magnitude l a rge r  than the  other  m components. The .deviations a .  
from per fec t  agreement with B.F.M. - 1 may be a t t r i b u t e d  t o  s l i 'ght  i n -  

accuracies i n  the  reported alpha i n t e n s i t i e s ,  and incor rec t  choice of 

quadrupole moment i n  t h i s  calcula t ion,  or ,  f i na l l y ,  t o  the  neglect  of 

alpha p a r t i c l e s  with angular momenta g rea te r  than a = 2. Our calcula t ions  

support the  v a l i d i t y  of B.F.M. - 1. 

Finally we give i n  Tables I1 and 111 numerical values of the  r a d i a l  

f o r  severa l  values of r. ' wave functions ?,,a; 



Table I1 . . 
. . 

Real part  of alpha wave f'unctions for  u~~~ decay with J=0 and J=2 i n  phase 
. . .  . 

r x 10-l3 cm' I 51290) 1 5/2,2) , 1 7/2,2).. 1 9/2)2).. 

%umber i n  parentheses indicates power df ten t o  which function i s  raised. 



Real p a r t  of alpha funCtions  for.^^^^ decay with J=0 arid J=2 out  of phase  

%umber i n  parentheses ind ica tes  .power of t en  t o  which function i s  ra i sed .  

From our wave functions,  we may ca lcu la te  the ,  phase s h i f t i n g  of 

t he  alpha p a r t i a l  waves caused .by the  nuclear quadrupole moment. This 
. . 

information w i l l  be of i n t e r e s t  i n  the  case of an'odd-even nucleus, be- 

cause it emters i n t o  calcula t ions  of angular d i s t r tbu t ions  from angular 



cor re la t ion  .experiments and nuclear alignment and n.uclear . . . .. polar izat ion . . 

experiments. The phase s h i f t l n g o f  the  - i t h  alpha p a r t i a l  . wave . . . by the 

nuclear quadrupole moment i s  given by the  r e l4 t i on  

- 

where 8, i s  given i n  Padians. 
i 
The .calcula ted phase s h i f t s  a re  given i n  Table I V  i n  degrees. 

Phase s h i f t s  caused by nuclear quadrupole moment 

I f d  L=O and 1=2 i n  phase a=O ma ,4=2 out of phase 
- 

L. - &.. 
0 

512 ,O - -1.1 + 1 . 9 4 O  

9/2,2 - 2.8' + 7.16' 
. . .  

These .phase s h i f t s  may be compared with those calcula ted f o r  
0 

even-even alpha e m i t t e r s . i n  t h i s  reg ion , ,% -3 f o r  the  1 = 2 wave when 

it i s  i n  phase with .Lhe 1 = 0 wave, I n  ri~rclear-alignment experiments, 

only t he  dl f fereace i n  phaae shift, n f  the  15/2,2) and 15/2,0) i s  of 

d i r ec t  i n t e r e s t .  The in terference term contr ibut ing t o  anisotropy has 

a fac tor  cos (eo - e2) .  The phase shifting duc t o  angnlar momentum i s  
0 0 

r -7 and, correct ing f o r  the  quadrupole In te rac t ion ,  we have 2 -10 
0 .  

f o r  the  .a = 0 p a r t i a l  wave . in.phase with the  = 2 wave, and -- -6 p a r t i a l  

wave out  of .phase with the  & = 2 wave, 

Next l e t  us ex-mine t he  bearing of t h i s  calcula t ion on the  val i ,d i ty  

of B.F.M. - 2 approximation. From B.F.M. - Z,'.one may.predict  ,the amount 

of a = 2 .wave and. the  amount of .l = 0 wave populating ,the 512 s t a t e  of 

!ThZZ9 independent o f  nuclear-alignmept experiments. Using da ta  from 

neighboring. even-even nucle i ,  B . .F.M. . conclude tha t '  81% . .  . of the  ground-state -, 

i n t e n s i , t y  i s  due t o  the  1 = 0 wave, and 1% comes from the  a ' =  2 alpha 

wave .' . I n  t he  numerical ca lcula t ion;  o w  modified predic t ion i s  t h a t  only 
. . . . . .. . .  a 



75% of the  ground-state . in tens i ty  . is . .  due , t o  the  l? .= 0 wave, and 25% i s  

due t o  t h e  l? = 2 wave. This conclusion holds , for .  both choices of phase 
i 

. o f ' t h e ' l ?  = 2 wave, under the  constra int  t h a t  B.F.M. - 1 a n d . t h e  in ten-  

s i t y  conditions hold. This discrepancy suggested..that . one . might f i nd  

some other  approximation t h a t  i s  superior t d  B .F.M.. - 2 but  simpler than 

numerical in tegrat ion t o  p red ic t  unseen i n t e n s i t i e s  of 6dd-even nucle i  - 

and. p a r t i a l  wave amplitudes a t  the nuclear surf  ace f o r .  even -even nucle i .  

VI. AN APPROXIMATE TREATMENT OF ALPHA DECAY 

An approximate .method , tha t  was developed and w a s  used t o  t r e a t  

' even-even nucle i  w i l l  be described. The equations ' for  favored alpha 

decay of even-even nucle i ,  which have been derived previously, a re  



Here only the  alpha p a r t i a l  waves having angular momenta 0,  2, 4, and 6 
a re  included, Z i s  the  charge of the  daughter nucleus, m i s - t h e  reduced 

mass of the  system, E i s  the  t o t a l  decay energy of the  a t h  alpha wave, a - 
and Q i s  the  i n t r i n s i c  nuclear quadrupole. 

0 

We can see t h a t  t he  solut ions  of . t h e .  s e t  of equat2ons.(13) would '., 

be regular  o r  i r regu la r  coulomb f m c t i o n s  were 'it. not . fo r  the  quadrupole 

moment, t ha t .  . i s ,  the r i g h t  hand s ide  of ' t he  equat.ions. wouXd vanish . i f  

Q .were .zero. From an examination of.  the  s e r i e s  expansion .of the  W .K.B. 
0 

integrand, we surmised t h a t  the  . r ad i a l  wave functions .of th.e alpha 

p a r t i a l  waves might be wel l  represented by functfons of the  form 

. . 

i n  the  region df the  nuclear surface.  Here a and f3 akk parameters fixed, a a 
over a l l  r values, and G i s  the  i r r egu l a r  Coulomb function. It i s  c l ea r  a 
t h a t  f3a/r312 approaches zero a s  r approaches so one .may iden t i fy  are as  

the  square roo t  of the  quotient  of the  alpha partial-wave i n t ens i t y  in ten-  

s i t y  and i t s  ve loc i ty .  We determine f3 by s~ibs.l;ituting the. approximate a 
solut ion i n t o  the  d i f f e r e n t i a l  equations and demanding t h a t  they be ex- 

a c t l y  s a t i s f i e d  a t  some a r b i t r a r y  intermediate distance,  (2.0 x 10-I' cm , 

seemed t o  be optimum). The equations which one obtains are  algebraic; 

t h e i r  right-hand s ides  are the  same as ' those of equations ( f 3 ) ,  with 

(a. + $0 Ga (4 

simplyj subs t i tu ted  fo r  u ( r ) .  . , 

R / 

= r i g h t  hand a'i.de of Eq. 13a, (14a) 
r , . 

3 Gg ( r )  15 
= r i g h t  hand s ide  of Eq. 13b, (14b) ,u 

3 G 4 , ( r )  15 G4 (4 
5/a+-4r7/2 = r i g h t  hand s ide  of Eq. 13c, (14c) - 

r -8 .. : 

= r i g h t  hand s ide  of Eq. 13d. (14d) 



When we obtain the  values of a and p we may r ead i l y  compute a a' . .  . , -. . . . 

the  alpha p a r t i a l  wave amplitudes at the  nuclear surface by simply set$-:.. 

t i n g  r = r i n  .the qpproximate solut ion.  . ,  ., . .  . .. . . .. 
0 

The .distance a t  which .we .demand. t h a t  the  approximate solut ions  - 

s a t i s f y  the  d i f f e r e n t i a l  equations i s  somewhat a rb i t ra ry ;  the  reasons f o r  

. choosing 2.0 x 10- l2  cm are  completely pragmatic - using t h i s  value, we 

found t h a t  we could ge t  be s t  agreement with r e s u l t s  of de t a i l ed  numerical 
242 

and u ~ ~ ~ .  I f  we choose 1.5 o r  2.5 x 1 0  
-12 

in tegrat ions  f o r  both Cm 

cm, the  var ia t ions  in ,  surface amplitudes over t h i s  range i s  abai~t. 104, 

It seems qui te  reasonable t h a t  i f  we were t o  add another term t o  the ap- 

proximate solut ions ,  i e . ,  {aa + Be/r  3/2 + Ta/r3) Ga ( r ) ,  these  var ia -  

t ions  could be minimized. 

1 AMPLITUDES OF ALPHA PARTIAL WAVES AT THE W C U A R  SURFACE 

A s  quadrupole moments a re  not  known very wel l  i n  the.heavy-element 
! 

.region, we .have calcula ted the  surface amplitudes f o r  severa l  values of 

the  nuclear quadrupole monle1i.t. Because a i s  the  .square roo t  of the  i n -  a 
t e n s i t y  of the  1 wave, divided by i t s . v e l o c i t y ,  t h e r e . i s  a s ign ambiguity. 

We have included a l l  e igh t  phase choices .here. ~ n ~ u l a r  cor re la t ion  work 

on Am 241 l4 seems t o  ind ica te  t h a t  the  D wave i s  i n  phase with the S 

wave wi th in  the  b a r r i e r ,  but  the' interpl-etat ion of the  u~~~ alignment ex- 
7 '  periment i s  somewhat ambiguous. 

The da ta  used i n  t h i s  analysis   a able V)  come from two summarjr 

compilations. 2'15 Resu l t s  of the  analysis  &re shown i n  + a i l e n .  

Table V 

Data used i n  analysis  of alpha-decay of even-even heavy elements 
Isotope Energy Abundance 

( ~ e v )  . . . . (.% 1 . . . .  . .. 
Fq 



Table .V , (continued).  , . . 
. . . , .  , .. . 

Iso tope  ' 'Energy " Abundahce : ' 
. . 

( ~ e v )  ($1 . - . . ... :. Fa . 



-20- 

Table V (continued) 

Isotope ~ n e r g ~  Abundance 
( ~ e v  ) (k) , 

.Ka 

5.162 78 8,. 718 

a The difference i n  .velocity of the  various waves was: ignored. i n  calcu- 
l a t i n g  these .bo.unddy condit ions.  

. :  b ~ o  a i n t e n s i t y  given. I .  



Table 'VI \ 

. . Results . . 

The f i r s t  two columns of the daka compilation. give the chazge Z and mass 
. . . .  

A ,of the parent nucleus. The .next four c o l m ~ t ;  give .the re la t ive  ampli- 

tudes of the alpha part i 'a l  waves on the spherical surface given by 

R = X (where i s  1.45 x 10-13 A). The amplitudes m-e given 
0 0 

f o r  a l l  eight choices of phase and three values of.-tihe in t r ins i c  quadru- 

... pole moment, Q are  .used i n  the calculation f o r  each phase .choice. 
0" 



. . Relative phase 

P l u s  Plus Plus Plus 

Z A 1 - 0  1  = 2  1 . 4  1 = 6  - - 
Q0 = 8 



Relative phaee . . .  .. . 

Plus 'Plus- . ., Minus Plus 

Z A 1 = O  1 = 2  1 . 4  . 1 = 6  - - 
Q; = 8 



. . 

. . +  . . . . .  

. . . . . .  , .- Relative phase . ' 

. . . '  . 
Plus . Mlaus . Plue 

. . . . . . . .  - - .. -. . . . .  ..... .. . Minus . . 
Z A 1 n O  1 1 2  1 = 4  1 = 6  ' - -. 

. . .  . Q 0 = 8  

9 0 2 2 8 ,  , L O 0 0 0  1.7 1.6 8 - 0.5 3 7 3 0 . 2 7 7 1  

.... 2 3 0  .......... ? O  ................... l.O.C!?O Y . 2 6 9  . _ . .  - .  !?.?0.63. ....... 0.2861.. 

9 2  . 2 3 0  l O 0 0 0 ,  1.6 5 7 8 - 0.3 3 1 0  0 . 2 0 9 5  

. . 9 2  ' , 2 3 2 . -  1.0000 1 . 5 6 0 5  - 0,4628 0 .2179  
. > 

. . . . . .  .... .... 9 2  2 3 4  . . ~ 0 0 0 0  1 , 3 7 3 5  , - 0.5858 0 2 2 8 4  

9 2 2 . 3 6 . .  1 0 0 0 0  1 .3348  - 4 9 4 6 0  0.3 1 5 4 

9 4 2 3 6  l o 0 0 0  1 , 3 2 0 2  - 0 .0876  0.2 4 5 2 - 
94 2 3 8 , . ,  _ l . O O O O , . .  15 .996  - 0.0490 - O P 0 6 2  - ........... .....-.. 

9 4  . 9 4 0  1.0 0 0 0 l.0.631 - 0,0256 0 . 4 6 7 5  - 
, . 

9 4 2 4 2  1.0 0 0 0 15 .017  , -- :0 .2661 - 0.0232 . 
. . .  ... .... 9 6  2 4 2  1.0 0.0 0 o , s e o o  - o i 5 0 9  - 0 3 7 4 7  . 

. , 9 6  2 4 4 1.0000. 0.9612 - 0.1714 - 0 3 4 9 1  

9'8 2 4 6  l 0 . 0  0 0 0.8 0 2 4 - 0.0 0 0 9 . . .  0.3 7 2 0 . 

? 8  a s 0  ..l.ooo.o. 0.7132 - 05.859 - 0.0166 .. 

98  .,. 2 5 2  1.0 0 0 0 0,5943 - O J 6 6 2  0.0 7 3 9 

100; ' 2 5 4  , 1 . 0 0 0 0  0.4914 - 0.2069, ' 0.0 8 4 9 

Q . - . 1,. . . . . . . . . . . . . . .  
0 - 

9 0 2 2 8  1.0 0 0 0 . t 9 1 4 4  - 0.4715 . ,  0.4 1 8  7 

. . . . . . . . . . . . . .  9 0  . . . . .  2 3 0  .... t o o 0 0  l .5204  - 0.6958 0.4 2 8 6 

9 2  . 2 3 0  . ~ 0 0 0 0  1.8500 - . 4 2 3 0 4  0.30 9 8 

9 2 2 3 2  l P 0 0 0  l;lUY7 - 0.4'007 0.3 2 4 3 

9 2 . .  z 3 ?  1.0 0 0.0 1 . 4 5 9 1 ,  - 0,5589 0.3 3 8 8 

9 2 2 3 6  1.0000 l .3917 - 0,9798 ' 0.4 7 3 4 

9 4 2 36 1.0 0 0 0 l .4205 - 0.0357 - 0.2636 - 

. . 9 4 , 2 3 8  l P 0 0 0  3.2637 - 0.1826 - 0,4607 . - 
9 4 2 4 0  1.0 0 0 0  1 5 . 0 2 5  - 0,0847 - 0,5167 - 
9 4 2 4 2  l D 0 0 0  1 4 6 3 3  - 0 .3968  - 0,0478 - 
9 6 2 42 1.0 0 0 0  LO134  - 0.2765 - 0.4313, - 
0 6 2 4.4 1.0 0 0 0 ,' 0 9 9 0 6  - 0.2925 - 0.4028 - 
9 8 2 4 6  1.0 0 0 0 0.7935 - 0.0907 - 0.4073 - ' 

, . 98. 2 5 0  1.0 0 0 0 0;IOOO - 0 2 6 7 1  -0.0329 , - 
D 8 2 5 2  1.0 o o o 0 .5479  - o j 3 1 5 .  0.1 o 17 

100  2 5 4  l P 0 0 0  0.4267 - O j 8 1 7  0.1 1 8  0 
. . . .  . . . . 

Q ; . , 4 . . .  . . . . . .  
0 .- ... ... .... .- .. -- . . . . . . . . .  - -, . . . . . - . . . . . .  

9 0 2 2 6 .  1 , 0 0 0 0 '  . . 2 J 9 1 1  , - 0.3815 . 0.5985 

.- . . . . . .  . . 9  0 ......... . 2 3 0  1.0 0.0 0 1 . 6 4 1 9 ,  - '  0,6813 . 0 . 6 0 3 0  

9 2  - 2 3 0 1.0 0 0 0 , 25 .195  - - 0.0930 0 . 4 3 1 4  

9 2  . . 2 3 2 ,  LO,OOO, l .9120  - 0 3 1 9 3  0.4 5 4 2 , 

. -  . . . . .  ? ?  . . . . . . . .  2.3-4 _--- -1.''-0.90 ......... 1.5697.. . .  : 0.5262 . .  ".4?.14.. . 

, .  9 2  . . 2.36 1.0 0 0 0 l.4623 - LO236  0.6 6 6 0 

9 4 .  .. 2 3 6 . . . .  1.0 0 0 0 1.5545 , - O J 9 2 5  - 0.2970 - 
.. ..94 ?3.8-._ -?4"? Po-.. . 1 3 6 0 4  0 .3482  - 0.5369 - 

. . . .  j4 . . 2 4 0 ' .  LO.oO?  . 1 5 . 5 4 8  - 0,2172 - 0.5827 - 
9 4 2 . “ 2 .  1.0 0 0.0 ' l .2433 - 0,5547 - 0.0858 - 

............... ?.6 . 2 52 ...... ..Go 0 O ?  l . 0 5 8 9 .  :.. 0.4.268 - 0.5.0?0--.:.. 

9 6 2 4 4  . L o 0 0 0  . .  , 1 . 0 3 0 6  - ,  0 , 4 3 6 1  - 0.474.0 

9 8 .2 ,46 , 1 ,0000  0 .7867  - OJ957 . - 0.4539 - 

. . . . . . . . . . .  ?a  . . . .  8-50 .... . . l .op9o ....... 0.6894 . 025 .76  ... -%0-?.6!5 .... -... 

98 2.5-2 .. 1.00.00.. . . .  0.4965 . - 0.0964 . . .  O J 3 0 l  

100 2 .SA l.0000.. :.. 0.3547 T 0.1583 . . .  0.1 5 2 7 
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Relative phase 

Plus Plus  '. Plus  Minus 

2 A I Z O  1 = Z  1  = 4  1 = 6  -- 
Q, = 8 

Relative phase 

P l u s  Plus Minue Minus 

. Z A 1 - 0  1  E Z  1 . 4  1 = 6  
o0 =8 -. 



Relative phase 

. . . .  . . . . . .  mus' Minus Plus Plus 

Z A 1 - 1 = 6 - - 1 = o  1 1 2  

QO = 8 . . 

Relative Phase 

. -., P I U S  kinus EILS.:+ 

Z Z ,  A I, =O L=L L=4 L=6 . 
h, ..., -.- -- 

Q0 = 8 
. . 

0 4 2 3 6  I.0000 1.4522 - '  0,7935 - O J 8 1 2  



VIII. APPROXIMATE METHOD FOR OBTAINING PHASE SHIFTS 

Although the  phase s h i f t i n g  due t o  the  quadrupole in te rac t ion  

does not  a f f ec t  any experimental observables i n  alpha decay of even-even 

nucle i ,  it w i l l  en te r  i n t o  such ;things as  alpha-gamma angular cor re la t ions  

and alpha angular d i s t r ibu t ions  f o r  al igned nucle i  i n  odd-mass nucle i .  

.We.may obtain approximate r e l a t i ons  f o r  the  phase s h i f t i n g  due t o  

t he  quadrupole in te rac t ion  by noting a few things .  The main .contribution 

t o  the  quadrupole phase shifting..comes when uUi = 0, ( i . e . ,  near the  

c l a s s i c a l  turning po in t ) .  When t h i s  i s  the case, the  functions ui may 

be represented by s t r a i g h t  l i n e s .  On the  other  hand, the  u ! s . a r e  a l s o  
4  

represent,a61e as Coulomb functions. i n  t h i s  reg&. Using t h i s  information, 

we may est imate the  quadrupole phase sh i f t i ng .  We s e t  u. . = ( r  - r i )  , 
1 i 

where a i s  the  square .root  of the  i n t ens i t y  and r i s  the  .point a t  which 
i i 

the Coulomb function:. of t h i s  E and would have f t s  node. As the  formu- 

l a e  '.are .well known f o r  the  ph$se s h i f t i n g  due t o  angular.homentum, we 

t r e a t  the  quadrupole in te rac t ion  as a pseudo-angular momentum. We then 

s e t  

e; (1; + 1 )  = e, (el + 1) + (15 > 
3 

0 
Evaluating the  s econd , t em at t he  point  where u" ,= 0, t h a t  i s ,  r we 

i i ' 
obtain 

. . 
2mQ e 2 

o a .  (ry - r .-) 
e p ;  + 1 )  = ei (ei  + 1 )  + J ,' J 1 ail 5 .pi2r0 

( 16) 

i J: . ..II - Ti)  

The numerical ~ o e ' f f ~ c i e n t s  a, a re  given on the  right-hand sTde df .,:: 
A J  0 

equations (13). To determine the  points  ri and r we make the  r e -  
i , 

l a t i o n s  given f o r  i r regu la r  Coulomb functions at  the turning point ,  
16 



Because the  functions u are a l so  s t r a i g h t  l i n e s  i n  t h i s  region, we have . . i . . 
0 

G !  = aipi; I, - 4  = "i r e  We ca lcu la te  pi ( t he  a t  which ul' = 0 )  by 
1 1 

0 
and by the  use of ~I!I i t e r a t i v e  procedure. F i r s t  we 'calculate p neglect.- 

i 
ing the quadrupole in teract ion;  we then put i n  the  quadrupole in te rac t ion  

t o  ca lcu la te  l?; (1; + 1) and then ca lcu la te  I,:. We then ca lcu la te  another 
0 0 ' value f u r  4 '  (1; + 1) urld continue u n t i l  p0 d o e s  not change :f.. pi - pi i s  i i 

t h e  quadrupole phase s h i f t ,  

We may compuu ghase shffta cn.lc.illated i n  t h i s  manner with those 

obtained through the  de ta i l ed  calcula t ions  of Rasn~ussen and  ans sen^ fo r  

Cm242 assuming a l l  alpha p a r t i a l  waves i n  phase, (?Cable VII). 

Table V I I  

Q u a d v o l e  phase s h i f t s  ( ra3 ians )  

and H Approximation R and H Approximation 

We .note t h a t  the  agreement i s  f a i r l y '  good f o r  the  di f ferences  i n  phase 

s h i f t . ,  It i s  the  cosine of t he  di f ference i n  phase s h i f t  t h a t  en te r s  i n -  

t o  angular-correlat ion experiments, and the  approximation seems useful  

fop calcula t ions  of cor re la t ions  .for odd-mass nuc le i .  

IX. APPLICATION OF APPROXIMAT%: METHOD TO u~~~ 

This method was a l so  applied i n  t r e a t i n g  the  alpha partial-wave 

i n t e n s i t i e s  i n  the  decay of u~~~ t o  f o w  ~ h ~ ~ ~ .  To determine the  values 

of the coef f ic ien t s  a. Q,,.IfP and B. I we applyB.F.M, - 1 t o  obtain two 
l 9  f 9  



conditions, i . e . ,  the  p a r t i t i o n  of the  R = 2 alpha wave between t he  512, 

712, and 912 s t a t e s  a t  the  nuclear surface.  We then subs t i t u t e  the  

ana ly t ic  approximation i n t o  the  d i f f e r e n t i a l  equations and demand t h a t  

the  equations be s a t i s f i e d  exact ly  at  some a r b i  t r a r y  intermed.iate distance 

(2.0 x 10-I' cm) t o  obtain four more: condi t ions .  The over -a l l  normsliza- 

t i o n  gives us a seventh condition. To obtain the  f i n a l  condition we .may 

do one :of two things: ( a )  we can use the  r a t i o  of the  R = 2 wave t o  t he  

R = 0 wave a t  the  nuclear surface obtained from a neighboring even-even 

nucleu; IJz3' or UZ3', 6;. (b)  we can use t he  r a t i o  of any two experimental 

i n t e n s i t i e s ,  bearing i n  mind t h a t  the  observed alpha i n t e n s i t y  t o  any 

l e v e l  I i s  equal  t o  I laR 1 2. Using (b)  t o  obtain the  f i n a l  condition; 
a f 

we a re  then able t o  check the  approximation with the  t h i r d  experimental 

i n t e n s i t y  and with the  amount of R = 2 wave calcula ted t o  populate the  

512 s6ate i n  the numerical in tegra t ion .  .We compqe t h e . i n t e n s i t y  pre- 

d ic t ions  of t h i s  treatment .with the  predic t ions . .of  B.F.M. We may compare 

severa l  things i n  the  following mannep.  We ,may uce B.F.M. - 1 as a 

.boundary condition .at the nuclear surface and then use B.F.M. - 2 and ' the  

analytic 'method described here t o  ca lcu la te  i n t e n s i t i e s  a t  t he  nuclear 

surface .  We.may a l so  use the  r e s u l t s  of the  numerical in tegra t ion  t o  

provide boundary conditions a t  t he  nuclear surface .  We s h a l l  ad ju s t  the  

B.F.M. i n t ens i t y  predic t ions  by the  use of t he  r e l a t i v e  i n t e n s i t i e s  of 

t he  512 .and 712 . s t a t e s .  The .comparisons are found i n  Table .VIII. 

Table VIII 

Test of B.F.M. - 2 

Boundary conditions at nuclear surfaces 

,B.F.M. - 1 Numeri c a l  in tegrat ion 
Experiment a 1  

I f  
Analytic Analytic 

i n t ens i t y  B.F.M. - 2  -approx. B.F.M. - 2  approx . 



.The agreement with expe rben t  i s  f a i r l y  good for  .i? = 2 alpha p a r t i a l  waves, 

-us ing the B.F.M. - 2 approximation; however, t h i s ,  method 'does. not take i n t o  

account d i f f e r en t  phase choices f o r  t he  alpha p a r t i a l  waves. ' I f  we con- 

s i d e r  an R = 4 wave, the  . terns  i n  the radial. equa t ions  hue t o  the  non&,ni- 

shing nuclear quadrupole mom~nt may be important i n  'A i n t e n s i t y  predic t ion 

of alpha decay, and the  predic t ions  may vary considerably, depending on the 

choice of p a r t i a l  wave phases. It i s  f o r  t h i s  appl icat ion t h a t  we f e e l  

t h a t  t h ~  ~ p p r n x i m a t e  method described here has & considerable advantage 

over the B ,F.M. - 2 approximation. 
' A calcula t ion was made 'by the  use of the  anaiytgc approximatio~l i n -  

azg 
cluding t he  R = 4 wave i n  the  alpha decay of u~~~ t o f o r m  Th . 
We can tden  p red jc t  the  alpha i n t e n s i t i e s  populating the  1112 and 1312 

s t a t e s  of !ThZz9 t h a t  a re  members of the  graund-state r o t a t i o n a l  bond. , If 

we neglect  the  R = 6 contributions (and including them would be a Herculean 

t a s k )  and apply the  da t a  on r e l a t i v e  amplitudes of alpha p a r t i a l  waves from 

. the neighboring even-even nuclides,  we obtain the  i n t ens i t y  predic t ions  f o r  

four  phase choices.  We compqe these  with B.P.M. - 2 and experimental ob- 

servat ion i n  Table I X .  

Table I X  
- - --. 

Intensity predlctionc 

I f  Rela t ive  Phase B.F.M, Expert- 

+ -6 + mental a = o  4- 

R = ' 2  + 3 - - 

.' 

%he l a rge  l i m i t s  quoted. on t h i s  experimental. i n t ens i t y  make it useless  

f o r  .d is t inguishing between possible phase choices. 
. . .  . 



x . COMPARISON WITH NUCLEAR .. -ALIGNMENT . E X P E R ~ T  .'. 
. . 

. . . . 

Some expe.riyental da ta  a r e  avai lable  .on t he .  r e l a t i ve ,  phases of . . . . .  : 

the  k? = 0 and k? .= 2 alpha p a r t i a l  waves. Roberts, Dabbs; and Parker 

have aligned u~~~ .:nuclei i n  a s i n i l e  c ~ y s t a l  of. R ~ ( u o ~ )  'NO ) and have 
3 3 

obtained an angular d i s t r i bu t i on  of alpha p a r t i c l e s  ;7 They have i n t e r -  

pre ted t h e i r  r e s u l t s  as  ind ica t ing  t h a t  the  k? = 2 . p a r t i a l  wave .populating 

the  ground s t a t e  of Th229 i s  out of phase with t he  k? = 0 wave. To a r r i ve  

at  t h i s  conclusion, they make tine assumption t h a t  the  quadrupole".coupling 
. . constant, , . .  , 

i s  negative.  Here e i s  the  e lec t ron ic  u n i t  of charge, Q i s  t he  
spec. - 

spectroscopic value .of t h e  nuclear quadrupole moment and 

233 i s  the  gradient  of the  e1e.ctroni.c f i e . ld  evaluated at  the  surfaee of U . 
The caloula t lons  of Eisinstkin~ md a r e  i n t e rp re t ed  by ~ o b e r f s  -- e t  al . 

, 
. . as  i nd i ca t i ng ,  t h a t  

i s  posi t ive  i n  the  UO'** ion.  This conclusion does not seem t o  be com- 2 
p l e t e l y  warranted, a s  we have .found t h a t  f o r  b,oth unscreened nonrelat&.-:': 

v i s t i c  and screened r e l a t i v i s t i c 1 8  .wave functions i s  negative, \ 

' so there  i s  a p o s s i b i l i t y  t h a t  q w i l l  be pdsit lve.  I f  we define the  per-  
2 2 cent of k? = 2 admixture i n  the  population of t he  512 stake as 100 6 /1+6 ; 

Roberts -- e t  a.1. show from the  measurements t h a t  .they have made t h a t  

Using the  values of 6 which we .obtained & ' t h e  numerical in tegra t ion  of 

u ~ ~ ~ ,  we may then  ca lcu la te  a value f o i  q. I f  the  k? = 2 wave i s  i n  phase. 

.with the  k? = 0 wave, we have 6 = 0.577; if the  k? = 2 wave . i s  out  of phase 

-with the  k? = 0 wave, we have 6 =  .-0.577. For' the  k?' =. 2 wave i n  phase we 

.calcula te  = 0 . 0 2 7 7 ~ ~ ;  , fo r  the  k? ' = 2 wave out of phase, we .calcula te  k 



9 0 i;=:-0.0418 K. Roberts .e t  -- a l . g i v e  value f o r  191 of 0.0388 k .0086'~ 

from spec i f ic  heat  measurements, but  the  s ign i s  not determined i n  these 

measurements. Robe-rts -- e t  al. argue . t h a t . t h e  s ign of ql. i s  negative i n  a 

-- 237 l9 . From paramagnetic - manner' analogous t o  Bleaney e t  al. f o r  Np . 
r e s o n q c e  measurements, Bleaney shows t h a t  the  magnetic moment of Np 237 

and the quadrupole coupling constant of Itb(Npo2) (NO ) must have opposite 
3 3 

s igns .  Bleaney,suggests . that  the  magnetie'moment, p, i s  pos i t ive  and 

' q i s  negative. .on tHeoretIcctP gruui~ds . Our value., caloulated f o r  the 

1 '= 2 .wave put of phase with the L = 0 is, well  wl.thin the  l i m i t s  of e r r o r  

of the. ir  measurement, and the  value f o r  the  1 = 2 wave .h phase with t h e  

& - 0 seems t o  be outs ide  the 1.Ti.mits of errozQ, 

We . w i l l  be able t o  make a defirlll;e phase choice only when more 

experimental da t a  be.come;. .available.  E i ther  a high-precision de.termina- 

t i o n  of the  populations of the  1112 and 1312 l e v e l s  of !ThzZ9 by a lpha  

w i l l  d e f i n i t e l y  determine the  r e l a t i v e  phases of the  .l = 0 and t he  = 2 

p a r t i a l  waves. 

X I .  COMPARISON EVEN-RmN A P P R O X ~ ~  

W A W N T  WITH l?R&AN 'S  TEBAlylENT 

If we l e t  a ' be the  expansion coe f f i c i en t s  of the  .Legendre funct-  a 
ions on our spher ica l  nuclear  surface^ and b be the rec iproca l  of the  a 
:product of t he  hindrance fac tor  and the  cen t r i fuga l -bar r ie r  reduction 

fac tor ,  the re  e x i s t s  a matrix such t h a t  ba = 5, ka 9 a ,  ( B ) .  aa ,  fo r  all 

phase ' choices of b ~r8man 'has .der.ived. the  elements of such .ma.trices a 
. i n  h is .  treatment of .the alpha decay of spheroidal  nucle i .  TO ca lcula te  .. 

. the  .value of B, we use Fr5mants equation (VI-9), leaving out the  un i ty  

term i n  the  f i n a l  f a c to r  and usfng (TW-2). t o  obta2.n his ' .q. ' ~ h i s ~ m ' a t r l x  d 

has been calcula ted f o r  Cm242 alpha decay as. wel l  a s  an equivalent 

matrix -derived:by Rasmussen .and Hansen, from numerical. in tegra t ion  of . the 

wave equations .9 I n  Table X we compare these  two matrices t o  thz one 

obtained from our ana ly t ic  approximation developed here. 



Table X 

Comparison of Framan-like matrices 

a 
Matrix derived from numerical integration by Rasmussen and Hansen 

a = o  a = 2 a = 4  ~ = 6  

1. 0lg+o. 01161 -0.1674-0.0176i 0 . 0 1 1 6 6 ~ .  00217i -0.0005093 -0.000130i 

-0.2107-0.04461 0,9542 -0.00158i -0.1195 -0.OOg92i 0.007260+0,0006~gi 

0.021141-0.01-35i -0.1899-o .0595i 0.9191-0.00360i -0 ~008-0.00187i 

-0 ,00l084-O, 0 ~ ~ 1 6 i  o .01885+0.0187i -0.2052-0.0893i o .g086-0.0241i 

b 
Matrix derived .from .WbhanB s treatment . . . 

a = o  a = 2  a = 4  a = 6  

1.019 -0.193 . 0.014 -0. 0005 

-0.193 0. 908 -0.158 . ,  . : 0.014 , 

0.014 -0.158 0.917 1 -0.155 

-0.0005 0.014 -0.155 0.917 

Matrix derived from analytic treatment of t h i s  paperC 

It i~ interest ing t o  note tha t  the Fr8man treatment gives a matrix 

whi'ch corresponds rather  closely t o  t h e , r e a l  elements of the numerical in te-  

gration treatment, although,~rGmanos treatment necessitates a symmetric 

matrix, which . is  not the case i n  the numerical treatment. The .present 

treatment corresponds more nearly t o  the sum of the r e a l  and imaginary par ts  

of the matric elements of the numerical treatment, and the matrix i s  not 

symmetric. 



X I I .  RESULTS OF THE NUMEiICAL INTJ3GRATION OF u~~~ 

The r e s u l t s  of the  numerical in tegrat ions  of u~~~ may be expressed , 

i n  several  ways. I n  analogy with Frsman, we give matrices through which 

one may convert amplitudes of  p a r t i a l  waves at  the  nuclear surface of ampli- _ 
112 tudes a t  i n f i n i t y  which are  ( in tens i ty /ve loc i ty )  . 

Let a t t  be a column vector giving t he  amplitudes of p a r t i a l  waves 

a t  the  nuclear surface ,  where t denotes indices R and If. We may r e l a t e  

t h i s  t o  a colmn vector  b which gives the amplitudes of the  p a r t i a l  
t' 

waves a t  i n f i n i t y ,  by an equation of the. form b - 
t - t '  k t . t t a b '  . We then 

kt , t t  rn to  ~ w o  matrices,  

* i n  the  case of t he  r e a l  ( i r r e g u l a r )  components, and i n  the  c'ase of the  

.imaginary part 's,  

I n  both cases the  Coulomb functions ape evaluated a t  the  nuclear radius ,  
- 2  

i n  our work chosen t o  be 9 .0  x 10-:?cm. The matrices k '  a re  s imilar  
t ,tt 

t o  those given hy ~r81nan~ and by Rasmussen and. ~ a n s e n l l  and a r e  a con- 

venient way of displaying the  de t a i l ed  e f f e c t s  of the  quadrupole i n t e r -  

ac t ion.  The metrlces k g  bc.como .simple lzn,it, matrices 6 t ,ts i n  the  
L,Lq 

l i m i t  of zero nuclear quadrupvle moment. It should be .pointed out  t h a t  

these matrices apply t o  a spher ica l  s u f a c e  at t he  nucleus whereas 

Fr6fnar.k matrices a re  given f o r  a spheroidal  nuclear surface.  

From the  imaginary p a r t  of the  numerical in tegra t ion  we obta in  

t he  matrix k t  t , t l   a able .XI). 



Table X I  1 

. , .. . . . . + ~  

k't,t '  matrix from imaginary pa r t  of numerical in tegra t ion  

Table XI1 shows the  matrix k t t j t ,  obtained. from the  real  p a r t  of the  numerical 

in tegra t ion .  

Table XI1 . , 

- - .- 
k t  t t t  matrix from r e a l  pa r t  of numerical?.integration 

1.1, =5/2 I I ,  =5/2 I I ;=7/2 r =9/2 



I n  summary we, b e l i e v e  . . t h i s  de t a i l ed  ri@elpi$al : i n t e ~ . a t i o g  of the 
. , 

alpha-decay wave equation f o r  U233 &ows the  v a l i d i t y  of the  Bohr+Framan-. 
. . 

Mottelson hypotheSis (B  .F.M. . - . 1 )  . t h a t  .. fo r  favored .5lph,a e , c q y  there  i s  

zero project ion of  alpha angular momentum on the  nuclear-symmetry .axis ..1.. .:.: 

while the alpha i s  n e q  the surface.  The approximation (B.F.M. - 2) t h a t  

the projec.tion rernaino zero . nea.r the c l a s s i c n l  turning point  i s  shown 
. . 

t o  be d f a i r l y  good approximation f o r  the  r e l a t i v e l y  abundant ' i  = 2 wave 

bu t  a very poor approximation f o r  the weak & = 4 wave. The ana ly t i c a l  

approxQation based on modified Coulomb functions i s  shown to .g ive  r e s u l t s  

nearer tkwse of t h e  numerical in tegrat ion than d.oes the  B.F.M. - 2 ap- 

proximation. The extra .phase  s h i f t s  due t o  the  quadrupole . in te rac t ion  
I 

were derived, and . the  s h i f t s  most s i gn i f i c an t  t o  the  i n t e rp re t a t i on  of 

nuclear-alignment experiments were she+ t o  be negl igibly  smail.  

Through approximate methods, we a re  able t o  obt'afn information 

.concerning t qe  alpha decay of deformed nuc le i  which was .heretofore ob- 

t a inab le  only through de ta i l ed  numerical in tegra t ion .  We have deve.loped 

approximate methods f o r  ca lcu la t ing  both alpha . p a ~ t i a l  wave amplitudes 

at the  nucleqr surf ace and phase s h i f t i n g  caused by nuc leax -quadrupole 

deformation, usi.ng R small f r ac t i on  of the  computer time involved i n  a 

numerical in tegra t ion .  
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