

United Kingdom Atomic Energy Authority
INDUSTRIAL GROUP

Information Bibliography
NUCLEAR PROPULSION FOR SHIPS

by

B. YATES

Library and Information Department
Research and Development Branch, Risley

Printed and Published by

Industrial Group Headquarters, Risley, Warrington, Lancashire.
1958

CONTENTS

SECTION I : General..... pp. 3 - 9

SECTION II : Design and experimental details

- (1) General pp. 10 - 22
- (2) Large Ship Reactor and Carrier Vessel Reactor pp. 22 - 25
- (3) Submarine Advanced Reactor pp. 25 - 34
- (4) Submarine Intermediate Reactor and "Seawolf" pp. 34 - 47
- (5) Submarine Thermal Reactor and "Nautilus" pp. 47 - 53

SCOPE The interests of both ship and reactor designers were considered in compiling this wide selection of book, unclassified report and journal references to the use of nuclear power for ship propulsion. Sources used were U.K. and U.S. reports abstracts, Nuclear Science Abstracts, Engineering Index (1948-56) Industrial Arts Index (1957 -), and the index to the "Information Bulletin." (429 references.) (auth.)

SECTION I : GENERAL

BOOKS

1. ATOMIC INDUSTRIAL FORUM, INC.. and DENVER RESEARCH INSTITUTE.
Uranium and the atomic industry: proceedings of a meeting for members, June, 1956.
New York, The Forum, 1956. pp.183.

pp.70-85, atomic propulsion of merchant ships.
2. BLAIR, C.
The atomic submarine. Odhams, 1955. pp.224.
3. FAYRAM, R.A. and others
Hazards evaluation for nuclear merchant ships.
In: *Advances in nuclear engineering: proceedings of the Second Nuclear Engineering and Science Congress, held at Philadelphia. 11-15 March, 1957.* Vol.1, pp.470-5.
New York, Pergamon Press, 1957.
4. MURPHY, C.P. and GATEWOOD, A.R.
Development of safety standards for nuclear propulsion of merchant ships.
In: *Advances in nuclear engineering: proceedings of the Second Nuclear Engineering & Science Congress, held at Philadelphia, 11-15 March, 1957.* Vol.1. pp.465-9.
New York, Pergamon Press, 1957.
5. NATIONAL INDUSTRIAL CONFERENCE BOARD INC
Atomic energy in industry: 4th annual conference
26-28 October, 1955.

pp.202-8, nuclear power for commercial ship propulsion.
6. NUCLEAR ENERGY RESEARCH BUREAU.
A new era in shipping - the nuclear age. New York, N.E.R.B., 13 March, 1956.
pp.50. (N.E.R.B. report no. 32.)
(Available to members only)
7. NUCLEAR ENERGY RESEARCH BUREAU.
A study of the future of nuclear power in the shipbuilding industry. New York, N.E.R.B., 1955. pp.34. (N.E.R.B. report no. 12)
(Available to members only)
8. NUCLEAR ENERGY RESEARCH BUREAU.
What the new atomic submarine programme means to investors. New York, N.E.R.B., 28 February, 1958. pp.28. (N.E.R.B. report no. 81)
(Available to members only)
9. RAYTHEON MANUFACTURING CO.
Nuclear reactor data. 2nd ed. Waltham, Mass., 1956. pp.21.

Basic data relating to all known nuclear reactors

10 UNITED STATES. Congress. Bills.
Hearing by the Committee on Merchant Marine and Fisheries, House of Representatives, [on] a bill authorizing the construction of a nuclear-powered merchant ship to promote the peacetime application of atomic energy, and for other purposes. 84th Cong., 1st session, (Washington, U.S. Govt Printing Office), 7 June, 1955. pp.22. (H.R.6243 and 6276)

11. UNITED STATES. Congress. Joint Committee on Atomic Energy.
Hearing before the Subcommittee on Legislation, (on) authorizing legislation for destroyer reactor plant. 85th. Cong., 2nd. session, (Washington, U.S. Govt Printing office), 14 March, 1958. pp.8.

12. UNITED STATES. Congress. Joint Committee on Atomic Energy.
Hearings on 7 March and 12 April, 1957. Naval reactor programme and Shippingport project. 85th Cong., 1st session, (Washington, U.S. Govt. Printing Office), 1957. pp.101.

REPORTS

13. AECU-3166 NEWPORT NEWS SHIPBUILDING AND DRY DOCK COMPANY, Newport News, Virginia.
Preliminary economic report on the application of atomic power to merchant ships: pt. 1, mixed dry cargo ships; pt. 2, oil tanker ships, by W.J. Burns. April, 1956. pp.116.

14. AERE RP/M 53 U.K.A.E.A. ATOMIC ENERGY RESEARCH ESTABLISHMENT. Reactor Physics Division, Harwell.
Hazard from normal marine accidents to merchant ships propelled by nuclear-power plants, by B.T. Price. 28 December, 1954. pp.5.

Danger likely be acceptable unless there are at least 100 nuclear propelled ships operating in the world.

15. AGN 8 AEROJET-GENERAL NUCLEONICS, San Ramon, California.
Safety considerations for nuclear merchant ships, by R.A. Fayram and H.J. Schneider. 15 October, 1956. pp.32.

Summary of results of studies and estimation of the intensities of radioactive contamination of seawater after an accident to a hypothetical ship powered with a 60 MW reactor. Use of chelating agents to reduce dangers from contamination is considered.

16. IP 228 UNIVERSITY OF MICHIGAN, Ann Arbor, Michigan.
Nuclear tanker economics, by H. Benford. July, 1957. pp.65.

JOURNAL AND OTHER REFERENCES

- 17 *Economics of nuclear ships*
CONNOLLY, T J and WILHELMSEN, J
Atoms and Nucl En , vol 9, no 5, May, 1958, pp 151-5
- 18 *Safety of nuclear ships in port*
FLETCHER P T
Atom, May, 1958, pp 10-6
- 19 *Nuclear power and ships*
RIGHTON, F G
Jt Pan Nucl Mar Prop J , vol 2, no 1, April, 1958, pp 41-5

Considers advantages and disadvantages of nuclear propulsion for surface vessels and submersibles
- 20 *World progress with the atom since Geneva*
O'DONNELL A J
Jt Pan Nucl Mar Prop J , vol 2, no 1 April 1958, pp 46-51

Groups studying nuclear propulsion for shipping in various countries are outlined
- 21 *The nuclear propulsion of ships*
Beama J , vol 65, February, 1958 pp 36-7
- 22 *Atoms for nuclear ships a need for an economical plant*
JOYCE J H
Shipp World, vol 138, no 3367, 8 January, 1958, pp 25-6
- 23 *Radiation hygiene aboard nuclear submarines*
EBERSOLE, J H
Amer Industr Hygiene Assoc Quart , vol 18, no 4, December, 1957, p 305
- 24 *Japanese nuclear tanker plans*
Shipp World vol 137, no 3356, 23 October, 1957, pp 341-2
- 25 *Prospects for nuclear propulsion*
PARKER F A and others
Mar Engng/Log vol 62, October, 1957, pp 91-2
- 26 *Safety measures for nuclear ships*
CROUCH, H F
Amer Soc Nav Engrs J , vol 69, August, 1957, p 565
- 27 *Ship propulsion*
GODWIN R P
Nucleonics vol 15 no 9, September 1957 pp 114-7
- 28 *Tankers of the future?*
Economist, vol 184, no 5947, 17 August, 1957, pp 561-3

29. *Nuclear-powered passenger-cargo ship.*
MACMILLAN, D.C.
Mar. J., vol.84, no.8, August, 1957, p.8.

30. *Nuclear energy for ship and submarine propulsion.*
DUNWORTH, J.V.
Financial Times Ann. Rev. British Ind., 1 July, 1957, pp.28-9.

31. *Nuclear navy paces U.S. atomic industry*
KENTON, J.E.
Nucleonics, vol.15, no.7, July, 1957, pp.66-71, 126.

32. *It's time to look at nuclear merchant ship safety.*
FAYRAM, R.A. and SCHNEIDER, H.J.
Nucleonics, vol.15, no.5, May, 1957, pp.109-11.

33. *Atomic energy in transport. [In Russian]*
SYRMAY, A.
Atomnaya En., vol.2, no4, April, 1957, p.395.

*Includes graphs showing the relation of freight costs to speed for the three cases 1) oil fuelled tanker
2) nuclear fuelled (steam turbine) tanker 3) nuclear fuelled (gas turbine) tanker.*

34. *Some safety considerations of nuclear power reactors.*
BOADLE, C.D.
Jt. Pan. Nucl. Mar. Prop. J., April, 1957, pp.5-27.

Includes: comments on types of reactors for ship propulsion and their safety

35. *American contracts for nuclear propulsion projects.*
Motor Ship, vol.37, March, 1957, p.531.

36. *The nuclear propulsion of ships.*
Motor Ship, vol.37, January, 1957, p.393.

37. *Japan plans atomic-powered marine.*
For. Comm. Weekly, vol.56, 24 December, 1956, p.17.

38. *Navy's new nuclear look may shoot the moon for shipbuilding.*
Amer. Mach., vol.100, 8 October, 1956, p.100.

39. *Big shift is already on; navy's atomic fleet.*
Bsns Week, 15 September, 1956, p.154.

40. *Comparative costs for conventional and nuclear powered tanker.*
McMULLEN, J.J.
Shipb. Shipp. Rec., 9 August, 1956, pp.199-200.

41. *Atomic energy and propulsion.*
COCKCROFT, Sir JOHN
Atoms, vol.7, no.7, July, 1956, pp.241-7.

Possibility of harnessing atomic power to propel ships viewed from the engineering and economic standpoints.

42. *Nuclear power can be competitive.*
MADDOCKS, K
Mar. Engng Log, vol.61, July, 1956, pp.65-70.

43. *How will nuclear power affect you?*
Mar. Engng Log, vol.61, June, 1956, pp.92-5.

44. *Soviet nuclear arctic ice breaker planned for 1956-60*
Nucleonics, vol.14, no.6, June, 1956, pp.18B-19A.

45. *Outlook for nuclear merchant fleet.*
Nucleonics, vol.14, no.5, May, 1956, pp.73-6.

On question of economic feasibility, there are two divergent views in Government; Maritime Administration is highly optimistic as to chances for atomic tanker to be competitive in immediate future, whereas U S Navy is not so optimistic; considerations regarding need for new type of merchant ship propulsion, types of ships involved and design problems

46. *Nuclear propulsion.*
MADDOCK, K.
Mar. Engng, vol.61, March, 1956, p.70.

47. *Nuclear power and navy*
RICKOVER, H G
Amer. Soc. Naval. Engrs J., vol.68, no.1, February, 1956, pp.17-21.

Projection of task force of future; notes on performance of nuclear power submarines; advantages of nuclear propulsion

48. *Technical progress in marine engineering during 1955.*
Shipbldr. & Mar. Eng. Bldr, vol.63, no.572, January, 1956, pp.25-34.

Review of published work including nuclear power

49. *Nuclear power plants for marine tanker service*
SHOUPP, W E and WITZKE, R.L.
Shipb. Shipp. Rec., vol.86, no.1, 7 July, 1955, pp.6-8.

Landbased plant information is used to give insight into possible use of atomic power for propulsion of marine tanker; economic comparison between nuclear and conventional fuels

50. *Development of a nuclear-powered merchant ship.*
Bull. Atomic Scient., vol.11, no.6, June, 1955, pp.229-30.

Details from the hearings held by the Joint Committee on Atomic Energy on 5 May 1955

51. *Prospects of utilization of atomic power plants in sea transport vessels* [In Russian]
PETROVSKII, N and KLEMENTEV, A
Morskoi Flot, vol.12, 1955, pp.16-7.

52. *Impact of nuclear power on submarines.*
KITTREDGE, G W
U.S. Naval Inst. Proc., vol.80, no.4, April, 1954, pp.419-25.

Development of submarines and submarine warfare is traced from World War 1 through adoption of snorkel and campaigns of World War 2 to show limitations of electric power plant and submerged speeds; with nuclear power plant of unlimited energy, cargo carrying submersibles, such as tankers of 10,000 to 15,000 tons as well as attack vessels is envisaged

53. *How economical is nuclear power for ships?*
Mar. Engng, vol 59, March, 1954, pp.39-40.

54. *Nuclear energy and sea power.*
STEELE, G P
U S. Naval Inst Proc , vol 79, December, 1953, pp.1314-9.

55. *Atomic power - where will it pay first?*
ROTH, E B
U S. Naval Inst Proc , vol.79, no.10 October, 1953, pp.1091-1101.

Technical advantages and limitations; approaches to applications of nuclear energy for land, air, and sea transport

56. *Atomic propulsion - with special reference to marine propulsion.*
COCKCROFT, Sir JOHN
Inst Mar. Engrs Trans. vol.65, no.4, April, 1953, pp.105-12.
Amer Soc. Naval Engrs J., vol.65, no.4, November, 1953, pp.715-26.

Factors in conversion of nuclear reactors to produce propulsion power; estimated comparative fuel consumption figures for ships and submarines; present use of enriched reactors for specialised vessels is called "difficult to envisage"

57. *New fuel with a big future.*
Bsns Week, 14 March, 1953, p.94.

58. *Un project de navire atomique.*
DEVAUX, P
Nature (Paris), April, 1950, pp.102-4.

59. *Future developments in nuclear energy.*
GOODMAN, C
Nucleonics, vol.4, no.2, February, 1949, pp.2-16.

Possibility of application of nuclear power to submarines is among aspects considered

60. *Plan atomic power to drive warship.*
Northern Miner, vol.34, no.42, 6 January, 1949, p.18.

61. *Royal Navy and nuclear power.*

DANIEL, R.J.

Engineer, vol.185, no.4810, 2 April, 1948, pp.337-9.
no.4811, 9 April, 1948, pp.362-3.

Mar. Engr. vol.71, no.850, April, 1948, pp.169-70.

Engineering, vol.165, no.4292, 30 April, 1948, pp.428-31.

Problems considered under three main sub-headings including nuclear energy as a source of power in ships for propulsion and auxiliaries.

SECTION II : DESIGN AND EXPERIMENTAL DETAILS

(1) GENERAL

REPORTS

62. AECD 3228 WESTINGHOUSE ELECTRIC CORPORATION
 Atomic Power Division, Pittsburgh
 Study of the ventilation requirements for power reactor compartments: naval reactor programme, by W.O. Passarelli.
 14 May, 1951. pp.41.

 Calculation of radioactivities and allowable leakage rates of reactor coolant Variables expressed so that the data calculated are in a general form and applicable to any thermal reactor system (provided the corrosion products in the reactor coolant are the same)

63. AECU 3596 GENERAL DYNAMICS CORPORATION, San Diego, California.
 Calculation of effect of fuel burn-up on fuel and poison distribution in the marine reactor, by G. Hinman. 29 January, 1957.
 pp.25.

64. ASAE-18 AMERICAN RADIATOR AND STANDARD SANITARY CORPORATION, Redwood City, California.
 Ship design trend survey for the Atomic Energy Commission Maritime Reactors Branch, by D.L. Conklin and others.
 13 June, 1957. pp.22.

65. ATC-54-12 AMERICAN TURBINE CORPORATION, New York.
 Design study-60Mw closed cycle gas turbine nuclear power plant. December, 1954. pp.54.

 Data based on the assumption that a graphite moderated enriched fuel reactor designed for conversion or breeding is employed

66. BSC-2054-11 BETHLEHEM STEEL COMPANY, Quincy, Massachusetts
 Annual progress report, 30 September, 1954 to 30 September, 1955: USAEC study agreement. 30 September, 1955. pp.41.

 Design effort on a nuclear powered merchant vessel, nuclear powered distilling plant and a general survey of reactor types to determine applicability of each to marine propulsion

67. CF-54-8-236 OAK RIDGE SCHOOL OF REACTOR TECHNOLOGY, Oak Ridge.
 Homogeneous reactor for ship propulsion: reactor design and feasibility problem, by P.R. Clark and others. August, 1954.
 pp.134.

68. JENER 43

JOINT ESTABLISHMENT FOR NUCLEAR ENERGY RESEARCH.
Kjeller, Norway.

Atomic propulsion of merchant ships: short progress report for 1955 by the Kjeller Group. March, 1956. pp.20.

Vessels powered by thermal, heterogeneous, boiling (heavy or light) water moderated and cooled reactors are considered in these preliminary economic and technical feasibility studies. The former shows that under certain conditions nuclear powered vessels may compete with conventionally powered vessels. The technical studies have revealed a number of special problems relating to nuclear propulsion, but none that appears impossible

69. KAPL 552

KNOLLS ATOMIC POWER LABORATORY, Schenectady

The Genie Project: nuclear engineering course, by T. Trocki and others. 12 May, 1949. pp.14.

Early engineering design considerations for reactor cooling and heat transfer systems applicable to submarines are discussed

70. KAPL-M-RMM-2

KNOLLS ATOMIC POWER LABORATORY, Schenectady.

Shock and vibration in naval reactors, by R.M. Mains. 31 October, 1957. pp.43.

71. M 6159

UNIVERSITY OF MICHIGAN, Ann Arbor, Michigan.

Nuclear heat power systems for merchant ships, by H.A. Ohlgren and others. 4 December, 1956. pp.12.

72. NNSD-4 (Del.)

NEWPORT NEWS SHIPBUILDING AND DRY DOCK COMPANY, Newport News, Virginia.

Nuclear ship propulsion study; interim technical report. March, 1954. pp.20.

Comparison of weight and space requirements of another plant compared with a conventional oil-fired plant, and estimation of the preferred power range, if one exists, which favours a nuclear plant

73. NNSD-9 (Del.)

NEWPORT NEWS SHIPBUILDING AND DRY DOCK COMPANY, Newport News, Virginia.

Nuclear ship propulsion study. Interim technical report. 1 July, 1954. pp.37.

The application of a 102 Mw pressurized water reactor power plant to a C4-S1-A mariner merchant vessel is evaluated. The ship, reactor and steam plant are described, methods of waste discharge are considered, and the effects of shield weight and core lifetime on ship operation discussed

81. TID 7539 UNITED STATES ATOMIC ENERGY COMMISSION and MARITIME ADMINISTRATION.
Nuclear powered ship for American ship operators: a symposium held at Washington, 30 July, 1957. 30 July, 1957. pp.196.
Marine applications of nuclear power are discussed with regard to maritime regulations and marine insurance. The designs of the first nuclear merchant vessel and its pressurized water reactor are given. Other reactor designs proposed are boiling water, organic moderated and gas cooled reactors.

82. WAPD-152 WESTINGHOUSE ELECTRIC CORPORATION.
Atomic Power Division, Pittsburgh.
Shock design notes, by C.M. Friedrich. July, 1956. pp.77.
Special problems in shock analysis in connection with nuclear power plant design for submarines are considered.

83. WAPD-CE-43 WESTINGHOUSE ELECTRIC CORPORATION,
Atomic Power Division.
Design basis for reactor vessels, by B.F. Langer. 18 October, 1955. pp.14.
Basis of design of reactor pressure vessels for naval service.

84. WAPD-S5W-C-288 WESTINGHOUSE ELECTRIC CORPORATION.
Atomic Power Division.
Engineering report of S5W [attack type submarine reactor] condensate pot: calculations and results, by G.H. Hasley. 26 December, 1956. pp.12.

85. WAPD-S5W-TH (S)-352 WESTINGHOUSE ELECTRIC CORPORATION.
Atomic Power Division.
Result of investigation on recommendations concerning the SSN 585 [attack type submarine reactor] coolant pressurizing system contained in the report of the S5W fluid system review committee, by J.A. Logan. 7 January, 1957. pp.4.

86. WAPD-SFR-S.86 WESTINGHOUSE ELECTRIC CORPORATION.
Atomic Power Division.
SSN578 [Submarine Fleet Reactor] coolant purification system; design description, by W.J. Sigley. 25 September, 1956. pp.29.
Includes: coolant purification system of SSN 579 [Submarine Fleet Reactor]. Equipment, components, piping, instruments, controls, protective devices, principles of operation, and safety precautions.

87. WAPD-TH-290 WESTINGHOUSE ELECTRIC CORPORATION.
Atomic Power Division.
Pressure drop through S3W Submarine Fleet Reactor bottom plate orifice model, by B.W. LeTourneau and R.D. Oldenkamp. 12 January, 1957. pp.10.

JOURNAL AND OTHER REFERENCES

88. *C.G.G.C. reactor for ships.*
Atoms and Nucl. En., vol.9, no.5, May 1958, pp.162-3.
89. *O.M.R. and ship propulsion.*
PAULSEN, F.R.
Atoms and Nucl. En., vol.9, no.5, May, 1958, pp.160-2.
90. *Ship propulsion by nuclear power: pt.1.*
ILLIES, K.
Atoms and Nucl. En., vol.9, no.5, May, 1958, pp.156-9, 184.
91. *Design of the power plant for the first nuclear merchant ship.*
WHITELAW, R.L.
4th Nuclear Science & Engineering Conference, Chicago, 17-21 March, 1958, paper 69.
pp.19.
92. *Reactor physics and core design for the merchant ship reactor.*
WOOD, P.M. and LEVINE, Z.
4th Nuclear Engineering and Science Conference, Chicago, 17-21 March, 1958, paper 96.
pp.19.
93. *Propulsion of ships by steam turbine machinery [including propulsion by nuclear reactors].*
BROWN, T.W.F.
Engineer, vol.205, no.5239, 14 March, 1958, pp.387-93.
Shipp. World, vol.88, no.3376, 12 March, 1958, pp.288-9, 297.
J. Comm. Shipbuild. & Engng Ed., 12 December, 1957, pp.5-7.
Engineering, vol.184, no.4778, 4 October, 1957, pp.444-6.
vol. 184, no.4782, 1 November, 1957, pp.569-71.
94. *Guiding nuclear subs.*
Electronics, vol.31, no.10, 7 March, 1958, p.28.
95. *Some aspects of the design of a pressurized water, ship reactor. [In German]*
BACHMANN, H.G.
Atomkern En., vol.3, no.2, February, 1958, pp.53-5.
96. *100 ton reactor vessel for nuclear surface ship.*
Heat Engng, vol.33, no.1, January-February, 1958, pp.114-6.
97. *The nuclear-powered passenger-cargo ship. ["U.S. Savannah"]*
MacMILLAN, D.C.
Shipbuild & Shipp. Record, Int. Design & Equip. Manual 1958, pp.45-55.
98. *Nuclear reactors for ship propulsion. [In Dutch]*
MUYSKERW, M.
Reactor Centrum Nederland Bull., vol.1, no.7, December, 1957, pp.81-6.

99. *Nuclear ship propulsion: an analytical approach.*
 BAUER, S.G. and KENDON, M.H.
Nucl. Engng, vol.2, no.21, December, 1957, pp.499-503.

100. *Nuclear propulsion of ships.*
 HINTON, Sir CHRISTOPHER and MOORE, R.V.
Engineer, vol.204, no.5314, 29 November, 1957, pp.774-8.
Shipp. World, vol.137, no.3362, 4 December, 1957, pp.481-4.
Jt. Pan. Nucl. Mar. Prop. J., vol.2, no.1, April, 1958, pp.1-25.
Nucl. Pwr, vol.3, no.21, January, 1958, pp.11-6.

101. *Fluid-fuel reactors for nuclear merchant ships.*
 ELLIS, C.B.
Soc. Nav. Arch. Mar. Engrs, paper 11 for meeting 14-15 November, 1957. pp.17.
Shipbuild., vol.65, no.602, mid April, 1958, pp.281-6.

102. *Some problems in the application of nuclear propulsion to naval vessels.*
 RICKOVER, H.G. and others.
Soc. Nav. Arch Mar. Engrs, paper 12 for meeting 14-15 November, 1957. pp.18.
Shipbuild., vol.65, no.602, mid April, 1958, pp.287-92.

103. *Closed cycle boiling water reactor.*
 SHAKELFORD, M.H. and MORRELL, R.C.
Mar. Engng/Log, vol.62, November, 1957, pp.88-9, 154.

Engineering and economic characteristics of a nuclear tanker powered by an AMF closed cycle, boiling water reactor.

104. *Nuclear merchant ships: pt. 1, first U.S. ship nears the ways; pt. 2, advanced ship reactors; pt. 3, world wide efforts.*
Nucleonics, vol.15, no.11, November, 1957, pp.78-87.

105. *Nuclear propulsion notes: details of the U.S. passenger/cargo ship.*
Mar. Engr, vol.80, no.974, November, 1957, p.408.

106. *Nuclear merchant ship propulsion plant: status report.*
 HASEK, C.W.
Atomic Industrial Forum, paper 57-AIF-50 for 4th Annual Conference, 28-31 October, 1957, pp.4.

107. *Nuclear power trends.*
 MOORE, W.T.
Amer. Soc. Mech. Engrs, paper 57-PWR-9, presented at A.S.M.E. Power Division Conference, Allentown, Pennsylvania, 21-23 October, 1957. pp.14.

Reviews types of U.S.A. reactors. Describes design for the first U.S. merchant ships.

108. *Basic details of the first nuclear ship.*
 MacMILLAN, D.C.
Mar. Engng/Log, Vol.62, October, 1957, pp.85-7, 146.

109. *Design of the first nuclear plant.*
GRIMES, R P
Mar Engng/Log, vol.62, October, 1957, pp.88-90.

110. *Nuclear technology - ship propulsion design with gas turbines. [In German]*
ILLIES, K
Atomkern En., vol.2, no.10, October, 1957, pp.368-76.

111. *Ship propulsion with enclosed gas turbines and gas cooled reactors [In German]*
BAMMFRT, K
Atomkern En., vol.2, no.10, October, 1957, pp.381-4.

112. *Special nuclear reactors for ships. [In German]*
JUNKERMAN, W.
Atomkern En., vol.2, no.10, October, 1957, pp.385-90.

113. *Calder-Hall-type unit for tankers.*
J Comm, Shipbuild. & Engng Ed., 19 September, 1957, pp.1-2.

114. *The Soviet atomic icebreaker "Lenin."*
Shipb. Shipp. Rec., vol.90, no.11, 12 September, 1957, pp.342-3.

115. *Nuclear ship-propulsion with reactors of the gas-cooled, graphite-moderated type.*
Shipb. Shipp. Rec., vol.90, no.10, 5 September, 1957, pp.304-6, 313.

Adaptation of Calder Hall equipment for marine purposes is discussed

116. *Atomic engines for ships. [In Russian]*
LAKHANIN, V V
Atomnaya En., vol.3, no.9, September, 1957, pp.222-7.

117. *Nuclear propulsion of merchant ships.*
Motor Ship, vol.38, September, 1957, pp.273-7

*Synopsis of papers presented at a conference on the nuclear propulsion of merchant ships
Includes: "The nuclear powered passenger-cargo ship"; "Gas-cooled reactor concepts", and
"The outlook for improvements in pressurized water reactors for marine propulsion"*

118. *Hamburg Reactor Conference of The Study Group for the Promotion of the Application
of Nuclear Energy in Shipbuilding and Ship Propulsion, 3-6 June, 1957. [In German]*
Atomkern. En., vol.2, no.8/9, August/September, 1957, pp.285-320.

*Includes: developments in the field of power reactors; some aspects of light water moderated
reactors for power applications; safety requirements on board a nuclear propelled tanker; does
the handling of fuel elements present a problem in a nuclear propelled tanker; the work of the
Atomic Energy Committee of the Shipbuilding Research Establishment in Sweden; the proceedings
of the Japanese Research Committee for application of nuclear propulsion to shipping; special
problems in reactor cooling; the influence of the cooling medium on the design of a power reactor;
research on the radiation stability of reactor materials; problems in the automatic control of the
Karlsruhe research reactor FR 2; electronic computations in reactor design*

119. *Nuclear powered tanker at the design stage.*
Times Rev. Ind., August, 1957, p.45.

120. *The atomic ship shapes up.*
WINSLOW, R.K.
Newsweek, vol.50, 29 July, 1957, pp.53-6.

121. *Nuclear power for the propulsion of merchant ships.*
SMITH, S.L. and RICHARDS, J.E.
Instn of Engrs & Shipbldrs in Scotland, paper 1228, 25 June, 1957. pp.28.
Engineer, vol.204, no.5294, 12 July, 1957, pp.46-9.
Shipping Wld & Wld Shipb., vol.136, no.3339, 26 June, 1957, pp.615-6.
Mar. Engr (Lond.) vol.80, no.972, September, 1957, pp.327-31.
" " " " no.973, October, 1957, pp.383-5.
Shipbuild., vol.64, no.596, November, 1957, pp.627-33.
Jt. Pan. Nucl. Mar. Prop. J., vol.2, no.1, April, 1958, pp.26-40.

A review is first made of nuclear fuels and fuel costs, and types of reactor available. The prospects for the commercial application of nuclear power to ship propulsion are then considered and a study made of the permissible cost for a tanker of 47,000 tons d.w. Some considerations of the engineering problems and safety precautions conclude the paper.

122. *Application de l'energie nucleaire a la propulsion des navires marchands.*
CAHEN, G. and RICARD, J.P.
Assoc. Tech. Maritime et Aeronautique, paper read June, 1957, pp.30.

123. *Heavy-water marine reactor mooted.*
Times Rev. Ind., June, 1957, p.42.

124. *Nuclear G.T. marine propulsion unit.*
Oil Eng., vol.24, no.284, Mid April, 1957, pp.474-6.

Some considerations for a single-loop closed-cycle nuclear gas turbine particularly for merchant ships.

125. *Nuclear propulsion of merchant ships.*
Motor Ship, vol.38, April, 1957, pp.18-9.

Technical and economic study of atomic tankers prepared for Norwegian shipowners.

126. *Closed cycle gas turbine nuclear propulsion plants for merchant ships.*
GIBLON, R.P. and KURZ, G.H.
Shipb. Shipp. Rec., vol.89, 7 March, 1957, pp.303-5.
14 March, 1957, pp.345-7.
21 March, 1957, pp.376-8.
Shipbuilder, vol.64, April, 1957, pp.199-213.
Soc. Nav. Arch. Mar. Engrs, N.Y. Met. Sec., paper to January, 1957 meeting. pp.65.

Aspects considered include reversing methods, starting, and control systems. Reactor design is considered with a discussion on cooling, fuel elements, control rods, pressure vessels, arrangement of machinery, and safety.

127. *Problems of nuclear ship propulsion*
Nucl. Engng, vol.2, no.12, March, 1957, pp 93-5

Nuclear propulsion of ships cannot come about simply by the installation of a land based design in a sea-going craft. Ship propulsion raises many issues which are not encountered in stationary power units; these concern basic design, detailed engineering and international collaboration

128. *20 000 s.b p. nuclear propulsion plant*
GIBLON, R P and KURZ, G H
Motor Ship, vol.37, March, 1957, pp.518-22.

Design study for closed cycle gas turbine propulsion plants described and details also given of reactor design

129. *Nuclear power for a tanker*
Mar. Engng, vol.80, February, 1957, pp.63-4

130. *Atomic propulsion for ships.*
Fairplay (Annual Bunkering number), 24 January, 1957, p 8.

Review of U S proposal for design and construction of a nuclear passenger and cargo ship having length of 595 ft beam of 68 ft and being powered by a pressurized water reactor providing 22,000 s.b p. Need for U K work is emphasised

131. *Research into atomic ships*
J. Comm., Shipbuild. & Engng Ed., 17 January, 1957, p 2

Mitsubishi Heavy Industries Company in Japan are preparing designs for two atomic-powered oil tankers, one of which will be a submarine of 20,000 tons d.w. with a length of 540 ft a beam of 69 ft, and a submerged speed of 22 knots. Tests have determined the amount of water pressure the vessel's hull could stand and the safe depth to which she could dive with a full cargo of oil

132. *Nuclear propulsion. Reactor/steam turbine proposed by DeLaval.*
Shipp. World, vol.136, 2 January, 1957, p.16.

Dry saturated steam generated in a heterogeneous boiling water reactor is condensed and slightly cooled in a heat exchanger. The reactor shielding is such that the secondary steam generated in the heat exchanger is not radioactive. This steam is collected in a drum which supplies the main turbine, turbogenerators, and turbo-feed pump, and these can be fed from a stand by boiler if the reactor has to be run at a reduced load

133. *Kernenergie fur schiffsantriebe*
ILLIES, K.
Atomwirts., vol.2, January, 1957, pp.5-9.

Work in Germany on a pressurized water reactor with geared steam turbine. In the primary circuit water at 160 atm will be heated from 270-290°C and in the heat exchanger saturated steam at 42 atm will be produced for the secondary circuit

134. *Nuclear power-gas turbines or steam turbines?*
BAYLEY, F J.
Mech. World, vol.137, no.3450, January, 1957, pp.6-8.

135. *Application of nuclear energy in shipbuilding and ship propulsion.* [In German]
 RICHTER, F.
 Bremen Chamber of Ind. & Comm. J., no.11, 1957, p.6

136. *Construction of an atomic ice-breaker* [In Russian]
 Sudostroenie, vol.23, no 1, 1957, pp.11-3.

137. *Nuclear propulsion plant for a tanker* [In German]
 ILLIES, K
 Hansa, vol.93, 22 December, 1956, pp.2458-61.
Design and layout of the propulsion machinery in the tanker Vessel has a length of 590 ft and a deadweight capacity of 22,000 tons Geared steam turbine provides a maximum of 10,000 s h p at 105 r p m , and the speed is 16 knots

138. *Possibilities for the application of atomic energy in industry and shipping.* [In German]
 Hansa, vol.93, 22 December, 1956, pp.2456-8.
Description of pressurised-water reactor as used in the Nautilus Consideration of shielding, moderators, coolants, stresses and vibrations

139. *Marine plants for nuclear propulsion.* [In Polish]
 NOCON, P.
 Budownictwo Okretowa, vol.1, November-December, 1956, p.292.
Mention of Russian nuclear icebreaker, having three propellers all at the stern

140. *Nuclear reactors for power.*
 LEPPERT, G.
 Amer. Soc. Nav. Engrs J., vol.68, no.4, November, 1956, pp.633-46.

141. *Simple, safe, low-cost reactor.*
 Mar. Engng, vol.61, November, 1956, pp.68-9.
A E C contracts with Ford Instrument Co to study closed cycle, gas cooled reactor for a tanker 707 ft long with a capacity of 38,000 tons d w

142. *Cheaper atom power for the sea.*
 Bsns Week. 6 October, 1956, pp.187-8.
Ford Instrument Co to conduct research into closed-cycle gas cooled power reactors for oil tankers

143. *Nuclear propulsion: Escher Wyss closed-cycle gas turbine proposal.*
 Shipp. World, vol.135, 26 September, 1956, pp.275-8.

144. *Atomic review: propulsion.*
 Engineering, vol.182, no.4720, 24 August, 1956, pp.252-4.

145. *The liquid-metal-fuel reactor closed-cycle gas-turbine power plant.*
STOUGHTON, L.D. and SHEEHAN, T.V.
Mech. Engng, vol.78, no.8, August, 1956, pp.669-702.

Nuclear gas turbine power plants could be used for merchant vessels

146. *Metallurgy in atomic power.*
RICKOVER, H.G.
Amer. Soc. Naval Engrs J., vol.68, no.3, August, 1956, pp.441-5.

Problems and work in use of metals in application of atomic energy to propulsion of ships

147. *The gas turbine in atomic energy.*
PERKINS, J.E.B.
Nucl. Pwr, vol.1, no.3, July, 1956, pp.108-13.

Includes: possibility of use in marine propulsion

148. *Nuclear gas turbines.*
Mech. Engng, vol.78, no.7, July, 1956, pp.606-12.

Includes: large gas-turbine reactor plants which could be used in ship propulsion

149. *Bids received for tanker nuclear power plant.*
Prod. Engng, vol.27, May, 1956, p.212.

Short article showing design of gas cooled reactor with a closed-cycle gas turbine power plant submitted by Ford Instrument Co

150. *Nuclear power for commercial vessels.*
MADDOCKS, K.
Atomsics, vol.7, no.5, May, 1956, pp.151-5, 166.
" " no.6, June, 1956, pp.197-201, 224.
" " no.8, August, 1956, pp.291-5.
" " no.9, September, 1956, pp.309-14.

Following a brief discussion on the principles of fission and reactor operation, five types of reactor suitable for marine use and one type suitable for fuel production, are described and illustrated. The gas cooled reactor is selected as most suitable for marine propulsion and a proposed closed cycle gas turbine plant is analysed in some detail. Various proposals for the use of nuclear power in specific ships are reviewed, and an economic analysis is made to compare a 30,000 ton d.w. tanker when operating with an oil-fired steam turbine plant and when operating with a nuclear powered closed cycle helium turbine

151. *Atomic power for oil tankers: possible application in marine tanker vessels.*
Atomsics, vol.7, no.3, March, 1956, pp.97-9, 110.

Technical summary of power plant and survey of economic features

152. *Survey of atomic power for marine propulsion.*
TACKETT, D E
Nav. Arch. Mar. Engrs. Soc. Bull., vol.11, no.1, February, 1956. pp.14.

A comprehensive summary of reactor theory and technology; kinetics and control, reactor materials, fuels, moderators, reflectors, coolants, control rods, shielding materials, and cladding of structural materials are considered

153. *A Rolls-Royce marine G T. proposal.*
Oil Eng., vol.23, no.271, January, 1956, p.360.

154. *Ships with atomic engine. [In Russian]*
ZVONKOV, V
Soviet Fleet, January, 1956. pp.8.

155. *Atomic propulsion for ships.*
DAHL, O
Shipb. Shipp. Rec., Int. Des. Equip. No., 1956, pp.6-8.

Announcement that Norway could adopt atomic ship propulsion at short notice, using Norwegian uranium if it became difficult to obtain oil. Question of reactor design and construction is discussed with special reference to the question of protection

156. *Propelling ships by nuclear power: direct use of reactor coolant in gas turbine.*
Engineering, vol.180, no.4691, 23 December, 1955, pp.859-61.

Selects gas cooled reactor as the most suitable and then describes proposed closed-cycle gas-turbine plant supplied from a helium-cooled reactor. Comparison of the economics of a cargo vessel powered by a nuclear reactor and by an oil fired steam-turbine plant

157. *Nuclear power for merchant vessels.*
JOHNSON C H and JOHNSON, P.V.
Soc. Nav. Arch. Mar. Engrs, paper December, 1955. pp.23.
Mar. Engng, vol.61, January, 1956, pp.34-41.
February, 1956, pp.74-8.

Description of the general characteristics of the various nuclear power plants and discussion of the possibility of each being used aboard a merchant vessel

158. *Nuclear power plants for ship-propulsion application.*
WITZKE, R L and HAVERSTICK, S A.
Elect. Engng (N.Y.), vol.74, no.2, February, 1955, pp.116-21.
Brit. Motor Ship, vol.35, no.413, August, 1954, pp.188-91.

Application of atomic power in C-4 Mariner class cargo vessel is analyzed; at present nuclear power cannot compete on strictly economic basis with conventional power plants; however, other factors such as weight, space, speed, and range considerations would also enter into any complete evaluation

159. *Will nuclear fuels run merchant ships?*

CROUCH, H.F.

Amer. Soc. Naval Engrs J., vol.67, no.1, February, 1955, pp.113-20.

Development of "dual purpose" type reactor systems is suggested in place of submarine reactors, which are considered impractical; space and fuel requirements for large liners and cargo vessels, which could use approximately 25,000 s b p developed by nuclear plants; comparisons with present steam practice, questions of safety

160. *Atomic power on shipboard - lets be practical.*

CROUCH, H.F.

Amer. Soc. Naval Engrs J., vol.66, no.2, May, 1954, pp.290-302.

Practical aspects of nuclear energy, particularly heat generating source, when applied to shipboard, including operation of nuclear reactor and nuclear fuel

161. *Designing a submarine power plant*

KUYPER, W.W.

Gen. Elect. Rev., vol.56, no.5, September, 1953, pp.26-7, 60.

Amer. Soc. Naval Engrs J., vol.66, no.1, February, 1954, pp.211-4.

Problems in application of nuclear power to submarine; reactor requirements; distinctions brought out between conventional power plants and components of nuclear system

UNITED STATES PATENT SPECIFICATION

162. 2,727,996

A thermal neutron shield and method for making same, by T. Rockwell and V.L. McKinney. 20 December, 1956.

Shield described is of low weight and bulk and is suitable for use in planes and ships. Shield comprises a matrix of a malleable metal, such as zirconium or aluminum, in which is dispersed a refractory material, boron oxide or boron carbide, in pellet form. A sheathing of aluminum or stainless steel is bonded to it

(2) LARGE SHIP REACTOR AND CARRIER VESSEL REACTOR

REPORTS

163. NP 6338

MINE SAFETY APPLIANCES COMPANY, Callery, Penna.

Progress report no. 40 for April and May, 1957, by W.J. Posey.
13 June, 1957. pp.26.

Includes: hydrodynamic testing of CVR flow channels

164. NP 6428 MINE SAFETY APPLIANCES COMPANY, Callery, Penna.
Progress report no. 41 for June and July, 1957. by
 W.J. Posey. 15 August, 1957. pp.15.

Includes: *hydrodynamic testing of CVR flow channels*

165. WAPD-A1W(FE)-291 WESTINGHOUSE ELECTRIC CORPORATION
 Atomic Power Division, Pittsburgh.
Extrusion - preliminary evaluation, by A.F. Steeves.
 8 March, 1956. pp.3.

Extrusion of zircaloy 2 ingots to evaluate the feasibility of extrusion as a potential means of cost reduction

166. WAPD-A1W(IM)-3 WESTINGHOUSE ELECTRIC CORPORATION.
 Atomic Power Division.
Investigation of burnout heat flux in rectangular channels at 2000 p.s.i.a., by H.S. Jacket and others. 5 December, 1955. pp.52.

167. WAPD-A1W(M)-71 WESTINGHOUSE ELECTRIC CORPORATION.
 Atomic Power Division.
Second interim report on the corrosion behaviour of zircaloy-3, by S. Kass. 8 March, 1956. pp.21.

168. WAPD-A1W(M)-307 WESTINGHOUSE ELECTRIC CORPORATION.
 Atomic Power Division.
MTR A-33 pressure tube feasibility study, by M. Doumas and W.R. Gibson. 4 April, 1956. pp.13.

Details of pressure tube capable of proof testing up to 24 in long A1W sub-assemblies

169. WAPD-A1W(P)-82 WESTINGHOUSE ELECTRIC CORPORATION
 and Addition.
 Atomic Power Division.
Table of $\Gamma(r)$, by O.F. Swift. March, 1956. pp.44.
 Addendum May, 1956. pp.12.

$\Gamma(r)$, used in the inhour formula for computing reactivity, has been evaluated for approximately 2000 values of r and six groups of delayed neutrons

170. WAPD-A1W(PCh)-18 WESTINGHOUSE ELECTRIC CORPORATION.
 Atomic Power Division.
Predicted A1W primary water conditions by Y. Solomon and P.E. Brown. December, 1955. pp.9.

Water conditions in a carbon steel carrier vessel reactor plant have been examined for a variety of operating conditions. Three types of feed water have been considered: deaerated, de-oxygenated and non-deaerated. Water conditions for component design, testing, and equipment specification are given.

171. WAPD-A1W(PCh)-46 WESTINGHOUSE ELECTRIC CORPORATION.
Atomic Power Division.
Investigation of unclad carbon steel for pressurizer applications, by P.E. Brown and K. Katz.
25 January, 1956. pp.69.

Corrosion test results for conditions simulating pressurizer operations to examine the possibility of using unclad carbon steel.

172. WAPD-A1W(PCh)-61 WESTINGHOUSE ELECTRIC CORPORATION.
Atomic Power Division.
Results of examination of carbon steel pipe and small heat exchanger removed from NRTF, by R.S. Gilbert.
1956. pp.10.

Examination of activity levels and corrosion.

173. WAPD-A1W(PCh)-89 WESTINGHOUSE ELECTRIC CORPORATION.
Atomic Power Division.
Additional test results covering effects on carbon steel of exposure to reactor irradiation and high temperature, high pressure water, by E. Lieberman. 1956. pp.8.

174. WAPD-A1W(PCh)-473 WESTINGHOUSE ELECTRIC CORPORATION.
Atomic Power Division.
Report on Nalco test III of the out-of-pile nucleate boiling programme, by R.T. Esper. pp.21.

Effects of nucleate boiling on zircaloy-2.

175. WAPD-A1W(RD)-366 WESTINGHOUSE ELECTRIC CORPORATION.
(Rev.) Atomic Power Division.
Stress analysis of plate-type fuel sub-assemblies, by B.R. Teer and D.E. Nestler. December, 1957. pp.26.

176. WAPD-A1W-(RD)-526 WESTINGHOUSE ELECTRIC CORPORATION.
Atomic Power Division.
Ring spring tests, by W.W. Wise and others. 18 May, 1956. pp.18.

Tests to determine the suitability of ring springs for thermally actuated cluster clamping devices and for core clamping devices.

177. WAPD-A1W(RDM)-320

WESTINGHOUSE ELECTRIC CORPORATION.

Atomic Power Division.

Request for technical design approval of the A1W core 1 support plate weldment and the A1W core 1 forged support plate for the purpose of obtaining manufacturing release, by G.W. Hardigg. 1 September, 1956. pp.9.

Also bound with this are:

The effect of repeated impact on the deformation of cruciform sections at room temperature and 600°C, by G. Zibrotosky 14 May, 1956 pp 26
A1W support plate welding feasibility and distortion, by J V Marron and J F Gibbons 5 September, 1956 pp 6
Photoelastic study of sub-assembly, by C F Peck and R G Crum August, 1956 pp 8
Thermal stresses and distortions in the A1W core 1 support plate, by J J Lescisin August, 1956 pp 6

178. WAPD-A1W(RDM)-397

WESTINGHOUSE ELECTRIC CORPORATION

Atomic Power Division.

Control rod assembly misalignment study, by W.A. Kerr and J.J. Lescisin. 26 November, 1956. pp.8.

179. WAPD-RM-187

WESTINGHOUSE ELECTRIC CORPORATION.

Atomic Power Division.

CVR pressurizer simulator study, by W.M. Gajewski and J.N. Grace. July, 1953. pp.49.

The response of the primary coolant pressurizing systems to rapid changes in steam plant load is studied by means of analog computer techniques. Results are plotted for a range of values of the pressurizer design parameters

(3) SUBMARINE ADVANCED REACTOR

REPORTS

180. KAPL 1726

KNOLLS ATOMIC POWER LABORATORY, Schenectady.
Development of zircaloy-clad, discrete burnable poison elements for S3G/S4G by G.F. McKittrick and W.A. Neisz. 15 June, 1957. pp.29.

181. KAPL-M-AJB-2

KNOLLS ATOMIC POWER LABORATORY.
Fabrication of the first two Y shaped rod extension billets, by A.J. Brown. 26 November, 1956. pp.14.

182. KAPL-M-AME-5

KNOLLS ATOMIC POWER LABORATORY.
S3G seal weld-unit cells to standpile housing, by R.L. Harris. 7 February, 1957. pp.10.

183. KAPL-M-AME-6 KNOLLS ATOMIC POWER LABORATORY.
S3G instrumentation welding, by R.L. Harris.
28 February, 1957. pp.12.

184. KAPL-M-AME-7 KNOLLS ATOMIC POWER LABORATORY.
S3G instrumentation brazing, by D.R. Hauprich.
15 March, 1957. pp.11.

185. KAPL-M-AMS-1 KNOLLS ATOMIC POWER LABORATORY.
Summary of STR-SAR system operating conditions and materials, by S.H. Towne. 15 April, 1954.
pp.16.

186. KAPL-M-AMS-7 KNOLLS ATOMIC POWER LABORATORY.
Initial isolation valve report; S.A.R. project, by E.R. Hottenstein. 15 October, 1954. pp.27.

187. KAPL-M-CDM-2 KNOLLS ATOMIC POWER LABORATORY.
Three group method for calculation of big critical mass thermal reactors, by C.D. McKereghan.
25 August, 1953. pp.8.

188. KAPL-M-CME-1 KNOLLS ATOMIC POWER LABORATORY.
Hydrogen embrittlement of carbon steel, by C.M. Erb. 13 July, 1955. pp.5.

189. KAPL-M-DWJ-5 KNOLLS ATOMIC POWER LABORATORY.
Airborne activity from the void space between the SAR reactor pressure vessel and inner wall of the primary shield tank, by D.W. Johnson. March, 1956. pp.31.

190. KAPL-M-EJ-4 KNOLLS ATOMIC POWER LABORATORY.
Status report on S3G/S4G unit cell mechanical analysis, by E.B. Johansson. 24 August, 1956. pp.19.

191. KAPL-M-EJ-5 KNOLLS ATOMIC POWER LABORATORY.
S4G unit cell shock analysis, by E.B. Johansson. 14 October, 1957. pp.94.

192. KAPL-M-EL-1 KNOLLS ATOMIC POWER LABORATORY.
S3G/S4G cold water accident analysis, by E. Lantz. 27 April, 1956. pp.34.

193. KAPL-M-ER-2 KNOLLS ATOMIC POWER LABORATORY.
Dose rates on the S3G/S4G boiler and primary coolant piping after shutdown, by E.J. Romesberg. 18 February, 1958. pp.31.

194. KAPL-M-FDJ-4
KNOLLS ATOMIC POWER LABORATORY.
SAR primary coolant impurity activation and demineralizer shielding, by F.D. Judge. 1956. pp.23.

195. KAPL-M-FTB-1
KNOLLS ATOMIC POWER LABORATORY.
Special physics instrumentation for S3G, by F.T. Burkett. 16 January, 1958. pp.11.

196. KAPL-M-JAM-1
KNOLLS ATOMIC POWER LABORATORY.
Thermocouple in-pile calibration for S3G, by J.A. McCann. 4 January, 1956. pp.9.

197. KAPL-M-LBV-8
KNOLLS ATOMIC POWER LABORATORY.
An instrument to measure simulated temperatures in the S3G emergency cooling test loop, by L.B. Vandenberg and L.A. Hagen. 8 June, 1956. pp.15.

198. KAPL-M-PGL-1
KNOLLS ATOMIC POWER LABORATORY.
Programme for alternate coextension process for reference SAR fuel elements, by P.G. Lozier. 24 September, 1956. pp.6.

199. KAPL-M-PL-1
KNOLLS ATOMIC POWER LABORATORY.
Investigation of activation foils for S3G flux distribution measurements, by P.G. Lacey and others. 21 March, 1957. pp.20.

200. KAPL-M-RAD-2
KNOLLS ATOMIC POWER LABORATORY.
Fuel element failure detection and location - estimate of sensitivity D/N system S3G, by R.A. Dewes. 7 November, 1957. pp.30.

201. KAPL-M-RE-107A
KNOLLS ATOMIC POWER LABORATORY.
Preliminary observations of control housing natural convection flow, by C.G. Lindquist. 10 December, 1955. pp.5.

202. KAPL-M-RES-32
KNOLLS ATOMIC POWER LABORATORY.
Heat losses from the S3G/S4G reactor pressure vessel, head, and mechanisms and ambient temperatures of the region under the top bat, by H.F. Carkin and G.O. Mueller. 20 September, 1957. pp.38.

203. KAPL-M-ROF-1
KNOLLS ATOMIC POWER LABORATORY.
Welding of S3G zircaloy 2 instrumented fuel element mounting, by R.J. Flint. 12 September, 1957. pp.11.

204. KAPL-M-SAT-2 KNOLLS ATOMIC POWER LABORATORY.
Inert tungsten-arc welding of S3G zircaloy channel sections, by S.A. Toftegaard. 14 November, 1956. pp.6.

205. KAPL-M-SAT-3 KNOLLS ATOMIC POWER LABORATORY.
Diffusion bonding of SAR, prototype instrumented fuel element transition joints, by S.A. Toftegaard. 15 March, 1957. pp.7.

206. KAPL-M-SAT-4 KNOLLS ATOMIC POWER LABORATORY.
Guided bend test as a means of qualifying butt welds in zircaloy 2 and 3, by S.A. Toftegaard. 5 April, 1957. pp.12.

207. KAPL-M-SMS-3 KNOLLS ATOMIC POWER LABORATORY.
Basic sub-cooled light water properties. 18 April, 1955. pp.13.

208. KAPL-M-SMS-5 KNOLLS ATOMIC POWER LABORATORY.
Valve operating system, by E.R. Hottenstein. 11 May, 1955. pp.31.

209. KAPL-M-SMS-6 KNOLLS ATOMIC POWER LABORATORY.
SAR radioactive accessibility investigative program, by V.L. Galezunas. 29 September, 1955. pp.23.

Due to proposed use of a carbon steel-water system in SAR, a program directed at solving the new accessibility problem is outlined. Properties of the crud, rate of accumulation of radioactive material in components external to the reactor, effect of radioactive crud level in primary coolant water, effect of heat and radiation flux on deposition and release of radioactive crud, and removal of radioactive products from primary coolant water are the five main areas of investigation.

210. KAPL-M-SMS-10 KNOLLS ATOMIC POWER LABORATORY.
Solubility and flow characteristics of ammonium pentaborate columns, by E.L. Shirley and A.P. Walsh. 22 November, 1955. pp.22.

211. KAPL-M-SMS-12 KNOLLS ATOMIC POWER LABORATORY.
Emergency cooling test program, by A.J. Arker and D.E. Davidson. 6 December, 1956. pp.12.

212. KAPL-M-SMS-13 KNOLLS ATOMIC POWER LABORATORY.
A steady state dynamic analysis of the S3G/S4G natural circulation steam generator system, by J.C. Westmoreland. 9 January, 1956. pp.32.

223. KAPL-M-SMS-42
and Suppl.
KNOLLS ATOMIC POWER LABORATORY.
*Factors influencing the selection and performance
of the deaerating feed line demineralizer resin,*
by G.H. Epstein. 4 October, 1956. pp.14.

224. KAPL-M-SMS-43
KNOLLS ATOMIC POWER LABORATORY.
*Emergency cooling condenser performance as a
function of ships attitude,* by L.N. Rib.
October, 1956. pp.24.

225. KAPL-M-SMS-45
KNOLLS ATOMIC POWER LABORATORY.
*Primary coolant impurity activation and accessi-
bility to components in S3G/S4G lower reactor
compartment,* by F.C. Steiner. 28 November, 1956.
pp.24.

226. KAPL-M-SMS-46
KNOLLS ATOMIC POWER LABORATORY.
*S3G/S4G status report on tests of high tempera-
ture purification media,* by A.A. Sugalski.
14 December, 1956. pp.55.

227. KAPL-M-SMS-50
KNOLLS ATOMIC POWER LABORATORY.
S3G/S4G reactor bead standpipe region problems,
by T.H. Glasser. 14 December, 1956. pp.21.

228. KAPL-M-SMS-52
KNOLLS ATOMIC POWER LABORATORY.
*The diffusion of air through the barrier of a
commercial accumulator,* by F.C. Steiner.
15 January, 1957. pp.11.

229. KAPL-M-SMS-55
KNOLLS ATOMIC POWER LABORATORY.
*Total gas and hydrogen measurement equipment
for S3G/S4G: test report,* by F.C. Steiner.
21 January, 1957. pp.14.

230. KAPL-M-SMS-58
KNOLLS ATOMIC POWER LABORATORY.
*Thermal stresses in lower pressurizer walls
during a cold start up,* by S.H. Davis.
6 March, 1957. pp.22.

231. KAPL-M-SMS-65
KNOLLS ATOMIC POWER LABORATORY.
*S3G/S4G reactor isolation valve closure during
leak isolation,* by A.J. Arker and others. 1957.
pp.48.

232. KAPL-M-SMS-75
KNOLLS ATOMIC POWER LABORATORY.
*Stress analysis of S3G/S4G emergency cooling
condenser,* by T.H. Glasser. 1 July, 1957.
pp.44.

233. KAPL-M-SMS-80
KNOLLS ATOMIC POWER LABORATORY.
A structural evaluation of the S3G/S4G steam generator design for hydrostatic test, by J.C. Westmoreland. 7 October, 1957. pp.34.

234. KAPL-M-SMS-81
KNOLLS ATOMIC POWER LABORATORY.
S3G corrosion product activity buildup with a stainless steel unit cell, by J.W. Sapp. 30 September, 1957. pp.33.

235. KAPL-M-SMS-82
KNOLLS ATOMIC POWER LABORATORY.
Comparison of methods for boiler water chloride removal for the S3G/S4G plant, by E.J. Placzkowski. 11 October, 1957. pp.66.

236. KAPL-M-SMS-84
KNOLLS ATOMIC POWER LABORATORY.
S3G/S4G high temperature purification with an axial bed filter, by H.G. Richardson and R.E. Larson. 6 January, 1958.

237. KAPL-M-SMS-86
KNOLLS ATOMIC POWER LABORATORY.
S4G, air-borne fission product activity in the event of a primary to secondary leak, by E. Nordgren. 13 January, 1958. pp.16.

238. KAPL-M-SMS-87
KNOLLS ATOMIC POWER LABORATORY.
Operation of IBM-650 programme for emergency cooling analysis, by I.R. Goodwin and F.J. Scheib. 21 November, 1957. pp.46.

239. KAPL-M-SMS-88
KNOLLS ATOMIC POWER LABORATORY.
Decontamination of S3G/S4G steam generators, by F.C. Steiner. 25 November, 1957. pp.14.

240. KAPL-M-SSD-1
(Rev.2)
KNOLLS ATOMIC POWER LABORATORY.
SAR coolant purification system: preliminary design description. 31 October, 1955. pp.25.

241. KAPL-M-SSD-2
(Rev.2)
KNOLLS ATOMIC POWER LABORATORY.
S3G/S4G coolant discharge system: design description, by W.W. Goodwin. 26 November, 1956. pp.17.

242. KAPL-M-SSD-3
(Rev.3)
KNOLLS ATOMIC POWER LABORATORY.
Cool S3G/S4G coolant charging system: design description, by R.S. Schell. 31 October, 1956. pp.57.

243. KAPL-M-SSD-5
KNOLLS ATOMIC POWER LABORATORY.
S3G/S4G main coolant and steam generating system: design description. 30 October, 1957.

244. KAPL-M-SSD-8
(Rev.2) KNOLLS ATOMIC POWER LABORATORY.
S3G/S4G reactor service air system design description, by R.S. Schell. 8 May, 1956. pp.24.

245. KAPL-M-SSD-14
(Rev.1) KNOLLS ATOMIC POWER LABORATORY.
S3G/S4G chemical shutdown system: design description, by A.P. Walsh. 14 March, 1956. pp.20.

246. KAPL-M-SSD-16
(Rev.B) KNOLLS ATOMIC POWER LABORATORY.
S4G ship service electric power and control systems: design description, by E. Kalla and J.A. Walz. 10 May, 1957. pp.77.

247. KAPL-M-SSD-20
(Rev.1) KNOLLS ATOMIC POWER LABORATORY.
S3G/S4G corrosion inhibiting system: design description. 12 March, 1956. pp.21.

248. KAPL-M-SSD-21 KNOLLS ATOMIC POWER LABORATORY.
S3G/S4G preliminary design description emergency pressurizing system. 15 November, 1955. pp.21.

249. KAPL-M-SSD-23
(Rev.2) KNOLLS ATOMIC POWER LABORATORY.
S3G/S4G nuclear instrumentation system, by V.B. Scoville. 22 May, 1956. pp.28.

250. KAPL-M-SSD-24
(Rev.1) KNOLLS ATOMIC POWER LABORATORY.
Preliminary system description - S3G special instrumentation system, by F.E. Ducklee and others. 24 October, 1956. pp.42.

251. KAPL-M-SSD-26
(Rev.2) KNOLLS ATOMIC POWER LABORATORY.
S3G/S4G coolant sampling system: design description, by F.C. Steiner. 2 October, 1956. pp.23.

252. KAPL-M-SSD-35
(Rev.1) KNOLLS ATOMIC POWER LABORATORY.
S3G/S4G in-bull reactor refueling and service system description, by B.B. Scott. 3 August, 1956. pp.102.

253. KAPL-M-SSD-38 KNOLLS ATOMIC POWER LABORATORY.
Off-bull reactor service system for S4G system description, by F.W. Kunz. 4 September, 1956. pp.50.

254. KAPL-M-SSD-39
(Rev.1) KNOLLS ATOMIC POWER LABORATORY.
S3G/S4G full-scale refueling mockup system description, by D.E. Nolte. 22 August, 1956. pp.7.

255. KAPL-M-SSD-41
(Rev.1)
KNOLLS ATOMIC POWER LABORATORY.
S3G/S4G main coolant pump vibration monitoring system: preliminary design description, by V.B. Scoville. 31 October, 1956. pp.9.

256. KAPL-M-SSD-42
KNOLLS ATOMIC POWER LABORATORY.
S3G fuel element failure detection and location system: design description, by J.C. Childs. 23 October, 1956. pp.30.

257. KAPL-M-SSD-43
(Rev.1)
KNOLLS ATOMIC POWER LABORATORY.
S3G/S4G primary shield water system: design description, by G.V. Krauss. 27 September, 1957. pp.21.

258. KAPL-M-SSD-44
KNOLLS ATOMIC POWER LABORATORY.
Systems description - S3G core coolant flow measuring system, by H. Paitchel. 24 October, 1956. pp.16.

259 KAPL-M-S3G-RE-423
KNOLLS ATOMIC POWER LABORATORY.
Inlet plenum test: test number 423, by C.E. Ockert. 18 July, 1956. pp.46.

260. KAPL-M-S3G-RE-502
KNOLLS ATOMIC POWER LABORATORY.
Mechanical tests of the S.A.R. 7 $\frac{1}{4}$ in. stainless steel unit cell: test no.502, by A.B. Briggs. 5 September, 1956. pp.11.

261. KAPL-M-S3G-RE-507
KNOLLS ATOMIC POWER LABORATORY.
Endurance tests on SAR zircaloy 3 fuel element welds: test number 507, by A.B. Briggs. 5 September, 1956. pp.12.

262. KAPL-M-S3G-RE-514
KNOLLS ATOMIC POWER LABORATORY.
Transition joint test. Test number 514, by J. Bianchi. 12 September, 1956. pp.25.

263. KAPL-M-S3G-RES-23
KNOLLS ATOMIC POWER LABORATORY.
Interchannel mixing, by J.P. Fraser. 12 April, 1956. pp.11.

264. KAPL-M-WCJ-2
KNOLLS ATOMIC POWER LABORATORY.
Radiochemical studies of fission products and activated corrosion products in the coolant of test loops for SAR fuel elements at the Materials Testing Reactor. 1957. pp.12.

265 KAPL-M-WEC-7
(Rev.1)
KNOLLS ATOMIC POWER LABORATORY.
Structural design basis, SAR reactor components, by W.E. Cooper. 20 June, 1955, pp.33.

266. KAPL-M-WEC-8 KNOLLS ATOMIC POWER LABORATORY.
Modified structural design basis, SAR reactor components, by W.E. Cooper. 30 August, 1956. pp.21.

267. KAPL-M-WJL-2 KNOLLS ATOMIC POWER LABORATORY.
Failures in the S3G primary coolant system: their effects on hull integrity, by W.J. Levedahl. 14 August, 1956. pp.21.

268. KAPL-M-WKA-10 KNOLLS ATOMIC POWER LABORATORY.
Modified control rod programme for the S3G, by W.K. Anderson. 19 December, 1955. pp.13.

269. KAPL-M-WRP-2 KNOLLS ATOMIC POWER LABORATORY.
Fuel placement in S3G elements, by W.R. Plant. 27 September, 1956. pp.6.

270. R53GL186 GENERAL ELECTRIC CO.
Submarine advanced reactor gas turbine cycle study, by E.A. Sheehan and A.O. White. 29 September, 1953. pp.75.

A study of several cycles for a closed cycle gas turbine power plant, using helium as the working fluid, has been conducted for the Submarine Advanced Reactor Project. These cycles have been compared on the basis of heat rate and helium rate.

(4) SUBMARINE INTERMEDIATE REACTOR AND "SEAWOLF"

BOOKS

271. UNITED STATES. Atomic Energy Commission.
Liquid metals handbook; edited by R.N. Lyon. 2nd ed.
Washington, U.S.A.E.C., 1952. pp.269.

272. UNITED STATES. Atomic Energy Commission and Department of the Navy.
Liquid metals handbook: sodium (NaK) supplement (edited by) C.B. Jackson and others. Washington, U.S. Govt Print. Office, 1955. pp.455.

273. UNITED STATES. Atomic Energy Commission. Naval Reactors Branch.
Reactor shielding design manual, editor T. Rockwell. McGraw-Hill Book Co. Inc. 1956. pp.465. pp.218-24, testing of SIR Mark A - STR Mark I shields.

REPORTS

291. KAPL-M-DGC-23
KNOLLS ATOMIC POWER LABORATORY.
Permissible shield voids in off-bull servicing equipment, by D.G. Chappell. 30 December, 1955.
pp.18.

292. KAPL-M-DPT-2
KNOLLS ATOMIC POWER LABORATORY.
Flow velocity in secondary plenum of sandwich plates, by D.P. Timo. [1953]. pp.21.

293. KAPL-M-DPT-8
KNOLLS ATOMIC POWER LABORATORY.
Free convection in narrow vertical liquid metal annuli, by D.P. Timo. 11 March, 1955. pp.30.

294. KAPL-M-DRB-1
KNOLLS ATOMIC POWER LABORATORY.
Effects of rod shape on control rod worth, by D.R. Bach and S.W. Kitchon. 30 October, 1956. pp.21.

295. KAPL-M-EDB-1
KNOLLS ATOMIC POWER LABORATORY.
Hydrogen evolution rates in SIR Mark A primary shield tank, by E.L. Brady. 22 August, 1955.
pp.9.

296. KAPL-M-EDL-22
KNOLLS ATOMIC POWER LABORATORY.
Shock tests: control cylinder, by A.B. Briggs. 10 February, 1953. pp.11.

297. KAPL-M-EDL-60
KNOLLS ATOMIC POWER LABORATORY.
Effective conductivity of the shot in the rotating plugs, by J.M. Marshall and A.B. Briggs. 15 November, 1953. pp.12.

298. KAPL-M-EDL-65
KNOLLS ATOMIC POWER LABORATORY.
SIG rotating plug test, by R.A. Jacoby and A.P. Kokosa. 21 February, 1956. pp.159.

299. KAPL-M-EDL-71
KNOLLS ATOMIC POWER LABORATORY.
SIR freeze seal test 2, by R.G. Jacoby and R.A. Benson. 25 May, 1954. pp.30.

300. KAPL-M-EDL-81
KNOLLS ATOMIC POWER LABORATORY.
SIR Mark A reactor control cylinder actuator plug and quick disconnect assembly. Interim report for period ending 1 December, 1954, by P.E. Bissionnette and others. 1 December, 1954.
pp.62.

301. KAPL-M-EDL-84
KNOLLS ATOMIC POWER LABORATORY.
SIR Mark A electro-mechanical drive mechanism, by E.W. Kunz. 8 December, 1954. pp.71.

302. KAPL-M-EDL-107 KNOLLS ATOMIC POWER LABORATORY.
Hot sodium test of the S2G rotating plug.
28 November, 1955. pp.28.

303. KAPL-M-EDL-113 KNOLLS ATOMIC POWER LABORATORY.
Replacement actuators surge pot baffle test S2G,
by D.J. Oakley and J.J. Stewart. 17 April, 1956.
pp.23.

304. KAPL-M-EDL-120 KNOLLS ATOMIC POWER LABORATORY.
Rotating plug seal test, by D.F. Wood.
23 August, 1956. pp.35.

305. KAPL-M-EDL-121 KNOLLS ATOMIC POWER LABORATORY.
Tests of static seal adhesives for S1G/S2G
rotating plugs, by O.D. Terrell and M.L. Ballou.
22 August, 1956. pp.23.

306. KAPL-M-EDL-122 KNOLLS ATOMIC POWER LABORATORY.
Summary of sodium acceptance tests prototype
S2G primary coolant stop valves, by T. Hannum
and F.N. Schell. 20 September, 1956. pp.26.

307. KAPL-M-EDL-123 KNOLLS ATOMIC POWER LABORATORY.
Operation of S2G 8 in. stop valves following
primary bellows failure: phase 1, S2G freeze seal
tester, by P.K. Salzman and F.N. Schell.
5 February, 1957. pp.20.

308. KAPL-M-EDL-124 KNOLLS ATOMIC POWER LABORATORY.
S2G valve sodium freeze seal evaluation, by
P.K. Salzman and F.N. Schell. 20 October, 1956.
pp.50.

309. KAPL-M-EDL-126 KNOLLS ATOMIC POWER LABORATORY.
Investigation of a mercury seal for S1G vertical
shaft application, by D.F. Wood. 17 May, 1957.
pp.18.

310. KAPL-M-EDL-127 KNOLLS ATOMIC POWER LABORATORY.
O-ring tests S1G/S2G, by D.F. Wood. 28 June,
1957. pp.24.

311. KAPL-M-EEB-2 KNOLLS ATOMIC POWER LABORATORY.
Problem no. 2: development and evaluation of
boron carbide shielding materials. Report no. 1,
thermal cycling of SIR prototype control rods, by
C.E. Baldwin. 17 June, 1952. pp.12.

312. KAPL-M-EGB-21 KNOLLS ATOMIC POWER LABORATORY.
Preliminary experiments on the nitriding of reactor
materials in sodium, by E.G. Bruch and C.R. Rodd.
22 September, 1955. pp.9.

313. KAPL-M-FCS-3

KNOLLS ATOMIC POWER LABORATORY.

Natural convection in sodium in an 8 in. horizontal pipe, by F.C. Steiner. 6 December, 1954.
pp.22.

314. KAPL-M-FJM-1

KNOLLS ATOMIC POWER LABORATORY.

Summary of duplex tube analyses by
F.J. Mehringer. 28 September, 1956. pp.73.

*Information significant to the S1G test steam
generator programme*

315. KAPL-M-GJB-2

KNOLLS ATOMIC POWER LABORATORY

Sodium flush programme, by G.J. Barenberg.
12 November, 1954. pp.10.

*Research programme for development of a sodium flush
procedure for the SIR is described*

316. KAPL-M-HES-5

KNOLLS ATOMIC POWER LABORATORY

*Activation of steam boiler water impurities-project
SIR*, by H.E. Stone and D.G. Chappall. 2 May,
1952. pp.19.

317. KAPL-M-HFK-3

KNOLLS ATOMIC POWER LABORATORY

*Hydrogenous loop: water injection test SDT-3
[on] run no. W.I.-1*, by H.F. Karnes.
12 September, 1955. pp.15.

318. KAPL-M-HKF-6

KNOLLS ATOMIC POWER LABORATORY

Operation with leaks (OWL) test programme, by
H.F. Karnes. 25 September, 1956. pp.41.

*Programme included series of studies designed to
evaluate the possibility of operating a Na cooled power
plant after failure of one wall of a double-walled
evaporator. Particular emphasis being put on the
operation of an evaporator using NaK as a third fluid
after failure of the NaK-boiling water heat transfer
surface. The consequences to a Na system of a
double-tube failure were also studied*

319. KAPL-M-HLT-1

KNOLLS ATOMIC POWER LABORATORY

Wear and galling tests of plug seal tubing,
by E.G. Brush and H.L. Tymchyn. 25 February,
1954. pp.16.

320. KAPL-M-HRP-1

KNOLLS ATOMIC POWER LABORATORY

S2G plug drive equipment, by H.R. Pagano.
11 May, 1956. pp.10.

321. KAPL-M-JMG-7

KNOLLS ATOMIC POWER LABORATORY

Examination of S1G sodium stop valve bellows,
by J.M. Gerken. 4 January, 1957. pp.9.

322. KAPL-M-JRG-2 KNOLLS ATOMIC POWER LABORATORY.
Removal of mercury from SIR coolant (E-3 experiments), by J.R. Gould and J.G. Gratton.
17 October, 1955. pp.5.

323. KAPL-M-JRS-7 KNOLLS ATOMIC POWER LABORATORY.
Note on reactor power generation after shutdown, by J.R. Stehn. 13 April, 1954. pp.4.

The bases for estimating the power generation rate of a reactor which has been shut down for some time are outlined as an aid in SIR cooling system design. Results of calculations are given in graphical form

324. KAPL-M-JSK-3 KNOLLS ATOMIC POWER LABORATORY.
Cadmium as a burnable poison localized in the central core region of SIR, by J.S. King.
12 August, 1954. pp.11.

325. KAPL-M-JZ-3 KNOLLS ATOMIC POWER LABORATORY.
Stress analysis of concentric plug, Mark A, by J. Zickel. 5 March, 1954. pp.13.

Approximation by analyzing an axisymmetric structure with dimensions of narrowest, widest and average section

326. KAPL-M-KAK-10 KNOLLS ATOMIC POWER LABORATORY.
Engineering study of off-on control for SIR type power units, by K.A. Kesselring. 27 September, 1954. pp.14.

327. KAPL-M-LML-1 KNOLLS ATOMIC POWER LABORATORY.
Control mock-up, by J.H. Pigott and L.M. Loeb.
15 July, 1949. pp.39.

328. KAPL-M-MHS-22 KNOLLS ATOMIC POWER LABORATORY.
The analysis of the temperature and thermal stresses in the beryllium of SIR fuel element core rod, by M.H. Shackelford. 4 January, 1954. pp.15.

329. KAPL-M-MSN-4 KNOLLS ATOMIC POWER LABORATORY.
Thermal utilisation in an infinite array of plane thermal absorbers, by M.S. Nelkin. 1 June, 1956. pp.11.

330. KAPL-M-NGM-2 KNOLLS ATOMIC POWER LABORATORY.
Distribution of uranium and uranium oxide in liquid metal thermal convection loops, by N.G. Mills and R.F. Koenig. 23 January, 1951. pp.12.

331. KAPL-M-PF-4 KNOLLS ATOMIC POWER LABORATORY.
Forced convection flow in open-ended annulus,
by J.P. Fraser. 12 November, 1953. pp.15.

332. KAPL-M-PPU-8 KNOLLS ATOMIC POWER LABORATORY.
(Rev. 1) *Propulsion control description S41/6-3; project*
SIR-SSN575 (Mark B). 15 March, 1954. pp.16.

333. KAPL-M-PPU-24 KNOLLS ATOMIC POWER LABORATORY.
Propulsion and load control description S41/10;
project SIR-Mark A. 27 August, 1954. pp.50.

334 KAPL-M-RE-107A KNOLLS ATOMIC POWER LABORATORY.
Preliminary observations of control housing
natural convection flow, by C.G. Lindquist.
10 December, 1955. pp.5.

Observations of flow paths and velocities in annuli
simulating the conceptional design of the control rod drive
mechanisms.

335. KAPL-M-RGK-8 KNOLLS ATOMIC POWER LABORATORY.
Temperature distributions in the SIR rotating
reloading plugs - Mark III design, by
R.G. Kennison. 10 January, 1953. pp.84.

336. KAPL-M-RGK-10 KNOLLS ATOMIC POWER LABORATORY.
Thermal stability characteristics of a cantilevered
fuel rod, by R.G. Kennison. 7 January, 1953.
pp.10.

337. KAPL-M-RGK-11 KNOLLS ATOMIC POWER LABORATORY.
Natural convection flow and heat transfer in
porous media, by R.G. Kennison. 14 January,
1953. pp.13.

338. KAPL-M-RGK-14 KNOLLS ATOMIC POWER LABORATORY.
Flow loss coefficients in small conical mouth
orifices, by R.G. Kennison and P.R. Matthews.
1953. pp.22.

339. KAPL-M-RGK-17 KNOLLS ATOMIC POWER LABORATORY.
Pressure resonance in fluid-filled cavities,
by R.G. Kennison. pp.23.

340. KAPL-M-RLM-3 KNOLLS ATOMIC POWER LABORATORY.
Investigation of cracking of SIR Mark A rotating
plug shield can welds, by R.L. Mehan. 2 July,
1954. pp.11.

349. KAPL-M-TOR-2
KNOLLS ATOMIC POWER LABORATORY.
Secondary safety system, Mark A, by T. O'Regan.
28 January, 1953. pp.22.

350. KAPL-M-WEC-2
KNOLLS ATOMIC POWER LABORATORY.
Design stress analysis, SIR [Mark B] container assembly, by W.E. Cooper. 31 December, 1953.
pp.148.

351. KAPL-M-WEJ-3
KNOLLS ATOMIC POWER LABORATORY.
Transient thermal stresses in thin walled cylinders: SIR mechanical engineering analysis by W.E. Jarman. 1956. pp.39.

352. KAPL-M-WWK-5
KNOLLS ATOMIC POWER LABORATORY.
Removing the sodium residues from the alphas main heat transfer system with ethylene glycol. by W.W. Kendall and M. Nazur. 5 August, 1954.
pp.21.

353. NP-5601
MINE SAFETY APPLIANCES COMPANY,
Callery, Penna.
Progress report no. 27 for February and March, 1955, by J.W. Mausteller. 22 April, 1955. pp.62.

Includes: tests on the 3000 Kw steam generator.

354. NP-5690
MINE SAFETY APPLIANCES COMPANY,
Callery, Penna.
Progress report no. 28 for April and May, 1955, by J.M. Mausteller. 21 June, 1955. pp.70.

Includes: tests on the 3000Kw steam generator.

355. NP-5739
MINE SAFETY APPLIANCES COMPANY,
Callery, Penna.
Progress report no. 29 for June and July, 1955, by J.W. Mausteller. 19 August, 1955. pp.53.

Includes: tests on the 3000Kw steam generator.

356. NP-5779
MINE SAFETY APPLIANCES COMPANY,
Callery, Penna.
Progress report no. 30 for August and September, 1955, by W.J. Posey. 11 October, 1955. pp.78.

Includes: tests on the 3000Kw steam generator.

357. NP-5840
MINE SAFETY APPLIANCES COMPANY,
Callery, Penna.
Progress report no. 31 for October and November, 1955, by W.J. Posey. 12 December, 1955. pp.72.

Includes: tests on the 3000Kw steam generator.

358. NP-5886

MINE SAFETY APPLIANCES COMPANY,
Callery, Penna.
*Progress report no.32 for December and January,
1956, by W.J. Posey. 9 February, 1956. pp.72.*

Includes: tests on the 3000Kw steam generator.

359. NP-5921

MINE SAFETY APPLIANCES COMPANY,
Callery, Penna.
*Progress report no. 33 for February and March,
1956, by W.J. Posey. 9 April, 1956. pp.57.*

*Progress of tests on models of the S2G steam generators
and research into liquid metal system components.
Study of water - NaK leaks.*

360. NP-5935

MINE SAFETY APPLIANCES COMPANY,
Callery, Penna.
*Nitrogen containing two per cent oxygen as a
sodium system cover gas, by E.F. Batutis and
others. 10 April, 1956. pp.22.*

361. NP-5991

MINE SAFETY APPLIANCES COMPANY,
Callery, Penna.
*Progress report no. 34 for April and May, 1956,
by W.J. Posey. 11 June, 1956. pp.73.*

Includes: tests on the 3000Kw steam generator.

362. NP-6037

MINE SAFETY APPLIANCES COMPANY,
Callery, Penna.
*Removal of entrained gas from a sodium system,
by K.R. Barker and J.W. Mausteller. 12 July, 1956.
pp.14.*

363. NP-6068

MINE SAFETY APPLIANCES COMPANY,
Callery, Penna.
*Progress report no. 35 for June and July, 1956,
by W.J. Posey. 9 August, 1956. pp.75.*

Includes: tests on the 3000Kw steam generator.

364. NP-6132

MINE SAFETY APPLIANCES COMPANY,
Callery, Penna.
*Progress report no. 36 for August and September,
1956, by W.J. Posey. 10 October, 1956. pp.70.*

Includes: tests on the 3000Kw steam generator.

JOURNAL AND OTHER REFERENCES

369. *Operation of 3000-gal/min sodium pumps.*
MILLER, C.E.
4th Nuclear Science and Engineering Conference, Chicago, 17-21 March, 1958,
paper 183. pp.14.

370. *Atomic power plant for Seawolf.*
CREVER, F.E.
Franklin Inst. J., vol.273, June, 1957, pp.575-6.

371. *Troubles with atomic submarine "Seawolf".*
Metal Progr., vol.71, no.3, March, 1957, pp.92, 116.

Consideration of difficulties experienced in the cooling system.

372. *Seawolf runs afoul: navy's atomic submarine is tied up with heat exchanger troubles.*
Chem. & Engng News, vol.34, 24 December, 1956, pp.6324-5.

373. *Problems of mechanical analysis in reactor technology.*
HORWAY, G.
Nucl. Engng, vol.1, no.6, September, 1956, pp.231-4.

Analytical problems in thermal stresses, shells and perforated sheets have been encountered in SIR reactor research.

374. *Purity control in sodium-cooled reactor systems.*
BRUGGEMAN, W.H.
Amer. Inst. Chem. Engrs J., vol.2, no.2, June, 1956, pp.153-6.

Recent advances in purity control are covered, emphasis being placed on results from the prototype SIR system as well as other unpublished data. Included are chemical and nuclear activation analysis of sodium, filtration data, and details of operation of cold traps and plugging indicators.

375. *Use of zirconium in liquid-sodium systems.*
BOWMAN, F.E. and CUBICCIOTTI, D.D.
Amer. Inst. Chem. Engrs J., vol.2, no.2, June, 1956, pp.173-6.

Control of impurities, namely oxygen, hydrogen and nitrogen which affect the attractive properties of zirconium.

376. *Seawolf launched for atomic power test run, features air conditioning and odor control.*
Air Cond. Heat. Ven., vol.52, October, 1955, p.168.

377. *USS Seawolf launched.*
Mar. Engng, vol.60, September, 1955, pp.36-7.

378. *Atom sub launched into test ball.*
Engng News Record, vol.152, 1 April, 1954, p.26.

379. *Nuclear power plants for ship propulsion.*
CREVER, F.E. and TROCKI, T.
Elect. Engng (N.Y.), vol.73, no.4, April, 1954, pp.331-5.
Brit. Motor Ship, vol.35, no.411, June, 1954, pp.104-7.

Two prototype submarine atomic power plants are being developed: Submarine Thermal Reactor and Submarine Intermediate Reactor; fundamentals discussed and those of gas cooled reactor power plant.

380. *Sub. will be first - atomic power may be near.*
Compressed Air Mag., vol.59, no.1, January, 1954, pp.19-20.

Special structure 225 ft in diameter at Knolls Atomic Power Laboratory, near Schenectady, N.Y. in which tests will be conducted by General Electric Co. of prototype atomic power plant for submarine; two submarines, Nautilus and Seawolf will both be reactor driven, one by reactor to be tested in sphere, and other by Westinghouse STR unit.

381. *Keel laid for second atomic sub. USS Seawolf.*
Mar. Engng, vol.58, November, 1953, pp.59-60.

382. *Atom apple*
 PHELPS, H.C.
Weld. Engr. vol.38, no.7, July, 1953, pp.23-6.

Construction details of 225 ft diameter 'Hortonsphere' which will hold prototype of new atomic energy submarine propulsion unit, contained in complete section of submarine hull, sphere is entirely supported from outside by 26 pipe columns; 3850 tons of steel plate used, welding operations described and rigid specification stressed

383. *Sphere is atom sub lab*
Engng News Record, vol.150, no.15, 9 April, 1953, pp 32-4.

Description of welded steel ball 225 ft diameter, erected near Schenectady, NY to be used as laboratory building to test power plant section of atomic submarine hull and will serve as protective device in precautionary measures against escape of fission products during preliminary submarine reactor tests

384. *Submarine reactor building.*
Mech. Engng, vol.75, no.1, January, 1953, pp.29.

Details of spherical design of SIR test building

385. *Mechanical pumps for high temperature liquid metal*
 CLARK, P.M.
Amer. Soc. Mech. Engrs paper 52-A94 for meeting 30 November - 5 December, 1952. pp.10.

In developing nuclear power for submarine propulsion it was necessary to develop a pump capable of circulating approximately 400 gpm of liquid metal at temperatures up to 750°F and which could tolerate no leakage of liquid metal at shaft; two identical centrifugal pumps were built, pump design, seal development, and operational experience

386. *Reactor that even looks safe; experiments for navy's second atom-powered submarine*
Bsns Week, 8 November, 1952, p.76.

387. *Construction of submarine intermediate reactor authorized by A E C*
Mar. Engng. vol.57, April, 1952, p.104.

(5) **SUBMARINE THERMAL REACTOR AND "NAUTILUS"**

BOOKS

388. **NAVAL RESEARCH LABORATORY.**
Report of NRL progress, Washington, June, 1956 pp.46

pp.1-8, a detector of radioactive airborne particles for the Nautilus by J.I. Hoover and others.

389. **UNITED STATES. Atomic Energy Commission. Naval Reactors Branch.**
Reactor shielding design manual, editor T. Rockwell. McGraw Hill Book Co. Inc. 1956. pp.465.

pp.218-24, testing of SIR Mark A and STR Mark 1 shields.

REPORTS

390. AECD 4037

WESTINGHOUSE ELECTRIC CORPORATION.

Atomic Power Division, Pittsburgh.

Theoretical calculations on ZPR experiments: pt. 2, the calibration of the single central cross control rod, by H.L. Garabedian.

18 January, 1951. pp.27.

391. AECU 3268.

WESTINGHOUSE ELECTRIC CORPORATION.

Atomic Power Division, Pittsburgh

Photoelastic analysis of stress in reactor pressure vessel STR core 4 preferred bead, by R.C. Sampson and M.M. Leven. 6 January, 1956. pp.19.

Highest stresses due to internal pressure occur on the ligaments between holes at the top surface where the maximum tensile strength was found to be little more than nine times the value of the internal pressure exerted on the vessel.

392. ANL-5108

ARGONNE NATIONAL LABORATORY, Lemont.

Critical studies with G.E. type fuel elements, by F.H. Martins and G.F. Helfrich.

August, 1953. pp.39.

393. BMI 700

BATTELLE MEMORIAL INSTITUTE, Columbus.

Development of scram-latch components for Mk.1 naval reactor, by D.R. Forry and others.

1 October, 1951. pp.33.

The latch proper was revised to include a rolling disengagement which permitted the use of bearing surfaces of ample size and radii to carry both static and shock loads. The low energy required to release this latch permitted a reduction in size and complication of the hydraulically operated latch actuator.

394. IDO 14035

AMERICAN CYANAMID COMPANY,

Idaho Falls, Idaho.

Corrosion of metals and alloys in SIR and STR process streams, by R.H. Perkins and C.M. Slansky. March, 1952. pp.148.

395. KAPL-M-AMS-1

KNOLLS ATOMIC POWER LABORATORY, Schenectady.

Summary of STR-SAR system operating conditions and materials, by S.H. Towne.

15 April, 1954. pp.16.

396. TID 7006

UNITED STATES ATOMIC ENERGY COMMISSION.
Naval Reactors Branch.

Corrosion and wear handbook for water cooled reactors, by D.J. De Paul. March, 1957. pp.293.

397. TID 10020

ARGONNE NATIONAL LABORATORY, Lemont.

Experiments on ZeroPower Reactor: pt. 3, by F.H. Martons. March, 1954. pp.286.

Includes: control rod design, shielding, poisoning and criticality studies on the STR critical experiment.

398. WAPD-ADC-61

WESTINGHOUSE ELECTRIC CORPORATION.

Atomic Power Division, Pittsburgh.

Radiochemical analyses of the S1W plant particulate corrosion products for the period of the extended high power run, 3 June - 8 August, 1956, by R.S. Gilbert and others. 3 December, 1956. pp.18.

399. WAPD-C-188

IONICS INCORPORATED,
Cambridge, Massachusetts.

Development of the ion exchanger for STR, by J.A. Marinsky and W.D. Potter. 17 April, 1953. pp.83.

400. WAPD-CP-1030

WESTINGHOUSE ELECTRIC CORPORATION.

Atomic Power Division, Pittsburgh.

Results of Bettis test facility hydrogen degasification test, by C.S. Caldwell. pp.8.

Knowledge of the gas removal efficiency of an STR-type degasifier under controlled operating conditions was required. Efficiency was found to be 82±5%. Test duration was 7 hours and analysis of water samples was carried out hourly. Inert gases remained below 0.3%, hence the removal efficiency is that for H₂ alone. Results confirm the prediction that approximately single-stage vapour-liquid contact occurs in the vent condenser.

401. WAPD-CTA-(MPA)-1456

WESTINGHOUSE ELECTRIC CORPORATION.

Atomic Power Division.

S1W port stainless steel steam generator, by E. Landerman. 15 August, 1956. pp.49.

402. WAPD-EM-15

WESTINGHOUSE ELECTRIC CORPORATION.

Atomic Power Division.

Transient operation of a thermal convection system, by J.E. Zerbe. 22 August, 1956. pp.11.

403. WAPD-ReM-4
WESTINGHOUSE ELECTRIC CORPORATION.
Atomic Power Division.
Flow distributions in the STR reactor vessel as determined in the Armour air tests, by N.A. Petrick. 1953. pp.56.

404. WAPD-RM-109
WESTINGHOUSE ELECTRIC CORPORATION.
Atomic Power Division.
Elevated temperature tests on the Mark 1 BF₃ proportional counter, by T.J. Waker and others. March, 1952. pp.13.

405. WAPD-RM-133
WESTINGHOUSE ELECTRIC CORPORATION.
Atomic Power Division.
In-pile tests of STR compensated ion chambers, by H.S. McCahey and R.T. Bayard. July, 1952. pp.9.

406. WAPD-T-282
WESTINGHOUSE ELECTRIC CORPORATION.
Atomic Power Division.
Nuclear power for ship propulsion, by P.N. Ross. 8 December, 1955. pp.16.
Fairly general remarks on the Nautilus propulsion plant.

407. WASH-292
UNITED STATES ATOMIC ENERGY COMMISSION.
Reactor Development Division.
Reactor shielding information meeting, May 12-13, 1955, Engineer Research and Development Laboratories, Fort Belvoir, Virginia: pt. 3. September, 1955. pp.81.
Includes: SSN571 shield test; shielding program at NRL by L.A. Beach.

JOURNAL AND OTHER REFERENCES

408. *U.S.S. Nautilus.* [In French]
Energie Nucl. (Paris), vol.2, no.1, 1958, pp.38-42.

409. *U.S.S. Nautilus.*
Nucl. Engng, vol.2, no.20, November, 1957, pp.455-6.

410. *Nuclear power plant operating experience.* [Nautilus prototype S1W]
YADON, J.M.
Atomic Industrial Forum, paper 57-AIF-22 for 4th Annual Conference,
28-31 October, 1957, pp.8.

411. *Atomic submarine engine runs 66 days at full power.*
Elect. Engng, vol.75, October, 1956, pp.961.

General article giving significance of test.

412. *Leak proof valves for water-cooled reactors.*
THOREL, J P.
Nucleonics, vol.14, no.10, October, 1956. pp.96-8.

Includes: valves for submarine reactor use

413. *Nitrided chromium for wear applications.*
McGEE, S W and SUMP, C.H.
Amer. Soc. Test. Mat. Bull., October, 1956, pp.58-62.

Development of nuclear power for marine propulsion has emphasized need for materials that can withstand sliding contact in pressurized water at temperatures of 500°F and over; nitrided chromium wear surfaces found to meet requirements for inertness in environment, high hardness and thermal stability, and microfriability during wear; method of preparation and test data

414. *"School of boat" for Nautilus.*
AXENE, L.
U.S. Naval Inst. Proc., vol.81, no.11, November, 1955, pp.1229-35.

415. *Materials development for the submarine thermal reactor.*
JOHNSON, W A
Westingho. Engr, vol.14, no.6, November, 1954, pp.208-12.

Development of materials satisfying the nuclear requirements and capable of operation in high pressure, high temperature water, and the development of methods for maintaining the purity of the water coolant

416. *The Nautilus.*
Weld. J. (Easton, Pa.), vol.33, no.11, November, 1954, pp.1091-3.

Some general fabrication methods mentioned

417. *Wear and friction properties of materials operated in high-temperature water.*
WESTPHAL, R.C. and GLATTER, J.
Amer. Soc. Mech. Engrs. paper 54-SA13 for meeting 20-24 June, 1954. pp.14.

Study of combinations of materials which could be used successfully for bearings operating in 500°F water; features of test apparatus and representative results obtained; consideration of friction and solid film lubricants, applicability to nuclear powered submarine devices

418. *Growth of the Nautilus*
Westingho Engr vol.14, no.3, May, 1954, pp 112-3.

Brief development review

419. *Nuclear power plants for ship propulsion.*
CREVER, F.E. and TROCKI, T.
Elect. Engng (N.Y.), vol.73, no.4, April, 1954, pp.331-5.
Brit. Motor Ship, vol.35, no.411, June, 1954, pp.104-7.

Two prototype submarine atomic power plants are being developed: Submarine Thermal Reactor and Submarine Intermediate Reactor; fundamentals discussed and those of gas cooled reactor power plant.

420. *Launching of the Nautilus.*
Metal Progr., vol.65, March, 1954, pp.79-80.

Brief history of the project.

421. *Power plant of the first atomic submarine.*
Power Engng, vol.58, March, 1954, pp.82-3.

422. *USS Nautilus ushers in atomic age for ships.*
Mar. Engng, vol.59, March, 1954, pp.34-5.

423. *Launch first atomic submarine.*
DEWEY, H.S.
Heat. Piping Air Condit., vol.26, no.2, February, 1954, p.81.

Data on power plant and piping of USS Nautilus; propeller shaft driven by steam turbine receives steam from boiler which, in turn, receives its energy from reactor; 1½in. diameter piping is of stainless steel with welded joints.

424. *Submarine to be first user of atomic power.*
Iron & Steel Engr, vol.31, February, 1954, pp.110-11.

425. *Nuclear propulsion of plant of the U.S.S. Nautilus.*
RODDIS, L.H. and SIMPSON, J.W.
Soc. Naval Arch. Mar. Engrs Trans, vol.62, 1954, pp.491-521.
Mar. Engng, vol.60, no.2, February, 1955, pp.69-73, 83.
Mar. Engr & Naval Arch. vol.78, no.940, March, 1955, pp.102-6.
Heat. Engng, vol.30, no.2, March-April, 1955, pp.31-5.
Westingho. Engr, vol.15, March, 1955, pp.74-9. May, 1955, pp.89-93.
Engineer, vol.199, no.5183, 27 May, 1955, pp.753-6.

426. *First atomic sub gets final touches as the keel for a second is laid.*
Bsns Week, 19 September, 1953, p.31.

427. *Zirconium: practical commercial production spurred by use in atomic submarine.*
LEWIS, E.L.
Light Metal Age, vol.11, June, 1953, pp.8-9.

428 *Zirconium for atomic powered submarine.*
Modern Metals, vol.9, no.4, May, 1953, pp.42, 44.

Zirconium employed for water cooled nuclear reactors used in submarine being developed by Westinghouse Electric Corp, problems in processing zirconium which is now produced in bars

429. *Atomic engine*
Mech Engng, vol 74, no.9, September, 1952, pp.749-50.

Brief review of the Nautilus project