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ABSTRACT

This memorandum presents typical results from a calculation of
the deposition of heat in stratified lead and water slabs Tcaused by
a monodirectional,monoenergetic beam of gamma rays incident on the
slabs. A total of 512 cases were calculated for infinite slabs with’
finite thicknesses of 1, 2, h and 6 mean free paths; source energies
of 1, 3, 6, and 10 Mev, and source angles of incidence which were .

,chosen to give slant slab thicknesses of 1, 2, 3, and 4 times the
normal thickness. The results were fitted to an empirical formula,
which can be simplified for special cases. While for the cases
examined, the fit was usually geood to within 5%, it is to be em-
phasized that the formula has been compared only with the results
from a very limited number of parameters. '
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Deposition of Gamma-Ray Heating in
Stratified L Lead and Water Siabs

The Oracle Monte Carlo codel for the calculation of the penetration of
gamma. rays through stratified elabs has been used to calculate a total 6f
512vproblems for eight different lead and water configurations as shown in
Fig. 1. ~The energy of the incident radiation, the angle of incidence, the
thickness of the shleld and the percentage of lead precedlng or following
- water were varled " The source was assumed to ‘be a monodlrectional beam
with epergies of 1, 3, 6, and 10 Mev. The incident angles chosen were
those which would give slant thicknesses of 1, 2, 3 and 4 times the normal
thickness, and the infinite slabs had finite thlcknesses of 1, 2, &, and 6
mean free pathso ‘The results obtained include the dose rate and energy
flux throughout the slabhand at the rear; the heat deposited. throughout
the sleb; and the energy and angular distribution reflected from ahd trans-
mitted through,..:thef_asla.bo The'derived dose-rate buildup factors for normal
incidence have: been reported previously,2 and this report considers the
heat depos;ted #hroughoﬁt the slabs and presents a formula that fits the
results. The information on the energy and angular distribution will be .
presented later. .. ) .

' The heating results are given as the percent of the total energy‘
incident upen,the slab absorbed in a specified region in fhe slab. Some
typicai plots of these results are shown in Figs. 2 to 21, which compare the
Monte Carlo resulte averaged over a region of four“intervals to the values

obtained by using the following empirical formuls:

5 -
!

1. S. Auslender, "Compilations of Monte Carlo Calculations of Gamma-Ray
;Penetration in Multiregion Shields with Slab Geometry,” ORNL-2310
" (to be published).

2; L. A. Bowman and D. K. Trubey, "Stratified Slab Gamma-Ray Dose-Rate
Buildup Factors in Lead and Water Shieldsy" ORNL-CF-58-1-41 (1958);
see also ORNL-2387, p. 320. '
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The first'bracketéd factor represents the expected fractioir of incident
energ& to Be}depoSited per meanAfree path if the scattered gamma rays are
neglected. . . X ' . '

The next bracketed term is the buildup factor. Near the boundary
(x2 small), where the Spectrﬁm is largely determined by the-first material,
the buildup is given by the first term. This term demps;out-as %, gets
large and the buildup factor is characteristic of the second material. The

buildup factors used in the formula were the results of the well-known NDA '

3

moments method calculation. The energy absorption buildup fecters used

were for a point isotropic source since these were the only buildup factbrs_'

presented 1n ref. 3. ’ )

The last bracketed factor is the "short- circulting" factor. An
attempt was made to separate the effects of the various parameters in the
exponent. . The fectors which depend on the angle peak at 60 deg° It seems

reasonable that a peak might occur about there owing to the combination

.of a decreasing path length and a decreasing cross section and final energy

of a scattered gamma ray as the angle of scattering increases. The effect

of distance from the initial boundary also shows a peak (near 1 mfp). There

is 1little short circuiting at short distances since the heating .is due
largely to first collisions. The short circuitiﬁg damps out at large

distances since the buildup factor adequately accounts for the scattered
By (E 9m:t'l)
gamma rays far from boundaries. The factor 1 - “'T“"ME?'T is generally
b4

- taken to be that of the first material since, in general, the short-

circuiting effect is due to scattering near the initial boundary. This
procedure seems adequate if the~first}material is 0.25 mean free path
thick but probably is not adequate ifzthe thickﬁess of the first material
is less than this. The variation with energy seems’'to break down with
low energy and as a result the formula can be low by as much as 20% for
the 1-Mev case, T ‘

For special cases the formula can be simplified. For example, for
6 = 0 deg: ‘

3, H. Goldstein and J. E. Wilkins, Jr., "Calculations of the Penetratién of

Gemma Rays," NYO-3075, (1954).
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It should be emphasized that this formula has only been compared with
‘data from this calculation which had a Very limited number of parameters
(as listed in the first paragraph) and therefore it is possible that the’
fit is not as ‘good for other parameters, particularly outside—the parameters
examined. The worst fits were obtained for low ‘energies, especially with
,lead following water, but even in these cases the error was less than 20%%
In nearly all of the ceses examined, the error was less than 5%.
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