

UNCLASSIFIED

TNE

XDC 57-11-121

APEX-371

"MONTE CARLO RESEARCH SERIES:
MONTE CARLO PROGRAM FOR A LINEAR REACTOR
WITH VOID GAPS"

J. R. Beeler
R. H. Nelson

GENERAL THEORETICAL PHYSICS UNIT

P. A. Dyer

ENGINEERING ANALYSIS UNIT

November 13, 1957

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

GENERAL ELECTRIC-AIRCRAFT NUCLEAR PROPULSION DEPARTMENT-CINCINNATI 15, OHIO

UNCLASSIFIED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor the Air Force, nor any person acting on behalf of the Commission or the Air Force:

- A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above "person acting on behalf of the Commission or Air Force" includes any employee or contractor of the Commission or Air Force to the extent that such employee or contractor prepares, handles, or distributes, or provides access to, any information pursuant to his employment or contract with the Commission or Air Force.

DISTRIBUTIONInternal

S. W. Ahrends	R. R. McCready
F. A. Aschenbrenner	A. F. Mentink
A. H. Barnett	F. W. Mezger
J. R. Beeler (10)	J. W. Morfitt
G. M. B. Bouricius	J. J. Neely (Task 7276)
B. Duane	R. H. Nelson
P. A. Dyer	N. T. Pelton
W. B. Henderson	J. D. Popp
R. G. Herrmann	J. W. Ryan
J. F. Heyda	K. W. Seemann
T. J. Kostigen	D. S. Selengut
S. Lenihan	J. D. Simpson
M. C. Leverett	J. R. Terrall
J. M. Lutz	A. Trampus
J. E. MacDonald	L. von Gottfried

External

Chief Nuclear Branch - Weapons Systems, WADC (2)
Chief Nuclear Branch - Power Plant Lab., WADC (2)
Chief Aircraft Reactor Branch - AEC (1)
Technical Branch - AEC Lockland Office (1)
AEC Lockland Office Representation, Idaho Falls, (1)
Technical Information Service Extension, Oak Ridge
Document Control - Evendale (4)
Idaho Library (1)
Reactor Programs Division - Chicago Operations Office, AEC

ABSTRACT OF REPORT NO. XDC 57-11-121

TITLE: Monte Carlo Research Series: Monte Carlo Program for a Linear Reactor with Void Gaps

AUTHORS AND ORIGINATING UNITS: J. R. Beeler, Jr., and R. H. Nelson
General Theoretical Physics Unit
P. A. Dyer,
Engineering Analysis Unit

DATE: November 13, 1957

A Monte Carlo calculation for computing the diffusion coefficient and diffusion length in a linear system, with alternate solid and void segments, is described in this report. The program code is for the IBM 704.

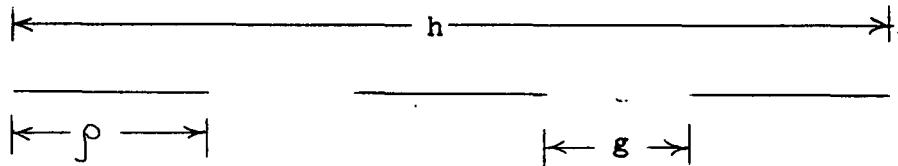
MONTE CARLO PROGRAM FOR A LINEAR REACTOR
WITH VOID GAPS

1.0 INTRODUCTION

In January, 1956, one of us was asked to investigate the effect of void regions on the behavior of a reactor. The first published work on this problem was done by D. J. Behrens in 1949.¹ Behrens' paper was concerned with an infinite system of homogeneous solid material, in which closed, void regions were interspersed. His calculations indicated that the effect of void regions on the migration length squared, M^2 , was two-fold:

- 1) An isotropic increase in M^2 proportional to the inverse square of the over all density of the reactor material (homogenized density)
- 2) A correction, in addition to the density effect, depending upon the ratio of the void volume to the product of the mean free path, (in the solid regions) and the surface of the void region

Behrens' work is not applicable to small reactors or (what amounts to the same thing) to reactors with large void regions. The "void" correction presently used in ANPD diffusion theory reactor programs is due to D. S. Selengut and R. M. Cohen, Reactor Analysis Unit. The Selengut-Cohen correction is, apparently, a successful recipe. It performs a Behrens' correction by modifying the product of the diffusion coefficient and the buckling with an energy dependent factor. Absorption effects are treated using a transmission factor for the neutron energy concerned.


¹ D. J. Behrens, Proc. Phys. Soc. London A, 62 - pp. 607-16 (Oct. 1949)

2.0 BARE LINEAR REACTOR PROGRAM

2.1 Geometry

The subject of this report is a Monte Carlo computation for a bare linear reactor. In what follows, this program will be referred to as P(l-D) Bare.

The system concerned, is a finite sequence of void and solid material segments, so arranged that the terminal segments are solid material segments, and that void and solid segments alternate with one another. The void segments have a common length g , and the solid segments a common length h . One specifies such a system, in P(l-D) Bare, by assigning particular values to g , h , and n where g is the gap length, h is the length of the system, and n is the number of gaps.

2.2 Quantities Computed

P(l-D) Bare computes the diffusion length, diffusion coefficient and crow flight distance from emission to capture of monoenergetic particles in the linear system, defined in (2.1). The Green's Function for a given point source location is presented in histogram form.

2.3 Computation Method

A given number of particles are started from a specified emission point, and their scattering histories are developed. The direction of emission and scattering is assumed to be distributed uniformly over a space with two sample points; namely, positive and negative direction. The free path length between collisions is sampled from the exponential distribution. The individual jump

lengths and their squares, and the emission point to capture point distance and its square, are tallied for diffusion length and diffusion coefficient computation. The capture point locations are counted in the appropriate histogram interval.

The details of particle tracing and counting operations are described in five flow charts. The general flow chart is Figure 1. Figures 2, 3, 4 and 5 present a refined description of the Direction, Jump Length, Capture-Scatter and Histogram blocks.

3.0 PURPOSE

This program was constructed for two reasons:

- 1) The Theoretical Physics Unit could educate itself in the use of the Monte Carlo method by writing $P(1-D)$ Bare.
- 2) $P(1-D)$ Bare was simple enough that its running time would be short. It would provide an inexpensive tool to block out areas for detailed study on Behrens' correction with more complex and expensive Monte Carlo codes.

4.0 OUTPUT

Output for the program consists of the following:

- (1) Average jump length of each particle
- (2) Average jump length squared of each particle
- (3) Migration distance (labeled W in program) for each particle
- (4) Migration distance squared for each particle
- (5) The segment and subsegment location of each particle
- (6) Total number of escapes to the right
- (7) Total number of escapes to the left

- (8) Total average jump length
- (9) Total average jump length squared
- (10) Total average migration distance
- (11) Total average migration distance squared
- (12) Histogram - (giving the total number of particles in each subsegment of n number of fuel segments)

The program is set up in such a way as to enable the person running the program to skip over the items 1 through 5 that are concerned with the output of each individual particle. This is done by putting an unconditioned jump from location $04641_{(8)}$ to location $04675_{(8)}$ into the program by means of an octal correction card. The remaining output for the total number of particles will not be changed.

5.0 INPUT

The program is read in from cards with the data cards behind the program deck. Sense switches 1 and 2 are down. Tapes 1 and 3 are used. Tape 1 is Gecop and the output is on Tape 3.

INPUT FORM:

Card 1

C2661, - LAMM,

(Card enters machine in floating point form) LAMM is the negative of the mean free path.

Card 2

C2669, H, G, N, P, XOFJ, SIGC, SIG, PART,

(Card enters the machine in floating point form)

H length of the reactor

G gap length

N number of gaps

P solid segment length
XOFJ starting point of each particle
SIGC capture cross section
SIG total cross section
PART number of particles started

Card 3

D2678, 35, SEG, SSEG, IR2

(Card enters machine in fixed point form with scaling factor of
35 as the numbers are integers)

SEG number of fuels segments in histogram
SSEG number of subsegments contained in each fuel segment
IR2 number of particles started (same number as PART)

Card 4

12783, γ ,

(This card enters the machine as a floating point, end of record card
since it is the last card of the case)

γ is the reciprocal of the number of histogram subsegments per solid
segment. An end of file card (8 punch in column one) should follow
the last card of the final case.

DL9C DATA INPUT FORM

NAME _____ PHONE _____ CHARGE _____ DATE AND TIME RECEIVED BY KEYPUNCH

Must be verified Verify if time allows

1-D MONTE CARLO PROGRAM FOR A BARE LINEAR REACTOR

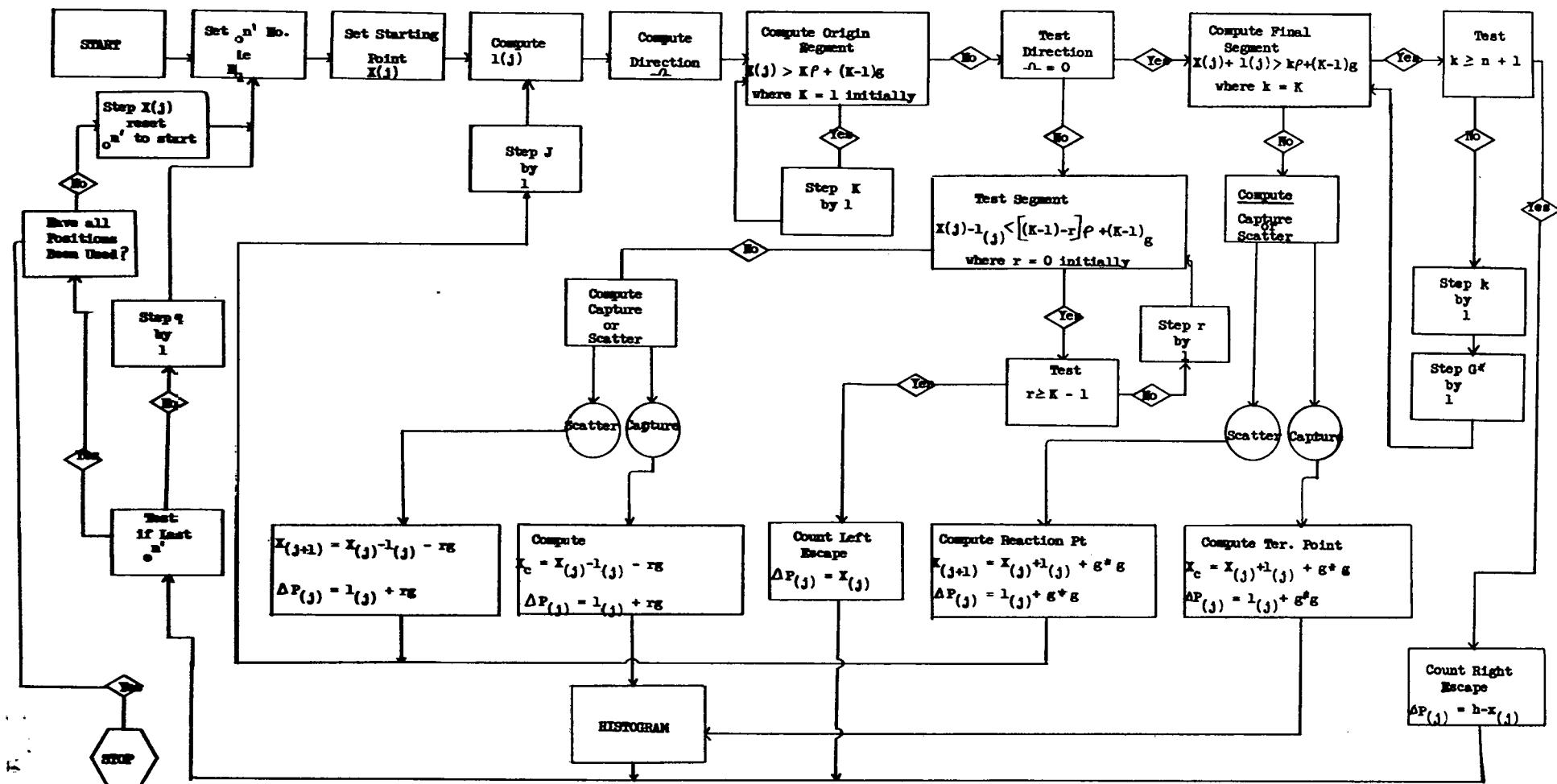


Figure 1

COMPUTE DIRECTION

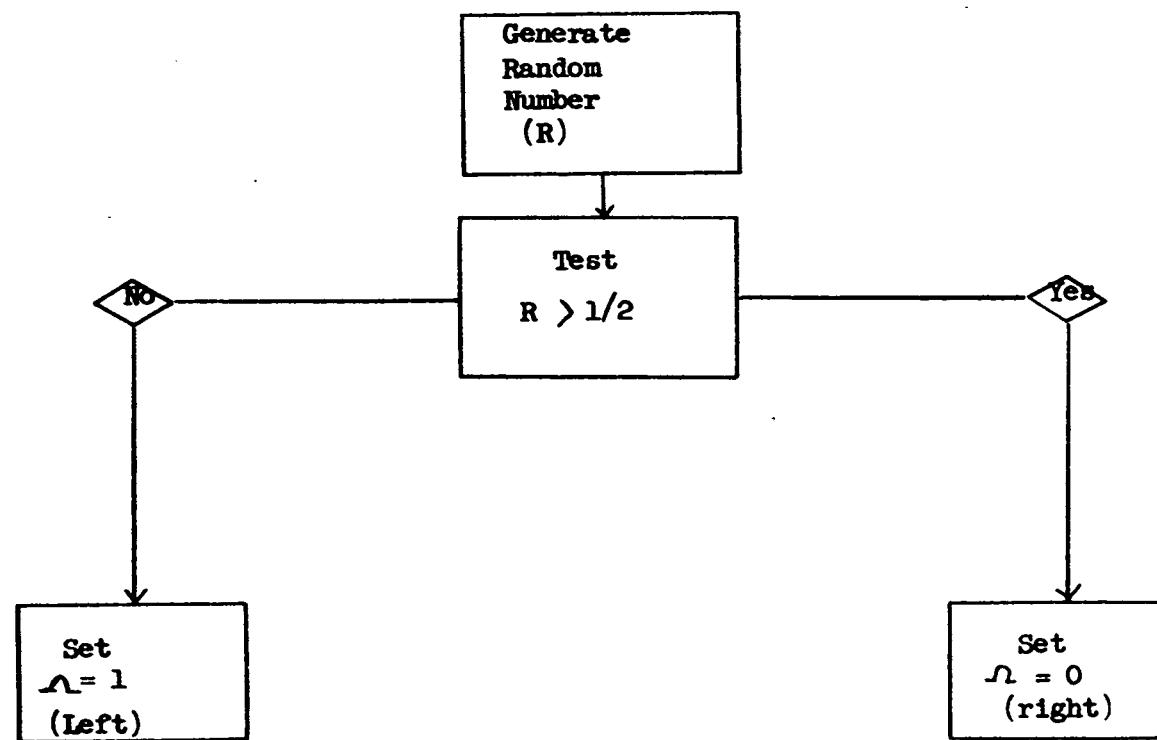


Figure 2

COMPUTING JUMP LENGTH

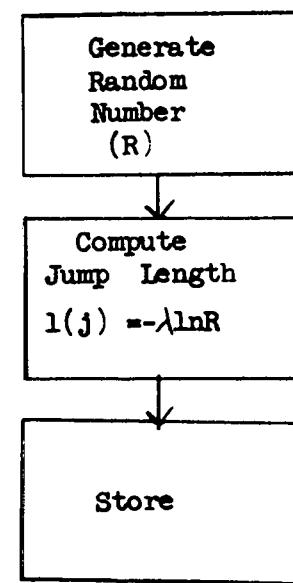


Figure 3

COMPUTE CAPTURE OR SCATTER

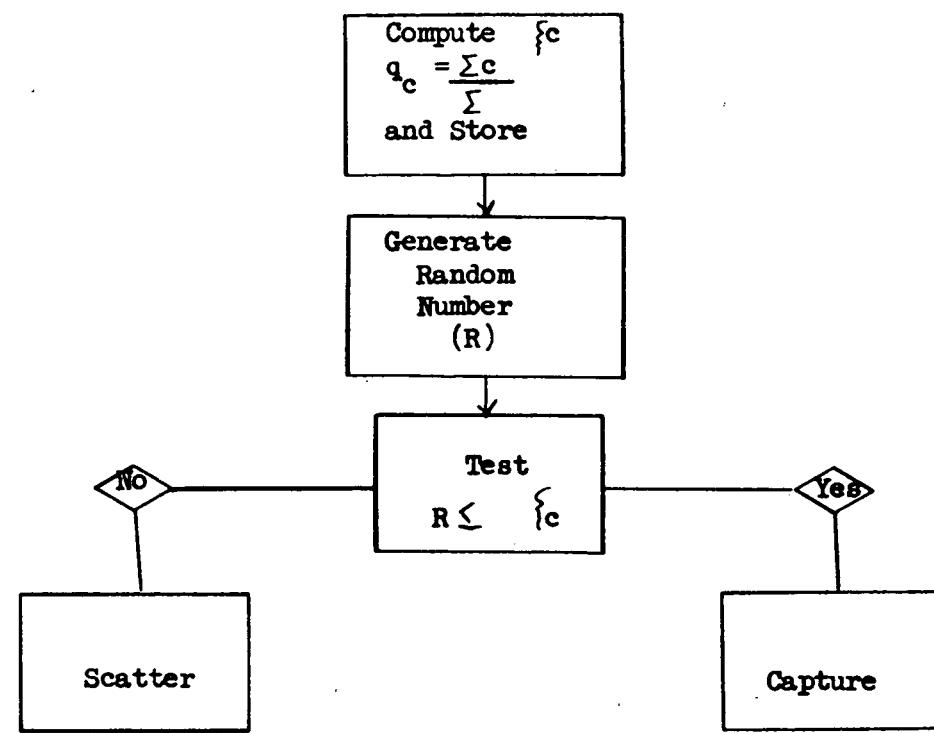


Figure 4

HISTOGRAM

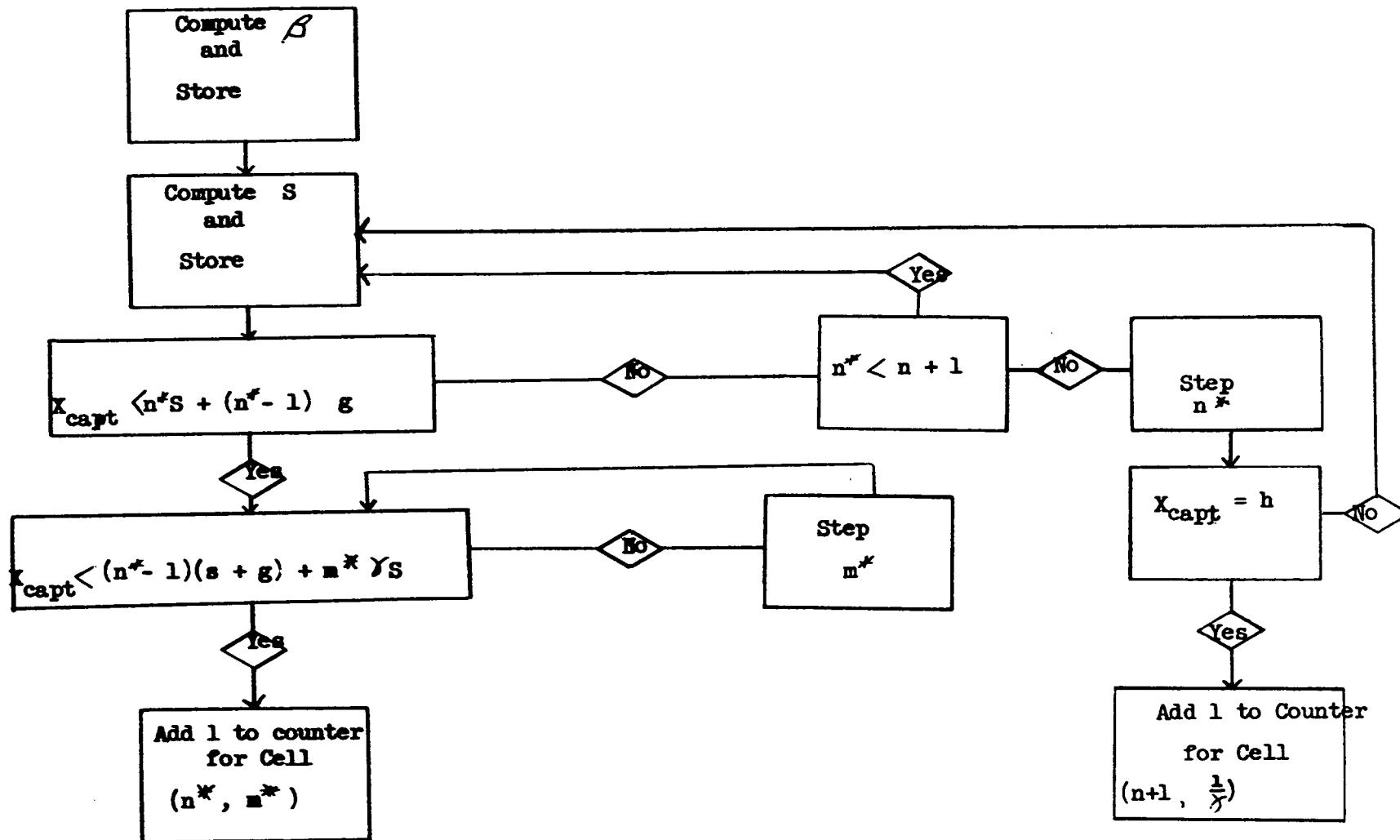


Figure 5

* 1-D MONTE CARLO PROGRAM
* TASK NUMBER 7276
* START PROGRAM
START SXJ DL9C,4
ZER
ZER
HTJ
CLA FL1
STR NSQ
STR J
CLA XOFJ
STR XOFJ2
LDQ SEG
MPY SSEG
STQ IR4
LXA IR2,2
LXA IR1,1
LXA IR4,4
SXD SAVE,4
SXD SAVE2,1
SXD SAV3,1
SXD SAVE6,1
* COMPUTE L LOG METHOD
CLA TABLE
SXJ RANO+1,4
ZER 33
COMLJ SXJ RANO,4
STR RAN
SXJ LN,4
HTJ
STR TEMP
LDQ LAMM
FNM TEMP
NOP
STR LJ
* COMPUTE DIRECTION OMEGA
SXJ RANO,4
STR RAN+1
SGA HALF
UNJ PD1
UNJ PD2
PD2 CLA FX1
PD3 STR OMEGA
UNJ PD4
PD1 PXD 0,0
UNJ PD3
*COMPUTE ORIGIN AND TEST SEGMENT
PD4 CLA XOFJ
STR XJ1
* TEST SEGMENT
PD6 LDQ K
FNM P
STR TEMP
CLA K
FNS FL1
STR NORE

LDQ G
FNM NORE
FNA TEMP
SGA XJ1
UNJ PD5
UNJ- PD5
CLA K
FNA FL1
STR K
UNJ PD6

* TEST DIRECTION
PD5 CLA OMEGA
ZEJ PD7

PD17 CLA XJ1
FNS LJ
STR DEAR
CLA NORE
FNS R
STR TEMP
LDQ P
FNM TEMP
STR TEMP
LDQ G
FNM NORE
FNA TEMP
SGA DEAR
UNJ PD8
UNJ PD9

* COMPUTE CAPTURE OR SCATTER
PD9 CLA SIGC
FDH SIG
STQ SSIG
SXJ RANO,4
STR RAN+2
SGA SSIG
UNJ PD10 SCATTER
UNJ PD11 CAPTURE

PD11 CLA CAPT CAPTURE
FNA FL1
STR CAPT
LDQ R
FNM G
STR TEMP
CLA XJ1
FNS LJ
FNS TEMP
STR XCT
CLA LJ
FNA TEMP
STR DPJC1
CLA DELP
FNA DPJC1
STR DELP
LDQ DPJC1
FNM DPJC1
STR NPER

CLA DELP2
 FNA NPER
 STR DELP2
 CLA XCT
 FNS XOFJ2
 STR W
 LDQ W
 FNM W
 STR WSQ
 CLA AVGW
 FNA W
 STR AVGW
 CLA AVGW2
 FNA WSQ
 STR AVGW2
 * DETERMINE SEGMENT AND SUB-SEGMENT
 PD20 LDQ G
 FNM N
 FDH H
 STQ BETA
 CLA N
 FNA FL1
 STR TEMPS
 CLA FL1
 FNS BETA
 STR TEMP
 LDQ TEMP
 FNM H
 FDH TEMPS
 STQ S
 CLA SSFG
 SUB FX1
 STR SSGM1
 PD14 LDQ N*
 FNM S
 STR TEMP
 CLA N*
 FNS FL1
 STR TEMPS
 LDQ G
 FNM TEMPS
 FNA TEMP
 SGA XCT
 UNJ PD12
 UNJ PD13
 PD13 CLA N
 FNA FL1
 SGA N*
 UNJ STEPN
 UNJ TXC
 TXC CLA XCT
 SGA H
 UNJ PD14
 UNJ TE
 UNJ PD14
 STEPN CLA N*

FNA FL1
STR N*
CLA N*D
ADD FX1
STR N*D
UNJ PD14
TE LDQ SEG
MPY SSEG
STR HERE
CLA AAA
ADD HERE
SUB FX1
STA FIX
STA FIX2
UNJ FIX
PD12 CLA N*
FNS FL1
STR TEMP
CLA S
FNA G
STR TEMPS
LDQ TEMP
FNM TEMPS
STR TEMP
LDQ M*
FNM GAMA
STR TEMPS
LDQ S
FNM TEMPS
FNA TEMP
SGA XCT
UNJ PD15
UNJ PD16
PD16 CLA M*
FNA FL1
STR M*
CLA M*D
ADD FX1
STR M*D
UNJ PD12
PD15 LDQ N*D
MPY SSEG
STQ TEM
CLA TEM
SUB SSGM1
ADD M*D
SUB FX1
STR STAY
CLA AAA
ADD STAY
SUB FX1
STA FIX
STA FIX2
FIX CLA --
FNA FL1
FIX2 STR --

PD10 UNJ PD24
 CLA SCAT
 FNA FL1
 STR SCAT
 LDQ G
 FNM R
 STR TEMP
 CLA XJ1
 FNS LJ
 FNS TEMP
 STR XJP1
 STR XOFJ
 CLA LJ
 FNA TEMP
 STR DPJS1
 CLA DELP
 FNA DPJS1
 STR DELP
 LDQ DPJS1
 FNM DPJS1
 STR NPER
 CLA DELP2
 FNA NPER
 STR DELP2
 UNJ PD23
 PD8 CLA K
 FNS FL1
 SGA R
 UNJ STRO
 UNJ *+1
 UNJ ESCL
 STRO CLA R
 FNA FL1
 STR R
 UNJ PD17
 ESCL CLA LESC
 FNA FL1
 STR LESC
 CLA XJ1
 STR DPJLE
 CLA DELP
 FNA DPJLE
 STR DELP
 LDQ DPJLE
 FNM DPJLE
 STR NPER
 CLA DELP2
 FNA NPER
 STR DELP2
 UNJ PD24
 * COMPUTE YES DIRECTION
 PD7 CLA XJ1
 FNA LJ
 STR TEST
 CLA K
 STR WEEK

PD28	LDQ P	20
	FNM WEEK	
	STR TEMP	
	CLA K	
	FNS FL1	
	STR NORE	
	LDQ NORE	
	FNM G	
	FNA TEMP	
	SGA TEST	
	UNJ PD18	
	UNJ PD18	
	CLA N	
	FNA FL1	
	SGA WEEK	
	UNJ STKO	
	UNJ PD19	
	UNJ PD19	
STKO	CLA WEEK	
	FNA FL1	
	STR WEEK	
	CLA G*	
	FNA FL1	
	STR G*	
	UNJ PD28	
PD19	CLA RESC	
	FNA FL1	
	STR RESC	
	CLA H	
	FNS XJ1	
	STR DPJRE	
	CLA DELP	
	FNA DPJRE	
	STR DELP	
	LDQ DPJRE	
	FNM DPJRE	
	STR NPER	
	CLA DELP2	
	FNA NPER	
	STR DELP2	
	UNJ PD24	
PD18	CLA SIGC	
	FDH SIG	
	STQ SSIG	
	SXJ RANO,4	
	STR RAN+3	
	SGA SSIG	
	UNJ PD21	SCATTER
	UNJ PD22	CAPTURE
PD22	CLA CAPT	CAPTURE
	FNA FL1	
	STR CAPT	
	LDQ G*	
	FNM G	
	FNA LJ	
	FNA XJ1	

STR XCT
LDQ G*
FNM G
FNA LJ
STR DPJC0
CLA DELP
FNA DPJC0
STR DELP
LDQ DPJC0
FNM DPJC0
STR NPER
CLA DELP2
FNA NPER
STR DELP2
CLA XCT
FNS XOFJ2
STR W
LDQ W
FNM W
STR WSQ
CLA AVGW
FNA W
STR AVGW
CLA AVGW2
FNA WSQ
STR AVGW2
UNJ PD20
PD21 CLA SCAT
FNA FL1
STR SCAT
LDQ G*
FNM G
FNA LJ
FNA XJ1
STR XJP1
STR XOFJ
LDQ G*
FNM G
FNA LJ
STR DPJS0
CLA DELP
FNA DPJS0
STR DELP
LDQ DPJS0
FNM DPJS0
STR NPER
CLA DELP2
FNA NPER
STR DELP2
UNJ PD23
PD23 CLA J
FNA FL1
STR J
CLA FL1
STR K
STR M*

21

20

```

STR N*
CLA R0
STR R
STR G*
UNJ COMLJ
PD24 CLA DELP
FDH J
STQ DAVG
CLA DELP2
FDH J
STQ DAVG2
CLA DVGT
FNA DAVG
STR DVGT
CLA DVGT2
FNA DAVG2
STR DVGT2
LXD SAVE6,1
IXJ PRINT,1,1
SXD SAVE6,1
UNJ JUMP
PRINT SXJ REST0,4
SXJ PRSET,4
ZER HEAD,3,18           INPUT DATA
SXJ WRITE,4
SXJ WRITE,4
SXJ PRSET,4
ZER HEAD1,1,6
CLA H
SXJ ENFLO,4
ZER 12,2                 (H)
SXJ WRITE,4
SXJ PRSET,4
ZER HEAD2,1,6
CLA G
SXJ ENFLO,4
ZER 12,2
SXJ WRITE,4
SXJ PRSET,4
ZER HEAD3,1,6
CLA N
SXJ ENFLO,4
ZER 12,0
SXJ WRITE,4
SXJ PRSET,4
ZER HEAD4,1,6
CLA P
SXJ ENFLO,4
ZER 12,2
SXJ WRITE,4
SXJ PRSET,4
ZER HEAD5,3,18
CLA XOFJ2
SXJ ENFLO,4
ZER 24,2
SXJ WRITE,4

```

SXJ	PRSET,4	
ZER	HEAD6,2,12	
CLA	SIGC	
SXJ	ENFLO,4	
ZER	18,3	
SXJ	WRITE,4	
SXJ	PRSET,4	
ZER	HEAD7,2,12	
CLA	SIG	
SXJ	ENFLO,4	
ZER	18,3	
SXJ	WRITE,4	
SXJ	PRSET,4	
ZER	HEAD8,3,18	
CLA	PART	NO OF PARTICLES
SXJ	ENFLO,4	
ZER	24,0	
SXJ	WRITE,4	
SXJ	PRSET,4	
ZER	HEAD9,3,18	
CLA	TABLE	
SXJ	ENSCN,4	
ZER	30,7,27	
SXJ	WRITE,4	
SXD	SAVE6,1	
JUMP	NOP	
	LXD SAV3,1	
	IXJ PR,1,1	
	UNJ STAR	
PR	SXJ PRSET,4	
	ZER HED20	
	SXJ WRITE,4	
	SXJ WRITE,4	
STAR	CLA N*	
	SXJ ENFLO,4	
	ZER 6,0	
	CLA M*	
	SXJ ENFLO,4	
	ZER 12,0	
	CLA DAVG	
	SXJ ENFLN,4	
	ZER 30,6	
	CLA DAVG2	
	SXJ ENFLN,4	
	ZER 48,6	
	CLA W	
	SXJ ENFLN,4	
	ZER 60,5	
	CLA WSQ	
	SXJ ENFLN,4	
	ZER 72,5	
	SXJ WRITE,4	
	SXD SAV3,1	

IXJ TESTN,2,1
CLA DVGT
FDH PART
STQ AJUM
CLA DVGT2
FDH PART
STQ AJUM2
CLA AVGW
FDH CAPT
STQ TAW
CLA AVGW2
FDH CAPT
STQ TAWSQ
SXJ RESTO,4
SXJ PRSET,4
ZER HED21
SXJ WRITE,4
SXJ WRITE,4
SXJ WRITE,4
CLA RESC
SXJ ENFLO,4
ZER 12,0
CLA LESC
SXJ ENFLO,4
ZER 42,0
SXJ WRITE,4
SXJ WRITE,4
SXJ WRITE,4
SXJ PRSET,4
ZER HED22
SXJ WRITE,4
SXJ WRITE,4
CLA AJUM
SXJ ENFLN,4
ZER 18,6
CLA AJUM2
SXJ ENFLN,4
ZER 48,6
SXJ WRITE,4
SXJ WRITE,4
SXJ WRITE,4
SXJ PRSET,4
ZER HED23,7,42
SXJ WRITE,4
CLA TAW
SXJ ENFLN,4
ZER 18,6
CLA TAWSQ
SXJ ENFLN,4
ZER 36,6
SXJ WRITE,4
SXJ RESTO,4
SXJ PRSET,4
ZER HED24,6,36
SXJ WRITE,4
SXJ WRITE,4

24

-CLEAR AFTER EACH SET
-CLEAR AFTER EACH SET

A JUM

A JUM 2

SXJ WRITE,4
SXJ PRSET,4
ZER HED25
SXJ WRITE,4
SXJ WRITE,4
SXD PUT,2
SXD PUTT,1
CLA SEG
ADD FX1
STR SEG1
CLA SSEG
ADD FX1
STR SSEG1
LXA SEG1,2
LXA SSEG1,1
DEF CLA FX11
IXJ DEF1,2,1
LXD PUT,2
LXD PUTT,1
UNJ TESD
DEF1 CLA FX12
IXJ PRIN,1,1
UNJ OVER
PRIN CLA FX11
SXJ ENINT,4
ZER 12
PRIN1 CLA FX12
SXJ ENINT,4
ZER 24
PRIN2 CLA HIS
SXJ ENFLO,4
ZER 36,0
SXJ WRITE,4
CLA PRIN2
ADD FX1
STR PRIN2
CLA FX12
ADD FX1
STR FX12
UNJ DEF1
OVER LXA SSEG1,1
CLA FX1
STR FX12
CLA FX11
ADD FX1
STR FX11
SXJ WRITE,4
UNJ DEF
TESD CLA FL1
STR NSQ
CLA FX1
STR FX11
STR FX12
LXA IR1,1
LXA IR4,4
SXD SAVE,4

24
134

SXD SAV3,1
CLA XOFJ2
STR XOFJ
UNJ TESDD
PD25 CLA FL1
STR J
STR K
STR M*
STR N*
CLA FX1
STR M*D
STR N*D
CLA R0
STR R
STR G*
STR DELP
STR DELP2
STR DAVG
STR DAVG2
STR W
STR WSQ
UNJ COMLJ
TESTN CLA NSQ
FNA FL1
STR NSQ
CLA XOFJ2
STR XOFJ
UNJ PD25
TESDD CLA FL1
STR J
STR K
STR M*
STR N*
CLA FX1
STR M*D
STR N*D
CLA R0
STR R
STR G*
STR W
STR WSQ
STR AVGW
STR AVGW2
STR DELP
STR DELP2
STR DAVG
STR DAVG2
STR DVGT
STR DVGT2
CLA AAA
ADD D299
STA TT
LXA D299,1
TT STZ --,1
IXJ TT,1,1
UNJ START

25
28

LAMM FLO -1
HALF FLO .5
K FLO 1
FL1 FLO 1
N* FLO 1
M* FLO 1
FIVE FLO 5
LAMDA ZER
H ZER
G ZER
N ZER
P ZER
XOFJ ZER
SIGC ZER
SIG ZER
PART ZER
TABLE DEC 3.1415927
SEG ZER
SSEG ZER
IR2 ZER
IR4 ZER
FX1 DEC 1
FX2 DEC 2
L3 DEC 3
D199 DEC 199
D299 DEC 299
IR1 DEC 2
M*D DEC 1
N*D DEC 1
FX11 DEC 1
FX12 DEC 1
PUT ZER
PUTT ZER
BETA ZER
STAY ZER
SAVE ZER
SAVE1 ZER
SAVE2 ZER
SAV3 ZER
RAN ZER
LOC L+10
LN SRT
TEMP ZER
OMEGA ZER
XJ1 ZER
NORE ZER
DEAR ZER
SSIG ZER
CAPT ZER
XC1 ZER
DPJC1 ZER
TEMPS ZER
G* ZER
S ZER
SCAT ZER
DPJS1 ZER

LESC ZER
 DPJLE ZER
 TEST ZER
 WEEK ZER
 RESC ZER
 DPJRE ZER
 TEM ZER
 XCO ZER
 GAMA ZER
 SAVE6 ZER
 DPJCO ZER
 XJP1 ZER
 DPJSO ZER
 R0 ZER
 DELP ZER
 DELP2 ZER
 DAVG ZER
 DAVG2 ZER
 NPER ZER
 XCT ZER
 DVGT ZER
 DVGT2 ZER
 J ZER
 R ZER
 NSQ ZER
 XOFJ2 ZER
 LJ ZER
 W ZER
 WSQ ZER
 AVGW ZER
 AVGW2 ZER
 SSGM1 ZER
 HERE ZER
 AJUM ZER
 AJUM2 ZER
 TAW ZER
 TAWSQ ZER
 SSEG1 ZER
 SEG1 ZER
 AAA ZER HIS
 HIS ZER
 LOC L+299
 HEAD BCI 3, INPUT DATA
 HEAD1 BCI 1, H=
 HEAD2 BCI 1, G=
 HEAD3 BCI 1, N=
 HEAD4 BCI 1, P=
 HEAD5 BCI 3, STARTING POINT=
 HEAD6 BCI 2, SIGMA C =
 HEAD7 BCI 2, SIGMA =
 HEAD8 BCI 3, NO. OF PARTICLES=
 HEAD9 BCI 3, RANDOM NO. GEN.=
 HED20 BCI 9, SEG. SUB-SEG. JUMP LENGTH JUMP LENGTH SQ.
 BCI 3, W W SQ.
 HED21 BCI 9, NO. OF RIGHT ESCAPES NO. OF LEFT ESCAPES
 BCI 3,

HED22	BCI 9, BCI 3, SQ.	TOTAL AVG. JUMP LENGTH	TOTAL AVG. JUMP LENGTH
HED23	BCI 7,	TOTAL AVG. W	TOTAL AVG. W SQ.
HED24	BCI 6,	HISTOGRAM	
HED25	BCI 9, BGI 3,	SEG.	SUB-SEG.
DL9C	EQU 33	NO OF PARTICLES	
PRSET	EQU 34		
ENFLO	EQU 35		
WRITE	EQU 39		
RESTO	EQU 40		
ENFLN	EQU 43		
ENINT	EQU 36		
ENSCN	EQU 37		
* RANDOM NUMBER GENERATOR			
* CALLING SEQUENCE TO SET UP			
* SXJ RANO+1,4			
* ZERN (N IS NUMBER OF BITS IN RNUM.)			
* INITIAL RNUM IS IN AC			
* CALLING SEQUENCE TO USE			
* SXJ RANO,4			
* RESULTING RNUM IS IN FIRST N BITS OF AC			
* THIS PROGRAM HAS 60 INSTRUCTIONS AND USES ONE FREE STORAGE LOCATION			
RANO	UNJ RN2		
	STR 1R	STORES INITIAL RNUM	
	CLA 1,4	PUTS N IN AC	
	SGA L33	NUMBER 33 IS COMPARED TO N	
	CLA L33		
	NOP		
	SUB L33	FORMS N-33	
	STA RN4		
	STA RN1		
	STA RN5		
* SET MASK			
	LDQ ONES	PUTS ONE IN ALL BITS OF Q-REG	
RN1	LLS -		
	STQ MASK	FILLS FIRST N BITS AC WITH ONES	
	CLA MASK	FORMS N BIT RNUM	
	ANS 1R		
	CLA L2		
RN4	ALS -		
	ORS 1R		
* SET UP MPY			
	CLA 1MPY	PUTS K IN AC	
RN5	ARS -		
	ALS 3	FORMS 8K	
	ADD L5	FORMS(8K+5)	
	STR MPY		
	UNJ 2,4		
L5	DEC 5		
ONES	OCT 377777777774		
I 33	DEC 33		
MASK	ZER		
L2	DEC 2		
1R	ZER		
MPY	ZER		

1MPY OCT 24420404020
* COMPUTE RNUM
RN2 LDQ 1R
MPY MPY
STQ 1R
SXD ERAS8,1
CLA 1R
ANA MASK
STR FREE
OVJ RN6
RN6 LXA RN9,1
RN7 CLA FREE
ALS 1
OVJ RN8
STR FREE
RXJ RN7,1,1
RN8 LRS 36
PXD 0,1
ALS 9
SUB RN10
SSP
STR FREE
LLS 27
ADD FREE
LXD ERAS8,1
UNJ 1,4
RN9 ZER 1
RN10 OCT 201000000000
ERAS8 ZER
*

FORMS RN-1R

PUTS A ONE IN INDEX 1

ADD A ONE TO INDEX 1
PUTS FRACTIONAL PART IN Q-REGISTER

STORES EXPONENT

COMPLETES FLOATING OPERATION

30

29