

MASTER

X-821

OAK RIDGE NATIONAL LABORATORY

Operated by

UNION CARBIDE NUCLEAR COMPANY

Division of Union Carbide Corporation

Post Office Box X

Oak Ridge, Tennessee

ORNL

CENTRAL FILES NUMBER

58-12-15

External Distribution Authorized

COPY NO. 129

DATE: December 8, 1958

SUBJECT: Survey of the Static Nuclear Characteristics of
Small One-Region Slurry Reactors: Part III

TO: Distribution

FROM: B. E. Prince and M. P. Lietzke

ABSTRACT

A summary is given of computed criticality parameters for U^{235} fueled, spherical $\text{ThO}_2\text{-H}_2\text{O}\text{-D}_2\text{O}$ reactors smaller than 3 ft in diameter and moderated with $\text{H}_2\text{O}\text{-D}_2\text{O}$ mixtures above 20% in H_2O . Thorium concentrations were varied between 200 and 1000 g/liter, and the temperature range was 20°C to 200°C. The parameters calculated were critical uranium-to-thorium ratios and the reactivity coefficients of temperature, void, and slurry concentration. As a typical example, a 2.5-ft reactor, moderated with an 80% D_2O -20% H_2O mixture, has a minimum critical mass ratio and a maximum critical temperature at about 500 g Th/liter. These values were about 0.08 g U^{235} /g Th and 200°C, respectively.

NOTICE

This document contains information of a preliminary nature and was prepared primarily for internal use at the Oak Ridge National Laboratory. It is subject to revision or correction and therefore, does not represent a final report.

The information is not to be abstracted, reprinted or otherwise given public dissemination without the approval of the ORNL Patent Branch, Legal and Information Control Department.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

—LEGAL NOTICE—

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or.
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.

INTRODUCTION

Studies have previously been reported on the dependence of the criticality parameters of single-region slurry reactors upon various design variables.¹

These variables included operating temperature, size, slurry concentration, moderator, and fuel. The present memorandum is an extension of these results to U^{235} -fueled, thorium-oxide slurry reactors smaller than 3 ft in diameter with moderator mixtures of light and heavy water. An appendix is included which describes the IBM-704 routine used in the computations.

SUMMARY

The present memorandum presents results for U^{235} -fueled, spherical $ThO_2-H_2O-D_2O$ reactors with reactor vessel diameters of 2.5, 2.0, and 1.5 ft and moderator mixtures of 100, 50, and 20 mol-percent H_2O . The thorium concentration was varied between 200 and 1000 g/liter, and the temperature between 20°C and 200°C. Characteristics of the reactors studied were:

- (a) For moderator mixtures of up to 50 mol-percent D_2O in H_2O , the minimum critical mass ratio occurs in the vicinity of 1000 g Th/liter or greater. At larger percentages of D_2O , the minimum critical mass ratio increases and occurs at smaller thorium concentrations, e.g., 400 to 600 g/liter at 80% D_2O .
- (b) For reactors moderated with 80% D_2O - 20% H_2O , maximum critical temperatures occur between 400 and 600 g/liter, for a given uranium-to-thorium ratio.

RESULTS

The Oracle one-region reactor survey program used in previous studies was revised for the IBM-704 and extended to compute reactivity coefficients. Reactivity changes for the following conditions were considered:

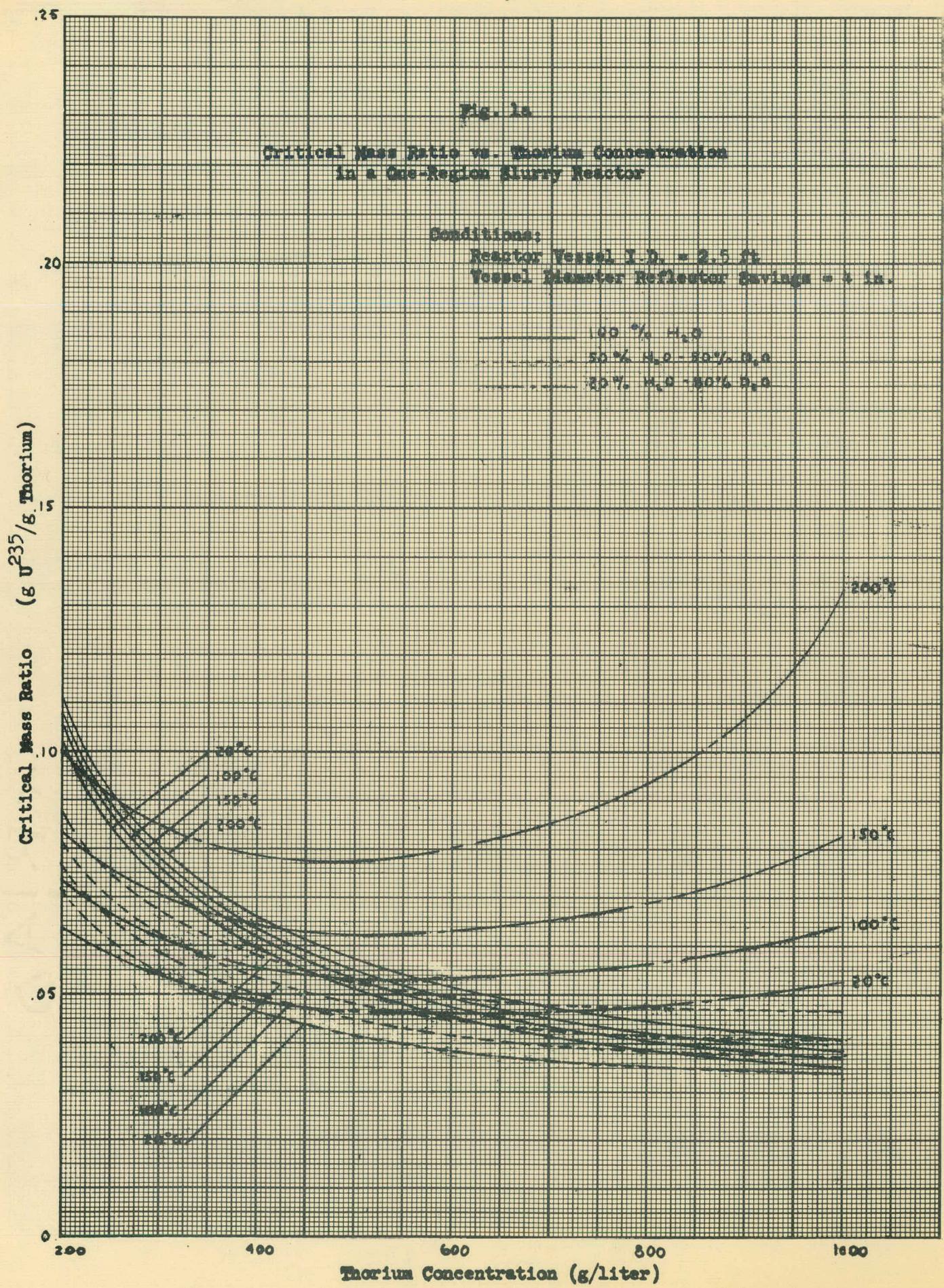
- (a) Temperature increases in which the moderator expands uniformly and the mass ratios of uranium and thorium to moderator remain constant throughout the reactor.
- (b) Moderator density is changed due to formation of voids; e.g., from radiolytic gas or bubbles due to boiling. Here also, the density change was assumed uniform throughout the reactor.
- (c) Uniform small changes in thorium concentration, made at constant temperature and constant ratio of uranium to thorium.

In the present study, reactor vessel diameters of 2.5, 2.0, and 1.5 ft and moderator mixtures of 0, 50, and 80 mol per cent D_2O were considered. The reactor temperature was varied between 20 and 200°C, and the thorium concentration between 200 and 1000 g per liter.

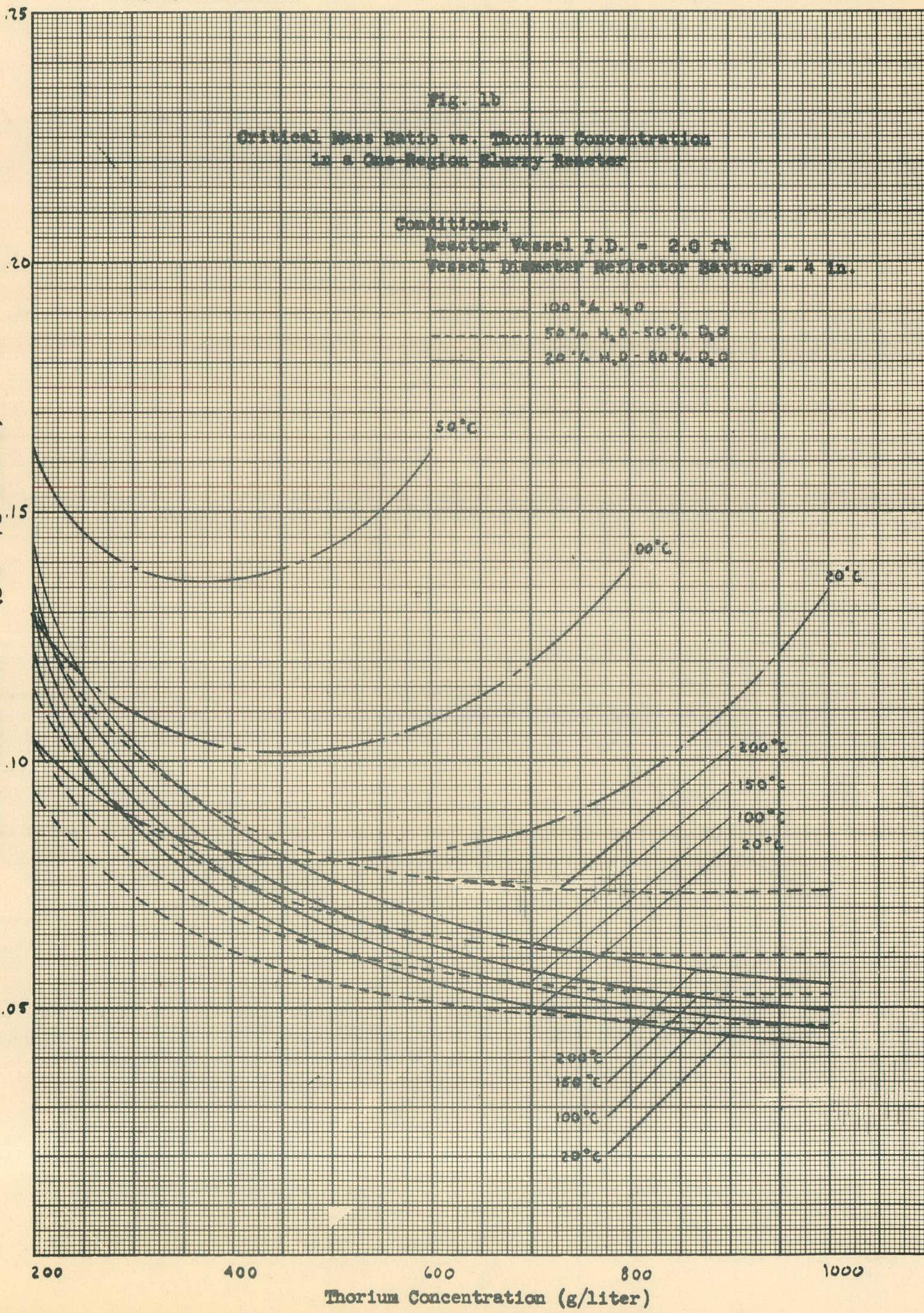
Figures 1a, b, c give the critical mass ratios in the above reactors as functions of thorium concentration. In these calculations, a diameter increment of 4 inches (reflector savings of 2 in.) was assumed to account for the presence of the pressure vessel. For example, Fig. 1a shows the characteristics of a 34-in. diameter bare sphere, or approximately a 2.5-ft ID vessel-enclosed reactor.

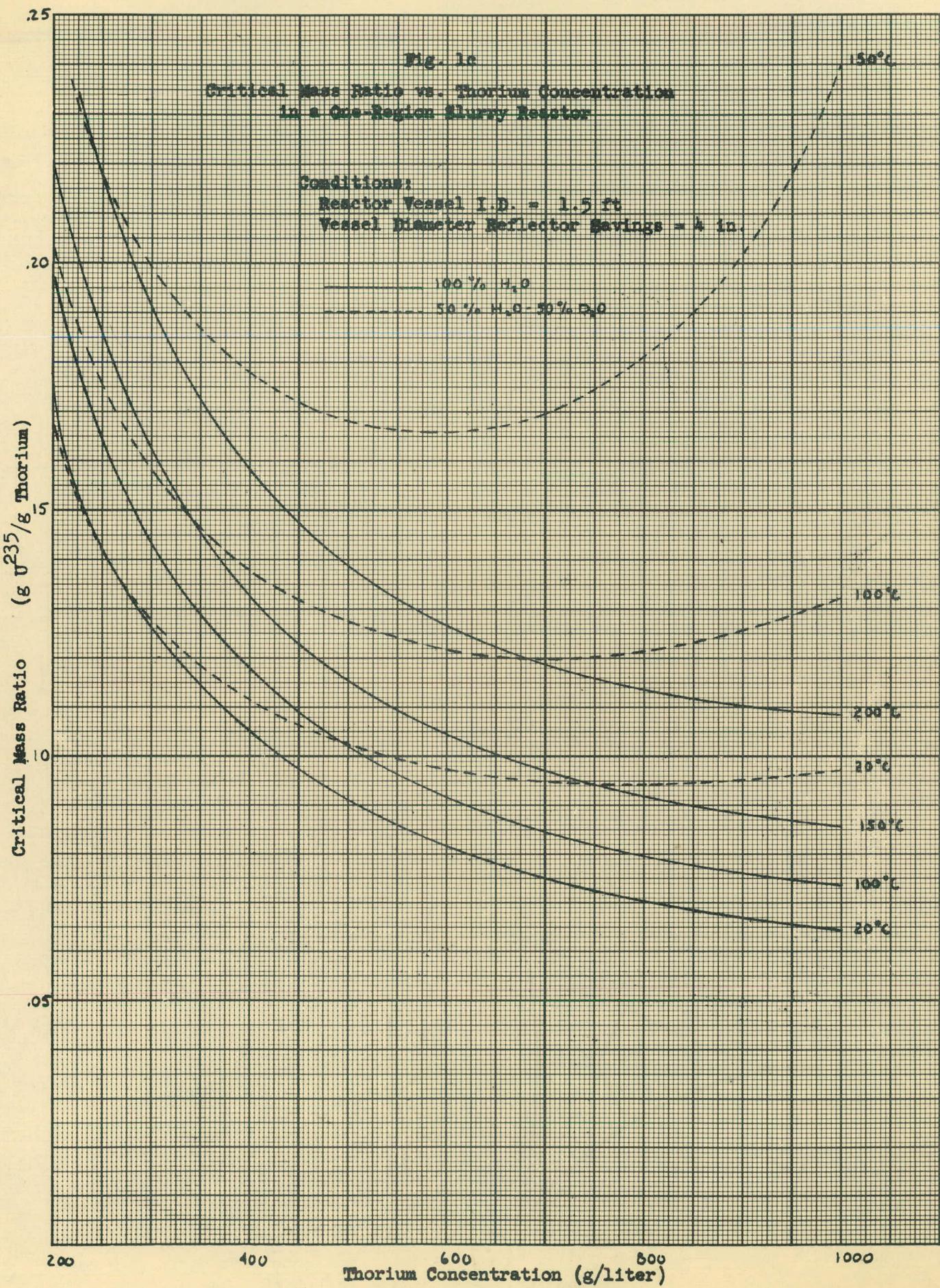
Figures 2a, b, c are plots of the critical temperatures in these systems as functions of thorium concentration. Each temperature curve is for a fixed ratio of U^{235} to thorium.

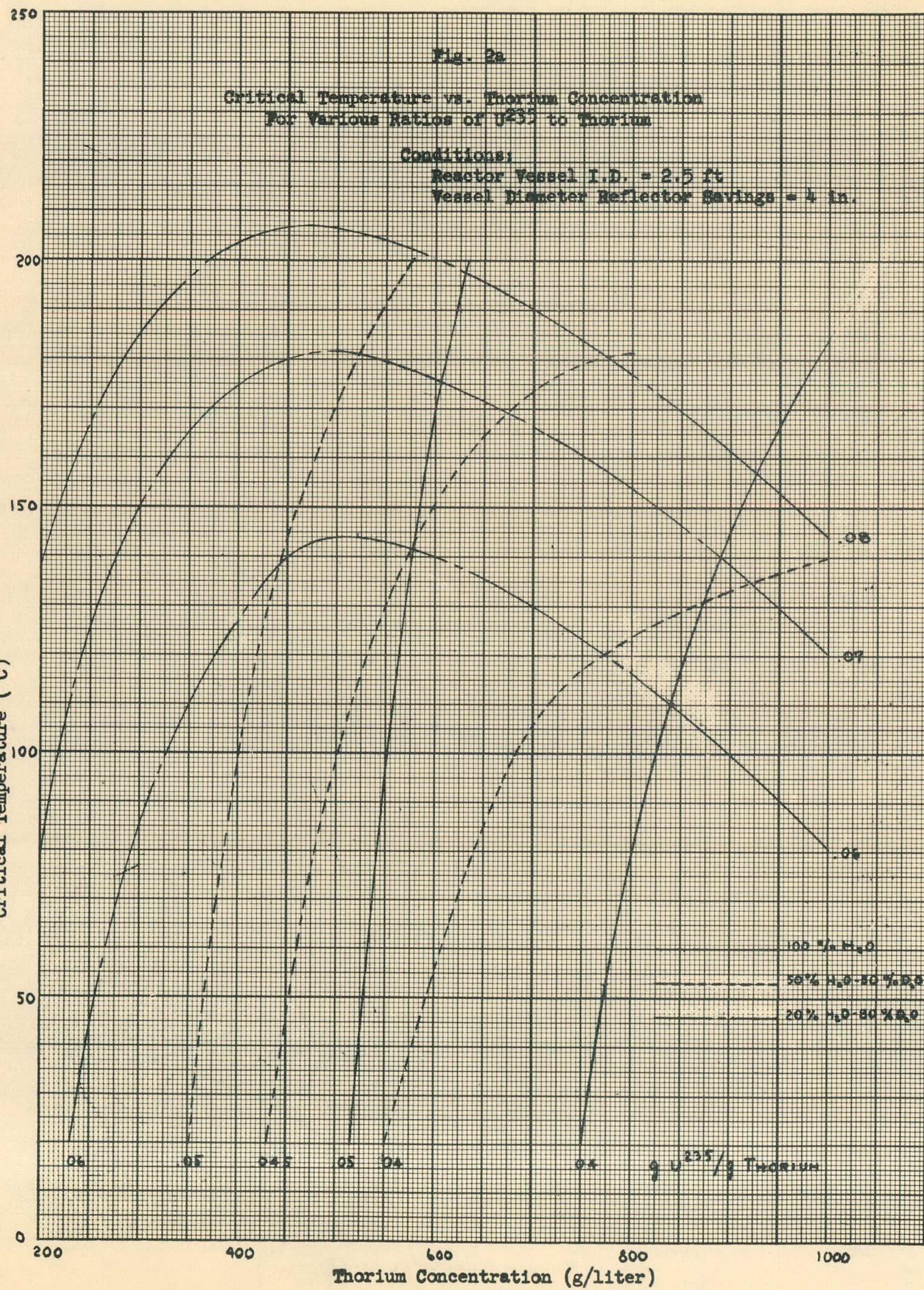
Tables 1a, b, c, list the values obtained for the temperature and void coefficients of reactivity in the above reactors; the values given are for the extremes of the thorium concentration range studied. For thorium concentrations between those listed, the coefficients decreased nearly linearly with increasing concentration.

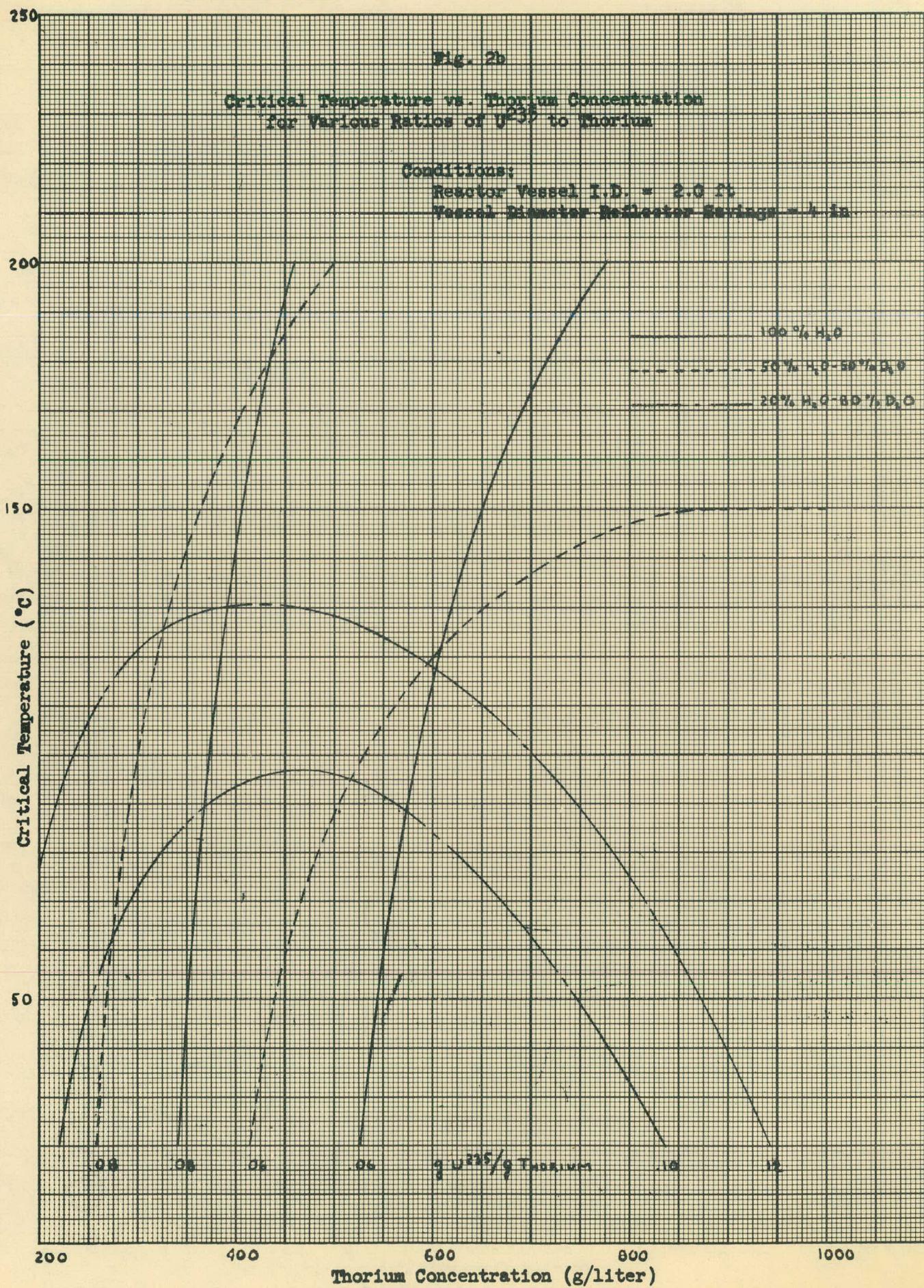

The slurry concentration coefficients of reactivity are plotted in Figs. 3a, b, c. This coefficient is the change in reactivity following a unit change in thorium concentration from the just-critical condition.

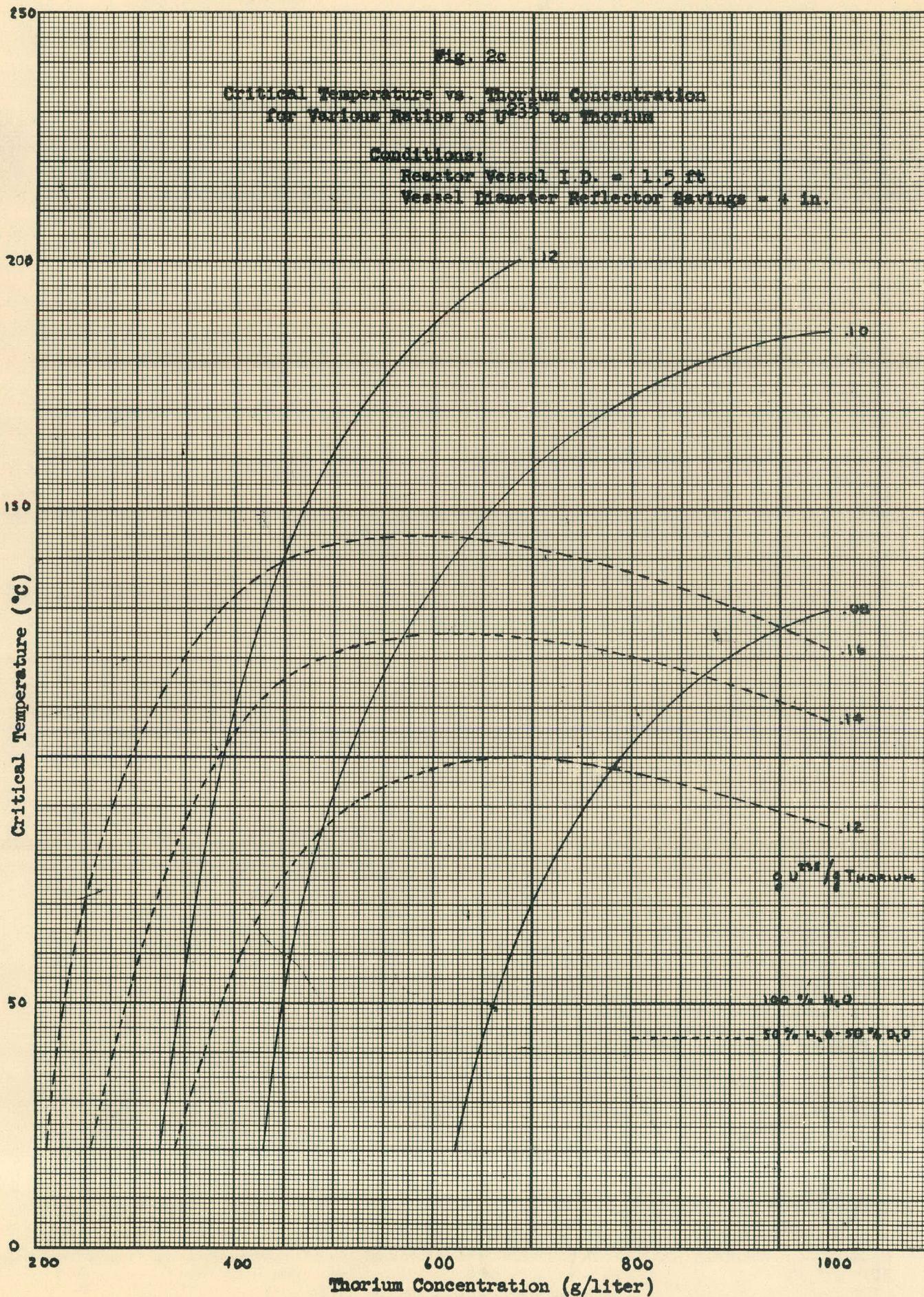
DISCUSSION

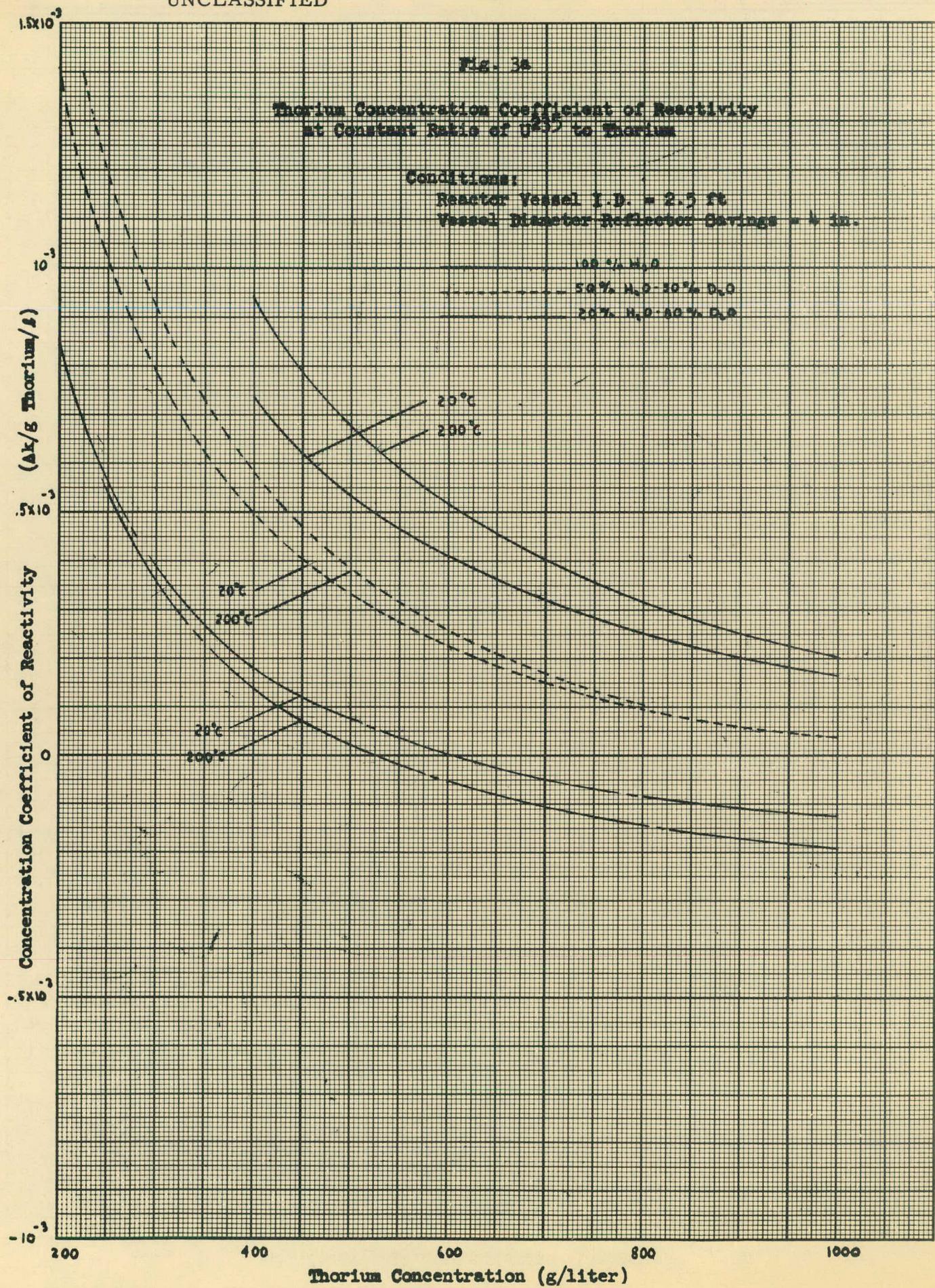

As an example of the use of the reactivity coefficients in evaluating a particular reactor system, Fig. 1a shows that a 2.5-ft reactor, moderated with a mixture of 80% D_2O and 20% H_2O , is just critical at $200^\circ C$, 400 g Th/liter and about 0.08 g U^{235} /g Th. If a change in concentration is made which is equivalent to a uniform increase of 20 g Th/liter throughout the reactor, Fig. 3a shows that the reactivity added is:

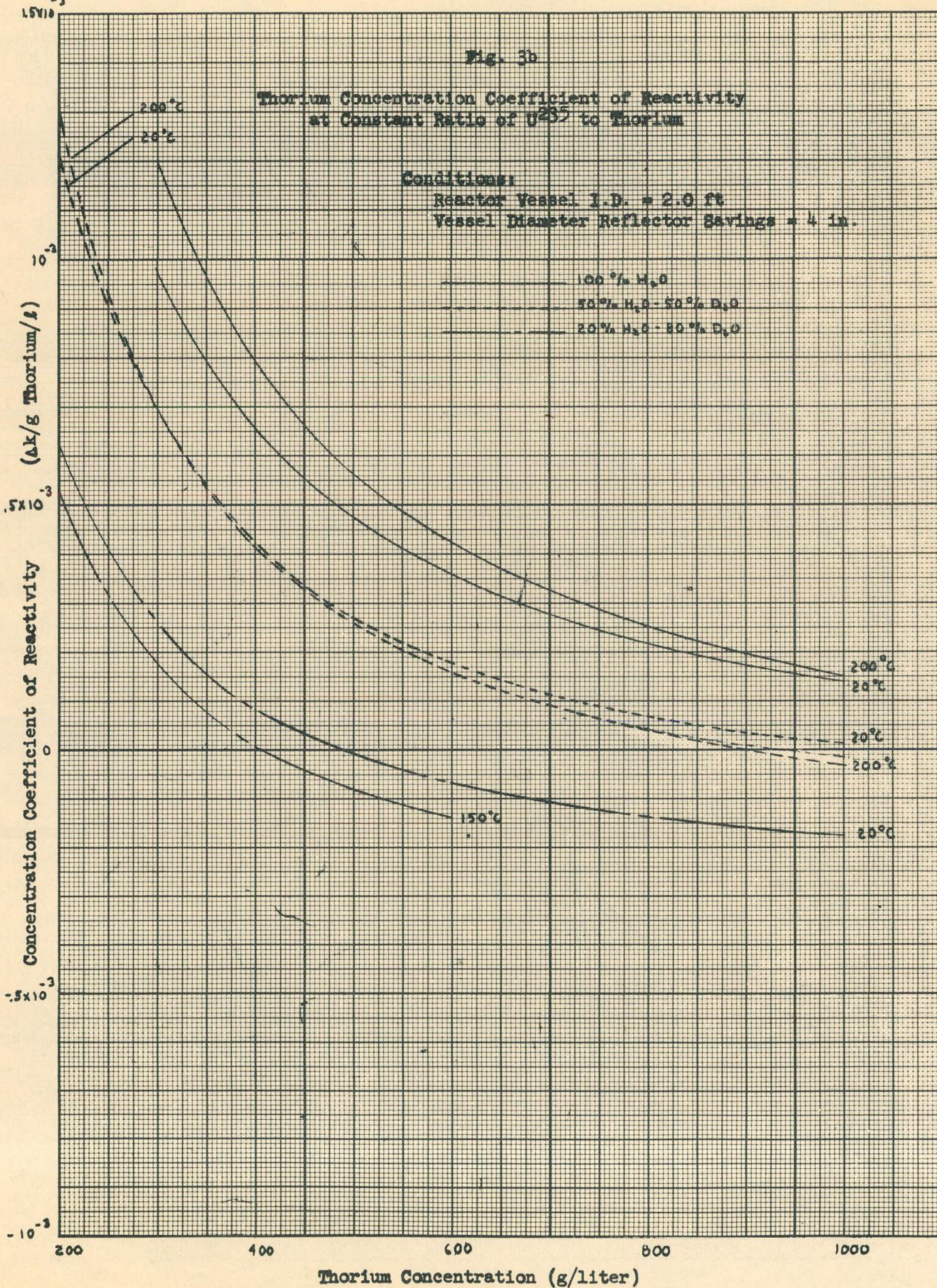

$$\Delta k_e \simeq + (0.14 \times 10^{-3}) (20) \simeq + 0.3\%$$

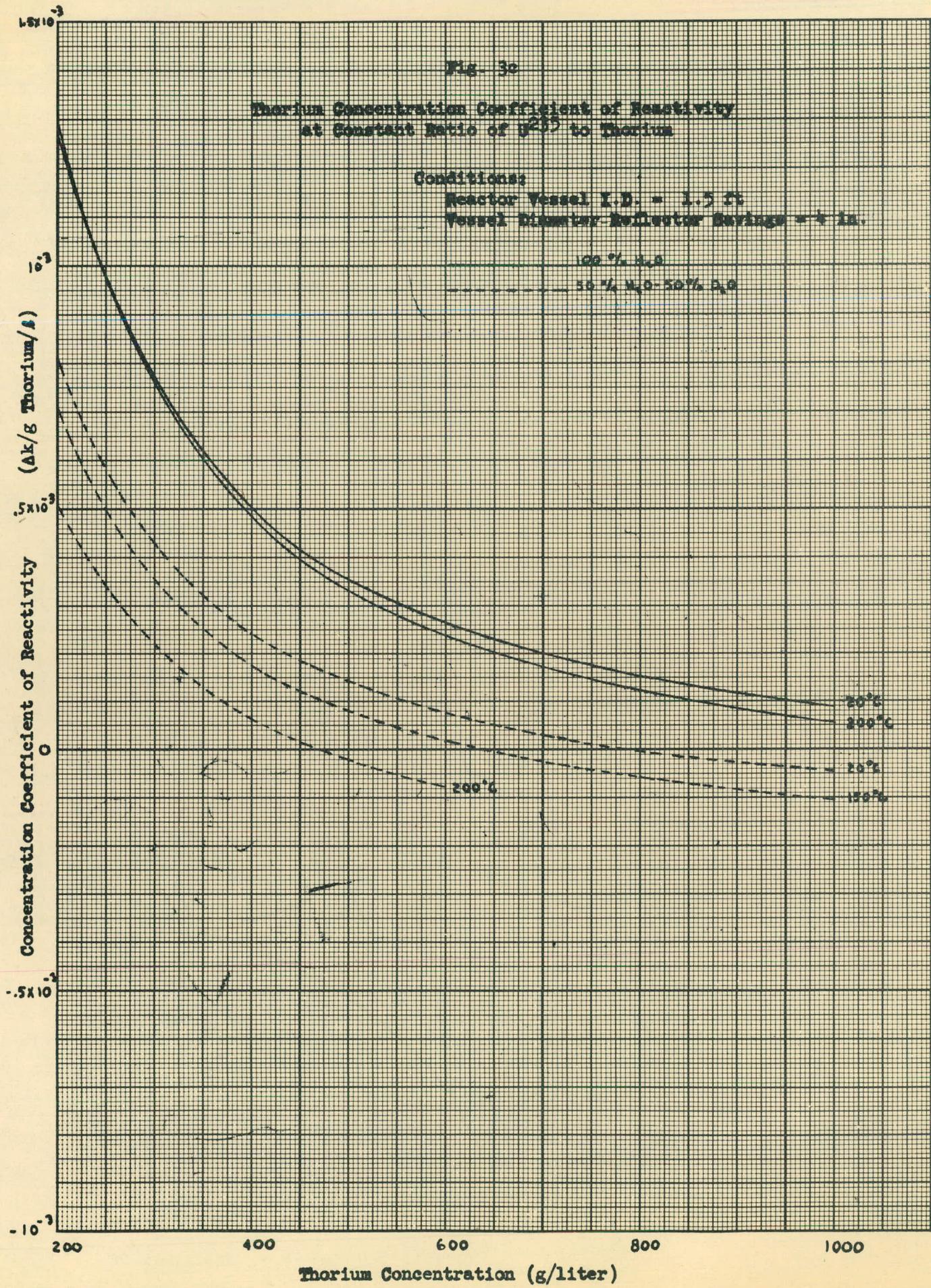

From Table 1a, the temperature coefficient for the above reactor is about $-1.1 \times 10^{-3}/^\circ C$. Then, if the addition of 0.3% Δk_e were made slowly, in equilibrium with the temperature rise, the approximate rise would be about $3^\circ C$. Also, from Table 1a, the uniform void coefficient for the reactor is about $-0.75 \Delta k_e$ / void vol/core vol. The amount of voids which would compensate for 0.3% Δk_e would therefore be about 0.4% of the core volume.




UNCLASSIFIED




Fig. 3b


Thorium Concentration Coefficient of Reactivity
at Constant Ratio of U^{235} to Thorium

Conditions:

Reactor Vessel I.D. = 2.0 ft

Vessel Diameter Reflector Savings = 4 in.

Some of the more important characteristics of the reactors studied may be summarized as follows:

- (a) For moderator mixtures of up to 50 mol percent D₂O in H₂O, the minimum critical mass ratio occurs in the vicinity of 1000 g Th/liter or greater. At larger percents of D₂O, the minimum mass ratio increases and occurs at smaller thorium concentrations, e.g., 400 to 600 g/liter at 80% D₂O.
- (b) In the range of reactor variables studied, approximate lower limits of thorium concentration for criticality at uranium-to-thorium ratios less than 0.10 are given in Table 2. The values given are summarized from Figs. 1a, b.

Table 1a. Temperature and Uniform Void Coefficients
of Reactivity in a 2.5-ft Diameter Reactor

Temperature (°C)	Mol % D ₂ O	Temperature Coefficient		Uniform Void Coefficient	
		(Δk/°C) x 10 ⁺³	200 g Th/l	1000 g Th/l	(Δk/void vol./core vol.)
20	0	- 0.15	- 0.13	- 0.33	- 0.31
	50	- 0.26	- 0.18	- 0.44	- 0.40
	80	- 0.43	- 0.23	- 0.64	- 0.53
100	0	- 0.32	- 0.29	- 0.36	- 0.34
	50	- 0.48	- 0.38	- 0.48	- 0.43
	80	- 0.73	- 0.47	- 0.69	- 0.56
150	0	- 0.47	- 0.43	- 0.39	- 0.37
	50	- 0.68	- 0.55	- 0.53	- 0.46
	80	- 0.97	- 0.67	- 0.74	- 0.59
200	0	- 0.65	- 0.59	- 0.43	- 0.41
	50	- 0.91	- 0.77	- 0.58	- 0.52
	80	- 1.25	- 0.88	- 0.79	- 0.63

Table 1b. Temperature and Uniform Void Coefficients
of Reactivity in a 2.0-ft Diameter Reactor

Temperature (°C)	Mol % D ₂ O	Temperature Coefficient (Δk/°C) x 10 ⁺³		Uniform Void Coefficient (Δk/void vol./core vol.)	
		200 g Th/l	1000 g Th/l	200 g Th/l	1000 g Th/l
20	0	- 0.21	- 0.18	- 0.45	- 0.43
	50	- 0.33	- 0.24	- 0.58	- 0.53
	80	- 0.47	- 0.25	- 0.80	- 0.67
100	0	- 0.44	- 0.40	- 0.49	- 0.46
	50	- 0.62	- 0.49	- 0.63	- 0.57
	80	- 0.82	- 0.55	- 0.84	- 0.70
150	0	- 0.63	- 0.58	- 0.53	- 0.50
	50	- 0.86	- 0.70	- 0.68	- 0.61
	80	- 1.08	-	- 0.88	-
200	0	- 0.86	- 0.79	- 0.58	- 0.55
	50	- 1.14	- 0.97	- 0.74	- 0.67
	80	- 1.36	-	- 0.91	-

Table Ic. Temperature and Uniform Void Coefficients
of Reactivity in a 1.5-ft Diameter Reactor

Temperature (°C)	Mol % D ₂ O	Temperature Coefficient		Uniform Void Coefficient	
		(Δk/°C) × 10 ⁺³	200 g Th/l	1000 g Th/l	(Δk/void vol./core vol.)
20	0	- 0.29	- 0.25	- 0.64	- 0.61
	50	- 0.40	- 0.29	- 0.79	- 0.73
100	0	- 0.60	- 0.55	- 0.68	- 0.65
	50	- 0.77	- 0.62	- 0.83	- 0.76
150	0	- 0.85	- 0.79	- 0.73	- 0.70
	50	- 1.04	- 0.87	- 0.88	- 0.80
200	0	- 1.14	- 1.06	- 0.78	- 0.75
	50	- 1.34	-	- 0.92	-

Table 2. Limiting Thorium Concentrations
for Critical Mass Ratios Less than 0.10*

Reactor Diameter (ft)	2.5			2.0		
	0%	50%	80%	0%	50%	80%
Minimum Thorium Concentration for Criticality at 200°C (g/liter)	225	< 200	200	320	310	No Critical Reactor
Minimum Thorium Concentration for Criticality at 150°C (g/liter)	215	< 200	< 200	290	250	No Critical Reactor
Minimum Thorium Concentration for Criticality at 100°C (g/liter)	210	< 200	< 200	270	210	No Critical Reactor

* The 1.5-ft diameter systems are not included since most of the reactors are subcritical in the tabulated regions of interest.

APPENDIX

A. Criticality Parameters.

The criticality model used in the reactor survey program has been described in reference 1. A summary of the program equations is given below. Although reference is made to the uranium-thorium oxide system, the calculation routine can be applied if the fertile material is U^{238} .

The basic equation for the effective multiplication constant is:

$$k_e = \eta_T \epsilon \frac{p_0 p_1 f g}{1 + L^2 B^2} \quad (1)$$

where

$$f = \frac{\Sigma_1}{\Sigma_1 (1 + x) + \Sigma_0 + \Sigma_m} \quad (1a)$$

$$\epsilon = 1 + \left(\frac{\bar{\eta}_R}{\eta_T} \right) \frac{(1 - p_1)}{p_1} \frac{(1 + L^2 B^2)}{f} \quad (1b)$$

The definitions of the symbols are:

k_e = Reactor effective multiplication constant

η_T = Neutrons produced per neutron absorbed at thermal energies in fuel

$\left(\frac{\bar{\eta}_R}{\eta_T} \right)$ = Average ratio of η for neutron absorption at resonance energies in fuel to thermal η

f = Thermal utilization

p = Resonance escape probability; subscripts 0 = fertile material, 1 = fuel

g = Nonleakage probability for neutrons slowing down to thermal energies

* Equation 1 differs slightly from that given in reference 1. In the latter, an average value for p_0 was used in the calculation of the resonance effect (ϵ).

P = Thermal nonleakage probability = $\frac{1}{1 + L^2 B^2}$

L^2 = Thermal diffusion length in slurry (cm^2)

B^2 = Effective reactor geometric buckling (cm^{-2})

ϵ = Resonance effect (neutrons produced from absorption in fuel at all energies, per neutron produced from thermal absorption in fuel)

Σ = Macroscopic absorption cross section in slurry (cm^{-1}); subscripts 0 = fertile material, 1 = fuel, m = moderator

x = Equilibrium poison fraction (fraction of thermal absolute cross section of fuel which is thermal neutron poisons)

The critical mass ratio, which is proportional to Σ_1/Σ_0 , is obtained by iterative solution of equation 1, with k_e equal to unity.

In equation 1, resonance escape probabilities (p) were computed from the formulas given below. For fertile material an empirical formula was used for the effective resonance integral (R):

$$p_0 = \exp \left(- \frac{N_0 R_0}{\xi \Sigma_s} \right) \quad (1c)$$

$$R_0 = c_1 \left(\frac{\Sigma_s}{N_0} \right)^{c_2} \quad 0 \leq \frac{\Sigma_s}{N_0} \leq c_3$$

$$R_0 = R_0(\infty) \quad \frac{\Sigma_s}{N_0} > c_3$$

In the present study, the values used for thorium were:²

$$c_1 = 8.33 \quad c_2 = 0.253 \quad c_3 = 4000 \text{ barns} \quad R_0(\infty) = 69.8 \text{ barns}$$

For fuel, the following theoretical relation for R_1 was used:*

$$p_1 = e^{-\frac{N_1}{\xi \Sigma_s} R_1} \quad (1d)$$

$$R_1 = 2R_1(\infty) \left[\sqrt{(1 + \beta)} \beta - 1 \right] \quad 0 \leq \frac{\Sigma_s}{N_0} \leq \infty$$

$$\beta = \frac{0.1\pi}{R_1(\infty)} \frac{\Sigma_s}{N_1}$$

In the above formulas:

N = Atoms per barn-cm in slurry; subscripts 0 = fertile material, 1 = fuel

$\xi \Sigma_s$ = Slurry macroscopic slowing down power in resonance energy region
(cm^{-1})

Σ_s = Slurry macroscopic scattering cross section in resonance energy
region (cm^{-1})

The effective geometric buckling (B^2) for a spherical vessel-enclosed reactor
was approximated by:

$$B^2 = \left(\frac{\pi}{R + d} \right)^2 \quad (1e)$$

where R is the inside radius of the vessel and d is an effective radial
reflector savings for the vessel.

The functional relation between the fast nonleakage probability (g) and
the neutron age (τ) was approximated by:

$$g = \frac{\exp(-B^2 \gamma_1 \tau)}{(1 + B^2 \gamma_2 \tau)(1 + B^2 \gamma_3 \tau)(1 + B^2 \gamma_4 \tau)} \quad (1f)$$

* Due to L. Dresner (unpublished)

where $\gamma_{1,..4}$ were assumed dependent only on the moderator D_2O-H_2O ratio.

Based on the experiments of Friedman and Wattenberg, the following γ values can be used for 99.8% D_2O :*

$$\gamma_1 = 0.6 \quad \gamma_2 = 0.4 \quad \gamma_3 = \gamma_4 = 0$$

In the present study, the fast nonleakage was approximated by a single "Yukawa" kernel (corresponding to the ordinary two-group approximation):

$$\gamma_1 = \gamma_2 = \gamma_3 = 0; \quad \gamma_4 = 1.0$$

For application to mixtures of H_2O and D_2O , Tobias and Fowler³ have recently correlated the experimental data of Wade⁴ by an expression of the above form with $\gamma_3 = \gamma_4 = 0$. Comparison of their results with the single "Yukawa" approximation was found to be fair, except for moderator mixtures greater than 80% D_2O , and spheres smaller than about 2 ft in diameter.

B. Reactivity Coefficients

The reactivity coefficients are the logarithmic partial derivatives of k_e with respect to the quantity producing the reactivity change. Since the differentiation of equation 1 is mathematically straightforward, only the resulting formulas for the coefficients are given below:

Temperature Coefficient

$$\frac{1}{k_e} \frac{\partial k_e}{\partial T} \approx \frac{1}{g} \frac{\partial g}{\partial T} + \frac{1}{P} \frac{\partial P}{\partial T} + \frac{1}{\epsilon} \frac{\partial \epsilon}{\partial T} \quad (2)$$

Fast leakage:

$$\frac{1}{g} \frac{\partial g}{\partial T} = + 2 \delta_1 \left\{ B^2 \gamma_1 \tau + \frac{B^2 \gamma_2 \tau}{1 + B^2 \gamma_2 \tau} + \frac{B^2 \gamma_3 \tau}{1 + B^2 \gamma_3 \tau} + \frac{B^2 \gamma_4 \tau}{1 + B^2 \gamma_4 \tau} \right\} \quad (2a)$$

* See reference 1 for discussion.

where:

$$\delta_1(T) = \left(\frac{1}{\rho} \frac{\partial \rho}{\partial T} \right)_{\text{moderator}}$$

Thermal leakage:

$$\frac{1}{P} \frac{\partial P}{\partial T} = - \frac{L^2 B^2}{1 + L^2 B^2} \left(\frac{1}{L^2} \frac{\partial L^2}{\partial T} \right)$$

$$\frac{1}{L^2} \frac{\partial L^2}{\partial T} = \frac{\left(y/D_{D_2} \right) \delta_2 + \left((1-y)/D_{H_2O} \right) \delta_3}{y/D_{D_2O} + (1-y)/D_{H_2O}} + \frac{1}{2T} - v_m \delta_1$$

where:

y = Mol fraction D_2O in moderator

T = $^{\circ}\text{C} + 273$

v_m = volume moderator/volume slurry

$$\delta_2(T) = \left(\frac{1}{D} \frac{dD}{dT} \right)_{D_2O}$$

$$\delta_3(T) = \left(\frac{1}{D} \frac{dD}{dT} \right)_{H_2O}$$

Resonance Effect:

$$\frac{1}{\epsilon} \frac{\partial \epsilon}{\partial T} \simeq - \frac{\epsilon-1}{\epsilon} \left(\frac{1}{P} \frac{\partial P}{\partial T} \right) \quad (2c)$$

Assumptions made in obtaining equation (2) are:

(a) The temperature coefficients of the thermal and resonance "etas" for the fuel and the coefficients of the effective resonance integrals for fertile and fuel material have been assumed negligible with respect to the leakage coefficients.

For most conditions of thorium concentration and temperatures of interest in slurry reactor design, this approximation will be adequate, due to the large density changes of the moderator with temperature.

(b) During a temperature increase, the moderator expands uniformly throughout the reactor; also, the mass ratios of uranium and thorium to moderator remain constant. Thermal expansion of the thorium oxide particles was neglected.

(c) The reflector savings (d) is assumed independent of temperature. This approximation is warranted only if d is small compared to the vessel diameter.

(d) Absorption cross sections vary inversely as the neutron velocity.

Uniform Void Coefficient

If voids are assumed to be formed homogeneously throughout the reactor moderator volume, by setting $\rho = \rho_0(1-v)$ and differentiating equation 1;

$$\frac{1}{k_e} \frac{\partial k_e}{\partial v} = \frac{1}{g} \frac{\partial g}{\partial v} + \frac{1}{P} \frac{\partial P}{\partial v} + \frac{1}{\epsilon} \frac{\partial \epsilon}{\partial v} \quad (3)$$

where v = void volume/core volume and where each term on the right hand side of equation 3 is evaluated at $v = 0$.

Fast Leakage:

$$\frac{1}{g} \frac{\partial g}{\partial v} = -2 \left\{ + B^2 \gamma_1 \tau + \frac{B^2 \gamma_2 \tau}{1 + B^2 \gamma_2 \tau} + \frac{B^2 \gamma_3 \tau}{1 + B^2 \gamma_3 \tau} + \frac{B^2 \gamma_4 \tau}{1 + B^2 \gamma_4 \tau} \right\} \quad (3a)$$

Thermal Leakage:

$$\frac{1}{P} \frac{\partial P}{\partial v} = - \frac{L^2 B^2}{1 + L^2 B^2} (1 + v_m) \quad (3b)$$

Resonance Effect:

$$\frac{1}{\epsilon} \frac{\partial \epsilon}{\partial v} = - \frac{\epsilon-1}{\epsilon} \left(\frac{1}{P} \frac{\partial P}{\partial v} \right) \quad (3c)$$

Slurry Concentration Coefficient

The reactivity coefficient of slurry concentration is obtained by differentiating equation 1 with respect to the fertile material concentration (G_o), after imposing the conditions:

$$(a) \frac{G_1}{G_o} = g \text{ fuel/g fertile} = \text{constant}$$

$$(b) \text{Temperature} = \text{constant}$$

Thus:

$$\frac{1}{k_e} \frac{\partial k_e}{\partial G_o} = \frac{1}{f} \frac{\partial f}{\partial G_o} + \frac{1}{P} \frac{\partial P}{\partial G_o} + \frac{1}{p_o} \frac{\partial p_o}{\partial G_o} + \frac{1}{p_1} \frac{\partial p_1}{\partial G_o} + \frac{1}{\epsilon} \frac{\partial \epsilon}{\partial G_o} \quad (4)$$

Thermal Utilization:

$$\frac{1}{f} \frac{\partial f}{\partial G_o} = \frac{f}{G_o} \frac{y(\Sigma_a)_{D_2O} + (1-y)(\Sigma_a)_{H_2O}}{\Sigma_1} \quad (4a)$$

Thermal Leakage:

$$\frac{1}{P} \frac{\partial P}{\partial G_o} = - \frac{L^2 B^2}{1 + L^2 B^2} \left(\frac{1}{f} \frac{\partial f}{\partial G_o} - \frac{1}{G_o} \right) \quad (4b)$$

Resonance Escape Probability (fertile):

$$\frac{1}{p_o} \frac{\partial p_o}{\partial G_o} = - \frac{N_o R_o}{\xi \Sigma_s} \left\{ \frac{1}{R_o} \frac{\partial R_o}{\partial G_o} + \frac{\xi \Sigma_s}{N_o} \frac{\partial}{\partial G_o} \left(\frac{N_o}{\xi \Sigma_s} \right) \right\} \quad (4c)$$

$$\frac{1}{R_o} \frac{\partial R_o}{\partial G_o} = - \frac{c_2}{G_o} \left\{ \frac{y(\Sigma_s)_{D_2O} + (1-y)(\Sigma_s)_{H_2O}}{\Sigma_s} \right\} \quad \left[0 \leq \frac{\Sigma_s}{N_o} \leq c_3 \right]$$

$$= 0$$

$$\frac{\Sigma_s}{N_o} > c_3$$

$$\frac{\xi \Sigma_s}{N_o} \frac{\partial}{\partial G_o} \left(\frac{N_o}{\xi \Sigma_s} \right) = \frac{1}{G_o} \left\{ \frac{y(\xi \Sigma_s)_{D_2O} + (1-y)(\xi \Sigma_s)_{H_2O}}{\xi \Sigma_s} \right\}$$

Resonance Escape Probability (fuel):

$$\frac{1}{p_1} \frac{\partial p_1}{\partial G_o} = - \frac{N_1 R_1}{\xi \Sigma_s} \left\{ \frac{1}{R_1} \frac{\partial R_1}{\partial G_o} + \frac{\xi \Sigma_s}{N_1} \frac{\partial}{\partial G_o} \left(\frac{N_1}{\xi \Sigma_s} \right) \right\}$$

$$\frac{\xi \Sigma_s}{N_1} \frac{\partial}{\partial G_o} \left(\frac{N_1}{\xi \Sigma_s} \right) = \frac{\xi \Sigma_s}{N_o} \frac{\partial}{\partial G_o} \left(\frac{N_o}{\xi \Sigma_s} \right)$$

$$\frac{1}{R_1} \frac{\partial R_1}{\partial G_o} = - \frac{0.2\pi}{R_1 G_o} \left(\frac{1 + 2\beta}{2\sqrt{(1+\beta)\beta}} - 1 \right) \left(\frac{y(\Sigma_s)_{D_2O} + (1-y)(\Sigma_s)_{H_2O}}{N_1} \right) \quad (4d)$$

Resonance Effect:

$$\frac{1}{\epsilon} \frac{\partial \epsilon}{\partial G_o} = - \frac{\epsilon-1}{\epsilon} \left\{ \frac{1}{1-p_1} \left(\frac{1}{p_1} \frac{\partial p_1}{\partial G_o} \right) + \frac{1}{f} \cdot \frac{\partial f}{\partial G_o} + \frac{1}{P} \frac{\partial P}{\partial G_o} \right\} \quad (4e)$$

Assumptions made in obtaining equation 4 are:

- (a) The change in slurry concentration is uniform throughout the reactor.
- (b) For small changes in concentration, changes in the fast leakage are small and may be neglected. This assumption is justified inasmuch as the neutron age (τ) is a slowly varying function of thorium concentration, in the concentration region of interest in slurry reactor design.

C. Nuclear Constants:

Table 3. Moderator Densities and Corresponding Temperature Coefficients at Various Reactor Temperatures⁵

Temperature (°C)	ρ (g/cm ³)	$\frac{1}{\rho} \frac{\partial \rho}{\partial T}$ (°C) ⁻¹ $\times 10^{+3}$	
	H ₂ O	D ₂ O	(H ₂ O or D ₂ O)
20	1.000	1.105	- 0.330
100	0.962	1.062	- 0.769
150	0.916	1.015	- 1.070
200	0.864	0.958	- 1.366
250	0.798	0.880	- 1.905
280	0.749	0.828	- 2.296

Table 4. Thermal Diffusion Coefficients and Corresponding Temperature Coefficients for H₂O and D₂O

Temperature (°C)	D(cm)	$\frac{1}{D} \frac{\partial D}{\partial T}$ (°C) ⁻¹ $\times 10^{+3}$		
	H ₂ O ⁽⁶⁾	D ₂ O ⁽²⁾	H ₂ O	D ₂ O
20	0.153	0.828	1.827	1.087
100	0.178	0.905	2.019	1.282
150	0.198	0.971	2.150	1.473
200	0.221	1.048	2.446	1.803
250	0.252	1.160	3.079	2.345
280	0.276	1.245	3.379	2.570

In the present study, the density and thermal transport cross sections of thorium oxide (ThO_2) were assumed independent of temperature. The values used were:

$$\rho_{\text{ox}} = 9.7 \text{ g/cm}^3$$

$$(\sigma_{\text{tr}})_{\text{ox}} = 26.0 \text{ barns}$$

Table 5. Maxwell-Boltzman Averaged Thermal Absorption Cross Sections²

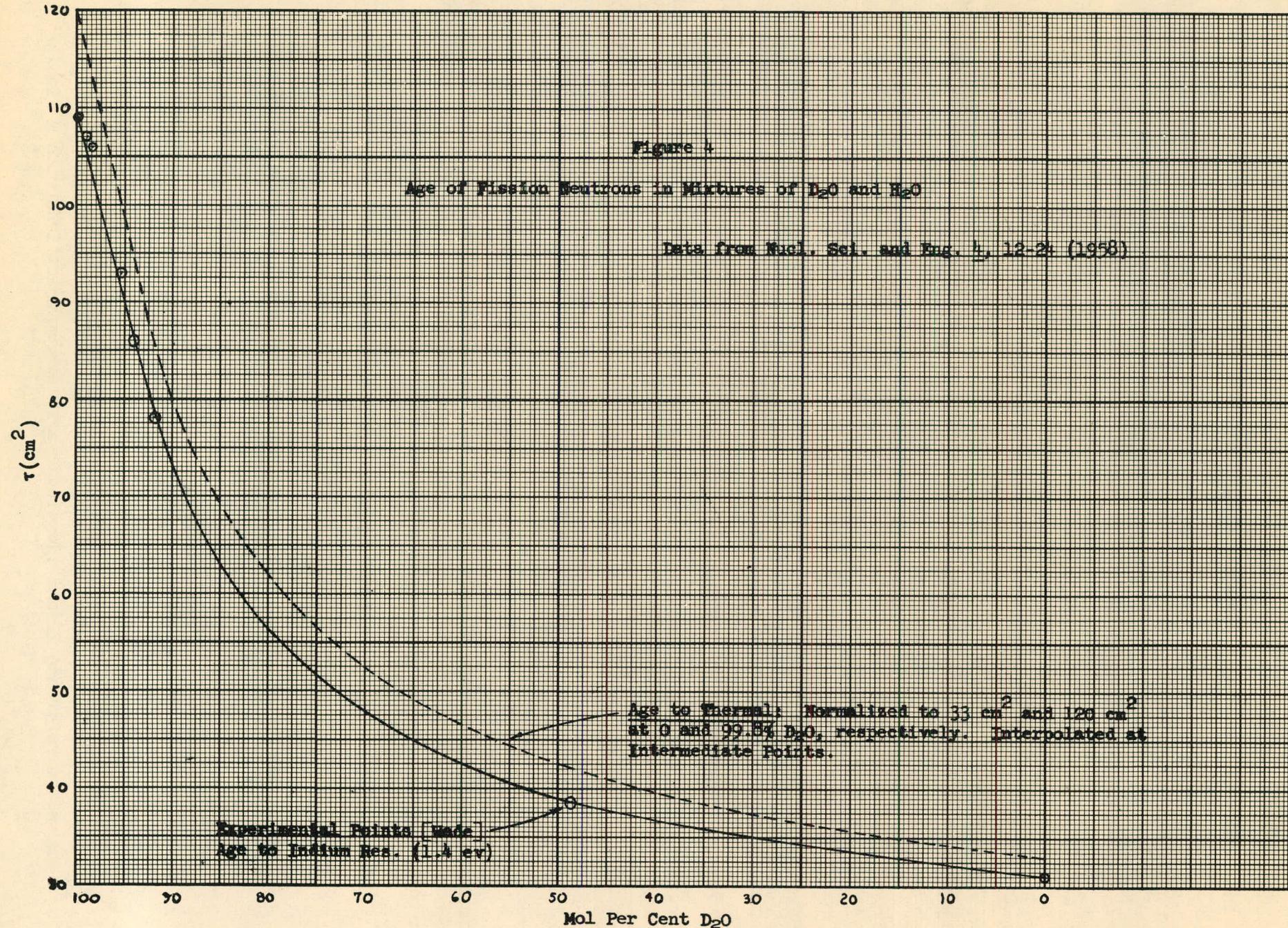
Temperature (°C)	σ_a (barns)	σ_1 (barns)	Σ_a (cm ⁻¹)	
			H_2O	D_2O
	Thorium	^{235}U ($\eta_{\text{T}} = 2.08$; $\nu = 2.46$)		
20	6.60	595	0.0196	8.02×10^{-5}
100	5.85	515	0.0167	6.85×10^{-5}
150	5.50	479	0.0149	6.15×10^{-5}
200	5.20	449	0.0133	5.49×10^{-5}
250	4.94	430	0.0117	4.86×10^{-5}
280	4.81	411	0.0107	4.44×10^{-5}

Table 6. Microscopic Scattering Cross Section (σ_s) and Slowing Down Power ($\xi\sigma_s$) in Resonance Region for H_2O , D_2O , and ThO_2

Moderator	σ_s (barns)	$\xi\sigma_s$ (barns)
H_2O	43.8	40.5
D_2O	10.5	5.33
ThO_2	20.1	1.02

Table 7. Resonance Absorption Integrals for U^{235} at Infinite Dilution*

Temperature (°C)	$R_1(\infty)$ barns
20	696.5
100	627.5
150	594.6
200	570.3
250	542.1
280	528.9


Age of fission neutrons in mixtures of H_2O and D_2O were obtained from the experiments of Wade.⁴ These values are summarized in Fig. 4. For slurry concentrations below 1000 g thorium per liter, the increment in age due to replacement of the moderator by ThO_2 is small compared with the total age.** In the present study, this increment was neglected and the age was assumed to be that in the pure moderator.

* These values are obtained by numerical integration of the fission cross section for U^{235} given in BNL-325. The lower limit of the integral was assumed to be 5 kT . The absorption integral may be obtained from the average resonance-to-thermal "eta" ratio:

$$\frac{R_{fl}(\infty)}{R_{al}(\infty)} = \left(\frac{\bar{\eta}_R}{\bar{\eta}_T} \right) \frac{\eta_T}{\nu}$$

The values in Table 7 are based on an "eta" ratio of 0.9.

** Based on reference 2, and additional private communications with M. Tobias.

D. List of Machine Routine Input Parameters

	Symbol
Reactor Variables:	
Concentration of fertile material (g/liter)	G_o
Inside diameter of reactor vessel (ft)	ID
Radial reflector savings of reactor vessel (ft)	d
Temperature ($^{\circ}\text{C}$)	T
Equilibrium poison fraction	x
Mol fraction D_2O in moderator	y
Parameters Independent of Temperature (T)	
Atomic weight of fertile and fuel materials	A_o, A_1
Ratio of molecular weight of oxide of fertile material to atomic weight (A_o)	m
Microscopic slowing down power in resonance region (barns); subscripts H_2O , D_2O , and ox refer to H_2O , 99.8% D_2O , and oxide of fertile material (per fertile atom), respectively.	$(\xi\sigma_s)_{\text{H}_2\text{O}}$ $(\xi\sigma_s)_{\text{D}_2\text{O}}$ $(\xi\sigma_s)_{\text{ox}}$
Scattering cross section in resonance region (barns)	$(\sigma_s)_{\text{H}_2\text{O}}$ $(\sigma_s)_{\text{D}_2\text{O}}$ $(\sigma_s)_{\text{ox}}$
Parameters Dependent on Temperature (T)	
Thermal neutron diffusion coefficients for H_2O and 99.8% D_2O (cm)	$D_{\text{H}_2\text{O}}, D_{\text{D}_2\text{O}}$
Temperature coefficients of D for H_2O and 99.8% D_2O , respectively ($^{\circ}\text{C}$) ⁻¹	δ_3, δ_2
Densities of H_2O , D_2O , and oxide of fertile material (g/cm^3)	$\rho_{\text{H}_2\text{O}}, \rho_{\text{D}_2\text{O}}, \rho_{\text{ox}}$
Temperature coefficient of density for H_2O or D_2O ($^{\circ}\text{C}$) ⁻¹	δ_1
Average "eta" for thermal neutron absorption in fuel	η_T

Symbol

Parameters Dependent on Temperature (T) - contd.

Average ratio for "eta" for neutron absorption above thermal energies in fuel, to thermal "eta"

$$\left(\frac{\eta_R}{\eta_T} \right)$$

Resonance absorption integrals at infinite dilution for fertile and fuel materials (barns)

$$R_o(\infty), R_l(\infty)$$

Constants in emperical formula for fertile material resonance integral

$$c_1, c_2, c_3$$

Macroscopic absorption cross section for H₂O and 99.8% D₂O, respectively (cm⁻¹)

$$(\Sigma_a)_{H_2O}, (\Sigma_a)_{D_2O}$$

Microscopic absorption cross sections for H₂O and 99.8% D₂O, respectively (barns)

$$\sigma_{ao}, \sigma_{al}$$

Thermal transport cross section of oxide of fertile material, per fertile atom (barns)

$$(\sigma_{tr})_{ox}$$

Parameters dependent on mol-fraction D₂O in moderator (y):

Normalized "Gaussian" (subscript 1) and "Yukawa" (subscripts 2, 3, 4) neutron ages

$$\gamma$$

Parameters dependent on T, y, and G_o:

Neutron age to thermal energies (cm²)

$$\tau$$

References

1. B. E. Prince and M. W. Rosenthal, Survey of the Static Nuclear Characteristics of Small, One-Region Slurry Reactors (Part I), ORNL CF-58-7-76, July 28, 1958; (Part II), ORNL CF-58-11-98 (to be issued).
2. T. B. Fowler and M. Tobias, Two-Group Constants for Aqueous Homogeneous Reactor Calculations, ORNL CF-58-1-79, January 22, 1958.
3. M. Tobias, personal communication, October 25, 1958.
4. James W. Wade, "Neutron Age in Mixtures of D₂O and H₂O," Nuclear Science and Engineering 4, 12-24 (1958).
5. M. Tobias, Certain Physical Properties of Aqueous Homogeneous Reactor Materials, ORNL CF-56-11-135.
6. C. D. Petrie, et al, "Calculation of Thermal Group Constants for Mixtures Containing Hydrogen," Nuclear Science and Engineering 2, 728-744 (1957).

DISTRIBUTION

1. HRP Director's Office
Rm. 259, Bldg. 9204-1
2. G. M. Adamson
3. S. E. Beall
4. L. L. Bennett
5. A. M. Billings
6. E. G. Bohlmann
7. S. E. Bolt
8. E. S. Bomar
9. J. R. Brown
10. W. D. Burch
11. R. Chalkley
12. R. H. Chapman
13. R. D. Cheverton
14. H. C. Claiborne
15. E. L. Compere
16. R. S. Crouse
17. J. S. Culver
18. D. G. Davis
19. R. J. Davis
20. J. R. Engel
21. J. L. English
22. D. E. Ferguson
23. J. D. Flynn
24. T. B. Fowler
25. C. H. Gabbard
26. W. R. Gall
27. E. H. Gift
28. J. C. Griess
29. R. S. Greeley
30. W. R. Grimes
31. P. A. Haas
32. P. H. Harley
33. P. N. Haubenreich
34. J. W. Hill
35. E. C. Hise
36. C. J. Hochanadel
37. S. Jaye
38. G. H. Jenks
39. D. T. Jones
40. S. I. Kaplan
41. P. R. Kasten
42. F. Kertesz
43. L. J. King
44. J. O. Kolb
45. R. B. Korsmeyer
46. K. A. Kraus
47. C. G. Lawson

48. R. E. Leuze
49-50. M. P. Lietzke
51. R. A. Lorenz
52. M. I. Lundin
53. R. N. Lybn
54. W. L. Marshall
55. J. P. McBride
56. H. F. McDuffie
57. H. A. McLain
58. R. A. McNees
59. J. R. McWherter
60. R. L. Moore
61. C. W. Nestor Jr.
62. L. F. Parsly, Jr.
63. F. N. Peebles
64. M. L. Picklesimer
65-69. B. E. Prince
70. S. A. Reed
71. D. M. Richardson
72. R. C. Robertson
73. M. W. Rosenthal
74. H. C. Savage
75. C. L. Segaser
76. E. M. Shank
77. M. D. Silverman
78. M. J. Skinner
79. I. Spiewak
80. R. W. Stoughton
81. J. A. Swartout
82. E. H. Taylor
83. D. G. Thomas
84. M. Tobias
85. D. S. Toomb
86. W. E. Unger
87. R. Van Winkle
88. A. M. Weinberg
89. K. W. West
90. J. C. Wilson
91. C. E. Winters
92. F. C. Zapp
93-94. REED Library
95-96. Central Research Library
97-98. Document Reference Library
99-113. Laboratory Records
114. ORNL-RC

EXTERNAL

115. F. C. Moesel,
AEC, Washington
116-122. Westinghouse PAR
Project
123-137. TISE-AEC