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Abstract

An equilibrium situation is obtained for the case of a uniform 

axial magnetic field with the addition of a superposition of weak helically 

invariant fields, a field due to a small axial current and a field due to a 

low pressure infinitely conducting plasma. The energy principle is used 

to determine conditions for the stability of this equilibrium. Two basic 

results are obtained: (a) The conditions for the stability of a system 

which consists of a superposition of helical fields (B(r, 0, z) = B (r, u) 

where u = i! 0 - hz) and "bulge" fields (i = 0) are determined. In particular, 

the condition for the inherent stability of a helical field with 1=3 is 

^critical= where is the maximum distortion of the plasma

surface from the radius R . (b) It is shown that the addition of a helical 

field with 1=3 can produce complete hydromagnetic stability when an 

axial current is flowing, and can also increase the Kruskai limit on the 

current for the m = 1 mode.
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Section I - Introduction

In 1954, Teller raised the question of the stability of the various 

Sherwood devices and gave strong intuitive reasons for suspecting them 

to be unstable. By the summer of .1955 the energy principle had been ^

worked out and a treatment for general axisymmetric systems had been 

carried through. This treatment indicated that the stellarator would be 

unstable to instabilities in which the lines of magnetic force are essentially 

interchanged so that matter is carried out toward the walls of the system 

without the magnetic field energy being changed,
2

The nature of these interchanges led Spitzer to suggest that these 

interchange instabilities could be stabilized by changing the pitch of the 

magnetic lines of force so that in such an interchange, the lines would 

have to be twisted and the magnetic energy in the system would be increased. 

A preliminary calculation, in which the twisting of the field lines was pro­

duced by an axial current on the surface of the plasma, was encouraging,
3

and was reported at the October 1955 Princeton conference on controlled 

thermonuclear reactors (CTR),

This method of stabilization is not applicable for a steady state 

machine, since an emf is necessary to drive the stabilization current.

For this reason an investigation of systems in which the stabilizing field 

is produced by pole pieces placed at right angles to the plasma was begun. 

The pole pieces were rotated in space in order to make the magnetic field 

depend on z as well as 0 , where r, 0, and z are cylindrical coordi­

nates with axis parallel to the main field, A dependence on z is necessary 

in order to obtain an equilibrium situation. These fields were helically 

invariant and to lowest order (in themselves) were proportional to sin(0 -hz)
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or cos(0 - hz). It had been pointed out earlier (in February 1955) by 
4

H. Koenig that a helical magnetic field of this type would produce a rotational 

transform, but it was not realized until later that this configuration would 

have a stabilizing effect because of the variation of transform angle with 

radial distance. The nature of equilibria in these helical fields was examined 

and necessary and sufficient conditions were obtained for the system to be 

stable to all perturbations | which are periodic over the helical period, 2ir/h.

In the calculations the equilibria and the perturbations were expanded in the 

parameters |3 and. 6 , where (3 characterizes the magnitude of the material 

pressure and 6 characterizes the magnitude of the crossed fields. If the

order of /3 is the same as that of S» (j3~6) the system is always unstable.
2 3If |3 ~ 6 , a critical condition for stability is obtained, while if |3~6 or

smaller, the system is always stable. These results obtained by Bernstein, 

Frieman, Johnson, Kruskal, Kulsrud, and Obermah were presented^ at the 

June 1956 Gatiinburg CTR conference.

It was realized by Spitzer^ at this meeting that the rate of change of 

the pitch of the magnetic lines, with increasing distance from the axis, could 

be increased by considering more general helically invariant fields which 

vary as cos (i0-hz). The minimization of 6W in respect to all ij's which 

are periodic over the helical period, 2^/h, was carried through, and the 

stability conditions obtained for more general equilibria in which there is a 

superposition of these helically invariant fields with arbitrary values of £ 

and bulge fields (£ = 0). Higher critical values of j3 (for stability) were obtained.

The effect of these helical fields on the long-wave-length kink insta­

bility was then considered in the case where a small axial current is present.

To achieve stabilization in any system by means of helical fields, it is
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necessary that the rotational transform angle, l , produced by these fields 

bf finite,, Since ift the present analysis both the helical fields and the axial 

Current are taken to be infinitesimally small, it was necessary to make the' 

length of the system (i, e. , the length 2ir/k over which the |'s are periodic) 

infinitely long and to include an infinite number of helices in order to get 

Stabilization^ It was found that the kink instability is stabilized to some extent 

fey these helical fields. Further, it was realized that in the absence of an 

axial current the system is less stable to these long wave length £'s than to 

j^s which are periodic over the helical period,. These results obtained by 

Ofedrman, Kulsrud, Johnson, and Frietnan were presented at the February 

I9S7 Berkeley CTR conference.

fhe methods of calculating equilibrium situations are discussed in 

Section 11 and equilibria are obtained for situations in which the pressure 

distribution is a parabolic function of r . It is assumed that the distortion 

of the field lines due to the helical fields is infinitesimally small. The 

twisting of the field lines is described by a function , l , which is discussed 

in Appendix llA. In Appendix XIB other quantities of interest for stability 

{&ogo are Calculated for these helical fields and related to l •

In Section HI the integral, 6W, which arises in the treatment of
0

Stability by the energy principle , is expanded for the general situation.

Its minimization is carried through for all components of the perturbation 

![ , except for and QIV is expressed in terms of |r° .

In Section IV the final minimization over £ ° is carried through for 

several Special cases: First to be treated is the case of an axially sym­

metric system in which the ends are identified with a twist. Next we consider 

the case of a superposition of helically invariant fields with various values

-3-



of i including 1=0 (bulge fields), an arbitrary pressure distribution but no 

axial currento Then situations are discussed in which various distributions 

of axial current are present, but no helical fields. Finally, the case is treated 

in which a uniform axial current and a helical field with i = 3 are present.

Rationalized Gaussian units with c = 1 are used throughout this paper.

-4-



Section II - Equilibrium

We wish to examine the equilibrium values of the magnetic field B,

material pressure p, and electric current j, for the case of an ideal
9

plasma contained by a helically invariant magnetic field.

In this first part we limit ourselves to the simple situation of a plasma

filling a perfectly conducting tube of a simple helically invariant form, and

we permit no net longitudinal currents in the plasma.

In part B we generalize the equilibrium to include the possibility of

more complicated bounding surfaces, to permit the presence of longitudinal

currents, and to allow a vacuum region to exist between the plasma and the

perfectly conducting bounding surface.

Two appendices are included in which certain equilibrium quantities

relevant to stability are discussed. In Appendix IIA the rotational transform

angle^for the equilibrium of part A is calculated. In Appendix II B the

relation of the function ^ to the fluxes around the tube is given, and the

quantity yp (V"/Vf + p'/yp) (V"-p,Lr)/(V, + ypL') , which was found to
8be of importance in the axisymmetric situation, is calculated for the equilib­

rium of part A , and shown to be related to the rotational transform angle.

Part A

The condition of helical invariance requires that in cylindrical 

coordinates

B = B (r, u) , (1)

where n = 1 0 - h z, i integer. We thus note that
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(2)8 * 8 8 u &
"iSu’ ffz ~"hSu *

The fields fpay be obtained from a scalar function Vp (r, u) satisfying

V = Br + -i- (IB0 -hr Bz) = 0 , (3)

so that B and ^ are related by

¥u = « r Br ; r = - a (IB0 - hr Bz) , (4)

where a is an arbitrary function. 

The Maxwell equation

V • B = 0 (5)

is satisfied if

a ~ ^ a - 0 , u r r u (6)

and this relation is in turn satisfied if

a = a (&) only . (7)

For sirnplicity we shall choose

a (&) = i (8)

any other choice merely constituting a relabeling of the constant ^ surfaces.
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The condition for static equilibrium

Vp = j X B ,

reads

It - j0 Bz - jz Be ’

= j . B - j B rOU Jz r. ■'r z

' tIt jr Be ' Je Br *

The additional Maxwell equation

reads

V X B = j ,

j = ® (££ + hr B.) ,Jr r 9u ' z 6

8B 9B
ia =-h Tu" " 9 r

1 9 „ 1
F 5T rB0 ~ T

9B
u

Let us define a scalar function f such that

f = (iBz. + hr B0)

(9)

(9a)

(9b)

(9c)

(10)

(10a)

(10b)

(10c)

(11)
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Then one readily obtains from (10a), (10b), and (10c),

j = JL'r r (12a)

and

hrjz - lie = £r (12b)

From (9b) and (9c) one finds

>r(hrjz-ij ) + jr»B -hrBa)= 0 (13)

Using (4), (12a), and (12b), (13) becomes

f q? - f q? = 0 ,r u u r (14)

or

f = f(^) only (15)

From (9) ,

B • V p = 0 , (16a)

and hence

\]> p - p = 0 ,u rr r (16b)

and

p = p (^) only (17)

We may now summarize our results obtained so far in the following 

equations:

, (18a)B =r r
u

-8-



hr £ - i
'e = '"TTV2TT

i + h r
(i8b)

h r ^ + i f
B = --------- £, . .yz .Z , , 2 Zi +h r

(18c)

!B0 -hrBz =-^r , (18d)

hr B„ + iB = f 6 z (18e)

u
>r = “

£ V ^u (18£)

if ^
"Z—72—Z 'r 71----- 2 Z7 2i+hr (i+hr)

(18g)

h r f ^
i L +

2h i2 £
.2 7 2 2 T ,.2,2 2.2i + h r (i +h r )

(18h)

ij,, - hr j =- f =- £r ^ ,Jz r r ’ (18i)

.. ,.2,2 2. =- 2 i h f1,2=- (i+hr) L + -2 ; (18j)



(18k)

where

L + ffT
.2 , ,2 ^2i +h r

2 hi f
(7^7]2

= . p»

a
57

r^r

7&? U9>

It is readily seen that when & f satisfying (18k) are given, fields

and B satisfying Maxwell's equation are in hand. If p is given, (18k)

gives one relation between ^ and f . We need yet another to fix them uniquely.
11 12We $hall take as the additional relation ’

r(^, 0,z)
I J j rdrd0 =0 Jz (20)

that is, there shall be no net longitudinal current in the volume contained by 

any surface of constant „

Since in general we cannot easily solve (18k) and (20), we shall 

resort to perturbation theory techniques, and write all field quantities as 

power series in two independent small parameters 6 and |3 which give: 

a measure; to the ^magnitude of the helical fields arid the almouiit of plasma 

present, respectively. : Wn shall, introduce 6 arid j8 as follows:

Let us imagine a perfectly condudtirig right circular’.cyliridex of 

radius R in which there is a uniform longitudinal magnetic field B° and 

in which no plasma is present. This we call the zero-order situation.

Now imagine the boundary of the cylinder deformed to

r (0, z) = R + cos u , (21)

-10-



and define

6 (22)

We shall introduce matter in such a way that

P(*) = J3 (p/ - g (¥) ) , (23)

where P0^ and are constants of order /3 . We shall see how (23) defines

/3 in (67). (It is clear that p must vanish on the boundary if there is to be 

confinement.)

We now write all field quantities as expansions (at a fixed point) in 

5 and fi :

y + 6*6 +/3^3+6 2^6 5+5/3 +/3 2^ +... , (24)

f ( *) = f° (tf) + 6 f6 m + j8f0 (^) + 6 2f6 5 (^) + . . . , (25a)

= f° (^°) +6[f6(^O)+fO,(^0)^6]+/3 [f/3(^0)+fQ' (^°)^^]

+ 6 2 [ f6 5 (^°) + f5 ,(^°) + 6 f0'(^°) + ^- f0"(^°) ]

+.... , , (25b)

P(^) = iS^-a^g0^0)) -^6a^g6^0) + g0,(^°) (26)

and so on for all field quantities. (In the future we shall suppress the 

writing of the powers of the parameters 6 and /3 as coefficients of the 

terms in the above expansions, a common practice in perturbation theory, 

and regard these coefficients as adsorbed into the terms themselves.)

= 11-



We now proceed to solve (18) order by order.

Zero-order Fields

Here we require

B°=0; B0=B°= const. 
0 z

(27)

From (18abc)

* = 0u (27a)

* o hr f (27b)

and
hr \J> ° f° 

r
i+hr

= B (27c)

Hence

and

f = i B

, 2oTo hr B , r.o= —2-------- + c •

(28a)

(28b)

The constant C° is made zero by choosing

(0) = 0 . (29)

Vacuum Fields

We now show how to find the vacuum fields (no matter present) to 

every order in 6 . '

-12-



Here we set p (>£) = 0 and j_ = 0 everywhere interior to our 

boundary surface. From (18f) and I8i)

so

£« = 0

f = const.

(30a)

(30b)

From (18k) the equation satisfied by ^ then reads

r ! 8 r*r . *uu 2hif
L = T FF .2 ,2 2 + —T

i+hr r rj-j-z.z(i+hr)
(31)

It is readily verified that the solution of the homogeneous equation

L = 0 ,

regular at the origin, is

OO

* ' C- I 1^ (nhr) cos(nu+ a;n) ,

n= 1

(32a)

(32b)

where C, A , and a are constants and I (x) is the modified Bessel n n m ' '
13function of the first kind. A particular solution of (31) is easily found:

* =
hf r
"27“ (33)

Therefore, the complete solution of (28) which is regular at the origin is

* = C +
h r^ f
“27

oO

-2 A hr I* (nhr) cos (nu.'+a< ) n ni ' ' ' n' (34)
n= 1

-13-



The numbers C and An are determined from the requirement that the 

normal component of B vanish on the boundary or, equivalently, from (3), 

that the boundary form a constant ^ surface. This value of ^ we shall 

fix by assigning the same value that was assigned to the cylindrical boundary 

in the absence of the 6 & perturbation. Accordingly, we write

(R) =^(R+p6cosu) , (35)

which reads after expansion in powers of 5

*° (R) = *°(R) + [*6 (R)+ p6 cos u *r°(R) ]

+ [*66 (R)+p6 cos u *r6 (R) + ^- cos2u ° ]+. . .

(36)

Equation (34) represents the general solution of the vacuum field, 

hence we may clearly assume that if we write

^ = *° + ^r6 + ^66 + . . . , (37)
vac

then every term of the right hand side of (37), which we denote generically, 

for the moment, by may be assumed to be of the form,

*<>'> = C<">+ . ^A^’hrl^lnhr) cos nu . (38)

n= 1

Equation (36) is a power series in 6 and hence every bracketed term on the 

right hand side of (36) must separately be zero. We shall choose

-14-



n = 1, 2, 3, „C d
= 0n (39)

in order that we arrive at the zero order situation when 5 goes to zero. 

Since, from (30), f is constant to every order in 6 , we may choose, 

without any essential loss of generality,

{{v) = 0 i/ = 1, 2, 3, ... , (40)

any other choice of f ^ leading to a relabeling of the \I> surfaces 

(from (38)). (Having chosen f^ = 0, we may not in general choose C^= 0 

and at the same time satisfy (36). Equation (38) then shows that, in general, 

this choice for f^ leads to St (r = 0, u) ^ 0 . In some respects the choice 

C^= 0 (and thus St^(r = 0,u) = 0 ) would be better, but the fact that now we 

would have to choose f^ ^ 0 in general, that (36) be satisfied, leads to 

more complicated expressions for the fields.)

From (28b), (36), (38), and (40),

oO
hRI^ (nhR) cos nu = - p hRB0cos u . (41)

. n= 1

Therefore,

CT = 0

A =0 ,n n ^ 1

(42a)

(42b)

n6 R°
A" = -P6 (42c)

1/ (hR)

-15-



and hence

6 o 6 V
=- B p°hr —---------

1/ (hR)
cos u (43)

From (18abc)

* V MBr° = 6 B° X jt(xY 8itl u ’ (44a)

5 o i Rb0° = 6iB°xr(x) -■ Yjxf cos n’ (44b)

and
6 o ' 2 I 'Bz° =* 6 B X I (X) * cos u , (44c)

where

5 - -bT

x = hr

X = h R

(45a)

(45b)

(45c)

and
i h ^y)

1 ~ y 1/ (y) (45d)

In the limit x < X << 1, (44abc) yield to lowest order in X ,

a o r ^ ^Br° = 6 XB° (-J-) sin u , (46a)

B06 = 6'XB° (^)i-1 cos u (46b)

-16-



JL^L B° cos u (46c)

In like fashion we find

^65(r,u) = 2^2 iy2x)- VlT- B0[l-2(f2+X2)I£(X)] [1+ 4-~ cos 2u], (47)
I^(2X)

B66(rJu) = XBU [ l-Z(lu + X^) Ix(X)]6 2 ,.w2 I2i (2x)

(2X)
sin 2 u , (48a)

B66 = 15 2 XB0I2i(2X)[l-2(f2+X2)Il(X)J ^ COS 2 U> (48b)

B ® ^ = - 6 2 X2 B° I2 i(2X) [ 1 - 2(|2 +X2) I1 (X).]

l2|(2X)
cos 2u . (48c)

In the small X limit these expressions reduce to

B66 =- 
r

(21-1) 
—z—

„ 21-1 
62 XB°(-J) sin 2 u , (49a)

R 66 -Be -
(2i- 1 
~2~

, 2f-1
6 2 XB° (-g-) cos 2 u , (49b)

B 66 = 
z

(2i-1) 
~Z1

62X2B° (-J) cos 2 u , (49c)

In precisely similar fashion, we may use (36) and (38) to write down the 

fields to any given order in 6 •

-17-



Matter Fields with 6=0

Here we set 6 = 0 , and hence all field quantities shall be independent 

of u, We shall assume for the present that g{^) in (23) has the simple form

g (*) = * (50)

From (18a) and (18f)

B = j = 0 r Jr (51)

From (18h) and (18k)

)3 . iff 
+ ~zi +h r

hrf^ 
l +h r

(52)

To order /3

7r~Tzi +h r
(53)

By means of (270^ (53) reduces to

i p =- iap + - ff- (54)

If we write the equation of a constant ^ surface as

r (*) = ij ° m +T113 m+ +. *. (55)

= 7J°(^Q) +[^(^0)+^^77°l(^0) ] + (56)

tfien condition (20) yields, to order /3 ,

-18-



0 (57)
r”0 s

2tt ^ rdr =

or

[ -iap +0. . f°f^T(^0)
i ■

] r d r = 0 (58)

Since is a function of r only and since we require (58) to be true for

all values of 7J° , the integrand itself must vanish and hence

B1 o ^
r <*°) = —

f°
(59)

and thus

f0(r) = (60)

We have found f^ and may now solve (18k) ,

0i a I-2/,2 0 2 Q_ „.B
. .2 ,2 Z 2 - a
(I +h r )

(61)

for ^ .

The solution of (61) which is regular at the origin and satisfies 

^(R) = 0 (see discussion following equation (34)) is easily found:

J ^ <r4-R4) (62)

We may now write down the fields to order /3 using (18abc):

B ^ = 0
r 6

(63)
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(64)
0 _ hr2a^ _ /3B° r 

5 ”2 " 2 R

0 _ j ^ = 0 
Jz (65 a)

j/ =- hr =- 1B°r

R

J3 _ a^hB° /02 2 /3B°2 (I?-r2)
? -  y  -r ) - —5   t-

R

where we have now defined 0 such that

(65b)

(66)

B = 2P^(r=°) a^hR2 
P B°2 • B° (67)

We could proceed to find in a similar fashion the higher order terms in 0

Interaction between Matter and Vacuum Fields

We shall write down the interaction terms of lowest order, those 

of order 0 6.

From'(18h), (18k), and (27)

a r* I36 * P5
1 d Wr , uu
T ai- 2JT2 2 + —2“i +h r r

. Zhi(^^M'(^°)) + 0 , (68)

(f + h r ) i +h r

and

• 06 _
f05,(^o)f° hrf^^0)

J
i + h r2-2" (69)
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The condition (20) yields to order /3 6 8

2tt 7J0
j* j^6rdrd0 = 0 . (70)

o o

When (69) is inserted into (70), we arrive at

= constant , (71)

after noting the second term on the right hand side of (69) vanishes upon 

integration over 0 and using arguments on the first term entirely analogous 

to those used in arriving at (59)*

Since St® and f^ are known we may now solve (68), obtaining

Tj3S ^/36 , hr2f£® ,lZaP 6 Vhr*
Sir = Cr + --- ------- + --- r— p --------- cos U

" I](hR)

-l A^® hr I' (nhr) cos n u 
n ni ' '

n= 1

(72)

The condition (35) yields to order /36

*0® (R) + p® cos u ^ (R) = 0 (73)

and now the coefficients in (6l) are specified. Again, we shall choose 

f^® equal to zero, without essential loss of generality, and thus wlriie
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06 60 Bl
IT" yxy

i
z

(z/i^xj + x2) r
TC

^(x)

IJTO- cos u (74)

Thus ,
*/a o r i2 i V*) 1 2i 2 ty*),

r = ---------- 60 B {-^ I (X) ^ (2M (X)+X J-jr^Xj} smu,

(75a)

=-----------

or # ? i 2,= £6/3 B°{ - xjrpQ" + ZkTJX) 1 (X) (2j* Mx) + x )} cob'u* (75b)

and

Bz/36=- ^ 6 0B° (2j?2 I^X) +x2) I^.(X) cos u (75c)

From (69), (18f), and (l8i)

4 06_ .o h ^ (*>
jr - i06 B T 1T|X) sin u ’ (76a)

j^6= i^6B°hIi(X)^yr cosu.
(76b)

and

I,(x)jz/36 =- i/36 B°hIi(X)r^y cos u (76c)

From (23) and (50) we have
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cos u . (77)P ^ =- = j36 Bc x
It

^(x)

We have now found the field quantities to sufficiently high order for 

subsequent work. It is clear how to proceed to obtain field quantities of 

higher order.

Part B

At this point it is desirable to generalize the nature of the equilibrium 

in several respects.

We wish to include the effect of ’’bulges" in the field lines which, 

for instance, may be due to the finite spacing between coils producing the 

main B° field. We wish also to consider the case where the plasma aperature 

is smaller than that of the containing tube, that is, we shall assume there 

exists a vacuum region surrounding the plasma. In addition, it is of interest 

to consider the case when longitudinal currents exist in the plasma (e.g. dur­

ing the ohmic heating process). This means we abandon (20).

The use of a ^ function, as in the previous case, is now complicated 

by the presence of fields which are not helically invariant. Since it is the 

equilibrium values of the field quantities B, J^, and p we are primarily 

interested in, it is perhaps more straightforward to solve for them directly 

using (5), (9) and (10) together, of course, with the appropriate jump 

conditions on the field quantities at the plasma-vacuum interface, and the 

outer boundary.

The zero-order situation we shall take to be again

-23-



B ° = B„°= 0, B = B° = const. , r < S .
To Z (78)

The helical (Q ) field and bulge (e) field shall be introduced by imagining1 

the perfectly conducting tube deformed from a circular one of radius S , to

r(0,z) = S + <j^cosu + aecoshez, (79)

where

u - iQ - hg z

We now shall define 6 = -g- and e = -g- , and assume for simplicity

(80)

£ . .ig . . The parameters j8 and r) , which shall give measure to theh h,£ i
amount of matter present and the magnitude of the heating current, will .be 

defined in a moment. (It is clear that when j3 , €, and 7) all equal zero the 

5 -fields which we arrived at earlier in this section shall prevail (with S 

replacing R)).

We now write

B = B° + B^3 + B6 + Be + B^ + B^5 + . . . , (80a)

with similar expressions for j , p , etc. The equation of a normal vector 

at the outer boundary is

n = V(r-S-a^cosu-ffecosh z), (80b)
e

(where we have not normalized n since the condition B ’ n = 0 on the 

boundary is the only condition imposed, and clearly this is independent of
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the magnitude of n). Thus we may write

°, 5, €, e6,n=n+n+n+n +... ,

n = e + 5 i sin u e - - 6 h_ S sin u e — —r —0 5 -z

+ € h S sin h z e + . „ . e 6 -Z

The equation of the plasma-vacuum interface we shall take to be

r = R + p = R + p®(0,z)+pe(z)+p^(0,z)+p^(0,z)+pe^ +

with the unit (outward) normal

  V (r-R-p)
- “ I W-&-P)

or
L dJL e -
r B7) -Q Szn =

E‘+4(|f)2+(||)2]dp.Zii/z

which yields after expansion,

n

ape
3z +

&
+

-25-
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(80d)

. (80e)

(80f)

(80g)



+19
(p + p tp^+p )

R

=& (aP5d 
r [ de + + )

e—z
(80h)

+ ( 9£
3z )2J + ;

The quantity p is determined from the conditions

B ■ n = 0 (80i)

B2
and p + -«r- continuous at the plasma-vacuum interface. We shall now 

compute the fields .

/3-order

Here

■t£ = Vb°

9
r50"

j ^ B°
jr

ap^3
<nr

(81a)

(81b)

(81c)

►



and

(82a)

j 9 Tz ~ Tr

B 8B ^ 9B ^ 
r x z (82 b)

(82c)

and

V • B = 0 (83)

The boundary condition that B • n be zero on the plasma-vacuum interface 

and at the outer boundary reads, to order /3 ,

B ^ = 0 = B ^
r r=R r r=S

(84)

The condition of continuity of the total pressure, magnetic plus material, 

across the interface reads, to order j3 ,

B° BI =(p^+B0Bj3)|
*r=R ‘r=R , (85

where we have designated quantities outside the plasma region by bars, and 

where we have made use of the fact that the material pressure vanishes 

outside the plasma region.
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For the sake of simplicity we shall assume at once

8 _ a 
TT5 ' "55 0 (86)

Therefore, (81abc) read.

and (82 abc) read

8p^
w = h B< (87a)

rTd = -j B'Jr = 0 , (87b)

8 p 
8 z

P
(87c)

j ^ = 0
■'r (88a)

^ P - 8B P

8 r (88b)

]3 _ 1 8 r B,r 8 r 0 (88c)

Equation (83) reads

r
8

Tr r r 0 (89)
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0 (90)

and hence

B 0 = 
r

inside and outside the plasma, when regularity at the origin is required 

and (84) is invoked.

From (87a) is known when p^(r) is known, and hence from
v

(88b)

B ^ (r 
z >

> =' ^ 0 dr + const. , (91)

and

B ^ (r) = const, 
z ' ' (92)

We now make the following observation. Because of our choice of 

the zero-order situation (only B ° =£ 0 ) , we find that j ^ and Bfl^ , 

connected by (88c), are not coupled to the material pressure in any way, 

either by (84) or (85), and hence are really independent of /3 , which we 

shall attach to the material pressure in a moment. We shall, therefore, 

choose

(93)

and use the distinct parameter 17 to admit the existence of a Jz 

independent of the pressure.

and B
6
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We shall for the present make a reasonable choice for p ^(r) and 

adopt the parabolic profile

p^{r) = ( 1 - -^2 )
R4

(94)

where is constant. From (87a)

/3 _ J_ dpfi
i ~~ _o 9r

2GP r
(95)

and from (91) and (92)

(>. C0 r2
B° I2 + const. (96a)

and

B ^ = const,
z (96b)

We shall choose the constant of integration in (96a) equal to zero, and 

then, using (85) obtain

z (97)

We now define /3 by choosing

(3
2pft(0) _ 2cf
B5"2" ' B°2 (98a)
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or

■c* - fl 4 (98b)

Hence,

b/ = b/ = 0 = s/ = B/ , (99a)

j3 _ /3B° r2
2~ *

Bz Z
(99c)

• $ • ft n *F"/^ n3rH = 3/ = 0 5 i. = 0 (99d)

- e*0 ji (99e)

and
J3 _ ^B°2 . r2 .
p _ —z— (1- —2 ) *

i\.
(990

e - order

Here we put

p€ = 0

j € - 0

(100a)

(100b)

-31-



and

(100c)d
Tg 0

again because of invariance of boundary. ( 77 = /3 = 6 = 0) against rotations 

about 2- axis. Maxwell's equations now read

8B/

TT 0 (101a)

9B e 3B e 
r z

ST ~ -5T (101b)

L —
r 8r r B, 0 (101c)

and

1 8 
r TTr r B 0 (102)

From (100c), (101a), and (101c)

B e
e = o (103)

since we demand regularity at the origin. From (101b) and (102) we find

7

3B 6
z

"§7~
(104)
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The solution of (104) regular everywhere in the region is immediately 

given by

OO

Ane ^(nh^r) cos(nhez+0n) „ (105a)

n= 1

From (101b) and (102) we find

00

n= 1
(105b)

By (79) and (80b) the boundary condition B • n = 0 on the outer boundary 

is, to order e ,

B € (r- S,z) + B0h a e sin h z = 0 
^ € c

Therefore,

and
B0h£ C7e

Accordingly, we write

n 4 1

(106)

(107a)

(107b)

B e
r

I T(h r)
B° e h S ——1*- sin (-h z) , 

€ I0r(h£S) 6
(108a)
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and

(108b)

B°€ h2 S2 1° (h.S)
C c

I (h r) a1 C f
yirsy cos (-h z) \ e / (108c)

where, we remember.

e (109)

and where we have introduced (-h^z) as the argument of the circular 

functions rather than h^z in order to exhibit the parallelism to (44abc). 

In fact, these results could be obtained most quickly by setting i = 0 in 

the 6 -order and substituting e for 6 ,

7j - order

We remark at once that the 7J fields are force free since we have 

chosen = p^1^ = •■»»•=■ 0 . . Because of the same invariance as in the 

/3 - order and in consequence of the discussion following (92) we write

(110a)

B ' = 0 z (110b)

and

1 = J. 8 r B.1! (r)
a r or 6 (110c)
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WHen j ^ is known, is determined. We now consider two simple
z y

choices of the form of j ^ . Case (a), j ^ uniform, r < R, J ^ = 0 ;
z z z

case (b), a surface current j ^ at R ,
z.

Case (a) , j ^ = const,, r < R , "J ^ = 0z z

The solution of the homogeneous equation

i- JL r (r) 
r IFF 0 ' ; (111)

is

B072 C7?
(112)

A particular solution of (110c) when j is constant isz

V
V (113)

Invoking regularity at the origin, we find

n
v (114a)

and

*■»? =' C (114b)

Since the tangential component of B is continuous in this case,

(R) = Bq7* (R) , (115)
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or
j Ir2

cn .

Thus

r „o
1 TT B

and
B H , B“. 4

where we have defined 7] by

n
B^'au

2 B°

(116)

(117a)

(117b)

(118)

Case (b) » sheet current at r = R

Clearly in this case

= 0 . (119a)

A/' = 17 = ’lB‘’ 4 (H9b)

and

jz7? = 7] B° , (119c)

where, again, we have defined

B ^(R)
1 = -^o- . (120,
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j3 6 - order

We shall piece together this order from our earlier work, since 

this situation is almost the same as the earlier 6 - order, with the 

exception that we have two distinct regions to considerj, inside and outside 

the plasma. ; .

Let us first consider the region outside the plasma, a vacuum region, 

for which we know the general helically invariant solution (34) applies. 

(However, the modified Bessel functions of the second kincPmust be admitted 

Since regularity at the origin is no longer required in this region. ) Thus, the 

condition B »' n equal zero on the outer boundary

S ^6(S, u) - a6 h_ sinuB^(S) =0 , (121)
r o z

enables us to write

Sf5 = [ C hg (hg r) 6 hg Kf» (hg r) ] sin u * 

b/6 = [C^5 i I^hg r) (hg r) ] cos u ,

= [*-C hg l^hg r) - hQ K£ (hg r) ] cos u ,

with.
o* 5j8h» B°

^ P°hg I/(hgS)+13P0hg K^fhgS) - —.

(122a)

(122b)

(122c)

(123)
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In the interior region we have the vacuum solution for the magnetic 

field plus a particular solution due to the currents . From (9d)» (44a),

and (9?e), we find to this order

I/(h. r)i/6= 06B°2-5, r '*''“2...... cos u
R2 I/(h6S)

(124)

and from (9ab)

j86 _ oe.r>Q S V^h5rJ*- p 3 ^ ■■ ,.-i i, m sin u
R l/(fc6S)

(125a)

and

i/6 = 06 ,2 S2 1 <h5S) ¥V>
? r I^hjS) COS u , (125b)

^6 .
2 -1,(11 r)

^6iB°hg —^ ifhg S) ——cos u
R ^ <h5 S)

(125c)

(where we have used the fact V • j" =0 and permitted no net longitudinal 

current in this o^der because rj is not involved). Thus,

= [ ri2/36 B° I1 (h,. S) £- -C ^
~~2 ' fiRC 0 h»rT (h- S)

o 16

+ C hQ I^(h r)] sin u ,

(126a)

b/6 - [-l/ses0^ V(b5 ^ f c^5 ^ I (hr)] cosu ,
C7 t» ^ t. o t wu o\ riioR hg Siy(hg S) (126b)

and
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(126c)B^6 =-C^6 r) cos u

with yet to be determined., The condition (80i) at the plasma-vacuum

interface reads to this order

06B j3 6 (R, u) - p6 h^, sin u B j3 (R)-B° = 0 (127a)

and

B/5(R, u) -p°hQ sin u BzP(R)-Bu = 0 ,,06

which yields after elimination of —, B^ (R) equal to 3^ (R), or

127b)

Z P5 hg y (hg R) +B/36 hg (hg R)

2 o l ^#(kg Q g
= -i I* (hg S) -i-5— + CP°hg ^'(hgR) . (128)

h_ R 0 w*

]3 5 5We now have two relations among the three quantities , D . , and

C^6 , and thus one more is needed. This additional relation comes from 

imposing continuity of total pressure across the plasma-vacuum interface. 

To order jS 6 we have

.0 9B
p^6 (R) + p6 cos u + B°Bz^6(R) + B^(R)Bz (R)+B°p6cos u

0

= B°Bf6 (R) + Bz^Bz6 (R) (129)
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noting that B ^(R) equals B ^ (R) and verifying that the first two terms cancel, 
z z

(129) reduces to

(p (0, z) is readily determined from (80i) expanded to order 6 .) After again

06 ,oS W*
R

, u06B» ■ -(R) + 06 B £ _ cos u = Bz^(R),
I/(h6S)

(130)

and hence

-C ^ h6 R) - D ha Kj (hg R) + C ^ 6 hg (h6 R)

c I ' (h, R) 
= (J 8 B° |

Ii,«h#S»

and this order is now complete. Solving (123), (128), and (131) for C 

^ , we obtain

(131)

06

h. C 0
06 _ A_ +_b ...+

^(hgR) i;(hflS)-

ki<h6R) Ki(h6S

Ijj (^ R) ^(hg S)

CyhgRj+AI/th^R)

h,{h6R)Ii(h6R)^(lbR)ISf^R!

(132a)

h.0
B ^ (h6 S) C^thgR) + Ai;(hgR)

K;(h5R) yhgR) - 1^ R) K^hg R)

(132b)
and

h. =: 0

CI^R) + AI/(hQR)

Ki (h6 R)Ii (h6 R) ‘ V(h5 K/h6 R>
(132 c)

which may be simplified somewhat using the Wronskian relation
13
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Ii(y) KiMy) - K^yJ I^ (y) = - — , y 4 0 V

to

h-C ^ + —1_ +h-R
0 T/, T f/T. 5¥h6R> W'

K<(has) KjhaR>
yfhjS) r)

and

R K/(h.S)
h CP° = —— ■■+HAR.-J—[Cl.(h-R) + AI* (1 

0 I/(h5S) ° ^'(hgSj J 0 1

hgB = - hg R [ G( hg R) + A I^r (hg R) ]

where

i/(heS)

B = j36 B
h_ S o 6

and

C = - 06 B 1°'2 S (hp S) WR^
h_R' 

o I^hgS)

If we choose

00 - order

. 0 .

[CIi(h5R)+AIi'(h6R)J , 

(133a)

lqR)] (133b)

(133c)

(134a)

(134b)

(134c )

(132d)

(135)
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then in a fashion entirely similar to that used in arriving at (86) through 

(99), we find

. ,60.0. , 00 , 0-e!s°Jr " JZ ' °’ J0 B 2 J5 ’
"o

(136a)

* 00**60,-o'; *00=. eh? r4 
r 0 z g R (136b)

and

B 00 = s/0 = 0. B 00 = - .
r 9 z 8 (136c)

tj ?7 - order

Following through with our two cases of the ?] - order, we readily

obtain

Case (a)

if ^ -2-»2b°p
(137a)

■a Tin - 2-o° rBz B ^2 (137b)

-w. 2 _o-g =- 71 B (137c)

If we choose

= 0 , (138)
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then clearly

and

B nn = 0 
e

n!*1! = o 
y

(139a)

(139b)

Case

Again, choosing = 0 , we find

BVT} = gW = G (140a)

B W _ g VV= n2B°„ • vv
z z £ J0 (140b)

where we have again invoked continuity of the total pressure. (Here j.
0

has the same dimensions as B because j is a sheet current.)

VV

ft 7} - order

If here we choose

0 , (141)

it is easily verified that all fields vanish in this order.

Here we have

Tj 6 - order

0 ,

and hence from (9) we have, to order fj 5

(142)
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(143a)

and

B5
. Tj6 . ?] _£_
Jr Jz

. 7)6 _ • 7) __9_
H = J z B°

(143b)

where for the moment we make no distinction between cases (a) and (b).

If we require no net longitudinal current in this order, we find 

(using V • _! = 0 ) ,

r, 6
J, 7)6 _ 7) zJ z B (144)

It is easy to exhibit a particular set of fields B^^ with these currents as 

sources. Namely, since

J
8B as7*6

• 7)6 _ z _ Q
r 80 8 z

(145a)

and

- dB 71 6 
7)6= ' r

8z

8B 7) 6

9 8r

7)6
j J. J. r B ^-------
z :r 8r 6 r8e

(145b)

(145c)

we simply choose

B I6 = 0
z (146)

From (145ab)and (143ab) we then have
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(147 a)
- c2 r)

’l5 = - j ’Ig / A l' (h S) 1 5 sin u 
' 2 r 8 I^h S)

and

B"16 =
0

■ i; (Kr). n s 0 i. 0j »5 S -----------
Z I/thgS)

cos u (147b)

It is easily verified that V ° - 0 . We now write for the general

solution in this order

I,(h- r
Brn6 = ^ (hg S) 7-— + C"16 h6i;(h6r)) sinu, (148a)

Ag (hg S)

= (-jj* 5S-----— + C^6 cos u ,

Wh8'
(148b)

B =- C116 h. I (h r) cos u 
z 0 i 5

(148c)

and

B ^ 
r

(C^ hg (hg r) + B r,u hg K^1 (hg r) ) sin urj6 (149a)

B^6 = (C 116 -^r ^ (h5 r) + (hg r) ) cos u , (149b)

5T'6 = - (Cll6hg ^(hg rJ+B^hg I^(hgr)) cos u (149c)

That B 3 n be zero on outer boundary requires
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B t,6 (S) + 6 i sin u S^ iS) = 0 , (150a)

or
h6 i; (k5 S) + =- 6t,< B° | (150b)

That B • n be zero at the plasm a-vacuum interface yields

A ^ fR \ ^ P A ^ /Ri A® - 0Br (R) - KTe Be (R) b h 0 ' (151a)

and
s;6 - Xs; <r> - b° ^ ■ (151b)

8 o^6
After eliminating a , we obtain

«. . „Z. I. (h. R)
C’16 h5I/ (hgR) + D7!6 hfiK/ (h* R) 4 jjldl 4- 1 (h* S) -L-^

5 i- 6 R ' 6 W>

- ^ h li ‘h5 R) =
« - o I,r(h«R)- ^ [BA=-i6 tTTTifsv^^R ’

!; (h6 S)
(152)

where

[b(T]r = V(R) - B“r'(R) (153)

Continuity of total pressure across the plasma-vacuum interface yields

b°[b;'6)
z JR

B0°(R)[B011]

i q It (h_ R)
6iB0h Sl^h S) 1- J-A- [B^]

Vh6S) e J r (154)
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We now consider our two different forms for the current distribution j ^

Case (a)

[S^] = 0 ; . (155)

In this case (150b), (152), and (154) read

G^hgl^hgS) +S^6h6Ki»(h6S) =- £5 r\B° -§■ , (156a)

C^5 h6 (hg R) +D116 hg (hg R) - C h6 (hg R)

„ | I#(h- R)
= -2n6 i—7 BV(h-S) -i—5----- , (156b)

R ° h (h6S)

and •

- C^hgl^bgR) -D^hgK^hgR) + CT16hgIi(hgR) = 0 . (156c)

The solution of this system of equations is

C116 =- 1$ .I)B- R + ^ 5i BoIi(h^ s;; ] [_J_(hAR) +
hg SX^hgS) 6^ ¥h6s) J Vi

RK^hg R) yhgR) RK^hgS)!^ R) 
---------------  --------_■ . -------------- !----------- 1 (157a)

I* (b. R) £ li {h6 S)

 15 tiB0R

h5SIi’(h6S)

2nai^BV(hgS)

R 0 ^'(hgSJI^hgS)
(157 b)
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- c2 . I, (h-R)
B^6 = .2 ti 6 i B°r (K- S) -■- -6- . (157c)

6

Case (b)

= t,B° ; = 0 . (158)

In this case (150b), (152), and (154) read

C1]5 hg y (hg S) + B^6 hg (hg S) = - 16 n B° ^ , (159a)

B ^ hg I/(hg R) + B^ hg (hg R) - C7’6 hg 1/ (hg R)

So V R>
=,- :1ti0 -yB0 -  - , (159b)

7 ('”6 81

and

- B716 hg ^ (hg R) - D1!6 hg K^hgR) + C^6 hg 1^ (hg R)

o ' 2 , I.(h-R)
= - S/r^B h.| r(h-S) — 0 (159c)

6R 6 I^hgS)

The solution of this system of equations is

B^6 = hgl^Ttiggy ^ a + ^gRKj (hg S) [b I^(hg R) + C I| (hg R] ], (160a)

B7!6 =- Rfbl^hgR) + CI/(hgR)] , (160b)

a b K/(hR) K/(hS)
s Kgij(hgS) ^ hgT^hgUy * ~ iffrsr3 [bIi(hR) +

C y (hR) ] , (160c)
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with

c i;(h.R)
■ b * - i« ii-ip B° JJ^ET ’■ (l61bJ

and
o s2 i

c = - Si^B b6irI (hgSJ-j-^rg-jj . (161c)

P e- order

This order is most quickly arrived at by setting 1=0 in the 

P5- order,.

Thus

a = - 16 B° , (161a)

3e_ flrB°2 S
p - peB p r 1^5-5) ' (162)

i* = 0 , (163)

B Pe= CPe h i '(h r) sin (-h z) , 
r e o e e

(164a)

Vt=0=V£ (164b)

B = - C^€h I (h r) cos (-h z) ,
z C O C €

(164c)

g Pe = (C^€ h I >(h r) + 15 P£ h K ^h r) sin (-h z) (165a)
r £OC €0'£ fe

SPe = - (C^€h I (h r) +.I5pCh KV^r)) COS (-h z) , (165b)
z € o € € t c
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where

he cP€ = fo(^R) + l^’K) +
K^^S) K0(heR) i
W1"-W7”1 *

ft. r K’(h_S)
\C = 1^-5) + heR I % ‘ST Ato (heR) *

O . € 0 €
(166b)

he15p€ =.- hgRAy (h€R) V (166c)

and
c I f(h R) hJS

A - pe B rrprs) • B- peB -g-
' O ' €

(167)

ri e - order

Again we arrive at this order by setting 1=0 in the ■qd - order.

Thus
0 , (168)

i ’i* = i *1 -li .
— mO *B

(169)

Case (a)

B T'G = 0
r ' (170a)

I «(h r)
V = - iJl £ 5 i^fh^r co“(-h£z) ■ (170b)

Bz"e = 0 , (170c)

= 0 . (171)
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Case (b)

p^€ = 0

= 0

(172)

(173)

B gne 0 (174)
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Section. Ill - Stability of Equilibria I ; Minimization of 6W

In this section we are interested in the stability of those equilibria

considered in Section II. In particular, we are interested in the effect of
8

the helically invariant fields on the interchange instability in the presence 

of a bulge, and on the kink instability^ The equilibrium of this section is one 

close to a cylinder with a boundary

r = S + 5 ^ or ® cos (l^B-pTiz) 

i

+ € ^ on6 COS (-q.hz) (1)

i

on which B ° n = O'. The results of Section II are readily generalized

to a Superposition of such perturbations of the boundary. Each perturbation

is periodic in z over a length Zir/h and p^. and q^ denote the number of

times the respective perturbations fit into this length. The interger f^

denotes the variation of the perturbation with 0 . We explicitly exclude the

cases p. = q. for any i and j and p. = p. for i#;j , since in this case 
J ^ J

the equilibria do not superpose easily. 6 CF^ and €(T? represent the 

amplitudes of the perturbations and j and e are small expansion param­

eters. We also include an arbitrary pressure distribution j8 p^(r) and an 

arbitrary longitudinal current rij^r) * We temporarily exclude any surface 

currents or discontinuities in p and j and assume all quantities are finite 

and continuous.

The quantities needed in the treatment of stability are the zeroth 

order field B0> a constant field in the z direction, the fields of order 6
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and e which may be written from equations (44), (105) of Section II,

6 A 5B °, = B 0 . sin u r i r i Pihffi B l/lp.hS) sin “i • (2»)

6 A 6B®. = B cos u0i 0i
1 1 COS u. , (2b)

B 6 . = B 6. cos u =
Z 1 Z 1

« „ ^(pihr), 0 -dO i
■ Pihai B i^ipprs) cos , (2c)

B6 *IS\ ■ (2d)

with u. = 1. 0 - p.h z , andi i ri

B^i =Bri^r) sin (-^ihz) = iqqjgS)" 1o (<lihr) sin (3a)
q.ha.eB°

X 1
O' *1

B0i ° ’ (3b)

B e. = Be. (r) cos(-q. hz)
Z1 Z X X

q.h0.eB°
lMqW1o(‘1ihr) C°S(-ql1“)

O 1
(3c)

B ■ls\ (3d)

Further we need

•n ft /r) _ P^(0) - P^(r)
z ' ' (4a)
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(4b)
j/<r> =-

8B/(r)
z

~WT

and all other components of and j ^ are zero. Finally

Be' <r> == 7 J riz’’<r> d r (5)

is in the z direction, and all other components of B ^ are zero. We

have collected these results here for ready reference in the ensuing stability

analysis. We will not need any information about fields of higher order except
2 2the fact that all 6 , 6 €» and € fields are sinusoidal in z . This remark is 

not true.in the excluded cases p. = q. etc.ri i
No vacuum regions are allowed in our equilibrium but regions where

8p = 0, (pressureless plasmas) are considered. Later in this section it is 

shown how the stability is affected by replacing these regions by vacua.
8The stability of these equilibria is treated by means of an energy principle. 

This principle reduces the question of the stability of a magnetostatic equilib­

rium to the problem: can the quadratic functional of |

2 6W = ^{Q2+2 • |XQ+1^ ” VPV-^ +y p(V*e)2} dr , (6)

with

Q = v x (£ X B) , (7)

be made negative for any choice of £ (r) ? B, p and j represent the 

equilibrium values. | is imagined to be an arbitrary (virtual) displacement 

from the equilibrium, subject only to the condition £ ■> n = 0 on a rigid
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boundary , and 6W is the resulting second order (in £) change in the 

potential energy. If 5W can be made negative for some £ , it can be made 

negative for a normal mode £ , some potential energy is turned into kinetic 

energy, and the system is unstable. We ask for those values of our param­

eters p?a6 , etc. for which the system is stable and for those values for' 

which it is unstable. It should be noted that the question of stability is unaf­

fected by the distribution in matter density which only affects the rate of growth 

of an instability.

Our equilibria have many parameters of expansion (3,6, etc., but

these may be expressed in terms of one parameter X . For example, we

may assume 6 and £ are proportional to X and j3 and q are proportional 
2to X . The stability problem is much easier for a one-parameter equilibrium 

and we express our equilibrium in terms of X with the above choice. There is 

no loss in generality in assuming the proportionality factors are one so 

6 = £ = X and /3 = T| = X^ .

In carrying out the expansion in X , it is necessary also to expand 

the trial functions £ . This can be seen from the following argument: The 

value X = 0 makes the equilibrium that of a cylinder with constant field, 

which is neutral. If we regard the parameters (X , cre, etc. other than X 

as fixed , our equilibrium will either be stable for all sufficiently small X 

or unstable for all sufficiently small X . It is clear that in the second case 

a | which makes 6W negative for one X need not make it negative for 

another. Thus one must allow | to depend arbitrarily on X as well as . 

Since X is small we expand £ in it and regard the coefficients in the 

expansion as arbitrary.
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One now expands 5W as a power series in A. and examines the 

lowest order which gives a decisive answer as to stability. A criterion 

expressed in terms of the parameters <7^, O-^, p^, is then found.

In applying these results to the stellarator we imagine it straightened 

out and neglect any effect of the curvature of the tube. However, we wish to 

keep partially the effect of the closed machine by demanding our equilibrium 

and our perturbations £ be periodic over a length L = 2ir/k equal to the 

length of the machine. We require that h be an integral multiple of k so

that each perturbation of the boundary fits into this length.
2

We shall choose k to be small of order A and expand in it as well. 

The reason for this is to keep the rotational angle i , through which a line 

rotates over the whole machine, finite as A goes to zero. The displacement 

tries to follow the lines and the requirement that j| be periodic in L would 

make the perturbation very irregular as A went to zero, unless L for the 

machine were finite. That l is finite for the entire machine can be seen 

from Appendix II A, for

L /per helix ~ 6 ^ , 

no. of helices 1
~2 >

total i ~ 1

(8a)

(8b)

(8c)

To conclude this introduction it should be observed that any finite 

situation may be approached by a system expanded in A in any number of 

ways. For instance if k ~ A , k will be finite when A becomes finite. 

Alternatively, the finite situation could have been approached also by keeping
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k fixed, as X increased from zero, at its final finite value. The best 

expansion is the one that leads to the most rapidly converging scheme.

Since we do not examine the situation beyond the lowest significant order, 

we cannot apply this criterion to our scheme. However, our choice of orders 

leads to an expression which remains "uniformly" valid as we arbitrarily 

shift our choice of orders, while another choice does not. In particular, it 

is shown in Appendix III A that results obtained by treating hR as finite remain 

valid when hR iaanade transcendentally small in respect to \ . Futther, our 

expansion readily yields itself to physical interpretation so in some sense it 

is the "best" expansion.

To proceed with the stability analysis we expand 8W to zeroth order 

in X to obtain

2 6W° = ^ Q°2 dr , (9)

Q° = V x (£0XB°) = B° ||^ - B°(V • •£0) . (10)

We have introduced a convenient notation of a bar to distinguish the r and 

0 components of a vector so that for an arbitrary vector A ,

A = -A + e A . (U)— — —z z

We cannot expand our £ *s at a fixed point since they will have wave lengths 

of order L and the expansion would not be uniform over L. To get around 

the difficulty we first Fourier analyze j; in z

... . ishz+inkzi(«, n) e
a, n
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except those with finite wave numbers or wave numbers proportional to X ,

It will be shown in Appendix III B that this assumption cannot affect the ques­

tion of stability since the nonvanishing of such components always makes QW 

positive. It is now expected that £ (s, n) can be expanded uniformly in X .

It should be noted that 8/8z operating on £ can change its order.

It is obvious that 6W° is non-negative. It can be made zero only by 

the choices

■f0 (s,n) = 0 , s ^ 0 (13)

and
V • (4°) - 0 o (14)

Any other choices make 6W positive. Our J^s are restricted to ^ 0 n = 0 

which to lowest order says £r° (S) - 0 » This restriction will be relaxed 

in higher orders temporarily. If 6W is always positive without this restric­

tion, it is certainly positive with it. If 6W can be made negative, it will 

be shown that the £ which makes it negative can be chosen also to satisfy 

this restriction to all orders.

Since Q° = 0, it is clear that 6W^ - 0 . The second order part 

of 6W is

26W2 - + e°” VpU(-^)}dr . (15)

By equations (4) and (13) the last term is to this order a z derivative

which vanishes on integration. The region of integration is the zeroth
2order region i.e. a cylinder of radius S and length L . 6W is thus

non-negative. It is clear that if 6W is to be negative 8£°/9z = 0
z

with a and n finite integers. We assume that £ has no Fourier components

2
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wherever p 0 , i.e.

| (s, n) = 0 for s =£ 0 and p 0 , (16)z

Before proceeding to make Q zero, we will effect a considerable simpli­

fication by demonstrating that we may consider only £'s with £° = 0 . To

do this we momentarily drop our expansion and consider the exact change in 

6W produced by changing £ to £r, where

£' = £ + f B (17)

We have Q = Q' where primes represent quantities containing jj' • Thus

A2 6W = 2Q W' - 2 6 W = ^{j_* f B X vx (_| x B) +_| • Vp B- Vf

+ yp(2 V • S B • Vf + (B • Vf)2} dr (18)

where we have used B • V p = 0 .

Let us consider the first term which may be written

=- y f V» [ (j_X B) x (S x B)j dr =- ^fV - [j • S x B B]dr

since V X (j X B) = 0 . Integrating by parts and making use of the fact 

that B “ n = 0 on the boundary , we have

*1 = * i X ® ?. * Vf dT =“ ” 1 x ® B • Vf dr
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which just cancels the second term of (18). Thus

A26W = jVp [2(V° |) B • Vf + (B * Vf)2] dr (19)

In the region where p is zero the contribution is zero. Since elsewhere

p is second order and (V ° £) is first order A2 6W is higher than fourth order

if B ° Vf is higher than first order. It is now clear that if any j; makes

6W negative with unequal to zero, one can change this | by f° B° +

(fXB° + f°BX) with f° = - | ° . Since B 0 Vf = B° ° Vf°+[BX- V^+^-Vf^],

f^1 may be chosen to make the bracket zero, and B0, Vf° is of second order in

the region where p — 03 B » Vf is second order for this choice. A2 6W

is thus zero to fourth order and can be chosen zero. In the region where

p 0, it is obvious that A2 6W is zero and £° can also be chosen zero in
z

this region.

To make Q^ zero, we must first have

as.'
5T =-5r • ^x(i°x2X) (20a)

"aF

x
= - en • V X(4°XBX) (20b)

which makes = 0 . It is clear that can be chosen to satisfy (20a)

and (20b) since the right hand sides must integrate to zero over the length

Li. £^(0,n) is still arbitrary. The vanishing of Q ^ requires 
— 2

B° v » = e • V X (e° X B x) (2.1)
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and from (20a) and (20b) it,i® easily shown that U/8z = 0 . By choosing 

4-^ (0, n) to make V • 4^ (0, n) aero one ;seeS' (ihatiQ^ (.0rn)..cah be made zero.

To third order we have

26W3 = J |°- [(V.^) ] dr (22)

The second term goes out upon integration by parts while the first term in the 

bracket integrates out since V° ^ ^ ~ e*8*12. The term in (15) which previously 

went out on integration over the zeroth order region is now zero since it is pro­

portional to fj ^ . Thus its contribution to (JW in the third order in the region 

between S and the boundary given by (1) is zero.

Finally, in fourth order

26W4 = y{(Qxx)2- jexx lr°QzXX+ jz^Ur0 QqX- i0° QXX]

v
(23)

+ ypXX(V- eX)2+ U" Vp(V. e)]XXXX}dr + J 1°-VpXX(V-i|X)dT

where V* is the perturbed region. Since changing | by fB only affects

the yp term, by taking f of order X , £ X(s, n) may be picked to make
z

V-j^X(s, n) vanish, while V- £X(0, n) vanishes already. This simplifies the 

integral over V and eliminates the integral over V .

Next consider the j XX term in flW4. We are only interested in 

■ft- (s,n) with s = 0 since otherwise the term integrates to zero in z . Thus 

8/8z (£_X B)XX (0, n) = 9/9z (^°X B°) (0, n) and we have for this term
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o
(24)

£ °.ax, ^ o « ^ aa 5e a ^ xx"T" 1¥ ^ - *Z ■ j

. XX — o.^ o ®^0 t o > i , j « j
+ Jz B (^r sr ’ h -nr* }^drd@dz

By integrating the terms in the first bracket and making use of the fact that
o o ■■ V-4 and 1/(8) are zero, we get

r dj XX . ’ .. 9£-° 9£ °
6rO(iXB>;sW+B\^(ir0-jl-i9° ^)}rdrd8d2

where

(25)

(j^B^Vn) = (|X X BX)z (0,n) + (£°r B0U) (0, n) . (26)

4 AXReturning to 6W and completing the square on Q , we can now writez

,.xx
26W4= + [QXX - j0XX£r°] 2~ jaxx'if+ ^ £°(£XB)XX

r cTr "r —'z

, . AX t-j o r /- o ^0 > o i «.o.AX r ^ XX ^ o , *. vXXi / n \ 1 j
+ 3a B [Sr -ST- Ti-1 + ^3e £Qz +B <V'i> ] (0, n) J- d t

(27)

Since

QzXXVB°(V- £)XX= ez- V X (^Ax BX) + e_ • V X(|°X BXX) , (28)

it is seen that ^ only occurs,in the first two positive definite terms of 

(27),, Therefore, | XX maybe chosen to make

, A A. (s,n) = 0 s 0 (29a)
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and

n XX ■ XX
uz ~ J6 (29b)

since (0, n) does not involve That this is possible follows from

an argument similar to that used in making Q^- vanish by choosing ^ with 

the change that V* 4;^(0, n) is here chosen to make Q ^(0, n) + £ °(0, n)

vanish„ The positive definite terms of (27) thus become

T fl«-U(0,a

which we temporarily denote as

(30)

fi«24T ,
(31)

the bar indicating an average over the rapid variation in z . With this change 

and (46), 6W^ can be written

26W rxx 2 dj XX

dr
l°(i x *)**■+ ^ jaw B°

z

+ jeXX 5z* VX (1* } dT , (32)

where
(£Xx BX) = ^ (1X x SX) (°»n) • (33)

n

But is given in terms of by equations (20a), (20b), and
X X 4V' £ = 0 t (at least insofar as £ enters into QW in eq. (32).) Further
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frpn? eq. (14) and ^ ° = 0 » can be expressed entirely in terms of

|°(0,n).. It is found that all the coefficients of are independent of 9 

and z *nd depend only on r . Thus we may Fourier analyze the 4^* (0>h) in 

terms of 0

6°(0,n) = ^ |° (mjn) eiin 0 (34)

m

and will break up into fit sum over m and n with the m,..n^ term only

involving 4° (m;n)f Since each 4y>(rn;r’1) i® still at our disposal as an arbitrary

function of r subject only to £ ° (m;n) | = 0 , we will have stability if and
S

only if every one of these terms is always positive, whiledf a single term 

can be made negative we will have instability.

Let us restrict ourselves to a single term of this Fourier expansion...

(m 0 ) and suppress the m and n indices . Then becomes

1_
r — z + B

84°
o *r

~&F
+ 1 

r n ««r° V) (35a)

or
QrX\=ijn{( ^,Bo+Bj1) go +{gXxB\}

Similarly by eq. (14) QA^ becomes

(35b)

\\ 8 nkr B 
{(- °

m
+ b0T1)C + (!• x ba) } (35c)

Substituting for 4^ it® value in terms of 4 ° by equations (20a) and (20b) 

we have
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(36)<i*x ®\ 1 —

2n h

d A A A i,. 2piKB" ^ <B( ^

so that using equations (3) and (4) we can write

.XX itn
(vrt)

and

where

^ XX 8 i »o .Qe =- w (l,6r) .

(37)

(38)

.2 r,r
nkr B

tp
P + ^ iiP^hCri B° I, (P^r)

i

with ,1. «1 (x) ‘ xl^x)

[l-zA^hrJ+^+txVr2)!^ ]

(39) '

(40)

XXThe j terms in (32) may be written, after using equation (14) and
Z

integrating by parts as.

j , XX
ho2 - (41)

The m, n*h term in 6W4 now reads

2 6W4 = jar /1 l°r |2 + (P|r°)

+ H- Her°l2 + «“ ie iz • **<1* x 5A)} (tn ^ 0) 

(42)
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where the absolute value signs arise from the product (m;n) 

on application of the reality condition on ^ . The remaining terms X B ^)

can be expressed in exactly the same way in terms of ^r0" Before combining 

all these results into a final formula we must consider the case m = 0.

Here by eq. (14) (0;n) = 0 . Therefore, = 0 and QinkBQ|g

and the remaining texms are zero so that for m ^ 0, 5W is positive definite 

and can be made zero by choosirg (0, n) to be zero. Consequently, we can 

suppress it. Further the negative m terms are just equal to the positive terms 

so we can multiply our sum by two and restrict it to positive m and all n. 

Finally our sum depends only on the absolute value of so we may write

j | ° | 1/ = jH . Carrying out the integration over 9 and z and restoring the 

s ubscripts we find

26W4 = IgL ) C rdr{( 

m> 0
dr 2 rtn ;n J (43a)

n

where
T| 22 , dj 1 r a = m + — —m;n dr ism ;n

jf3B°rV 2 2 6 
------ 2 [ A Pi h °i r
m;n i

2 Ai.<Pihr^

IllPjhS)
\ i /

(l-2(i^+p^h2r2)I ^p.hrj+i2! ^p hr')2 )

\‘ _ 2 , 2_e2 (W*)A 2

+ Z qi h ai r {T^ESJy
(l-2q.2h2r2 I0(qihr) ], (43b)

and is given by equation (39);
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We have thus reduced our stability problem to the consideration of the signs of

an infinite number of one-dimensional integrals in r of single variables nr m, n
These are worked out in section IV and minimized over m and 171 there and 

stability criteria are established.

In the reduction of the problem of stability to equation (43), it has been 

tacitly assumed that | and £ ^ could always be chosen (under the constraints 

imposed on them) to satisfy £ ° n = 0 on the boundary to first and second 

order respectively. It will now be verified that this is possible. Observe that 

on the boundary

Q • n = 0 (44)

through second order. This is easily seen since Q° and Q^ are zero and 

Q ° n = QrXX(S)^ m is zero since 1°^ (S) is . We will drop the expansion 

in \ temporarily and consider the implication of Q • n = 0. Expanding the 

triple vector product in Q we have

(45a)

(45b)

= n- (I* VB) + e° (B • Vn) (46)

If we write | = + £ ,, where = n. (° n.) then

n« [B*V£-£°VB-BV”£] =0

or since B ” n = 0

Thus

n • (B ■ V |) = n • (^“ VB)

B ° V (g • n) = n • (B • V|) + | ■’ (B - Vn)
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(47)0 = £„‘V(n. B) =(£„‘Vn)° B +(£„-VB). n

so the £ ,, terms in (46) become

-(£„-Vn) • B + £ „ • (B * Vn )

:(B X £ „) » V X n = 0 (48)

since n • V X n = 0 . This is easily seen by applying Stokes'theorem to the 

line integral 0 = ^*n * di_ over an arbitrary curve lying in the surface. 

Therefore, (46) becomes

B • V (j£ • n) = [ (VB)° n + B • Vn] • ^ = (n » VB * n) (£• n), (49)

since B - Vn is obviously perpendicular to £x . These results are, of course, 

valid only through second order for our £'s . Expanding (49) out in we 

find that the right hand side vanishes to first order and (£ * n)^ is zero for 

(s ^ 0 ). Since the restriction on (s = 0) is V°^^ = 0 , we can pick j; 

to make (^ ” n)^- independent of 0 . If one integrates V * over a cross 

section, one sees this constant must be zero. Proceeding to the second 

order in (49)* one sees that (£ ° n)^ is also zero for s # 0 . Arguing in a 

similar manner, one sees that (£ ° n)^ (s = 0) is independent of 0 , and 

by integrating

V’£***^L • VX(£*X BA) (50)

for s = 0 , m = 0 , that.it is zero.
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In many equilibria of interest there is a discontinuity in the plasma.

One could treat the stability of such equilibria by including surface terms in
g

the expression for 6W, equation (6), and carrying out the analysis we have 

developed including these terms. However, a surface of discontinuity can 

generally be regarded as a region where physical quantities vary very rapidly 

and one can arrive at the properties of a discontinuity by letting the thickness 

shrink to zero. In practice the region in question is not zero but can be treated 

as zero to a good approximation. Furthermore, it should not matter how we 

pass to this limit (if it did the approximation of the region by a surface continu­

ity would not be a good one). Therefore, we can regard the physical quantities

as continuously but rapidly varying over this region while we reduce the prob-
4

lem of stability to the consideration of 5W as given by Eq. (43) and only then 

pass to the limit of a surface discontinuity. However, it is necessary to make 

the jump in £ » n across the discontinuity zero in order to prevent cavitation 

or interpenetration. This can be done by considering only £ *s which vary 

slowly over the region as its thickness goes to zero.

In evaluating the integral over the region of rapidly varying quantities 

as its thickness goes to zero, one can neglect all integrands which remain 

finite as giving zero contribution in the limit. There are some terms which 

are products of one factor which becomes large to first order in the thickness 

and another smoothly varying one. In the integration it is permissible to 

take the smoothly varying factor out of the integral and integrate the large 

factor. Other terms are products of two factors one of which is large of the 

second order, such as djn/dr, and the other smoothly varying. For these 

terms it is not permissible to factor out the smoothly varying factor but one
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must integrate by parts first reducing the first factor to first order of 

largeness and then proceed as before. Finally there occur two terms which 

are each products of two large factors. These terms just cancel each other.

We shall carry out the above scheme for an equilibrium which has 

a discontinuity in pressure, a surface longitudinal current j ^ and a dis­

continuity in the volume longitudinal current. We define i>* by the relation

j/ 5 i/* + (51)

where u* is slowly varying and rapidly varying. The last term in

equation (43b) can be written

dB^
—T—- F dr (52)

with F slowly varying. From it we get rF J[B ]] where [A ]) indicates the 

jump outward across the boundary. Since the dj^/ilr term in (43b) is of 

second order largeness, we integrate it by parts and substitute for j1^ its 

value in terms of B1^ to obtain .

^r~ rdr ~ I £r + I

-i
dBq d(ri/*£^)

W —HT— dr

rdr -
T dO^/i) dfri,2)
J ------------- ST- dr . (53)

Note that the fifth term on the right side of (53) is of second order of largeness
2 2 2 2 *

• as already remarked. The m /t- U £r term in (43a) gives nothing;
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Expanding out tl^e [d/dr (v% Ji] term in (43a) in the same manner and col­

lecting terms, we find that the two large terms canceL Making use of eq» (51) 

again, assuming j** and are zero outside and denoting the radius at which 

the discontinuity occurs by R , we obtain finally

2 5 W4 Sir ‘ 
'k"

l c

m>> o

j 2 _ .-n 2
■'‘Hnin^j^^tnjnHnjn i Hn;n

j —---------
■ r m:n r = R

\ i

l. t.
-2(iJ+p^h2R2) I ^p.hR) +i2 I ^p.hR)2)

, , 2 IV (q.hR)\ 2 , , -.\ „ 2,2 £ _o ov n # /, , 2,2_2to.^,«ih ai B teqliSjj R 1 (qihR

IB’1! ^

i

- i.p.hdr Biri i
fm

IB7* I
2 1 M-

TT

2
"m;n

'I.
IJTpliSI

(3-2(2+l2fp2h2R2)I 1(^hR)

m jn
}

+ (3f2+2p2h2R2) I ^p.l" 42'

(54)

where 22 , r2 dj11 i^B° / V 2,.2 62 I ^ „.2, 2,2 2,/i, , ,
“toin1” fZZ ' r-z'lZp^ i r\r;Tpis)J^2<i+pihr)I (pihr)

^mjn \ i \ i 1 /
, 2 T i

m;n

+ ^ I Npjhr) )

2, 2' e2 -l1^^V 2.2 «^ qi h ai _ ' 2,2 2 To -2 q, h r 1L ■ 1 < r< R) (55)
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and t,rn.n is given .by (39-).
4

In deciding the sign of 6W in eq. (54), one can treat (1 as the 

arbitrary function instead of || °[ with the provision that pi(S) is zero, and 

further that vanishes at all points where u does and is continuous at 

these points. With this in mind, one can minimize the part of 6 W in the 

region R< r< S over all fj, such that ji(R) is prescribed. If u does not 

vanish in this region, one gets for this part of 2QW

m
1+(R./S)'m n (R)2
1 - (R/S)Zm m,n

(56)

and thus can replace the limits cn the integral in (54) by 0 to R and add this 

contribution. If, however, u does vanish in this region, let aR be the 

smallest point at which it vanishes. The contribution to 26W from the integral 

between R and aR has the minimum value

m
2 m a
2 ma

+ 1 
- 1 m:n

(57)

Because fji1 at aR is continuous, the contribution to 6W from the region 

aR to S is not zero, but it can be made as small as one wants, for instance, 

by taking

H = ^ ^ —- sin k (r-aR) aR< r< aR+ < ir/k

[4=0 aR+ir/k< r (58)

and letting k approach infinity. Thus we may neglect any contribution
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from this region. Thus we may take (57) as the contribution to QW from 

the external region.

Up to this point we have considered equilibria in which the region 

R< r< S was filled with pressureless plasma. For equilibria in which

this region is a true vacuum the energy principle can be generalized.® Instead

2 2 of minimizing Q in this region, one minimizes (V X A) , subject to the

boundary conditions n X A = (n • £)B at the plasma interface and n X A = 0

at the external boundary. The minimum A satisfies

▼ x (V X A) = 0 (59)

But fi e with fi given by equation (56) satisfies precisely these conditions, 

and yields the contribution (56) to 6W. Thus in the case of a vacuum, we 

take the external cortribution to be precisely (56) while in the case of a pres­

sureless plasma one chooses (56) or (57) according to whether u has a root 

in this region or not. The difference in the two cases may be seen by observing 

that the pressureless plasma develops a sheet current at aR which is not 

possible in a vacuum. It should be noted that the vacuum case is always un­

stable if the corresponding pressureless plasma case is, although the converse, 

need not be valid. This is in agreement with the First Comparison Theorem 

of the energy principle paper.®

It is possible to rewrite eq. (54) entirely in terms of the rotational

transform angle i which was discussed in Appendix IIA and the quantity

V", . which was obtained in Appendix IIB ,(vacuum)

4
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25W4 8ir .R du
.. . »T 01.^ {j“ rdr[(-^2i£) + (M ) J'rrn;n. J

m >0 n

1 d(r2tT1)
IT —37-------------m;n r=R i

66
r~

~ ■ IB V". .. ] )Mm;n!2
k “• ■u (vacuum) J (v Y* ' m;u.

+ A } ,m:n J
r-:R

where

m;n
kr
2ir

B° 1/ [ | ° (m;n)
m;n 1 '

(60)

(60a)

vm;n
ZirhSS i
in (60b)

a m;n
2 x» m + ri^m;n

d
H7 (r -sr'

4ff2rB°j^

kTF Fm;n

yn
(vacuum) (60c)

and Am.n is the contribution to 25W from the external region given by 

equation (56) if the external region is a vacuum or by equation (56) or (57) 

if it is a pressureless plasma depending on whether ^w.n is zero in that 

region or not. Here the rotational transforms, 0 from the helically sym­

metric field depending on u^, I7' from the axial current, and the term 

V", . are computed over the length of the machine (2ir/k).

The terms in j ^ and j[B^]] are similar to those which in the axially 

symmetric case®represent the energy released by the expansion of the gas.
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The fir*t two terms in 5W represent the change in magnetic field energy 

produced by the perturbation„ This energy cannpt be avoided since in expanding 

the gas it is always necessary bo twist the lines to some extent because i 

varies from radius to radius and it is impossible to interchange these surfaces 

exactlyo The terms in represent the work done by the force term j X 5B 

(computed at a fixed point)., It is only present if there is some voltage driving 

the longitudinal current „ and it is generally destabilizing.
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Section IV - Stability of Equilibria II, Stability Criteria

In the last section the minimization of 6W with respect to all compo­

nents of £ except £°(m;n) e*(m®+nkz) was carried out. (In this section to 

"minimize" a quantity will be used to mean "reduce it to its smallest value", 

or when no such "minimum" exists, "to reduce it so as to approach its lowest 

bound". ) Since the final minimization is too difficult to do in general, it will 

be done for several special cases in this section. "Interchange" instabilities 

which are due to a plasma pressure gradient will first be treated. "Kink" type 

instabilities due to the presence of axial currents in the plasma will then be 

discussed.

A. Interchange Instabilities

One main class of instabilities can be understood as an interchange 

of lines of force so as to carry plasma outward. It has been shown for axially 

symmetric situations that such an interchange tends to decrease the potential 

energy by an amount essentially proportional to M" V" where M and V are 

the mass and volume contained inside a surface of constant i// . The prime 

represents differentiation in respect to !// . If the magnetic lines must be 

distorted in order to make an interchange, energy must be given to the mag­

netic field. If this "twist energy" just balances the "destabilizing energy" , 

the system is neutral in respect to such instabilities.

Probably the simplest case in which this effect can be seen is in the 

inherent stability of a stellarator with no stabilizing windings, for example 

■B-l •. The confining field in this machine is modified by a series of "bulges" 

due to the finite spacing of the coils which are used to maintain the longitudinal 

field. In this case the m; n term in QW can be obtained from equations (54)
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and (55) of Section III as

26Wm;n= TJ~ rdr <4 ^ + <a^2> +m^

o

l + (R/S)2m

r=R L - (R/S)Zm

where

and

, ./3 _e , ,2-2 I,(hr) ^ ■
a _ m {l-L-t-g.) ___ (—-^.J (L-2h r I (hr))} ,

“ n k r L

M =
nkrB_____o aO

to *r

d)

(la)

(lb)

Since fi has no singularities the treatment is the same if the external 

region is a pressureless plasma as it would be if it were a vacuum. If the 

pressure is parabolic so that

? /So 2
o s V<B°> B r

(lc)

where pQ is the pressure at the center of the plasma, and hR is small 

enough that higher order terms in the expansion of the Bessel functions 

can be neglected, Eq. (la) reduces to

a = m 2 -JA/

with
2.°C 2

JX - 0 Sm-f-jf) 2*2-2
n k R

(Id)

(le)

The solution of the Euler equation for minimization in the internal region 

is, therefore,

fi = const. Jm(|Ar) . (If)
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It may be assumed that |i(R) =£ 0 since it can be seen easily that if QW 

is negative with /i(R) = 0, it can be made negative with /i(R) £ 0. To see 

this let Jl make QW negative with ]I(R) = 0 . Then Aju + fi will make QW 

negative for any ft and A sufficiently large.

Multiplying the Euler equation by Ji and integrating, one obtains

2 QW
4 _ 8tt2
m; n k

lARJ !( AR) 
nr

■ jj m-+m
l+(R/S)2m

l i- (R/S)2Tn (lg)

If y is the lowest solution of the trancendental equation ' m

J (x)
m 1 l-(R/S) 2m

' m .l + IR/S)2™
(111)

^critical is *iven by

n
m 2. 2n k

3m2 h 2(ae/S )2
(li)

Kruskal^'Sias pointed out that in a closed system such as a stellarator

Monly certain wave lengths are allowed. If the machine has a transform i , 

it is necessary to require the matching condition

M
S<0o'zo>= £(0o + L ’ zo + L> (lj)

where L is the length of the machine. Thus only wave numbers nk can 

be considered such that

n = N m L 
2 IT

M
(Ik)

where N can be any integer. Then Eq. (li) becomes
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z
$m;n

m
2~T

12 it m ((j€/s~)r
(ZktN-tsj (li)

where is the length of a bulge and is the length of the machine.

In the case of B-l , l - 164° , and for values of m less than thirty, is 

most severely restricted by nr- 2 and m = li . Higher m’s can probably 

be ignored as the instabilities which they represent would be localized in a 

region smaller than the ion Larmor radius for which the present theory may 

not apply.

If (R/S) is allowed to approach 1, it is clear from Eq. (Ih) that 

is the lowest root of the equation

J (y ]m '' rrr 0 (1m)

The effect of terms of the next order can be determined by simple 

perturbation theory. If

2 A 2 -y 4 /I »a ~ m -Ax -At (In)

and

Ji(R) = 0 ,

j3 can easily be shown to be given by

0 = ej] T
X f RJ 2(JAr) r3dr 

, )0 mV
------------------------------- >

J (>fAr) rdrm

(lo)

(ip)

where /3 is the lowest order critical )3 »

The determination of the critical (3 when stabilizing fields are 

present can be achieved in a similar way, but the presence of singularities 

in the Euler equation which is employed, complicate the determination.
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Again it will be assumed that there is no axial current, i. e. = 0 .

It will be shown later in this section that helical fields with 1=3 provide 

optimum stabilization. This can be seen crudely from the fact that di00/dr is 

much larger for 1=3 than for I = l or 2 (see Appendix II A) while higher i’s 

require more power to produce. At first,' therefore, only helical fields with 

jf = 3 and bulges (l = 0) will be considered. Further, hR will be taken to be 

small.

If the plasma occupies the entire^tube (R = S), the boundary condition

on at R will require that jx(R) = 0 . If two r egions are considered (R< S),

the condition that i-° is continuous at the boundary requires that fj, be contin-r. v 

uous at R. For the most part the two cases can be treated at the same time. 

Here the case where fi is zero at R will be treated. The minimization will be 

carried out for an arbitrary pressure distribution, which will then be selected 

to give the maximum value of /3cr^c'g_p

The expression (Eq. (54) of Section III) for 6Wr 

fl (R) = 0 as

m; n can be written for

26 Wm; n
Sir
~TT

1((-T^+^'^tdt
4> t ■

(2)

where

a

2 i3f'(t) ^pfe.V + f q^eft)

m - ----------- - ■■ ■—-------------------------
2.2 2(— + y 2 P. 5 2t2)

m <6 *1 i

(2a) ;

and

II = kRS0 ^ 2 p. S .2 t2) t «r° (2b)

Here
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(2c)t = r
TC

6.= p«/R
ei = Pi /R

6 €the priine represents differentiation with respect to t, and and are

respectively the amplitudes of the Fourier components of the first order distor­

tion of the plasma surface with wave lengths such that p^ helical and bulge 

periods can fit into the machine. Thus any superposition of helical fields which 

have a bounding magnetic surface of the form £ p. cos (3 0 - p.kz) is considered. 

Similarly> the i = 0 fields also can represent the superposition of many bulges 

with different wave lengths. (Recall that the restriction ^ q^ was made in 

Section II. ) The function f(t), which is related to the pressure by

P^=P/3(0) (l - f (t) ) ,

is an arbitrary given function of t, such that

f (0) = 0 ,

and
f(l) = l .

(2d)

(2 e) 

(2 f)

First f (t) will be taken to be monatonic. (Diffusion of the plasma would 

probably insure this.) The diamagnetic current is related to f (t) and /3 ,

where

by

hi<X
L

2p(0)
pr 1 (2g)

^ =- )3 f (t)B°
2 R (2 h)

Clearly p must satisfy the conditions

p (0) = 0 , (2i)
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and

fl.(i) = 0 . (2j)

If a is defined by
a2 =- n/Ztn ^ p. 6^ , (2 k)

i

H (t) must go to zero as t approaches a at Least as fast as t - a . (That is.

2 nkRB
In(t)|s|(t-a) m °SmI '

where | is the maximum value of in the vicinity of a . ) jji' (a) must 

be continuous.

Let

r(t) s -L

^(^p^s2r' + j q,“e“t)2,3.3 2 2.
1- €.1

(2 I pi 6i2
(2m)

Then

2QWmj n
Sir
IT

2 - Lf f, m Pf>(t)r(t) * 2 , , iv2-i ^ ^ ^\ {(-^ - 2--2 2’Z)ii +(v') }t dt . (2n)
^o t t (t -a )

The critical )3 will be determined first for those values of n and m for 

which a is in the range 0 < a < L . The minimizing jj, must satisfy the 

Euler equation

I*
... | ,/3f'(t)r(t)
^ + ' 2' 2 . 2,2 

t (t -a )
(2 o)

(The normality condition does not have to be carried explicitly in this 

discussion. ) In the vicinity of the singularity at a , Eq. (2o) behaves like
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Ji’' +
4a (t-a)

2

a
|I= 0 (2p)

The contributions to 6W from the two regions t < a and t> a will be cpn- 

sidered separately.

For t> a the solutions of Eq. (2 p) are

H = j(t-2) e :k 2 in (t-a) ^ (2 q)

where
A = /3f,(^)r(a)

a
(2 r)

It now will be shown that for the values of m and n under consideration,

^critical setting A equal to 1 .

If A > 1 , the solution fX of Eq. (2 o) which vanishes at t = 1 , varies 

for t sufficiently near a , as

^ (t-a) cos ^ A-l in (t-a) + ;y) . (2 s)

It, therefore, must possess at least one zero for t > a . For a particular 

value of A, A^>. 1 , let t^ be the largest zero below 1 . Consider for this 

A^ a function , defined to be identically zero for t< t^ and to be a solu­

tion of Eq. (2o) for t> t^ . It follows from Eqs. (2n) and (2 o) that for this 

fil , QW = 0 if A = A^ and 6W< 0 for A> A^ . Therefore, the critical j8 

corresponds to a value of A <1 .

In cases where A< 1 , first consider any fi which is identically 

zero for all t less than some t^ > a , and vanishes at t = 1 . It will now 

be shown that for this t^ , an A^ > 1 exists such that 6W is positive if A
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is less than and consequently positive for all A less than one. Consider 

the pressure distribution given by Eq. (3d) which will later be found to lead 

to be largest value of ^cri|.|qa[* ^ can k® seen that for this pressure distribu­

tion with tn and A = i34Jcr^ca[ set equal to one, the general solution of the 

Euler equation, Eq^ (2o), is

ji - [ 1-(a2/t2)]l/2 [C+D in (t2-a2)] . (2t)

This fi cannot vanish for t between a and 1 since it must vanish at t = 1. 

Since 6W , given by Eq. (2n) is a continuous function of f3, t|, the position 

at which the minimizing jj, must first vanish for a given Aj, > 1, must approach 

a as A^ approaches one. It can, therefore, be seen that for any t^> a , an 

A^> 1 exists below which 5W> 0 for any fj, which is identically zero for 

t< t^ and vanishes at t = 1 .

It is still necessary to show that no other /j, which vanishes at t = a

and t = I (i.e., t^ = a) can cause instability with A < 1 . To do this, assume

that such a fi (Jl) exists which makes QW negative, say QW = - € . It will

first be shown that for any Q sufficiently small, the contribution to QW

from the region between a and a + Q is positive so that the integral from

t = a + Q to t = 1 must be more negative than -e . This integral then will

be shown to differ from a positive integral by an amount which can be made

as small as desired by taking Q sufficiently small. This contradiction will

complete the proof that B < 8 .... , if A< I „ r r r ^critical
The contribution to QW from the region between a and a + Q is 

found from Eq. (2n), to be
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-> a+5 7
8tt f /r-iiZ .■/tnI= T" a \ J + H

a 4(t-a)
) (j.2 } d t . (2u)

Let

and

x = t - a

y = il/{

(2v.)

(2w)

Then _
2 0 2

T 8it (” r 1X2. l+(2rnx/a) -A —2 i 2..i , .
1 = "F a J tx(y > + ' x ------  Y + 7(y ^ J dx ’ (2 x)

o

where the prime indicates differentiation in respect to x . The first two 

terms are positive since A< 1. Eqs. (2i) and (2w) show that y (0) = 0 so 

that the last term on integration is obviously positive for any y .

Now consider the value of 6W which corresponds to a particular p.

(p) which is zero for t< a + 6 /2 , increases linearly over the region between 

a + 6/2 and a +6 and from there to t = l is the same as the previous p , 

which was assumed to make 5W negative. Since A is less than the A^ 

which determines the solution of the Euler equation which vanishes at 

t^ = a+6/2 , this value of 6W must be positive. It differs from the one 

for p, which had to be less than -e by the amount

Sir
IT

2 r° 2 
j {A-2+(m . a2-i ,) jl } d:

6/2 a 4x
(2 y)

64tt2 n2k2R2 2 2
When this integral is evaluated, it is found to be less than — ^o ®m
(U se Eq. (2i). ) and can be made smaller than e by a suitable choice of 6 .
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This cotnpletes the proof that no ji exists which can make 6W negative if 

A< 1, and, therefQre, that j8crjt^caj is determined in the region t>a by 

setting A - I in Eq. (2 r).

Eq. (2 q) can be replaced by

p = J(a- t) e * * \1 1 * ^ in (a_t) (2z)

in the region where t is less than a, and the entire argument can be repeated 

to show that A = L determines the critical 0 .

If a is zero or one, the argument can still be carried through. Values
2 2of n and m for which a is not in the range 0 < a < I must still be

considered. Before considering these, the pressure distribution which m ax -
2imizes the critical fi with a in this range will be determined. It will then

be shown that for this optimum pressure distribution, instabilities for which
2a is not in this range lead to higher critical values of fi .

2If 0 ;< a < l , the critical fi is determined by setting

&4
^critical = main f'(k)r(a) (3)

It is now necessary to determine the pressure distribution, i. e«, f (t), so 

that for the worst value of a, '0cr^caj. is as large as possible. For any 

particular pressure distribution f(t) , Eq. (3) requires that

^critical “ £■* (a) r(a) (3 a)

^critical f,(a) ~ TliT) * (3b)
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If Large enough values of n and tn are considered, a can take on essentially 

any value, so that it unay be treated as a continuous variable. Integrating 

both sides of Eq. (3b) with respect to a , and using the boundary conditions 

on f (t) given in Eqs. (2 e) and (2 f), one finds that for any f

L 4^critical - ^ Tf!) da ' 

o

Now consider a pressure distribution defined by

f.iti - tVrw
1 It) - -p-T 7— :

j V/r(t))dt

(3c)

(3d)

Then, inserting this f (t ) into Eq. (3) ,

1 4 1 A^critical xr^n ^ rprrda ^ £ ntr d* {3 e)

Since T(t) is given by Eq. (2m), the optimum pressure is given by

t2-^ in (1+4^)
M = -------tj—------f

(1+-^)
(3 f)

and the critical /3 is

(E P
,shz

^critical" . (1--^: )

^i °i
(3g)

Here

* =

v 2 . 2 S q. €. a
------- Z—Z
SPi 6i

(3 h)
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If no bulges are present, the optimum pressure distribution is parabolic.

If, in addition, only one helical field is present, the inherent stability is 

given by

Pcritica^ <-§T> • <3i>

for the case of I = 3 .

Eq. (3g) can be somewhat simplifiedPfor use in numerical computations 

by an application of Parseval's theorem. In particular, since to first order 

the distortion of the plasma surface due to the bulges (1=0) is

so that

“R = ^ €s COS ’

s

i It =- £ Cs <lsk *in(qskz + as) ,

(3j)

(3k)

it can be seen by squaring both sides of Eq. (3k) and integrating over the 

length of the machine that

2 2 
% €s

2ir /k

irk R
—2 \ (dp/dz) dz
• P ^ •J

(31)

Since the field along the magnetic axis due to the bulges (1= 0) is

= - ) 2 B e cos (q_kz + a ) Z /j os '^-s s (3 m)

it can be seen in the same way that

I 2 2 
^s €s =

2ir /k----- l—rT f (dB €/dz) 2 dz
4irkB Z R=0

o o
(3 n)
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Helical fields with different values of i can be treated in exactly 

the same way. In particular,

s o
(3o)

1 2tt /k

irkR

T " 2J (dp/dz) dz (3p)

where p is the lowest order distortion of the plasma surface due to the 

helical fields. These expressions could be expressed in terms of the helical 

contribution to the magnetic field along the magnetic axis as was done in Eq. 

(3 n) for bulges.
2The expression, L p 6 , cannot be converted into such a form. A

9 S S

perspicuous form of it is

where

and

Ps6s2|2 = (25s )<EPs ^ 0032 ®
s s s . .

cos e = i -

glp.-f)28.2

2 f p.2 6 2

p2
S p26 
s rs
---------1

S 6s s

2
s

(3q)

(3 r)

(3 s)

If the p 1 do not differ by much from each other, cos 0 ~ l . s
2It is still necessary to show that instabilities for which a lie outside

, •

the range which has been considered, do not lead to lower values of ^cr^cai_'
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For the pressure distribution, Eq. (3d), 6W is given by Eq. (2n) as

28W » tt C + tdt
K t 1 (a -t )

(3t)

where ^ is the ^critica]^ defined by Eq. (3e). Obviously QW is positive if 
2a is less than zero and |3 is less than J$c , In order to consider cases where 
2

a is greater than l , one can make the transformation

M = \j(a-t) y (3 u)

in Eq . ( 3t) . Then

2 5W = ^ § {(a-t)(y*)2-i (^)'

2 2
• # l i l , m (a-t) St \ 21 *j* /o \+ (2T + TTKnT+-7--------} ,d. . <3v,

It can easily be seen that if /3/j5c is less than l the last term in Eq . (3 v) is
2

less than (i/4(a-t))y t . Since y (1) = 0, 6W is positive.

For equilibria in which the plasma does not fill the entire tube (R < S),

the analysis can be carried through in the same way as before for values of
2m and n which make a < 1. The argument which shows that all pLsB which

vanish at t^ (0< a< t^< 1) make 6W positive if A is less than one can be

carried through as before since it is not changed by replacing the boundary

condition jj,(1) = 0 with /i* (l)/fi(l) < - m . When a pres sure less plasma exists
2 2between the plasma boundary R and the walls of the system and 1 <a -<(S/R)

I

26W differs from Eq, (3 v) by the term
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A 8ir2__ a2tn+l , lk <tX2
+ TO -y—— (a - 1) y (1)

a - L

the contribution to 6W from the external region. (This term is obtained 

from Eq. (57) of Section III.) Thus, if |3 < ,

26W
Sir2, (a2rn+l) (a-L) [, ,.,2
IT <m -Tm , ------- - -£> y*1’

(a -1)
(3 w)

and, therefore, greater than zero for any a which is greater than or equal to 

one. This completes the proof that the optimum pressure distribution for 

stability is given by Eq. (3f) and the critical |3 by Eq. (3g).

If the external region is really a vacuum, Ji(a) is not necessarily 

zero so that the stabilizing term due to the external region, (by Eq. (56) of 

Section III)
Sir 1 + (R/S)2m

+ m (a - 1) y (!)
K (R/S)'

is negligiWky AlBaail if a i« -near ! . It can be shown that the system is unstable 

for some values of m and n which make a sufficiently near one, if f* (l) 

does not vanish. The pressure distribution would then be expected to adjust 

itself so as to satisfy the condition f» (1) = 0 . The critical (3 would there­

fore be somewhat lower if the external region is a vacuum, than that given by 

Eq. (3g) which was obtained by treating the external region as a pressure less 

plasma.

The function f (t) has been assumed to be monatonic. Consider some 

non-monatonic pressure distribution T(t). Then by Eqs. (2 e) and (2 f), T’(t) 

must be greater than f1 (t) given by Eq. (3d) for some value of t . The critical 

fi corresponding to instabilities centered at this point would be lower than the
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one in Eq. (3g) so that such a pressure distribution would not be the optimum 

one. This follows from the fact that for the optimum f , the right hand side 

of Eq. (3 a) is the constant of Eq. (3e).

The problem can be carried through in exactly the same way for the 

case where hR is finite and any combination of helical fields (with any i) 

amd "bulges’1 are present (subject to the condition that no two fields with 

different values of i have the same wave length). Again consider the case 

where all surface currents are zero and jV and therefore is zero^ From

Eq. (6 0) of Section III

26Wm:
_ ^ 

;n k

l a ^ + l
{C((M')2 + -f M2)tdt+ m

*'o t a. 11

a = m -
, 2ir SB0 tf(t) V"(d/(t))/ .2 H \ i \'r \ "(vacuum)

k2jLn+s (t))<
' m s sv ^

(4)

(4a)

and

M =
kRB° /Zirn 
2ir \ m

+ ^l. <*>) * C (4b)

Again has been expressed in terms of the pressure distribution given

by Eq. (2d) by means of Eq. (2h). Here L (t) , the transform associateds
with a helical field which depends on 0 and z as cos(f 0 - p hz), ands s

^"(vacuum) a:re COTr,Puteci over the length of the machine (2ir/k). Note that

bulge fields are included here by setting 1=0 for some values of s . Thes
numbers a are defined by

^2-+£ts<a)=° . (4 c)

s

The number a+ is the smallest root of Eq. (4c) such that l< a+< S/R or if
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/

no roots exist in this raiaee, a, = S/B.,
y m + ■ ■ ■

For any a j a can then be written as

« = m2 0 fMt)r(t) —-j—--------

(a-tr
where

r(t) =
2ir2B° tV"

(vacuum)
((t8(a»H(t-a)Ug(a))"/2! + ,. .)]

<4d)

(4e)

Here the i (t) has been expanded as a Taylor series about the point, t = a.
•.S'

As in the previous analysis, the worst instability for values of a 

between zero and one lead to critical f}t8 given by

Zmm a
^critical - a 4f*(a)!r(a) (4f)

Continuing in the same way one finds that for these values of a , the cricital |3 

is given by

k
Prricritical g^2^o

,1 t(|idts6(t)/dt)2dt

2 J V'WM),--------'(vacuum)
(4g)

and the optimum pressure distribution is

f(t) = I
8*Zb° ^critical °

t t(^dt®(t)/dt)2 dt

(^(t) ^(vacuum) (4h)

The argument which was made in connection with Eq. (2 t) in the preceding 

calculation has not yet been carried through completely for this case. The 

demonstration that values of a outside the range between zero and one do not 

lead to a lower critical |3 if the external region is a pressureless plasma goes 

through in exactly the same way as before.
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In minimizing 8W with /3 just slightly above |3c , we find that the |'s

which make 5W negative change extremely rapidly over a small distance, and

thus describe motions for which the present theory may not apply if this distance

is as small as the ion Larmor radius. It is, therefore, interesting to assume

that such motions are stable and ask if /3c is raised appreciably. We determine

the new /3c by minimizing 6W over all jv such that dj_/dx < £ max/\

where x = r/R, £ is the maximum value of £ , and X is the ion Larmor ' -2-max -2-’
radius in units of the radius of the plasma. A rough idea of the result of mini­

mizing 6W may be obtained by picking £ ° to be a constant £max in th® 

neighborhood of a, a < x.< a + O' , and to be a solution of the Euler equation 

in the region a + a < x < 1, joined to £ ° = £ at a + a so that £ ° and its

derivative are continuous. A similar function is chosen for x < a. We pick 

Of so that the maximum slope attained by the solution of the Euler equation is 

£maX/^ ’ ®ne may t*1611 conclude that if the solution of the Euler equation 

vanishes before the boundary of the plasma is reached (x = 1), then the system 

is unstable since it can easily be seen that 6W is negative for this trial 

function. It is not clear that this trial function gives the lowest value for 6W 

for our restriction but it is expected that it will give a good approximation to the |3 

for which the lowest value of QW first becomes negative.

This program for determining the new value of j3c is carried out by 

a further approximation which makes use of the fact that the rapid behavior 

of occurs for x close to a . We, therefore, approximate the solution

of the Euler equation by a series expansion in the neighborhood of a keeping 

only the first two terms. For the trial function and in the situation corres­

ponding to Eq. (3 t) we have
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(4i)
SW ^|oa52max + a f1 Vi'2*-! |2 + -^52t2)dt

v a
a

where t = x - a, x has been replaced by a wherever possible, and 

has been replaced by £= The Euler equation for £ is

{" +t£-' + 4 «= ° <4j>

and its solution is

|~t+yt +... (4k)

with
n =- j + i N^2''- »

2 / 2 tn / ay S 1 9
4 + 2i 

or

| = At"'*'^sin( in t + 6 ) + Ayot^^sin(^^^- int + 6

(4 m)

(4n)

where 6 and A are arbitrary,

2 , 2 m /a
r° " 2 4TT^

and

tan (6 - 6 L) = vJ/3 - l/2

(4 o)

(4p)

At t = t = 0! , we require d|/dt = 0 and £ = i; , which gives (using o m ctx

only the first term in Eq. (4n),

I max sin 8o ’ (4q)
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(4 r)tan 0q= \J0 - ,L ,

where 0 = \|(/3 - l)/2 in t + fl and 0Q is its value for t = tQ . The maximuqn 

slope occurs when t = t where again using only the first term

tan 7 =
4 - 0

and setting

«'l = '

or

I A = A »aLi-..]|glX£°*-g.
’max* — 3/22 t

(4 s)

(41)

(4u)

Eqs, (4q), (4r), and (4u) serve to determine , 6 » and A . To settle the 

question whether or not the solution (4n) crosses the axis before t = 1-a , 

we note that such a trial function as we have chosen could always be made to 

cross the axis as close to zero as one pleases by removing the restriction on 

^max an<* choosing t sufficiently small. Further the first term alone would 

vanish at t^ where 0^ = tr , and it is expected that t^ is quite small compared 

with l-a . Therefore, instead of giving an exact answer to our question 

which would require numerical integration, we demand only that the second 

term in (4n) be significant at t^, or that

yo t? = CO) ~ 1 (4v)
a

be the critical condition for instability. Here

C(/3) = - BZ • exp JL. (tt - 0^) , (4w)

2\[3+£
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>^here
m sin 15 - Jfl-l cos ¥ IA 4
B = -------------^~T/?---- (4x>

2 sin 6 O

and
2 (f - e )

D = exp — , (4y)

with 80 and ¥ given by E^s. (4 r) and (4 a). A table of C(fi) is adjoined. On 

inspection of this table and assuming

J8 C reasonable values.of X/a it is seen that the critical

1.5 300 value of may be raised from L to at least 2 for all

2.0 40 but the lowest values of m .

4.0 1. 3
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B. Kink instabilities

A current in the direction of the magnetic field is employed in an 

early stage of heating of the plasma to thermonuclear temperatures* The
instabilities associated with this currmtv^have been studied by Kruskal and

m 17 19 20
Tuck » Roberts , Taylor , and Shafranov , by means of normal mode

2L22calculations and by Rosenbluth and Longmire using an individual particle 

picture as well as by the Matterhorn group who have used the energy principle*

In this section it will be shown how these instabilities (which are usually called 

Kink Instabilities) can be found easily by means of the energy principle, and the 

Stabilization which can be obtained by applying a helical field will be discussed.

If no helical fields (or bulges) are present, Eqs. (54) and (55) of sec~ 

tion III reduce to

2 R

n

(5)

where

(5 a)

and

nkr B°
(5b)
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Notice that jP does not enter this expression. The external region is considered 

to be a vacuum.

If the current density is uniform in the plasma, the volume terms
4

can be minimized easily and 6W can be put into the form7 m;n r

2m (_ 8it , .2 r , 1 + (R/S)2 = -r— {m + m---- 5— ■ -y-rn,n k r—R_ ^ ^

nkr B 
m + R

(R/S) .nkr B +B77.
' m 'r = R.

(Rj^r = r

(
nkr B 

m
■+b\_

r = R_
1 T>° 2

v m 'r = R_

}
(5c)

If only a surface current is present, this reduces to 

226W = (|0)2{m(£iSiS°)2+ni(^S0+ B1’)2 ^(R/5)
fc r m m i-(R/S)

2
- B7? }

and is stable if for each n and m ,

2m
2m

(5 d)

2.2_2_o n k R B
m

+ m (•
nk£B°+ B7')2 H-tR/S)2*” . B7)2 > 0

m 7 , TITTTTZmL-(R/S)‘
(5 e)

The inequality is satisfied for n > 0 . For m = 2 , the inequality (5 e) is 

satisfied for any finite S . If S is finite, the m = 2 mode is neutral for 

some values of B7^ and n . All higher m’s are clearly stable for any 

value of S . If m = l, the inequality (5e) reduces to
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(5f)n2k2R2B° + nkRB^ (1 + (R/S)2)+B?7 (R/S)2> 0 .

This shows that an instability occurs for negative n if

l <
B7?

| n| kRB°
(5g)

The first inequality of (5g) defines the usual Kruskal limit for stability; the 

second inequality is utilized in the stabilized pinch where the stabilizing effect 

of the conducting boundary must be employed.

Kruskal and Tuck , and Rosenbluth considered situations in which all 

the fields are finite whereas in this treatment kR and B^/B° are infinites­

imal quantities of the same order. Their results reduce to the inequality (5g) 

in the limit of small kR . Since B_ is finite no "sausage" type (m = 0) insta-
■ ' ' •“ Z ■'rT i 1 r-ri -I l 1 1,1 ■ 1 1,1 ' 1 1   

bility can exist here.

Now consider the case where the volume current density is uniform 

in the plasma and no surface current is present. Then, from Eq. (5 c) ,

2 5W =
16 it , nkR B

( m
+ B^ (£r°)2 m B7?

i-(R/S)' :m nkRB
m

+ B77)
}, (5h)

where all quantities are evaluated at R , This can be reduced to

26 W = 16 TT

l-(R/S)

g-V + (BI) + iiM!) (B1) + nkRB
m m-l + (R/S)2m

(5 i)

Again the systetn is stable for all positive n . It is unstable for negative n 

if
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Zm (5j)

For tn = 1 the stability criterion is the same as in the case vhere only a 

surface current exists. Here, however, instabilities exist for all higher m*s . 

If one introduces the matching condition by Eq. (Ik) and recognizes that

(5 k)
RB°

is the transform over the length of the machine produced by the heating cur­

rent, the condition for instability can be written as

M - 2it Nm L (5!)m

It is clear from Eq. (51) for any lV , no matter how small, values of m and 

N exist such that an instability can occur. However, if is small the 

range of for which the system will be unstable for given m and N will

also be small. A rough estimate shows that the rates of growth of these 

large m instabilities are small when compared with that for m = 1 . Con­

siderable evidence has been found for the existence of the m = l instability 

(i. e., the Kruskal limit) in experiments with the B-l stellarator; other 

instabilities have not yet been specifically identified. It is possible that they 

do not grow rapidly enough to disturb the plasma before the heating current 

has been increased out of the unstable range.

Th<5 results which have been obtained here for the case where the 

axial current is confined to surface of the plasma, and the case where it is
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distributed uniformly in the plasma apply to situations in which the external 

region is really a vacuum incapable of sustaining a current. If the external 

region is a pressureless plasma, which can support a current, the same 

results apply for only those values of m and N for which - 2irN/m + 

is greater than (R) so that [A need not necessarily vanish in the external 

region. Otherwise [j, must vanish at some point a , in the external region, 

and QW is obtained by replacing S in Eq. (5d) by a = (-mRB^(R)/nkB°)^^.

If only a surface current is present, and if mB^(R)/nkRB° is large enough 

that n vanishes for m = 1 in the external region, the system is neutral for 

m = 1 to this order and stable for higher values of ra . It is, therefore, 

necessary to expand QW to a higher order in X in order to determine the 

stability condition. It is shown in Eq. (A 31) of Appendix IV A that for this 

case the system is unstable. In the case where a uniform axial current is in 

the interior region but no surface current is present, the calculation must 

again have to be carried to a higher order, if the external region is considered 

a pressureless plasma rather than a vacuum, to show instability.: ..........

In order to understand the effects of an arbitrary axial current distribu­

tion, calculations are now carried through assuming that the radial dependence 

of is either (r/R)^ or (l-(r/R)^) where p can have any positive value.

The external region is again a vacuum.

If ~ (r/R)^ it follows from Eqs. (5), (5 a), and (5 b) that

2 QW = Sir Ki1

m> 0 n

<n'2 + <m

o t
P(p+2)t
tP-aP

p-2
) /i ) tdt

+ (m- lP±|l ) p(l)2 } ,
1 - ap

(6)

-102-



where

H = kRB0£r0(m;n) t (ap - tp) , 

d 2irnaP = - — . (6b)
tn L

Here, t equals r/R, and is the transform at the plasma boundary produced 

by the axial current in the plasma which will be taken to be positive. The 

external region is infinite (S = oo) in Eq. (6) . The consideration of finite S 

leads to nothing basically new. The Euler equation which the minimizing y. 

must satisfy is

/l" + F t_ / m l7
p(p+2)tp' 
tP- ap

) y = 0 (6 c)

The solution of Eq. (6 c) which is zero at the origin and finite at 1, is, 

for m = 1,

y = t (ap - tp) , (6 d)

so that after multiplying Eq. (6 c) by ty and integrating with respect to t , one 

finds

2 6W = J*!L {(ap-l) (ap- (p + !)) + (ap - l)2(l - -^|)} , (6e)
i- ap

or

2QW = {2 ap (ap-l) } . (6 f)

This is clearly positive unless

0 < aP < 1 , (6g)
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or

> (-n)
l7?

(6h)

where n is negative. This result is independent of p and is the same as 

the usual Kruskal limit for the case either where the axial current is confined 

to a thin sheet at the surface as in Eq. (5g) or where it is uniform as in Eq.(5j). 

Since the surface terms in Eq. (6) are positive if a^ > l , it is still necessary 

to show that the system is stable with respect to fji's which vanish when t 

equals one. Eq. (6 c) is now replaced by

p-2
M" + T- M* ~ (-7 + PjP+;r- +Af2(t))M=0 . (6 i)

t tp-aH

The Lagrange multiplier A is introduced to guarantee that the perturbation 

has a finite norm. Comparing Eqs. (6 c) and (6i), one sees that A must be 

positive in order to enable fl to become zero before t reaches 1. There­

fore, the system is also stable with respect to perturbations which do not 

move the boundary.

It is clear from Eq. (6) that the system is stable for all m if a^ 

does not lie in the region defined by Eq. (6 g) since it is stable for m = 1.

If aP lies in the region defined by Eq. (6 g), the contribution to 6W from 

the region between t = 0 and t = a is positive definite, and can be minimized 

by making pt negligible small in this region by properly chosing £ . To 

show that such a minimization can be made, consider as a trial function

= 0 , (t< a - e)

= lr°(a) . (a-e<t<a) (6j)
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where € is small. The integral from zero to a in Eq. (6) is then proportional 

to e and can be made negligible by making e sufficiently small. This mini­

mization requires that J; be allowed to change rapidly over a very small 

region. It is possible that other considerations may prevent the acceptability 

of such rapid changes in J, . For example, one might argue that £ could not 

change appreciably over the distance of an ion Larmor radius if the present 

theory is to be applicable.

After multiplying Eq. (6c) by tfi , integrating with respect to t, and 

introducing the transformation y = t/a , so that y^ = 1/a is related to {.^ 

by

(-n)
m (6k)

one sees that

2 6W 8»2ry#'(n>
k t (Uyj)

<P + 2)yl , , ,2
p , >>*(yl> ■

yl - 1
(6i)

where |i (y) must satisfy the equation

/*' - <
2m

~T
y

P(P + 2)y
yp-l

p-2
(6m)

in the region between l and y^, with jj.(l) equal zero. Eq. (6m) can be 

integrated numerically and the system is found to be unstable if

(-n) < (-n) (6 n)

I nwhere £r = — y P is given as a function of p on the right half of Figure l. 

Only the indicated points on the figure have been calculated. The other
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Figure 1. Upper limit of range of instability.



curves have extrapolated from their values in the limiting cases where p is 

very small or? very large*

If a** is not equal to l , the term, p (p+2)t^~^ t^- a^, in £q. (6) goes 

to zero as p : goes to zero with a^ fixed, so that these results agree with the 

previous calculation for a uniform axial current distribution, i* e* *

m-i (60)

In order to investigate the stability when p is large, let z 

that Eqs. (6!) and (6 m) become

Q 2 zriiM2!) (1+-—)zi 1/ 2Sir r ' r , m ' p li , l/pv42 6 W = -j— p 1——y—r- + —----- „ r-- r tl (zi )k L P zl - i J p l

and n x l r /(1-12/p) m^ n
m" t r**' - t'i'U'# ~TT i1 = ° -

yp , «o

(6p)

(6q)

p z

To zeroth order in
p

u" * + - u/. - = o,^ (o) z (o) z(z-l) (6r)

so that

*f(o) = z - l (6 s)

(The other solution does not vanish if z = l . ) The system is clearly neutral 

to this order. Keeping terms of order i/p , one obtains

.. . i , M(l) _ 2^(o)
^ (l) z ^(1) z(z-1) z (z-1) (61)

so that
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M(l) = (z- L) in z ,

and
"aw - 81,2' 2,i(l> „ 2a 1 ,,2
z 5W - 1 -7;—----------------7— + 110 - TTi j

^(o). M(0)
"z^l. J ^(o)’

or

28W = } „* .

Thus the-system is unstable if

L < z < m +1
“srn:

or

(-n) < L*1 < (-n) (tn 4-1)
m (m -1)m

(6u)

(6 v)

(6 w)

(6x)

(6y)

For nti > l this is a completely different result from that which was 

obtained by assuming in advance that the axial current is confined to a thin 

sheet at the surface of the plasma. In that case the system cannot be unstable 

for m > i . In that calculation it was assumed that was continuous across 

the sheet in which the current is confined so that the contribution to 6W from 

the region where t < a is large. The difference between the results of the 

two cases shows that care must be taken when any current distribution is 

mocked up by a model in which it is confined to a current sheet.

Now consider the case where ~ 1 - (r/R)^ . Eqs. (5), (5a), and 

(5b) can be written as

2 6W = Sir

+ mfi(l)2}

. m> 0 ■ n
(7)
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where

M = kRB0|r°(Tn;n) t (aP-tP) , (7 a)

ap = 1+ p ( ^ + 1 ) . (7b)
rru7'

Here, as before, t equals r/R, and , the transform at the plasma bound 

ary, is positive, and the external region is a vacuum bounded by conducting 

walls infinitely far away. The Euler equation for the minimizing fj, is again 

Eq. (6 c) .

For m = 1 ,

/i = t (ap - tP) (7 c)

is again a solution, so that

ft 2
2 6W = -51- {(ap-l)(2ap-(p+2))} . (7d)

This is positive unless

1< ap< . (7 e)

When ap is expressed in terms of by means of Eq. (7 b), the second 

inequality in (7e) requires that n be negative, and the first that

jw ’ (-» <7f>

for the system to be unstable, so that the usual Kruskal limit is obtained. 

Again if aP > 1 , it can be seen that the Lagrange multiplier, which must be
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introduced to guarantee that the perturbation has a finite norm, must be 

positive if [i is to become zero before t reaches 1 . However, for values 

of a between zero and 1 , it is possible to consider a trial function

I °(a) 0 < t < a

. o t - a -e . . .£r = ------^------- a < t < a + e

£ ° = 0 a + e < t (7 g)

for which 6W approaches zero as e is made small. The system is, there­

fore, neutral to this order if

TZT§ K -£ < <-n> • <7h>

If such a sharp discontinuity in as given by Eq. (7 g), were not allowed, 

the system would be stable in this order. Therefore, the calculation of 5W 

to a higher order has not been carried out.

It is clear from Eq. (7) that the system is stable for all values of 

m > 1 unless a is in the region defined by Eq. (7 e) since for any trial 

function 6W is greater than if m were 1 . One now considers the case in 

which a lies in the region given by Eq. (7 e). If the transformation y = t/a 

is made, and the Euler equation (6 c) is again multiplied by ypi and integrated 

with respect to y , one finds
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where pi must satisfy the equation

M
II + JL'- 

y

p (p~»~2)yp~2

yp-i
(7j)

in the region between 0 and with ji(0) equal to zero . The transform 

is related to y^ by

iV
TS =

( - ri) p
m (p + 2 - Zy^P)

(7 k)

One can show by integrating Eq- (7 j) numerically that the system is unstable

if
(-n)

m
SI
17 (-n) ***/W > (7i)

\where & = p/m(p+2 - 2y^_P) is given as a function of p on the left side of

Figure 1. Again only the indicated points have been calculated.

It still must be shown that this situation reduces to the case of a uniform 

axial current distribution in the limit as p becomes infinitely large with aP 

kept fixed. Since the system is stable for values of aP less than 1 (if the 

sharply defined perturbations which lead to neutrality to this order for m=l 

are ignored), only values of . aP => 1 need be considered. For p sufficiently 

large the term
- fl p(p+2)tP~l M2 dt 

J aP - tp
o

is negligibly small unless t is nearly 1. Consider any trial function p.(t)



which is nearly constant in the narrow region between 1- e and 1 . This 

term can then be integrated, becoming approximately

(p + 2) ^(l)2 in aP-1
a?

or

(p+2)M(l)2{.
a1'-! aH-l

)2 +
aP-1 r -

When is expressed in terms of by means of Eq. (7 b), this becomes

2 l” UU)2
hs +
m

plus higher order terms in \_
P

so that

26W = 8it
IT

m p.2) tdt + (m -
2^

ZttI]
m + L V

) fiU) } (7 m)

as one would expect. Since the minimizing fj, varies in this case as tm , 

it is clear that for any m , a region € can be defined over which jj, can 

be taken out of the integral sign, and then a large enough value of p may be 

found that ( l - e)P can be made sufficiently small.

It should be mentioned that for an arbitrary axial current distribution 

the minimizing perturbation for m = l is obtained by making £ ° constant 

so that the Kruskal limit can be shown to apply. Of course, this result can­

not be extrapolated to the case where and kR are finite.

Now consider the effect of a helical field on these instabilities. In the
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stellarator the axial current will be applied in the first stage of heating of 

the plasma. At this time, since the plasma is cold, ft will be quite small* 

By the time ft has increased to a reasonable value the heating will be done 

by other means (e.g. magnetic pumping) and will be small* It is, there? 

fore, possible to set 0=0 in this discussion. It is shown in Appendix IV B 

that the results are continuous as ft goes to zero. For simplicity it will be 

assumed that R/S = 0 , i.e., the confining walls are infinitely far away, and 

that the external region is a pressureless plasma.

When helically symmetric fields and a uniform.axial current in the. .

plasma are present, Eqs. (60) of Section III become

2 _2 , 2 V 2,_,„4 8it r r . m 2 , ,2. , . 2 i *' U . i .a.26Wm;n=-F-{j (-^ J* + H' ) rdr - ( ^ > <8)

° m s> 0

where

- krB° / 2ttt7 4. ,V 4. Y \ t °
^ TtT < m + 1 + £ L ( M *r (8a)

s> 0

Q(Here jp has been set equal to zero). It has been shown that helices with 

i = 3 stabilize the highest ft for a given power input. The question of the 

stabilization of the Kruskal instability will, therefore, be investigated using 

a single helical field with i = 3 and the wave length hR small enough that 

higher order terms in the expansions of the Bessel functions can be ignored. 

For notational simplicity, one may absorb the positive coefficient 4it /k 

into 6W, suppress the summation sign, abbreviate i.A''''(s) to and

introduce the parameter

q
2 it n 
m (8b)
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Then* minimizing the volume regions, one finds

25W ={(m
l + * , , a^+l

(-q + t^ + t ) + tn—jrjj— (-q+l^ + l ) 
,1 - a “IXJ a. - 12m

„ . kRB°| ° ,
- 2^(-q + ^+t6)) (....^ r) }r =

R (8 c)

where Ra and R a+ represent the values of r nearest to R at which pi 

must vanish because q + L^(r) + (r) does, a being less than l and a+

greater than 1 . If no such points exist a is defined to be zero and a+ is 

defined to be infinite. Henceforth, the positive definite factor (kRB°| °/2tt) ,

6 2 71will not be written. Since is proportional to r , and i7* is constant 

(The current is uniform in the plasma. ) in the interior region and proportional 

to r ^ in the external region, it can be seen that, when they exist,

a 2 q- l 
~~5

v (0 < a 2< l) (8 d)

a 2
+

q±(q -4l 
~5~

2 ..6l77)1/2

2 L'
(K a+2) (8e)

where if the value for a+ is greater than l with the negative sign, :.that sign
2

is used, otherwise the plus sign. If neither sign leads to a value of a^ > l , 
2

or if a+ is complex, it must be set equal to infinity. It is clear that if the

external region were really a vacuum, the minimization in respect to pi

5 71would be carried out for pi's which need not vanish when t + l' - q does, 

so that a^2 must be set equal to infinity in Eq. (8 c).
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Eq. (8g) can be written as

«w 4 {"- 7—TS
. , 2m 2m ..1 + a a +1

+ m ---- -—-----
1 + a a, -1

2tV
+ ^+L6J (9)

S 2 2where the positive factors, |-(-q++ i^) and (kR B°|r/2 w) have been absorbed 

into QW . Clearly each of the first two terms in Eq. (9 ) is always greater than 

or equal to m «

First cbnsider cases where 0 < , If q is negative, or if

0 < q < the last term in Eq. (9) is less than 2 so that 5W is positive.

If q is in the range < q< + L7^ , a , given by Eq. (8d), is not zero. 

Therefore, for m = !,

5W ^ 2
L?- t7?

-q+L5 + Ln
0 , (9 a)

where the equal sign is used if is equal to infinity. If m > 1

6W 2 m C6r°-
5 m .

l - (q
77 m

</')
(9 b)

is also greater than zero. If. + lV < q all three terms in Eq. (9) are 

positive. The system has thus been shown to be stable for all values of m 

if 0 < ■

Next consider cases in which < 4i^ . As before 5W is

clearly positive unless q is in the range i. ^ < q< . If < q < l7^

2 2it follows from Eqs. (8d) and (8e) that a_ =0 and a^ = oo , so that
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6W = 2{ } 
-q + L6 + ^ (9 c)

is unstable for tn = 1 for all values of q in this range. For higher values 

of m this is unstable for values of q in this range only if

q > l5+ In ■

If < q < 2 , a_ is not zero, but a+ = • r so that 6W is

(9d)

2^0 m . . 77. m
6W = { m ?. +

t6 -(q-L^) -q+Lw+L
■»--------------------  . m--------- jj------ } .
6 tn /„ , 77\m „ ,. 6 ,, 77 J (9 e)

For m = l ,
,6 ,7)

6W = 2
- q + lU+ l '

(9 f)

is negative. The conditions for the system to be stable with respect to these 

values of q can be obtained from Eq. (9 e) for higher values of m with 

more Work. If 2 ' < q < , 6W is given by

VOm,. 77\m , nxm./o.0itnsw={m \ Hy-I71). tm (q-.pU----------- .
(q-rr-tat5)1” -q+S-n* ’ (9 g)m

where >T = (q2 . 4t5 t1?, 1/2 . This expression can be rationalized so that, 

for m = l ,

QW
f q + r- Zt7? 1 
•- § tT j-q+ l + Ln

(9 h)
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is negative for these values of q . Again the conditions for m > 1 are not 

so easily obtained. Therefore, for < 4 the system has been shown

to be stable for all q's not in the range l^< q < . It is unstable for

m = l for these q's „ Conditions for instability for higher values of m have 

not been obtained.

Now consider cases in which 0 < 4l^< . Again only values of q

in the range t°< q< t0 + l7* could make the system unstable. Eq. (9 c) applies

if < q < 2 sj so that the system is unstable for m = l for all values

of q in this range and for higher m for values of q in this range if Eq. (9 d)

is satisfied. In the range 2 < q< ,

6W = { m + m
>tn , ,-, 5 *m 2

(q-r)m-(2t6)Tin -q + (9 i)

where, as usual, J-1 = (q^-4t.^ This reduces, for m = l , to

6 W = { I q+£—
-q+t5 + ^

} (9 j)

which is clearly negative. Eq. (9 g) and, for m = l, Eq. (9 h) apply if

< q < go that 6W is still negative. Thus, if 0 < 4t^< iV , the

system is stable unless q is in the range L° < q< L° + L7' . It is unstable 

for m = 1 for all these q's. Again conditions for instabilities to occur have 

not been obtained for higher values of m .

Now consider the situation if < q< . It is clear from Eq. (9) 

that the system is stable for all values of q which are not in the range,

< q < is negative), since they would not make the last term
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more negative than -2 . It follows from Eqs. (8d) and (8e), that a = 0 

and = +(q^-4t® over this entire range of q , so that,

from Eq. (9) ,

2

<5 W = {m + m
(q.+r)m+(2tc )m
(q + r)TO-(2tS )™

2 r
rq+t6

where vP = (q^ - 4t^ l7^) . For m = 1 ,

(9 k)

6W - f -q- vT 
1 -q+l6 + L77 } (9i)

is clearly positive. To show that the system is stable for all values of m 

if < 0 < , it win be shown that the second term in Eq. (9) is a mono-

tonically increasing function of m. The logarithmic derivative of this term 

in respect to m is

4m . t 2 m. a+ - 1 - 2 a_|_ in a 2 m 
+

m (a 4m
+ 1)

Since the denominator of this term is positive (a^ > 1) it is necessary to

show that the numerator is positive for all a > 1 . It is zero if a+ = I .
ZlDThe first and second derivatives of the numerator with respect to a are

2 m 0 . 2 m 02a - 2 i n a -2 ,

and
, 0 , 2 m2 - 2/a ,

respectively. Since these derivatives vanish when a+ = l and the second 

derivative is positive for all a^ > 1 , the logarithmic derivative is positive
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and the second term in Eq. (9) increases with m . The system is, therefore, 

stable for all values of m if < 0 < .
s

The expression for 6W in Eq. (9) is not changed if is set equal 

to to - and q to -q . Thus the stability of systems in which

and are both negative or < 0 < lV can be determined from the 

preceding results.

It has been shown that the system is stable for all m if |t® |>|t^ | 

and and have the same sign and if < 0 < or t^< 0 < . If

0< l^< or < 0 , it is unstable in respect to values of q which lie

between t,® and and stable for all other q's. It should be remem­

bered that these results apply to the case where the external region is a 

pres sure less plasma.

It can be seen from Eq. (8b) that q is limited to the values - 2-rrn /m

where n can be any integer. These results are exhibited in Figure 2 . The

unshaded region is stable for m = 1 . The regions denoted by left diagonal 

lines are unstable for m = l if n = ±1; those with vertical markings are 

unstable if n = ± 2 ; those with right diagonal markings are unstable if n = ±3; 

etc. Instabilities due to higher values of m can occur only in part of the 

first and third quadrants for which | |< ( l^| <>

In the previous treatment the external region has been assumed to be 

a pressureless plasma. If it is a vacuum, the same discussion can be car- 

ried through as before except that a^ must always be infinite. If l and 

have the same sign, the same results are obtained for m = 1 ( i.e. stable 

if | l6 | >| l77] > otherwise unstable only if q is between and . ).

If and have opposite signs the system is now unstable if q is between

1° + t7' and l° and otherwise stable. Calculations for m > 1 have not been 

carried through.

-118-



Figure 2. Stability diagram.

External region a pressureless plasma* No machine t •
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The results for the case where the external region is a vacuum are 

exhibited in Figure 3. The unshaded region is stable .for m = 1 . The regions 

in the second and fourth quadrants which are denoted by horizontal lines are 

unstable when n = 0 . Those regions denoted by left diagonal lines are unstable 

if nail; those with vertical markings are unstable if n s ±2 ; those with 

right diagonal markings are unstable if n = i 3 ; etc.
MIn order to estimate the effect of a machine transform L , one can

Magain express n in terms of l by means of Eq. (Ik). It should be pointed 

out, however, that with such an identification there need not be an integral 

number of periods of the helical field in the machine. It would be necessary 

to restrict values of the wave number of the helical field to

M
h = ( n —) k (9 m)

where n is an integer. The treatment which has been carried through is, 

therefore, not clearly applicable. Nevertheless, Eq. (Ik) has been applied 

to the situation when is 164° (Model B-l stellarator) and the results are

presented for m = 1 in Figure 4 with the same system of markings as before.

It should be noticed that the shape of the stable region is altered slightly if 

is changed. In both cases the parts of the unshaded regions in the first, 

and third quadrants for which | > | | are stable in respect to all m .

The other regions are riddled with instabilities due to higher values of m .

If the axial current had been confined to a thin sheet at the surface of 

the plasma, Eq. (8 c) would have been replaced by
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External region, a vacuum. No machine i
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Figure 4, Stability -.iagr^uj.

External region a vacuum. Machine / present.
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i . 2m 2m...1 + a - ? a +1 _ ?
26W * {(m • ^(-q+L0) +m—I^----- (-q+L +17*)

I - a a^ -1

2 . kRB | 7,„r-)z}R (10)

2 77 ■ 2where a is given by Eq. (8d) with i 1 set equal to zero and a- is given 

by Eq. (8 e).

The determination of the conditions for which the system is stable can 

be carried through as in the previous discussion. The considerations are much 

more difficult, however, so it will merely be shown here that if |t7*|<4|i,0| ,

where and have the same sign, the system is stable for all values of m. 

Clearly,

26W-£. {m(-q+ i6)2+m (-q + t6 + tV - i77 +2t6t77}(------j—JL )2 . (10a)

It can be seen by taking the first and second derivatives of Eq. (10 a) in
/

respect to q , that the minimum value of 6W is obtained if

q = L6 + 1^/2 , (10b)

so that

26W > { m2~ " + 2 i7! i6 } . (10 c)

If t® and have the same sign, this is clearly positive if |i77|<'4|L^|

.One-might expect the current distribution to be j ' = y (1 - r /R ) 

during the heating phase. If no helical field is present the results which 

were obtained for an arbitrary current distribution do not differ qualitatively 

from those for a uniform current distribution. Since the calculation of the 

effect of stabilization windings would have to be done for a specific current 

distribution using numerical techniques, it does not seem to be worthwhile to 

do such a calculation at the present time.
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Section V - Conclusion

The basic results of the preceding sections are summarized in 

Part A and discussed in Part B of this section.

Part A -■ Summary

Equilibrium situations are calculated in Section II by means of an 

expansion technique, by considering, (a) fields which arise from helically 

invariant current distributions, (b) bulge fields, (i = 0), for example those 

due to gaps between the confining field coils* (c) fields set up by axial cur­

rents in the plasma, for example, ohmic heating currents, and (d) fields due 

to diamagnetic currents^all superimposed on a large axial magnetic field. 

The fields are determined for convenience subject to the condition that the 

normal component of B be zero on a perfectly conducting rigid surface

(1)

s

rather than from a given external current distribution. Solutions are 

explicitly obtained for the case where the pressure distribution is a para­

bolic function of r , and techniques for determining the fields for arbitrary 

pressure distributions are given. Superpositions of helical fields with the 

same wavelength but different values of i are not considered since they 

involve complicated interference effects.

The rotational transform angle i (over one helical field period 2ir/h) 

is calculated in Appendix IIA . The functions i and di/dr are given to 

second order in £ by Eqs. (A22) and (A 23), and their small hR limits are 

tabulated for various values of i in Table 1. The function L is given to
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fourth order in 6 for 1 = 3 in the small hR limit in Eq. (A2,7).

The quantity V", where V is the volume of length 2ir /k (the length 

of the machine) inside a surface of constant flux \j/ and the prime represents 

a derivative with respect to \p , is given in Appendix IIB by Eq. (B21) in 

terms of the distortion cr0 of the boundary, and by Eq. (B22) in terms of L° 

and di00/dr . Here 1° ■ is the lowest order term in the expansion of t .

In Section III the minimization of QW with respect to all components 

of j* except is carried through. This minimized 6W is given by Eq. (54) 

and alternatively by Eq. (60).

The final minimization of 6W is done and critical conditions for 

stability are obtained in Section IV for several cases.

For any given m the critical ft for the stability of an axially sym­

metric system, which represents an idealization of the Figure-8 stellarator 

(which possesses a rotational transform), is given by Eq. (II).

Eq° (4g) gives the critical ft optimized over the pressure distribution, 

for a system in which there is a superposition of helically invariant fields 

with arbitrary I's (including i = 0), all having different periods, and in 

which no axial current is present. This optimum pressure distribution is 

given by Eq. (4h). In this calculation the external region is treated as a 

pressureless plasma. If it were treated as a vacuum, the above pressure 

distribution would not be optimum and the critical ft would be smaller.

For the special case where only 1=0 and 3 fields are present and the 

periods of these fields are large, the optimum critical ft is given by Eq.

(3g) and the optimum pressure is given by Eq. (3f). Eq.(3g) reduces to

Eq. (3 i) that is,

^critical = <2>
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for the case where only one 1=3 field is present.

For the case where no helically invariant (or bulge) fields are present, 

and where there is present an axial current proportional to (r/R) ^ or 

1 - (r/R)P , the system is unstable with respect to the minimizing (m;n) 

is and only if

(-n)/m < lV/2jf< (-n)(3)

- ,
Here, the £(m;n) vary as e'(rti®+n^z) and ^**f is a function of p and m

represented in Figure 1 for both the case where j^~(r/R)^ and where

l-(r/R)p. These results are independent of j3 for the assumed order­

ing of the parameters (/3~7j). For the case j^~l-(r/R)p , approaches 

l/(m-l) as p approaches oo, which agrees with the uniform axial current 

case. Also, approaches l/(m-l) for the case j^~(r/R)p as p approaches 

0 which again agrees with the uniform axial current case.

As p becomes large, in the case ~ (r/R)P , the current distribu­

tion approaches that of a sheet current at R . However, EL approaches 

(m+l)/m (m-1) which is in disagreement with the earlier results of Kruskal's 

treatment of this problem, where m = 2 was found to be neutral and all 

higher m's were found to be stable. The disagreement is explained by noting 

that the normal component of the minimizing £ in the present treatment 

approaches a function which is discontinuous across the surface while in 

Kruskal's treatment the usual assumption that the normal component of £ 

be continuous is made. This discrepancy points out the need for exercising 

care in the choice of models in which sheet currents are used to represent 

volume current distributions confined to small regions. In obtaining these 

results, the external region has been treated as a vacuum with conducting 

walls infinitely far away.
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It is found that for /3 = 0 , a helically invariant field with l =3 and with 

small hR can stabilize the instability associated with a uniform axial current. 

The stability diagram is given in Figure 2 for the case where the external 

region is treated as a pressureless plasma, and in Figures 3 and 4 for the 

case where it is treated as a vacuum. In particular in both cases, the system 

is stable if 0 < or < iV < 0 . If the axial current is a sheet cur­

rent rather than a uniform volume current, the system is again stable for both 

cases if 0 < L° < 4 t° or 4i° < l7'< 0 . Again, the external conducting walls 

are infinitely far away.

Part B - Physical Interpretation

In this section we wish to give some of the intuitive background which 

leads us to consider helically invariant fields for the purpose of stabilization. 

We also would like to form a simple physical picture of their stabilizing 

action both on the "interchange" instability and the "kink" instability.

In any axisymmetric equilibrium in which the plasma and the magnetic 

field are imbeddedin each other and in which the magnetic lines of force lie 

entirely in r, z planes (where r, 0, and z are cylindrical coordinates with 

the z axis along the axis of symmetry), it is possible to carry out a displace­

ment of the plasma which interchanges lines of force in such a way that the 

magnetic field and its magnetic energy are unchanged. This displacement 

may be constructed by first specifying, on a cross-section with z = constant, 

a mapping of the magnetic lines of force into themselves, and then extending 

this displacement throughout the volume by specifying that any line of force 

continues to go into the same line as that assigned on this particular cross- 

section. Since the magnetic field strength is given by the density of lines, 

the magnetic field is clearly unchanged. However, the state of the plasma is
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changed and its energy will increase or decrease according to whether
g

(M "/M'JV" is positive or negative , where M is related to the mass 

contained in a flux tube with flux \j/ and is given up to a constant by

M" _ V" p' 
M' - T"' y p (4)

where V is the volume (over some length) in this flux tube, p is the pres­

sure on its surface, y is the ratio of specific heats and primes denote 

differentiation with respect to ij/ » The quantities V and p* are always 

positive and, in general, V" is positive while p' is negative. If p = 0 

(io e. containment) on the surface of the plasma, (M,,/M,)V" is negative, and 

the equilibrium is unstable to interchanges.

This argument (for instability) applies in general to more complicated 

situations, since nothing would prevent us from carrying out the "interchange" 

displacement unless the system is such that the lines return on themselves.

In this latter case our original assignment of the mapping of lines into lines 

would not match when we bring the lines around onto themselves. Neverthe­

less, one might ask whether even in re-entrant systems, one can construct 

interchanges which lower the energy of the plasma, and leave the magnetic 

field unchanged. The answer can be given in terms of the concept of the 

rotational transform angle t , which can be defined on each surface as 2tt 

times the average number of turns about the magnetic axis which a line of 

force makes as one follows it once around the system. (The magnetic axis 

is that line of force which closes on itself. )

We consider first a system in which i is constant over the cross-

-125-



%
If in some such system every line returns on itself after once around the system, 

or every line returns on itself after n times around the system (i. e., t = 2irm 

for every \p, or l = 2irm/n respectively), an interchange can be selected so 

localized that it need not match until the nth time around, when it matches 

perfectly. If L is not a rational multiple of 2ir , the matching of the interchange 

can never be achieved exactly, but L can be so closely approximated by a 

rational multiple of 2ir that the matching comes arbitrarily close. If one does 

not demand a perfect interchange, one can achieve matching with an accompany­

ing change in the field. However, one can choose the displacement sufficiently 

close to an interchange to make the change in the magnetic energy negligible.

Thus for any L constant on all flux tubes, an effective interchange can be 

carried out with respect to which the system is unstable.

The situation is different if L depends on \f/. In this case if we try 

to construct an interchange as we carry the mapping around the tube, the 

matching becomes worse and worse. This is made clear from Figure 1.

section, i. e,, is independent of the flux if/ within each magnetic surface.

Figure 1 .

The first diagram indicates an attempt at assigning on a cross-section, a 

mapping of the lines into each other indicated by the flow pattern. After 

carrying this mapping along the lines once around the system, the flow 

pattern becomes that of the second diagram. Here, it is assumed that i



is larger on the outer surfaces then on the inner ones, and since the lines 

are the same in the flow pattern, the outer lines move farther, shearing the 

flow pattern. After a second time around the system, the flow pattern (for 

the mapping) becomes that illustrated in the third diagram. It is clear that 

the possibility of matching becomes more and more hopeless as we carry 

the mapping around more and more times. Further, even by carrying out 

displacements differing from the interchange which manage to produce match 

ing, the magnetic energy cannot become negligible. Thus the presence of an 

L which depends on l// introduces an inhibiting effect on the unstable inter­

changes and might tend to make the system stable.

One can produce (or increase) the dependence of the rotational 

transform on i// by adding externally produced multipolar helically invariant 

fields to the main magnetic field. These can be produced by wrapping wires 

in a helical fashion around the tube and passing currents of alternate sign 

through them. The case of six wires is illustrated in Figure 2.

Figure 2 .

In the simple case in which these currents are small compared to 

those producing the main uniform field B°, and in which the pitch of the 

wires is long compared to the radius of the tube, the field due to 21 wires 

will be nearly proportional to r* That the field in this case produces a 

varying rotational transform can be seen in the following way: Considering
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for definiteness the case of six wires (i = 3) we have 

Br ~ r^ cos (30 - hz); r^ sin (3 0 - hz); ®z ^ ®° » (5)

where the amplitudes of Br and Bq are small compared to B° . The lines 

of force will, to first order in the amplitudes of B and Ba be1 small helices 

about a line parallel to the axis, whose radii are proportional to r^. But, 

since Bg is larger on the outer part of this helix and smaller on the inner

part, the lines will drift in the second order, in the 0 direction by an amount
3 2proportional to r and thus produce an i proportional to r . The fields

due to two wires (1 = 1) will produce no i , while if i = 2, i is independent

of r . It is clear that larger I produce steeper dependences of i on r

for the same t but the advantage for stability of this steeper dependence is
i-1off-set by the steeper dependence of the fields on r (B ~ r ) so that if the 

wires are placed some distance from the surface of the plasma the fields in 

the plasma will be correspondingly smaller. In consideration of these factors, 

it seems reasonable to suppose that either the i = 3 or the i = 4 fields are 

most favorable for stability, although there are indications that the i = 2 fields 

produce a large rotational transform, which may have advantages in the equi­

librium situation. In the case where the currents are not small or their pitch 

is not large, the arguments go through essentially the same way.

Since the imposition of externally produced helically invariant fields 

makes the lines of force into small helices about their original position, they 

also enhance p' V" (the change in energy of the plasma), and contribute a 

destabilizing influence as well. As a result, if one puts a small helically 

invariant field on a system with finite pressure, it will be made less stable, 

and if it is already neutral or unstable, it will become or remain unstable.
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However, as the field is increased, it will eventually become stable at a 

value depending on the pressure. -

For the further analysis the Closed tube with helical windings is 

replaced by a long straight tube of length L , whose ends are to be identified 

at points with equal values of r and 0 . If the change of potential energy is 

minimized over all displacements ^ , which to lowest order have a given 

radial dependence and 0 and z dependences e^m® n^z) result,

which is given in Eq. (60) of Section III, can be written in the form

S
rdr 

o

(6)

Here S is the outer boundary of the system, and t =- 2irn/m represents 

the angle through which the displacement "turns" over the length of the tube. 

The last term is the energy released by the plasma as in the first part of 

this section, since in this case = p'/yp because the system does

not differ much from a cylinder, and V" includes the destabilizing effect 

of the helically invariant fields. The first two terms represent the energy 

increase due to the change of the magnetic field under the approximate inter­

change. It is clear from their form that these terms can be made negligibly
C

small if l° is constant, by choosing m and n sufficiently large, in agree- 

ment with our original picture. If is not constant they can never be 

reduced to zero but have a nonzero minimum so that if the pressure is made 

sufficiently small , the last term can be made smaller than this minimum. 

Thus we see that any dependence of on r except a constant dependence 

leads to stability for sufficiently small pressure.

Lo)rC)LB°]2+ -T- [(t6‘ t0)rSr°LB0]2+(2iTLB0)3p'V',r2£
r

o2
r

-129-



The first two terms of expression (6) for QW can be made more 

transparent as follows: The quantity (t - lQ) represents the average 

rate at which the lines turn compared to the displacement and thus it 

represents an effective field across the displacement. Consider as a model 

a straight tube with large uniform Bz> with a Bg, independent of 0 and z, 

just sufficient to produce a rotational transform angle equal to -LQ • but 

with no current in the z direction, so that one of Maxwell's equations is 

violated. Consider further a displacement |r, also independent of z but 

depending on 0 as e*m ® and depending on r in the same way as the 

in expression (6), and a displacement £g , so that V • J* = 0 . Then one com­

putes easily that

6 Br = (t6-lo,r^rLBO ' (7)

6B8=-T?(l6-to>r«rLB° ' <»>

2 2Hence the first term in (6) is just (6BQ) while t}ie second is (6 B ) ^ The

situation and its model are analogous, the model being obtained by simply 

smoothing out the ripples in the lines of force (which the displacements in 

the primary situation automatically take care of), and untwisting it so that 

the displacement is "untwisted". The origin of the terms in the model is 

made pictorial by considering 6Br as being due to compression of the lines 

by the displacement, and 6Bg as being due to shearing of the lines.

If expression (6) is minimized over all allowable £ ° for a given 

pressure distribution, one finds a critical value for /3 (the ratio of the pres­

sure at the center to the zeroth order magnetic pressure) above which the
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system becomes unstable. Then one can select the shape of the pressure

distribution to make this critical value 8 a maximum to find (8 ) <_■ ,c ''c'optimum
which is given in Eq. (4g) of Section IV as

(8 ) 7 f ( 4L)2/V" rdr (9)
'^c'optimum j ' dr ’ vac ' 7

-------------£ 2where (di/dr) is the average of (di/dr) per unit length and V" is

evaluated over the length of the machine. This form illustrates clearly the

balance between the destabilizing effect p1 V" and the stabilizing effect

(di/dr)2 .

When expression (6) is minimized over it is found, especially

when 8 is only slightly bigger than 8C> that the worst takes on its max-

imum near the radius for which = L . It is clear from the definition ofo
i that such a radius exists for finite m and n only if is finite and would o
only exist for infinitesimal t° if m were infinite. Since we wish to avoid 

infinitely large values of m in treating the stability of the system with infin­

itely small helically invariant fields, it is necessary to consider the tube
j*

identified over an infinitely large length so that can remain finite.

Up to this point we have assumed that the magnetic lines are every­

where imbedded in an infinitely conducting plasma, and even in regions 

exterior to the main bulk of plasma we have imagined a zero pressure plasma 

to be present. This has the consequence that during any displacement the 

lines of force preserve their identity and cannot be broken. It was on this 

fact that we based most of our arguments for stability. In a situation where 

the external region is a true vacuum the lines in the vacuum do not possess 

this stabilizing effect, so that if n and m are picked to make the radius at

-131-



which l = Lq very close to the surface of the plasma, it is actually possible 

to construct a displacement near an interchange, with the result that any 

distribution for which dp/dr is not zero at the surface of the plasma, is 

unstable. However, the stable equilibria with dp/dr zero at the surface 

are roughly similar to the case of a plasma surrounded by a pressureless 

plasma, so that one might argue that the assumption of a pressureless plasma 

at least in the immediate neighborhood of the main plasma is justified.

In minimizing expression (6) it is found for /3 greater than /3c , that 

as (i - is made smaller the minimizing j£'s become more singular in 

the neighborhood of the radius at which t = t0> and eventually change appre­

ciably over a region very small compared to a JLarmor radius. The minimizing 

| thus represents a motion to which the theory no longer applies, since it is 

based on equations which assume that the ion Larmor radius is the smallest 

length in the system under description. Thus we cannot assert that these 

systems, which are only unstable to such £'s, are really unstable, and it is 

of interest to ask whether the smallest /3 which is unstable on the basis of 

our equations with the condition that £ varies slowly over an ion Larmor 

radius, is much bigger than fic derived allowing any continuous £ . This 

question can be answered by minimizing expression (6) over all | ° subject 

to the restriction that d£ °/dr < £ ° /\ where X is a length of the size

of the Larmor radius. It is found in Section IV that the 8 under this'c
restriction is, under certain conditions, appreciably bigger than /3c derived 

allowing unrestricted . Whether the systems with j3 between these two 

PJs are stable or unstable must be settled by a more refined theory.

It should be emphasized in looking for stable systems by application 

of equation (9) that the quantities there involved are per unit length. For
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example as the machine is made longer by adding long straight sections 

which contribute nothing to p'V" for the entire machine, one might suppose 

that if di/dr is kept fixed the stability would be unchanged, pn the contrary, 

it is necessary to increase., dt/dr in proportion to the length of the machine, 

p'V" always being the same, to preserve the same /3c . This is also clear 

from our earlier intuitive picture of the interchanges, since the interchanges 

may make use of this long straight section to unwrap themselves, after being 

curled up by di/dr , and can match with less increase in the change in mag­

netic energy. "With this caution in mind, one can produce the dl/dr shear by 

wrapping helical wires over only parts of the tube, and can still obtain stability 

provided the (dl/dr) total is large enough (according to equation (9) ).

The kink instability and its stabilization according to the results of 

Section IV are not so well understood as the interchange instability and its 

stabilization. However, the existence of the kink instability may be made 

plausible by a simple force picture based on the fact that the lines of force 

are tied to the matter. Further, on the basis of this picture the stabilization 

mechanism of the helically invariant fields may be suggested.

We consider a long cylinder (see Fig. 3) of pressureless plasma of 

radius R and length L imbedded in a large axial uniform magnetic field 

Bo> and in which a small axial current of uniform density j is flowing. As 

usual, the ends are to be identified. The current j produces a field Bg 

and an i , given in the plasma by

Note that l is constant in the plasma.

B0 = 2 j r , i = -j—o , k = -^ . (10)
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) 0

Figure 3 .

Let us subject this plasma to a displacement £ given by

£r = £ cos (0-kz); £0 = £ sin (0 - kz)= 0 ; (11)

which moves each z = constant cross section rigidly a distance £ perpen­

dicular to the axis, so that the tube of plasma is distorted into a helix whose 

pitch is L . Consider two cross sections o and /3 a distance i/4 apart 

which are, therefore, displaced in perpendicular directions. If t = Ztr , 

lines of force rotate through ir/2 between these cross sections. That is, 

any line of force through a point S in a passes through a point T in /3 such 

that QT makes an angle it/2 with QS, (see Fig. 4). In these circumstances, 

it is clear that any line

Figure 4

134-



of force passing through A in a and B in /3 is displaced to a line of 

force passing through A' in a and /31 in /3 where O A' and QB' make 

a right angle with each other. But this means that the line of force through 

AB is displaced into the position of a line of force which passed through A', 

B' in the undisplaced equilibrium. Since further the density of lines is un­

changed because the displacement of each cross section is rigid, the field is 

is unchanged by the displacement. Thus the situation characterized by t = 2ir 

is neutral with respect to the perturbation (II).

Let us now consider the case in which t - 2ir is positive but small, 

subject it to the same perturbation (11), and examine the same cross sections 

a and /3 , L/4 apart. Then any line of force of the equilibrium passing 

through a point S in a will pass through a point T in /3 such that QT 

makes an angle t/4 > ir/2 with OS (See Fig. 5). A line of force through 

A in a and B in /3 , where OA and QB make an angle of t/4 with 

each other, will then be displaced to a position passing through A' and B' 

where OA' and QB' no longer make an angle of t/4 but make a slightly 

smaller angle. Thus the displaced line of force is rotating about the axis

Figure 5 .
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OQ at a slower rate (in z) than the line of force which passed through B' 

in the undisplaced equilibrium0 Hence we see that Bg is weakened by an 

amount proportional to (t/4 - tt/2) 'f'. If we consider other points in the 

cross section we find that 6B is constant in each cross section. Since the 

cylinder is long, 6 j - V X QB is negligible and QF = _j x SB + Q X B ^ 

j X QB o We see, therefore, that QF is in the same direction as £ and tends 

to enhance the perturbation. Thus for t > 2ir the system is unstable with 

respect to perturbation (11) .

It is found in Section IV that helically invariant fields can, in certain 

circumstances, stabilize the kink instability for > 2ir, where we have now

denoted the l produced by the current by . The helical fields have three
«*

effects on the kink instability which might lead to an understanding of the l° 

vs stability diagrams of Section IV. Before describing these it should be

remarked that the effect of the helically invariant fields may be obtained from
e

a model in which the same as that produced by the helically invariant

fields, is produced by a radially dependent Bg field. (Again in the model the 

Bg field is produced by no current).

Accordingly, the first effect (1) is to increase the effective L by 1° 

(which may be negative) so that for m = 1 the kink is made more unstable if 

L° is positive (or less if L° is negative). (2) The helically invariant fields 

affect the stability by introducing a shear (di/dT) in t inside the plasma, 

and according to the sign of dl/dr by increasing or decreasing the shear out­

side the plasma. Finally, (3) the helically invariant fields may cause a surface 

to exist on which theeffective L ~ is 2tt . On this surface the electric

field E , due to the perturbation, is parallel to B and along a line of force 

is always in the same direction. Therefore, this electric field leads to large 

currents on the surface so that the surface acts like a rigid perfectly conducting
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wall to the displacement. This effect can lead to increased stability.

In connection with this third remark it should be noted that in cases

where the axial current is confined to so narrow a region, that for many

purposes it may be considered as a surface current, the critical surface may

occur inside this narrow region, leading to J^'s which vanish on one side of

the region. Such £'s are not considered in the usual method of treating the

stability of surfaces in which it is demanded that the normal component of £

be continuous. Which assumption about the jj^s is the correct one depends on

the actual physical size of the region which is to be approximated by a surface,

presumably compared with the ion Larmor radius. This remark explains to

some extent the disagreement between the result of the investigation in Section

IV in which the stability is calculated for an axial current which depends on r

as r^ where p is large and the result of the usual treatment of the stability

of a surface current. For this reason the stability of a pinch with stabilizing

B field is lowered by considering these more general f's which have a dis- z
continuity in their normal component.
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Appendix II - A Rotation Transform for Helically Invariant Field

At the heart of the Matterhorn effort lies the concept of rotational 

transform^. We wish to exhibit the structure of the rotational transform (t) 

for the case of helically invariant magnetic fields and we shall see how the 

stability criteria of later chapters are stated most tersely in terms of l .

We shall find L in the blunt, but straightforward and pictorial, 

way by finding the average angle of rotation of a magnetic line of force

about the magnetic axis as one proceeds along the z - axis. Since the length 

over which we specify the average angle of rotation is arbitrary we shall 

choose it to be a helical field period or . We first compute the angle of
i

rotation A 9 for a length z such that a line of force shall have sampled 

once every point in a constant z cross section of a ^ surface, so that

j z - AO = 2ir , (Al)

The constant ^ surfaces have cross sections perpendicular to the z 

axis which rotate about the z-axis at the constant rate 6.9/dz =' h/l as 

we proceed along the z-axis, whereas the lines of force rotate around the 

z-axis at a much slower average rate (d0/dz ^ 6^) and fall behind the ^ 

surfaces. Hence we must proceed in the z - direction until a line of force 

first comes back to the same relative position in a cross section that it 

originally occupied. We are now assured that the average angle of rotation 

for all lines in a ^ surface is the same as that of any one line. We thus have
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I ~ A 9

z
2lr

TT*
+ 2 n IT ,12 n = 0 ,i 1, i z. (A2a)

ot, making use of (Al)

£ + 4* *. 2ir
hz i

(A2b)

where we have adopted the convention n = 0 . We are now able to compute l 

with equations (Al) and (A2b). Since the fields are? known as a power series 

in 6 , the equations of lines of force are power series in 6 , and thus t will 

be given as a power series in 5 . We consider only1 vacuum fields*

We write

_ „o , 6 , _ 66 ,
ZSBZ TZ tZ +*.. (A3)

and henc e

2*l SS
4e
h zc

(1 •
.66

+ . * . ) (A4)

We then have

, o 2w . T 2ir f .
t - .-j- ( 1 - —, )

h z
(A5a)

6*2 6 t * 4tt z

hz
(A5b)
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66 4ir2
L = ho z z

etc.
If we expand (Al) we have (taking 0(0) = 0° (0) )

0° (z°) - 0°(O) - hz°/j = - 2ir ,

0^ (z°) + z^ (z°) - hz®/l = 0 ,

, _6 d06(z°) ^ _66 d0°(zo) z62 d20°(zo)
e (Z ) + Z ---- 35---- + z —35---- + -2------ --2--------hz

dz

etc.

in a

It remains to write the equations of the lines of force as an

, , B (r,0, z)dr "• r
z

If we write

d0 s B0 
*32 Tfc

o 6 66 ,r = r + r + r +

and

0 = 5° + 06 + 066 +

(A5c)

(A6a)

(A6b)

= 0 , 

(A6c)

expansion

(A7a)

(A7b)

(A8a)

(A8b)
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and remember

B + B6 (r.O.z) + B66 (r, 0,2) + <A9)

then we obtain, after expanding both sides of (A7a) and (A7b) into power 

series in 6 , to zero order in 6

dr° _
■ar ■

or const. (AlOa)

= 0 , 0° ~ const (AlOb)

To first order in 6 ,

. 6 dr
B8 . 

r (
cE“ '

a*8

o no

and therefore
f. B6(r°)
0/ o _o. r'.r (z; r , 0 ) = —-------

h B°
[ cos (i0° - hz) - cos I 0°]

and

/% d / O /) O i0 (z ; r , 0 ) = -
B0 (r0) o o
—---------- [ sin (i 0 ° - hz) - sin 10 ]
hr° B°

-142-

(Alla)

(Allb)

(A12a)

(A12b)



when use is made of our equilibrium vacuum fields. To second order in 6 

we have
.6

056(z ; r°, 0°) = C dz [I
Jo

6 8B^(r0,e°.z) + 06

r0B° 8 r r°B0 BB

■od * ,,6 065. o Wb » :Ba 0 Ba B a (x , Q , z)-V-o ̂  + -5> + -4^-----------------  3 . <A13)
r0B° r° B° r° B

or

„66. o. o ao. 0 (z i r , $ )
* * ? 2B®,(r°) B®(r°) ,,2 x , 2 2. -2

r tj® j. 25 r .t (j? + h r 0/_ 0\ t
i oi„o'l [Br<r ' + Fr---------------------  + 72 2-------BJT U •

iri
h r B h r

(A14)
where, from (A6a) and (AlOb) , z° = 2Tri/h . Thus

066(zO;r°, 0O) = ui2(^-) ^ ^ [ 1 - 2 I1 (x) + (l2 + (x)2 (^(x))2] ,
K lAXr

(A15)

i II(X)
where x = hr, X = hR, and I (x) = —j----- ,

xli(x)

Now, from (A5a) , (A6a) and (AlOb) we have

lM = 0 (A16)
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From (A6b) and (AlOb)

06(z°) = h z6/i (A17)

and from (A12b)

96(z°) = 0 .. (A18)

Therefore from (A17) and (A5b)

t6 = 0 (A19)

From (A6c) , (AlOb) , and (A18) ,

*66, o. , 66/#9 (z ) = hz /i (A20)

and from (A5c) , (A17) , (A18) and (A20)

66 4,n- 6666 _ h z _ 9,66

hz

since z° = 2 ir f/h . Therefore

(A21)

L = ir f
6 2 2 l'#(x)2 , 2 2 12

' —' -4------[1 - 2 I£ (x) + (i2 + x2) (I1 (x) )| J , (A22)
R Ii(X)2

Also

R-dt166
HF

fl6 2 ^ 3 I*-(x) 2 2 i
2tt1 (£-) (|-) ----- - [ 3 - 2 (2 + + x4) I1 (x)

R X If(X)Z
(A23)

+ (3i2+ 2x2) (I1 (x) )2 ] .
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If we choose x < X < < 1 , we then have

65 v6 2
= ir (5-) pm

t 11 m 2jf-4 , Zi-Z^Zi+S) 21 , ,[2(1-1) x + x +gZ(I + l) x + ••• J
[>n-(l±iL ^ x4 t.. . ^

2i(| +.1) 161^ (i + 1) (i + 2)

(A24)

and

Rdt
TT”

66
= IT X

X
1
ZTTT

[ 4 (/ -1) (i - 2) X
JTTTf

2i -5 , 14 2i-3,(Zi+3)+ 2<i-1)x +Wt)x2f-1 +

[1 + zirr+i) X
(A25)

For convenience we construct Table 1 which gives 

the small X limit.

To next order in 6 we find

lM and R^li
for

L 666 = (A26)

and, after a very tedious calculation, we find for i = 3 , and in the limit 

x< X< < 1 ,
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6666 = Sir 6 (-10 + 12(1)' + 36$4 100 (-)6
\K> -+ .125 /r+8 (A27)

Here this L is evaluated on a surface of constant ^ such that to
o 6 o'*fourth order the value of v? = + ^ + . . . is equal to ^r°(r) ;

Calculations of t for equilibria in which pressure is present have been

made but are not included here.
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i t^^(per length Zu^/h) rii66
R -jj— (per length 2tr/h)

1 tt62X2 5 .2 v3-g- iro x X

2 2it52 2tr6 2 x X

3
4k62 4 8ir62 ^

4
? 4

6tr6
x4

24x62 — o
XJ

Table 1.
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11
Appendix II - B Expressing V in Terms of t.

It is of interest to express some of the equilibrium quantities which
1 1 "Ptwere introduced by Kruskal and Kulsrud in terms of the transform L for 

the helically invarient fields. We will first find the relation that exists be­

tween the which was introduced in Part A of Section II and the usual fluxes 

ip and x • The equilibrium quantity V , where V(\p ) = \ dr and/o>" ■i<fc
the prime denotes a derivative in respect to \p , will then be related to t

and dl/dr to the lowest significant order for the more general equilibria of
tr" 1 rxr" 1 -r'lV ■ P_ ] [V - P L]/" n . rvM _ t/ t 'i 8

Part B of Section II. Finally the function, A = yp [—r- + T-----------r
V yp [Y +ypL ]

which must be positive for stability of axial symmetric systems, will be
55expressed in terms of the i for these fields.

The which has been used in Part A of Section II can be shown to be 

related to the flux crossing a ribbon one side of which lies on the axis, the other 

in a surface Sfr = constant, and depends on 6 and z as u = i 0 - hz= const. 

The flux the long way inside a constant ^ surface, \p , is given by

r> Zir , u)
*<*> = [ d? i B r d r z (Bl)

where z is a constant. Since V*I3 = 0 , xp is independent of this constant.

Since B and are periodic functions of u , z

Ipw)
■* IZwi

du ir(*. u)
B r d r z <B2)

The flux the short way, X i-8 defined only up to an arbitrary integral multiple 
12of xp . In particular , we define it to be
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2w/h T(^f, vL )
XW = J dz j* Bgjdr , (B3)

the flxrx through a surface of constant 9 over one wave length of the helically 

symmetric magnetic field, and inside a constant ^ surface, or

X(*)

2w ^r(¥, u) 
du■ £ *£

,0 IT J0 Bfl dr (B4)

Then

2v r(^, u)

d“I (hrBa-< Bfl) dr (B5)

or, using Eq, (18d) of Section II ,

2ir
V ~ x = IT ^ (B6)

Since the transform is given by t = 2ir

dlJr - h (1 i
cfij/ ~ Tif ' 1 ~ 'Zir ^ (B7)

The volume V enclosed by a surface of constant ^ and its de­

rivatives in respect to i// will be computed for the equilibria of Part B of 

Section II.

We consider a surface of constant \f/ determined by the condition
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f • •• 0 (B8)o 6 66 ^ r?= r - r -r - r - r - r' -

where the r° , r° , etc., are functions of r , 9 , and z 

chosen to satisfy the condition

B«A f = 0 .

The equilibria which are considered are given by

B “ B° + B^ + B^ + + B1^ 4-

where : B is a constant in the z direction ;

.6 = .) -fe A shlvtshr) sin u 
£ l-r s i v 7 s
s>o

+ —0 As T" ^ (shr)cos us

- e A sh 1-^ (shr) cos u } ,
— Z S f ' f a J '

and

Ms = <*s a - 8hz + 0S)

, and must be

(B9)

(BIO)

(Bll)

(B12)
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A = a
8 - -S

B° / (shS) '*■; (B13)

is in the z direction and depends only on r so as to support an abiirary 

pressure distribption ; is in the 6 direiction, depends only on r , and is 

determined by an arbitrary axial current ; depends on z trigonometri­

cally with average value zero ; etc. Note that terms in with i = 0

correspond to bulge fields .

A sufficient condition to satisfy Eq. (B9) to zeroth order, is

= constant (B13)

Eq. (B9) is satisfied to order 5 by

-I'-i
SS o

Ifs(sbr0)

(shS)
cos fx

8
(B14)

In the 66 order it is necessary to note only that r^ has a trigonometric 

dependence on z with average value zero. The |3 and T) orders can be 

satisfied by setting

P VT =T — 0 . (B15)

The flux t}/ in the long way inside the surface defined by Eq. (B8) is



I k ^ = -2i
p2tr/k
liz f- £

o,5, 66, r + r + r + (B° +B6 +B66+ B^ 
z z z z ) r d r • (Bl6)

Since xj/ is independent of z it has been averaged over z . Averaging over 

z eliminates terms in r^ and in a trivial manner. Eq. (B16) can

be integrated to get

2 . v-- .2 1. (shr°)
• o T»o r. . 1 \ _6 is' 1 \b = w B 11 + ——y ) O’ —j----------

2r° s It (shS)

r
(1-2 s^h^r° I 8 (shr°) )

r° B° °

B^ rdr +...} , (B17)

where I^(x) = Iji(x)/ x (x) • There is no term of order 77 in .

The volume enclosed by the surface over the machine length 

(2ir/k) is

2ir2ir/k
■ 1 d* 1 d9 i

r +r +r + . ..
r d r (B18)

or

(shr ) 
s

ij (shS)
+ ...}■

11
We can now compute V (^) j and V (i//) :

(B19)

4 .'
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v' = (dV/d r°) / (di// / dr°)

W2Ztr
kB

I* (shr ) 
s

ITTi^)
[I + Ul +s2h2r°2) s(«hr°)']

0
+ ...} }

(B2i)

y = (dV/dr°) / (d ^/dr°)
(shr°)

-2
2, 2 62 v s h a

8

8
. o 2'.no 2kr B IjgCshS)

kroB03 ’

[l-2(/ 2 + s2h2r°2) Ils(8hr°) + i'2 Z8 fshr°) ]
s s

(B21)

since - - dB^ / dr .
J o z

We next use Eqs« (A22) and (A23) of Appendix II A to get

11
V =

2ir B

l 8h

iro 3 dr1
(r

°4^> yg

(B22)

® «•
In this expression represents the value of the rotational transform over

the length of the machine (2tr/k) arising from the helical field identified with

u . If the expression for i Jl given by Eq, (A22) of Appendix II A is s
generalized to include i - 0, (B22) can be extended to include Bulge (i = 0) 

fields »

A necessary condition for axially symmetric systems to be stable is 

that the sign of 5 ’
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(B23)
A

f r

V

i ii it
+ £.) iy,. -pl)

yp (V. + ypL )

be positive. Here V is defined by Eq. (B18) , p is the pressure , and

L {xl/)

2ir/k
I -

•> o, . 6 , 66 ,2^ r + r + r + <.
y «y
no

r dr

To the lowest significant order

p* = (dp/dr°) / (dxf/ /dr°) = j^/2wr°

L* = dl^.2£.2/hBo2)/dr° .2ir/kBo3

(d^//dr°)

so that

v It
2tt s s

sh d . o .66."VS T’o (r ls ’ 
r dr

and

a = J0 k Y
8ir3r0 4B° ^ s

s

»h d ,_4.66 
s

z •* . ouxTr (r i- > ‘

(B24)

(B26)

(B27 )

(B28)
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Appendix III A - Demonstration of Uniformity of Minimization of ' 6W for 
Traneendentaily Small hR .

The stability analysis in Section III is carried through for a particular
■ ■ 2 2 ■ 2ordering of the parameters: j3 ~ 6 ~ e ~ 7] ~ kR ~ \ ; hR ~ 1 . Eq. (54)

of Section III is thus valid for any equilibrium in which this ordering holds. 

Moreover, it yields results for equilibria in which other choices of the order­

ing are assumed. As an example consider equilibria with )3 ~ A. and all tlie 

other parameters the same as above. The stability calculation was carried out 

from the beginning and it was found that the system is always unstable. Yet 

this result is contained in Eq. (54) of Section III since if/3 is taken of order \ 

there, the expression is always negative. As another example consider kR~X , 

all other parameters the same. The stability of this system was also examined 

and the results found were identical with those obtained by setting n = 0 in 

E q. (54) of Section III. This is the obvious way to extend Eq. (54) to the case 

of kR X since n ^ 0 leads to positive 6Wm#n • Further it is impossible 

to go backwards and obtain Eq. (54) from the results of the stability calculation 

with kR ~ X from the beginning. In the same way the stability of equilibria 

with other orderings of the parameters can be determined directly from Eq.

(54) so that we speak of Eq. (54) as being "uniformly" valid for any choice of 

orders of the parameters.

If hR ~ 1 , it is clear from the discussion of the preceding examples 

and the nature of the calculation of Section III that Eq. (54) is "uniformly" 

valid. However, if hR is of a different order, it is no longer obvious that 

E q. (54) can be applied. Calculations have been carried through which show 

that E q. (54) is valid for hR ~ X^ with p any integer. In this appendix the 

calculation of the extreme case in which hR is smaller than any power of X
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(i. e. , trancendentally small) is carried out and it is shown that Eq. (54) is 

still valid.

It will be assumed for simplicity that the plasma occupies the entire 

volume, i. e. , R = S . Further, only a diamagnetic current independent 

of 0 exists. Generalization to the situation which was treated in Section II 

is straightforward. Quantities will be written with two superscripts of which 

the first denotes its order as a power of the parameter h and the second as a 

power of A. . That is, Au’ v ~ huAv . The procedure will consist of minimiz­

ing 6WU’ v for u = 0 and ascending values of v through v = oo , then for 

u = l as v increases from 0 to oo , and finally for u = 2 from v = 0 to that

order for which 6W is not trivially positive. The parameters will be chosen
A 2 2so that p /R^ A , |3 ~ A , and kR ~ h A

The equilibrium situation which is investigated can be obtained from 

Section II (and an extension of it to higher order terms) by expanding the Bessel 

functions as power series in hr and identifying each order of h . In describ­

ing the helical fields we have used the notation introduced in E q. (Bll) of Ap­

pendix II B. One can convince oneself that such a procedure is acceptable by 

solving the equilibrium equations directly for small values of v and utilizing 

the conditions

B • Vj = ji • VB (Al)

and

B • n = 0 (r = R + p°’ lcos u) (A2)

to investigate higher values of v . In particular, one can show that

-B-°’V= 0 (A3)
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for all v .

The minimization procedure can be simplified for this calculation by-

writing Eq. (7) of Section III in a different form. Substituting for B - V • £

in terms of Q , expanding -Q , and using the identity, z

VB = j_x^ + (VB) • ^ , (A4)

one gets
26W = j{a2+(Q2+>X ez)2-*x4'6^(8 • V£z-(^B) • l)

+ tX ez^z-(B* VB- - 2B-V-^)+ezjzX4.(a-B-V-^)

+ y P (V • £j2 } d r . (A 5)

By using the identity,

(B- Vi)X* • ez{,,-jxe,. ?2 •(!• VB)= [<i- VB)x^.+i x^. VB)]- ez|z

= - ixi- ^ • (A6)

one can put Eq. (A 5) into the form

zaw = j{«-2+(Qz+tX4- ez)2- V ■ (B i X i • ez {z) + V p (V • £)2

+ *x4-(«a ^»)-t-±Xez|z-(!!■'«. +2* V- i)

+ 1^ x^. .(«-*V-i-^iz)}dT . (A7)

The third term vanishes on integration,with Eq. (A2) . The term in QW
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proportional to hU A.v is

26 Wu.v=y 2tt ^Zir/k , ,
dfl f dz f rdr{«b’c-«u-b-v-c

+ (Qb| cHd-ex-fb'd’?'e.
2

l2)(Q“-b- T-c+t£' * X>u-b-£’ v-c-«. ez )

d,e+5/pu-b-d, v-c-e^^b. c)(v. id, e)+fu-b-d-tv-c-e-gx4b,c.^t» • . g

d,e_ ■^u-b-d-f.v-c-e^^b.c. (» * ^ f.g+ 2^d,e v . g) (A8)

+ j u-b-d,v*c-e^ x ^b, c . (^_d,e_ ^d-f.e-g v.^f,g _ a|-d‘f,e'g g} J j

plus the contribution from the region between R and R + from integrands 

of lower order. Here

Qu‘ v = Y Qu-v(s,n)ei<Sh+nkl?
(A 9)

where s,n

«U'v(s, n) = 1(8-8')hB b* C(s')4U"b-1' V"C(s-s'>n)+inkBb’C(s')#‘b-l’V'C'(s-sU)
z z

+B-b,C(s')* V^-U-b' V-C(s-s', n) -^U“b' v-c(s-s'. n) • VR-b’C(s')

- C(s') V ■fU'b,V‘C(s-s',n) -ishB-b’ C(s*)|U‘b'l‘V“C(s-s',n)

b,c , , u-b-l.v-c-2 T- ink B- ’ (s') ^ (s-s1, n) (A 10)

and
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Q“' v(., n) . *b' V) •

- i .'hjah-V)! n)-Bb‘<i(«>)V-#'b''r'c(*-.*,n) i

(All)

The summation convention ha* been employed, i.f.* b, c, st, etc,, take on

all poasible meaningful values.

Since i = VX © and *.°* v = 0 , QvVr ia given by

4G,V(«,n) * Q ,

o,v

(A12)

and

Thus

Q°’ v(b,n) =- f°* C(an X^0'v-C(B-B^n)- e^ B°’C(*')'V - Va^.n).

(A 13)

2 5W0,0=r d0 r dz r rdrljQ^0)2} (A14)

is minimized by setting

o o

V-^0,° r 0 . (A 15)

This automatically makes zero. Continuing, we have

2 6W0,2? j*2,rd0 j>2,r//kdzyRrdr{(Qz0'l)2}
(A 16)

which requires that

v*4 0,1 o (A 17)

In general, from Eq, (A 8)
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2«W°’ v= j2 ae J2” Ad^Rrdr{(Q°- CH°- * X^°'C-'-£it)(Q°-''-^0'*x4.0'v-c-«.ez)

O O

+ ypo,v-c-e/t-. .o,c(V40’c)(V-4q,c)} • (A 18)

Thus, expressing Q^*’C by means of Eq. (A 13), we have

2dW0'v=: ^dG j‘2ir//dzj‘rdr{(-B°’eV.40*C'^(-B®’gV^0*v"C'g)

+ yp°* v • 4°* CUV * 4°* e)} , (A 19)

or when we replace c-e by c and v-c-g by e in the first term

2dW°’v . f 2 M j^d. J rdr{(Bz0-v-C—*Bl°- *+yp0-V-C->-#'C)(V^0> *)} 

o o o
(A20)

No'W} if v is even let v » 2 w; if odd, v = 2 w - 1 . Assume that

for x < w - l . Then

V-f°,X = 0

26W°'2w'1 = 0 ,

(A 21)

(A 22)

26W0,2w* ^de j*^dr{(B0’0)2(V-40'w)2} .
(A23)

o o

O W -so that the minimizing ^ * must satisfy

V . .£0* W - 0^ (A 24)
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Since Eq. (A21) is satisfied for w = l or 2 (Eqs. (A 15) or (A17) by induction 

both V • ■£-0' v and 6W0' v are zero for all v .

Since (V‘ |) ’ v and j °’V are zero,, it is clear from Eq. (A 8) that
'f ^

26W1, v = 0 (A25)

for all v. j

2Proceeding to the h orders, we get ^

25W2’°= ^ "de^ ^z Jrdr{(Q1'0)2} , 

o o o

where
^.l, 0, . • , o,o h, o, o, .■Q ’ (s, n) = i shB ■£ (s, n)

and / J —

qsL'0(s,n)=- B0’° V-^0(s,n)

Minim ization, therefore, requires that

£O,o(s,n) = 0 (s*0) (A29)

and

<1 <
0* o
ii o • (A 30)

Since

2 6 W2 ’ 1 = 0 , (A 31)

nothing new is obtained from the h2 \ order.

Continuing, we get

26W2’ 2 = r2" CR A S J. 0,2.. 8 ^z.l, 0.2iJ d0 J dz\ rdr{(Q’ ) + yp ((-5^-) )}.
0 0

(A 32)

(A26)

(A 27)

(A28)
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which requires that

and

QU = 0 .

<^r>l,0= 0 •

(A 33)

(A 34)

It can be shown in exactly the same way as was done in Section III 

that by making the transformation

i-i + B f (A 35)

one can set

? ^ * 0 (A 36)

without any loss of generality. Then

Qtl’\s,n) = ish B0,0-f0’l(s,n)+»1'l(s)* Vf0,0(0, n)--fr0,0(0,n). VB.U(s).

(A 37)

Q,U(s»n) =- B0,0 V-^' W), 
2 (A 38)

and it is necessary to set

i shB0,0-4.0,1(s,n) =- B-l,l(s)* V-f0,°(Ofn) +^.° ,0(0,n) • VB-1, l(s), (A39)

V--fl’l(s,n) = 0 (A40)

The next order is

26W2,3= ^ Wd0 J^^dz j'^dr{,j0o'2 •^-0'0|r0,0} .
(A 41)
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This vanishes on integration by parts with respect to z . This integrand ’ 

in the region between R and R + will not contribute to 5W^’^ since

£ must be zero at R .^ r v-
•' Finally, v:^; '* ^

26W2,4=^ dej dt^dr{(«l’2)2+(Qz1’2-Jq0*2^1,0 8£0'1
0,2. °«z ,2

> +yp ;«,Tnr. ,
o o

+ +0.4-c-e-g ^0,c- 8 ^.e^O.gj (A«)

Since, an4. Venler 6W2'4 only through positive definite

2 4terms, 6W ’ can be minimized by setting , ,, •

■ftl’2(s,n)i? 0 , (s 4 P) :(A 43)

1,2 . . 0,2 . 1,0^z’ = ^0 ’ ^r

0 i ‘ '
Is,n) = 0 . (s 0)

(A 44)

(A45)

Then
^ a ^ ^ 2ir /k ^ fL i ? ?

26W d0^ dz J rdr{|a’ (0,n)p

° ° (A 46)

0,3. 0,0 a3 0,0 0,2 0,1 8»1'1 0,0 0,2 0,0 8»1'1 .O.b
+ ur -Je -Je -j0 «r ^

We now integrate the terms which contain 8^’ Vbz by parts in respect to 

z and substitute for 9^*^/8z and by means of Eqs. (Al) and(A39).
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Making use of Maxwell's equations and recognizing that some terms vanish on 

integration (| (R) = 0) , we find that

28W2'4= £2j'Rrdr{|-&.‘’2(0,n)|2 + i2; |?r0’°(0,n)|2^ |*1'1(a,0) |2}.
,0,2 
ii
B(

(A 47)

From Eq. (A 10)

^*2(0,n) = i n kB0< V,0(0»“)^X - s,n) X «.U (s, 0)) ] .

(A 48)

Eqs. (A47) and (A48) are the same as one would have obtained by expanding 

Eq. (54) of Section III, keeping only the lowest order term in hR ( illustrating 

the uniformity of that result as hR becomes infinitesimal.

It can be shown that the boundary condition

£ • n = 0 (r = R + cos u )

is satisfied, in the same way as it is shown in Section HI.

(A 49)
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Appendix IIL - B The Fourier Analysis of the J.'s

In the main part of Section III the were Fourier analyzed in z arid

the Fourier components were expanded in X . It has been assumed that in the ’

Fourier analysis of £ only those components of £ with wave numbers *
2

independent of X and those with wave number proportional to X were 

important while all the others were assumed to be zero. For instance, the 

component whose wave number is proportional to X was neglected* It will 

be shown in this appendix, that if any of these comporients were non-zero 6W 

would necessarily be positive, so that in testing 6W for sign it is actually 

permissible for one to neglect such components.

In carrying out this justification we shall not always carry the Fourier 

analysis explicitly, but we will speak of the rate of variation in z .of Jg 

by speaking of the order of . We make use of the order notation O and 

o where f = o(g) means f goes to zero faster than g and f = O(g) means 

z goes to zero at the Same rate as g.

We know from = 0 that = o(l) . Further it can easily be

seen that = O(X) , since = OiX01) with 0< a< 1 , would imply

Q01 j- 0 and therefore SW^01** 0 . = O(X) we would have a part of

__ A. iXz X
■©* o' e which has a different wave number than the rest of ■Q' has, and

0£P ^
which must thus vanish. Therefore = o(X) . Of course £ might have

components whose wave number varies as different powers of X than we 

consider in the main Section , but these only enter and we must have

= 0 .
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JIA K
Further, from consideration of we have -g— = o(l) and it is

a?° 2
clear that q—.Z = O(A), since the yp(V £) term would otherwise be

4 olarger than A and lead to stu.bility (we are not yet assximing | = 0 in
gto 2 *

this appendix). Finally, in 6WA the yp term acts independently

2of the remainder of the yp(V*_£) term because of its different dependence on

z . Combining this fact with our argument that changing £ by f B only
9|o -

affects this term we can conclude that = o(A) . We may now apply our

argument that = 0 ,

It now follows easily that -g^— = 0(A ) since otherwise ~Q" would
4 Abe larger than A . The other components of _£ would also lead to

2 ^ AA.
*€? larger than A!* and so much vanish. The other components of j* never

enter . It is thus seen that the choice of s which only have Fourier components

whose wave numbers are proportional to 1 or A^ is justified.
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Appendix IV - A Kruskal Instability if only a Surface Current is Present.

The situation in which the external region is a pressureless plasma 

and in which the axial current is confined to the surface of the plasma is 

treated in Section IV. It is shown there for currents larger than the Kruskal 

limit the system is neutral. It is therefore necessary to carry the minimiza­

tion to a higher order in A .

Since no fields of odd order in X are present, we carry the calcula­

tion through again from the beginning, assuming that the expansion parameter 

X is of the same order as kR and B^/ . For simplicity, /3 will be set

equal to zero and S equal to infinity. The equilibrium which is treated here 

is defined by

B = ez B , (r < R)

B = •« BX + e (B° + BW) , (r > R) 
•“* z

where B° is a constant externally applied field, B^ = B^(R) R/r is the
,X,_2

field due to the axial surface current, and BXX = - u the second
2 B

order field necessary to satisfy the continuity condition on the total pressure 

at the surface.

To lowest order SW .is®

2 SW s=
/>00
J Q.

o2
d T (Al)
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where

Q° * - ez B° . (A2)

This is mimized by setting

A* 4- = 0 (A3)

The next order vanishes trivially and

" J Q^2 - J (R)2 BX (R)2 d 0 dz (A4)

where

= B° 4° - ez B° V.4A » (r < R) (A5)

«A = B° 4 + bX 7S5 i° - 4°-V BX - ea B°ViX • (r> R)

(A6)

With the usual Fourier analysis -e* can be expressed in terms of

-6^ (m, n) = £r ^21 jl^(m , n) - e^ jLt^(m, n) (A7)
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where

..X _ nkr B t° ~\ II---------— £r(m,n) (r< R)

M =
kr B

2 IT
.Zim
‘ m + t ') lr (m, n) (r> R)

Here is the transform over the length of the tube due
k r B° A

axial current. Since enters only in the positive definite term Qz 

can be minimized in respect to it by setting

= 0 (r< R)

B° V.4X (m, n) L m 
r (m, n) (r v R)

Now each (m n) must satisfy the Eviler equation

1 d 
r cTr r

d/LtX
^7“

0 ,

or

jU (m, n) = Ar m
(r < R)

(A8)

<A9)

to the

(AlO)

(All)

(A12)

(A13)
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and

(m , n) = B (r I1*1' - a(ml 2 jm| - (ml . . .
1 ' - a ' ■ r ' 1 ) , (R< r< a ) (A14)

so that

m> o n

,kR B°. 2 \t° , x( 2
h^—) l^r (m* n>l ^ (A15)

where all quantities are evaluated at R , and a is that radius at which 

MA (m , n) must vanish , i. e .

a2/R2 = m (R) / (2-rrn) . (Al6)

If this expression is less than orte, a is equal to infinity.

Eq, (A15) is the same as Eq. (5d) of Section IV except that S 

has been replaced by a . This minimization was reproduced here for com­

pleteness since the notation is a little different from that used in Section III.

It is clear that 6W as given by Eq. (A15) is definitely larger for any given 

values of n , m and than that given by Eq. (5d) of Section IV so that, 

since the latter predicts stability for all m> 1 , no m> 1 instabilities can

-170-



exist in this calculation. As before, only negative values of n can lead to 

instabilities. If t^(R) < 2ir jn j , a is infinite and the situation is the 

same as that discussed in Section IV , so that the system is stable in 

respect to such purturbations. If t^(R) > 2tr |n| , 6W is zero , the

system is neutral to this order, and the calculation must be continued.

To third order

2 r—v s\
26WAAA=±Jr 2 {2j •e>X(l,n).-&XX(-l> .n)rdr-2(|°(l,n)|A(-l,-n)BA2)R} .

n °

(A17)

By straightforward expansion

■e^A(m,n) = e jbtAA(m, n) - e -w- , (A18)
-r r -e or

where

/UAA(m, n) = nkrB
m

o X
£r (m , n) (r< R) (A19)

/lAA(m , n) = k r B , 2 it n
~ZtT (- „ + l7*) | A (m , n)

m r (r> R) (A20)

Therefore
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26WAXA= ^ {2 J /iX(l, n) ^(-l, -n) + j^"1, ~n)) r d

n

- (2BX I®. (l,n)|X (-1,-n)R} (A21)

Integrating the term which contains by parts, recognizing

that the coefficient of -n) in the integrand is zero due to Eq. (A12) ,

and evaluating the integrated term by means of Eqs. (A13) and (A14) , one 

finds that

n

2 22fiWXXX = 8^Y2{MX (lIn)uXX(-l.-n)+/ (l,n)M^(-l.-n)-
kLj in "n out out a - Rr

- BXZ |J(l.n) (-1,-n) }R (A22)

and vanishes trivially when the ^x's are expressed in terms of the
t

$ 8 *

In the fourth order

25wXXXX_ 8u_ ^ { f(2^(l,n).^(.l,-n, + |QXA{l,n)| 2 ) rdr 

n °

-(BX2)R<2|®a.n){XX(-1.-n)+ ||X(l,n)| 2)r} . (A23)
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Here

* AQ^(m, n) = - B° V.-f^ (m , n) + —^ (m, n) (A24)
a T Z

and

-Q^^- (m , n) = _e r , n) + (m , n) ) ,

- (m, n) + ,n) ) + Q^(m . «) ) .

(A25)

where

..XAA.  * nkrB jAA . . . ..AAA . nH (m,n)=-jjj------|r (m, n) ; v (l,n) = 0; (r< R) (A26)

AAA. . krB° »2irn . n. tAA. » t \ nkrB^ to. . / ^ t, \
M (m, n) = + L ) ?r (m« n) ; V (m, n) = ——----- |r(m,n). (r> R)

(A27)

AAAThe terms in Eq. • (A23) which contain /x cancel the first surface term in

exactly the same way that 

square in , one obtains

GW*** was shown to vanish. Completing the
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26WXAAA V 2 { |^tl,n)|2 + 1^2)1

n

+ |Qf(l,n) + I*r|H^k2)|2.„Vr2 ||gV2>|2+ 2A.;)t-AAX(-l.-n)

+ 2,^A(1,n> )rdr - (BX2 |^(l,n)| 2 )R }
(A28)

Since enters only through in a positive definite term the

minimization in respect to it requires that

Q^Vn) = i d uA 1, n) nkr -j-r——' dr (A29)

Since must satisfy the same Euler equation as , the first two terms

just cancel the remaining surface term. Integrating the term containing 
dvXXX
^------ by parts and recognizing from Eq. (A12) that the coefficient of

1>X^X in the integrand is zero, one finds

26WAAAA _ Sv ^ {-j* n2kV|-i4^,!2'dr + 2r^<lli)/;a(-l,-n)| .

n
(A30)
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Since is given by Eqs. (A13) and (A14) the first term can be integrated

directly. Then expressing and in terms of and in
X 77terms of B and therefore l7' and using Eq. (Al6) one can write

26WAXW 8ir
= ‘ nr"

V J 4J^n2t7?2/2 -2. 2 , _2% , 4. a2.
/ ^ n ' ■' y ,(' (ct — R ) (5 3. 4" R ) 4" 2 3, JL xx ^ )
^ 4ir a
n

.W 3 ■> •> 1 4t>4130 2 9^ (a2. r2)} H 2
Ztr a

(A31)

which is clearly negative for all in the range where the calculation

is applicable. The system is therefore unstable if is greater than the 

Kruskal limit.
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Appendix IV - B Kruskal Instability with Helically Invariant Field

and Small (3

Since the axial current is present only during ohmic heating when the 

plasma is relatively cool, it is assumed for simplicity that /3 = 0 in the 

treatment of the Kruskal instability when helical fields are present. However 

/3 enters Eq. (54) of Section HI through a term which can have a singularity 

at some point in the plasma. It is, therefore, possible that the presence of 

even a small value of can change the situation completely. Hei-e it is 

shown that the results one obtains by calculating 6W assuming (3 is present 

and then taking the limit as j3 approaches zero are the same as those one finds 

by setting ft equal to zero at the start of the calculation.

Assuming that: only a single helical field with Jf = 3 is present, the 

axial current is uniform in the plasma region, the pressure distribution is 

parabolic, and the helical period is long enough that only the leading terms in 

the expansions of the Bessel functions in terms of hr need be considered, one 

finds from Eq. (60) of Section III

26W + rdr + m
1 + (R/S)2m

1 - (R/S)2m
2

R

2 l^R2
L6(R2-a2)

where

201 - m T

L

4r
a2)2

(Bl)

(B2)
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(B3)
kr B° l6

2ttR2
/ 2 2X .o (r - a ) |r

and

= - (
2 ir n
m

+ In)
R2
~rt (B4)

5 7Tt and t ' being evaluated at R. The minimum value of 6 W is clearly

uniform as /3 -~0 for those values of m and n which do not make a lie in the

region 0 < a < R since no singularity would exist in Eq. (Bl). It is shown in

the discussion of the intrinsic stability of the helix (j^ = 0) that the contribution

2to 6W from the region 0 < r < a is positive if /3 < 6 and can be made as 

small as one desires by making go to zero close enough to a.

The problem can therefore be redefined as follows: Consider the 

minimization of the function

I (B5)

where 01, [1, and a are given by Eqs. (B2), (B3) and (B4), subject to the 

condition that JU(R) be prescribed and different from zero. Is the minimum 

value of I calculated with ft - 0 the same as the limit of the minimumvalue 

of I calculated with ft present as ft approaches zero?

The Euler equation corresponding to Eq. (B5) is

1
r

i i
(r jU ) m

~2r
4irj8 r 

' ~5t 2"I - 272(r -a )
) M = 0 (B6)
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Let /3 < <1 « In the region where

r2 - a2 ^ ^ f 4ir/3 j/2

r m t
(B7)

the last term in Eq. (B6) is negligible and the Euler equation reduces to

1 t i
4 (r /l ) > M = 0

r
(B8)

so that JU must be given by

JU = JU(R)
rm + A r~m
Rm + \R'm (B9)

where the arbitrary constant X must still be chosen. If

r - a < < a (BIO)

Eq. (B6) becomes

1 I 1 2 
M + f - <m

a l°(r-a)‘
) M = 0 (Bll)

It follows from Eqs. (B7) and (BIO) that for j3 svifficiently small there 

exists a region

L m
< < r - a< < a (B12)

in which JU mttst satisfy both Eqs. (B8) and (Bll) .

-178-



Introducing the parameter

X E (*-a)/a (B13)

and the function

y = jU e^^ (B14)

and letting the prime represent ^/dx » one writes Eq.(Bll) as

11 
y + ( l

a

Assume a solution of the form

(BIS)

y = x 8 ( 1 + <*2 X2 + ®4 X4 + . . . + an Xn + * • •) • (B16)

Then

8 = I ^ ^ (1 " <B17)

and

“n ' ^ + ^>an-2 . (B18)

(s+n)(s+n-l) + ~¥g
. t6

For large values of n and small 0

an
°n - 2
(nir«-i3F

a _ 4
(n) (n -l)(n - 2)(n - 3) (B19)
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so that the series representation in Eq. (B16) for y is uniformly convergent 

with respect to X j3 . The series obtained by differentiating Eq. (Bl6)

term by term is also uniformly convergent and represents y! Since each
I.

term of the series is continuous in j3 at j3 equal to zero, y and y , and 

therefore the logarithmic derivative of y are continuous functions of /3 at 

0 = 0.

The constant X in Eq. (B9) is determined by the condition

r d jU | _ Xdy I
M d r lr = r1 “ ydx 'x =(rL-a)/a (B20)

where r^ must lie in the region defined by Eq. (B12) . Since the right hand 

side of this equation is a continuous function of 0 at 0 = 0 , the left hand

side, and therefore A , must also be. The integral in Eq. (B5) can be

evaluated by multiplying Eq. (B6) by jl and integrating, so that

I = rM |f lR ■ mM(R)2 » (B21)

must be continuous at 0 = 0.

It should be noted from Eq. (B3) that jl must go to zero at a as

fast as x » whereas the minimizing function, given by Eqs. (B14) , (B16) and

(B17) , does not vanish as rapidly. Since for any value of 0 and any

allowable fl , the integral , I , is greater than or equal to that value which is

given by Eq. (B21) where A is between the value which is obtained from 
2mEq. (B20) and a , the value it would have if 0 were exactly zero, it is 

clear that it is a continuous function of 0 as 0 goes to zero.
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