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Abstract

An equilibrium situation is obtained for the case of a uniform
axial magnetic field with the addition of a superposition of weak helically
invariant fields, a field due to a small axial current and a field due to a
low pressure infinitely conducting plasma. The energy principle is used
to determine conditions for the stability of this equilibrium. Two basic
results are obtained: (a) The conditions for the stability of a system
which consists of a superposition of helical f..ields (]}_(r, 0, z)= B {r, u)
where u = £0 - hz) and '"bulge' fields (£ = 0) are determined. In particular,
the condition for the inherent stability of a helical field with £ = 3 is
Bcritical= (pG/R)Z, where p6 is the maximum distortion of the plasma
surface from the radius R . (b) It is shown that the addition of a helical
field with £= 3 can produce complete hydromagnetic stability when an
axial current is flowing, and can also increase the Kruskal limit on the

current for the m = 1 mode.
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Section_l; - Introduction

In 1954, Te.U.erj’ raised the question of the stability of the various

Sherwood devices and gave strong intuitive reasons for suspecting them

to be unstable. By the summer of 1955 the energy principle had been (
worked out and é treatment for general axisymmetric systems had been
carried through. This treatment indicated that the stellarator would be
unstable to instabilities in which the lines of magnetic force are essentially
interchanged so that matter is carried out toward the walls of the system
without the magnetic field energy being changed.

The nature of these interchanges led Spitzer2 to suggest that these
interchange instabilities could be stabilized by changing the pitch of the
magnetic lines of force so that in such an interchange, the lines would
have to be twisted and the magnetic energy in the system would be increased.
A,ere‘iim.inary calculation, in which the twisting of the field lines was pro-
duced by an axial current on the surface of the plasma, was encouraging,
and was reported3 at the October 1955 Princeton conference on controlled
thermonuclear reactors {CTR).

This method of stabilization is not applicable for a steady state
machine, since an emf is necessary to drive the stabilization current.

For this reason an investigation of systems in which the stabilizing field

is produced by pole pieces placed at right angles to the plasma was begun.
The pole pieces were rotated in space in order to make the magnetic field
depend on z as well as @, where T, 9, and z are cylindrical coordi-
nates with axis parallel to the main field. A dependence on z is necessary
in order to cbtain an equilibrium situation. These fields were helically

- invariant and to lowest order (in themselves) were proportional to sin(6 - hz)
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or cos(0 -hz). It had been pointed out earlier (in February 1955) by

H. Koen:i.g4 that a helical magnetic field of this type would produce a rotational
transform, but it was not realized until later that this configuration would
have a stabilizing effect because of the variation of transform angle with
radial distance. The nature c;f equilibria in these helical fields was examined
and necessary and sufficient conditions were obtained for the system to be
stable to all perturbations £ which are periodic over the helical period, 2w /h.
In the calculations the equilibria and the perturbations were expanded in the
parameters B and § , where [ characterizes the magnitude of the material
pressure and § characterizes the magnitude of the crossed fields. If the
order of B is the same as that of §, (8~ 0) the system is always unstable.
If B~62, a critical condition for stability is obtained, while if ﬁ~53> or
smaller, the system is always stable. These results obtained by Bernstein,
Frieman, Johnson, Kruskal, Kulsrud, and Oberman were p;esent,e:ds at the‘
June 1956 Gatlinburg CTR conference.

It was realized by Spitzer6 at this meeting that the rate of change of
the pitch of the magnetic lines, with increasing distance from the axis, could
be increased by considering more general helically invariant fields which
vary as cos (48 -hz). The minimization of §W in respect to all £'s which i
are periodic over the helical period, 2=/h, was carried through, and the
stability conditions obtained for more general equilibria in which there is a
superposition of these helically invariant fields with arbitrary values of Z
aﬁd bulge fields (£ =0). Higher criﬁical& values of B (for stability) were obtained.

The effect of these helical fields on the long-wave-length kink insta-
bility was then considered in the case where a small axial cﬁrrent is present.

To achieve stabilization in any system by means of helical fields, itis

-2-



negcessary that the rotational transform angle, L, produced by these fields
by finite. Sifice in the present analysis both the helical fieids and the axial
turreiit are taken to be infinitesimally small, it was necessary to make the
letigth of the system (i.e., the length 2n/k over which the {'s are periodic)
infinitely long and to include an infinite number of helices in order to get
stabilization, It was found that the kink instability is stabilized to some extent
by these helical fields, Further, it was realized that in the absence of an
axial cufrent the system is less stable to these long wave length £{'s than to
£'s which are periodic over the helical period. These results obtained by
Obérman, Kulsrud, Johnsonv, and Frieman were presented7at the February
1957 Berkeley CTR conference.

The methods of calculating equilibrium situations are discussed in
Section Il and equilibria are obtained for situations in which the pressure
didtribution is a parabolic function of r . It is assumed that the distortion
of the fizld lines due to the helical fields is infinitesimally smali. The
twisting of the field lines is described by a function , t, which is discussed
ir. Appendix ITA. In Appendix 1IB other quantities of interest for stability
fe.g. V") are caleculated for these helical fields and related to ¢ .

in Section LI the integral, 6W, which arises in the treatment of
stability by the energy principl.es, is expanded for the general situation.

I%s minimization is carried through for all components of the perturbation
£, except for E:, and 0W is expressed in terms of §r° .

In Section IV the final minimization over E_ro is carried through for
severai special cases: First to be treated is the case of an axially sym-
metric system in which the ends are identified with a twist. Next we consider

the case of a superposition of helically invariant fields with various values
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of £ including £ = 0 (bulge fields), an arbitrary pressure distribution but no

axial current. Then situations are discussed in which various distributions

of axial current are present, but no helical fields. Finally, the case is treated

in which a uniform axial current and a helical field with £= 3 are present.

Rationalized Gaussian units with ¢ = 1 are used throughout this paper.



Section II - Equilibrium

‘We wish to examine the eqﬁilibrium vvalues" ‘;of the magnetic field B,
materia;l pressure p, and eilectlric'current J, for the case of an ideal
pla.smé contained by a helically invariant magnetic field. |

In this first part we limit ourselves to the simple situation of a plasma
fil]ling a perfectly conductihg tube of a simple helicailljr invariant form, and
we permit no net longitudinal _currents' in the plasrha.

| In part B we generalize the equilibrium to include the possibility of
- more complicated bounding surfaces, to permit the presence of.longitudinal
currenfs, and to allow a vacuum region to exist between the plasma and the
perfectly conducting bounding surface.

Two appenaices are included in which certain equilibrium quantities
reii-evé,nt to stability are discussed., In Appendix II A the rotational transform
aﬁglléofor the iequiilibrium of part A is calculated. In Appendix II B the
relation of the function V¥ to thé‘f;luxes around tﬁe tube is given, and the
quantity yp (V''/ V' + p'/ yp) (\f"-p'L‘f)/(’V' + ypl') , which was found to
be of importance in the axisymmetric situation,8 is calculated for the equilib-

rium of part A , and shown to be related to the rotational transform angle.

Part A
- The condition of helical invariance requires that in cylindrical

coordinates

B =B (r, u), ' ' (1)
where u =26 - hz, f integer. We thus note that

-5-
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The fields may be obtained from a a"c_a‘lguf function ¥ (r, u) satiéfying
_ . l : . _
‘B V¥ =B ¥ +F (4By-hrB) V¥ =0, 4 (3)
sothat B and ¥ are related by
gf = arB ; ¥ =-a By -hrB), (4)

where @ is an arbitrary function.

The Maxwell equation
V.B=0 | (5)
is satisfied if

¥ a_-Vv_a_ =0, (6)
and this relation is in turn satisfied if

a = a (¥) only . ' (7)

For simplicity we shall choose
a (¥) = 1 ' : , (8)

- any other choice merely constitufing a relabeling of the constant W surfaces,

b



The condition for static equilibrium

Ve = jXB , (9)
reads
LI jg B, -i, By (92)
ég%' j.z Br. " Bz ! (9Db)
R (9¢)
The additional Maxwell equation
VX B =j , (10)
reads
= 2 596 (4B, + hr By) , (10a)
9B 9B,
PR T (o)
Let us define a séalar'_function f such that
(11)

f= (B, + hr By) .



Then one readily obtains from (10a), (10b), and (10c),

f
- - u
Iy = T ’ (12a)
and
hrjZ --lje = 'fr . : (12b)

From (9b) and (9c) one finds

Br (hrjz-lje) + jr(lBe —hrBz)= 0. (13)
Using (4), (12a), and (12b), (13) becomes -
£ v -f ¥ =0, (14)
or
f = f(¥) only . (15)
From (9),
B- Vp =0, (l16a)
and hence
v, P - fIfr P, = 0 (16b)
and -
p = p(¥) only . (17)
We may now summarize our results obtained so far in the following
equations:
v
B = — , (18a)
r r



(18b)

By = —r 77
6 “ +n°r
hr ¥ +Lf :
B, = ——77 - (18c)
£"+h r
By, -hrB =-¥_ (18d)
hr BB +4B, = f ; | (18e)
. £ f1 @ |
jr = ..:..rl_l_ = = u R ‘ (le)
' 2
’ £~ +h r (£L"+h ")
i =- 4L + Rrf Yy, 2ntls (18h)
: ot
lje -hrj =-f .=-vf'\1fr , (18i)
2.,.2 2 - 24hf .

and |



= ff' 2hif

T + - =- p' , (18k)
P inirl (Fntrt)?
whei'e
¥
- 1 9 ¥ uu _
L= = 955 732 ¥ 7 - - (19)
£ +hr T . .

It is readily seen that when ¥ &f satisfying (18k) are given, fields
j and B 'satisfying Maxwell's equation are in hand. If p (¥) is given, (18k)
gives one relation between ¥ and f. We need yet another to fix them uniquely.

- We shall take as the additional relation 't 12

2w r(¥,4,2)
S X jz rdrdg = 0 R (20)

(o) o

that is, there shall be no net Longitudinal current in the volume contained by
any surface of constant ¥ .

Since in general we cannot easily solve (18k) and (20), we shall
resort to perturbation theory techniques, and write all field quantities as
poWer series in two independent small parameters § and B which give:

a measure: to the magnitude of t'he helical fields arid the dmount of plasma
present, respectively.: We shall introduce.§.and B ..as follows:" .

-. .'v-,.Let.us.,i'm'a.gihne .a perfectly conduéting.right'-circulé,r.'@:yliiid.er of
radius R in which there is a uniform longitudinal magnetic field B°® and
in which no plasma is present-o This we call the zero-order situation.

Now imagine the boundafy of the cylinder deformed to

r(9,z) = R+ p(3 cos u , (21)

-10-



and define

5 = BRE : | | (22)
We shall introduce matter in such.a way that
- . | p'(w_) - gpP-af g | (23)
where POB and aB are constants of order 8 . We shall see how (23) defines
B in (67). (It is clear that p must vanish on the boundary if there is to be

confinement.)

We now write all field quantities as expansions (at a fixed point) in

6 and B: -

v = 90 +50° +3mﬁ+52w5-5+53\1’3§+32qf£ oo, (24)
£ (T)= £2(8) +60 (1) + 8P (1) + 6200 () +... | (25a)

= (2% + 6 [0 (2°)+ 2" (w0801 48 [P (9214 €27 (1212 P ]

62

. +6 2 [00(1°) + 2% 0 (%) + 900 200 + T 2730 ]
- e | (25b)
- p(¥) = B(BL-aPg® o) -5fed (2% + %) ¥0)-..., (26

and so on for all field quantities. (In the future we shall suppress the
writing of the powers of the parameters § and B as coefficients of the
terms in the above expansions, a c,oﬁ:mon practice in perturbation theory,

and regard these coefficients as adsorbed into the terms themselves.)
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We now proceed to solve (18) order by order.

Zero-order Fields

Here we require

B° = B°=0; B° =B°-= const. (27)
r 8 z
From (iSabc)
' v’ =0 , " (27a)
o hr °
¥, = ; R (27b)
and
hr . © 49¢°
= B® . (27¢)
4 +hr _
Hence
£ = ¢B° (28a)
and
2_0
o _ hr'B™ o , ;
v o= +.GC . : . (28b)

The constant C? is mé,de zero by choosing
o) .
¥ (0) = 0 . - (29)

Vacuum Fields

_We now show how to find the vacuum fields (no matter present) to-

every order in § .

-12-



'Here we set p (¥) =0 and j =0 everywhere interior to our

boundary surface. From (18f) and 18i)

£ = 0 -  (30a)

so

f = const. | ' : (30b)

From (18k) the equation satisfied by ¥ then reads

R N Rt S 3 'V Y S (31)
=T 8r 2,22 2 (12 +hlrd)2

It is readily verified that the solution of the homogeneous equation

T =0 ,. (32a)

regular at the origin, is

> o]

¥ = C- Z Anhr 11‘11 (nhr) cos(nu+ an) , (32b)

n=1
where C, An’ and an are constants and Im (x) -is the modified Bessel

function of the first kind.13 A particular solution of (31) is easily found:

¥ = =7 . (33)
. Therefore, the complete solution of (28) which is regular at the origin is

hrlf

[>o]
¥ = C+ -1 - Z An hr Ir'1£ (nhr) cos (nu.’+an) . (34)

n=1

-13-



The numbers C and Anv are determined from the requirement that the
normal component 6f B vanish on the boundary or, equivalently, from (3),
that the bouhdary form a constant ¥ surface. This value of ¥ we shall
fix by aséigning the same value that was assigned to the cylindrical boundary
in the abseﬁce of the & o perturbatidm Accordingly, we write

L d

¥° (R) = U (R+ p5 cosu) =, (35)

which reads after exvpa‘.nsi_on in powers of §

¥ (R) = ¥°R) + [¥° (R)+ p® cosu ¥ °(R) ]

2

+ '[\IIGG(R)J'r p.(3 cos u \Ilr(3 (R) +92— cos?

u \I/n_o]+...

(36)

" Equation (34) represents the general solution of the vacuum field,

hence we may clearly assume that if we write

6 0d

LIS S M S M T (37)

va

then every term of the right hand side of (37), which we denote generically,

for the moment, by \IJ(V), may be assumed to be of the form,

2 (1) 2
o) - cv), bz f Z An(”)hr I' (nhr) cos nu.  (38)
: n=1

Equation (36) is a power series in § and hence every bracketed term on the

right hand. side of (36) must separately be zero. We shall choose

-14-



- C = A =.0 n=l’2:3l°“l | (39)

in order that we arrive at the zero order situation when § goes to zero.
Since, from (30), f is constant to every order in § , we may choose,

without any essential loss of generality,

AL v=1,2,3..., (40)

'ahy other choice of f (v) leading to a relabeling of the ¥ surfaces

f(V) = 0, we may not in general choose C(V)= 0

(from (38)). (Having chosen
and at the same time satisfy (36). Equation (38) then shows that, in general,
'thi.s choice for V) leads to ¥ (r=0,u)# 0. In some respects the choice
‘C(V)—-a 0 (and thus \II(V)-(r‘= 0,u) = 0 ) would be better, but the fact that now we
‘would have to choose f(v) # 0 in general, that (36) be satisfied, leads to

more complicated expressions for the fields.)

From (28b), (36), (38), and (40},

oo}
C§ - Z A_hRI' (nhR)cosnu =- p6 hRB%os u. (41)
. n=1
Therefore,
-0 | (42a)
A% -0 |, n # 1 (42b)
n
5 o go
AY =P B - (42c)

-15-



" and hence . : , . ,

: 1! (hr) _ .
‘1’6 =- Bopahr L cosu ., _ (43)
1; (bR) |
From (18abc)
£ . -~
_Br‘S - 5 B°X TRy S u . | (44a)
o IL(x) "
6 Lo I R 2 .
B6 = § LB XI(X) - »Iz %) cos u, (44b)
" and .
: , I (x) . .
Bzé =-§ B° x% i (x) 'IL(T(T cos u , B (44c) g
/) . .
where ' v o
o) , '

5 = A o | ~ (45a)

x = hr -, (45b)

X = hR , |  (45¢)

- and ‘
g . Iﬂ (y) ' : .

I.(Y)' = W .« (45d) .

In‘,th'é limit x < X << 1, (44abc) yield to lowest order in X,

- £=1 , | -
B =6 XxB° (L) sinu-, (46a)
B% - 5xB° (= Bl os u | . (46b’
o~ (g ' o

-16-



+  fields to any glven order in §

B .;-'..._‘ ..5_2.).(_ °'(_—;-'{-‘)'!--"ébslu . . ‘(46c)

!

In hke fashion we fmd

o o A (zx) |
W00 = X BO[1-2(%x )1‘()1:)][14r L o Lo 2u], (47)
o I'l(ZX) -

- 2 o ; (2x) | |
B0 (r,u) =% XB°[1-2(2 +x%) %)) 29 za , (48a)
r - . . - .

1, (2X)
500 .21 I2x)

22 R
20 - 16% xB°1 @X)[1-3 (14 X ithx] 2 I..(Z%T cos 2u, (48b)

D I,,(2x)
B 66 __ 5 ZXZBOIZI(ZX) [ 1_2(12 +XZ)II(X),] 24 cos 2u . (48c)
* ' I (3X) .
In the sm.a'.ll X limit these expressions reduce to
: 24-1
Br“ =- E‘il_) 5 X?O(Iri) sin2u , (49a)
) | a1 ,
B0 =- (-":‘i— 0°XB%(g) cos2u ., (45)
: : 21
Bzé. = (—z%l—)- o} 2XZBAo (—;—) cos 2u ., - (49‘c)

In precisely surnlar fashion, we may use (36) and (38) to write down the

.
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. Matter Fields with 6§

=0

Here we set § = 0, and hence all field quantities shall beAindependent

~of u. We shall assume for the present that g(¥) in (23) has the simple form

g7(\1,) = ¥ .

From (18a) and (18f)

From (18h) and (18k)
i, = taP 4 AL
Z

' " £ +h'r

To order f .>

“hrfv,
A A R

£ +h'r

) , hr PR

3,

By means of (27c), (53) reduées to

B.. 1P ;IflofB'.(\Ilo
=T . Y4
£ +h r

R

B - 0P+ L0

If we write the equation of a constant ¥ surface as‘

i

r ()

| 'then condition (20) yields, to order g3,

<18~

n°w +of W+ PP v

n°@°) +[q° ("I’°)._+"1’Bn'v°f(\1'°).] -

- (50)

(51)

(52)

(53)

(54)

(55)

(56)



2w jB rdr = 0 , _ (57)
g )
or n
o.f8'
S -1+ Lf_T(‘I’_OL] rdr = 0 . (58)
A |

-Since \Ilo ig a function of r only and since we require (58) to be true for

.all values of T)O ,‘ the integrand itself must vanish and hence

2 B '
1
%) = L, (59)
- f
and thus
S 8.2
Pr) = A2 T (60)
We have found £ and may now solve (18k),
B
DR A SN L L 0 s L S (61)
N
for \I/B .
The solution of (61) which is regular at the origin and satisfies
\IlB(R) = 0 (see discussion following equation (34)) is easily found:
2,8 |
of = o trYh . (62)
We may now write down the fields to order [ using (18abc):
BP-BP -0 , (63)
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B B - hrzaB - BBO 1'22 (64)

P f =0 ~ (65a)
i - aP hr = _@gz"_; . (65b)
6 R

aPnB® 2 _ ,
of = 2hB (g2.7). BB ‘I’%er) . (66)

where we have now defined B8 such that

g Byr? o
p =200 2R (67)

We coulldvproéeed to find in a similar fashion the higher order termsin g .

Interaction between Matter and Vacuum Fields

We shall write down the interaction terms of lowest order, those
of order B8
From (18h), (18k), and (27)

r\IIB(3 \1185

1 9 , _uu '- 2h[(f35+\11 fB'(\I,o)) +f_°2£_51\21,_33e= o (68)
r Br 12+hzr2 r® (% +hcr4” 2% +h%r

and
86 @) nré(e°)

i b v - (69)
£  +h'r . _
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The cond'iti_on (20) yields to order B & ,
an 'qo 65 o : ,
S S iPO0rardae = 0 . (70) -
o o

When (69)jis’ inserted into (70), we arrive at
.fBG = constant A, . : ' (71)

afte'rv‘nb.ting the second term on the right hand side of (69) vanishes upon
inte-gra'ti.on o‘}er 0 and.using arguments on the first term entirely analogous
to those:;u.'sled in arriving at (59).

Sir(xc‘:je""\Il(5 and P are known we may now solve (68), obtaining

30 - P . hr2f35'+zza‘8‘ 5 L7

p cos u
3] R I (b R)
- ‘ |
' - z Aﬁé hr 11'11 (nhr) cosnu . *(72)
n=1
* The condifi'on (35) yields to order B6
WO (r) + p° cosuq).f ®) =0, = (73)

and now the:coefficients in (61) are specified. Again, we ‘shall choose

t'B5 equal to zero, without essential loss of generality, and thus wtite

-21-



PO ;‘ggﬁxzf [24x) %}% i 1 @frhx) +x%) £ %.((;;_] cosu. (74)
| Thus, . |
Br35 - ‘I’:B = 68B°{- é ! (x) ;ﬁgy + le. (21211(X)+x2).%;))} sinu,
(75a)
L go, BT+ 19090 1w )
o £ +n° £
=158 BY- 2‘([:%!)' ¥ zlé{i;:‘:m I (x) (ZIZIg(X)f x%)} cos u, (75b)
and
.'Bz@:- 1 68B° (24 (%) +X°) 12_(3) %-((;;- cos . - (75c)
From (69), '(l'8f), and (18i)
A jr35=.1§5 B° % ;%“;;)Y sin u , - (76a)
| 5935= %85 1$°h11(><)}%-§%; cos 4, | | (76b)
and
i,P% =- 16 1=3,°111’Z(X)%.;).y cos u .  (169)

From (23) and (50) we have



11 {x) :
Bd _ B,0 _ o x { : 7)
o =-aP¥’ = g5 B® & cos u.. , v (77)
. X IIQXS ,

We have now found the field quantities to sufficiently high order for
subsequent work. It is clear how to proceed»kto obtaiﬁ field quantities of

higher order.
Part B

At this point it is desirable to generalize the nature of the equilibrium
in se:veral respects. | |

We wish to include the effect of ‘"bulges" in the field lines which,
for instance, may be due to the finite spacing between coils producing the
main B® field. We wish also to consider the case where the plasma aperature
is smaller than that of the containing tube, that is, we shall assume there
exists a vacuum regidn surrounding the plasma. In addition, it is of interest
to cbnsider the case when Ilon'gitudinal cﬁrrents exist in the plasma (e. g.dur-
ing the ohmic heating proéess); This means we abandon (20).

The ﬁse_ of a ¥ function, as in the previous case, is now complicated
byvthe presence of fields which are nct 'hel?'.ical.‘iy invariant. Since if is the
equilibrium values of the field quantities B, j, and p .we are primarily
interested :im, it is perhaps more straightforward to solve for them directly
using {8}, (9) and (iO) togethef, of coursé, with the appropriate jump
conciitions on the field qua.n_tities at the plasma-vacuum interface, and the

outer boundary.

The zero-order situation we shali take to be again

-23-



B°-B°=0, B =B%°= const., r< §S. (78)

The helical (§) field and bulge (€) field shall be introduced by imagining

the perfectly conducting tube deformed from a circular one of radius S, to

(i) €

r{(f,z) = S+0° cos u + o€ cos h€ z, (79)

where

u=4£6 - h (80)

5% -
We no& shall define § = %—6 and € = g—e , and assume for simp'lic.ity
L = hs . The parameters B and 7 , which shall give measure to the
amount of. matter present and the magnitude of the heating current, will .be
defined ini a moment. (it is clear that when 3., €, and 7 all equal zero the
0 -fields whié_h we arrived at earlief in this section shall prevail (with S
replacing R)).

We now write

o)

B=B°+BP+ B0+ BE + BT+ BPO+..., ~ (80a)

with similar expressiohs for j, p, etc. The equation of a normal vector

- at the outer boundary is

n = V_(r-S-OG cos u - o€ cos he z), (80Db)

I

(where we have not normalized n since the condition B - n = 0 on the

boundary is the_'on_ly ‘condition imposed, and clearly this is independent of

.=.24=.



the magnitude of n). Thus we may write

= n0+ n5+ n€+ n€5+... s

=)

Is
"

_e_r_-l-ﬁl sinue_ - 0h SSinquz

-0 o

+ €eh Ssinh ze +...
€ € —z

The equation of the plasma-vacuumi interface we shall take to be

o

r=R+ p=R+p2(0,2) +p%(2) +pP(6,2) +p"(0,2) +p€0 +..

with the unit (outward) normal

I V (r-R-p)
- - | V(r-R-p) | :
or
1 9p - 0
&~ T 5% Lo - 5'% 2z

.1 8p.2. 8p2,1/2
[1+ 557+ G271

n =

which yields after expansion,
e 0 € B n
_ =6 ,9p~, 9 9 d
e, -F (3555 * a5 tag)
o ]
“e _e+8p T T

25

(80c)

(804d)

., (80e)

(80f)

(80g)



.8 é B"é 6 € B 1
o) G R

e, 206 506 o €€ |
-9 ,d ap - ap :
- R Sy +,69 T ree

66 b€ €c
P/ e )

20°° , 2p
_Ez( 'z +8z 0z te. ' .
(80h) o

e [0} € 0 € -
- 3%5 %;Z;Lg%:”+ %% +,..)2 + (22 $ 207 ..;)ZJf;..

The quantity p is determined from the conditions

B-n=0. - (80i)
and p. + > continuous at the plasma-vacuum interface. We shall now
compute the fields .
B-order
Here l
apf | | | o ;
- fee . o (8la)
L L - (81b)
apP Catan
Y. - 0 P (81¢)
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and

B
9B
. 1 8 2B ]
iP =1 5 BL -T2 (82a)
g 9P aBP
i, = - e , (82b)
0 Z r
B
6B
.8 _ 1 8 B 1 r
o Trer "B T mm (82¢)
and
V:-B=0 . | (83)

The boundary condition that B « n be zero on the plasma-vacuum interface

and at the outer boundary reads, to order f,

BB -0 =858 . (84)
Tlr=R T lr=s

The condition of continuity of the total pressure, magnetic plus material,

across the interface reads, to order g ,

= (pP + BOBZB)

B°BA I ,
r=R r=R , (85)

Z

where we have designated quantities outside the plasma region by bars, and
where we have made use of the fact that the material pressure vanishes

outside the plasma region.
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For the sake of sim‘plicity we shall assume at once.

.aié = -sa_z = 0 ‘ . (86)
Therefore, (8labc) read,
B B L
%E; = g B ° , (87a)
B B , |
.g.g.e :-jr Bo = 0 , ’ (87b)
B
%97 - 0o (87¢)
and (82 abc) read .
jrB = 0 -, . , (88a)
P |
Je == dr » ’ (88b)
. B _ 1 @ B
JZ = ?_8-_1-' r Be . ) (88C)
Equation (83) reads
1 9 B _ , |
Z 5z rBF = 0 , (89)
~-28-



and hence

BB=01 _ S 90,

inside and outside the plasma, when regularity at the origin is required
.and (84) is invoked.
From (87a) jGB is known when pB(r) is known, and hence from

(88b)

1]

- Sj Bdr + const. |, (91)

B (x) ]

and

—B_ZB(r) | const, . (92)

We now make the foillowing observation. Because of our choice of
- 'the zero-order situation (only Bz0 # 0 ), we find that jZB and BGB ,

* connected by (88c), are not coupled to the material préésure in any way,
either By (84) or (85); ‘and hence are really independent of 3, which we

shall attach to the material pressure in a moment. We shall, therefore,

choose

(93)

~ and use the distinct parameter 17 to admit the existence of a i, and BG

independent of the pressure.
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We shall for the present make a reasonable choice for p B(r) and

~adopt the parabolic profile

| 2
P = fa-5 o (94)
. ) R
where cP is constant. From (87a)
B _ 1 8P 2P o« | | (95)
Jg -‘Bo ar . B ? ’
" and from (91) and (92)
2
B.clx
B~ = ";6 E-z +. congt. s (96a)
and
Ez.ﬁ =  const. (96Db)

We shall ch,dose the constant of integration in (96a) équal to zero, and

then, using (85) obtain

= B _ : ’
B~ = —_]-3-3 | . : . (97)
We now define B8 by éhoosihg
268 B
B = Zpt(0) _ 2C (98a)

B

o . ol ’

-30-



or

02
- (98b)
‘Hence,
B_aB_og-wB.mB8
BP=8F=-0- s5f-8f | (99a)
2
- BBO T
BFf- B2 = (99b)
. BB°
EZ = y) s (99(:)
jrﬁ = sz =0; Iﬁ =0 , {994)
. B _ o T
) = - B B s (993)
6 R
’ aﬁd 5
o} 2
of = BB (1.,5;2) _ (996)
e—ordef
Here wé put
| p€ =0 , . (100a)
i€=0 , | (100b)
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and
'3_ = 0 | | . 100c

' again because of invariance of boundary. (9 = 8= § = 0) against rotations

"about z--axis. Maxwell's equations now read

(101a)

9B
8 . o
9z :
8B ¢ 9B ° | o
3z 9T . ’ - (101Db)
1 8 € -
+ a5 T BS =0, (101c)
-and
~ - 8BS o
1 9 € z
T3 TBS g =0 . (102)
_From (100c), (10la), and (101c)
(103)

| since we_..dem'and regularity at the origin. From (101b) and (102) we find

. € - :
12, 2 ___Ta Pz . | (104)
r Or ar . Bz



The solution of (104) regular everywhere in the region is immediately

given by

0
€ _ € o
Bz = z An I0 (Vnher) co_s(nhez +¢n) E ) (105a)

n=1

From (101b) and (102) we find

w A
€ _ €
B ¢ = Z A €1} (nb ) sin (nh_z+¢ ) (105b)

n=1

By (79) and (80b) the boundary condition B - n = 0 onthe outer boundary

is, to order € ,

B €(r=5,2) +B%°h 0€sinh_z=0. (106)
r € €
‘Thgrefore,'
A€ = o
0 - , n :7! 1 (1078.)
and‘v o‘ €
A - . (107b)
1!(hS)

Accordingly, we write

Id”(h r)

- sin (-h_z) , . (108a)
€ 1% S) € .
[0} €
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B,¢ =0 , | | (108b)

0
‘and
| I (h_r)
€ _ o 2 2,0 i o' €’ :
Bz = B Ehe.S.I (h€S) T(;TEZST cos ( hez) , (108c)
where, we remember,
€
€ = ES_ , | (109)

and where we have introduced (-hez) as the argument of the circular
 functions rather than hez in order to exhibit the parallelism to (44abc).
In fact, these results could be obtained most quickly by .setting £=0 in

.the 6-ordér and substituting € for § ,

- 1 -order

' We remark at once that the 77 fields are force free since we have
chosen pﬂ = pﬂﬂ = «2o =0 ,. Because of the same invariance as in the

B - order and in consequence of the discussion following (92) we write

il =gt =0, | (110a)

B"T =35m0 , (110b)
and

1L ’:?E r B, () . (110¢c)



WHen jzn is known, B," is determined. We now consider two simple

0

choices of the form of jzn . Case (a), jzn uniform, r < R, Tzn

‘case (b), a surface current jzn at R,
Ca;e {a) , j.zn = const.,, r=<R, '_'j'vzn' = 0
The solution of the homogeneous equ'a.tvion‘
%’%IBJ“’;°

is

A particular solution of {(110c) when jz is constant is

and

g = _

BO .

. Since the tangential component of B is continuous in this case,
Ui = n :

B ) = BT (®)

-35.

:Q;

(111)

(112)

(113)

(114a)

(114b)

(115)



or . 2

iR | | -
cl - _ . - S (116).
Thus'
BT =n g B , - | (117a)
;and :
=1 _ o R ‘ i
By' =B . | : ~(117p)
where we have defined 771 by
B,7(R} ;R
n o= o = g (118)

B 2B

Case (b) , sheet currentat r = R

‘Clearly in this case

B, = o , | - (119a)
1
= 17 _ C _ o._&
B - = = gB° 2 (119b)
and .
3" = nB% | (119¢)

4 where, again, we have defined
: Een(R) : o ‘
no= ==, - azoy
B | _ :

.36



B& -order

‘We shall piece together this order from our earlier work, since
this situation is almost the same as the earlier 6 - order, withi the
exception that we have two distinct regions to cdnsider,, inside an‘ki. outside
. the plasrhau |

Let us first conside_‘r fhe region outside the plasma, a vacuum region,
for“whic_:h we know the géneral helically invariant solution {34) a.ppliésa
((Hox&e{ref, the rhodified Béssel functions of the second kin&smust be admitfed
Bince regularity at the origin is no longer required in this region. ) Thus, the

condition B ¢ n equal zero on the outer boundary

: _:grBG(S, ul). -(J'Gh5 sin uﬁzﬁ,(S}f = 0 . | ('12,1).

" enables us to write

i

5P - [CBéh 1/ (b r»+‘535h6 KI}’ (ha.r) lsinu ,  (122a)
[635? I(h5 ;+ﬁﬁ§_1< (hy r)]cosu , (122b)
B0 - [T Bo by 1, (hy 7 - ol hs K, (b, 7)1 cos u (122¢)

jwilth', . _ . a :h o
.C"Baln?.)_ll'(h6 S)+D36h6‘KIV(h5 5) = _—Té_.— . (123)
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In the interior're.gion we have the vacuum solution for the magnetic
field plus a particular solution due to the currents _J_B . From (9¢c), (44a),

and (99e), we find to this order

' ~ 2 g Ij(hgr) ' ’ :
pBG = B6B° -§2 r L0 cosu , (124)
R®  I](hS) »

and from (9ab)

j 85 os L (hgT)

Bd . gsiB _ sin u ,. (125a)
i - RZ 1, (R S) |
85 > o S 1‘(1163) ’I[(har) - |
% = pot B® = - . cosu , (125b)
R 1,(hs S)
and .
2, -I:(h r)
jz’35 =- B51B°h; 571‘(1165) 205 cos u, (125¢)
| L ) -

(where wé have used the fact V. jB6 = 0 and permitted no net longitudinal

current in this order because 7 is not involved), Thus,

' . 2 I (h r)
r | R h.rl1(h, S) 6
: G A
(126a)-
U 2 It(h. 1)
3.935 = [_13530_5_2_.1_;_9_____ «+_CB6 -i-lz(har)]cosu s
| ' " R hG,SIﬁv(hG S)

(126b)
"and .
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BP0 - Py

2 511(h5r) cos u |, (126¢)

with C pO yet to be determined. The condition (80i} at the plasma-vacuum

interface reads to this order

| | . g5 | |
BPO(R,u)-p hy sin u BA(R)-B°3L - 0, (127a)
-~ and -
| f o Bo |
BP®R,u) -pOr, sinuBPir)-° =0, (127b)

. Bo
which yields after elimination of ég;—, §36 (R) equal to BI_B‘5 (R), or

Bo Bo
C hGI!'(héR)+§ hs K, (haR’
2 I(h. R}
- o S £ £°76 Bo :
=-4“B6B I'(h.S) —2— +CP%h, IMh . R) . (128)
h6R3 Y 1,(k, S) 57475 |

~We now have two relations among the three quantifies CBG, —ﬁﬁa , and
CBG ,-and thus one more is needed. This additional relation comes from
imposing continuity of total pressure across the plasma-vacuum interface.

To order B6 we have

B . s P
oPOR) + 95 cos u 327+ BéBf%RM—Bf(R)BS (R)+B°pOcos u 5~
= B°'B‘f§ (R) + EZBBZG ®) . (129)
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(ps(e, z) is feadily determined from (80i) expanded to order § .) After again
néting that ‘_BZB.(R) | equals BzB (R) and \}erifying that the first two terms canceI,

(129) reduces to

I'(h . R)

B BG(R)+BG B°§ L&
I!" (hG.S)

cos u =B P (r), (130)

and hence

_C'Bah I(hs R) - 5P, K, (hy rR)+chBOp 5 (Bs R)

os I(hsRI

=8 B g ——— . (131)
1 . N
‘I! (hﬁ_s)

and this order is now complete. Solving (123), (128), and (131-) for CBG

o .BG, ﬁBé, we‘obtain

L oB._ A, B, E(h R) K'(h S |'011(h R)+AL] (b R)
6 L,(gR) I/ (R S) |1,(hsR) Iz(h s) l}( (hgR)L(h, R)Iz(haR)Kl(baR)
| | (132a)
h T B Ky (hs S [CL by R) + ALJ(BsR) ] ,
| 1] (hsS) | 1) (b S) LKI'(‘I:‘L(SR)IE(II&R)-II'(hGR)KI(ha R)J
o | | (132b)
and v | '
© CI,(h.R) + AL} (h. R} | | |
haﬁB: R M T o : (i32.¢)
Ky thg R (hgR) - LH(hg R)K (s R) |

" which may be ._s'impii-fied. somewhat using the Wronskian relation

. -40 _.' .



L(y) K, (y) - K, (y}I)(y) 4= ST 70, (132d)
to
' | K}Mh.S) Kfh.R) ' : .
T 0 S +h5R[ o ]“‘Ahamw;«haw
. - I{h;R) Il-(hés)“ Il(hﬁs) I(hg R)
(133a)
 Ki(h.S) -
n,CAY - 'B +hR f ®_ [CL,hgR) + AL} (b R)] (133b)
I/(hsS) Iz(%s) ) .
and . |
hDP0=. n R[CI (bR +ALf (R;R) ] | - (133¢)
where
I'(hs R) o
A= ppB° S L8 (134a)
T
I (hg S
has-
B - g5 B° -0 © (134b)
2
and |
o2 :
_ : o,2 S ¥4 I,(h.R) ‘ ’
Co=- BOBIL Sy TRGS) L 010 (134c)
15 I,{hsS) '
BB - ;f)rder
If we choose o
BB oo, | (135)

-4]-



then in a fashion entirely sir'niillar' to that used in arriving at (86) through

(99), we find

BB _ . BB_, BB _ BBz _pgB°r -

Jr = j = 0; JG . Je — == =z (1363-)
z B.o - 2. . R

. ~. 2.0 4 .

Brﬁﬁz BGBB= IVO,; _BZBB=~ BSB _Rr?_ y ) ’ (1361’))
) o . . 2 0 .
B_P8 - jg"eﬁﬁ _o, BPR._. BB (136c)
2 8 &
7n 7 -order

Following through with our two cases of the 7 - order, we readily

obtain
Case (a)
11 Bg‘ 2.0
. = n 68 _ > or
j j =279°8B , (137a)
e z p° R?
a N1 N 2.0 rz,
B 1M -. n°B° = , (137b)
. ' R ' '
2. o . .
s =-n B . - (137¢)
Z : .
If we choose
i1 <o (138)



then clearly

nm = 0
By
and ‘
nn _
‘Be = 0 .
Case{b)

Again, choosing jz,T“7 =0, we find

"nn_—nn
B,1" = B, = 0

2

an _=nn. 1°B°_ . nm
Bz -Bz =n_2_—239 ?

(139a)

(139b)

{140a)

(140b)

‘where we have again invoked.continuity of the total pressure. (Here jenn

has the same dimensions as B because j

is a sheet current,.)

Bn - order

If here we choose
an: J'an: 0 ,
it is easily verified that all fields vanish in this order.
76 -order

Here we have

and hence from (9) we have, to order 70 ,
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B

j M= X, © (143a)
B A

and
Lo}

B

. né _ . 6

il szn < . | (143b)

where for the moment we make no distinction between cases (a) and (b).
If we require no net longitudinal current in this order, we find

(using V-j = 0),
0= 5 (144)

It is easy to exhibit a particular set of fields _j@né with these currents as

sources. Namely, since

aB M0  apnd
Z

j M- S , : (145a) -
rdp 9z
5 5
aB " o " _
im0 X . =2 , . (145b)
0 9z ar
and .
: o]
aB "
jm. L8 . gm__ I (145¢)
2 r 9r 6 rdf
we simply choose
B1%=0 . | O (146)

From (145ab)and (143ab) we then have
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2 I (h 1)

BO-_ 5715 ttinsy L8 sinuw, (147a)
r z r o] I,(h,S)
£Y7°5
and
' o IMh,. 1) » :
BGTla = - jnGS L) cos u . (147b)
“ I (kg S)
It is easily verified that V - BT16 = 0. We now write for the general
- golution in this order
| 2 I(h, r)
B™ - 55548 sy L8 4 ¢y 17(h, r)) sinu, (1482)
. z T 5 T (h. S , 62Y)
Igths S)
I}(h_ )
36“5 =(-jMes L0 "4 "0 Ly n 1)) cos u , (148b)
Mz 1! (h, S) r L) :
: i A
nb __ cnd g, :
Bz =- G h(‘5 I! (ha r) cos u , (148c)
and
Erné = (E'f“6 hﬁ Ilf(ha r) +’D‘T‘6 hﬁKf"(hé3 r)) sinu , ( 149a)
1'3'.'9’15’ - (C™ —é—ll(ha r)+ DML K, (hy ) ) cosu, (149b)
= N0 _  amb.. + nd '
Bzv =- (C h.5 Il(hé r)+D h’bKﬂ(hérH cos u . (149c¢)

That B ° n be zero on outer boundary requires
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EI;"G(S) +52sinuBN(S) = 0

s (1503)
or
c™ b, '(k 5) + DV, K} (b, S) =- 62 B° R (150b)
L6 5
That B - n be zero at the plasma-vacuum interface yields
6 116 :
nd 9 n o dp |
| (R) - i‘g"e‘B (R) - B = 0, (151a)
and
. -qﬁ .
—839 B, (R) - B° 28 o . (151b)
, nG
After eliminating _S—i— , we obtain
2 I,(h. R)
(‘:’“5}1 I'(h R) +Dn6h5 ! (g R)+J Y _§- I(hGS) 1 6
1, (h, S)
0
- €™ ny (hg R) =
o 19 15 ] =—t5 2 1;(11_511)[}3 "] (152
T ] =—gs 2 L » , . (152)
R U6 RT Ry g 0 R
10
‘where
[B1g = ByUR) - B," (R) . (153)
Continuity of total pressure across fhg plasma-~vacuum interface yields
n5 5 -
B [B Ig = - By gR)[Bo]
E R . I (h.R)
=- él‘BthSIl (hy ) 5 L2 BNy - (154)

8 ‘R
1,k S)
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Wre‘novy consider our two different forms for the current distribution jzn

Case (a)

. 2
[BJ] =0 ;  jn= 232 - Co(s5)
In this case (150b), (152), and (154) read

Cn, 17 (h, S) +DWn_k z“"' S) = - 46 nB° = (156a)

0

c 5h I; (hy R)+D " h K (hy R)-C™ h5 1 (hsR)

(]

g2 1,(hgR)
=-znaz._231(hés>—-——-——— ' (156b)
R I,(hsS)

and

- -pnd nd -
c hs1,(hg R) D hs K (hsR) + TV hy I, (hsR) o . (156¢)

The solution of this system of equations is

. ’ ‘ 2 1,(h.R)
c® .. £87B°R +[2n 51_ZB°1‘(h syL 5 71t (hy R) +
hy SL(h, S) I(hS) gl
RK (kg RIL(B;R)  RK(hsS)T (b R)
) | L0 f‘h‘_’ ] (157a)
| | | oy (1% R) 1/ (s S)
- = C 2. .
2 1%(h, R)K {h.S
znb__ 46mB°R 2n5 4 S B°1£(h65) g Py RIEf B ), (157b)
h S1;(hs ) R I,(hyS)I, (s S)
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2 ‘ 12

. _ (h, R) L
B - 245 z%- B°1’f(h‘65) Lo ", : (157¢)
| s l(h sy |
Case (b)
[139“] R'-= nB% ; ij" = 0o . - - (158)
In this case (iSOb), (152), and (154) read
Céh 1} (h S)+]5“5h5 Kl'(hGS):'-I.Gn B°-§:’ , (159a)

‘C“Gh I,(h, R)+‘D'15h Ky (hs R) - c"éh 1{ (hs R)

]
| 1/(h, R)
=-4no 28> L0 | (159b)
- |
15(ng §) |
and ! _
- TW0h 1, (b R)- D“ﬁh 5 KylhgR) + c“ﬁh ) (hsR)
- 1, (b R) .
=- 6418y r'(h sy L0 (159¢)
| I,(hy ) -
The solution of this system of e'quationé is .
né _. 1 ‘ ‘ , - o 140 v
cd RIS [ +haRK(h, S)[bIg(ha R)+C1j( R] 1, (160a)
™ - R[bL(GR)+CI/(,R)] ., (160b)

. 115 a A ‘ : K’(hR) K'(hS)
_.C,‘ =-" 1;1-6—1?(5-6—3) m - R[m I-r(h—s-)—-] [bIl(hR)"'
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with

a =- 6B o, L (16l
] o IF(hR) . , .
S o0 LD ;
b &- 25 ng B® A | (161b)
| | RZ I6ST « o
and '
I (h R) ‘
n c = - 64nB ha-R-I (h S)m . | (161c)
. . . p€~order _
This order is most quickly arrived ét by setting [ =‘O in the
- 85 - order.
Thus
I1%h r)
Be o2 S €
p’ = PeB * YR S) ° . o (162)
' -1;:2 o'’¢ '
iP€f=0 , , | (163)
BP€- cP€y 1 v(h 1) sin (-h z) , (164a)
r €0 '€ € ' A B
- pe _ _ 5 Be | : .
| B.e 0 Ee . | | (164b)
) BPE - . cPEh I (h r)cos(-h z) (164c)
z €o0' € € ’ .
5 P€ - (cPe h_ 10-(h€r)'+]5‘BE h, Kov(her') sin (-h_z) (165a)
Be _ ', PE,. : =€ )
E'z -(C helo(her) +D heK (her)) cos (—hez) , (165b)
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where

and

Thus

o o .~ KXh.S) K (h R)
n cPe - R A+ f"(‘ﬁ’ll'lB + Ab _RI (hR) 5y - i
. ,(1663.)
o . KYh.S) - : -
Pec_ B N 0 €  4ri : : ‘
RO iy R RRET AL RS . e
Be _ _ | S S
he'D‘ =- heRALY (heg)._;’. . (166c)
IeR) - _hS
‘A=peB®°S o €. ; B=peB° - L (167)
:q'e -.-order

Agé.in ‘we arrive at this order by sétting £=0 inthe nd - order.

€= 0 , A . (168)
.neE_ . B -'
.l T Jz B'o . ‘ (169)
Case (a)
'Brne = 0 , - (170a)
" ne - 1)k 1) .
B.6 =-j, € S TR 3 cos (—h€z) . - {170Db)
anaf. =0 , | | (170¢)
" - o, | | (171)



Case (b)

=51~

(172)

(173)

(174)



Section III - Stability of Equilibria 1; Minimization of §W

In this section we are interested in the stability of tnosve equilibria
considered in Section II. In particular, we are interested in the effect of
“the helically invariant fields on the interchange 1nstab1lity81n the presence
of & bulge, and on the kink -1nstab1lity}4 The equilibrium of this section is one

close to a cylinder with a b-c.)_unda.ry.

] z O'f cos (‘.gie-pihz)
& g

+€ z (J‘i€ cos (-qihz.)' | (1)
~

on which B n = 0 . The results of Seeti'onII'ar»e readily generalized
toa Superpomtmn of such perturbations of the boundary Each perturbatmn
'15 periodic in 'z over a length 2w /h and Py and q denote the number of
tlmes the respectxve perturbatmns f1t into thls 1ength The mterger ‘!i
den@tes the varlatmn of the perturbatlon w1th 0. We explicitly exclude the
cases p;, = q fo_‘r‘._anyv i and j and B; = Py for i#j, since in this case

]

- the equilibria do not superpose easily. § 0, €

and .Eoi. repl_'esent the
-amplitudes of the peitnfbations and 3 and, € are small expansion param-
eters. We also include an.'arBitrary pi-essure distribution B pB(r) and an
arbitra,fy Llongitudinal current an(r) . We temporarily exclude any surface '
currents or discontinuities in p and _‘and. assume all Aquantiti_}es are finite

' and continuous, |

The quantltiee needed in the treatment of stability are the zeroth

order f1e1d B a constant field in the =z dlrectwn, the f1e1ds of order §
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and € which may be written from equations (44), (105) of Section II,

5 _Ab N
_ . _ o i . '
BI’ i = BI'_ 4 sinu = pihai B W sln_ ui ;s (Za)
i
- 6 _ Ab TAS MRS ) |
Be i = Be i cos u= -———-r———- I;T(p—lrs)-— cos ui ’ (Zb)
5 A5 6 I‘i(pih 0 '
. . _ . o
Bz g = Bz ; cos u= Pihoi B m) cos u. , (2¢)
i .
Bd - z BS | (2d)
i
with u, = zi.e - pihz , and
€ _ZAe . qihaieBo .
Br i =Bri {r) sin (-qihz) = I—;m Io' (qihr) sin (—qihz), (3a)
E —_— . . .
Bg; = 0, (3b)
. € _ae q;ho "B . |
BZi = Bzi {r) cos(-qihz) =- Wlo(qi T) cos(-qihz.) , (3c)
B¢ - BS . | (3d)
- i
- : Further we need
B - P(0)-pP(r)
B, (r) = 50 (4a)
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8 88 _P(x) |
ig (1) = —v— | | (4b)

and all other cdmponents of _B_B and i_B are zero, Finally

r
Be" (r) = %g rjz“(r)d, r o, . (5)

o

-J:n is in the 2z direction, and. all other components of En are zero. We
have collected these results here for ready reference in the ensuing stability
analysis. We wiil not reed any information about fields of higher order except
the fact that all 52, ) ie,."and €2 fields are sinusoidal in z . This remark is
not true.in the excluded cases p; = q; etc.

No vacuum regions are allowed in our equilibrium but regions where
p = 0, (pressureless pfla.smas)aare considered. Later in this section it is
shown how the stability is affected by replacing these regions by vacua.

The s.tability of these equilibria is treated by means of an energy principle.,8
This principle reduces the quéstion of the stability of a magnetostatic equilib-
rium to the problem: can the quadratic functional of £

_‘§X9+_€_°VPV'_§_+Yp(V-§)Z}dT , (6)

with

Q= VX (XB) , ()

E(r)? B, p and j represent the

be made negative for any choice of
equilibriu.m values. £ is imagined to be an arbitrary (virtual) displacement

from the equilibrium, subject only to the condition §- _r_1_ = 0 on a rigid
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boundary , and §W is the resulting second order (in §) change in the
potential energy. If W can be made negative for some £ , it can be made
negative for a normal mode £ , some potential energy is turned into kinetic
energy, and the system is unstable. We ask for those values of our param-
eters pl,3 (J'6 , etc. for which the system is stable and for those values for’
which it is unstable. It should be noted that the question of stability is unaf-
fected by the ‘distribution in matter density which only affects the rate of growth
of an instability.

Our equilibria have many parameters b.f expansion 8, §, etc., but
these may be expressed in terms of one parameter A . For example, we
may assume & and € are proportionalto A and B and 75 are proportional
to )\2’. The stability preblem is mluch easier for a one-parameter equilibrium
and we express our equilibrium in terms of A with the abéve choice. There is
no loss in generality in assuming the proportionality factors are one so
8 =€ =X and B = 'q=712°

In carrying out the expansicn in X, it is'necessary also to expaﬁd
the trial functions § . This can be seen from the following argument: The
value A = 0 makes the equilibrium that of a cylinder with constant field.,
which is neutral. If we regard the parameters 0_6 s 0'6, etc. other than A
as fixed , our equilibrium will ei.ther be stable for all sufficiently small A
or unstable for alil sufficiently small A . It is clear that in the sécond case
a § which makes §W negative for one A need not make it negative for
another. Thus one must aillow § to depend arbitrarily on A as wellas r.

Since X is small we expand £ in it and regard the coefficients in the

expansion as arbitrary.
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One now expands W as a power series in A and examines the
lowest order which gives a decisive answer as to stability. A criterion
expressed in terms of the parameters 0‘6 , 0'6, pB, lﬂ is then found.

In applying these results to the stellarator we imagine it straightened
out and neglect any effect bf the curvature of the tube. Hovi}ever, we wish to
keep partially the effect of the closed machine by demanding our equilibrium
and our perturbations £ be periodic over a length L = 2w/k equal to the
length of the machine. We require that h be an integral multiple of k so
that each perturbation of the boundary fits into this length.

We shall choose k to be small of order AZ and expand in it as well.
The reason for this is to keebp the rotational angle ¢ , through which a line
rotates over the whole machi‘né, finite as A goes to zero. The displacement
tries to follow the lines and the 'reQuirement that £ be periodic in L would
make the perturbation very irregular as )L went to zero, unless L for the
machine were finite. That ( is finite for the entire machine can be seen’

from Appendix II A, for

L /per helix ~ 62 , (8a)
| ¢ helices o L o 1 | (8b)
n9. (o] elices ~ E— 57 )

total ( ~ 1 -~ (8c)

To conclude this introduction it should be observed that any finite
situation may be approached by a system expanded in A in any number of
ways. For instance if k ~ Xz , k will be finite when X becomes finite.

Alternatively, the finite -situation- could have been approached also by keeping
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k fixed, as A increased from zero, at its final finite value. The best
expansion is the one that leads to the most rapidly converging scheme.
Since we do not examine the situation beyond the lowest significant order,
we cannot apply this ériterion to our scheme. However, our choice of orders
leads to an expressién which remains "ﬁniformly” valid as we arbitrarily

shift our choice of orders, while another choice does not. In particular, it

is shown in Appendix II1 A that results obtained by treating hR as finite remain
valid Qhen hR ids.made transcendentally small in respect to A . Further, our
_ex.pansion readily yields itself to physical interpretation so in some sense it
is the "best'" expansion. |

To proceed with the stability analysis we expand §W to zeroth order

in A to obtain

2 6W° = S Q% dr , (9)

o

Q%= V x(£°xB°%) = B° 2 _B°(V-£%). (0

[}

We have introduced a convenient notation of a bar to distinguish the r and

@ components of a vector so that for an arbitrary vector A ,

A=-A+e A . (11)
—_ . - —_2 Z

'We cannot expand our g's at a fixed point since they will have wave lengths
of order L and th.e expansion would not be uniform over L. To get around

the difficulty we first Fourier analyze § in z

& = z £ (s, n) eishz +"in.kz (12)

8, n
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with 8 and n finite integers, We assuﬁe that § hiu no Fourier components
except thos’e with finite wave numbers or wave numbers proportion!al At.,° AZ.
It'wi'.,ll be shown in Appendix III B that this assumption cannot affect the ques-
tion of stability since the nonvanishing of such components always makes §W
positive. It is now expected that § (s, n) can be expandeg} uniformly in A .
It should be noted that 8/dz operating on § ..can change its order.
It is obvious that §W° is .nori-snegative. It can be made iero only by
the cho-icés‘
é?(s,n) = 0, s # 0 (13)

and .
v~(§)=o., (14)

Any other vchoices make § W positive., Our §£'s are restricted to § ° 31_ =0
which to lowest order says gf {(S) = 0 . This restriction will be relaxed
in higher orders temporarily. If §W is always positive without this restric-
tion, it is certainly positive with it. If 6W can be made negative, it will
be shown that the £ which makes it negative can be chosen also to satisfy

this restriction.to all orders.

. Since Q% = 0, itis clear that G'W"1 = 0 . The second order part

of §6W is
2 ' o
5 8t ° ag
26w? = ({@Meyig2) + 8% Vo Rt ar (15)

By equations (4) and (13) the last term is to this order a z derivative
which vanishes on integration. The region of integration is the zeroth
order region i.e. a cylinder of radius S and length L . GWZ is thus

non-negative. It is clear that if § W is to be negative 8&:/az = 0
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wherever p # 0, i.e.

£Z(S,n) =0 for s#0 and p# 0 ., (16)

Before proceeding to make Q A zero, we will effect a considerable simpli-

fication by demonstrating that we may consider only £'s with g°z = 0 . To
do this we momentarily drop our expansion and consider the exact change in

O0W produced by changing § to §', where

E'=g+fB . (17)

We have Q = Q' where primes represent quantities containing £'. Thus

—

A26W = 26W' - 26W = S{l'f§XVX(_§X§)+_§_- Vo B- Vi

+ yp(2V-£B - Vf + (E-Vf)z} dr (18)

where we have used B - Vp = 0.

Let us consider the first term which may be written
I =- va-[(i_x B) X (§ X B)]dT =- S-fv- [l £ XB Bldr

since VX (j X B) = 0 . Integrating by parts and making use of the fact

that B - n = 0 on the boundary, we have

= {1-gxmB-viar = (g-jxBB-viar
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which just cancels the second term of (18). Thus

A26W = S'yp [2(V-£)B-VE+ (B VD'l dr . (19)

In the region where p is zero the contribution is zero., Since elsewhere

p is second order and (Vo £) is first order A20W is higher than fourth order
if B ° Vf is higher than first order. It is now clear that if any £ makes
6W negative with §z° unequal to zero, one can change this £ by £° _1_30 +
(f*B° +°B") with ° =- £° . Since B . vi= B® - v% [BY vi%4BC. vi'],
t'A may be chosen to make the bracket zero, and §°- Vfo is of second order in
the region wheré p=20 B- Vi is s;acond order for this choice. A26W

is thus zero to fourth ozder and §z0 can be chosen zero. In the region where
p # 0, it is obvious that A2 O0W is zero and ng’ can also be chosen zero in
thi§ region.

To make QA zero, we must first have

A
B° % . e - Vx(£%xBY (20a)
8z  =r =2 =
\v
X
DE :
0 e . o A
B® 5 == ey - V x(£°xBM) (20b)
which makes -0 . Itis clear that -&A can be chosen to satisfy (20a)

~and (20b) since the right hand sides must integrate to zero over the length

L; _ék (O,n) is still arbitrary. The vanishing of th requires

B°V-&t - e, VX (£°xBY) - (21)
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and from (20a) and (20b) it is easily shown that 8/dz Q: =0 . By choosing
ﬁh (0,n) to make V- -_g_—h(ﬂ,n) zero ore:sees that-)Q’zA (.0,,n).;:aﬁ be made zero.

To third order we have

X
ag
26W° ='5_g_°-vp""[(v.§_")+-ﬁz.] dr (22)

The second term goes out upon integration by parts while the first term in the

bracket integrates out since V- §A ~e" shz . The term in (15) which previously

went out on integration over the zeroth order region is now zero since it is pro-
~ portional to gz‘? . This its contribution to §W in the third order in the region
befween S and the boundary given by (1) is zero.
Finally, in fourth order
26W4 - S‘{(QRR)Z_ jehh ¢ °q M\+ jzhh[gro QBM\_ geo Qr)\)t]
A\

r Z
(23)

X |
+ NV g+ (g V(v 1M g 4 5 £° VoMNV- £Myar
Vi

where V' is the perturbed region. Since changing § by fB only affects
the yp term, by taking f of order A, §zh(s, n) may be picked to make
V. _g_h(s, n) vanish, while V- _g_"(o, n) vanishes already. This simplifies the
integral over V and eliminates tﬁe integral over V',

Next consider the sz\ term in GW4. We are only interested in
_Q_-Mt(s,n) with 8 = 0 since otherwise the term integrates to zero in z . Thus

8/8z (§X E)M\(O,n) = 8/0z (_g_°>< §_°) (0, n) and we have for this term
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O

" :
M-8 M - e B M

' CEINE T3 |
ZM o ° .8 _ g 3o ) }rdrdedz . - (24)

+ M B

By integrating the terms in the first bracket and making use of the fact that

Vﬁ and g (S) are zero, we get

. AA : o
dj ag 8&1_ _
({a 62w 52 - 6 5= )} raraeds
| (25)
where
Mo Y o oA
(X B), (0,n) = (£ x BY)_ (¢,n) +(£% B (0,m) . (26)
Returning to 6W4 and completing the square cn QZ)\A, we can now write
L 5 2 2 dik)\
: A . Z AN 0%, T
ot ago' | | (27)
+3 M Bo[e? —5—9 t5 52 1+ 8055 [ 8% (v- M0, m} ar.

Since

AA

QMeBO (V- gM= o - Vx(ghx BY t e - Vx(£2x B, (28)

it is seen that. §4\A only occurs in the first two positive definite terms of

AA

(27). Therefore, £ may be chosen to make

_Q]t)\

(s,n) = 0 s # 0 (29a)
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and

(291b)

‘since Q)'X (0,n) does not involve én'

.. That this is possible follows from
v'an-al"gument similar to that used in making Q_A vanish by choosing ﬁ A with
" the chahge that V. fkh (0, n) is here chosen to make (0, n) + JO § (0 n)

vanish. The positive definite terms of (27) thus become

ZSI (On)l , (30)

which we temporarily denote as

2 .
4. Séﬁ dr , . . (31)

the bar indicating an average over the i-a.‘pid variation in z . With this change’

- and .(46), 5W4 can be written

A o |
2 dJ o

4 0 . AX O

ot 18 LIS
+ g0 jé"" e, vx (g xBY } ar , (32)

_ where
(é X B7) Z X B )(O,n) . (33)
n )

But ih is given in terms of _§_° by equations (20a), (20b), and

v 5_)‘ =0, (at least insofar as _§_A enters into 5W4 -in eq. (32).) Further
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T or

' frofn, eq. (14) and g: E 0 » 6W4 .can be expr'eu'e_d entirely in terms of
gf(o, n) - It is found that all the ‘coeffi_cienta of g: are independent of @

" and z #nd depend only on r . Thus we may Fourier analyze the §: (0,n) in
terms of © |

§.(0,n) ='z g, (min) S (34)
m .

and 6VI4 will bréak up into & sum over m and n with the m, nth term only
involvihg .'gf (m;n), Since edch g:(m;n) is still at our disposal as an arbitrary
functioix of r subject only to gr° (m;n) IS = 0, we will have stability if and
_only if every one of these terfns is always positive, while.if a single term
can be vi'n‘;de- negative we will have_in.tability‘. |

Let us restrict ourselves to a single term of this Fourier expansion..

(m # 0) and suppress the m and n indices . Then Q:‘A becomes

M1 8 YT N 0¥, 198 .o ~
Q" = ¢ gg (E"X B+ B o + 755 (6, Bg)  (353)
Q,n_im{ 'I~-1-k.r'B-°.+Bﬂ ° L(e¥x B* } 35b
r = U PB) 6 F(ETXBY), 5 - (35b)
Similar o AN .
imilarly by eq. (14) Qe ‘becomes
 nkrB
Qe =- 2 {2 +BM° +(gMx BN} . (35¢)

~ Substituting for ﬁ,)l its value in terms _of‘ gr" by equations (20a) and (20b)

we have
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: (o]
T .S 8 a4 aaaa
( ><B,)=z (B , 4 36)
£ 2, i,zpihn°a? i it | 26)

AA _ im o |
QM= & %) (31
and
AN 8
Q" =- g7 (VE°) , , (38)
where .
a , 3 1 2
6 . |1, (p;hr) - 2
nkrB 2.p.ha, 2, \Pi : L,
- o \ iYi77i go| i fi 2, 2.2
ve ——2+Bny il ig TRST [-2r%(phe)+ (1 2p7 02 AT ]
. i i , -
(39)
VP I,(x)"
with . ' ) R
_ . I'(x) = ;‘_173‘_)_ . (40)
The jz)‘)L terms in (32) may be written, after using equation (14) and

~

integrating by parts as, |

dj.k)t ) ' .
§ =2 v1e2? ar . (41)

-The: m,nth term in 6W4 now reads

12+ & el |2

4 ' m2 2,.0
26W" =Sd1-{—-_,_— vl g
. 'A r

4 .n ' ' :
+%%,- Vlﬁflz +§° j: e, " Vx(g:t x_]_a_xx)} (m # 0)

(42)
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where the absolute value signs arise from the product é_“;: (m;n) g:(-m;-n)

Y

on application of the reality condition on g: . The remaining terms (£ X -)\)

. . o i
can be expressed in exactly the same way in terms of gr . Before combining

all these results into a final formula we must consider the case m = 0.
Here by eqg. (l14) g:(O;n) = 0. Therefore, QTM‘: 0 and Qév‘z inkBogg

and the remaining terms are zero so that for m = 0, W is positive definite

and can be made zero by choosing gé’ (0, n) to be zero. Consequently, we can
suppress it. Further the negative m terms are just equal to the positive terms
so we can multiply our sum by two and restrict it to positive m and all n.
Finally our sum depends only on the absolute value of E,: s0 we may write

|§:| V=M. Carry&ng out the integration over 8 and =z and restoring the

s ubscripts we find

S
2 4 5 o ,
4  8w” \ S HPmin Qm;n 2
26W" = — ), S rdr {( =) * — “m;n} , (43a)
g o] r
m>0
n
where
2, d;" 2
Ozm,nwm tIr v
: m;n
2
1! (p.hr)
B o 2 £, 1 : : ¥ g
' B N 2.2 6 i 2 2.22.5 5 L 2
- . h™o. - i .
V———z[‘é{j p;hio;” r T (ST (1-2(45 +p{h "z ™)1 *(phr)+4°1 (p;hr)%)
m;n° 1 i
$ 2.2 e (lglapn)© 2,22 0 -
tLy b TT{q,hS) (1-2q,"n"r"I'(q;hr) ], (43b)
i

and v
™m;n

b

is given by equation (39).'-
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We have thus reduced our stability problem to the consideration of the signs of
an infinite number of one-dimensional intégra.ls in r of single variables P,
These are worked out in section IV and minimized over m and n there and
stability criteria are established.
In the reduction of the problem of stability to equation (43), it has been
: .

tacitly assumed that _§_)L and EM\ could always be chosen (under the constraints
imposed on them) to satisfy £ - n = 0 onthe boundary to first and second

order respectively. It wiil now be verified that this is possible. Observe that

on the boundary

Q-n = 0 (44)

' through second order. This is easily seen since Qo é.nd Q)L are zero and

Q- n = 'QrM‘ (S)~ m g: is zerb since g°r(S) is. We will drop the expansion

——

in A temporarily and consider the implication of Q - n = 0. Expanding the

triple vector product in Q we have

n-[B-VE-£-VB-BV-£] =0 (45a)
or since B - n= 0 4
n-(BrVE) =n-(5VB) (45b)
~Thus
B- V(g n)=n-(B-VE)+£°(B- Vn)
= n- (£ VB)+£ (B- Vn) (46)

If we write £ = £, +§,, Whére £, = n(§-n) then
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0 = _g_,,°V(£1_-_§)=(§_,,°V_§)°§_+(_§,,~V§)-£ (47)

so the £, terms in (46) become
“(_g_n 'VE) ° _B__+_§_u °(§’V2)

=(BXE,):VXn = 0 (48)

_since n. VXn= 0. Thisis easily seen by applying Stokes’ theorem to the
line integral 0 = SE * df over an arbitrary curve lying in the surface.
Therefore, (46.) becomes |

B-V(£'n) =[(VB)n+B-Vn] £ =(n-VB"n) (£ n) (49)
since B-:Vn is obviously perpendicular to §, . These results are, of course,
valid only through second order for our §'s . Expanding (49) out in A, we
find that the right hand side vanishes to first order and (§* 2))t is zero for.
(s # 0). Since the restriction on _-%)t (s = 0) is V°§A = 0, we can pick _§_A
to make (_é 51_))t independent of 6 . If one integrates V:* ﬁk over a cross
section, one.sees this constant must be zero. Proceeding to the second
order in (49), one sees that (§° E)M\ is also zero for s # 0 . Arguing in a

A

similar manner, one sees that (§- 3)>t (s = 0) is independent of 6 , and

| by integrating
: e
v-gM= .g% - wx(ghx BY (50)

for s= 0, m= 0, that.it is zero.
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In many equilibria of interest there is a discontinuity in the plasma.
One could treat the stability of such equilibria by including surface terms in
the expression for W, equation (6),8 and carrying out the ané.lysis we have
developed including these terms. However, a surface of discontinuity can
generally be regarded as a region where physical quantities vary very rapidly
and one can arrive at the properties of a discontinuity by letting the thickness
shrink to zero. In practice the region in question is not zero but can be treated
as zero to a good approximation, ~Furthermore, it should not matter how we
pass to this .l;mit (if it did. the approximation of the region by a surface continu-
ity would not be a good one). Therefore, we can regard the physical quantities
as continuously but rapidly varying over this region while we reduce the prob-
lem of stability to the consideration of 6W4 as given by Eq. (43) and only then
pass to the limit of a surface discontinuity. However, it is necessary to make
the jump in £: n across the discontinuity zero in order to prevent cavitdtion
or interpenetration. This can be done by considering only §'s which vary
slowly over the region as its thickness goes to zero.

In evaluating the integral over the region of rapidly varying quantities
- as its thickness goes to zero, one can neglect all integrands which remain
finite as giving zero contribution in the limit. There are some terms which
are broducts’of_one factor which becomes large to first order in the thickness
and another. smoothly varying one. In the integration it is permissible to
take the smoothly varying factor out of the integral and integrate the large
factor, Other terms are products of two factors one of which is large of the
secoﬁd order, such as djn/dr , and the other smoothly varying. For these

' terms it is not permissible to factor out the smoothly varying factor but one
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must inte'grate by parts ﬁrst réducihg the firdt} factor t_;o.fir.st orde"r of

iargonoss and then ‘proc:e"ﬁed a,o loofore;. Finally there occur ‘two terms which

are ea_ch.products of two large .vfa‘fctorso These terms just canool eaoh 'oth.or, :
| We shall cérry'out.-the aboVe scheme for an e‘q_u_il‘ibrium which has

a disoontinuity in pressure, a surface lorigitudinal current jm *, and a dis-

_continuity in the volume longitudinal current. We define p* by the relation

vz ve+ B ‘ o L. (51)
where v* is slowly'va_r?ing and B" rapidly varying. The last term in .
équation (43b) can be written

- Jo F: dr F p , (52)
with F slowly varymg, From it we get rF [[B ]] where [A] 1nd1cates the
jump outward across the boundary Smce the dJn/dr term in (43b) is of
second-order largenesg, ".‘:'57 1ntegrate it by parts-and substitute for j" its

value in terms of B" to obtain o

(S ve rar=IMwr 6 + [M8" e,

2 .f | d(rv* gz)
B" aB"
R e
~n2"_.'2 .' E
S(—a——) § S d(}% /z») '.d(ggr‘r ¥ ar o ._(53) e

'Note that the f1fth term on the rlght side of (53) is of second order of 1argeness

22.

.as already remarked. The m /r term in (43a.) glves.nothmgo
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Expanding 6ut the [d./dr e Q] ¢ term in (43a) in the same manner and col-
lecting terms, we find that the two large terms cancel. Making use of eq. (51)
agaih,.' assuming. i1 and pﬁ are zero outside and denocting the radius at which

the disc':oh'tinuity occurs by R, we obtain finally

R 2
zaw4 ;83 z {§ rdr [ gn“)-kam’““ ’“] ) Mg

V L'y
me o ¥ msn rzR_
. |
2

' ( 2.2 62 AL 2 2.2.2 L

- ¢ ! 1

+[[[Bﬁ]]\ A BVW (-20f4p2n°R )1( hR)+1 1ip hR))
- ey

| 2 [11{qkR)
+z g% S B (Wq ) (-29/n*r%1°(q (ER))
- 0 L
i .
PR Z’Bo Ill“(p;’hRﬂ) 2
-[B"1 ) 3P g 3.2(2 +iz+ ZhZ’RZ)I (ghR}. |
TR\ {

.,
+(30+2p hR%) 1 *(p,hR )Z)
bl |
N EAS - | BCS
Ymin’ | |

2
0
Iﬁ(p hr) ’

S im 2.206 2, 2,2 2,05
%on ™ Ty dF 7 z\§ p;hgy T ﬂm @'2“1 g b (p;hr)
' R ' m;n Vi ‘ : : s )
2.5
+gi I%{p;hr)’)
Ny 2 . (1l{ghr o o

- 2.2 € ‘2,2 2.0 , : o
. -l-z‘qi h o‘ r (——(m)) (& Zq h r'l (th)>)4(0< r< R) . (55)
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- and Vv
m:

is given by (39).

In deciding the sién of v'6W4 in eq. (54), one can treat 4 as the
arbitrary function instead of |§r°[ with the provision that u(S) i_s zero, and
further that - o vanishes at all points where v does and p' is continuous at
these points. With this in mind, one can minimize the part of § W in the
region R< r< S over a.l.l_' p such that u(R) is prescribed. If y does not

vanish in this region, one gets for this part of 26W

2m
1+(R/S) 2 :
- m : . (R, (56)
1. (R/S)Zm Km;n

and thus can replace the limits o the integral in (54) by 0 to R and add this
contribution., If, however, v does vanish in this region,‘ let aR be the
smallest point at which it vanishes. Thé contribution to 26W from the integral
‘between R and aR has the minimum value |

2m |
+ 1 2 : 7
m aZ'm 1 “mn (R)/ : (5 )
a -] ?

~_ Because u' at aR is cohtinuous,_ the contribution to 6W from the region

aR to S is not zero, but it can be made as small as one wants, for instance,
by taking

: “ = ﬂlci& sin k (r-aR) aR<r<aR+<w/k

g =0 ' aR+w/k< r - (58)
and letting k .approach infinity. Thus we may neg.lec‘t any contribution
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fron this region. Thus we may take (57) as the contribution to (SW4 from
tﬁe external region. |

Up to this point we have considered equilibria in which the region
R< r< S was filled with pressureless plasma. For equilibria in which
this region is a true vacuum the energy principle' can be genera;li_zed.8 Instead
of minimizing 9_2 in this region, one minimizes (V X .;A_)Z, subject to the
boundary conditions nXA-=(n-£)B at the plasma iﬁter.face and n X A=0

at the external boundary. The minimum A satisfies

¥YX (VXA) = 0 (59)

But b-e, with p given by equation (56) satisfies precisely these conditions,
and yields the contribution (56) to §W. Thus in the case of a \}acuufn, we
take the external cortribution to be precisely (.56) while in fhe case of a pres-
sureless plasma one chooses (56) or (57) according to whether p has a root
in this region or not. The difference in the two cases may be seen by observing
that the pressureless plasma develops a sheet current at aR which is not
possible in a vacuum. It should be noted that _the vacuum case is always un-
stﬁble if the corrésp&;mding pressureless plasma case is, although the converse.
need not be valid. This is in agreement with the First Comparison Theorem
“of the energy principle paper.8

It. is possible to rewrite eq. (54) entirely in terms of the rotational
transform angle‘ t which was discussed in Appendix II A and the quantity

'l(vacﬁum) which was obtained in Appendix IIB ,
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m>0 ©° *
n .
n (B ) 2‘: 0
1 d(firL ) _min +[- L]+ "] z R %*r—

: 2
¢g° (T
4™ B B < m;n ,
- 2B ]]V"(vacuum)] W + Am;n} , (60)
D r:;R_
where
kr — o
“m;n = VIR Bo Vm;n [ﬁr (m;n) I ’- (60a)
= L 2T L .m 606
Vmin - ti ot z Ly . (60b)
i
: 2_0.8
- 1 a , 34" 4v“rB°j
am;‘n =m + TV .a; (1‘ dr ) + o Z V"(vacuum) (6OC)
m;n k(l}m.n) .

and Am-n is the contribution to 20 W from the external region given by

s

equation (56) if the external region is a vacuum or by equation (56) or (57)

if it is a pressureless plasma depending on whether 7m'n is zero in that
, 3

region or not. Here the rotational transforms, LiGG from the helically sym-
metric field depending on u, (" from the axial current, and the term

"n

(vacuum) are computed over the length of the machine (2w/k).
" The terms in j P and l[Bﬁ]] are similar to those which in the axially

symmetric cas'earepresent the energy released by the expansion of the gas. |
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‘The first two terms in §W represent the change in magnetic field energy
produced by the perturbation. This erergy cannot be avoided since in expanding
| the gas it is always necessary to twist the lines to some extent because (
varies from radius to radius a;nd it is impossible to interchange these surfaces
exactly. Ti’xe terms in M represent', the work doné by the force term j X 6B

(computed at a fixed peint). It is only present if there is some voltage driving

the longitudinal current j", and it is generally destabilizing.
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'Section IV - Stability of Equilibria II, Stability Criteria

In the lagt section the minimization & 6W with respect to all compo-

1(_mQ +nkz) was carried out. (In this section to

.#g#ts of § excépt" 5:('m§n) e
" ”minimize" 'a qua._ntity will be used to mean “réduc‘eit tovits smallest value',
or when no such "minimum" exists, "t_b reduce it so as to approach its lowest
bound". ) Since the final minimization is too difficult to do in general, it will
be d.orlle for several special cases in this section. "Intefchange" insté.Bi,lities
' .whivch‘ are due to a plasma;. pressure gradient‘wi.l.L first be treated. "Kink'" type .
»ins'ta'bilities- due to the presence of axial currents in the plasma will then Be
~ discussed. | |
A. Interchange Ins'-tabi,l.i‘tie.s _

vOne 4'main class of instabilities can be understood as an interchange
of lines 6f force so as to car?y plésma otward. It has been shown for axially
symmetric situatiorlls ~that such an interchange tends to decrease the potential
energy by an amount essentially propox.'tiovnal to Mi‘ V" where M and V are
' thé mass and volu'mé' contained inside a surface of constant ¥ . The prime
répresents differentiation in respect to ¥ . If the magnetic lines must be
di.ét.o‘rted in order 'to‘ make én interchange, ener gy must be given to the mag-
netic field. if this ""twist energY" just balances the ''destabilizing energy" ,
the system is .neutral inrespect to such instabilities,

Probably the simplest case in which this effect can be seen is in the
inherent stability of azste llarator with no stabilizing windings, for example
B-1. The confining field in this machine is madified by  a series of '""bulges"
due to the finite _spaéing of the coi’ls which are used to maintain the longitudinal

field. In this éé.se the m;n term in §W can be obtained from equations (54)
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and (55) of Section III as

2m
L+(R/S) (0

r=R 1l- (R/S) m.

. 2 .
4 8 ' : -2 2 :
ZOWm;nz -E—- {&err {;a-z- M +,(g-‘ri) }+m'p2.
o - : : v

where 5
o . 2.2 I(hr) .
| 27, i 0%2 n%s“ U 2 2.0
@ = m“{1- L (&)* S5 ¢ ) (1-2h°r“1°(hr))} o (la)
- t B® 5 Al LRSI !
and : ’ ’
‘ nkr_Bo o :
p= — & . . (1b)

Since pu has no singularities the treatment is the same if the external
region is a pressurelessvplla‘sma as it would be if it were a vacuum. If the

pressure is parabolic so that

_ 2 Bg? |
B = 2p /(B®)=- l——o—r— L (Lc)

where .po is the pressure at the center of the plasma, and hR is small
enough that higher order terms in the expansion of the Bessel functions

can be neglected, Eq. (la) reduces to

@ = w? A2 - (1d)

with .
202 p?

&= 3™ () 5= - (le)
n kR '

The solution of the Euler equation for minimization in the internal region

'is, therefore,

p = const. J_m(ﬂ—\r) . (Lf)
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It may b'e.assumed that u(R) # 0 since it-can be seen easily that if 6W

is negativ? with p(R) = 0, it ca.n_>be made.negative with u(R)# 0. To see
this let p make GW negative with (R} =0. Then AJ +ﬁ will inake W
negative for any ﬁ and A suffiéiently..lar-ge.

| Mu.l'tip.ly‘ingv the Euler equation by g and integrating, one obtains

4 gr2 TARJI(AR) | g g2m

26W_ = ( st ————=) (W) __p - (1g)
Cmin” kT TAR L-(R/S)“™ r=R | :
IE,v'ym" is the lowest solution of the trancendental equation
Jm(x) L .l-(R/S)zm . (Lh)
XTIy X))~ ™ (R /s)E™
pcritical is given by . )
y 2 2.2 |
_ "m n k _ (1i)
B‘m; n 2 : ‘

3m® hf(Ys)°

Kruskall.‘;‘has pointed out that in a closed system such as a stellar'ator
only certain wave =lelngths are allowed. If the machine has a transform (  ,

. it is necessary to require the matching condition

g,z )= g0 + Mz +1), (1))

g where L is the length of the machine. Thus only wave numbers nk - can

be considered such that

m L ‘ | (1k)

where N can be any infeger. Then Eq. (li) becomes
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.2 2
% ALy /Ly ) 2 ST
e *; o N M) - (1)
G (@S/5) S

where L., is the length of a bulge and L,, is the length of the machine.

B M
In the CéTSe of B-1, (= .16‘40 R and for valv.és of m less than thirty, B is
most severé!.y.réstri.ct-ed By‘ m—z and m = 11.. Higher m's can probably
be ignored as the instabilities which they rep:resen_t would be localized in a
re gioln smaller than the ion Larmor radius for which the present theory may
not apply.
If (R/S) is allowed to approach 1, it is clear from Eq. (1h) that y,,

is the lowest root of the equation

(v . ) =0 . (1m)

The effect of terms of the next order can be determined by simple
pefturbation theory. If
2 =
a = m -Ar - Ar (1n)

and
p(R} = 0, . - (lo)

B can easily be shown to be given by

K g (J_Ar) r3dr
B =B A SR (mr) rdr

~where Bo is the lowest order critical 8 .
The determination of the critical 8 when stabilizing fields are
present can be achieved 1n a similar way, but the presence of singularities

in the Euler equation which is employed, complicate the determination.
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‘Again it will be assumed that there is no axial current, i.e. jn = 0.

—

It will be shown later in this section that helical fields vﬁth £=3 prbvide
‘optimum s‘t.abi;lization. Thié caﬁ be seen crudely from tl.xe fact that dLGG/dr is
much larger for £= 3 than for 2=1or 2 (see Ap.pendix. II'_A) while higher £'s
require ‘mof.e power td produce. At first, therefore, only vhe,li_ca,l ,fié.lds with
£=3.and bulges (£ =0) will be considered. Further, hR will be taken to be
small. -

If the plasma occupies the entire tube (R = S), the boﬁndary coqditibn
on g: at R will require thé.t i(R) =0 . Iftwor egions are ;:onsidered (R< S), .
the condition that §: is c.on'tkinuous at the boundary ret:iuires that py be céntih-:. s
uous at. R. For the most part the two cases can be treated at the_sarﬁe time.
Here the case where 1 'is zero at R will be treated. The.minirr')izav,tion lwi,ll be
carried out for an arbitrary -préssuré distribution, which will then be_ selected

to give the maximum value of B_ ..\ .-

The expression . (Eq. (54) of Se'ct_ion'III) for 6Wm‘ o can be written for

p(R)io as
2 Al ' :
~ Y a 20 S
oW - | e @
’ o t - : . :
where o 2.23.3 2 2. °
> BE'(t) L(2p0 t"+5 q € t) | ,
a=m -~ - 2 ’ (Za)\
n 2.2 ' B : i
. - _ ,
and ’ o , )
s o, n , & 2,2 . o D
p = kRB (lan +Z.z.piz5i t )t.gr. ) (2b) )
& _

Here-
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b € L
»t=-%,'6.1= p /R, € =p IR ; - (2¢)

8

€
i and pi .a.re

the prime represents &ifferéﬁtiation with respect to. t, and p
respectively the amplitudes of the Fourier components of the first order distor- |
tion of the p‘la‘.Sm‘a surface with wave .len'gths such that P; he}ical and qQ; bulge
periods can fit into the fna.chine. Thus any superposition of helical fié,lds which
haye a boﬁndiﬁg m‘agnetic' su'rface of the form }5:’ pl6 cos (30- pikz) is considered.
Similarly, the £=0 fie.lds. also can répresenf the superp_dsition of many bulges

with different wave lengths. (Recall that the restriction P; # q; was made in

Section II.') The function f{(t), which is related to the pressure by

pP=pfloy(t-tvy )y, (2 d)

is an arbitrary given function of t, such that

£(0) = 0, | (e

1]

and

£ (1)

1. , - . (2 f)

First f(t) will be taken to be monatonic. (Diffusion of the plasma would

probably insure this.) The diamagnetic current is related to f (t) “and B,

where .
' - 2p(0 o :
B
by

oo BB |  @w

2 R

Clearly Ap, must satisfy the conditions
p() =0, - (2 1)
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and

p(t) = 0 . | : - (2j)
If a is defined by

az‘ =. n/2m 2 P, 6i2 ) ' (2 k)

i (t) must go to zero as t approaches a at least as fastas t - a . (That is,“

2nkRB , -
Iu(t)l<l(t a) ——— §M-I ;. . @2y

where gM is the_maximurh value of E: in the vicinity of - a .) ' (a) must

be continuous.

Lot Y 2ol +3 a? el
@) e 8))
| i
Then
) 4 ewzv b w? Bﬂ(ﬂIYt) S ' -
zau%rn=j?.5;g '577“_7) +m) “Yeat . (2n)
P Yo t :

The critical B will be determined first for those values of n and m for
which a is in the range 0 < a < A'l . The minimizing ;1 must satisfy the
Euler equation.

e (BEODO) - mty g (o)

wy L
Bt 2\
t (t -a") t

(The normality condition does not have to be carried explicitly in this

discus.si'g)n.-)': In the vicinity of the singularity at’ a , Eq.:(20) behaves like
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2
p+ '_;_ MR Bf'éa)r(ai) - mZ )u=0 . (2 p)
4a (t-a) a ‘

The contributions to § W from the two regions t< a and t>a will be con-
sidered separately.

For t> a the solutions of Eq. (2 p) are

po= Ty e x 2 I0A M (ta) 2q)

where

A = ﬁﬂ(%gﬁi). . ' | (2 1)

a

It now will be shown that for the values of m and n under consideration,

3critical is determined by setting A equalto 1.

If A>1, the solution p of Eq. (20) which vanishes at t= 1, varies

for t suffiéiently near a, as

p = {Tt-a) cos (3 {A-T fn (t-a) + y). (28)

It, therefore, must possess at least one zero for t> a . For a particular

1

Al a function Ky defined to be identically zero for t< t) and to be a solu-

value of A, A2 1, let t, be the largest zero below 1. Consider for this

tion of Eq. (20) for t>t It follows from Eqs. (2n) and (2 o) that for this

L
, and W< 0 for A> A . Therefore, the critical 8

corresponds to a value of A =1

p,lj 6w=0if A=A

In cases where A< l, first consider any p which is identically

zero for all t less than some t,>a, and vanishes at t= 1. It will now

, an A1> 1 exists such that §W is positive if A

be shown that for this tl
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is less tha.n Al a.nd. cansequen‘ftly'positive for all A less than one. Consider
the pressure distribution g1ven by .Eq {(34d) whlch will later be found to lead

to be largest value of B It can be seen that for this pressure distribu-

crltmal

tion with-m and A= B/B set equal to one, the general so.lution of the

cr1t1ca.l

Eul.er equatlon, Eqa (20), is
= [1- (2% /¢ )]”Z [C+D in tz’—az)] : (2t)

This U 'c'anx_mt vanish for t between a and 1 since it must vanish att= L.
Since §W, given by Eq. (Zn). is a continuous function of B, tll’. t_he.positi‘on

at whi,_c’h the m-i’vnimivz‘ing #4 must fir st vanish for a given Al> 1, must approach
-a as Al,vappfoaches one. It can, therefore., be seen that for any t;>a, an
A > 1 exists below which §W> 0 for any W which is 1dentlca.l‘l.y zero for:

1

t< t, and vanishes at t = | .

L
It is StlLﬂ. necessary to show that no other U which vamshes at t=a
and t = 1.(1 €., ty = a) can cause J,nstabl.hty with. A< 1. To do th1s, assume
that such a pu (p) exists which makes 0W negative, say ‘(SW =- € . It will

filfst be shown that for any § sufficiently small, the contribution to. W
from the region between a al’.ld. a 4!-"{’5 is positive so that the integral from
t= a+0 to t=1 must be more negative than -€. This integral tvhen will
be shown to differ from a positive integral by an amount which cas be. made
- as small as desired by taking 6 suffic_ientiyvsma.ll.l. This contradiction will
complete the proof that B < Bcrit'cal‘_ if A< 1.

The contrlbutlon to 5W from the reglon between a and a + 5 is

found from Eq. (2 n), to be-
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1=87 5 T+ (& - =2y pflar. (2 )
we ) G- e o
Let
x = t-a ' ('Zvv.)
and .
vy = g/{x . . | (2w)
Then '
5
8% _.2. H2mx/a)%-A —2 | ~2
1= ¢ a |\ {xF)+ o Y o++ ()} dx, (2%
o

where the prime indicates differentiation in respect to x . The first two
terms are positive since A< L. Egs. (21) and (2 w) show that ?(0) =0 so
that the last term on integration is obviously positive for any y .

Now consider the value of §W which corresponds to‘ a >particular L
(ﬁ,) which is zero for t< a +§ /2, increases linearly over the region between
a+06/2 and a +0 and from thereto t =1 is the same as the 'previous [T
which was assumed to make 6W negative. Since A is less than the A,l
which determines the solution of the Euler equation which vanishes at

t = a+6/2, this value of 6W must be positive. It differs from the one

1
for [, which had to be less than "-¢ by the amount

811'2 ° A2 m® A | A2 | :
I=—k—a5 {d +(-—2-—--—2)p,}dx. (2y)
a 4x :
6/2
- | 2 2,22 .
When this integral is evaluated, it is found to be less than 64r " n k R Bzg 2 0]
. . k m 2 o °M

(Use‘Eq. (21£).) and can be made smaller -than € by a suitable'choice-of o.
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This completes the proof that no y exists which can make 6w negative if

A< 1, and, therefore, that B is determined in the region t>a by

critical
_'settmg A=1 m Eq. (2 r).

Eq. (Z q) can be replaced by
pe o e F{I-A M@0 g,

“in the regionfwhere t is less than a, and the ’e.niti're ergument- can be repeated
to show f;h,af A= 1 defermirres the critical B. | | -

If a 'is zero or one, the argument can still be carried through. Values .
v.of n and m rvlfor"_wﬁich a.2 is'not.in the range 0 _<_ a2 = l must still be
c.orxsidere.d. "‘Befo-re cprisider_in‘g these, the pressure di-srribut_ion which ma’x-.‘ '
rmizes the eritica-l B witH a2 in this range will be deferrninea It will then
‘be shown that for thlS 0ptimum pressure d1str1but1on, 1nstab1[1t1es for wh1ch

.a; is not in this range lead to higher cr1t1cal values of B .

If O ;_5 az =< 1, the critical B is determined by setting

critical ~ "a" ffalI{a) . ° . ,
It is now necessary to determine the pressure dlstrlbutmn, i.e«, f(t), so

critical 18 @8 large as p0531b1e. For any

~ that for the wor st value of a, "B

- partlcular pressure dlstrlbutlon f(t) ’ Eq (3) requires that

Beritical = TEITTET S B
or - - ‘
o 2 (3b)

.Bcntlcal (a) I'Za) y
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If large enough values of n and m are considered, a can take on essentially
any value, so that it ‘may be treated as a continuous variable. Integrating
both sides of Eq. (3b) with rés'péct to a , and using the boundary conditions

on f(t) given in Eqs. (2e) and (2f), one finds that for any f

1 _4
a
B.ritical = S e 4@ - (3¢)
o , '
" Now considér a pressure distribution defined by
t4/r(t)

gl(t‘*/r(t) ydt

o]

£ (t) = (3d)

Then, ingerting this f (t/) into Eq. (3),

L4 1 4 |
Bcriticalz min 50 T(a) da = So Tty dt . (3e)

Since J'(t) is given by Eq. (2 m), the optimmumn pressure is given by

t” - In (1+ ) )
f(t) = - 39 (3f)

and the critical 8 is

‘ 2
: : (291512) 3 4
,, Beritical = *5?2—5—2 (1- —49— In (-l+—=;¢).) . (3g)
i . -
Here '
2
| EqiZ €
$= —237 - - (3h)
' Zpi 0, : _
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If no bulges are present, the optimum pressure distribution. is parabolic.
If, in addition, only one ‘helica.l field is present, the inherent stability is
given by , ,
82 - S -

Beritical = (%) ’ (39)
for the case of £ = 3.

- Eq. (3 g) can be somewhat simplifi‘edlsfor use in numerical computations
by an application of Parseval's theorem. In particular; since to first order -

the distortion of the plasma surface due to the bulges (£=0) is

-%= Zes cos (qskz'+as').. (3j) ]
s
so that
1 d .
T a% - Z €, gk sin(q kz+a ) , | (3k)
i

it can be seen by squaring both sides of Eq (3k) and integrating over the

length of the machine that

5 2n/k .
z q 2 € 2.1 S (dp/dz)z dz . (31)
o 3 ' 7

of s kaz

._Since the field along the magnetic axis due to the bulges (£=0) is

€ _ . . .
B, _-ZZBOGS cos (qskz+as.) _ (3m)
5 .
it can be seen in the same way that ' ' | -
- ' 2w /k :
z ql €Z- -—————z- S (aB/dz) %dz .  (3n)

R=0
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Helical fields with different values of £ can be treated in ex.act‘ly

the same way. In particular,

L2 o ’ :

N 52 = K s 2 ,

%~ ”S dz , (30)
z s~ .R? p : o o

S o . |

2n/k ;

\ 2 2 1 . 2 .

Z Ps 6_,3 = TI‘EZ'SO (dp/dz) | dz , - (3p)
S B

where p is the lowest order distortion of the blhasma_ surface due to the
helical fields. These expressions could be expressed in ter;fns of t.he he lical“
éqntribution to the ‘mégnetic field aléng the magnetic axis as was done in Eq.. |
(3n) for bulges. | |

The expression, g} Py 652 ) cannot'be converted into such a f.orm. A

perspicuous form of it is

() psé" (25 )(Z 5, )cosze (39)
) o T

where :
B g'(ps-g),és' - ‘ ot
cos @=1- > y _ - (3r)
and - .
S Z'pzé.z : 4 ‘
P = ——-—Z-—s s 5 ' (3s)
%} 5 < g _ : o

If the p_' do not differ by much from each other, "cc‘os 8~1.
It is still necessary to shoW that inst'abilities for which a.Z lie outside

* the range which has been cons1dered do not lead to lower values of Bcntlcaf

.-8'9- l . y .



For the pressure distribution, Eq. (3d), 6W is given by Eq. (2n) as
| 81\'2 ! VA mZ | 1:‘2 2
o c : ,

 where B. is the B defined by Eq. (3e¢). Obviously 8W is positive if

critical

a® is less than zero and B is less than B'c . In order to consider cases where

a® is greater than 1, one can make the transformation .

p=a-t) v . | | (3u)’
in.Eé. (3t) . Then

' 2 .1 2
26w = 5L ( {@-nom? -1 &
Q

2 2
1 1 m (a-t) ﬁ -t
+ (e + + ) |
Zt " 2(a-t) £ B (a-tNatt)

Z)YZ} tdt . (3v)

It can easily be seen that if B/B'C is less than 1 the last term in Eq. (3v) is
less than (l/4(a-t)})yzt . Since y(l)=0, 6W is positive. |

| For equilibria in which the plasma does not fill the enfire'tube (R < S),
the analysis can be carried through in the same \;vay as before for values of.
m and n which make aZ < 1. The argument which shows that all ufs which

vanish at t (0<a<t, < 1) make §W positive if A is less than one can be

1
carried through as before since it is not changed by replacing the boundary
condition pu(l) = 0 with pu*(l)/u{l)< - m . Whena pi'essureless plasma exists

between the plasma boundary R and the walls of the system and 1 <a.2 <‘(S/R)2'

26W differs from Eq. (3v) by the term
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8wl a2™My 2

t ™ o (a-1) y ()" ,
a 1

the contribution to §W from the external region. (This term is obtained

from Eq. (57) of Section IIl.) Thus, if B <B’C- s

2

2m ,
26W > §k1 (m (azmﬂ)_(a-l) i
(= -1)

by ? (3w)

and, therefore, greater than zero for any a which is greater than or equal fo
one. This completes the proof that the optimum pressure distribution for
stability is given by Eq. (3f) and the critical 8 by Eq. (3g).

If the external region is really a vacuum, pu(a) is not necessarily
zero so that the stabilizing term due to the external region, (by Eq. (56) of

Section III) .
2 2m
8w m 1+(R/S)

+
1- (R/S)*™

(a-0ym* ,

is negligibdy amail if ‘a- i8 mear 1'. It can be shown that thé system is unstable
for some values of m and n which make a sufficiently near one, if f'(l)
does not vanish. The pressure distribution would then be expected to adjust
itself 'sé'"a‘s:‘f:s:"satisfy the condition f'(l) = 0 . The critical 8 would there-
fore be somewhat lower if the external region is a vacuum, than that given by
Eq. (3 g) which was obtained by treating the external region as a pressureless
plasma.

The function f(t) has been assumed to be monatonic. Consider some
non-monatonic pressure distribution f(t). Then by Eqs. (2e) and (2f), T (t)
must be greater than f'(t) given by Eq. (3d) for sofne value of t. The critical

B corresponding to instabilities centered at this point would be lower thanthe
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one in Eq. (3g) so that such a pressure distribution would not be the optimum
one. This follows from the fact that for the optimum f, the right hand side
of Eq. (3a) is the constant of Eq. (3 e).
The problem can be carried through in exactly the same way:r for the
case where hR is finite and any ;:om‘t‘;ination of helical fields (with any 1)
amd "bulges' are present (subject to the condition that no two fields with |
~different values of £ have the same wave length). . Again consider the case

where all surface currents are zero and jn and therefore " is zero. From

Eq. (6 0) of Section III

o4 _enlocl o2 2 N T
zawm;n=T{S((w) +f§p rat+m e w() }, (4)
(o] a+ -
2n? BB L0 (6) VO -
2 2T OV WO acuum,) n
K(EI24 g ()
and _
: o
g o= EZR?(% + ZLS (1) te’ . ~ (4Db)

S

Again jB has been expressed in terms of the pressﬁré distribution given
by Eq. (2d) by means of Eq. (2h). Here Ls(t) , the transform associated
with a helical field which depends on § and z as cos (lse - Pg hz), and
V”(vacuum) are computed over the length of the 'machine (27 /k). Note that

bulge fields are included here by setting £.= 0 for some values of s . The

numbers a are defined by

m

2wn -
UL +2L(a)=0 , (4c)
s ' :
The number a, is the smallest root of Eq. (4c) such that 1< a,< S/R or if
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;
i

no roots exist in this rgng, .a_} = S/R.

For any a, a can then be written as

a = w - ELOI , (44)

(a-t)

where 2. o2
2w B tv"
(vacuum) (4e)

I(t) = — — ,
K[E (i (ad¥ (t-a) (e (@)/2! +.. )] %

Here the “s(t) hays been expanded as a Ta.ylof series about the point, t = a.
As in the ﬁre’vious analysis, the worst instability for values of a

between zero and one lead to critical B's given by

Bcritica.l= a Zf'(aﬂ']a) . (4£)

Continuing in the same way one finds that for these values of a , the cricital 8

is given by

. S.l t(g a8 (ey/an)® at

P = —T— - : . 4
Peritical 8n Boz v"“‘(I(t))(vacuu.m) ’ (4s)
and the optimum pressure distribution is
K t t(}&d(,g(t)/dt)z dt
s § —vtgn - ’ (4h)
8"ZB° D (vacuum)
m Beritical

The argument which was made in connection with Eq. (2t) in the preceding
calculation has not yet been carried through comp.iete,ly for this case. | The
demonstration that values of a outside.the range between zero and one do not
lead to a lower critical B if the external region is. a pressureless plasma goes

through in exactly the same way as before.
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In minimizing 6 W with § just slightly above BC , we find that the £'s
which make 0W negative change extremely rapidly over a small distance, and
thus describe motions for which the present theory may not apply if this distance
is as small as the ion Larmor radius. It is, therefore, interesting to assume
that such motions are stable and ask if Bc is raised appreciably. We determine
the new BC by minimizing 0W over all é such that d_é/dx <£ max/\
where x = r-/R, émax is the maximum ;ra.lue of é, and A is the ion Larrﬁor
radius in units of the radius of the plasma. A rough idea of the result of mini-
mizing 6W may be obtained by picking 1;‘: to be a constant gmax in the
neighborhood of a, a<x<a+ a , and to be a solution of the Euler equation

in the region a + @ < x < 1, joined to g: at a+ a so that g: and its

= gma,x
derivative are continuous. A similar function is chosen for x < a. We pick
a so that the maximum slope attained by the solution of the Euler equation is
gmax/h . One may then conclude that if the solution of the Euler equation
vanishes before the boundary of the plasma is reached (x = 1), then the system
is unstable since it can easily be seen that W is negative for this trial
function. It is not clear that this trial function gives the lowest value for 6 W
for our restriction but it is expected that it will give a good approximation to the B
for which the lowest value.of §W first becomes negative.

This program for d‘etermining the new valué of Bc is carried out by
a further approximation which makes use ofthe fact that the rapid behavior
of 51? occurs for x close to a . We, therefore, approximate the solution
of the Euler equation by a series expansion in the neighborhood of a keeping

anly the first two terms. For the trial function and in the situation corres-

ponding to Eq. (3t) we have
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; l-a 2
sW ~ Lo agzmxmg el 4 B 24 T ae (41)
. a ’

a

where t=x-a, x has been replaced by a wherever possible, and g:

has been replaced by &. The Euler equaiion for ¢ is

2
, . 2 & .
AL N TR 4
t a
and its solution is
ettty T2 L (4k)
- with
n=- %il ..é.rl R _ (41)
2, 2
. _m/a , | (4m)
4+2i \IB-.[
. or

£= A 2gin Bl pneso)s Ay°t3/2sin(\[%'1 tat+6,)  (4n)

where § and A are arbitrary,

2,2
Y = —m__/_a._._- (40)
° 2 3+8B

and
tan (6 -6 ) = B-1/2 . _ (4p)

At t=t = a, we require dt¢/dt =0 and ¢ = gmax’ which gives (using

only the first term in Eq. (4n),

- -1/2 .
gmax = At:° sin eo , (4q)
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_tan 90= VB-1 , - A , (4r)

where 0 = \I(B= 1)72 Int+d and 90 is its value for t = to . The maximum

slope occurs when t=1t where again using only the first term

tan® = —4—\-@3 | (4 s)

4-8
and setting
[ = & o/ (41) -
or
£ /n= A sinzi_-s/dfé;TT cos § (4u)

- Eqs. (4q), (4 r), and (4u) serve to determine to , 0, and A . To settle the
question \x;hether or not the solﬁtion (4n) crosses the axis before t=1-a,

we note that such a trial function as we have chosen could always be made to
cross the axis as close to zero as one pleases by removing the restriction on

gi"na.x and choosing t, sufficiently small. Further the first term alone would

vanish at t, where 6, = w , and it is expected that tl is quite small compared

1 1

with l-a . Therefore, instead of giving an exact answer to our question
which would require numerical integration, we demand only that the second

term in (4 n) be significant at- t,, or that

2 mzkz
Yot = CB) g~ 1 (4v)

be the critical.condition for instability. Here

z 4
exp —— (m - © (4 w)

C = ),.
0= 2 e .
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where

B - sin ® - \]B-I;:;Zs [ (4x)
2s8in 6 D
o
and
2(5-06))
D = exp ———0n , (4y)

JB-1

with @, and T given by Hys. (4r) and (4s). A table of C(B) is adjoined. On

inspection of this table and assuming

B c reasonable values.of A/a it is seen that the critical
1.5 300 - value of B may be raised from 1 to at least 2 for all
2.0 40 " but the lowest values of m .

4.0 1.3
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B. Kink Instabilities ”

A current in the direction of the magnetic ﬂe.ld is employed in an
early stage of heating of the plasma to thefrrionuc.lear temperatureaQ ' T:he
instabilities associated with this currm’t%éhme been studied i:y Kruskal and

_ Tucku"'}'?R_abertslS, Taylor 19

, and ,S‘haf;-anévzo, by means of normal mode
calculations and by Rosenbluth and LongmireZ]',Z,Zusing an individua.l particle
picture as well as by the Matterhorn group who have used the energy principle.
In this section it will be shown how these instabilitie s._ (Which are usually called
Kink Instabilities) .can be found easily by means of the energy principle, and the
stabilization which can be obtained by a.pp.lfing a helicaiv field will be discussed.

If no lﬁelicéi field; (61j 'bﬁlge.s). are present',, Eqgs. (54) and (55) of sec;
tion 111 reduée ‘to | | | . |

s o |
26w = 2% z '{S (& p () rar
>0 [o] r .

m
n

o n 2
L (R/S)ET o2 - R g,
1- (R/S)°™ T T=R, (nler B

m.

+

*Bn')r =R.

2 2 : :
n _
o .EB ]](i) r=R. } , C _ (5)
nkr B 2 v .
(n t:) +Bn)r:R. '

-where : ‘ -rz djn
o :‘mz + ___.Ef__._ . ‘ (5a)

, ~ 0 -
(nk:‘hB +Bn)

and

 akeB® . o
(5= + 8" A - v, (5b)

=
I
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Notice that jB does not enter this expression. The external region is considered

to be a vacuum.

If the current density j17 is uniform in the plasma, the volume terms

can be minimized easily and 6W4m_

?

can be put into the form

5 »ey (DkrB®, on/?
4 _8n%, 2 _1+(r/s)E™ (5 k=R

ZGWm;n— " (l-l)rzR__{m +m > S v
1- (R/S) (nk:'nB el

. 2
(RN, _» (871 |
) nkr Bo n ) nkr Bo n 2 } |
(——tBh.gp. Cm—*B.p_ - (5¢)

If only a surface current is present, this reduces to

-

: ° ° 2m
256W = %ﬂ_ (gf)z{m(nkrB )z+m(£_1_<£__§ + BM?2 LH(R/S)

EhaLLLI N
m 1-(R/S)*™
2
- BT} (54d)
and is stable if for each 'n and m ,
ZkZRZBOZ kR B° 2 14+(R/S)%™ 2
n k. +m (KRB, g7 (R/S)_" _ g7 > o . (5e)

L-(R/S)*™

The inequality is satisfied for n> 0. For m = 2, the inequality (5e) is
satisfied for any finite S . If S is finite, the m = 2 mode is neutral for
some values of B and n. All higher m's are clearly stable for any

value of S. If m =1, the inequality (5e) reduces to
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2 2
n?k®R%B° + nkRBOB" (1+(R/S)%)+B" (R/S)%> 0 . (5¢)

This shows that an instability occurs for negative n if

B" S 2

The first inequality of (5 g) defines the usual Kruskal limit for stability; the
second inequality is utilized in the stabilized pinch where the stabilizing effect
of the conducting boundary must be employed. |
Kruskal and Tuck , and Rosenbluth considered situations in which all
the fields are finite whereas in this treatment kR and En/Bd are infinites-

imal quantities of the same order. Their results reduce to the inequality (5 g)

in the limit of small kR .. Since B_ is finite no '"sausage'' type (m=0) insta-

bility can exist here.

Now consider the case where the volume current density jn is uniform

in the plasma and no surface current is present. Then, from Eq. (5c) ,

° 2 2 m B7
(KRB, BT (£9) - , (5h)
« m x {l-(R/S)Zm (kR B | o) ;
m

where all quantities are evaluated at R . This can be reduced to

(o]
I6W = 16 w2 (EO 2 (m- 1+(R/sz)mm) (Bn+nkRB ) (874 __DkR B ).
k 1-(R/S) m-1+(R/S)
| (51)
Again the system is stable for all positive n . Itis unstable for negative n

if
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B 1
|ikRB®  m - 1+(R/5)*™

1 .
= < . (53)
For m =1 the stability criterion is the same as in the case where only a

surface current exists. Here, however, instabilities exist for all higher m's.

If one introduces the matching condition by Eq. (lk) and recognizes that

_ LB(R)

n
LT(R)
RB°

(5k)
is the transform over the length of the machine produced by the heating cur-

rent, the condition for instability can be written as

mL’M—Z‘n’N (51)

< Ln < 2m
m-1+(R/S)

m M. 20N

It is clear from Eq. (51) for any M , no matter how small, valuesa of m and
N exist such that> an instability can occur. However, if L77 is small the
range of ™ for which the system will be unstable for given m and N will
also be small. A rough estimate shows that the rates of growth.of these
large m instabilities are small when compared with that for m=1 . Con-
siderable evidenqe has been found for the existence of the m = 1 instability
(i.e., the Kruskal limit) in experiments with the B-1 stellarator; other
instabilities havei not yet been spécifica,l,ly identified. It is possible that they
do not gro§v rapid.ly'énough to disturb the plasma before the‘.heating current
has been incr'e_asea out of the unstable r.ange.

The results which have been obtaihed_here for the case where the

axial current is confined to surface of the plasma, and the case where it is
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distributed uniformly in the plasma apply to situations in which the external
region is really a vacuum incaéable of sustaining a current. If the external
region is a pr‘e‘ssure.less plasma, which can support a current,: the same
results apply for only those values of m and N for which - ZﬁN/m + LM
is greater thé,n Ln (R) so that | need not necessarily vanish in the external
' region. Otﬁefwise i must vanish at some point a , in the external region,
and 6W is obtained by replacing S in Eq. (5d) by a = (-mRB"(R)/nkB?)'l/Z.
If only a surface current is present, and if mBn(R)/nkR B® is large enough
fhat i} vanisheé.fdr m = | in the external region, the SYStenwis neutral for

m = 1 to this order and stable for higher values of m.. It is, therefore,
necessary to expand §W to a higher‘order in A in order to determine the
stability condition. It is shown in Eq. (A 31) of Appendix IV A that for this
case the system is unstable. In the case where a uniform axial clurrent is in
the interior region but no surface current is presént, the calculation rfmsft.
again have to be ca.rried to a high'er order, if the external region is cansidered

~ a pressureless plasma rather than a vacuum, to show instability.

In order to understand the effects of an arbitrary axial current distribu-
tion, calculations are now carried through assuming that the radial dependence
lof j'l7 is either (r/R)P or (1-(r/R)P) where p can have any positive value.

- The exterﬁalregionis agahla vacuum.

1f T~ (r/R)P it follows from Eqs. (5), (5a), and (5b) that

p-2
26W =____ z {S (! +( + p(p+2)t ) 1%) tat

&y P _aP
+(m- 223, p® } o, - (©

l-a
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where

(6a)

aP = . 2mn - (6 b)
m '

Here, t equals r/R, and M is the transform at the blasma boundary produced

by the axial current in the plasma ‘which will be taken to be positive. The

extefnal fegiqn: is infinite (S = ») in Eq. (6) . The_-consideration.of finite S

leads to nothing Basically new. Thé Eﬁ;ler equation which the ‘minimizing u

must satisfy is

2 plp#2)tP~?

1 m
Moot ) u=0. (6c)
B+ (—tz- D P M

The solution of Eq. (6 c) whiéh is zero at the origin and fin_ite at 1, is,

for m=1,

p = t(aP - tP) (6d)

so that after multiplying Eq. (6c) by tu and integrating with respect to t, one

finds

| 2
26W = 5T £(aPo1) (aP-(p + 1)) + (2P - )P (- B ’f)} . (6e)
. l-a

or

2 |
26W = %- {2aP(aP-1} . (6€)

This is clearly positive unless

0< aP< 1, (6 g)
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or

n
_5-{'_- > (-n) (6 h)

where n is negative. This result is independent of p and is the same as

thé usual Kruskal limit for the case either where the axial current is confined
to a thin sheet at the surface as in Eq. (5g) or where it is uniform as in Eq.(5j).
Since the surface terms in Eq. '(6) are positive if aP > 1, it is still necessary

to show that the system is stable with respect to f's which vanish when t

equals one. Eq. (6c) is now replaced by

. p-2
t tt -a

The Lagrange multiplier A is introduced to guarantee that the perturbation
has a finite norm. Comparing Eqs. (6 c) and (6 iv), one sees that A must be
positive in order to enable W to become zero before t reaches 1. There-
fore, the system is also stable with respect to perturbations which do not

move the boundary.
It is clear from Eq. (6) that the system is stable fpr all m if aP
does not lie in the region defined by Eq. (6 g) since it is stable for m = L.
If aP lies in the region defined by Eq. (6 g), the contribution fo OW from
the region between t=0 and t= a is positive definite, and can be minimized
by making p negligible smalil in this region by properly chosing £ . To

show that such a minimization can be made, consider as a trial function

'ng’:o, (t< a - €)
£° = £%(a) H2EE . (a_c<rca) (63)
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where € is small. The integral from zero to a in Eq. (6) is then proportional
to € and can be made negligible by making € sufficiently sfnall. This mini-
mization requires that ¢ be allowed to change rapidly over a very small
region. It is possible that other consi&erations may prevent the ‘acceptability

of such rapid changes in £ . For example, one might argue that £ could not
change appreciably over the distaﬁce of an ion Larmor radius if the preseént
theory is to be applicable.

. After multiplying Eq. (6c) by tpu , integrating with respect to t, and

introducing the transformation yb= t/a , so that vy = l/a is related to ("
by

n

L -n :

T (6%)

one sees that

yp' () (p+2)yP

2
8w 2
- me—— 1}y 61

where p(y) must satis'fy the equation

p-2
+ p(pt+2)y p=0 (6 m)
P_ »

1 m
“.H_'.____p‘l_( >
y y Ly

in the region between 1 and Vs with p(l) equal zero. KEq. (6 m) can be

integrated numerically and the system is found to be unstable if

- n .
(;) <t <(nE (6 1)

. where 7 = 'lrﬁ ylp is given as a function of p° on the right half of Figure L.

‘Only the indicated points on the figure have been calculated. The other
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curves have e;tr;po,lated.from _t}ieir values in the limiting cases where p is
very small or! very large. |

It 'aP fis not equal to 1, the term, p(p+2)tp tp- a®, in Eq: (6) goes.
to zero as p goes to zero with. aP fixed, so that these results agree with the

previous calculation for a uniform axial current distribution, i.e, *

= _n_}f'[ . - | (60)

W

" In order to investigate the stability when p is large, let z = yp y 80

‘that Eqs. (64) and (6m) become

20W = 8?22' P Zl:<(zl;) * 3 (———T—+_)Z o ™" (6p)
and ! (142 /p) 2 |
pr ot — ('ETETTPT+;2‘ZT“ = 0. (6q)
To zeroth o.rder in —:;- ,
Wt e At O (6x)
so that | ‘
“."(o) = z-1 . . .. : (68) |
(The other solution doe,.s.not vanish if z = 1.) The system is clearly neutral
to this order. Keeping terms of order 1/p , one obtains
B 3 By iy - ;p?(?.{) ! (64

so that
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ey = (z=0tn 2, N (6u)
and ‘
' 2 zyu! zp'
I il O Il 0 (0 I
20W = { u'(o) M p '2'21} (0) (6V)
. (o) .
or
2 : :
8 -1)z - +1
zow = fE{memil ) 8 (6w)
Thus the. sy"sten’: is unstable iif
l< z < ﬂﬂ[ , - (6x)

or

.(_;_n’l) < -513‘- < —-(——l.;_('r;;(’;j 1) . : | (6y)
For m > | this is a completely different result from that which was
obtained by assuming in advance that the axial current is confined to a thin
sheet at the surface of the plasma. In that case the system cannot be unstable
for m > 1. In that calculation it was assumed that 5: was continuous across
the sheet in which the current is confined so that the contribution to §W from
the region where t< a 'is large. The difference between the results of the

two cases shows that care must be taken when any current distribution is

mocked up by a model in which it is confined to a current 8sheet.

-

- Now consider the case where jn ~1-(r/R)P. Egs. (5), (5a), and

(5b) can be written as

26W = 2 {S (' +( +E_(Piﬂ-t-— )u’) tat

m>0

+ mp(n®} o

-107-



where

g = kKRB (min) t (aP-tP), (7a)
P _ py 2mn :
aP = 1+ B(EE 4 1) C (Tb)
m
my
Here, as before, t equals r/R, and (7, the transform at the plasma bound- -

ary, is positive, and the_ external region is a Vacﬁum bounded by condu.cting

walls infinitely far away. The Euler equation for the mirﬁmizing p is again

“Eq. (6c) . B | | | _,
For m=1,

b= t(aP o) | )

is again> a solution, so that
8-rr2 ‘
26W = —— {(aP-1)(2aP- (p+2))} . (74)

This is positive unless

. P p+2 .
.1< ab < fH— . | (7€)

When aP is expressed in terms of ,_77 by means of Eq. (7b), the second

inequality in (7e) requires that n be _negative; and the first that -

Ln

£ > (-n) (71) '

for the system to be unstable, so that the usual Kruskal limit is obtained.

Again if aP > 1, it can be seen that the Lagrange multiplier, which must be
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intro&u‘.ccd to guarantee that the perturbation has a finite norm, must be
positive if y is to become zero before t reaches 1. However, for values

of a between zero and 1, it is possible to consider a trial function

N

1}
Jre
H o
®
o
A
ot
A
[\

o _ t-a-e

gr = .._..._€.__.. a <t =<a+e€

o.-

£2 = 0 ate=<t (7g)

for which 6 W approaches zero as € is made small. The system is, there- )

fore, neutral to this order if

- n
221’;’) <d- < (m . (7h)

If such a sharp discontinuity in 51' as givén by Eq. ('7 g), were not allowed,
the system would be stable in this order. Therefore, the calculation of §W
to a higher order has not been carried out.

It is clear from Eq. (7) that the system is stable for all values of
m > 1 unless a is in fhe region defined by Eq. (7 e) since for any t.rial
function §W is greaterthan if m were 1. One now considers the case in
which a lies in thé region given by Eq. (7e). If the transformation y = t/a
is made, and the Euler equation (6 c) is again multiplied by yu and integrated

with respect to y , one finds
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TR ) : ‘
286W = {yl—T—T+zn}uwyﬂ2, (74)

where p must satisfy the equation

o 2 p-2 :
p" +_$_'_ (_En_z + B (‘P+.2)‘Y p=0

vo . yP -1

.i'x; the region between 0 and /] with p(0) ‘equal to zero. The transform

‘ .1."7- is related to Y1 by

Jd_ nop A (7k)
T m(p+2-2y;"P) |

One can show by inte‘grafir’ag Eq. (7j) numerically that the system is unstable

if

'/ '
- L v
Lo o< 5, (71)
where § = p/-m(p +2 -»Zyl'p_) is given as a function of p on the left side of

Figure l. Again only the indicated points have been calculated.

- It still must be shown that this situation reduces to the case of va ﬁniforfn
| a.xia.l current distribﬁtion'in. the limit as p becomes infinitely .la.r‘ge with aP
kept fixed. Since the system is stable for values of aP less than 1 (if the
sharply defined perturbations whiéh lead to néutra..lity to this order for m=l

are ign_ored), only values of . aP > 1 need be considered. For p sufficiently

large the term

1 p-1
_S' pi{p+2)t P»Z dt
o ap --tp

is ~h¢gligibly" small unless t is nearly 1. Consider any trial function p(t)
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which'is nearly constant in the narrow region between l-€ and 1. This

term can then be integrated, becoming approximately

aP-1

p+2) pmim
a

or

' | 1 1 1 2,1 1 3
- (pr2) p() "\ —— - = ( )"+ - oot -
s {ap-.l z aP-1 3 ( ) }

at -1

“When aP is expressed in terms of N by means of Eq. (7b), this becomes

+ L

2,1 E(,l)2
em U]
m

plus higher order terms in % , so that

2 Al 2 n
26W = EE—{S (u +—::n2 u?) tdt + (m - —z_ﬂ%;—ﬁ)u(l)z 1. (7m)
o m ’

ap one would expect. Since the minimizing p varies in this case as t,
it is clear that for any m , a region € can be defined over which L can
be taken out of the integral sign, and then a large enough value of p may be
found that (1l-¢ )p can be made sufficiently small.

| It should be mentioned that for an arbitrary axial current distribution
the minimizing perturbation for m = 1l is obtained by making 51? constant
so thaf the Kruskal limit can be shown to apply. Of course, this result can-
not be extrapolated to the case where B and kR are finite.

Now consider the effect of a helical field on these instabilities. In the
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stellarator the axial current will be applied in the first stage qf heating of
the plasma. At this time, since the plasma is cold, B8 will be quite small.
By thev. time 'B has increased to a reasonable Yalue the heating will be done
by ofher means (e.g. magnetic“pu'r;).ping) and Jn will be sm-a.ll‘. It is, there-
fore, possible to set 8 =0 in this discussion. It is shown in Appendix IV B
that the results arve co:nti‘nuqu;s 'as B goes to zero. For simp.liéity it will be
-assumed that R./S =0, i.e., the cc;nfiniri'g walls are infinitely far away, é.n_d
- that the external region is a pres‘sure_',le'ss p.lasm:a.

‘When helically symmetric fields and a unifofm axial current in the .

plasma are present, Eqs. (60) of Section III become

2 S5 _2 9,2
4 _ 8w m 2, 2 2L 'u
26W. = S (= p+p'%)rdr - ( w— ~— )}, (8)
m;n Tc_{ TZ £+Ln+2Lh ()
o m 8> 0 '
where
o .
bR ey M g (8a)
s>0 : '

(Here jB has been set equal to zerq)’. ‘It has been shown that he‘lices'wvith
 £ = 3 stabilize the highest 8 for a given power input.l The question of the
stabilization of the Kruskal insta.bility wi.ll, ther.efor e, '.be iﬁve stigated using
a sihg.le helical field with £ = 3 and the wave iength hR srha.li endugh that
higher order terms in the expansions of the Bessel functions can be ignored.

' Fdr notational simplicity, one may absorb the positive coefficient 4wz/k

into 6W, suppress the summation sign, abbreviate A (s) to % and
introduce the parameter .
2 A
a=- =22 . (8b)
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Then, minimizing the volume regions, one finds

2m 2m

l+a_ 5.2 a. +1 5.2
26W ={(m — = (-q+iT+.%) + m e (-q+.T+(7)
l-a_ a, -1
kRB%°
-2 Meqn T+ ()2 e (8c)

where Ra_ and R a, represent the values of r nearest to R at which pu
must vanish because q + L"(r) + LG (r) does, a_ being less than 1l and a,
greater than 1. If no such points exist a_ is defined to be zero and a, is
defined to be infinite. Henceforth, the positive definite factor (kRBagl?/Zﬂ')2 ,
will not be written. Since l,(S is proportional to rz. and (" is constant

(The current is uniform in the plasma.) in the interior region and proportional

to r © in the external region, it can be seen that, when they exist,
2 q- J 2
a_ = — (0<a "<1) (8d)
L
2 6 n,1/2
a? =dtld -4 ) 1T (1< a2) 8e)
2 LG +

where if the value for a+2 is greater than 1 with the negative sign, :that sign

is used, otherwise the plus sign. If neither sign leads to a value of a+2> l,

or if a+2 is complex, it must be set equal to infinity. It is clear that if the

external region were really a vacuum, the minimization in respect to p

6

would be carried out for pu's which need not vanish when (= + M - q does,

so that a_'_2 must be set equal to infinity in Eq. (8c).
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"Eq. (8 c)‘?c_an be written as

l1+a Zm - a Zm_H n
6W & {m — Ty 4m . 2t} (9)
l+a_ oay -1 -q+Ln+L

where the positive factors, 3(-q+ l,_6 + LT’)2 and (kRB°§:/2 ‘W)z have been absorbed
into §W . Clearly each of the first two terms in Eq. (9 ) is always greater than

or equal to m .

6

First consider cases where 0< (M< (%, 1If q is negative, or if

6

0< q< (~ the last term in Eq. (9) is less than 2 so that §W is positive.

] ]

If q is in the range (° <q< L +.1 , a_, given by Eq. (8d), is not zero.

Therefore, for m =1,

oW 22 bt > 0, | (92)
where the equal sign is used if a+2 is equal to infinity, If m > 1 ,
‘ e m- - m-1
m O™ O™ O™ My 40 %a- D PP g ™

Lﬁ'm_ (q _ Ln)m. }
| (9b)

bW > 2

6

is also greater than zero. If (~ + < q all three terms in Eq. (9) are

positive. The S}'rstem has thus been shown to be stable for all values of m

if 0< Ln< l.5 : _ : i

Next consider cases ih which L5 < L"l{ 41,(S . As before §W is -

‘clearly positive unless q is in the .range 1,(S < g< LG +.M. 1t 1_5 < q< M

z=0 and az=oo , so that

it follows from Eqs. (8 d) and (8e) that a. +
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n
~ -qti +uv :

is unstable for m = 1 for all values of q in this range. For higher values

of m thisis unstable for values of q in this range only if
q>l-6+—-1:n'—bn B (9d)

1f (< q< 2 IJLE J o, al is not zero, but a, = », so that 6W is

6 m nym n
5w={m_,r+(qL) +m___2_g.___.} . (9 e)
(g H™ -q+i O+
For m=1,
6_.m
5W = 2 L -t 1 (9 £)
{-q+L6+Ln

is negative. The conditions for the system to be stable with respect to these
values of q can be obtained from.Eq. (9 e) for higher values of m with

more work. If 2\'1,64:,7[ <g< O, W s given by

ny™ 2 2"
oW = {m L Pg-MT L (@) T L 1
5“‘-(«1 P (@200 ) =q+L5+L"

" (9¢g)

where ¥ = (q2 - 41,6 L"l) /2 . This expression can be rationalized so that,

for m=1,

‘ n .
5W = ——T——‘“r 2L (9h)
{-q+L + 7 }
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is negative for these values of q . Again the conditions for m > 1 are not

&

so easily obtained. Therefore, for L(S <M< 4.° the system has been shown

to be stable for all q's not in the range (< q < 9 +.7 . It is unstable for

m = | for these q's . Conditions for instability for higher values of m have

not been obtained.

o}

Now consider cases in which 0< 41°< (7. Again only values of q

in the range L6< q< L6 + M could make the system unstable. Eq. (9c) applies
if LG <q< 2 \-‘JLE . so that the system is unstable for m = 1 for all values
of q in this range and for higher m for values of q in this range if Eq. (9d)

is satisfied. In the range 2 L(5 < q< T ,

oW = {mrm @207 H@)T 2 91)
(@-MT-220)" -q+ 0+

where, as usual, { = (qz- 41.6 L’q).l/Z_ This reduces, for m =1, to

sw = {23t L} - 099)
-q+L + LT’

which is clearly negative. Eq. (9 g) and, for m = 1, Eq. (9h) apply if
L17 <q< L6+ 1,"7 so that W is still negative. Thus,if 0 < 4L6< L"? , the
éystem.is stable unless q is in the range L6< q< L6+ (M . It is unstable
for m = 1 for all these gq's. Again conditions for instabilities to occur have
not been obtained for higher values of m .

Now consider the situation if (7< 0< L5 . Itis clear from Eq. (9)
that the system is stable for all values of q which are not in the range,

L5 +.M< q< La ( s negative), since they would not make the last term
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more negative than -2 . It follows from Eqs. (8d) and (8¢), that aaz =0

and a+z«= [a +(q2-4 L6 L'.r’)llz.]/ZL5 over this entire range of q, so that,
from Eq. (9),
m 5] m n
2t ) 2L
5w={m+m (a+7) " +( - } (9k)
(@+M™ - (20" -q+La M

where " = (q2 - 4L‘6 ) 1/2 . For m=1,

oW ={ ‘qg 1 (91)

-q+t +Ln

is clearly positive. To show that the system is stable for all values of m

0

if (M<0< (%, it will be shown that the second term in Eq. (9) is a mono-
tonically increasing function of m. The logarithmic derivative of this term

in respect to m is

4m 2m 2m
a+ -‘l-2a+ in a+
m (a, ™)

+

Since the denominator of this term is positive (a+ > 1) it is necessary to

show that the numerator is positive for all a ,> 1. Itis zero if a, = 1

+
The first and second derivatives of the numerator with respect to aZm are
2a®™ _24n a®™ _2
and
2 - 272%™
respectively. Since these derivatives vanish when a, = 1 and the second

derivative is positive for all a, > 1 , the logarithmic derivative is positive

+
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and the second term in Eq. (9) increases with m . The system is, therefore,

stable for all values of m if Ln <0< LG .

5

The expression for §W in Eq. (9) is not changed if (~ is set equal

to -L(3 ) (M to - (M and q to -q . Thus the stability of systems in which
0 ]

% and (" are both negative or t~ < 0< (" can be determined from the

preceding results.

It has been shown that the system is stable for all m if |L6|>|Ln|
and LG and (7 have the same sign and if < o< 1,5 or L5< 0<.MT. 1f
0< (< L(3 or l,(3 < (M< 0, it is unstable in respect to values of q which lie

6 and L5 + (" and stable for all other q's. It should be remem-=-

between.
bered that these results apply to the case where the external regionis a
pressureless plasma.

It can be seen from Eq. (8b) that q is limited to the values - 2wn /m

where n can be any integer. These results are exhibited in Figure 2 . The

unshaded region is stable for m = 1. The regions denoted by left diagonal

lines are unstable for m = | if n = *1; those with vertical markings are
unstable if n = % 2 ; those with right diagonal markings are unstable if n=x3;
etc. Instabilities due to higher values of m can occur only in part of the

o

first and third quadrants for which [L(5 [<| WM
In the previous treatment the external region has been assumed to be
a pressureless plasma. If it is a vacuum, the same discussion can be car-
ried through as before except that a, wust always be infinite. If LG and
" have the same sign, the same results are obtained for m = 1 ( i.e. stable

if [L6 | >| Ln] , otherwise unstable only if q is between %+ and 0. ).

If L5 and (" have opposite signs the system is now unstable if q is between

0 0

t? + (M and (° and otherwise stable. Calculations for m>1 have not been

carried through.
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The results for the case where the external region is a vacuum are
exhibited in Figure 3. The unshaded region is stable for m = 1. The regions
in the second and fourth quadrants which are denoted by horizontal lines are
unstable when n = 0 . Those regions denoted by left diagonal lines are unstable
if n= % 1; those with vertical markings are unstable if n = 2 ; those with
right diagonal markings are unstable if n = % 3 ; etc.

In order to estimate the effect of a machine transform LM, one can
again express n in terms of LM by means of Eq. (lk). It should be pointed
out, however, that with such an identification there need not be an integral
number of periods of the helical field in the machine. It would be necessary

to restrict values of.the wave number of the helical field to

lLM
h=(n- ) k (9 m)

™

where n is an integer. The treatment which has been carried through is,
therefore, not clearly applicable. Nevertheless, Eq. (1k) has been applied
to the situatioh when LM is 164° (Model B-1 stellarator) and the results are
presented for m =1 in Figure 4 with the same system of markings as before.
It should be noticed that the shape of the stable region is altered slightly if
LM is changed. In both cases the parts of the unshaded regions in the first.
and third quadrants for which |L6 | > | M | are stable in respect to all m .
The other regions are riddled with instabilities due to higher values of m .

If the axial current had been confined to a thin sheet at the surface of

the plasma, Eq. (8 c) would have been replaced by
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1+a_ 5.2 a, +1 5 2
20W = {(m ——— (-g+ ) +m > (-g+¢ +L17)
1-a_ a, -1
2 kRB%¢ °
wheré a._2 is given by Eq. (8d) with LM set equé..l to zero and a-z -is given

+
by Eq. (8e). '
The determination of the conditions for wilich_the system is 'stab.le can
.be carried through as in the previous discussion. The considerations are much
more difficult, however, so it will merely be shown here that if |L17|<4|L6[ ,

o

where (7 and (° have the same sign, the system is stable for all values of m.

Clearly,
kR B ‘g‘

O M (5T 2. (104

26W 2 {m(-q+ %)% +m (-q+L 54,12 -L" +21
It can be seen by taking the first and second derivatives of Eq. (10a) in

kd
respect to q , that the minimum value of §W is obtained if

qa=1:% + 2, (10D)
so_that |

2
zawz{ﬂ’-z'—?f— M +2M,0} . (10 c)

1f (0 and (7 have the same sign, this is clearly positive if |Ln|<4]L5[

One.might expect the current distribution to be jn = y(l- r2 /RZ)
during the heating phase. If no helical field is present the results which
were obtained for an arbitrary current distribution do not differ qualitatively
from those for a uniform current distribution. Since the calculation of the
effect of stabilization windings would have to be done for a specific current
distribution using numerical techniques, it does not seem to be worthwhile to

do such a calculation at the present time.
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Section V - Conclusion

The basic results of the preceding sections are summarized in
Part A and discussed in Part B of this section.

Part A - Summary

‘Equilibrium situations are calculated in Section II by means of an
expansion technique, by considering, (a) fields which arise from helically
invariént current distributions, (b) bulge fields, (£ = 0), for example fhose
due to gaps between the confining field coils; (c) fields set up by axial cur-
rents in the plasma, for example, ohmic heating currents, and (d) fields due
ta diamagnetic currents,all superimposed on a large axial magnetic field.
The fields are determined for convenience subject to the condition that the

normal component of B be zero on a perfectly conducting rigid surface

vr=S+ ,202 cos (!se-shz) . (1)
)

rather than from a given external current distribution. Solutions are
explicitly obtained for the case where thg pressure distribution is a para-
bolic function of r , and teéhniques for determining the fields for arbitrary
pressure distributions are given. Superpositions of helical fields with the
same wavelength but different values of £ are not considered since they
involve complicated interference effects.

The rotational transform angle ( (over one helical field period 27/h)
is calculated in Appendix IIA . The functions ( and dt¢/dr are given to
second order in ¢ by Egs. (AZZ) and (A 23), and their small hR limits are

tabulated for various values of £ in Table 1. The function ( is given to
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fourth order in § for f= 3 in the small hR limit in Eq. (A27).
The quantity V", where V is the volume of length 2w / k (the length
of the machine) inside a surface of constant flux Y and the pfimé represents

a derivative with respect to ¥ , is given in Appendix IIB by Eq. (B21) in

terms of the distortion 06 of the boundary, and by Eq. (B 22) interins of LGG

and d'Laﬁ/dr“. Here L55- is the ’.lc').west order term in the expanSioh of L.
‘ In Section III the minimization of GWI with respect to all components
~of _g_ except g;’ is carfied'through. Tﬁis minimized §W is given by Eq. (54)
and alternatively by Eq. (60). |

" ‘The final minimization of §W is done and critical conditions for
- stability are obtained in Section IV for several cases.

For anf given m the critical B for the stability of an axially éym-
metric system; which represents an idealization of the Figure-8 stellarator
(which possesses a rotational transform), is given by Eq. (1£).

Eq. (4g) gives the critical B optimized over the pressure distribution,
for a system in which there is a superposition of helically in‘variant fields
with arbitrary £'s (including £ = 0), all having different periods, and in
which no axial current is present. This optimum pressure distribution is
given by Eq. (4h). In this calculation the external region is treated as a
pressureless plasma. If it were'treate.d as a vacuum, the above pressure
distribution wduld not be optimum and the critical 3 would be smaller.

For the special case where only £= 0 and 3 fields are present and the
periods of these fields are large, the optimum critical f is given by Eq.
(3 g) and the optimum pressure is given by Eq. (3f). Eq.(3 g) reduces to
Eq. (31i) that is,
Bcritical = ('Pé/R)Z o (2)
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for the case where only one £= 3 field is present.
" For the case where no helically invariant (or bulge) fields are present,
and where there is present an axial current proportional to (r/R)‘p' or
1 - (r/R)P, the system is unstable with respect to the minimizing £(m;n)
is ‘and only if

(-n)/m < M/2m< (-n);'. (3)

|
{
1

1(rn6 +nkz) and =1 is a function of p and m

Here, the £(m;n) vary as e
represented in Figure 1 for both the case where ‘j"7~(r/R)p and where

jn ~ 1- (r/R)p . These results are independent ef B for the assumed order-
ing of the parameters (B~n) For the case Jn~1 (r/R)p , = approaches
1/(m 1) as p approaches ©, wh1ch agrees with the uniform axial current

case. Also, = = approaches 1/(m-1) for the case ]n ~(1'/R)p as p approaches
0 which again agrees w1th the umform axial current case.

As p becomes large, in the case Jn ~’(r/R)p , the current distribu-
tion appro‘aches that of a sheet‘ current at R . However, = approaches
(m+1)/m (m-1) which is in disagreement with the earlier results of Kruskal's
treatment of this problem, where m = 2 was found to be neutral and all
higi'xerl -m_'s were found to Be stable. The disagreement is explained by noting
that the nofmal component of the minimizing £ in the present treatment
approaches a function which is discontinuous across the surface while in
Kruskval's treatment the usuai assumption that the normal component of §

‘be continuous is made. This discrepancy points out the need for exercising
care in the choice of models in which sheet currents are used to represeat
volume current distribations confined to small regions. In obtaining these
results, the external region has been treated as a vacuum with conducting

walls infinitely far away.
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It is found that for =0, a helically invariant field with ¢ =3‘andiwith
small hR can stabilize the instability associated with a gniforrﬁ axial current.
‘The stability diagram is given in Figure 2 for the case where the external
region is treated as a pressureless plasma, and in Figures 3 and 4 for the
case where it is treated as a vacuum. In particular in both cases, the system

] 6

is stable if 0 < WM< % or %< "< 0. If the axial current is a sheet cur-

rent rather than a uniform volume current, the system is again stable for both

0 ]

]

casesif 0<% <4.% or 4.°<M<o0. Again, the external conducting walls

are infinitely far away.

Part B - Physical Interpretation

—

In ‘this section we wishto give some of the intuitive background which
leads.us to‘. consider helically invariant fields for the purpos'e of stabiliz'atibxi._
We aiso would like to form a simple physicall picture of their stabilizing
action both on the "interchange' instability and the 'kink" insté.bility.

| In any axisymmetric equiiibrium in which the plasma and the magnetic
field are imbeddedin each other and in which the magnetic lines of force lie
entirely in r, =z planés (where r, 6, and z are cylindrical coordinates with
the z axis along the axis of symmetry), it is possible to carry iout a displace-
ment.of the plasma wﬁich interchanges lines of force in such a way that the
magnetic field and its magnetic energy are unchanged. This displacement
may bé coﬁstructed by fir.st specifying, on a cross-section with z = constant,
a mapping of the magnetic lines of force into themselves, and then extending
this displacement throughout the vblume by specifying that any line of forée
contiﬁues to go into the same line as that assigned on thié particular cross-
section. Since the magnetic fiéld sfféngtfx is g'iven' .bvy the density of lines,

the magnetic field is clearly unchanged; However, the state of the plasma is
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changed and its energy will increase or decrease.according to whether
(M"/M")V" is positive or negatives, where M .is related to the mass.

contained in a flux tube with flux { and is given up to a constant by

(T @
where V .is the volume (over some length) in this flux tube, p is the pres-
sure on its surface, Yy is the ratio of specific heats and primes denote
differentiation with respect to. .y . The quantities V' and p' are always
positive and, in general, V" is positive while p' is negative. If p=10

(io.e,' containment) onthe surface of the plasma, (M"/M')V" is negative, and
the equilibrium is unstable to interchanges.

This argument (for instability) applies in general to more complicated
situations, since nothing would prevent us from carrying out the "interchange"
displacement unless the system is such that the lines return on themselves.

In this latter case our original assignment of the mapping of lines into lines
would not match when we bring the lines around onto themselves., Neverthe-
less, one might ask whether even in re-entrant systems, one can construct
interchanges which lower the energy of the plasma, and leave the magnetic
field unchanged. The answer can be given in terms of the concept of the
rotational transform angle L , which can be defined on each surface as 2w
times the average number of turns about the magnetic axis which a line of
force makes as one follows it once around the system. (The magnetic axis
is that line of force whicin closes on itself.)

We consider first a system in which ( is constant over the cross-
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section, i.e., is independent of the flux ' ¢ within each magnetic surface.
‘If in some such system every line returns on itself after once around the system,
or every line returns on itself aftér n times around the system (i.e., L =2mm
for every , orti = 2rm/n respectivély), an interchange can be selected so
localized that it need not match until the nth time ai'ound, when it matches
perfectly. If ¢ is not a rational multiple of 2w , the matching of the interchange
can never be achieved exactly, but L can be so closely approkimated by a
rational multiple of 2w that the matching comes arbitrarily close. If one does
not demand a perfect interchange, one can achieve matching with an accompany-
ing change in the field. However, one can choose the displacement sufficiently
close to an interchange to make the change in the magnetic energy negligible.
Thus for any ( constant on all flux tubes, an effective interchange can be
carried out with respect to which the system is unstable.

The situation is different if L depends on . In this case if we try
to construct an interchange as we carry the mapping around the tube, the

matching becomes worse and worse. This is made clear from Figure 1.

Figure 1.

The first diagram indicates an attempt at éssigning on a cross-section, a
mapping of the lines into each other indicated by the flow pattern. After
carrying this mapping along the lines once around the system, the flow

pattern becomes that of the second diagram. Here, itis assumed that
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is larger on the outer surfaces then on the inner ones, and since the lines

are the same in the flow patfer‘n, the outer lines move farther, shearing the
flow pattern. After a secop‘d time around the system, the flow pattern (for
the mapping) becomes that illustrated in the third diagram. It is clear that

the possibility of matching becomes more and more hopeless as we carry

the mapping around more and more times. Further, even b§ carrying out
displacements differing frdm the interchange which manage to produce match-
ing, the magnetic energy cannot become negligible. Thus the presence of an
t which depends on ¥ introduces an inhibiting effect on the unstable inter-
changes and might tend to make the system stable.

One can produce (or increase) the dependence of the rotation.a‘l
transform on ¥ by adding externally produced multipolar helically invariant
fields to the main magnetic field. These can be produced by wrapping wires
in a helical fashion around the tube and passing currents of alternate sign

through them. The case of six wires is illustrated in Figure 2.

Figure 2.

" In the ‘simple case in which these currents are small compared to
those producing the main uniform field B®, and in which the pitch of the
wires is long compared to the radius of the tube, the field due to 21 wires

1-1

will be nearly proportional to r . That the field in this case produces a

varying rotational transform can be seen in the following way: Considering
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for definiteness the case of six wires (£ = 3) we have

~rz~sin(36;hz); B_= B° ; (5)

B ~r2cos(39-hz); B
r 1 z

6

where the amplitudes of B, and B, are small compared to B®. The lines

e
of fd_rce will, to first order in thé amplitudes of Br and Be be; small helices
about a line parallel to the axis, whose radii are proportional to rz. But,

since Be is larger on the outer part of this helix and s‘maller on the inner

part, the lines‘ will drift in the second order, in the @ direction by an é.mount
proportional to r> and th_us produce an ( proportional to rz. The fields

due to two wires (£ =1) will produce no t , whileif £=2, ( is independent
of r. Itis clear that larger f produce steeper dependences of ¢ on r

for the same L but the advantage for stability of this steeper dependence is
off-set by the steeper dependence of the fields on r (B ~ r!-l) so that if the
wires are placed some distance from the surface of the plasma the fields in

the plasma will be correspondingly smaller. In consideration of these factors, |
' it seems reasonable to suppose that either the £ = 3 or the £ = 4 fields are
most favorable for stability, although thére are indications that the £ =2 fields
produce a large rotational transform, which may have advantages in the equi.-
librium situation. In the case where the currents are not small or their pitch
is not large, the arguments go through essentially the same way.

Since the imposition of externally produced helvically invariant fields
make s the lines of force into small helices about their original posiﬁon, they
also enhance p' V'" (the change in energy of the plasma), and contribute a
destabilizing influence as well. As a result, if one puts a small helically

invariant field on a system with finite pressure, it will be made less stable,

and if it is already neutral or unstable, it will become or remain unstable.
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However, as the field is increased, ‘it will eventually become stable at a
value depending on the pressure.

For the further analysis the closed tube with helical windings is
replaced by a long straight tube of lergth L , whose ends are to be identified
at points with equal values of r and 6 . If the change of potential energy is
minimized over all displacements- £ , which to lowest order have a given

i(m6 - nkz)

radial dependence §: and 8 and z dependences e the result, .

which is given in Eq. (60) of Section 1II, can be written in the form

S 2
d 0 o 012, m 012 3 2,02
S rdr {[a‘r((‘ - L )Tt )LB 1%+ 5 [(L5- L )rE JLB%]“+2rLBY) Tp'Vir L) }
o : t
(6)
Here S is the outer boundary of the system, and Ly =- 2nn/m represents

the angle through which the displacement ''turns' over the length of the tube.
The last term is the energy released by the plasma as in the first part of
this section, since in this case M'/M!' = p'/yp because the system does
not differ much from a cyliﬁder, and V' includes the destabilizing effect

of the helically invariant fields. The first two terms represent the energy
increase due to the change of the magnetic field under the approximate inter-
change, It is clear from their form that these terms can be made negligibly
small if LG is constant, by choosing m and n sufficiently large, in agree-
ment with our original picture. If L5 is not constant they can never be
reduced to zero but have a nonzero minimum so that if the pressure is made
sufficiently small , the last term can be made smaller than this minimum.

)

Thus we see that any dependence of (- on r except a constant dependence

leads to stability for sufficiently small pressure.
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The first two terms of expression (6) for §W can be made more
transparent as follows: The quantity (LG- "o) represents the average
rate at which the lines turn compared to the displacement and thus it
represents an effectiye field across the displacement. . Consider as a model
a straight tube with large uniform B,, with a Bg: independent of 6 and z,
‘just sufficient to produce a rotational transform angle equal to LG Ly but
with no current in the z direction, so that one of Maxwell's equations is

violated. Consider further a displacement gr,' also independent of z but

.

depending on 0 as e1m9

and depending on r in the same way as the g:
in expression (6), and a displacement ge » sothat V- £ = 0. Then one com-

putes easily that

6B_= i;f_(Lﬁ_Lo)rgrLB?. (7)
6 Bg=-a= (-1 )rg LBO . (8)

Hence the first term in (6) is jusi; (6 BG)Z while the second is (§ B.r)Z - The
situation and its model are analogous, the model being obtained by simply
smoothing out the ripples in the lines of force (which the displacements in
the primary situation automatically take care of), and untwisting it so that
the displacement is "untwisted'. The origin of the terms in the model is
made pictorial by considering GBr as being due to compression of the lines
by the displacement, and GBG as being due to shearing of the lines.

If expression (6) is minimized over all allowable g: for a given
pressure distribution, one finds a critical value for 8 (the ratio of the pres-

sure at the center to the zeroth order magnetic pressure) above which the
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system becomes unstable. .Then one can select the shape of the pressure

distribution to make this critical value Bc a maximum to find mc’ogtimum’

which is given in Eq. (4g) of Section IV as

. di 2 o
(Bc)optimum— 41,-3025 (37) v vac rdr - 9)

where (dt/dr)” is the average of (dL/dr)2 per unit length and V' is
evaluated over the length of the machine. This form illustrates clearly the
balance between the destabilizing effect p'V'" and the stabilizing effect
(de/dr)”.

‘When expression (6) is minimized over g: it is found, especially
when 3 is only slightly bigger than Bc, that the worst £ takes on its max-

0

imum near the radius for which (= = Ly - It is clear from the definition of

]

Ly that such a radius exists for finite m and n only if (~ is finite and would

6

only exist for infinitesimal (-~ if m were infinite. Since we wish to avoid
infinitely large values of m in treating the stability of the system with infin-
itely small helically invariant fields, it is necessary to consider the tube

o

identified over an infinitely large length so that (~ can remain finite.

Up to this point we have assumed that the magnetic lines are every-
where imbedded in an infinitely conducting plasma, and even in regions
exterior to the main bulk of plasma we have imagined a zero pressure plasma
to be present. This has the consequence that during any displacement the
lines of force preserve their identity and cannot be broken. It was on this
fact that we based most of our arguments fof stability. In a situation where

the external region is a-true vacuum the lines in the vacuum do not possess

this stabilizing effect, so that if n and m are picked to make the radius at
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which ' ( = L, very close to the surface of the plasma, it is actually possible
to construct a Adisplacement near an interchange, with the result that any
distribution for which dp/dr is not zero at the surfac_e of the plasma, is
unstable. However, the stable equilibria with dp/dr zero at the surface
are roughly similar to the case of a plasma surrounded by a pressureless
plasma, so that one might argﬁe that the assumption of a pressureless plasma
at least in the immediate: neighborhood of the main plasma is justified..

In fninimizing expression (6) it is found for 8 greater than Bc ,» that
as B - BC is made smaller the minimizing £'s become more singular in
the neighborhood of the radius at which ( = Ly and eventually change appre-
ciably over a region very small compared to a Larmor radius. The minimizing
£ thus represents a motion to which the theory no longer applies, since it is
based on -equations which assume that the ion Larmor radius is the smallest
length in the system under description. Thus we cannot assert that these
systems, which are only unstable to such {'s, are really unstable, and it is
of interest to ask whether fhe smallest 8 which is unstable on the basis of
our equations with the condition that §{ varies slowly over an ion Larmor
radius, is much bigger than 'Bc derived allowing any continuous § . This
.questio'n can be answered by minimizing expression (6) over all gr° subject

to the restriction that dg:/dr < g: /A where A is a length of the size

max
of the Larmor radius. It is found in Section IV that the BC under this
restriction is, under certain conditions, appreciably bigger than Bc derived
allowing unrestricted E: . Whether the systems with 8 between these two
Bc's are stable or unstable must be settled by a more refined theory.

It should be emphasized in looking for stable systems by application

of equation (9) that the quantities there involved are per unit length. For
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example as the machine is made longer by adding long straight sections
which contribute nothing to p'V' for the entire machine, one might suppose
that if di¢/dr is kept fixéd the stability would be unchanged. {é#f'ithe contrary,
it is necessary ﬂto}incr.ea:‘:'se‘_..dL /dr in probo{rtion to the légg;};“q‘f the machine,
p'V'" always being the same, to preserve the same BC . This is also clear
from our earlier intuitive picture of th; interchanges, since the interchanges
may make use of this long straight section to unwrap themselves, after being
curled up by di¢/dr , and can match with less increase in the change in mag-
netic energy. With this caution in mind, one can produce the di/dr shear by
wrapping helical wires over only parts of the tube, and can still obtain stability
provided the (d¢/dr) total is large enough (according to equation (9) ).

The kink instability and its stabilization according to the results of
Section IV are not so well understood as the interchange instability and its
stabilization. However, the existence of the kink instability may be made
plausible by a simple force picture based on the fact that the lines of force
are tied to the matter. Further, on the basis of this picture the stabilization
mechanism of the helically invariant fields may be suggested.

We consider a long cylinder (see Fig. 3) of pressureless plasma of
radius R and length L imbedded in a large axial uniform magnetic field
Bo’ and in which a small axial current of uniform de.nsity j is flowing. As
usual, the ends are to be identified. The current j produces a field B9

and an t , given in the plasma by

B.= 2; _BG k_Zw
o~ “I¥» L% TrBO =T (10)

Note that ( is constant in the plasma.
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Figure 3.

Let us subject this plasma to a displacement ¢ given by

gr = g cos (8 - kz); ge = g sin (9.=kz)»,§z = 0; 1)
which moves each z = constant cross section rigidly a distance E perpen-
dicular to the axis, so that the tube of plasma is distorted into a helix whose
pitch is L . Consider two cross- -sections a@ and 8 a distance (/4 apart
which are, therefore, displaced in perpendicular directions. If ( = 2w,
lines of force rotate through w/2 between these cross-sections. That is,
any line of force through a point S in @ passes through a poinf T in B such
that QT wmakes an angle 1r/2 with QS, (see Fig.v 4). In these circurristances;

it is clear that any line
Al

Figure 4.
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of force passing through A in @ and B in 8 is displaced to a line of

force passing through A' in @ and B' in 8 where OA' and QB' make

a right angle with each other. But this means that the liﬁe of force through
AB is displaced into the position of a line of force which passed th‘,ro,ugh A,
B' in the undisplaced equilibrium. Since further the density of lines is un-
changed because the displacement of each cross section. is rigid, the field is
is uncha;nged by the displacement. Thus the situation characterized by ( = 2w
is neutfal with respect to the perturbation (I1).

Let us now consider the case in which ( -2n is positive but small,
subject it to the same perturbation (1), and examine the same cross sections
@ and B8, L /4 apart. Then any line of force of the equilibrium passing
through a point S in @ will pass through a point T in 8 such that QT
makes an angle L/4 > w/2 with OS (See Fig. 5). A line of force through
A in ¢ and B .in B, where OA and QB make an angle of (/4 with
each other, will then be displaced t;o a position passing through A' and B'
where OA' and QB' no longer make an angle of VL/4 but make a slightly

smaller angle. Thus the displaced line of force is rotating about the axis

Figure 5 .
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OQ at a slower rate (in z) than the line of force which passed fhrough B!'

in the undisplaced equilibrium. Hence we see that By is weakened by an
amount prbportional to(L/4 - TT/Z’ ? If we consider other points in the

cross secfiori we find that 6B is constant in each cross section. Since the’
cylinder is long, 6j = VX 6B is negligible and 6F = jX8B +6j X B ¥

j X8B We see, therefore, that 61: is in the same direction as £ and tends
to "'e‘nh_ance'the" |;>¢=,_rturt'>a.tion° Thus for ¢ > 2w the system is unstable with
respé_ét to perturbation (11) .

It is found in Section IV that h.elically invariant fields can, in certain
circumstances, stabilize the kink instabilify for (7> 2w, where we have now
denoted the ( produced by the current by (" . The helical fields have th'reé
effects on the kink instability which might lead to an understanding of the L5
vs (M- stability diagrams of Section IV. Before describing these it should be
remai‘kéd that the effect of the helically invariant fields may be obtained from

5

a model in which the same (" as that produced by the helically invariant
fields, is produced by a radially dependent Be field. (Again in the model the

B, field is produced by no current).

e

Accordingly, the first effect (1) is to increase the effective ( by L5

-(which may be negative) so thaf for m =1 the kink is made more unstable if

L(S is positive (or less if L(3 is negative). (2) The helically invariant fields

- affect the’étability by introducing a shear (dt/dr) in ( inside the plasma,

and 'according' to the sign of di/dr by increasing or decreasing the shear out-
side the plasﬁua, Finally, (3) the helically invariant fields may cause a surface

o

~ to exist on which theeffective = 1% +M is 2w . On this surface the electric
field E , due to the perturbation, is parallel to B and along a line of force
is always in the same direction. Therefore, this electric field leads to large

_currents on the surface so that the surface acts like a rigid perfectly conducting

-136-



wall to the displacement. This effect can lead to increased stability,

In connection with this third remark it should be noted that in cases
where the Aaxial current is confined to so narrow a region, that for many
purposes it may be considered as a surface current, the critical surface may
occur inside this narrow region, leading to £'s which vanish on one side of
the region. Such {'s are'not considered in the usual method of treating the
stability of surfaces in which it is demanded that the normal component of £
be continuous. Which assumption about the £'s is the correct one depends on
the actual physicél size of the region which is to be approximated by a surface, .
presumably compared with the ion Larmor ra.diusT This remark explains to
some extent the disagreement between the result of the investigation in Section
IV in which the stability is calculated for an axial current which depends on r
as rP .where ‘p is large and the result of the ﬁsual treatment of the stability
of a surface current. For this reason the stability of a pinch with stabilizing
B_ field is lowered by considering these more general £'s which have a dis-

continuity in their normal component.
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Appendix II < A Rotation Transform for Helically Invariant Field

At the heart of the Matterhorn effort lies the cbncept,of rotational
tra.nsform,1 0. We wish to e#hilsit the structure of the rotation%l- tr‘ans,form-(t'.)
for the case of helically invariant magnetic fields and we shall see how the
stabiiif§ criteria of later chapters are stated most tersely in terms of { .

We shall find ¢ in the bl'unt'_, but straightforward and pictorial,

way by fin&in‘g the average angle of »rotation,ll, 12

of a niégnetic line of force
abgut the magnetic axis as one prdéeeds along the z-axis." Siﬁce-the length
over which wé specify the 'a.v.efage angle of rotation is arbitfa;y we “s'hall

choose it to Be a helicai fi.}elﬁd ;Serié»d or Z‘E-' . We fifst.computé the anglie‘of

rotation A @ for a léngth 2 such that a line of force shall have éampled

once e"very point in a c_or_;stant Z Cross séction of a ¥ -surface, 8o that

%.;.';A0=Zﬂ, | (A1)

' The constant ¥ surfaces have cross sections perpendicilar to the =z

axis which rotate about the z-axis at the constant rate d8/dz = h/l as

we proceed along the 'z-axis, whereas the lines of force rotate around the

z-axis at a much_slowei' average rate (df/dz ~ 52) and fall Behind the ¥
surfaces. Hence we must froceed in the z - direction until a line of force
first comes back to the same relative position in a cross section that it
originally occupied. We are now assuréd that the average angle of rotation

for all lines in a ¥ .surface is the same as that of any one line. We thus have
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L =48 -2 - yoanwBan=o0tl,22....  (A2)

o
z

or, making use of (Al)

¢+ 4v’ = 2w y  (A2b)
hE 2

where we have adopted the convention n = 0. We are now able to compute L
with equations (Al) and (A2b). Since the fields are known as a power series
in 6 , the equations of lines of fo-i-'cﬂ,eiare power series in § , and thus ( will

‘be given as a power series in § . We consider only vacuum fields.

We wr_ite
;=z°'+z6+z66+... (A3)
and hence
; 2w 4v® B 06 252,
L ¥ = - — (1—-—‘—3- + +v¢o-) (A4)
T hz° 2° z° ZOZ
We then have
o _ 2muw 2n 4 : '
o= FUL  (asa)
O = 402 SO , . . (A5b)
hz_°z



66 4w
T h2® (zo -—z) (A5c).
etc.
If we expand (Al) we have (taking 8(0) = 6° (0))
6° (z°) - 8°(0) - hz°/1% = - zf . (Aba) -_
(o]
0%(z° + 22 3 =% - n2b/0 =0, (A6b)

0, o 0, 0 62 ,2,0, 0
66, o 6 do"(z") 66 d6°(z") -, =z 4”9 (z) 66/,

07 (z") + = + =z + -hz /1=0
. dz , dz 2 dzz

v o | | _ (Aé6c)

etc.
It remains to write the equations of the lines of force as an expansion
in 6 :
dr - B (r.9, z) .
& T B, ; (ATa)
z
B
d :
LU i (ATb)
2 .
Iif 7we write
r=rl°+r,6+r66+... : ' - (A8a)
and ;
9 = 6° + 0% + 990 4+ .| o, (A8b)



and remember

B =38 e + §6 (r,0,2) + _'1_3_56 (£.0.2) + .., (A9) -

rol

then we obtain, after expanding both sides of (AT7a) and (A7b) into pow'ei'

series in 8§, to zero order in §

o "
%:—:0 , . ro = constg (Al0a)
g.g_. =0, .. 6% =const. . - (AlOb)
To first order in & ,
6 B o ,0
& - et : (Alla)
B
6 o ,0
6 B, (r,0,2) .
dae _ 60
dz - +°R° | ‘ (Allb)
and theréfore ‘
o o .0 B61-(1‘0) 20 0
r(z;r ,0°) = — [ cos (40~ - hz) - cos £0 ] (Al2a)
h B® | : '
and
S 6,0
.y . B, (r) S
0%z 1°,0° = - —F— [sin(£6°-hz)-sint %] . (A12b)

hr B
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when use is made of our equilibrium vacuum fields.

To second order in § =

we have .
g 8,0 40 v 6
6 9B, (r, 0 ,z) : 6 9B
966(2 ;,r°,9°) =S dz [ - 9 C + 90 - 0
o r°B° or rB 86
By O, Bp  BGS. % o
'O o (-'3 + """) + ) 3) ] 1 (.Al3)
r B r B® r B
or
6, 0, 0,0
2 2B (r7) B (r") 2 2 2
oﬁﬁ(zo; ° 9°) = m!o _ [Bﬁr(ro)z + hi r " (2 +h T )Bﬁ(ro)]
h'r B , h r
| | (A14)
where, from (A6a) and (Al0b), z° = 2wf/h. Thus
' 2 2 I (x)
999(2°; :°, (%) = ?.(_X_)Z_ [1- 21 x) + (% +(x° ) )Z'] ,
X
(A15)
’ I,(x)
where x = hr, X = hR, and I (x) = ; .
: : xI ,(x)
Now, from (A5a), (Aba) and (Al0b) we have
A (A16)

-143-



- From (A6b) and (AlOb) S T

8%(z°) = n 2%/1

and from (Al2b)

it
(=]

OG(Z°)

Therefore from (Al7) and (A5b)

From (A6c), (Al0b), and (Al8) ,

955(20) = -hzaa/l ,

and from (A5c), (Al7) , (Al8) and (A20)

66 _ 41r2 66 _ h.266 _ 966
L' S =2z 2 = = = 7T
hz 2
since 2° = 2w{/h . Therefore
5 2 L2 I,(x)°?
2\ X . .
0% - ey X - 2 (x) + (% + 5 by,
x II(X)Z '
Also
b 62 4 3 Ix° 2 2 g
Ry  =-2m &) m[s-z(zu +x%) f(x) -
1 S

+ -(3'12+ 2x2) (1‘ (x) )2 ]
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(Al18)

(A19)

(A20)

| (A2l)

(A22)

(A23)



If we choose x =< X << 1 , we then have

L 21-4 le-Z +(Zl + 3) 21

Lt =m | T3 - ' - : S '
7 X2 (14 2%2)  y2 +»1u»+1z)(lz.+4‘)z,‘+(“;y”‘ Xte.o ],
24(2 +1) 164° (£+1)° (£+2)
(A24)
and
Ra, 88 5 2 1 T4 -1) (2-2) <2275 4 2(201) x21-3+(21+3) BT
Ir "‘"x(%" X% s XF 7, ] —
* C (A25)

66

66 di
and R-a—;—- for

For convenience we construct Table 1 which gives
- the small X limit. . |

To next order in 8 we find
LA (A26)

’ and, after a very tedious calculation, we find for £ = 3 , and in the limit

._xSX<<1 R
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5660 4 r.2 r.4 r.b r.8 . \
L = 3wt (-10 +12(5)°% + 36(5)% 100 )%+ 125 (5)% ) . (azm)
R. R R = R

- 0608

Here this ( is evaluated on a surface of constant ¥ such that to -

fourth order the value of ¥ = ¥° + \Ité. +. . . is equal to. .\Iro(‘r)‘_.;_‘.':;:,
Calculations of ¢ for equilibria in Which pressure is p‘.r_el'enf have been

made but are not included here.
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60

| Lbﬁ(per length 27" /h) - R %f;—- (per ,1engt1§ 27/h)
1r62 x% -3- 1r62 x X3
21r62 Zwﬁz x X
41162 iEZ 811'52 ;‘t
X
6n5° i}‘.; 241:52-2‘;
- Table 1.
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te
Appendix II - B Expressing V in Terms of ¢ .

fl K3

It is of interest to exi)ress some of the’ quilibrim;n quantities which
were introduced by Kruskal and Kulsru:d12 in terms of fhe transform ( for
the helically invarient fields. We will first find the relation that exists be-
tween the ¥ whi;h was introduced in Part A of Section II and the usual fluxes

: " A
Y and X . The equilibrium quantity V , where V_(d/o) = dTr and
<y
the prime denotes a derivative in respect to Y , will then be relited to ¢
and di/dr to the lowest significant order for the more general equilibria of
. . v' p' [v' - p' L] 8
Part B of Section II. Finally the function, A= yp[— ++]
vV yp [V +ypL]
which must be positive for stability of axial symmetric systems, will be

66 for these fields.

expressed in terms of the (
The ¥ which has been used in Part A of Section II can be shown to be
related to the flux crossing a ribbon one side of which lies on the axis, the other

in a surface ¥ = constant, and dependson 6 and z as u = £ f§ - hz= const.

The flux the long way inside a constant ¥ surface, {/, is given by

2w r(¥; u)
Y(F) = S dg g‘ Bzrdr (B1)
o I o
where z is a constant. Since V'_]i = 0 , Y is independent of this constant.

Since Bz and ¥ are periodic functions of u ,

1 2wt (¥, u)
y(r) = v 5; du 5 B, rdr . (B2)

(o]

The flux the short way, X is defined only up to an arbitrary integral multiple

of 1[/12 . In particular, we define it to be
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2v/h x(¥, u)

| @ =\  daz | BAr , . (B3
X ) 2 ) A (B3)

the flux through a surface of constant § over one wave length'of the helically '

symmetric magnetic field, and inside a constant ¥ surface, or

2% (¥, i_1)

du »
x(¥) = B,dr . (B4
5; 'T{'S; By (B
Then
2% r(¥, u)
v -IX = % S\ du i (hrBz -1 Be) dr . (B5)
o I

or, using Eq. (18d) of Section II ,

Y -2 X = - ¥ . ) (B6)
Since the transform is givenby ( = 2w g.é

dv _ h 1

- wmllom oo (B7)
The volume V enclosed by a surface of constant ¥ and its de~

rivatives in respect to Y will be computed for the equilibria of Part B of

Section II.

We consider a surface of constant Y/ determined by the condition
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f,=_r-r°-r6-'r66-r3-rn-... = 0 (B8)
y * Lo} 60 p o
where the r , r , etc., are functions of r , 8 , and z , and must be
chosen to satisfy the condition _ _ .
B.Af = 0. | ' e - (BYY)

The equilibria which are considered are given by

B =58 + 8%+ 8%+ BPiE0 4+ BT L. (B10)

where : B~ is a constant in the z direction ;

B = ) {e_ A_ sh I, (shr) sin
T =r s 1 Ys

s>0 s
Is .
+ _e_e As - Il-s(shr)cos u
- e, AS sh I‘(s (shr) cos us} . (B11)
and
g = (£, 6 - shz + ¢) | (B12)
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A =¢ B°/ I, (shS) "3 YL i (BL3)
. & . s v i Nl } w» S

EB is in the z direction and depends only on r so as to support an abitrary

pressure distribution ; Eﬂ is in the § direction, depends only on r, and is
L : B B A S e \.66,-1. - . Lt . N 8 P

determined by an arbitrary axial current ;-:B"~ depends on z trigo

ometri -.-
cally with average value zero ; etc. Note that terms in _1_3_6 with £ = 0
correspond to bulge fields .

A sufficient cbndition to satisfy - Eq. (B9) to zeroth order is

¥
<

r° = constant . “; : (B13)

Eq. (B9) is satisfied to order § by

5 © g li(ser0) S
r = z (J's ————— cos pu, . ‘_(B‘14)
& o I!s(shS)
oy
66

In the 88 order it is necessary to note only that r has a trigonometric
dependence on z with average value zero. The 8 and 7) orders can be

satisfied by setting

B o= =0 . . " (B15)

The flux Y in the long way inside the surface defined by Eq. (B8) is
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—

K - Zw/kv 2w r°+r6 +r'56+... o 5 56 B v
¢=2'1'r Sdz § dé S ' (Bz +BZ+B +Bz+...)rdr. (B16)

. 2
(¢} o o

Since W is independent of z it has been averaged over z . Averaging over

z eliminates terms in réa‘ and‘ ng' in a trivial manner. Eq. (Bl6) can
be integrated to get
_ 2
2 1, (shr®) 2 2 o2 2
1 - 01 “As I o s )
V= mr° B°{1+——-Z-ZO"-—————- (1-28°n°2° 1 °(shr®) )
2r° 8 I;(shS)
s
,ro — .
2 e , .
© B® © :

where I‘!(x) = Il(x)/x I.t' (x) . There is no term of order 7 in Y .

The volume enclosed by the surface over the machine length

(2w/k) is
2w/k 2w r°+r6 +r66 + ...
V = dz y dé rdr (B18)
o o o
or
2 P
220 1 52| 1,
V = | {1 + Y Z O’S e + ... } . (B19)

2r 1, (shS)
. 8 - .

We can now compute v' (Y) i and- ‘V"( Y)
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v = (av/a:®) /(ay /ax°)

2 -
J2 13‘3

I (shr)
_2m 22g02 |1 2, 2,202 ! .
=—o {1+ ) =7~ 'r—('*h'g) [1+(25 +8"0°r° %) 1 b )]_.;+...} ;

(B28)

V' =(av'/as®) /(@ /ax®)
262 [1, (shr°)'|2
8 ]

=‘Z ' (.)‘2 oz |, ~
L xr®“B Ils(shS)J
B
Jo

+ L (B21)
xr°B°° ?

! 2 l 2
[1- Z(Iz + throz) 5(shr® )+I 1° (sh’ro‘) ]

since j% = - dBf/dr'.

We next use Eqs. (A22) and (A23) of Appendix II A to get

1 d 04 66 j.GB
VvV = Z (x° 2% + ) (B22)
2nB°2 ~ ar’ 8 kr°B° 3‘ ..

In this expression Lgé represents the value of the roté.tional transform over
the length of the machine (2w /k) arising from the helical field identified with
u, . If the expression for Léé/l given by Eq. (A22) of Appendix II A is
generalized to include L = 0, (B22) can be extended to include Bulge ({ = 0)
fields.

A necessary condition for axially symmetric systems to be stable is

that the sign of L , i
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(B23)

be positive. Here V is defined by Eq. (B18) , p is the prAessure, and

2w /k 2w ' r°+r6‘+r66+ .

L(y) = S dz as

L |
(=9
L]

K

To the lowest significant order

p' = (dp/ar®)/(ay/ar®) = i /ewe®

2 o2 2 '
I VCERATES e VE TSR Y
(dy/dz®)
so that
vn y p'L' _ 1 sh d (r°4 L66)
2w B°“ L r°3 ar® ®
and
;P
A = 0 k sh d ( 4L66)
3040 T T@ T s
8"r B P 8
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Appendix I A - Demonstration of Uniformity of-Minimization of- §W : for.

Trancendentally Small hR .

" The stabi.lity a‘nalys'is’ in Section III is carried through for a;..ia;.r'tgicular
o;dering of the parameters: B~ 62~ e ~":17 ~ KR '~ XZ; hR ~ 1 . "Eq. (54)
of Section III is thus valid for any ‘equi.iibriﬁm in which this ordering holds.

‘Movreover, it yields resuits for 'equi.'lib'ria in which other choices of the order-
ing :are assumed.‘ As an example consider equilibria with 8 ~ A and all the
other parameters the same as above. The stability célculatibﬂ was élarr'i'ed”oru't'
from the beginning and it was found that the syétem is a.[Wéys unstable. Yet"
this result is containédu in Eq. (54) éf Section III since if Bis taken of order A
there, the expression is always negative. As another examé.'le consider kR ~\ ,
all other parameters the same. The stability of this system was also examined
and the results founci were identical with tﬁose obtained by séft.ing n=0 in
Eq. (54).0f Section III. This is the obvious way to extend Eq. (54) toAthe case
of kR ~ A since n # 0 leads to positive 5Wmm . Further it is impossible
to go‘ backwards and obtain Eq. (54) from the revsults of the stability calculation
with kR ~ A from the beginning. In the same way the stability of equilibria
with other orderings of the parameters can be determined directly from Eq.
(54) so that we speak of Eq. (54) as being "uniformly'" valid for any choice of
orders of the parameters. |

If hR ~ 1, it is clear from the discussion of the preceding examples
and the nature of the calculation of Section III that Eq. (54) is "uniformly"
valid. However, if hR is of a different order, it is no longer obvious that
Eq. (54) can be app:lied. Calculations have been carried through which show
that E q. (54) is valid for hR ~ AP with p any integer. In this appendix the

calculation of the extreme case in which hR is smaller than any power of A
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(i.e., trancendentally small) is carried out and it is shown that Eq. (54) is
still valid.

It will be assumed for simplicity that the plasma occupies the entire
volume, i.e., R =S . Further, only a diamagnetic current jQB independent
of 0 exists. Generalization to the situation which was treated in Section II
is straightforward. Quantities will be written with two supersci-ipts of which
the first denotes its order as a power of the parameter h and the second as a
power of A . That is, A"V o n'")\Y . The procedure will consist of minimiz-
ing W%V for u=0 and ascending values of v through v = » , then for
u=1 as v increases from 0 to o , and finally for u=2 from v =0 to that
order for which §W is not trivially positive. The parameters will be chosen
so that pA/R~ A, B~ kz, and kR ~ h?tz .

The equilibrium situation which is investigated can be obtained from
Section 1I (and an extension of it to higher order terms) by expanding the Bessel
functions as power series in hr and identifying each order of h . In describ-
ing the helical fields we have used the notation introduced in Eq. (Bll) of Ap-
pendix II B. One can convince oneself that such a procedure is acceptable by
solving the equilibrium equations directly for small values of v and utilizing

the conditions

B:-Vj=j- VB (Al)

and

B-n=0 (r=R+p% cosu) (A2)
to investigate higher values of v . In particular, one can show that

V=0 (A 3)
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for all v

The minimization procedure can be simplified for this calculation by
writing Eq. (7) of Section III in a different form. Sgbétitutigé fdr,Bz A\ 4
in terms of Qz , expanding @, and using the idéntity,' “

£-VBEIXEH(VBY- £, (A4)

one gets

26W = S{QZ+ (Q, +3% & e )o-4xE e,B- VE - (L B): B)

i , +$Xe £ (B* V4 -lﬁ-\VB'?v'?‘BV-iﬁ)#-e-;’izx?:' (@-BV-§)
e gftar . s
By using the identity,
(B-Vi)x 4 - e, £,-d%e £ (5 VB)=[(1-VB)XE+i X(E- VB)]- ¢, &,
9B

=.-__];X_§-.-5=z-§z, (A6)

one can put Eq. (A5) into the form

- 2 )
20w = ({Q+(Q rixt-e)? V- (BixE et rrE(v 8]
| tiX (e, gr Bl b i Xe b (R E, +2B V- §)
tie, Xt (R-BV-£-Bpy1a, . (A7)

The third term vanishes on integration,with. Eq. (A2) . The term in §W
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proportional to h* AV s

ZGWU"V:SZ-' S‘Z“/kj‘ rdr { ch Qu-bv-e

-d,c- -b, v-c. .f, g o ,u-b-f, v-c-
+(Q de _ebd,g efgz,(o:bvc“_}fgx'&ulz: vcg'sz)
d,e
+ypubdvce(v‘§ )(V _E_d e)+*ubdf,vcegx€_ _2832 “E.f,g

I s » d,e '
- ﬂ..‘.1 b d f,V CcC-e &-e-nggc‘(af ng’g+ Zdee vo g_f' g) (A8)

+ .u-b-d,v-c-e

d-f,e-g
dfe f, a8
iz e, x4 @he By.ghe. 3z

£ 8},

plus the contribution from the region between R and -R + po'l from integran&s

of lower order. Here

v_ z gu,v(s,n)ei(sh+nk)_z' (A9)
where
“(s,n) = i(s-s) BB 2 S(s) &2 P7H V(5o 67, n) +ink BY (0P hain)
+B’ (s') V{-u -b, v- C(s s' n) {_u -b, v- C(s s',n)- (s')
B ° (s V- £2° PV C g g1, n) -ishB? S(s 8§ b-bv-ci o o1, n)
- ink BP S(s1) g VPTL V25 g1 ) (A 10)
and
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Q:; Y8, n) = P Yn1) - vg:—bﬂfC(,_,"x.n).gu'b'?'c(s_,ix‘,n') . v'a:ﬂc’(i!)'

- 18thB> a0t ;"",‘_1”‘“_'(_.},:5 n)-BP (a1 V- &PV (s gtn)
(AL -

The summation convention has been employed, i.e.; b,c, s?, etc.; take on

all possible meaningful values, - o

Since j=VXB and 3>V =0, Q%" isgiven by

2%V (sm) = 0, (A12)
and |
Q2 V(s n) =- % (87) x>V (s-8%n)" £~ B 81V £V (s-8T,n).
(A 13)
Thus / .
' 2% 2n/k R
25w °= S de sz rdr{(Q2°)%} (A1)
' o o o
is minimized by setting
v- %%z 0, (A 15)
This automatically makes aw"" zei'o. Continuing, we have
0,2 _ ‘ 0,12
25W ,-S de dz) rdr{(Q,” )°} (A 16)
o o o
which requires that
v-£%1 2 0. (A17)

In general, from Eq. (A 8)
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2r 21 R :
zawo, V=S ':10 ‘ll'/ksz- -rdr{(Q:’ C_+§0. e x{_o,oc°e.£z)(Q:.V-$,-_°ogx§°av'c°g.£z)

o, o o

;I-ypo’v'cfe(V' -§°'c)(V-{-°" e)} L (A.IS)

Thus, expressin Q%€ by means of Eq. (Al3), we have
_ g Q,

2 2 -
26W? V:S 30 '/kdz) rdx{( B° °v. £°79 (-8 v £V7C7E)
o o o
+yp® VIOV 2 UV ™ O}, (A19)

or when we replace c-e by ¢ and v-Cc-g by. e in the first term

2x A2
zow°"’=~S P "/‘3,5 rar{(B "V °"®"8p > B49p™ V" Y0 L Nv-£ 6},

o [ o
i (A 20)
Nowy if v isevenlet v=2w; if odd, v = va -1 . Assume that
V-£%* = 0  (A2)
for x <= w-1. Then
26w®»2v%-l _ o, (A22)
AZ‘l[ Z‘ll'/k
zaw°""”=3 de Srdr{(Bo’ (v %}, (A23)
o o o
so that the rhinimizing _§.°’ Y must satisfy
v-£» V=0, (A24)
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i \‘fé?

Smce Eq. (A2l) is satisfied for w=1 or 2 (Eqs (A 15) or (A 17) by mductmn

both v- {-o Vand WV are zero for all v ‘.

Since (V- i)o' V' and jzo' Vo are zero, it is clear from Eq.

'f . T d e
L, v
26W = 0
- for all v. . . ST e A

Proceeding to the hz orders, we get ... v

~2m 2n/k R
25w2'°=3 deS» dz S rar{ (Q" %%} ,

o o o
where

0('s, n)=i sﬁBo’o-&o’ (s, n)
and .' | il

Q*%s,n) =- B>° V-4 0 (s, n)
Minimization, therefore, requires that

&£ %s,n)=0 (s % 0)
and .

V'-&'l'o = 0.

~ Since ‘
ZGWZ’ L. 0,
“nothing new is obtained from the hZ A order.

Continuing, we get

- ~21 ~2u/k  ~R
zawz'2=3 dOS dz) rdr{(Q ) +‘yp ,gz”’z}

o (o]
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(A 8) that

(A25)

(A 26)

(A27)

(A28)

(A29)

(A30)

(A31)

(A 32)



which requires that

» co o . |
(_-ﬁz—)l‘o= 0. (A 34)

It can be shown in exactly the same way as was done in Section III

that by making the transformation

g:§_+'_§_+§f . ‘ (A 35)
.dne can set.

&zo’. =0 - (A 36)

without any loss of generality. Then

abYs,n) = ish B 0% l(s a) +BYY(s) - v ¥ %0, n)-£%%(0,n) . VB Ys),
(A 37)
(s,n) =-8%0v.gbYsn), (A38)

and it is necessary to set .

ishB® &% (5,n) =- B Ys)- v£2 0,n) +£2:%(0,n) - vBY Y(s), (A 39)

v-&ble,n)= 0. (A 40)
The next order is
2n  a2n/k AR Ll |
26w 3= S de dzg rdr {-j °2%'§z. 0.0 0. °} (A 41)
0] o (o]
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This vanishes on integration by parts with respect'to z'." This integrand = *

in the region between R and R + po"l" will not contributé to "GWZ’ 4 ‘since

gr°'° must be zero at R

o Fimally, & o0 o T e s

PN Z Zvr/k 02 1,0,2 028&20’12

ALY 0,4-'¢>-’e- Y06 9 e 0gy
+'3 ExeCe (5= 8% & B}, (A 42)
‘Sinc-et é-o’z,,{-‘l'z, and gzo’l enter 6,W2’4 only thr_pugh positive definite
terms, ﬁwz’é can be minimized by setting N fo0
i3
2
(s,n)= 0 ,. ... . . .(s 3 0) (A 43)
L2 .0,2,1,0 S
Q=g & | (A 44)
01, DI . ¥ i
g’ (s,n) =0 . (s # 0) (A 45)
Then
27 n.zw/k
zawz"*:S ae | sz rar{ |@"%(0,n)|?
° ° (A 46)
goo ;03,00 0,2 013.3“ 020088— Ly
6 gr lg g1- Dz '& -lg 51.

We now integrate' the terms which contain le’l/az by parts in respect to

z and substitute for 85—0’;/82 and.&&o'l/az by means of Eqs. (Al) and (A 39).
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Making use of Maxwell!s equations and recognizing that some terms vanish on

integration (gf’“ (R) = 0), we find that

' .0,2 :
2swits dn S rdr{]-@%0.n)) % + % 2 12%0.m)2 L 184 (.03

(A 47)
From Eq. (A.m) .' ‘
(0,n)-—1nkBo °§° %0,n)+ vx [(£%Y(-s,n) x BV} (s, 00 ] .

| (A 48)

- Eqs. (A47) and (A 48) are the same as one would have obtained by expanding
- Eq. (54) of Section IIlI, keeping only the lowest order term in hR ,-illustrating
the umformny of that result as hR becomes infinitesimal.

It can be shown that the boundary cond1t1on

£'n=20 » (r=R + po"l cos u) (A 49)

is satisfied, in the same way as it is shown in Section III.
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Appendix III - -B 'I"-het Fourier -Aﬁé’.ly"s.isbfthe ﬂi

.- In the main part-of _Sec,:t@onllluthe; -&'s: were Fourier analy;z’ed-in' -z cand.
the F-ourier_.comi)onents— were éé@ded in; )L"‘.f‘ It has been assumed that in the':
Fourier analysis of £ only those components of { with wave numbers AR
independent of A -and those with-wave number proportional to )tz- wefe\
importé.nt while all the others were aééumed ‘to be zero. For instance, the °
component whose wave number is proportional to A was neglected. It will
be shown in this appendix, that if any of thesé, components were non-zero OW
would necessarily be positive, so that in testing OW for sign it is actually
permissible for one to neglect fsuch'comi)onents.

In. carrying out this justification we shall not always:carry the Fourier
analysis explicitly, but we will speak of the rate of variationin z of £
by speaking of the order of -g-% . We make use of the order notation O and
o where f = o(g) means f goes to zero faster than g and f = O(g) means
z goes to zero at the same rate as> g.
We know from -° = 0 that %9 = o(l) . Further it can easily be

seen that %o= O(A) , since -gg= O(v)\a) with 0< @< 1, would imply
Q% $0 ‘and therefore 5W2a‘> 0. Neﬁti%a?: O(A) we would have a part of
Q‘A ~ eihz which has a different wave number than the rest of 'QA has, and
which must thus vanish. Therefore —g—gp = o{(A) . Of course _gk might have
components whose wave number varies as different powers of A than we
considér in the main Section, but these only enter Q)z\ and we must have

vt = 0.
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0¢°
. W]\A z e s
Further, from consideration of & we have 75 = o(l) and it is .

oto .
clear that 5;—-2- = O(A), since the p(V §)Z term would otherwise be
larger than )\4 and lead. to ‘stubility'(we are not yezt assuming g°z = 0 in

: 9@
this appendix). Finally, in GWAMA- the p (-a?-z:) term acts independently

of the remainder of the 'yp(Vo_g.)z' term because of its different dependence on

z . Combining this fact with our argument that changing £ by fB only

9E°
affects this term we can conclude that Fz_z = o(A) . We may now apply our
argument that g; = 0. e
9§
It now follows easily that 'B_z—z_ = O(A‘z) since otherwise 'Q'z would

be larger than 7&4 . The other components of _g_k would also lead to
Qz larger than h4 and so much vanish. The other components of ﬁk)t never
enter . It is thus seen that the choice of £'s which only have Fourier components

whose wave numbers are proportional to 1 or AZ is justified.
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Appendix IV - A Kruskal Instability if only a Surface Current is Present.

Ty
s

The situation in which the external :fégion is a pressureless plasma

and in which the axial current is confined to the surface of the plasma is

i 00
A S I R TV

treated in Section IV. It is shown there for currents laréer than the Kruskal
limit the system is neutral. It is therefore necessary to carry the minimiza-
tion to a higher order in A |

Since no fields of odd orderlin A are present, we carry the calcula-
tion through again from the begiﬁning, assuming that tfle expansion parameter
A is of the same order as kR and B9/ Bz . For simplicij:y, B will be set
equal to zero and S equal to infiﬁity. The equilibrium which is.vtreat‘ed'here

is defined by

B =e, B°, (r< R)
B=e, B +e (8 +8%Y , (> R)
where B® is a constant externally applied field, B)t = BA(R) R/r is the
' A BMR)Z |
field due to the axial surface current, and B = . L is the second

2 B®
order field necessary to satisfy the continuity condition on the total pressure

at the surface.

To lowest order §W ,iss

-] .
o .
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where

Q° = - e, B® A& . (A2)
This is mimized by setting
A'E® =0 . | . (A3)

The next order vanishes trivié,lly and

o R |
25w ‘y Q2 a7 - y 2 ®)* B*r)® a042 (A4)
R
where
@t =B L &% - e B°Veg , (r<R) (A5)
e B -V e B e
(A6)

With the usual Fourier analysis ‘ﬁz‘ can be expressed in terms of

A mom) = e, B2 pMmn) - ey 2 pimun) (a7)
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where
. O . ,
p' = ZEIZ. g2 (myn) 0 (F<R) (A8)

ot

A _ krB®° 2 o i
pt = e 4+ ) g (mon) . (x> R) (A9)
_ n
Here (1 = M is the transform over the length of the tube due to the

krB® | A2
axial current. Since & enters only in the positive definite term Q z oW

can be minimized in respect to it by setting

‘voe" =0 (r< R) “(A10)

BOVed (m,n) =L2 3" °(m,n) (r>R) (A1)

d _dp m A =0, (A12)

or

|m]

[.Lh(m, n) = Ar (r< R) (Al13)

-169-



and

p,)l(m, n) = B (rl.ml - allml r—ln}l ) (R<. r<a) (Al4)
so that
: 2 2m 2m 2
8w 2 .
oW = 2 Z mE + mER e izm—_%n- M}
kR B° °o 2 .
.(Z-——-> [€, (m, n)| ° (A15)

where all quantities are evaluated at R, and a is that radius at which

”A {(m, n) must vanish , i e

a?/R% = m J@®) /(2wn) . | (A16)

If this exp;eésion is less thaﬁ one, a is eqﬁal to infinity.

Eq’. (AlS) is thé same as Eq. (Sd) of Section IV except that S
has been replaced by a . This minimiza.,tion was reproduced here for com-
plﬂetenes;:-: since the no_tation is a little differ.ent Ifrom that used in Section III.
It is cleé.r that 6W as given by Eq.. i‘ (Al5) is definitely larger for any given
values of n, m and L_n than that given by Eq. (5d) of Section IV so that.

since the latter predicts stability for all m>1, no m>1 instabilities can
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exist in this calculation. As before, only negatiye values of n can lead to
instabilities. If L"(R) < 2% ]n] , a is infinite and the situation is the
same as that discussed in Section IV, 8o that the system is stable in
respect to such purturbatiéns. If L"(R) > 2% [nl , OW iszero, the
system is neutral to this order, and the calculation must be continued.

To third order

2 ® |
A 2
26w M- BT z {zj‘ & (1, n)e @™ (-1, -n) rdr - 20620, n)EN-1, -mB )} |
o o) .
(A17)
By straightforward expansion
Mm,n) = e 2 Mmon - e & MPma . am)
where
' o A
p.}‘h’(m, n) = n_lg;_z;l_B_ Er (m , n) (r< R) (A19)
Y .
M m,n) = KB ZI2 4 M) fAm,m) . >R) (A20)
Therefore
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o, - o :
26w = §I‘:_.z {zS‘o_ (;_11 pta,n) g n) + df‘ b G, f" ap™ ('1'_ -n), rdr
n

@Bt 2am g (gl . - (A21)

. ' A\ - R
Integrating the term which contains d < ('.l’ -n_) by parts, recognizing
that the coefficient of uu(-l. -n) in the integrand is zero due to Eq. (A12),

and evaluating the integrated term by means of Eqs. (Al3) and (Al4) , one

finds that
X a?l + Rz
26WMA - Zz{u (ln)[{ (l-n)+u, (ln)p. (1.11)_2___.,I
2
s* £ (1,n) E (-1,-n) }gp (A22)
and GWM\)l vanishes trivially when the 's are expressed in terms of the
‘g"s .

In the fo"\‘xrth order
ztswMM 8“ Z{g 22t L n)e@ (11, n) + |00 2) rax

S8 g RE W g (1 m + Jedw ] Big} - (az3)
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Here -

| . -
M (m,n) = - B® Vet (m,n) + LB A ) (A24)
and
Dm0y e 2 (M, n) + M m )
- g @M w4 Mmooy BE Q""( Lm0
(A25)
where
X (o} :
MM'\(m,p)? nll:fB IE}:}‘ (m,n) ; A (1,n) = 0 - (r<R) (A26)
ke B® ' 2un | n oo, nkrB“ o
(m n) = -z-—--(' + )E (m,n) ;v (m n) = — ‘§r(m,n).. (r> R)

R (A27)

" The terms in‘Eq. ﬂ(AZB) which contain = cancel the first surface term in
exactly the same way that &W A was shown to vamsh Completing the

square in Q:A . one obtams
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2 w . \ AA
20w 21 N L (T i s g2
n (o S

Iy
"

\ ) - A A AL
+ ,Q;u\(l’n) +nkrd!r£ ,u,n),z_nzkzrz ,dir (.l,n), 2, 2p (1,:21)11 (-1, -n)
b o
A A ’ :
+z,§‘: (1,n) d"dr(."l"")‘, jrdr - (BM 151(1,,_n)l 2 )-R.} . (A28)

since £ enters 6W'? only through Q’z‘)‘ in a positive definite term the

minimization in respect to it requires that

QAZA(I,n) = - nk.r -girl'—-u—'n-') . (A29)

Since p,M must satisfy the same Euler equation as [J.A , the first two terms

just cancel the remaining surface term. Integrating the term containing
AAA

g-l-;——-— by parts and recognizing from Eq. (Al2) that the coefficient of

l/)uUt in the integra»nd'is zero, one finds

5 0 A
25w A _ 8t Z {‘S nicZe? | SEALD 2 gy g 2 S L) My 2Y
n

(A30)
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Since - p.A is given by Egs. (Al3) and (Al4) the first term can be integrated
directly. Then expressing p,)‘ and u>00t in terms of E: and BM\ in

terms of BA and therefore _LT' and using Eq. (Al6) one can write

2 n2 | 2

2 .
-?-OWM‘Mt = - _E_Sw Z { n4 + '_"Z""In L '(az -RZ) (5 az + RZ) +2 a4 Inf—z)
4w a R
n

n3 4.4.02
SR RE R ERE o) 2 (A31)

2% a

which is clearly negative for all ¢ in the range where the calculation
is applicable. The system is therefore unstable if ,_77 is greater than the

Kruskal limit.
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Appendix IV - B _‘ Kruskal Instability with Helically Invarient Field
and Small

Since the axial currentvis present only -during ohmic heating when the ‘
plasma is relatively cool, it iAs' assumed for simpli_city that 8 = 0 in the
' trgafment of the Kruskal instability when helical fielcis are present. However
B (_e_ﬁters Eq. (54) of Section III through a term which can have a singularity
at some point in the pllasma. It is, therefore, possible that the presence of
‘even a small ‘value of ﬂ:.can"change the situation completely. Here it is
shown that the results one obtains by calculating ow aséuming B is present
and then taking the limit as (3 approaches zero are the same as thbse one finds
by setting  equal to zero at the start of the caléﬁlation.

~Assuming that: only a single helical field with £ = 3 is present, the
axial current is uniform in the plasma region, the pressure distributipn is
i;arabolic, and the ‘helical p_eriod is long enough that only the leading terms in
the expansioﬁs of the Bessel functions in'terms of hr need be considered, one

_firids from Eq. (60) of Section III

' 2 . R 2 . 2m
20W = %—:L— Z { Sl (2'2& + U 2) rdr + m ws——)z— [J.ZIR
0 0 r : _ 1-(R/S)“™
n
MNpl :
2 'R 2 :
- 7 : (B1)
LP(R%-a%) IR}
where
_ 4 | .
@ = m? - 48"3 — 2)2 ’ (B2)

oy



2wR2
.and
" 2 .
L2 2®n ., @, R . . . . S
a'_—-(m +L)_-—b— ’ (B4)

' l,6 and Ln being evaluated at R. The minimum value of 0§ W is clearly
uniform as B .~'O for those values of m andn which do not make a lie in the
region 0 < é< R since no singularity would exist in Eq. (Bl). It is shown in
the discus sion of the intrinsic sfability of the helix (j"7 = 0) that the contribution
to O0W from the region 0 <: r < a is positive if 8< 52' and can be made as
smail- as one desires by making gg go to zero close ehough to a.

The problem can théfefore be redefinéd as follows: Consider the

minimization of the function

| R | »
I = S (% p? + p'y rar (B5)
a r

where @, U, and a are given by Eqs. (B2), (B3) and (B4), subject to the
condition that U(R) be prescribed axid different from zero. Is the minimum
‘value of I célculated with B =0 the same as the limit of the minimumvalue
‘of I calculated with B present as 3 approaches zero?

_.The Euler equation corresponding to Eq. (B5)is

2

. 2
1 11 4 .
K (rp) - (i—nz - fg%) p =0 . (B6)

Lt (r -a")
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Let < <1 . Inthe region where

2 2
T -a s> (411"3 )1/2 (B7) ) -
% m” ¢

the last term in Eq. (B6) is negligible and the Euler equation reduces to

1, mz -
T (rp) - - u =0, (B8)
. : r , . :

so that | must be given by -

™o+ A

R™ + xR™™ (B9)

g = p(R) ’

:. where the arbitrary constant A must still be chosen. If
r - a << a ' | (B10)

' Eq. (B6) becomes

1"
.- S L (B11)
a Lt r -a) . .
It follows from Egs. (B7) and (BlO_) that for B sufficiently small there

exists a region '
S V- ' o -
(—69-) a . <<r - a<<a _ (B12) » .

m

1n which [ must satisfy both Eqs. (B8) and (Bll) .
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. | AV

Introducing the parameter

"

e X=(r-a)/a (B13)
and the function . : . .
y ‘=.“ueX/2 ‘ | - (B14)

and lettmg the prime represent d/dx , one writes Eq,(Bll) as

) | - , .
Yy +»(16-§—z - m -%)y= o . (B15)
X - - -
Asgsume a sélution. of the form |

y = Xs (1 +¢2 XZ +a4.x4+ e .o t anxn-+ . vs). - (B16)

Then : ,
. 1/2 ‘ -
s'=-lz¢%(1-4—“—6§) (B17)
: L . . .
and

. -2 1 . ;
e (m”™ 4 Z) @ .2 . . (B18)

a
n . .
" (stn)(stn-1) + X8
For large values of n and small 8
a.Nan-Z -~ %4 . ~ 1 v
e M -1) R -1(n-2)n- 3) nt (B19)
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éo tiaat the series representation in Eq. (Bl16) for y is uniformly convergent
with respect to X and B . The series obtained by differentiating Eq. (B16)
term by term is also uniformly COr;vergént ‘and represents y. Since each
' term of the series is continuous in B at B equal to zero, y and y' , and’
therefore the logarithmic derivative of y are continuous functions of B at
B =0. |

The constant A in Eq. (B9) is detérmined bjr the condition |

rdp | . xdy |

pdr r'=r1 ydX 'x = (rl- a)/a (B20)

where r, must lie in the region defined vby Eq. (B12) . Since the right hand
side of this equation is a continuous functidn of B at 8 = 0, the left hand
side, and therefore A , must also be. The integral in Eq. (B5) can be

evaluated by multi;ilying Eq. (B6) by p and integrating, so that

2m
_ du _ 2 R - A
I = r ar 'R = my (R) -EZEI—;—A' (B21)

must be continuous at 8 = 0.

It should be noted from Eq. ‘(B3) that |4 must go to zero at a as
fast as X , whereas the minimizing function, given by Eqs. (B14), (Bl16) and
(B17’ , does not vanj}sh as rapidly. Since for any value of B8 and any
allowable U, the integral, I, is gre'ater fhan or equal to that value which is
given by Eq. (B21) where A is between the value which is obtained from

2m

Eq. (BZO) and a - the value it would havle if B were exactly zero, itis

clear that it is a continwous function of B as B goes to zero.
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