

CONF-140826-3

PLUTONIUM IN THE LAURENTIAN GREAT LAKES:
FOOD-CHAIN RELATIONSHIPS

by

J. S. Marshall, B. J. Waller, and E. M. Yaguchi

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Presented at:

XIX Congress of Association of Limnology,
Winnipeg, Manitoba, Canada, August 22-28, 1974

U of C-AEA-USAEC

MASTER

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

Prepared for the U.S. ATOMIC ENERGY COMMISSION
under Contract W-31-109-Eng-38

Plutonium in the Laurentian Great Lakes:
Food-Chain Relationships

J. S. Marshall, B. J. Waller, and E. M. Yaguchi
Radiological and Environmental Research Division
Argonne National Laboratory
Argonne, Illinois 60439

*Work performed under the auspices of the U.S. Atomic Energy Commission.

Plutonium in the Laurentian Great Lakes:
Food-Chain Relationships

J. S. Marshall, B. J. Waller, and E. M. Yaguchi

The radioisotope ^{239}Pu , an alpha emitter with a half-life of 24 000 yr, is a small component of fallout from atmospheric weapons testing and at present can be measured in environmental samples by using large samples and performing a rigorous radiochemical separation procedure. The toxicity of plutonium has been of concern since its production was initiated in 1943, with the result that more is known about the toxicology of plutonium than about that of most other hazardous elements (Bair and Thompson, 1974). However, its biogeochemical behavior, especially in aquatic ecosystems, remains very poorly known. A recent review (Noshkin, 1972) of plutonium dissemination in aquatic environments emphasizes the relatively limited knowledge of plutonium behavior in the oceans and the virtual absence of data for freshwater ecosystems. Because of projected increasing production of plutonium and its use in present-day reactors, future breeder reactors, and other applications, we initiated studies of the behavior of fallout ^{239}Pu in a large freshwater ecosystem, Lake Michigan, in 1972. These studies were intensified in 1973 and expanded to obtain comparative data on the other Great Lakes. The purpose of this paper is to present a preliminary assessment of the role of organisms in the removal of plutonium from Great Lakes waters and the potential for food-chain transfer of plutonium to man.

Samples of water, net plankton, and benthos were collected in June 1972 at 25 stations throughout Lake Michigan, and fish were collected in the spring

and fall from areas near Milwaukee, Waukegan, South Haven, Saugatuck, Grand Haven, Frankfort, and Manistique. Additional samples of water, plankton, and fish were collected in the spring of 1973 from all five of the Great Lakes. Detailed descriptions of the sample locations, sampling procedures, and methods used for the analyses of plutonium and radiocesium are available (Marshall et al., 1974; Nelson et al., 1974). Samples of whole adult fish, each consisting of one or two individuals of a large species or as many as 120 individuals of a small species, were analyzed for ^{239}Pu and ^{137}Cs .

The results are summarized in Table 1. The relatively high average ^{239}Pu concentration observed in mixed plankton samples (compared with zooplankton) suggests that the higher value may represent the contribution by phytoplankton (primarily diatoms) which dominate "mixed" samples. The data do not preclude the possibility that the high concentrations in mixed plankton are due to the extremely minor amount of inorganic detritus in these samples. However, the sorptive properties of algal cells (Vaughn and Strand, 1972) and the dominance of phytoplankton in the mixed plankton samples seem adequate to account for the observed concentrations. The similar relatively high average concentration in Cladophora suggests the importance of the ratio of surface area to biomass rather than a specific association with the siliceous frustules of the diatoms in the mixed plankton samples. The nonspecific nature of the association with diatoms was borne out by results obtained by the Analytical Chemistry Section of the Illinois State Geological Survey, who analyzed our plankton samples for Si. Similarly, a detailed study of ^{239}Pu distribution in a giant marine alga

indicated that some ^{239}Pu was on the inside, but by far the most was apparently on the outside (Wong et al., 1972).

The ^{239}Pu concentration in zooplankton is roughly an order of magnitude lower than that in mixed plankton; therefore a large fraction of the total ^{239}Pu in zooplankton could be accounted for by ^{239}Pu associated with phytoplankton in the digestive tracts. The higher concentration of ^{239}Pu in Mysis and Pontoporeia than in other crustaceans that dominate the zooplankton samples also suggests the importance of gut contents because, during daytime at least, both Mysis and Pontoporeia feed within or near the surficial layer of sediment, which preliminary analyses in our laboratory have shown to have a relatively high ^{239}Pu content.

The average $^{239}\text{Pu}/^{137}\text{Cs}$ activity ratios for mixed plankton samples are about twice as high as those for surface waters (Table 1), and those for Lake Michigan mixed plankton samples taken during July and August 1973 when the rapid decline of ^{239}Pu in the epilimnion was observed (Wahlgren and Nelson, 1974) were about ten times as high. These data, together with the apparent high concentration of ^{239}Pu in phytoplankton, are consistent with the hypothesis that biological processes are of major importance in removing ^{239}Pu from Great Lakes waters, as Bowen, et al. (1971) suggest that they are in its sedimentation in the ocean. The settling of zooplankton fecal pellets has been shown to be a major mechanism of diatom sedimentation in the sea (Schrader, 1971), and it may also be significant in removing plutonium and other elements associated with diatoms from the surface waters of the Great Lakes.

Comparison of ^{239}Pu concentrations in plankton from all five Great Lakes is facilitated by the consideration of concentration factors (Table 2). The term "concentration factor," as used in this paper, is the ratio of the concentration of ^{239}Pu in the sample (on a wet-weight basis) to that in the water. The relationship between ^{239}Pu concentration factor (CF) and ash content in Great Lakes plankton samples (including mixed plankton, zooplankton, and *Mysis*) is shown in Figure 1. The empirical equation of the curve determined by computer least-squares analysis is $\text{CF} = 200 (\% \text{ ash})^{1.4}$. Spearman's rank correlation coefficient ($r' = 0.92$) shows a strong and highly significant ($P < 0.01$) correlation between CF and ash content in these samples. The samples having the higher ash content are mixed plankton samples dominated by diatoms, as determined by microscopic observation and confirmed by the analyses for Si mentioned above. The observation that plankton samples from all five of the Great Lakes have such a consistent relationship between plutonium and ash content suggests a rapid equilibrium between aqueous and sorbed plutonium species. If further study substantiates this, it will greatly facilitate the development of predictive models for the behavior of plutonium in the Great Lakes—including models for predicting its transfer to higher trophic levels in food chains leading to man.

The highest concentrations of ^{239}Pu in fish were found in *Cottus cognatus* (slimy sculpin), a bottom-dwelling species that feeds on benthic invertebrates (Anderson and Smith, 1971). *C. cognatus* has a mean concentration factor of 250, roughly an order of magnitude lower than that of its primary food, *Pontoporeia affinis* (Table 2). Intermediate concentrations are found in *Coregonus hoyi* (chub), *Alosa pseudoharengus* (alewife), *Osmerus mordax* (smelt), and *Coregonus clupeaformis* (whitefish), species that feed primarily upon zooplankton or a

mixture of zooplankton and benthic invertebrates (Anderson and Smith, 1971; Wells, 1970; Wells and Becton, 1963). These species in Lake Michigan have mean concentration factors ranging from 14 to 37, one or two orders of magnitude lower than those of the invertebrates upon which they feed (Table 2). *C. hoyi* feeds more frequently upon benthic invertebrates than do the other three species, and this may explain its higher concentrations of ^{239}Pu . The relatively high concentration factors for *A. pseudoharengus* in Lake Huron and Lake Ontario and for *O. mordax* in Lake Erie are unexplained at present, but they may be insignificant because of the small number of samples. Intermediate concentrations of ^{239}Pu are also found in *Perca flavescens* (perch), a species that feeds on a mixture of invertebrates and fish. Concentration factors for ^{239}Pu in the four samples of *P. flavescens* range from 4 to 29 (Table 2). The lowest concentrations of ^{239}Pu measured were found in *Oncorhynchus kisutch* (coho salmon), *O. tshawytscha* (chinook salmon), and *Salvelinus namaycush* (lake trout), species whose adults feed almost exclusively on smaller fish. The concentration factors for these piscivorous fish range from 1 to 7, about an order of magnitude lower than those of their prey (Table 2). Figure 2 shows the relationship between the ^{239}Pu concentration factor CF and the ash content in Lake Michigan fish. The equation of the curve computed by least squares analysis is $CF = 1.3 (\% \text{ ash})^{3.3}$. The fact that the exponent in this equation is larger than in that for plankton indicates that the ^{239}Pu concentration varies more rapidly with ash content in fish than in plankton. Although there is considerable scatter in the data, Spearman's rank correlation coefficient ($r' = 0.49$) shows a weak but significant ($P < 0.01$) correlation between ash content and ^{239}Pu .

concentration factors in these fish. This was expected because in marine fish the skeleton is known to be a major repository of plutonium (Noshkin, 1972).

In conclusion, the data presented in this paper are consistent with the hypothesis that sorption of plutonium by phytoplankton and the subsequent settling of phytodetritus or zooplankton fecal pellets is a major mechanism for removing plutonium from Great Lakes waters. The results clearly indicate that although the concentration of plutonium in phytoplankton is several thousand times that in the water, it decreases by an order of magnitude in each successive link in the food-chains leading to man.

Acknowledgements

For assistance in the collection of fish samples, we are most grateful to the U. S. Bureau of Sport Fisheries and Wildlife and the Michigan and Wisconsin Departments of Natural Resources. We also wish to thank the captains and crews of the University of Michigan's R/V INLAND SEAS and R/V MYSIS for their assistance in the sampling program. Several members of the Argonne National Laboratory staff provided considerable help in both the laboratory and field work.

References

ANDERSON, E. C. and L. L. SMITH 1971. A synoptic study of food habits of 30 fish species from western Lake Superior. University of Minnesota Agricultural Experiment Station Technical Bull. 279, St. Paul, Minnesota. 199 pp.

BAIR, W. J. and R. C. THOMPSON. 1974. Plutonium: biomedical research. Science 183, 715-722.

BOWEN, V. T., K. M. WONG, and V. E. NOSHKIN. 1971. Plutonium-239 in and over the Atlantic Ocean. J. Mar. Res. 29, 1-10.

MARSHALL, J. S., D. N. EDGINGTON, and M. A. WAHLGREN. 1974. Great Lakes radioecology program: introduction. In: Radiological and Environmental Research Division Annual Report, January-December 1973. Argonne National Laboratory Report ANL-8060, Part III, pp. 1-5..

NELSON, D. M., E. M. Yaguchi, B. J. WALLER, and M. A. WAHLGREN. 1974. Radiochemical methods. In: Radiological and Environmental Research Division Annual Report, January-December 1973. Argonne National Laboratory Report ANL-8060, Part III, pp. 6-17.

NOSHKIN, V. E. 1972. Ecological aspects of plutonium dissemination in aquatic environments. Health Physics 22, 537-549.

SCHRADER, H.-J. 1971. Fecal pellets: role in sedimentation of pelagic diatoms. Science 174, 55-57.

VAUGHAN, B. E. and J. A. STRAND. 1972. Comparative binding characteristics of plutonium and other elements for organisms in the marine environment.

Health Physics 22, 567.

WAHLGREN, M. A. and D. M. NELSON. 1974. Evidence of an annual plutonium cycle in the near-surface waters of Lake Michigan. In: Radiological and Environmental Research Division Annual Report, January—December 1973. Argonne National Laboratory Report ANL-8060, Part III, pp. 90—92.

WELLS, L. 1970. Effects of alewife predation on zooplankton populations in Lake Michigan. Limnol. Oceanogr. 15, 556—565.

WELLS, L. and A. M. BEETON. 1963. Food of the bloater, *Coregonus hoyi*, in Lake Michigan. Trans. Amer. Fish. Soc. 92, 245—255.

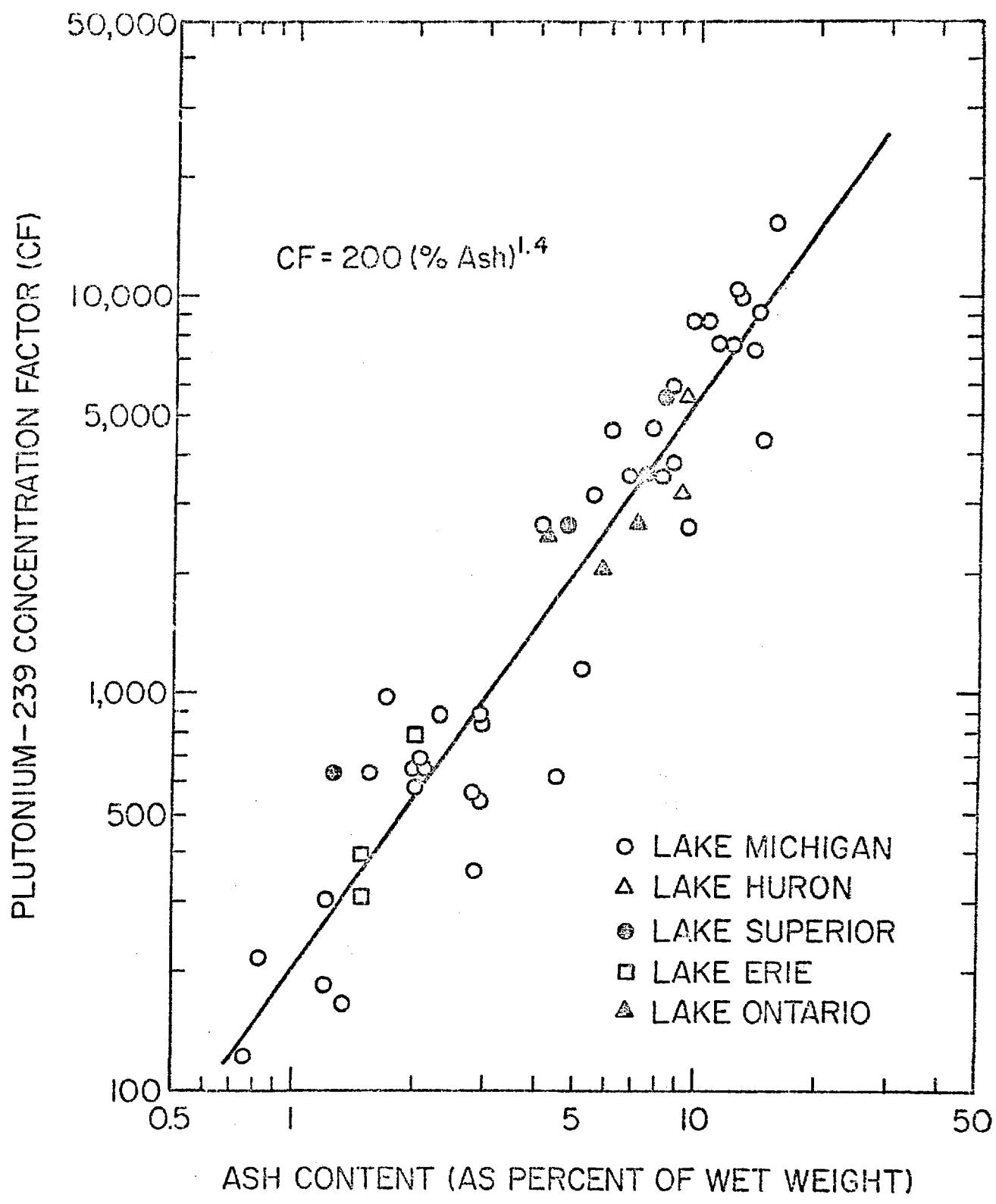
WONG, K. M., V. F. HODGE, and T. R. FOLSOM. 1972. Plutonium and polonium inside giant brown algae. Nature 237, 460—462.

Table 1. Mean ^{239}Pu Concentrations and $^{239}\text{Pu}/^{137}\text{Cs}$ Activity Ratios in Great Lakes Water and Biota, June 1972 to November 1973.

Lake	Sample	Number analyzed	fCi $^{239}\text{Pu}/\text{kg}$ wet weight *	$^{239}\text{Pu}/^{137}\text{Cs}$ (10^{-3}) *
Superior	Water	3	0.57	7.9
	Mixed plankton	3	2520 ± 600	15.0 ± 1.1
	Zooplankton	1	400	2.1
	<i>Osmerus mordax</i> (smelt)	1	4	0.02
Michigan	Water	14	0.76 ± 0.03	13.2 ± 0.6
	Mixed plankton	22	4300 ± 600	34.2 ± 4.4
	<i>Cladophora</i> sp.	16	2800 ± 400	65.1 ± 9.9
	Zooplankton	9	260 ± 50	11.1 ± 2.3
	<i>Mysis relicta</i>	7	570 ± 50	2.7 ± 0.4
	<i>Pontoporeia affinis</i>	2	1230	7.1
	<i>Cottus cognatus</i> (slimy sculpin)	7	180 ± 40	1.1 ± 0.2
	<i>Coregonus hoyi</i> (chub)	8	23 ± 3	0.11 ± 0.01
	<i>Alosa pseudoharengus</i> (alewife)	7	19 ± 2	0.13 ± 0.01
	<i>Osmerus mordax</i> (smelt)	6	15 ± 3	0.10 ± 0.03
	<i>Perca flavescens</i> (perch)	2	13	0.04
	<i>Coregonus clupeaformis</i> (whitefish)	2	10	0.04
	<i>Oncorhynchus kisutch</i> (coho)	1	5	0.03
	<i>Oncorhynchus tshawytscha</i> (chinook)	1	3	0.009
	<i>Salvelinus namaycush</i> (lake trout)	2	1	0.003
Huron	Water	1	0.63	15.0
	Mixed plankton	2	2810	33.0
	<i>Alosa pseudoharengus</i> (alewife)	2	104	0.81
	<i>Osmerus mordax</i> (smelt)	1	8	0.05
	<i>Perca flavescens</i> (perch)	1	15	0.06
Erie	Water	3	0.21	11.0
	Zooplankton	3	85 ± 25	6.3 ± 1.1
	<i>Osmerus mordax</i> (smelt)	1	40	2.7
	<i>Perca flavescens</i> (perch)	1	2	0.07
Ontario	Water	3	0.26	10.4
	Mixed plankton	3	605 ± 50	18.0
	<i>Alosa pseudoharengus</i> (alewife)	1	44	0.96

* Mean \pm standard error.

Table 2. Concentration Factors for ^{239}Pu in Great Lakes Biota, June 1972 to November 1973


Lake	Sample	Number	Mean	Range
Superior	Mixed plankton	3	4000 ± 900	2680 - 5730
	Zooplankton	1	630	
	<i>Osmerus mordax</i> (smelt)	1	6	
Michigan	Mixed plankton	22	5700 ± 800	620 - 15 300
	<i>Cladophora</i> sp.	16	3800 ± 500	1060 - 6930
	Zooplankton	9	350 ± 60	122 - 653
	<i>Mysis relicta</i>	7	760 ± 60	587 - 969
	<i>Pontoporeia affinis</i>	2	1600	1450 - 1830
	<i>Cottus cognatus</i> (slimy sculpin)	7	250 ± 60	128 - 560
	<i>Coregonus hoyi</i> (chub)	8	37 ± 3	21 - 50
	<i>Alosa pseudoharengus</i> (alewife)	7	25 ± 2	17 - 30
	<i>Osmerus mordax</i> (smelt)	6	20 ± 4	6 - 38
	<i>Perca flavescens</i> (perch)	2	16	4 - 29
	<i>Coregonus clupeaformis</i> (whitefish)	2	14	5 - 23
	<i>Oncorhynchus kisutch</i> (coho)	1	7	
Huron	<i>Oncorhynchus tshawytscha</i> (chinook)	1	4	
	<i>Salvelinus namaycush</i> (lake trout)	2	1	1 - 2
	Mixed plankton	2	4460	3240 - 5680
	<i>Alosa pseudoharengus</i> (alewife)	2	165	25 - 305
Eri	<i>Osmerus mordax</i> (smelt)	1	13	
	<i>Perca flavescens</i> (perch)	1	24	
	Zooplankton	3	500 ± 150	316 - 788
Ontario	<i>Osmerus mordax</i> (smelt)	1	235	
	<i>Perca flavescens</i> (perch)	1	10	
	Mixed plankton	3	2420 ± 200	2030 - 2670
Alosa pseudoharengus (alewife)				

* Mean \pm standard error.

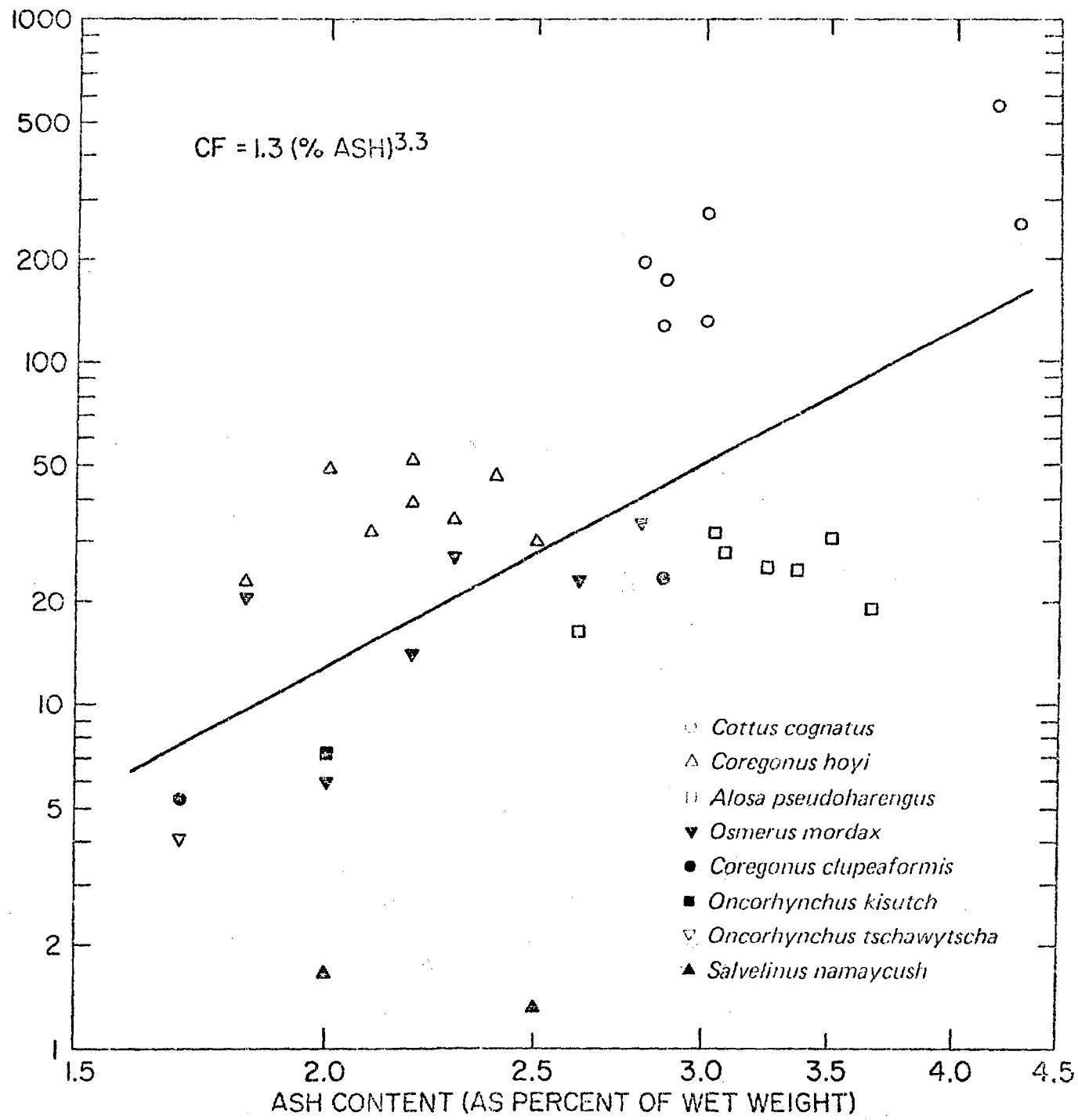

Figure Captions

Figure 1. Relationship between ^{239}Pu concentration factor and ash content in net plankton samples from the Great Lakes.

Figure 2. Relationship between ^{239}Pu concentration factor and ash content in samples of eight species of fish from Lake Michigan.

PLUTONIUM-239 CONCENTRATION FACTOR (CF)

