

MASTER

OAK RIDGE NATIONAL LABORATORY

Operated by

UNION CARBIDE NUCLEAR COMPANY
Division of Union Carbide CorporationPost Office Box X
Oak Ridge, TennesseeExternal Transmittal
Authorized

ORNL
CENTRAL FILES NUMBER

58-10-43

DATE: October 9, 1958

COPY NO. 38

SUBJECT: Explosion of EBWR Alloy in Boiling Concentrated Nitric Acid

TO: F. L. Culler

FROM: F. G. Baird, T. A. Gens, L. M. Ferris

ABSTRACT

An explosion which occurred while dissolving EBWR core alloy (93.5% U-5.0% Zr-1.5% Nb) in boiling concentrated nitric acid is described.

NOTICE

This document contains information of a preliminary nature and was prepared primarily for internal use at the Oak Ridge National Laboratory. It is subject to revision or correction and therefore does not represent a final report. The information is not to be abstracted, reprinted or otherwise given public dissemination without the approval of the ORNL patent branch, Legal and Information Control Department.

—**LEGAL NOTICE**—

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

1.0 INTRODUCTION

On July 3, 1958, a chemist in the ORNL Chemical Technology Division received minor cuts when an explosion occurred while dissolving EBWR fuel alloy (93.5% U-5.0% Zr-1.5% Nb) in boiling concentrated nitric acid. This is believed to be the first case of an explosion of this alloy in nitric acid, and was totally unexpected since previous attempts to purposely produce such an explosion had failed.

Included below is a detailed account of the incident and a brief discussion of the possible cause.

2.0 DESCRIPTION OF THE INCIDENT

The experiment was being performed to determine the rate of dissolution of the EBWR fuel alloy in concentrated nitric acid. Apparatus for the experiment, which was assembled in a hood, consisted of a 100-ml Pyrex beaker which was clamped in place on a tripod and further supported by wire gauze. The beaker was heated with a Meker burner.

The first step in the experiment was removal with 9 M HF of the Zircaloy-2 cladding from a 12-g section of EBWR plate. The core alloy was then washed with 8 M HNO₃ and dissolved in 15.9 M HNO₃ for 73 minutes. The residual alloy was removed and left in air overnight (16 hr). The next morning, when the alloy was returned to refluxing nitric acid, the reaction was so vigorous that an attempt was made to remove the sample with long-handled, metal tweezers. At this point the explosion occurred.

The force of the blast shattered the beaker and sprayed glass and nitric acid over the interior of the hood. The chemist received a small cut on the right forearm and a second small cut on the chest from flying glass. The chemist's right arm and laboratory coat were also spattered with concentrated nitric acid. Immediate use of a safety shower prevented noticeable nitric acid burns. After treatment at the dispensary, the chemist returned to work.

All previous experiments with the EBWR alloy and nitric-acid were performed in a closed hood with an additional transparent shield between the hood window and the dissolver vessel. However, neither the hood window nor the shield were in place at the time of the explosion since the previous experiments had indicated that the alloy would not explode in nitric acid.

3.0 PREVIOUS EXPERIMENTS

Several previous experiments were performed to determine whether or not 93.5% U-Zr-Nb alloys formed explosive surface films on contact

with nitric acid. For these tests both the actual EBWR core alloy, 1.5% Nb, and specially prepared alloys containing 1 and 2% Nb were used. Tests on the special alloys, prepared by the ORNL Metallurgy Division, were made with both annealed and quenched specimens. In these experiments, the specimens were dissolved in various concentrations of nitric acid until a thick, black surface coating had formed. The tendency of this coating to explode was determined by striking the alloy with a metal rod and/or sparking it with a Tesla coil. In no case was an explosion produced. However, in these experiments, the specimens were never in prolonged contact with air.

Several additional tests were made using HNO_3 -HF mixtures as the dissolvent. Surface deposits were observed at mole ratios of fluoride to dissolved zirconium (F/Zr) of less than 4, but no explosions were produced.

In an experiment which simulated the one in which the accidental explosion occurred, an explosion was readily initiated with a Tesla coil after another piece of the same EBWR fuel plate was contacted with nitric acid for 30 minutes. This experiment was performed in a manner similar to those described above where no explosions occurred, and differed from that in which the accident occurred only in that the specimen was in contact with air for a very short time (1-2 minutes).

Formation of a surface coating has never been observed when the F/Zr mole ratio was greater than 4 in the absence of other metal ions. However, in a recent experiment,¹ an explosion occurred at a F/Zr ratio of 4:3. In this experiment, the fluoride was very dilute (0.076 M) and complexed by equimolar quantities of aluminum ion, and the nitric acid was present in great molar excess (5.0 M).

4.0 CONCLUSIONS

The potentially explosive surface deposit appears to be an intermetallic phase which dissolves much more slowly than does the matrix material. Prolonged exposure of the surface deposit to oxygen is not necessary for explosive conditions. Maintaining a F/Zr mole ratio of 4 may not prevent formation of an explosive surface deposit if other ions capable of complexing fluoride, e.g., Al^{+3} are present. Consequently, dissolution of the EBWR core alloy in nitric acid, in HNO_3 -HF mixtures where the F/Zr mole ratio is less than 4, and in HNO_3 -HF solutions containing additional ions which can complex fluoride, must be considered hazardous until further information is obtained. There is also some evidence that, although a F/Zr ratio of 4 is maintained in the absence of additional metal ions, large excesses of nitric acid can lead to the formation of explosive surface deposits.

5.0 REFERENCES

1. T. A. Gens, Monthly Progress Report for Chemical Development Section B, August, 1958 (in preparation).

DISTRIBUTION

1. F. L. Culler
2. C. E. Winters
3. J. B. Adams
4. R. E. Blanco
5. J. C. Bresee
6. K. B. Brown
7. M. J. Bradley
8. D. E. Ferguson
9. L. M. Ferris
10. D. C. Gary
11. J. R. Flanary
12. T. A. Gens
13. H. E. Goeller
14. A. E. Goldman
15. J. H. Goode
16. A. R. Irvine
17. A. H. Kibbey
18. W. H. Lewis
19. R. B. Lindauer
20. J. J. Perona
21. J. E. Savolainen
22. M. J. Skinner
23. J. W. Ullmann
24. C. D. Watson
25. G. A. West
26. Document Reference Section
- 27 28. Central Research Library
29. Laboratory Records
30. Laboratory Records - RC
31. F. R. Bruce
32. Frank Kerze, AEC, Washington
33. R. C. Vogel, ANL
34. C. E. Stevenson, ICPP
35. B. Manowitz, BNL
36. V. R. Cooper, Hanford
37. J. O. Morris, Savannah River
- 38-52. TISE, AEC