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ABSTRACT 

7 
Survey calculations were made of the c r i t i c a l i t y  character is t ics  of 

some small one-regLon thorium-oxide slurry reactors.  Fuels considered - 

were u~~~ and u ~ ~ ~ ,  and both D ~ O  and ~~0 moderated systems were 

studied. C r i t i c a l  f u e l  concentrations were calculated a s  functions 

of s ize,  temperature, and thorium concentration. For 4- t o  5 112-ft 

diameter spherical Tho2-D20 reactors fueled with the minima i n  

the u 2 j 5 / ~ h  r a t i o  curves occurred a t  about 200 gm ~ h / l i t e r .  The 
0 

c r i t i c a l  r a t i o  obtained for  a 5-ft  diameter bare D20 reactor a t  280 C 

increased from 0.08 t o  0.10 g u ~ ~ ~ / ~  Th a s  t h e  thorium concentration 

was increased from 200 t o  400 gms per l i t e r .  
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A survey was made of the static nuclear characteristics of some small one- 
. . .  . . ... 

region thorium-oxide slurry reactors. Fuels considered were U235 and 233 
I - .  . . .  

(isotopically pure), and both D20 and H20 moderated systems were studied. . . .  In 
. . . . . .  .... . . .  . . .  .- . - 7 .  

I .  

all cases the reactors were assumed to be free of poisons. Moderator absorp- 
. . . .  . . . . . .  . . .  . . .  . . 

tions were neglected for D 0 and were assumed for H 0 to be th:o'ke.;.ijf'~k,he;qmre 
..... . . 2 . . 2 

moderator at temperature. . The computations were perf or&ed on . the . . . . .  Oracle, using . . . . .  . . . . .  .... .- .... . . -. 

a modified Feral age, bare reactor model, which allowed for resonance absorp.- . . 

tions 'in fuel.. .... . . . .  . . .- 
/ 

Critical fuel 'concentrations are shown graphically as a function of size, 
. . . . . . . .  . . . . .  

temperature, and thorium concentration Temperature coef f ici,ents . . . . .  of reactivity 
. . . . . . . .  . - - 

for several of the reactors'are tabulated. Comparison with more exact calcula- . . . . . . . . . . .  . . . .  . 

tions and application of the numerical results to actual pressure-vessel en- 
. . .  . . . . . . .  - . . . . .  - -. 

I 
closed reactors is discussed.. Some of the results are used to examine the . - -. . 

changes in 'criticality conditions resulting from uniform changes in slurry 
- .  

235 For 3 to 5-ft diameter Tho2 - D20 fpherical fueled with . . .  U , 
.. - -  - .  . 

the minima in the critical-mass-ratio curves (gms u ~ ~ ~ / ~  ~ h )  occurs::at ... about 

200 gm ~h/liter. In H 0 reactors of the same diameter, the critical mass 2 

ratio continues to decrease up to. 600 th ~h/liter. For example, the critical 

Ca mass ratio of a 5-ft diameter u~~~ - D 0, reactor at 280°c varies from 0.08 to 2 

0.10 as the thorium concentration is increased from 200 . . to 400 @/liter. . . . .  .. . In 

an H2O4moderated reactor of the same size and temperature, this ratio decreases 

from 0.076 to 0.046 for the same change in th~rium concentration. 



The range of reactor parameters studied i s  l i s t e d  i n  Table I. For the 

u~~~ and ~ ~ ~ ~ - f u e l e d ,  D 0-moderated reactors, the c r i t i c a l  concentrations 2 

a r e  plotted vs. size,  teaperature, and thorium concentration i n  Figures 

1 t o  4. The corresponding r e su l t s  f o r  the u~~~ fueled, H20 moderated systems 

a re  given i n  Figures 5 t o  8. I n ,  the same order, F:igures 9 t o  16 summarize 

the c r i t i c a l i t y  characteqistics of the u~~~ fueled reactors. Reactivity 

temperature coefficients of several of the reactors a r e  given i n  Table I1 

f o r  the case of spa t ia l ly  uniform heating i n  which the r a t i o s  of f u e l  and 

thorium t o  moderator remain constant, The temperature coefficient i s  

approximtely equal t o  the sum of the individual leakage coefficients of 

reac t iv l ty  associated with changes i n  temperature. 

Table I: Range of Parameters Studied 

Fuel 

  ode rat or 

DiameterIof bare sphere, f t  
. . 

0 Temperature, C 20 - 300 

Thorium concentration, g / l i t e r  ' 0 - 600 



Table 11: Temperature Coefficients of Reactivity " 

Moderator Temp. Dim. of Thorium Fast Lkg. Thermal Lkg. 1 sxl0 +3 

Bare Sphere Concentration , Coefg. x 10'~ Coeffg x it dT 

i (OC) ( f t )  ( d l )  ( c)-1 ( ( OC ) -1 
I 

* 
Although the computations of t h i s  survey were performed f o r  bare spheres, 

the pressure she31 w i l l  actual ly  serve as a neutron ref lector ;  thus the actual  

I .D .  of the s h e n  w i l l -  be reduced by a small. amount from the bare reactor with 

the  ,same c r i t i c a l  concentration. I n  order t o  estimate t h i s  s ize  correction, 

and a l s o  t o  check the va l id i ty  of some of the assumptions used i n  the simplified 

model, c r i t i c a l i t y  i n  several reactors was calculated using a mul t i - ,  
.- 

group neutron diffusion program. These computations were performed on the 
- -- - - -- * 

The corresponding s izes  fo r  bare cylinders may be obtained by equating the 
gearnetrip bucklings of the reactors.  
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ORACLE, using a section of the nuclear code  ohpo pone." Twenty fast groups, 

one t h e m 1  group, and two space regions (core and pressure vessel)  were employed. 

Table I11 summarizes the "Cornpone" c r i t i c a l  mass r a t i o s  f o r  the reactors studied; 

as shown, a t  200 g ~ h / l i t e r ,  the c r i t i c a l  r a t i o  obtained f o r  the bare 5-ft reactor 

using the  simple model compares favorablp with tha t  obtained from the  multigroup 

calculation. However, the comparison becomes poorer at  higher s lurry concentra- 

t ions,  due t o  the inadequate treatment of resonance f i ss ions  with the simplified 

model. I n  the higher concentration Tho -D 0 systems of the s izes  studied, a 2 2 

s ignif icant  f ract ion of the f i ss ions  occur above thermal energies (see Figure 18).  

The increase i n  the  effect ive skze of the core from neutrons re f lec t ion  by 

the  pressure vessel may be estimated f o r  the  reactors l i s t e d  i n  Table 111. For 

1 exmiple, u t i l i z ing  the r e su l t s  i n  Table I11 and Figure 1, i t  i s  seen that approx- ~ 
I 

fmately 10 in .  should be added t o  the diameter of a 4- 1/2-ft I .D. pressure- 

I 
vessel-enclosed D20 reactor t o  obtain the  diameter of the equivalent bare sphere. 

Table 111. C r i t i c a l  Mass Ratios f o r  "Bare" and Pressure-Vessel- 

Enclosed Re&ctors at  280% 

Core D i a  Conditions Thorium Conc. "Multi oup" "Modified Age" 
(f t (&/ l i t e r )  (g u23Tg ~ h )  (g u235/g ~ h )  

5 Bare 200 0 077 0.078 

4.5 4-in. s t e e l  200 
she l l  

4-in. s t e e l  200 
she l l  



The computational results are shown in Figures 1 through 20. The 

results may be used to examine the effect on criticality produced by 

uniform changes in slurry composition (addition to or removal of uranium- 

thorium from the moderator). A particular application of this is to 

examine startup conditions. Figure 17 is a cross plot of the critic& 

temperature of a 5 ft., u ~ ~ ~ - D  0 reactor vs. thorium concentration, for 
2 

various critical mass ratios of uranium-to-thorium. In order to illustrate 

the application of this figure, consider that slurry containing a fixed 

' ratio of u~~~ to thorium is slowly added to the reactor, initially filled 

1 - 

with D20 at low temperature. The reactor would remain subcritic&.'until . . .  

the minimum thorium concentration required for criticality at that ratio 

was reached. Then, as more thorium was added to the core, the temperature 
f 

I would rise in accordance with ,the plotted curves. If the final thorium 
% . :  . . ' . . . .  

concentration were above about 200 -/liter, the temperature would fall 

again with increasing thorium concentration (due to the increase in 

I resonance neutron captures). 

I An alternative startup procedure would be to heat the D20 above the 

maximum critical temperature before slurry was added. The uranium-thorium -. 
&ture could then be added until tde desired concentration was reached, 

I and the temperature then lowered to obtain criticality. 
, . 

Figure 18 illustrates the analogous situation for an H20 reactor in .. . . . 
, ,  . . 

I the,same range of thorium concentration. The slope of the temperature 

curves, is much greater, in+cc.ordance with the reduction in moderator 
.. . ", ..-.;,..a ':*,::, $-> : 

I absorbtions with thorium addition. Also, due to the increased moderating 

chaxacteristics of the H 0 '  the amount of resonance capture in thorium is 2 '  

less sensitive to concentration. The curves tend to level' off at concen-. 
I 

trations higher than 600 gms thorium per liter. 



The D20-moderated reactors ( i n  the s i ze  range considered) have a large 

epitherupl e f fec t  compared t o  the H20 systems. A comparison of the r e l a t ive  

number of epithermal absorptions i n  f u e l  i s  shown i n  Figure 19 fo r  both systems. 

The addition of thorium t o  the reactor has the effect  of depressing the thermal 

f l u x  r e l a t ive  t o  the t o t a l  f a s t  flux, and thus increases the epithermal effect'. 

To allow fo r  the effect  of resonance f u e l  absorptions on the c r i t i c a l  

concentration, an average value of q f o r  the resonance region i s  required. 

The r a t i o  of rl-resonance t o  7-thermal f o r  u~~~ i n  a 1@ f lux  was eetimated by 

computing the r a t i o  of resonance f i s s ion  and absorption in tegra ls  from the cross- 

3 section data i n  BIG-325.- A value of 0.9 was obtained. Since the cross section 

of u~~~ over par ts  of the resonance region i s  uncertain, t h i s  method w i l l  not 
. . 

yield r e l i ab le  values fo r  lJ233; therefore, a value of 0.95 was assumed a f t e r  

examination of the a d i l a b l e  data. The e t a  r a t i o  was t reated as a parameter 

i n  some calculations t o  determine i t s  importance; the c r i t i c a l  cqncintration 

was found t o  be faiyly insensi t ive t o  the value used i n  the range of thorium 

concentrations considered, as shown i n  Figure 20. 

I n  Pigures 6 and 14 the minima i n  some of the curves i s  a r e su l t  of the 

reduction i n  H 0 absorptions (as the temperature i s  increased) along with the 2 

increase i n  f a s t  neutron leakage. It should be pointed out tha t  t h i s  does not 

const i tute  a positive'temperature coefficient,  since a temperature increase 

would r e s u l t  i n  tKe removal of f u e l  along with the moderator. 

The. temperature' coefficients i n  Table II- were calculated assuming tha t  

the r a t i o  of f u e l  and thorium t o  moderator remained constant during a thermal 

expansion. Changes i n  the bare reactor extrapolation distances were a l s o  
. . 

neglected. It may be noted tha t  the D20 and H20 systems d i f f e r  mainly i n  the 

tempera.ture coefficient of f a s t  leakage. 



For a temperature change which f o l l o ~ i s  the spa t i a l  pattern of the power 

density, such as: might occur during a rapid heating, the temperature coeff i -  

c ients  i n  Table I1 should be multiplied by a weight factor  accounting f o r  the 

differkng amounts of expansion throughout the core. For spheres, t h i s  fac tor  

i s  approximately equal t o  2. 

METHOD OF STUDY 

a .  Cr i t i ca l i ty  Calculations: 

I I n  calculating the c r i t i c a l  concentrations, the systems were approxi- 

mated by bare, uniform spheres. The s ize  of the actual  vessel having the 

seme c r i t i c a l  concentration could.then be obtained by subtracting an extra- : 

polation distance from the bark.. sphere radius. Neglect of the vessel has the 

effect  of simpiif ying the c r i t i c a l i t y  equation c'onsiderably . Thus the character- 
- 

I i s t i c s  of a large number of reactors could be surveyed i n  a small computing time, 

without the r e su l t s  being grossly i n  error .  
* 

The modified c r i t i c a l  equation f o r  a bare reactor i s  given a i f o l l o w s :  

- 1 

I where : . , 

7 = average number of .f ission neutrons produc.ed per neutron absorbed i n  

fuel;  'Ith and $ a r e  the average values f o r  the thermal region and 

resonance energy region ( e 5 k  T'%@) 

-1 
Za = Macroscopic thermal absorption cross section (cm ): 

superscripts o = thorium; 'm = moderator; 1 = f u e l  

2 L~ = Thermal diffusion length (cm ) 

* 
ORACLE program written by S. Jaye and M. P. Lietzke. 



-2 
B~ = Geometric buckling (cm ) 

p = resonance escape probability: subscripts o = thorium; 

fuel;  
I 

g = f a s t  non-leakage probability: subscript t h  re fers  t o  neutrons 

slowing down ' to  thermal energies, R t o  an average energy f o r  

resonance f f  ssion i n  fue l .  

Equation 1 i s  solved by i t e ra t ion  f o r  the c r i t i c a l  fue l  concentration. 

The introduction of the second term on the r ight  hand s ide of equation 1 

i s  an approximation t o  an in tegra l  term f o r  resonance absorption i n  fuel .  

The approximation amounts t o  assuming tha t  the,average of a product i s  a 

product of the averages, so that the e f fec t  on neutron cycle can be lumped 

i n t o  multiplicative probabili t ies f o r  resonance absorption i n  f e r t i l e  material, 

fuel ,  and f a s t  leakage losses.. 

Since the resonances i n  f e r t i l e  material  and f u e l  overlap t o  a consider- 
\ 

able  extent, without going t o  a more inyolved calculation ( eege  a multi group 

model) it i s  necessary t o  approximate the overal l  resonance structure.  I n  

these calculations, half the thorium resonances were assumed t o  occur a t  

energies above and half below the energy band i n  which resonance absorptions i n  

f u e l  occur. The fur ther  assumption'was made that the average f a s t  leakage 

probabili ty t o  resonance f i s s ion  was approximately equal t o  the leakage t o  

thermal energies. 1i D20 and H20 moderated systems, v i t h  thorium concentrations 

i n  the range of in te res t ,  this assumption should introduce l i t t l e  error,  since 

most of the f a s t  leakage occurs above the  low-energy resonance region.  h his 

approximation becomes successively poorer, however, as the contribution of 

resonance f i s s ion  t o  the neutron cycle becomes comparable with tha t  from 

thermal fission..) 



I n  small D20 reactors, accurate account of fast leakage i s impor tant  

i n  calculating c r i t i c a l i t y .  

Friedman and Wattenberg have found that  the Fourier transform of the 

convolution of a Farmi age and a Yukerwa, or diffusion,k&m&;. can be used 

t o  best represent the non-leakage probability i n  D20: 2 

2 
e -B 5 

- - 
?Indium Resonance 

1 + B y  (2)  

Edlund and Wood have applied the above t o  the calculation of c r i t i c e l i t y  

i n  the Homogeneous Reactor Test? Following the i r  procedure, an increment , 

2 
of 14 cm was added t o y l  t o  represent the age from indium resonance (1.44 ev) 

t o  thermal, so that the  f i n a l  values o f y i n  the "Age" and "Yukawa" kernels 

were . i n  the r a t i o  of 3:2, respec t ive~y.  This r a t i o  was assumed t o  be inde- 

pendent of temperature. For the reactor s izes  studied, a comparison of the 

various approximations for  the nonleakage probability i s  given i n  Figure ZL. 

I n  t h i s  range, it i s  seen that the above expression does not d i f f e r  appreciably 
. . 
from the Fermi slowing down model, but. deviates markedly from the representation 

of the f a s t  group by a single &iffusion kernel. 

For H20 reactors of the same s i ze  as t h e  D20 systems ( 3-6 f t  ) , the non- 

leakage probability is,much larger  and l e s s  sensi t ive t o  the  model'used t o  

calculate the slowing down. I n  these calculations, a s ingle  Yukawa kernel 

( 1  + B W - l  was found t o  c1dsel.y approximate the experimental values of H i l l ,  
* 

Roberts, and Fitch. 

* 
See reference 2,. Chapter 11. 

. . 



.. The resonance escape probability was calculated from the f o h u l a :  

where B = nmber of atoms of resonance absorber per cm 3 

-1 
Es = Macroscopic scat ter ing c ross  section of slurry (cm ) 

= Average lethargy increment per' co l l i s ion  

Ra = Effective resonance in tegra l  (barns); ;R,(Q) = i n f i n i t e  di lut ion 
in tegra l  

Superscripts o F thorium; 1 = fue l .  

6 f o r  ~hor ium 232: - 
-253 8 ,  

. t C 

a o - 4 ' - d 4000 (4a) , .  

N 

233,* f o r  u~~~ andU * 

. . 
1 2 35 The i n f i n i t e  d i lu t ion  f i s s ion  integrals  Rf (M) fo r  U . , and . u~~~ were 

** 
obtained by numerical integration of the f i ss ion-  cross sections 'in BNL-325. 

A s  the average r a t i o  of resonance-to-thermal q was treated as a parameter 

1 i n  the calculations, the value of Ra (DO)  could then be derived, since 

v i s  approximately constant over most of the resonance region: 
' 

* 
Due to."L:;..:Dr esnerf: . . (.&i,ubli shed ) . 

H' 
.These values a r e  l i s t e d  i n  the appendix. 



I n  these calculations, the small contribution due t o  f a s t  f i ss ions  i n  

thorium was neglected. 

b . Temperature ~ o e f  f i c i en t s  : 
. . 

To compute the reactor temperature' . .. coefficients,  the resonance term i n  

equation 1 was combined with the term fo r  thermal f iss ton,  so that.  the 

c r i t i c a l i t y  formula could be written as:  

. . where k = effect ive , . multiplication constant 

= "fas,t effect," or number of neutrons from f iseions a t  a l l  energies, 

f = thermal u t i l i za t ion  

Dif f erentidbing the logarithm of equation 7 with respect t o  temperature gi,vtie: 

I 

For temperature changes and expansions i n  which the r a t i o  of f u e l  and thorium' 

t o  moderator remains constant, the f i r s t  three terms i n  equation 8 a re  e i ther  

, zero or may be neglected compared t o  the temperature coeff ic ients  of leakage. 
. . 

For an increment i n  temperature which i s  spa t ia l ly  uniform over the reactor:  



where p i s  the density of the moderator. 

2 
where Lo i s  the diffusion length i n '  the pure moderator. 

If the expansion due t o  a temperature change i s  considerkd t o  follow 

the space dis t r ibut ion of reactor power, the reaht ivi ty  change should be 

weighted with the s t a t i s t i c a l  weight of' the region. Since 'this i s  equal 

2 '' t o  $ , f o r  a one region system; 

I 

k 
.% = reactor 

reactor. 

where @ 2s the average f lux  i n  th.e reactor.  
. . 

For a sphere i n  which the f lux  i s  proportional t o  sixiqBF , the factor  i n  
I@ 

brackets i n  the above equation.ig approximately equal t o  2. 



1 . NUCLEAR DATA 

The values of nucleir 'constants' used i n  the calculations a re  l i s t e d  i n  

Tabl'es ' I V  - VII below. Except where otherwise indicated, th@ conatants a r e  

taken from refkrence - 6,. 

* 
TABLE I V :  Thermal Absorption Cross Sections (bacns) 

Temperature ( OC ) . u235 I, 233 Thorium H20 

* 
Average over a Maxwell-Boltzman Distribution. 



: TABU3 V: Age of Fission Neutrons i n  Mixtures of 

2 
Temperature ( OC ) Moderator . .  -T:(,cm 1 

~hor ium Concentration ( g / l i t e r )  
o 200 400 600 

* 
~ a s e d  on numerical integration calculations by Tobias ( ~ e f  . , - 6 and 

addi t ional  private communications. ) 



* 
TABLE Kt: Thennal Diffusion coeff ic ients  i n  D20 and H20 (cm) 

Temperature   ode rat or D (cm) 
Thorium Concentration. 

0 
. . 200 

, . 400 600 

20 D2° .825 .. 825 .825 825 
. . . . . . 

* 
The coeff icients  fo r  H20 a r e  approximate values calculated from the  

cross sections fo r  H20 reported i n  BNL-325. 



* 
TABU3 KC1 : Fission Integrals at Infinite Diluti on (barns) 

Temperature 

20 

100 

200 

250 

280 

* 
Obtained by numerical integration of the fission cross sections 

'reported in BNL-325. 
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