

Lydia S. Corrill, Emily D. Copenhaver, and Harry V. Leland

WASTER

-NOTICE-

This report was prepared as an account of work sponsored by the United States Government, Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

ORNL-EIS-74-69

HEAVY METALS AND OTHER TRACE ELEMENTS

IN

AQUATIC ENVIRONMENTS

Lydia S. Corrill, Emily D. Copenhaver Toxic Materials Information Center Environmental Information System Office Information Division and Ecology and Analysis of Trace Contaminants Program Oak Ridge National Laboratory

and

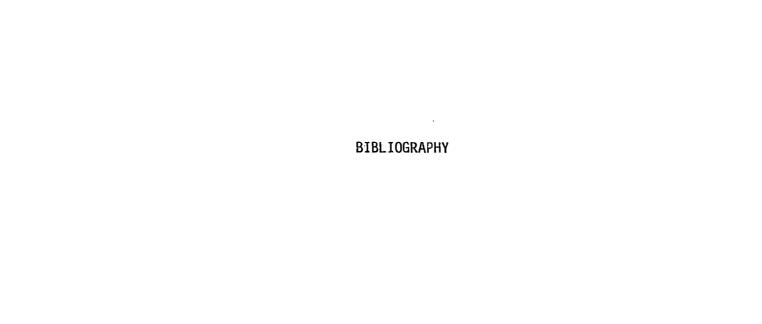
Harry V. Leland University of Illinois Urbana, Illinois

Work Supported by the National Science Foundation Under NSF Interagency Agreement No. AG-389

SEPTEMBER 1974

OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37830 operated by UNION CARBIDE CORPORATION for the U. S. Atomic Energy Commission Contract No. W-7405-eng-26

CONTENTS


Introduction																								
Bibliography	•	•	•		•	•	:	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1	
Author Index																								
Kayword Index																								

INTRODUCTION

A review considering transport and concentrations of trace elements in aquatic environments and the effects of metallic contaminants of particular interest in water pollution control and aquatic life preservation has been prepared for the yearly review issue of the Journal of the Water Pollution Control Federation (Vol. 46(6), pp. 1452ff, June, 1974). The documents abstracted in this compilation are those chosen for inclusion in the review. The purpose of the abstracted and keyworded citations is to provide more detailed information than could be included in the review itself.

This file remains as a Toxic Materials Information Center computer-searchable data base and will be updated during the coming year as we prepare a similar review for issue June 1975. Specific research inquiries in this area of concern may be addressed to the Toxic Materials Information Center, Oak Ridge National Laboratory, P. O. Box X, Oak Ridge, Tennessee 37830.

The review and compilation are joint efforts between two grantees of the NSF-RANN Environmental Aspects of Trace Contaminants Program—Harry V. Leland of the Environmental Pollution by Lead and Other Metals Project of the University of Illinois, Urbana; and Lydia S. Corrill and Emily D. Copenhaver of the Toxic Materials Information Center, Oak Ridge National Laboratory. The Toxic Materials Information Center is a component of the Environmental Information System Office of the Information Division, ORNL, and is funded primarily through the NSF-RANN Ecology and Analysis of Trace Contaminants Program at ORNL.

Chromium, Cadmium, Arsenic, Selenium, Mercury, and Aquatic Life: A Brief Literature Review

; Great Lakes Laboratory, State University College at Buffalo

Speci: Report 8 9, 1971, November, Prepared for a Joint Legislative Committee on Environmental Management and Natural Resources, Sen. Glenn H. Harris Chairman; 1971, November

CHROMIUM; CADMIUM; ARSENIC; SELENIUM; AQUATIC BIOTA; REVIEW

2 Trace Elements in Water, A Bibliography

: Water Resources Scientific Information Center

WRSIC 71-202, Water Resources Scientific Information Center, office of Water Resources Research, U.S. Department of Interior; 1971

TRACE ELFMENTS; BIBLTOGRAPHY

Chromium in Water: A Bibliography

; Water Pesources Scientific Information Center, Office of Water Resources Research, U.S. Department of the Interior

NRSIC 72-205, Water Resources Scientific Information Center, Office of Water Resources Research, U.S. Department of Interior; 1972

CHROMIUM: BIBLIOGRAPHY: WATER

Cadmium in Water: A Ribliography

; Water Resources Scientific Information Center, Office of Water Resources Research, U.S. Department of the Interior

WRSIC 73-20°, Water Resources Scientific Information Center, office of Water Resources Research, U.S. Department of Interior: 1973, Warch

CADMIUM; BIBLIOGRAPHY; WATER

Mercury and Heavy Metals

: Environmental Protection Agency, Washington, DC

Water Quality Standards Criteria Digest. - A Compilation of Pederal State Criteria: 1972, August

MERCURY: PEDEPAL: STATE: STANDARDS: GUIDELINES

6
Water Quality Criteria Data Book, Volume 3:
Effects of Chemicals on Aquatic Life for the
Environmental Protection Agency Project No, 18050
GWV, Contract No. 68-01-0007 Water Pollution
Control Research Series 18050GWV05/71

: Battelle's Columbus Laboratories

: 1971. HAY

1

WATER QUALITY; GUIDELINES; CHEMICALS; AQUATIC BIOLOGY

Mercury in the Biogeochemical Environment

; Department of Applied Earth Sciences, Stanford University, Stanford, CA 94305

Report of Progress, Pebruary 1, 1973 to October 1, 1973

MERCURY: BIOGEOCHEMISTRY: ROCKS: SOILS: HIGRATION: PAULTS; ORES: CINNABAR: FISH: SEDIMENTS: ANAEROBIC: IRON SULFIDE: TRANSPORT; DPEDGING: PARTICULATES: LEACHING: ADSORPTION: EVAPORATION

Report deals mainly with the behavior of mercury in rocks, water, sediments, and fish in the New Almaden Area, California. There was no large halo, but solutions containing mercury were confined to narrow passage wars in the rocks. In sediments more of the mercury was in the smaller, organic particulates. The role of iron sultides in controlling mercury in anaerobic sediments is discussed. Some experiments involved leaching mercury from ore dumps. Also mercury in fish was measured and found to be 3-8 ppm in mercury ore regions. Adsorption, coprecipitation and the evaporation of mercury from dilute solutions was studied.

Report on Selected Trace Metals in the Late Michigan Masin

; Pesticides Technical Committee

Report of the Pesticides Technical Committee to the Lake Michigan Enforcement Conference on Selected Trace Metals in the Lake Michigan Basin, (Pesticides Technical Committee Chairman: Chris Poto, RPA, 1 Worth Wacker, Chicago, Illinois 60606) 87pp.; 1972, September

TRACE ELPMENTS; AIR; LAKES; PRESUNATER; AQUATIC PIOTA; HUMANS; ATMOSPHERE; EMISSIOMS; INDUSTRY; ZTNC; COPPEN; MICKEL; CHRONIUM; SEDIMENTS; BIOACCIMULATION; MERCURY; ARSMIC; PRODUCTION; MUNICIPAL SEWAGE; TOXICITY; SAFE LIMITS

An attempt was made to pull together available literature and unpublished data concerning selected trace metals in the Lake Michigan Basin. The metals selected are those which may cause problems to aduatic life or humans, even at very low concentrations. Although data are available from many different sources, no attempt is presently being made to monitor the overall conditions within the Lake Michigan Basin.

Little is known about the sources and amounts of metals now entering the Lake. Airhorne emissions from power plants, steel mills, and incinerators may be contributing significant amounts of some metals to the Lake environment. More study should be encouraged so that reliable estimates can be made and the true significance of airborne emissions established. While data are available on water concentrations of heavy metals in Lake Michigan and its tributaries, the levels of sensitivity and number and frequency of samples are inadequate to establish present conditions. Zinc Occurs in high enough concentrations so that it is detectable using present techniques. Copper, cadmium, nickel, lead and chromium, are generally below detectability in Lake Michigan. Heavy metals in both Indiana and Michigan tributaries are often below the level of detectability, and little information is available from Wisconsin tributaries. Recent data indicate that the Grand River may be a significant source of copper, nickel, chromium, and zinc to the southern basin of the Lake. The Environmental Research Group, Inc. recently sampled Lake Michigan waters, sediments, and aquatic organisms to establish a baseline for 35 elements, Riologically important metals such as cadmium and nickel were not included, but work may begin to provide a baseline for some metals in Lake Michigan and trickel were not included, but work may begin to provide a baseline for some metals in Lake Michigan and the contribution of the tributaries to these levels can be established. Furthermore, tributaries must be sampled at various flow stages to enable an estima

Occurrence of Lead in Matural Waters

Abdullah, M.I.; Royle, L.G.; Dept. Oceangr., Univ. Liverpool, Liverpool, England

Part of Proceedings of International Symposium on Environmental Health Aspects of Lead, Amsterdam, Wetherlands, October 2-6, 1972, Grganized Jointly by Commission of the European Communities, Directorate General of Sr lal Affairs-Realth Protection Directorate and Environmental Protection Agency, EUR 5004 d-e-f. Luxemburg: Commission of the European Communities, Directorate General for Dissertation of Knowledge, Centre for Information and Documentation, 113-24; 1973

LEAD: WATURAL WATERS: SALTWATER

10 Organic Mercury Compounds as Contaminants of the Human Environment

Adanovic, V.M.; Tomasevic, 2.; Od. Sanit. Hem., Zavod Zdravstvenu Zast., Beigrade, Vugoslavia

Hrana Ishrana (HRISAK), 14 (7-8), 366-370; 1973

REVIEW; MERCURY; ORGANIC COMPOUNDS; HUHANS;

11 Long-Lived Pollutants in Sediments from the Laguna Atascosa National Wildlife Refuge, Texas

Ahr, W.M.; Dap. Geol., Taxas A and M Univ., College Station, Tex.

Gool. Soc. Amer. Bull. (BUGRAF) 1973, 84 (8), 2511-15: 1973

DDT; SOILS; LEAD; LRSENIC; ORGANOCHLOFINE INSECTICIDE; INSECTICIDES

DDT (dichlorodiphenyltrichloroethane) and some heavy metals are long-lived pollutants which may be retained in sedimentary layers and may be retained in sedimentary layers and may be relocated by postdepositional biological or mechanical processes. This study shows the DDT profiles and the lead-arsenic content of some sediment cares from the Laquna Atascose Mational wildlife Refuge (Texas), an area surrounded by croplands that have been treated extensively with pesticides. DDT is most abundant near the tops of the core samples and it may be enriched in subsurface clayey layers. Therefore, postdepositional processes have relocated the DDT into secondary host strata. The relocation is attributed to burrowing and mixing by crabs, worms, and other organisms because burrows are ubiquitous and deep. Burrowing activity can be effective as an agent for relocation of tracers of pollutants in several ways: (1) physical mixing; (2) generation of open canals for continuous circulation of surface fluids deep into the substrate; and (3) ingestion at one site and excretion at another. Because DDT in persistent, it is concentrated through ecological levels in the environment. Lead and arsenic concentrations are not concentrated in the sediment of Laguna Atascosa, and no trend exists with depth in the substrate or with sediment type. Bither lead and arsenic are very effectively retained in soils after their application or the metals have been transported as complexes or solutions thorough the coastal environment and into the Gulf of wexico.

12 Resoval of Heavy Hetal Impurities from Liquids

Albenesius, E.L.; Russell, E.R.; Tharin, D.W.; McJunkin, A.P.; United States Atomic Pnergy Commission

Ger. Offen. (GWXXXX) 2313702 (8 01J, C 02C, C01G), 20 Mar. 1972, 21 pp.; 1972

ARSENIC; REMOVAL; RUPBER; MERCURY; LBAD; METALS; DEUTERIUM; OXIDE; TIRES; ABSORPTION; WASTE PURIFICATION

13
Accumulation of Toxic Metals with Special
Reference to their Absorption, Excretion, and
Biological Half-Times, Tank Group on Metal
Accumulation

Albert, P.; Berlin, M.; Finklea, J.; Friberg, L.; Goyer, R.A.; Henderson, R.; Hernberg, S.; Kazantzis, G.; Kehoe, P.A; Med. Cent., New York Univ., New York, NT

Environ. Physiol. Biochem. 3(2), 65-107; 1973

REVIEW: PETALS: BIOACCUMULATION: TOXICITY: ARSORPTION: EXCRETION: BIOLOGICAL HALF-TIMES

14 Mercury Content of Albacore Tuna (THUNNUS ALBACARES)

Aldrin, J.P.: Lemaitre, P.: Fonteneau, A.: Lab. Dir. Peches, Abidjan, Ivory Coast

Recl. Hed. Vet. (RMVENG) 1973, 149(6), 779-92; 1973

MPRCURY; TUNA; SWORDFISH; MARLIN

TAXONDMY: THUNNUS ALBACARES; THURRUS OBESUS; KATSUWOWUS PELANUS; ISURUS GLAUCUS

The mean levels of mercury in muscles of 1-6-year-old T. ALBACARES and T. OBESUS, caught between Dakar and Pointe-woire, were 0.48 and 0.46 ppm, respectively the Hg level increased from 0.1 to 1.0-1.4 ppm as the age of fish increased from 1 to 6 years. The mean levels of Hg in XIPHIAS GLANDIUS, KATSUWONUS PELAMIS, and TSURUS GLAUCUS were 1.7, 0.2, and 1.1 ppm.

15 Higration of Lead and Zinc in Surface Waters During the Sharp Enrichment of the Waters with Sulfides of the Metals

Aleksmenko, V.A.; Danchev, V.V.; Plerov, V.T.; Karagand, Kaz. Politekh. Inst., Karaganda, USSR

Izv. Akad. Wauk Kaz. SSR, Ser. Geol. (IKAGA8), 3C(2) 76-77: 1973

WATER: LEAD; ZINC; HIGRATION; RIVERS; SEDIMENTS

16 Microbiological Pormation of Potentially Hazardous Organometallic Compounds in Water

Alexander, M.: Water Resour. Mar. Sci. Cent., Cornell Univ., Ithaca, NY

PB Report No. 214698/3, 22p.; 1972

ORGANOMETALLIC COMPOUNDS; WATER; SELENTIN DIMETHYLSELENTIDE; TELLURIUN; DIMETHYLTELLURIDE; TOXICITY; MICROBIOLOGY; TRANSFORMATION; MICROORGANISM

TAXONORY: PENICILLIUM

17
Agronomic Controls Over the Environmental Cycling of Trace Elements

Allaway, W.H.; U.S. Plant, Soil, and Mutrition, Laboratory, U.S. Department of Agriculture, Ithica, N.Y.

Am. Soc. Agronomy, 20, 235; 1968
AGRICULTURE: TRACE CYCLING; CONTROLS

18 Biological and Physico-Chemical Aspects of the Fadiocontamination of Marine Species and Sediments

Ancellin, J.: Avargues, H.: Hovard, P.; Guegueniat, P.; Vilquin, A.

Part of Radioactive Contamination of the Marine Environment, Proceedings of Symposium held by the International Atomic Energy Energy Agency, Seattle, WA, July 10-14, 1972 (225-241) 786p.; 1973

ADSORPTION; ALGAE; AQUATIC ECOSYSTERS; CERIUM 184; CESIUM 137; COBALT 60: DIPPUSION; PISH; POOD CHAINS; INVERTEBRATES; IRON 55; HANGAMESE 54; HARIME DISPOSAL; HICROGRGANISMS; RADIOACTIVE WASTE DISPOSAL; HADIORCOLOGY; RADIOAUCTIVE WASTE DISPOSAL; RADIORCULOBY HIGRATTON; RETENTION; RUTHEWIUM 106; SEDIMENTS; SOLUBLITY; STRONTIUM 85; UPTAKE; VERTEBRATES; ZINC 65; SALTWATER; CERIUM; CESIUM; COBALT; IRON; HANGAMESE; ZINC; STRONTIUM; RUTHENIUM

Various aspects of the physico-chemical and biological fate of radioactive pollutants in the marine environment are reviewed in the light of the results of recent radioecological research. In studying contamination of any kind, it is necessary to take into account the relative importance of physico-chemical and biological processes that take place simultaneously. In a certain number of cases tho mechanisms whereby elements present in small quantities in seawater are adsorbed on to living organisms are similar to those that apply to inert bodies. The contribution of the species to firstion of the element is passive, and the physico-chemical properties of the contaminants and of the contaminated carrier can dominate its own biological properties, particularly the physiological barrier of regulation. Various types of equilibration of the pollution of the organs, notably in fish, with the pollution of the environment are examined, together with the the differences in the capability of various competing sites for adsorption of a specific pollutant, for example the capability of sediments on the one hand and the living species in contact with the sediments on the other.

Is Lead Really a Four Letter Word?

Anderson, M. H.: Wixson, B.G.

Presented at the Seventh Annual Conference on Trace Substances in Environmental Health University of Hissouri-Columbia, Columbia, NO 65201, June 12-14, 1973; 1974

LEAD: INDUSTRY; MINES; SHELTER; E: TIRONHENTAL SAPEGUARDS; SYTTLING PONDS; SAMPLING; SULFUR PLOXIDE; FURNACING; ACID PLANT; TAILINGS; MILLING; ALGAE; RECIRCULATION; ARTIFICAL MEANDERS; SINTERING

A practical, common sense, working partnership developed in the WSF (RARW) Lead Project has allowed environmentalists to work with engineers from industry to expose and resolve problems for social and economic henefits. In the New Lead Belt (ST Missouri) a formalized cooperative research effort among the AMAY Lead Corporation of Missouri, the University of Missouri, and the U.S. forest service began in 1970 when tree discoloration, or bronzing, was noticed in the new growths on trees down-wind from a smelter. A network of atmospheric monitoring stations was set up around the smelter and data from these stations showed SO(2) to be the cause of the tree bronzing. Costly, but effective, measures were taken by the AMAX Corporation to eliminate the problem. Measures have also been taken to eliminate lead dust, CO(2) and carbonate, and organic pollution of streams nearby.

20 Plow and Chemical Characteristics of the St. Johns River at Jacksonville, PL

Anderson, W.; Goolsby, D.A.

United States Geological Survey, Bureau of Geology, Florida Department of Natural Resources, Consolidated City of Jacksonville, Open-Pile Report 73008; 1973

PLOW CHARACTEPISTICS; CHEMISTRY; RIVERS; ESTUARIES; CHLORIDE; STRATIFICATION; TEMPERATURE

GEOGRAPHICAL DESCRIPTION: U.S., Plorida (S) Jacksonville, St. John's River

The St. Johns River at Jacksonville, which is 21 miles upstream from the ocean, is part of a tidal estuary that for practical purposes may be considered to end at Lake Gaorge, 106 miles upstream from the ocean. Occasionally, tidal effects are noted 161 miles upstream. The channel of the estuary above Jacksonville is capable of storing huge amounts of water past Jacksonville. Host of this water aubsequently flows back past Jacksonville as the ocean tide falls. These tidal flows average 87,000 cubic feet per second at Jacksonville, and peak flows exceeding 150,000 cubic feet per second are common. The average tidal flows are more than seven times as large as the average net for fresh-water flow. Fresh water draining from the ensuary increases the volume and duration of ebb tidal flows (downstream) and duration of ebb tidal flows into the estuary from April through that flows into the estuary from April through the ensuagh warch. When evapotranspiration from the

estuary above Jacksonville exceeds rainfall and fresh-water inflow into the estuary, the net loss of water tends to cause the volume and duration of the upstream flows to exceed those of the downstream flows. The net flow of the St. Johns River at Main Street Bridge in Jacksonville was downstream about 70 percent of the days of record and upstream about 30 percent of the days of record. Zero net flow occured on 13 of the 4,597 days of record, or 0.3 percent of the time. The greatest number of consecutive days that the net flow was zero or upstream was 14 days. Sea water moving upstream from the mouth of the St. Johns River mixes with the fresher water already in the river channel to form a zone of transition. The chloride concentration in this zone varies from that of sea water to that of the fresh-water input. When the zone of Jacksonville increases with upstream flow and decreases with downstream flow. During a particular tidal cycle, the magnitude and range in chloride concentration in the river at Jacksonville depends on the length and gradient of the zone of transition and on the volume of the tidal flows. About 80 percent of the time the chloride concentration at Main Street Bridge Exceeds 250 milligrams per liter. Between Jacksonville and the ocean the river shows stratification between the sea water and overlying river water. However, stratification tends to weaken or disappear in the vicinity of Jacksonville, probably because of increased turbulence caused by channel constriction and thridge piers. The temperature of the river averages less than 15 degree C (Celsius) (59 degree F) in January and February and more than 28 degree C (82 degree F) in summer.

21 Possible Purification of Waste Slurries and Waste Waters During Barium Salt Production

Andreeva, K.; Dimitrova, L.; Wishev, H.; Krusteva, D.; Trayanova, H.; Beloteleva, H.; USSR

God. Nauchnoizsled. Inst. Khim. Prom. (GNKPAG), 11, 249-256; 1973

BARIUM; SALTS; WASTE PURIFICATION; WASTE WATER

22 Methylmercury in Esnarine Sediments

Andren, A.W.; Harriss, F.C.

Nature 246, 256-257; 1973

METHYLMERCURY; MERCURY; SEDIMENTS; ESTUARIES; PISHERIES; INDUSTRIAL EPPLUENTS

Surface sediments were collected from the Mississippi belta, Hobile Bay, and the Florida Everglades and analyzed for total mercury, methylated mercury and total organic content. The methyl mercury concentration varied from less than 0.02 ng g-1 to 0.19 ng g-1, the high value being in the estuarine sediments from Mobile Bay, which had previously received sufficient quantities of anthropogenic morcury effluents to require a ban on convercial fisheries. The eethylmercury content never represents more than 0.07% of the total mercury present; the average is 0.03%.

73
Partition Coefficients for Ye, Mn, Pb, Wi, Zn, Cu
Retween River Water and Suspended Load, and
Mineralogical Composition of Suspended Load of
Selected Kansas River Systems: Project
Completion Pept. July 69-Dec 70

Andino, E.E.: Magnuson, L.H.: Waugh, T.C.: Evans, T.: Kansas Vater Resources Research Inst., Manhattan

Report No. Contrib-80; Contract DI-14-31-3016; Monitoring Agency Rept No. W72-06285, OMER-A-030-KAN(1); Prof. OMER-A-030-KAN; PB 20776, 126 p.; 1972, January

PARTIFION COEPFICIENTS; WATER ANALYSIS; WATER CHEMISTRY; ADSORPTION; METALS; CLAYS; MINERALS; MONTHORILLOWITE; PARTITION MAPHEMATICS; GEOCHEMISTRY; RIVERS; IRON; MANGANESE; NICKEL; LEAD; COPPER; ZINC; WATER; TRACE ELEMENTS; SUSPENDED SEDIMENTS; LIMNOLOGY; LEAD; SEDIMENTS

Aston, S.P.; Bruty, D.; Chester, P.; Padgham, P.C.; Appl. Geochem. Res. Group, Imp. Coll., London, England

Nature (London) (NATURS) 241 (5390) 450-1: 1973

MERCURY: LAKES: SEDIMENTS: INDUSTRY: GEOLOGY

Lake sediments, which geologically have a relatively rapid rate of deposition, might produce evidence of man's input of mercury to the environment. A 1-meter undisturbed sediment core form the South Basin, Lake Windermore, England, was obtained and analysed. The vertical distribution of Hg could result from an increasing supply of Hg over the past half millenium, probably due to an enhanced release of Hg by man's activities. These include: denudation of land surfaces; heavy industry, mining and quarrying; burning of fossil fuels; and sewage disposal. Much of the Hg thus released initially enters the atmosphere, although some is introduced directly into natural waters. The authors suggest that the Hg contents of the core reflect, at least in part, this input by man. The deep sediments have an average Hg content of 122 ppb which probably represents the local "background". Since approximately 1900 MD there has been a stepwise increase in Hg contents of the sediments which may correlate with man's activities, for exapple the change in the core may reflect the onset of the Industrial Revolution. It is likely that the introduction of sewage in recent years will have resulted in an increased supply of Hg in the lake. The combination of various factors comprising technological growth has, therefore, resulted in a progressive increase of Hg in the sediments of lake Windermere.

27 Conceptration Effects on Cesium-137, Zinc-65, Cobalt-60, and Ruthenium-106 Sorption by Marine Sediments, with Geochemical Implications

Aston, S.R.; Duurswa, E.K.; Int. Lab. Mar. Padionct., TAEA, Monaco

5

Neth. J. Sea Res. (NJSRBA), 6(1-2), 225-240; 1973

FAILOUT: SEDIMENTS; CESIUM 137; ZINC 65; COBALT 60; RUTHENIUM 106; SALTWATER; GEOCHENISTRY

26 General Study of Chemical Pollutants Thrown into Sea Water: Inventory and Toxicity Studies: I. Methodology: II. Mediterranean

Aubert, M.J.; Gambarotta, J.P.; Donnier, B.; Barelli, M.; Daniel, S.; Aubert, J.; Inst. Nat. Sante Rech. Med., Mice, France

Rev. Int. Oceanogr. Med., 1(Suppl.), 1-72; 1969

CHEMICALS: SALT WATER; TOXICITY; METHODOLOGY;

An inventory of chemical pollution of French coastal waters is presented in 4 volumes: the 1st is dedicated to general considerations and methodology, the others descirbe present pollution in the Mediterranean, Atlantic, Channel and Worth Sea regions. The results emphasize the need for classical analytic methodology, new techniques and "biological counters" adapted to this particular problem. Various types of chemical pollutants are surveyed, such as synthetic detergents petroleum products, pesticides and industrial waste. Some particular cases of widespread pollution are studied. The general experimental considerations developed lead, for the study of industrial waste, to the use of a standarized methodology which domonstrates the phenomena of intervening acute toxicity on the constituents of the marine enviorment. The possibility of transmitting these toxic effects to the final consumer in the biological chain is also studied. Techniques used to carry out these biological measurements are described in detail, as well as a method for interpreting the results thus obtained. The results are grouped according to zone: Mediterranean, Channel and Atlantic.

27 Detrimental Sffects of Toxic Charge by Heavy Metals or Phenol on Submerged Water Plants

Auerbach, S.; Pruefer, P.; Weise, G.; Sekt. Wasserwes., Tech. Univ. Dresden, Dresden, E.

Int. Gesamten Hydrobiol. (IGHTAZ), 58(1), 19-32; 1973

HEAVY HETALS; SUBHERGED WATER PLANTS; PLANTS; AQUATIC PLANTS

TAXONOMY: FONTINALIS ANTIPYRETICA

2H Distribution of Mercury in Sediments of the Mooksack River Drainage

Rabcock, R.S.; Kolby, N.I.; Dep. Geol., West. Washington State Coll., Bellingham, Wash.

Northwest Sci. (MOSCAX), 47(3), 180-184; 1973 MERCURY; SPDIMENTS; RIVERS; DRAINAGE; DISTRIBUTION

29 Total Mercury Content of Some Fishes of the Monte Amiata Area Rivers

Bacci, R.: Renzoni, A.: Ist. Anat. Comp., Univ. Siena, Siena, Italy

Rass. Hed. Sper. (RMSPAY), 20(1), 60-67; 1973

MEPCUPY; FISH; WATER; CINNABAR; MICROGREANISMS

TAXONDMY: LEUCISEUS CEPHALUS; BARBUS MEPIDIONALIS; RUTILUS RUBILIO

GEOGRAPHICAL DESCRIPTION: Italy, Monte Amiata, Siena, Viterbo

Values from 0.027 to 8.03 ppm were found for the wercury content in the white muscle of LEUCISEUS CEPHALUS, RARBUS MERIDIOMALIS, and RUTILUS RUBFILTO taken from 8 streams of the Monte Amiata Hg (cinnabar)-mining area between Siena and Witerbo, Italy. In general, B. MERIDIOMALIS had higher Hg contents than the other 2 species, presumably because its bottom-feeding habits expose it to microorganisms which methylate and concentration Hg. The major part of the Hg present in the water and in the fish is attributed to waste products from the mines rather than to leaching and weathering of the Hg-bearing rocks.

30 Removal of Copper from Waste Water with Ion Exchange Resins

Raisero, G.B.; Callegaro, A.; Melotti, A.; Montecatini Edison, Nilan, Italy

Inquinamento (TQARAW), 15(5), 37-39; 1973

COPPER; RECOVERY; WASTE WATER; IONS; PEMOVAL; ION EXCHANGE

31 Methylmercury Poisoning in Iraq: An Interuniversity Peport

Rakir, P.: Damluji, L.; Amin-Zaki, L.; Murtadha, M.; Khalidi, A.; Al-Rawi, N.Y.; Tikriti, S.; Dhahir, H.T.; Clarkson, T.W.; Smith, J.C.; Doherty, R.A.; University of Bahgdad, Iraq; University of Rochester, Rochester, N.Y.

Science 181, 230-241; 1973, July 20

METHYLMERCURY; HUMANS; TOXICITY; POISONING; MERCURY; PUNGICIDES

32 Contribution of Atmospheric Chloride in Water from Selected Coastal Streams of Central California

Baldwin, R.D.; Department of Geology, Hiami / University, Oxford, OH 45056

Water Resources Research, 7(4), 1007; 1971, August

ATMOSPHERE: CHLORIDE: COASTAL WATERS: WATER

GEOGRAPHICAL DESCRIPTION: U.S., California, Santa Cruz, Half Moon Bay

Chemical quality and discharge data were collected and analyzed from five streams draining watersheds between Half Moon Bay and Santa Cruz, California, to determine the contribution of atmospheric chloride to these coastal basins. Fifty-nine percent of the total chloride leaving the basins underlain by Tertiary sedimentary rocks per year is atmospheric in origin. Wineteen percent of this atmospheric chloride contribution is introduced dissolved in rainwater, whereas the remaining 40% is brought into the basins as fine particulate dust, in 'fog drip,' or as an aerosol.

33 Applied Aquatic Studies

Balylock, B.G.; Allen, C.P.; Cosgrove, G.E.; Elwood, J.W.; Eyman, L.D.; Frank, M.; Griffith, N.A.; Jolley, R.L.; Welson, D.J.; Scott, C.D.; Pitt, W.W.; Trabalka, J.R.; Ulrikson, G.U.; Shugart, H.H.

Part of Environmental Sciences Division Annual Progress Report Period Ending September 30, 1972, ORML-4848, 79-85; 1973

AQUATIC BIOLOGY; RADIONUCLIDES; SEDIMENTS; TRITIUM; FISH; CYTOGENTICS; RADIATION EPPECTS; CHANNEL CATPISH; NICHE; CHLORINATION; SEWAGE; EPPLUENTS; BLUEGILLS

TAXONONT: DROSOPHILA: ICTALURUS PUNTATUS; CHIRONONUS "ENTANS; LEPONIS MACROCHIRUS

34 Reclosy and the Concentration and Effect of Pollutants in Nearshore Warine Enviornments

Hartlett. G.A.

Part of International Symposium on Identification and Measurement of Environmental Pollutants, Ottawa, Ohtario, Canada; June 14, 15, 16, 17, 1971

SALTWATER; LAGOONS; ESTUABLES; DELTAS; SALT MARSHES; COASTAL WATERS; BIOMASS; BACTERA; FORAMINITERA; DIATOMS; MOLLUSCS; SEDIMENTS; TEMPERATURE: PH; EH; OXYGEN; CARBON DIOXIDE; SILICA; WITRATES; WITRITES; IRON; COPPER; MAGNESIUM; PHOSPHATE; SODIUM

several nearshore marine environments (lagoons, estuaries, deltas, salt marshes, beaches, and inner continental shelves) adjacent to the atlantic Provinces have been monitored during the past 10 years. Monitoring has been conducted either continususly, diornally, or on a seasonal basis. Biomass-watermass, biomass-substrate, and watermass-substrate characteristics have been analyzed. The previous history of these environments was investigated by coring. Biomonitoring, utilizing bacteria, foraminifera, diatoms, and molluscs, has indicated major trends in both species and assemblage associations, in specific environments. In addition, the following parameters were measured: 1) Sediment distribution, total organic content, size, and heavy minerals content, 2) Salinity, 3) Temperature, 9) pH, 5) Rh, 6) Oxygen, 7)CO2, 8) Silica, 9) Mitrate, 10) Mitrite, 11) Iron, 12) Copper, 13) Magnesium, 10) Phosphate, and 15) Sodium. These parameters have shown the quantitative relationships and the distribution and dilution of pollutants as a function of time and distance from point of injection into the watermass. All species investigated are patchily distributed, so that sampling methods play an important role in interpretation. Thus, infrequent sampling and widely-spaced stations only provide a partial environmental picture. Wearshore marine environments are eurybathic and controlling pollutants in nearshore marine environments are eurybathic and controlling pollutants in nearshore marine environments are eurybathic and controlling pollutants in nearshore marine environments are eurybathic and controlling rollutants in nearshore marine environments. These distinct environments in rearshore marine environments in searshore marine environments in pearshore marine environments in pearshore marine environments in pearshore marine environments. These distinct environmental changes have occurred in the pist 10 years with rapidly increased deterioration occuring from 1967 to the present.

35 Effects of Tinc and Lanthanum on Calcium Uptake by Mitochondria and Fragmented Sarcoplasmic Reticulum of Frog Skeletal Muscle

Batra, S.; Dep. Pharmacol., Univ. Lund, Lund, Sweden

J. Cell. Physiol. (JCLLAX), 82(2), 245-256; 1973

ZIRC: MUSCLES: CALCIUM: METABOLISM: LAWTHA NUM; MITOCHOWDRIA: SARCOPLASMIC RETICULUM: FROG

zinc at 5-10 micro moles had no effect on

calcium uptake by mitochondria or flagmented sarcoplasmic reticulum (FSR) from frog skeletal muscle, but 25 micro moles Zn decrensed Ca uptake by both fractions. Lanthanum at 5 g:cro moles lowered mitochondrial Ca uptake by 70%, but did not affect that by FSR; 10 and 25 micro moles La decreased FSR Ca uptake by 12 and 20%, respiration La was unable to release Ca from previously loaded mitochondria, indicating that it interfered only with the Ca binding step. The effects of Zn and La or Ca uptake by the isolated fractions were discussed in relation to the role of Ca in the contractile response of skeletal muscle.

7

36 Experimental Study of Zinc-65 Uptake and Elimination by Mytilus Galloprovincialis

Baudin, J.P.; Dep. Prot., C.E.N. Cadarache, Saint-Paul-Lez-Durance., Prance

C.R. Acac. Sci., Ser. D(CHDDAT) 277(1) 113-116; 1973

ZINC 65; HUSSELS; FALLOUT; CLAMS; RADIOACTIVITY; CONCENTRATION FACTOR; DIOLOGICAL HALF-LIFE

TAKONOMY: MYTILUS GALLOPROVINCIALIS

The clams were exposed to zinc 65 in water at 0.58 microcuries per liter. Uptake was rapid during the first 15 days, then slower for 15-40 days and then relatively constant for 48 days. The majority of the radioactivity lost by the water was taken up by the clams: a winor part wandsorbed on the walls. Concentration factors of 57 to 255 were observed for different parts and 79 for the w ole clam. The distribution was similar to that of stable zinc, but much higher concentration factors were found for stable zinc. Two biological half lives for climination were found (in zinc free water) wis 4 and 214 days.

37
Adsorption of Amino Acids at the Mercury-Water Interphase. II. Glycylglycine

Baugh, L.M.: Parsons, R.: Sch. Chem., Univ. Briston, Briston, England

Croat. Chem. Acta (CCACAA), 45(1), 127-135; 1973

GLYCYLGLYCINE; MERCURY; ADSORPTION; AMINO ACIDS;

The adsorption of Gly-Gly (I) from 0.1 M RPP6 was studied by electrocapillary and caracitance measurements. I behaves as a typical organic adsorbate by preferentially adsorbing near the point of zero charge. Studies showed that the molecules of I are oriented with dipoles parallel to the interface at accessible charges. Explanation of the favored adsorption of I at Hg interface involves a model of orientation of neighboring solvent molecules into a 2 dimensional solvation shell.

38 Chemistry of Organomercurials in Aquatic Systems

Baudhman, G.L.; Gordon, J.A.; Wolfe, W.L.; Zepp, P.G.

EPA-660/3-73-012 Environmental Protection Agency. National EnvironmentalResearch Center, Corvallis, Oregon: Southeast Environmental Research Lab. Athens, GA; 1973

KINETICS; CHEMISTRY; PHOTOCHEMISTRY; DIMPRHYLMERCURY; MATER CHLORIDE; PHEMYLMERCURY; DHM; DPM; ORGANOMPRCURIAL SALTS; MERCURY; METHYLMERCURY

Kinetics in water of some chemical and photochemical reactions postulated as key transformations in the environmental mercury cycle were investigated. Decomposition of dimethylmercury (nmm) and diphenylmercury (npm) by acids and mercuric salts was shown to be pH dependent and too slow to be significant under most environmental conditions. Degradation of organomercuric salts by acid is even slower. Theoretical evidence indicates that loss of elemental mercury or DMM at the air-water interface can be important in turbulent systems. Dimethylmercury, methylmercuric chloride, methylmercuric hydroxide, and methylmercuric ion where not decomposed by suntlight, but phenylmercury and sulfur-bonded methylmercuric species were readily decomposed to inorganic mercury. Detailed equilibrium calculations indicate that the sulfur-bonded methylmercuric species are the predomitant species in natural waters. Quantum vields for these reactions are presented along with a technique for calculating sunlight photolysis rates from laboratory data. The report also includes a review of the chemical literature concerning the kinetics of chemical and photochemical decomposition of prognomercurials.

39
Arustic Bioenvironmental Studies in the Columbia River at Hanford 1945-1971; A Bibliography with Abstracts

Becker, C.D.; Battelle Pacific Worthwest Laboratories, Richland, Washington 99352

BNWL-1734, UC-48; 1973, February

AQUATIC PIOLOGY; RIVERS; BIBLIOGRAPHY; POWER REACTORS

40 Toxicity of Power Plant Chemicals to Aquatic Life

Becker, C.D.; Thatcher, T.O.; United States Atomic Energy Commission

Wash-1249,UC-11, Rattelle Pacific Northwest Laboratories, Richland, Wash. 99352: 1973, June

AQUATIC BIOLOGY; CHEMICALS; POWER PLANTS; TOXICITY

47
Present Levels of Hercury in Man Under Conditions
of Occupational Exposure

Berlin, M.: International Atomic Energy Agency, Vienna, 1972

Part of Mercury Contamination in Man and His Environment, A Joint Undertaking by the International Labor Organization, The Pood and Agricultural Organization of the United Nations, the World Health Organization, and the International Atomic Energy Agnery, Technical Report Series No 137, 181p.; 1972

MERCURY; HUMANS; OCCUPATIONAL EXPOSURES; GUIDELTMES; BLOOD; ATHOSPHERE; SYMPTOMS; POISONING; URINE; AKLYMERCURY

The problems in connection with mercury analysis in biological material are not fully realized. According to available reports, it seems that a mercury concentration in blood exceeding 0.02 ppm after exposure to mercury vapour is connected with a certain risk of unspecific subjective symptoms in human beings. This value corresponds to about 0.02 mg/m3 of air. At blood levels exceeding 0.1 ppm (0.1 mg/m3 of air), signs of classical mercurialism can be expected. Blood concentrations exceeding 0.03 ppm of mercury can be regarded as signifying a definite exposure to mercury. The same conclusion should be drawn concerning concentrations of mercury in the urine exceeding 0.1 ppm. There is too little quantitative data on which to base conclusions regarding the lowest concentrations in blood and urine from poisoning due to phenylmaccury compounds or inorganic mercuric salts, nor is the lowest concentration in the critical organ, the xidney, known at which the clinical signs of poisoning appear. However, there are data indicating that the mercury concentration in urine and blood can be higher without causing clinical signs than with exposure to mercury compounds. Concentrations exceeding 0.1 ppm in whole blood are to be regarded as evidence of serious and dangerous exposure. This concentration in blood corresponds to a daily intake of 2 mg Hg/kg body weight per day or exposure to about 0.01 mg Hg/m3 of air for 8 hous a day. Women should not be occupationally exposed to alkylmercury compounds during their most fertile years.

42
Mercury Content of the Edible Portion of Fish
Products on the Belgian Food Market. Probable
Mercury Consumption in Belgium from these Products

Bigwood, E.J.: Fouassin, A.: Noirfalise, A.: Fac. Mod., Univ. Libre Bruxelles, Brussels, Belgium

Rev. Perment. Ind. Aliment. (RFIAAQ), 28(1), 5-46; 1973

REVIEW; MERCURY; PISH; DIET; SER FOOD; HUMANS GEOGRAPHICAL DESCRIPTION: Belgium

us Effects of Cadmium and Copper on the Oxidation of Lactate by Painhow Trout Gills

Bilinski, E.; Jonas, R.E.; Vancouver Lab., Pish. Res. Board Canada, Vancouver, B.C.

J. Fish. Res. Board Can. (JTRBAK), 30(10), 1553-1558; 1973

CADMIUM; LACTATE; METABOLISM; PISM; GILLS; COPPER; FAINBOW TROUT; PRESHWATER

TAXONDMY: SALMO GAIRDNERI

In fish surviving exposure to cadaium chloride (1.12 mg cadmium L.) for 24 hr to copper chloride (0.06% mg copper L.) for 48 hr, the oxidation of lactate by gills was inhibited by more than 50%. The exposure of trout to lover metal ion concentrations resulted in mortalities, but there was no detectable effect on the oxidative activity in gills.

44
Kinetics of Microbially Mediated Methylation of
Mercury in Aerobic and Anaerobic Aquatic
Novironments

Bisogni, J.J., Jr.: lawrence, A.V.

The Office of Water Resources Research, U.S. Dept. of Interior, Wash., DC report A-038-NY, Agreement Mumbers 14-31-001-3532 and 3832.

KINETICS: MICROOGRAMISMS: MERCURY: METHYLATION: PEDOX POTENTIAL: SULFIDES

In this research the microbial transformation of inorganic mercury to organic mercury (monomethyland dimethylamercury) was studied. This transformation was studied with regard to the effects of the following: (1) redox potential, (2) inorganic mercury concentration, (3) temperature, (0) microbial activity, and (5) sulfide concentration. A kinetic model was proposed to describe the rate of methylation. The model included the following parameters: (1) a coefficient which indicated relative microbial activity, (2) a coefficient which indicated biochemical availability of the inorganic mercury, (3) a parameter whose value was determined by the system redox potential, and (4) inorganic mercury concentration.

Transfer to Man, Through His Food, of the Radioisotopes of Ruthenium, Cobalt, and Zinc Discharged into Continental Waters

Bittel, R.; CEA, Fontenay-Aux-Roses, France

CEA, Pontenay-Aux-Roses, Franc (EUR-4800 (Vols. 1 and 2)), pp. 869-890. Prom International symposium on radioecology applied to the protection of man and his environment; Rome, Italy (7 Sept. 1971).; 1972, May

AQUATIC ECOSYSTEMS; COBALT; ECOSYSTEMS; RADIOISOTOPES; RUTHENIUM; SEAFOOD; TRANSPORT; ZIMC; ISOTOPES; HUMANS; FOOD CHAINS

on the basis of certain assumptions, the dose delivered to man by the ingestion of food contaminated by radioactive pollution of water can be evaluated in any situation. The use of a type of standard calculation is described for aquatic food chains in order to establish the consequences for man of the contamination of continental waters by radioruthenium and metallic activation products, in particular, radioisotopes of cobalt and zinc. A study of examples based on the results of food surveys and of experiments performed mainly at Ispra and Mol indicates the doses reaching man in different cases and permits estimation of the incidence of variations of some of their parameters.

46 Significance of Physicochemical Variables in Aquatic Bioassays of Heavy Metals

Black, J.A.: Roberts, R.F.: Johnson, D.H.: Finicucci, D.D.: Hancy, K.H.: Allen, H.E.: School of Public Health, Univ. Hichigan, Ann Arbor, Mich.

Bioassay Tech. Environ. Chem. (267ZAG) 259-75; 1973

REVIEW; HEAVY METALS; AQUATIC BIOLOGY; BIOASSAY; PHYSICOCHEMISTRY

A review of temperature, dissolved oxygen, flow or constitution renewal ionic strength, water hardness and the equilibration of species of metal toxicants as physicochemical variables in aquatic bioassays of heavy metals with 29 refs.

u7
Polarographic Properties of Complexes of Alkali Metals in Aqueous Solutions

Bobrovski, A.; Zarembski, Y.

Zh. Anal. Khim., 27(8), 1872-1879; 1972, August

CESIUM; LITHIUM; POLAROGRAPHY; POTASSIUM; QUANTITATIVE CHEMICAL ANALYSIS; RUBIDIUM; SODIUM; AQUEOUS SOLUTIONS; WATER us Geochemical and Vegetation Studies of Trace Substances from Lead Smelting

Bolter, E.: Hemphill, D.D.: Wixson, B.: Butherus, D.: Chen, R.

Part of Hemphill, D.D. (Rd.), Sixth Antual Conference on Trace Substances in Environmental Realth, Held at Memorial Union, University of Missouri-Columbia, Columbia, No. June 13-14, 1972 (p. 79-86) 399p.; 1973

SOILS; PLANTS; LEAD; ZINC; COPPER; CADMIUM;
MANGAMESE; SULPUN: SMELTERS; LEAVES; GALTNA;
SPHALERITF; TREES; Y-RAI; FLUORESCENCE ANALYSTS;
ATOMIC ABSORPTION SPECTROPHOTOMETRY; DEPTH
VARIATIONS; ROJTS; TRANSLOCATION; POLIAR
APPLICATION; GEOGRAPHIC VARIATIONS; HUMUS;
ANALYSIS; ATMOSPHERE

Several hundred soil and vegetation samples from the "Viburnum Trend" or "New Load Belt" of Southeast Missouri were analyzed for lead, zinc, copper, cadaium, manganese and total sulfur to determine natural background concentrations and to delineate areas of anomalous high concentrations caused by the mining and lead smelting activity. The area around one lead smelter shoved anomalous high heavy metal concentrations for a distance of several miles. Other activities, such as the transport of ore concentrate in open trucks or by railroad, also act as sources of pollution. Elevated heavy metal concentrations in soils were found to be mainly restricted to the hunus layer on the surface of the soil and to the top one inch soil layer. Most of the lead found in vegetation samples was thought to be present on the surface of the leaves. Findings should be of technical value for pollution abatement applications.

49 Sorption-Desorption Reactions of Mercury with Suspended Matter in the Columbia River

Bothner, M.; Carpenter, R.

Part of Padioactive Contamination of the Marine Environment. Vienna - International Atomic Energy Agency, 1973, from Symposium on the Interaction of Radioactive Contaminatnts with the Constituents of the Marine Environment, Seattle, Washington, USA, July 10-14, 1972, pp 73-37.; 1973

ADSOPPTION: AQUATIC ECOSTSTEMS; COASTAL WATERS; COLUMBIA RIVER; DESORPTION; DIFFUSION; PRESURATER; PERCURY; PACIFIC OCEAN; PARTICLES; SALTWATER; SEDIMENTS; SILT; TRACEP TECHNIQUES; DISSOLUTION

The influence of Columbia River suspended matter on the fate of dissolved mercury in the river and during the transition from the river to the oceanic environment has been investigated. The approach has been to spike natural Columbia River water with Hg 203-labelled mercuric nitrate and methyl mercury chloride under laboratory conditions and to follow the reactions of the

, .

radioactive species with the suspended matter during exposure to river water and to seavater. The concentrations of natural mercury in Columbia River water, its suspended matter and bottom sediments were also determined. The partitioning of both natural and radioactive mercury species between the dissolved and suspended phases was very similar. Hotween 50 and 75% of the natural mercury and the added radioactive species was associated with the particulates. Both inorganic and methyl mercury are fairly rapidly taken up by the natural assemblage of Columbia River particulates. The desorption experiments show that at least half of each of these forms is fairly easily desorbed by filtered river vater of lower total mercury content. Subsequent washes with seawater remove little additional mercury from the particulates during roughly one week contact time.

50 Complex Formation Between Lead (II) and Citrate Ions in Alkaline Solution

Bottari, B.: Vicedomini, M.: Ist. Chim. Analitica, Univ. Roma, Foma, Italy

J. Inorg. Nucl. Chem. (JINChO) 35(7) 2447-53; 1973

LEAD; CITRATE; COMPLEX PORMATION

The complex formation between lead (II) and citrate ions (Li in alkaline solution has been investigated by means of potentiometric seasurements by employing a lead amalgam electrode at 25 c and in 2 % Na(Cl04).

51 Mercury Contamination of Marine Life in Peru

Bouroncle, C.A.; Echegaray, R.M.; Chang, S.Y.J.; Min. Salud Peru, Peru

Bol. of Sanit. Panamer. (BOSPAS), 74 (4), 290-301;

MERCURY; CONTAMINATION; MARINE BIOTA; FISH; SWORDPISH; ANCHOVETA; SALTWATER

GEOGRAPHICAL DESCRIPTION: Peru

52
Rinetics and Mechanism of the Oxidative
Chlorination of Acetylene. V. Kinetic Principles
of Trans-1, 2-pichloroethylene and Vinyl Chloride
Synthesis in an Aqueous Solution of Copper(II)
and Mercury(II) Chloride Complexes

Brailovskii, S.H.; Bruk, L.G.; Kostyushin, A.S.; Temkin, O.M.; Plid, R.H.; Mosk. Inst. Tonkoi Khim. Tekhnol. Lomonosova, Moscov, USSR

Kinet. Katal. (KNKTA4), 14(5), 1222-1227; 1973

CHLORIMATION; ACETYLENE; MERCURY; COPPER; CHLORIDE; VINIL CHLORIDE; SINTHESIS

53
Methylated Porms of Arsenic in the Environment

Braman. R.S.: Poreback. C.C.

Science, 182, 1247-1249; 1973

ARSENIC: DIMPTHYLARSINIC ACID; METHYLARSONIC ACID; NATURAL WATERS; BIRDS; EGGSHELLS; SEASHELLS; HUMANS; DRINE

Environmental samples were analyzed for arsenate and arsenite ions and the methylarsanic acids in nanogram accounts. Dimethylarsinic acid and methylarsonic acid were found in natural waters, bird eggshells, seashells, and human urine. Dimethylarsinic acid is a major and ubiquitous form of arsenic in the environment. It is particularly involved in biological systems. Methylarsonic acid was found in smaller concentrations, comparatively, a probable consequence of its being an intermediate in the arsenic methylation sequence. The introduction of arsenic compounds into the environment, principally through pesticides, way result in a queneral increase in their concentrations in water and air because of the bacterial mobilization of all forms of arsenic.

44 Effect of Zinc on Growth and Development of Larvare of the Pacific Dyster, Crassostrea Gigas

Brereton, A.: Lord, H.: Thornton, I.: Webb, J.S.: Appl. Geochem. Res. Group, Imp. Coll. Sci. Technol., London, Engl.

Mar. Biol. (NBTOAT), 19(2), 96-101; 1973

OYSTERS; ZINC; TOXICITY; GROWTH

TAXONDMY: CPASSOSTREA GIGAS

Exposure of C. Gigas larvae in the lab to 125-500 mu g inc/1., supplied as zinc sulfate, or as zn-rich mine water, for 5 days resulted in growth inhibition, morphol. and developmental abnormalities, und mortality. The severity of the effects increased with increasing zn concn. no effect was shown by 50 mu g zn/1.

55
A Select Pibliography on Pollution of Estuaries and Coastal Waters With Particular Regard to Industrail Pffluents

Brinn. D.G.

HTIS PB-212 215; 1972, August

BIBLIOGRAPHY: ESTUARIES; COASTAL WATERS; THOUSTRY; EPPLUENTS

Petermination of Molecular Hydrocyanic Acid in Water and Studies of the Chemistry and Toxicity to Pish of Metal-Cyanide Complexes

Broderius, S.J.; Oregon State Univ., Corvallis, OR

Univ. Microfilms, Ann Arbor, MI, Order No. 73-21, 299, Diss. Abstr. Int. B 34(3), 1018; 1973

HYDROCYANIC ACID: WATER; TOXICITY; PISH; COMPLEXES; CYANIDE

Agents for Combating and Hindering Growth of Algae and Microorganisms in Agueous Systems

Brost, H.R.; Hentschel, C.; Wacker, H.; Bayer, A.G.

Ger. Offen. (GWXXBX) 2131029 (A 61L, C 07C, A 01M), 11pp.; 1971, June 23

BENZALKONIUM RESIN: ALGAE: INHIBITION: COPPER: BACTERIA: ALGICIDES: BACTERIACIDES

58
Prequency of Fish Truors Found in a Polluted
Matershed as Compared to Monpolluted Canadian
Waters

Brown, B.R.; Hazdra, J.J.; Keith, L.; Greenspan, L.; Kwapinski, J.B.G.; Beamer, P.; Departments of Microbiology (E.R.B.), Obstetrics and Gynecology (L.K.), and iatnology (P.B.), The Chicago Medical School/University of Health Sciences, Chicago, IL 60612; Department of Chewistry and Biochemistry, Illinois-Benedictine College, Lisle, IL 60532 (J.J.H.); and Department of Medical Microbiology, University of Manitoba, Canada (J.B.G.K.)

Cancer Research, 33(2), 189-198: 1973, Pebruary

FISH; TUHORS; WATER; CONTAMINATION; MERCURY; LEAD; ARSENIC; TOLUENE; BENZANTHRACENE; CPUDE OIL; CHLORINATED HYDROCARBONS; GASOLINE; PHOSPHATE; SULFATES; COLIFORM BACTERIA; TEMPERATURE; DISSOLVED OXYGEN; NOTRIENTS

Data are presented on the incidence of tumors found in 2121 fish examined from the Fox River watershed (4.38%) as compared to 4639 fish examined in Canada (1.03%). The water systems were compared as to pollution potentials, and the Fox River was found to be a highly polluted system. Among the pollutants found were mercury, lead, arsenic, toluene, crude oil, gasoline, benzanthracene, chlorinated hydrocarbons, phosphates, sulfates, and coliform bacteria. Factors such as dissolved oxygen content, temperature, and nutritional variation were considered similar in both water systems. It is concluded that these pollutants were responsible for the greater frequency of tumors. We attempts were under to determine the effects of pollution on the long-torm human users of the water or to determine the virus contents of the water system under study. Plans are now being made to study the water system under study. Plans are now being made to study the waters for fish viruses and, incidently, those enteric viruses that one might expect in a river system that is termed "a floating sever."

59 Efficiency of Heavy Netals Removal in Municipal Sewage Treatment Plants

Prown, H.G.; Hensley, C.P.; McKinney, G.L.; Rohinson, J.L.

Environ. Letters, 5(2), 103: 1973

SEWAGE TREATHENT: HEAVY METALS REMOVAL: SLUDGE; DIGESTION; PILTRATION; CERIUN; COPPER; LFAD; CHRONIUM; ZINC; HEAVY METALS

Prom January to July 1972, six municipal sewage treatment plants were routinely monitored for the efficiency of heavy metals removal. The municipalities served ranged from small agricultural communities to an industrialized city. Four basic plant types were studied: (1) primary with sludge digestion; (2) primary with sludge filtration: (3) trickling filter with sludge digestion; (4) activated sludge with sludge digestion; Ce, Cu, and Pb were more efficiently removed in secondary than in primary. Cr is reduced during acration. Cu is strongly adsorbed by microbial floc. Pb is removed efficiently due to increased settling time and larger particle size in the secondary treatment. The is equally efficiently removed by all plant types. Increased suspended solids removal yields an exponentially increased metals removal.

60 Acute and Long-Term Accumulation of Copper by the Brown Bullhead, Ictalurus Nebulosus

Brungs, W.A.; Leonard, P.W.; McKim, J.H.; Matl. Water Gual, Lab., U.S. Environ. Prot. Agency, Duluth, Hinr.

J. Fish. Res. Board Can. (JPRBAK), 30(4), 583-6; 1973

COPPER: BICACCUMULATION: BULLHEAD: FISH

TAXONOMY: ICTALURUS MERULOSUS

Cu concns. in gill, opercle, liver, and kidney tissues of live brown bullhad (I. Webulosus) fish exposed to const. concns. of 6.5-922 su g copper sulfate/l. did not differ from those that died during the acute exposure. Exposure of the lish to sublethal concns. for 20 days before exposure to lethal concns. resulted in higher tissue cu levels in the dead fish than in fish not previously exposed. There was a distinct increase in liver and gill tissue cu concns. at exposure levels geg. 27 my g/l. Equil. tissue levels of cu in the liver and gill were reached within 30 days. Cu levels in red blood calls and plasma after 20 months exposure did not differ from the controls.

61 Trace Elements in Ancient Atlantic Deep-Sea Sediments

Bruty, D.; Chester, R.; Aston, S.R.; Dep. Oceanogr., Univ. Liverp., Liverpool, England

Wature (Iondon), Phys. Sci. (MPSCA6), 205(100), 73-74; 1973

TRACE ELPHENTS: SEDIMENTS: CLATS: ZEOLITP

62 Brown Seaweed as an Indicator of Heavy Metals in Estuaries in Southwest England

Bryan, G.W.; Hummerstone, L.G.; Plymouth Lab., Plymouth, England

J. Mar. Biol. Ass. U.K. (JMBAAK), 53(3), 705-720; 1973

METALS; SEAWEEDS; WATER; FUCUS; ALGAE; ESTUARIES; PIOUNDICATOR

63 Contamination of Soil and Vagetation Wear a Zinc Smelter by Zinc, Cadmium, Copper, and Lead

Buchauer, M.J.; Institute of Microbiology, Rutgers-Tho State University, New Brunswick, N.J. 08903

Environ. Sci. Technol., 7(2), 131-135; 1973

SOILS; YEGETATION; PLANTS; NETALS; SHELTERS; ZINC; LEAD; COPPER; CADMIUN; OXYGEN; AEROSOLS; ATMOSPHERE

Metal oxide fumes escaping from two zinc smelters in Palmerton, Pa, have contaminated soil and vegetation with zinc, cadmium, copper and lead. Within 1 km of the smelters, 135,000 ppm zinc, 1750 ppm cadmium, 2000 ppm copper and 2000 ppm lead have been measured in the 02 horizon. Approximately 90% of metals deposited on the soil surface have been retained in the top 15 cm of the soil profile. Depauperate treas within 2 km of the smelters contained up to 3500 ppm zinc and 70 ppm cadmium by weight in washed, oven-dried foliage. Motal aerosols may enter the leaves directly, presumably through open stomates.

64 Device for Demonstrating the Interaction of Metals with Water Vapor

Bulavin, Y.I.; Pedagog, Inst., Arzamas, USSR

Khim. Shk. (KHSHAY), (3) 69; 1973

HETALS: WATER: INTERACTIONS

65 Metal Dynamics in Municipal Stabilization Ponds

Bulthuis, D.A.; Craig, J.P.; McMabb, C.D.

Part of Hemphill, D.D. (Ed.), Seventh Annual Conference on Trace Substances in Environmental Health, Held at Memorial Orion, University of Missouri-Columbia, Columbia, NO, June 12-14, 1973: 1973

SEDIMENTS; AQUATIC VASCULAR PLANTS; STABILIZATION PORDS; BIOMASS; CHROMIUM; COPPER; IRON; MAMGAMESE; ZTMC; CADMIUM; COBALT; WICKEL; ARSONETION; SEDIMENTATION; AEROBIC POMDS; ALGAP; MACROPHYTES; AMAEROBIC POMDS; PACULTATIVE POMDS; HYDROPHYTES; FFFLUENTS; PERCOLATION; PLANTS; CONNSTATL; DUCKWEED; MUNICIPAL MASTE TREATEMENT; SEASONAL VARIATIONS; SINKS; WASTEWATER; CONCENTRATION; SINKS

Sediments and aquatic vascular plants are potential sin's for contaminating elements in stabilization ponds as they are operated in michigan. The accumulation of several heavy metals in these sinks was studied during the growing season in an existing series of stabilization ponds. Using inflow and outflow data, an approximation of the accrual was made for each element in bottom sediments. Blomass estimates of the hydrophyte communities were used to determine the quantities of metals resovable from a system by harvest of a season's crop. The ambient concentrations of chromium, copper, iron, manganese and zinc were reduced in the ponds through accumulation in these sinks. The ambient concentrations of cadmium, cobalt, and nickel were not reduced in the ponds. Estimates were made of the relative efficiencies of removal by plant absorption and hy sedimentation in aerobic in the community of the growing season. Plant with the community copper, and zinc. Sedimentation and aquatic plants were equally inefficient for removal of cadmium, cobalt, and nickel. These moved through facultative and aerobic ponds without reduction.

66 Fffect of Some Trace Elements on the Development of the Alga SCFMEDESHUS QUADRICAUDA

Bumbu, Y.V.; Hokryak, A.S.; USSR

Tzv. Arad, Nau: Mold. SSR, Ser. Biol. Khim. Mauk (IMBK86), (1), 82-83; 1973

LITHIUM; CADMIUM; NICKEL: BICARBONATE; ZINC; TPACE ELEMPHTS; ALGAE; DEVELOPMENT

TAXONONY: SCENEDESHUS QUADRICAUDA

*Iqae were grown in media containing Li, Wi, Cd, and 7m salts at 23-26, 2000-2500 lux. After 3 months pH of the medium, concentration of HCO3-, and the amount of biomass were determined. Lithium (plus) in low concentration (0.01 mg/L) stimulated algal growth white higher concentrations (0.1/mg/L) reduced growth of the algae. In and Cd ions in concentrations of 0.05-0.5 mg/L inhibited growth of the alga. Inhibition of growth was accompanied by a decrease of HCO3-concentration.

67 Kinetics of Aquation of Chloro- and (Thiocyanoato) Chromium (XXX) Complexes in Mixed Aquoous Solvents

Rurgess, J.: Chem. Dep., Univ. Leicester, Leichester, Engl.

J. Chem. Soc., Dalton Trans. (JCDTB7), (8), 825-928; 1973

KINETICS; AQUATION; CHRONIUM; COMPLEXES; THIOCIANATO: CHLORINE

Rate constants are reported fro spontaneous thermal aquation of the complexes (Cr (WH3) SC1) 2+, cis-(Cr(en) 2C12)+ (en=ethylenediamine), trans-(Cr(0R2) 4C12)+, and (Cr(NCS) 6) 3- in a range of solvents, including methanol-, ethanol-, acetone-, dioxan-, and t-butyl alcohol-water binary mixtures. These results, and previously published results on similar chromium (TIT) complexes, are discussed in terms of the Grunwald-Winstein treatment of solvolyses in mixed aqueous solvents. Although this empirical approach can usefully be employed in discussing the aquation of chlorochromium(III) complexes, its extension to thiocyanatochromium (III) complexes does not seem profitable.

6A Distribution Patterns for Some Particulate and Dissolved Trace Hetals within an Active Glacial Piord

Burrell, D.C.

Part of Radioactive Contamination of the Marine Environment, Proceedings of Symposium held by the International Atomic Energy Agency, Seattle, WA July 10-10, 1972 (89-103) 7862.: 1973

DISTRIBUTION PATTERMS; TRACE METALS: PARTICULATES; GLACIAL PJORD; PLOCCULATION; ZINC; COPPER; LEAD; NICKEL; RUNOPP; SALTWATER; ESTUARIES

the distribution patterns of some trace metals between water and both suspended and deposited sediment has been studied in a non-iceberg flord-estuary in S.E. Alasta. The hydrography of this type of fjord is such that, during the summer, glacial melt-water runoff enters the marine fjord initially as a concentrated sediment-plume on the surface. This sediment subsequently flocculates and settles through the subhalocline (essentially non-turbulent) portion of the marine column. The soluble zinc content of the glacial fresh water is slightly lower than that of the marine water (around 0.5 and 1.1 incorpam per liter respectively), and the total fresh-water particulate zinc (around 65 mg/kg) is predominantly structural. In this environment there appears to be adsorption of zinc across the halocline, and copper, lead and nickel are covariant with iron and the suspended sediment load. The sediment deposition rates in this flord-type are very high and the sediment texture, composition and chemistry is uniform through the surface metre or so. The organic carbon content is around 0.1% only. The interstitial water contents of both zinc and copper approximate those in the overlying water.

69 Studies on Uptake of Methylmercury-203 by Bluegills (Lepomis macrochirus)

Butrovs, W.D.; Krenkel, P.A.; Associated Water and Air Resources Engineers, Inc., Mashville, TN 37204//Environmental and Water Resources Engineering Porgram, Washville, TN 37235

Env. Sci. Technol., 7(13), 1127-1130; 1973

TRACERS: HALF-TIME: RLUEGILLS: UPTAKE: HETHYLMERCURY: RADIONUCLIDES; LIVER: KIDNPYS; MERCURY 203: HFRCUPY

TAYONOMY: LPPONIS MACROCHIRUS

The uptake of methylmercury-203 directly from water by bluegills was found to be nearly constant after five days at about 20% per gram of finh per liter of water. Transferred to mercury-free water at 24 degrees C, bluegills exhibited a rapid loss of about 40% of the metcury, followed by a slow loss with a half-time of about five mental. Mercury levels in the liver and kidneys were two to seven times higher than whole fish levels, but there was no discernible trend in this ratio with time. The proportion of mercury present as methylmercury in the whole fish remained at 73+/-10% throughout the course of the experiment. The proportion of methylmercury in the liver and kidneys, however, fell rapidly in the first few weeks after exposure, utilizately leveling off at about 10%. This suggests that biochemical demethylation is taking place in these organs.

Continuous Culture of Rhodotorula rubra. Kinetics of Phosphate Arsenate Uptake, Inhibition, and Posphate-Limited Growth

Button, D.K.; Dunker, S.S.; Morse, H.L.; Inst. Mar. Scil. Univ. Alaska, College, Alaska

J. Bacteriol. (JOBARY) 113(2), 599-611: 1973

PHOSPHATE: TRANSPORT: KINETICS: ARSEMATES: UPTAKE: GROWTH INHIBITION: CONTINUOUS CULTURE: PR

TAXONOMY: RHODOTORULA RUBRA

The pink yeast RHODOTORULA ROBRA of marine origin was found to capable of extended growth at very low phosphate concentrations (R 0.5 = 10.8 nM). Average intraceilular phosphate concentrations, based on isotope exchange techniques, were 15 to 200 em. giving concentration gradients across the cell envelope of about 106. Sensitivity to metabolic inhibitors occurred at micromolar concentrations. Inability of the phosphate transport system, R8 = 0.5 to 2.8 mM, V wax = 55 M moles per g of cells per min, to discriminate against arsenate transport led to arsenate toxicity at 1 to 10 nM, whereas environmental arsenate levels are reportedly much higher. Phosphate competitively prevented arsenate toxicity. The K1 for phosphate inhibition of arsenate uptake was 0.7 to 1.2 MM. Phosphate uptake experiments showed that maximal growth rates could be achieved with approximately % of the total phosphate -arsenate transport system. Organisms adapted to a range hoth of concentration of Wacl and of pM. Maximal affinity for phosphate occurred at pH % and at low concentrations of Wacl: however, V wax for phosphate transport was little affected. Maximal specific growth rates on minimal medium were consistent in batch culture but gradually increased to the much higher rates found with yeast extract media when the population was subjected to long-term continuous culture with gradually increasing dilution rates. Phosphate initial uptake rates that were in agreement with steady-state flux in continuous culture were obtained by using organisms and medium directly from continuous culture were obtained by using organisms and medium directly from continuous culture. This procedure resulted in rates about 500 times greater than one in which harvested between values found and those reported in the literature for other organisms and medium directly from continuous culture. This procedure resulted in rates about 500 times greater than one in which harvested between values found and those reported in the literature for other organisms are present

71 Removal of Soluble Mercury Residues from Aqueous Process Streams

Cadaus, E.L.: Ventron Corp.

U.S. Patent (USXX4H) 3764528 (210/50; C 02RC), 2pp.; 1971, November

MERCURY; REHOVAL; WATER; PESIDUES; WASTE WATER

72
The Effects of pH, Solubility and Adaperature
Upon the Acute Toxicity of Zinc to the Bluegill
Sunfish (Lepomis macrochirus Raf.)

Cairns, J., Jr.; Bahns, T.K.; Burton, D.T.; Dickson, K.L.; Sparks, R.P.; Waller, W.T.

Kansas Academy of Science, 74(1), 81-92; 1972, January 7

PISH; TOXICITY; PH; SOLUBILITY; TEMPERATURE; ZINC; BIOASSAY; MORTALITY; TLH; LETHAL TOLERANCE

TAXONOMY: LEPONIS MACROCHIRUS

Rluegill surfish were exposed for 96 hours under static test conditions to water soluble zinc sulfate hydrate and water insoluble zinc phosphate hydrate at two temperature ranges (21-24 degrees C; 7-9 degrees C) and two phranges (5.7-7.0; 7.3-8.0). Control fish were maintained in water containing no zinc. Wo hluegills died in water containing insoluble zinc in amounts comparable to the amounts of soluble zinc (13.50, 19.00, 24.00, and 32.00 milligrams zinc 2 plus per liter) which produced mortalities of 90 to 100 percent. Bluegill mortalities in concentrations of soluble zinc ranging from 10 to 32 milligrams zinc 2 plus per liter were 0 to 10 percent at the high ph, while at the low ph mortalities were 100 percent. Bluegills at the low tamperatures died at a much slower rate, and the time-to-death of the first fish was considerably delayed, in comparison to bluegills at the warmer temperature. Continuous flow hioassay tests in which two types of test containers were used showed differences in 96-hour TLM values. The particle replacement time in 190 liter bioassay jars was considerably longer than in 1.m-liter plexiglass containers; hence bluegills surrived longer in the jars. Minety-six-hour TLM concentrations for fish exposed to a continuous flow of zinc 2 plus in two types of test containers were estimated in four ways: using statistically pooled measured and calculated concentrations, and by pooling calculated and measured concentrations on the basis of the nominal concentrations alone. There were small differences in the resulting TLM values, a result which should be of interest to other workers using bioassays.

73
Rapid Biological Monitoring System for Determining Aquatic Community Structure in Receiving Systems

Cairns, J., Jr.; Dickson, K.L.; Lanza, G.

Part of Biological Methods for the Assessment of Water Quality, ASTM STP 528, American Society for Testing and Materials, 1973, pp. 148-163

WATER: LASERS: HOLOGRAPHY: AQUATIC BIOLOGY: ENVIRONMENTAL SURVEYS: MONITORS: ANALYSIS: SPECIES DIVERSITY: SAPROBIC SYSTEM: COMPARISON INDEX: COMMUNITY STRUCTURE ANALYSIS

Biological monitoring plays an important role in a pollution monitoring program providing information not available through conventional physical and chemical monitoring. The saprobic system and the use of structural and functional changes in aquatic communities are two approaches utilized in assessing the effects of pollutants on aquatic communities. The feedback of information from conventional instream biological monitoring has been too slow for the most effective management of an aquatic system. Two rapid biological monitoring systems (the SEQUENTIAL COMPARISON INDEX, and an automated community structure analysis using laser holography) have been developed to increase the speed of data collection and data analysis.

74
The Development of an Automated Biological Bonitoring System for Water Quality Hanagement

Cairns, J., Jr.; Hall, J.W.; Morgan, E.N.; Sparks, R.E.; Waller, W.T.; Westlake, G.P.

Part of Hemphill, D.D. (Ed.), Seventh Annual Conference on Trace Substances in Environmental Health, Held at Hemorial Union, University of Missouri-Columbia, Columbia, HO, June 12-14, 1973: 1973

RESPIRATION; PISH; BIUEGILLS; ZIMC; BEHAVIOR; CHLORINE; WATER QUALITY; WATER; BIOLOGICAL HONITORING; MONITORING; AQUATIC ECOSYSTRMS

The time has come to go beyond merely responding to one environmental crisis after another and to manage all ecosystems on a regional basis. Proper management will insure that benefits are optimized and that each system serves a variety of uses. Management of aquatic ecosystems requires a clear understanding of the goals to be achieved, appropriate information and the means to achieve the goals. Control measures applied to aquatic ecosystems, in the absence of information on the condition of the system, are apt to be inappropriate and thus may overprotect the receiving system at times and underprotect it at other times since the ability of ecosystems to receive wastes is not constant. A major determinant of the effectiveness and efficiency of ecological quality control is the lag time in the feedback of information. If the lag is too great, the control measures may rapeatedly overshoot or undershoot the desired goal. Present techniques for measuring the responses of aquatic organisms and communities require days or weeks, whereas information for ecosystem quality control and prevention of ecological crises should be generated in minutes or hours as is the case for other quality control systems. A biological monitoring system has been developed to generate information rapidly. The system measured changes in the povement and breathing of fish in order to provide an early warning of developing toxicity in the wastes of an industrial plant. The method of automation of data collection from this system and its developent into an won-linew system for monitoring water quality is described. The special statistical techniques necessary for analyzing this data is able to detect low concentration of zinc and other toxicants and that the responses are sufficiently rapid to make the system useful for water quality management.

75
The Design of a Continuous Plow Piological Early
Warning System for Industrial Use

Cairns, J., Jr.; Sparks, R.F.; Waller, W.T.

presented at the 27th Purdue Industrial Waste Conference, May 2-4, 1972 at Purdue University to be published in the Purdue University Engineering Bulletin, 21 p. plus table and figures; 1972

GOALS: AQUATIC ECOSYSTEMS: PEEDBACK: LAG: CONTROL MEASURES: PTOLOGICAL MONITORING: MOVEMENT: BPEATHING: PISH: EARLY MARNING: TOXICITY: INDUSTRIAL WASTES: RESPONSE TIME: POLYGRAPH: TOXICANT: BLUPUILLS: DIURNAL VARIATION: ZINC SULPATE: STRES: DETECTION

The time has come to go beyond merely responding to one environmental crisis after another and to manage all ecosystems on a regional basis. Prover management will insure that benefits are optimized and that each system serves a variety of uses. Management of aquatic ecosystems requires a clear understanding of the goals to be achieved, appropriate information and the means to achieve the goals. Control measures applied to aquatic ecosystems, in the absence of information on the condition of the system, are apt to he inappropriate and thus may overprotect the receiving system at times and underprotect it at other times since the ability of ecosystems to receive wastes is not constant. A major determinant of the effectiveness and efficiency of ecological quality control is the lag is too great, the control measures may repeatedly overshoot or undershoot the desired goal. Present techniques for measuring the responses of aquatic organisms and communities require days of weeks, whereas information for ecosystem quality control and prevention of ecological crises should be generated in minutes or hours as is the came for other quality control systems. A biological monitoring system has been developed to generate information rapidly. The system measures changes in the movement and breathing of fish in order to provide an early warning of developing toxicity in the wastes of an industrial plant.

76
Use of Pish as Sensors in Industrial Waste Lines
to prevent Pish Kills

Cairns, J., Jr.: Sparks, R.E.: Waller, W.T.: Pep. Biol., Virginia Polytech. Inst., Blacksburg, VA

Eydrobiologia (FYDRB8) 1973, 41(2), 151-67; 1973

TIMC: TOXICITY; FISH; INDUSTRIAL WASTES; PISH RTLLS

paper suggests a method of detecting stress in fish used for monitoring. The breathing rate of fish exposed in test areas was detected by platinum electrodes in the water and connected to a computer which flashed a warning when the breathing rate sufficiently exceeded normal values for the time of day. The environment of the fish could then be changed so that they survived after giving the warning in this way. Fish movements might also be used. Various details are given to modify the criteria for fact or slow acting, reversible or irreversible poisons. In this way, the actual biological stress is measured.

77
Relation Between Continuous Biological Monitoring and Water Quality Standards for Chronic Exposure

Cairns, J., Jr.: Sparks, R.E.: Waller, W.T.: Cent. Environ. Stud., Wirginia Polytech. Inst., Blacksburg, VA

Bioassay Tech. Environ. Chem. 383-402; 1973

PISH; ZINC; WATER QUALITY STANDARDS; CHRONIC EXPOSURES; BIOLOGICAL MONETORING; WATER

Bluegill sunfish detected potentially lethal zinc (7440-66-6) concas. (A sg/l.), and also sublethal concas. (2-3 sg/l.), in their environment rapidly enough to survive if the Zn was removed at the time of detection. Honitoring systems for fish sovement patterns, using light beam interruption, and for fish breathing, using polygraphy recordings, were used to detect the stress responses of the fish to Zn exposure. A reproduction study showed, however, that 0.235 sg/l. (1/10 the lowest concn. used to wonitor breathing) was not safe for chronic exposure. Both systems may be plausible for detecting scutely toxic conditions resulting from industrial or municipal spills. both systems should be used in conjunction to prevent monitor failure due to the effects of excessive turnidity on movement monitors, and of excessive electrolyte concn. on breathing monitors.

78 Incorporation of Radiostrontium by Marine Organisms

cancio, P.; Llauro, J.A.; Ciallella, W.R.; Beninson, P.J.

Part of Padioactive Contamination of the Marine Prizonment, Proceedings of Symposium held by the International Atomic Energy Agency, Scattle, WA, July 10-10, 1972 (347-357), 786 p.; 1973

STRONTIUH; CALCIUM; PISH; TRACERS; CRUSTACEA; COASTAL WATERS; MOLLUSCS; DISCRIMINATION VACTORS

TRIOROMY: HICROPOGON OPERCULARIS

Determination of the discrimination factors for strontium and calcium and of the corresponding strontium concentration factors are discussed. Results of laboratory experiments using double tracer techniques and of determinations based on systematic measurements of stable strontium and calcium are oresented The organisms studied are common along the Atlantic coastline of Argentina and consist of various species of fish, crustaceans, molluscs and marine algae. Prom the laboratory experiments it is concluded that, with the double tracer technique, it is possible to determine the discriminate against strontium; the discrimination factor values fluctuation between 0.10 and 0.92 depending on the species in question. In the cases of fish (MICROPOGOW OPERCULARIS) and crustaceae (including exoskeleton) it was found that the Sr/Ca ratios were the same throughout the animal. In the case of the molluscs, different values were obtained for the shells and the soft parts. In general, discrimination factors obtained in the field on the basis of stable strontium and calcium determinations agree reasonably well with the values obtained in the laboractry for the fish and mollusc species in question, but are lower for the crustacean and algal species. Obtaining the concentration factors from discrimination parameters has the advantage of representing limiting situations where the equilibrium state is ensured. In this way, the experimental results can be extrapolated to natural conditions with less uncertainty. The resulting strontium concentration factors 'luctuate between 2 and 10 for fish, 13 and 70 for crustaceans and molluscs, and 0.2 and 70 for algae.

79
Hercury Pollution of Fish and Other Food products
Canuti, A.; Lab. Chim. Prov., Cremona, Italy
Ind. Aliment. (Pinerolo, Italy) (INALBB), 12(9),
109-111; 1973

REVIEW: MERCURY: POOD: FISH

80 Study of the Pole of Scirpus Americanus in Depolluting Waters Contaminated with Heavy Hetals

Carbonneau, M.; Tremblay, J-L.; Dept. Biol., univ. Laval, Quebec 10E, Que., Can.)

Nat. Can. (Que) 99(5), 1972 (Recd. 1973) 523-532; 1972

MERCUPY: LEAU: CADMIUM: MEAVY METALS: BIOACCUMULATION: PLANTS: WATER: DEPOLLUTING AGENTS

TAXONOMY: CYPERACRAE; SCIRPUS AMERICANUS;

PLEOCHARIS SHALLIT: BYDYNS CERNUA

The capacity for S. AMEPICANUS, a Cyperaceae, to concentrate the heavy metals, mercury, lead and cadmium, from its environment was studied. This plant has the capacity to act as a natural depolluting agent. Two other plants which may do the same: ELECCHARIS SHALLI Britt. and BIDENS CERNUA L. were also studied.

81 Zinc-65 Specific Activities from Oregon and Washington Continental Shelf Sediments and Benthic Invertebrate Fauna

Carey, A.G., Jr.: Cutshall, N.E.

Part of Radioactive Contamination of the Marine Environment, Proceedings of Symposium held by the International Atomic Energy Agency, Seattle, WA, July 10-14, 1972 (307-329) 786 p.: 1973

ZINC: ZINC 65: SPECIPIC ACTIVITY: SPDITENTS: BENTHOS; INVERTEBRATES: COASTAL WATERS: POWER REACTORS: PAUNA

Relationships between the benthic fauna and sediments on the continental shelf of Oregon and Washington have been investigated by determining specific activities of zinc-65. Zinc-65, induced by neutron activation in Columbia River water used to cool plutonium production reactors at Richland, Washington, was carried down the river and into the marine environment. Sediment from the Columbia River moves northward. Zinc-65 specific activities in sediment and benthic invertebrates decrease northward with distance from the river and westward with depth have higher zinc-65 specific activities than the sediments in, or on which they live. Other sources of zinc-65 via the food web are suspected as the cause for the difference in specific activity between the sediment and benthic fauna. Long-term decline in zinc-65 specific activities have been included in the study.

Trace Metals in Sediments of New York Bight
Carmody, D.J.; Pearce, J.B.; Yasso, W.Z.; Dep.
Chem., Westchester Community Coll., Valhalla, NY
Mar. Pollut. Bull. (MPMBAZ), 4(9), 132-135; 1973

SEDIMENTS: WATER: TRACE METALS: COASTAL WATERS

GEOGRAPHICAL DESCRIPTION: U.S., New York (Coast)

83 Hercury in the Greenland Ice Sheet: Further Data

Carr, F.A.; Wilkniss, P.E.; U.S. Waval Research Laboratory, Washington, DC 20375

Science 181, 843; 1973

MERCURY; ICE SHEET; DISTRIBUTION

New data support the contention that the Mercury content of Greenland glacial ices has not increased dramatically in recent years but rather is distributed nonhomogeneously through the ice sheet.

Mercury. Short-Term Storage of Matural Waters

Carr, R.A.; Wilkniss, P.E.; May, Res. Lab., Washington, DC

Environ. Sci. Technol. (PSTHRG) 1973, 7(1), 62-3; 1973

MPRCURY: WATER: STORAGE: LOSS: VAPORIZATION;

Analysis of natural waters for mercury requires an understanding of changes occurring during storage, such as iosses to container walls, association with particulate phases, and vaporization. Use of carrier-free Hg-197 and improved flameless atomic absorption techniques show neglicible losses to sample containers upon flameless atomic absorption techniques show application as the storage at pH 1. At the time of sampling. 80% of the total mercury was associated with particulates, while at the end of the storage period only 10-15% was associated with particulates. No vaporization losses were observed under these conditions.

85 Toxicity Bioassay of Heavy Metals in Water Using Tetrahymena pyriformis

Carter, J.W.; Cameron, I.L.; Med. Sch., Univ. Texas, San Antonio, TX

Water Res. (WATRAG) 7(7), 951-961; 1973

HEAVY METALS; PROTOZOA; TOXICITY; CADMIUN; SULPAPES; COBALT; ZINC

TAXOFONY: TETRAFFIERA PYRIFORMIS

On a weight basis, cadmium sulfate was most toxic to the ciliated protozoan TETRRHIMEN PREFORMS, followed in decreasing order by mercuric chloride, cohalt sulfate, zinc sulfate, and lead nitrate PB(WO3) ? was ?-fold more toxic in soft water (20 MG CACO3/L.) than in hard water (500 MG CACO3/L.); an antagonistic calcium carbonate effect. HGCL2 was 2-fold more toxic in hard than in soft water; a synergistic CACO3 effect. T. PYRIFORMIS may be a more sensitive indicator of heavy metal contamination in water than fish.

R6 Effect of Sodium Arsenite on Glucose-U-14C and Aspartate-U-14C Metabolism in PHASEOLUS VULGARIS

Cavalie, G.; Cent. Physiol. Veg., Univ. Paul-Sabatier, Toulouse, FR

C.F. Acad. Sci., Ser. D(CHDDAT), 277 (18) 1877-1880

SODIUM: SODIUM ARSENITE: GLUCOSE: CARRON 14; ASPARTATE: METABOLISM

TAXONOMY: PHASEOLUS VULGANIS

87 Cadmium Toxicity and Accumulation in Southern

Cearley, J.R.; Coleman, R.L.; Department of Environmental Health, University of Oklahoma Health Sciences Center, Oklahoma City, Okla. 73190

Bulletin of Environmental Contamination and Toxicology 9(2), 100-101; 1973

TOXICITY: WAIRD: CADHIUM: BIOACCUMULATION: PHYSIOLOGY: RATE INHIBITION: AQUATIC PLANTS

Toric reactions and cadsium accumulation in MAJAS QUADGLEPEWSTS Spreng. (a ponivoed) increased as the exposure levels increased, which suggested that (a) cadsium accumulation, ca.1000 fold, was direct function of the exposure level, and that (b) the detorifying mechanism was overtaxed at a more rapid rate at the higher levels resulting in an earlier impairment of physiological function. This physiological impairment resulted in the inhibition of additional cadmium accumulation at the higher levels; significant additional accumulation and only slight toxic effects at the lower levels suggested that timese damage was not sufficient to significantly inhibit further cadmium accumulation. Thus, it is evident that this common aquatic plant is capable of introducing potentially toxic quantities of cadmium into the food of higher organisms, e.g. sunfish and waterfoot.

88 Conservation Problems in the Metal-Finishing Industry

Chalmers, R.K.; Bostock Will and Rigby Ltd., Birmincham, England

Chem. I(vd. (London) (CRIWAG), (12), 559-557; 1973 REVICE, HETRL PINISHING; EFFLURNTS; WASTE WATER: CONSERVATION

89
Complexing Properties of Witrilo Tri Acetic-Acid in the Lake Environment

chau, Y.K.: Shiomi, M.T.

Water, Air, Soil Pollut., 7(2), 149-164; 1972

WITRILOTRIACETICACID: COPPER: WICKEL: CADMIUM: MERCURY: CHPLATES: LAKES

At concentrations above 1 ppm NTA can react with sparingly soluble compounds to release the metal and associated anions through complexation. It also interacts with sediment to release certain metals depending on the abundance of the metals in the sediment. In situ and laboratory experiments have been carried out to study such interactions and also to follow the fate of these released metals after NTA has degraded. Degradation of certain NTA-metal complexes in lake water medium has also been studied. It was found that certain NTA complexes (Cu, Ni, Cd, Hg) are very resistent to degradation.

on Pffect of Chelating Agents on Chromium Absorption in Pats

Chen, W.S.: Tsai, A.: Dyer, T.A.: Anim. Sci. Dep., Washington State Univ., Pullman, Washington

J. Wutr. (JONEAT), 103(8), 1182-1186: 1973

CHROMIUM; ABSORPTION; INTESTINES; CHELATION; PHYTATE; OFALATE; EDTA; CITRATE

The effect of chelating agents on chromium absorption by rats was measured in vitro and in vivo. Pour chelating agents: oxalate, phytate, citrate, and PDTA were used to determine their effect on chromium transport through the rat intestine in vitro. Oxalate significantly increased and phytate significantly decreased chromium transport through the rat intestine, while the other two chelating agents showed no significant effect. In an in vivo study oxalate and phytate had the same effects on trivalent chromium absorption in rats as that observed in vitro. The midsection of the rat intestine appears to be in the most diffusible segment for chromium, followed by the ileum and duodenum. Under in vitro conditions, filtr is also more highly absorbed in the midsection than in either of the other two segments. Fasted rats absorb chromium at a significantly faster rate than nonfasted ones.

91 Effect of Copper on the Heart Rate of PIOMPHALARIA GLARRATA (Mollusca: Pulmonata)

Cheng, T.C.; Sullivan, J.T.; Tast. Pathobiol., Lehigh Univ., Rothlehem, PA

Comp. Gen. Pharmacol. 4 (13), 34-8; 1973

SWATLS: COPPER: HEART RATE: HOLLUSCICIDES:

TAXONOMY: BYOMPHALARIA GLABRATA; HOLLUSCA PULMONATA

Copper sulfate,, which has long been used as a solluscicide, decreased the heart rate of B. GLABRATA when present in concentrations that produce the so-called distress syndrome. The effect was maximal at all concentrations above 1 ppm copper, but was proportional to concentration below this. The decreased heart rate could be due either to the toxic effect of Cu or the retraction of the snail into its shell under these conditions, but was probably a combination of both. Nevertheless, the sensitivity of the B. GLABRATA heart rate to Cu may be of some value in the bioassay of potential molluscicides.

92
Cadmium, Caromium, Lead, and Mercury- Plenary
Account for Water Pollution. I. Occurence,
Toxicity, and Detection

Cheremisinoff, P.: Habib, Y.

Water Sewage Works- 119(7), 73-74 78- 80-86; 1972

CADMIUM: CHROMIUM: LEAD: MERCURY: WATER; PUBLIC WATER SUPPLIES; WASTES; EPPLUENTS; FISH; DRINKING WATER; STANDARDS; SLIMICIDES; SYMERGISM; CONCENTRATION; LETHAL LIMIT; TOTIGRAMS; TOXICITY; GILLS; INTAKE; POISONING; ACUTS; HETHYLMERCURT; METHYLATION; EPAIR; SYMPTOMS; PREGMANCY; PETUS; BIOLOGICAL HALF-LIPE; ATOMIC ABSROPRITOM SPETROPHOTOMETRY; COLORIMETRY; POLABOGRAPHY; MEUTHOW ACTIVATION AWALYSIS; PHECONCENTRATION; ELECTROPLATIN WASTES; COOLING TOWER BLOW DOWN WATER; PIGMENTS; PAINTS; CHLOR-ALKALI PLANTS; CORROSION INHIBITOPS; TETRAETHYL LEAD; BATTERIES

Considerable interest in currently heing shown in heavy metals concentration in the nation's surface waters, and particularly as they occur in water sources and waste effluents. (See Water & Sewage Works, pp 174-775, June 1971). In a U.S. Geological Survey Report mandatory maximum cocentrations for public water supplies were determined from seven metals (mercury, arsenic cadmium, lead, chromium cobalt, zinc). According to the report, small amounts of these metals are widely distributed in streams and lakes throughout the United States. For four of these metals (cadmium, chromium lead and mercury), four of the seven metals in the report are particularly significant because of widespread industrial use, possible frequent occurrence in waste stream effluents and their toxicity. A plenary account of these four metals, cadmium, chromium, lead and mercury, in respect to water pollution follows. The discussion includes information on I-Wature, sources and use, III-Toxicity and toxic effects, III-Analytic methods for detection and IV-Removal techniques.

93 Mercury in Some Surface Waters of the World Ocean

Chester, R.; Gardner, D.; Riley, J.P.; Stoner, J.; Dap. Oceanogr., Univ. Liverpool, Liverpool, England

Mar. Pollut. Bull. (MPMBAZ), 4(2), 28-29; 1973 MERCURY: SALTWATPR: SURFACE WATERS

9a Hercury Pollution of Basse-Seine (From Recq to Tancarville)

Chesterikoff, A.; Carru, A.M.; Garban, B.; Ollivon, D.; Chesterikoff, C.; Lab. Chim. Anal., Inst. Hydrol. Climatol., Paris, PR

Trib. Cebedeau (Cent. Belge Etyde Doc. Eaux Air) (TCEDAA), 26(355-356), 269-276; 1973

MERCURY: WATER: RIVERS

GROGRAPHICAL DESCRIPTION: France, Basse-Seine Rivers

os Kinetic Studies of the Pormation, Acid-Catalyzed Solvolysis, and Cupric Ion Displacement of a Zinc Porphyrin in Aqueous Solutions

Cheung, S.K.; Dixon, F.L.; Pleischer, E.B.; Jetler, D.Y.; Krishnamurthy, M.; Chem. Dep., Univ. California, Irvine, CA

Bioinorg. Chem. (BICHBX), 2(4), 281-94; 1973

ZINC; CHELATION; SOLUBLE; PORPHYRIN; COPPER; KINETICS; IOMS

The rates of Zn (2 plus) incorporation Zn (2 plus) demetallation, and Cu (2 plus) displacement of Zn (2 plus) in a H20-sol. porphyrin were investigated. A tetra-sulfonated tetraphenylporphine TPPS was employed in the studies. The rate of Zn (2 plus) incorporation was equal to (k1) (Zn(2 plus) (TPPS) where k1 = 4.76 X 102-1 HZ-1 sec Z-1 Lt 30 degrees; the rate of Zn-TPPS deextallation is equal to kd (Zn-TPPS)-(H plus) 2 where kd = 10.9 Z-2 sec Z-1 at 30 degrees C; the rate of Cu (2 plus) replacement in Zn-TPPS is equal to kcu (Zn-TPPS) (Cu (2 plus)) where kcu = 5.1 X 10Z-3 MZ-1 sec Z-1 at 30 degrees. These rate laws are discussed in terms of the posrible mechanisms for the reactions studied.

96 Mercury Content of Oregon Groundfish

Childs, E.A.: Gaffke, J.W.; Dep. Food Sci. Technol., Oregon State Univ., Astoria, OR

MOAA Fish. Full. (FSYBAY), 71(3), 713-717; 1973

PISH: MERCURY: GROUNDPISH

GROGRAPHICAL DESCRIPTION: U.S., Oregon (Coast)

Exposure of Pogfish Shark Feti to Hercury

Childs, E.A.; Gaffke, J.H.; Crawford, D.L.; Seafcods Laboratory, Repartment of Food Science and Technology, Oregon State University, Astoria, Ore. 97103

Bull. Env. Contam. Tox. 9(5), 276-280; 1973

DOGFISH SHAPK: FETUS: NATERNAL LOAD: MERCURY: BIOACCUMULATION; FISH

TAXOROHY: SAUALUS SUCKLEYI

The relationship of maternal mercury load to fetal mercury was examined in the Pacific spiny doofish shark (SQUALUS SUCKLEYI) which accumulates mercury IN SITU to concentrations of 0.3-1.2 ppm. The level of mercury in the fetus was significantly lower than in the mother. Maternal muscle samples had a mean mercury content of 0.66 ppm with a range of 0.332-0.999 ppm. Mercury concentrations in the uterine wall were consistently 10% the concentrations in muscle. There was no apparent relationship between the concentration of mercury in the maternal tissue. Mo fetal sample taken from undamaged uteri contained greater than 0.058 ppm mercury, and no follicle greater than 0.119 ppm mercury. The mean of all fellicle samples was 0.008 ppm mercury, and of all fetal samples,

0.024 ppm mercury. These data clearly demonstrate that mercury is not concentrated in S. SUCKRYI feti IN SITU. The great difference in mercury content of maternal and fetal samples suggests that mercury may be excluded from the fetus.

98 Lead Pollution: Records in California Coastal Sediments

Chow, T.H.; Bruland, K.W.; Bertine, K.; Soutar, A.; Koldø, H.; Goldberg, B.D.

Science, 181 (4099), 551-552; 1973, August 10

LEAD; WATER; SEDIMENTS; AUTOMOBILE; EMISSIONS; MASS SPECTROMETRY; ATOMIC ABSORPTION SPECTROPHOTOMETRY; ISOTOPIC ABUNDANCE; HISTORICAL TRENDS; SEWAGK; INDUSTRIAL WASTES; DUST FALL; ADSORPTION; GEOGRAPHIC VARIATIONS

The present anthropogenic lead fluxes into sediments from the Santa Monica, San Pedro, and Santa Barbara basins of Southern California are, respectively, 0.9, 1.7, and 2.1 micrograms of lead per square centimeter of sea bottom per year; the natural (prepollution) rates for these three basins were, respectively, 0.24, 0.26, and 1.0 microgram of lead per square centimeter per year. Studies of isotopic composition indicate that lead pollutants in coastal sediments are derived sainly from the combustion of lead additives in gasoline.

99 Chow, T.J.; Scripps Institution of Oceanography, La Jolla, Calif.

Chemistry in Britain 9(6), 258-263; 1973

LEAD: DISTRIBUTION: ATHOSPHERE: PLORA; PAUNA: PLANTS; ANIMALS; OCPANS; WATER

A review of the distribution of lead in the earth, sea, air, flora, and fauna around the world with special emphasis on the U.S. and U.K.

100 Water and Water Pollution Handbook. Volume 4 Claccio, L.L. (Ed.)

New York: Marcel Dekker, Inc.: 681 p.: 1973

AUTOHATTON; CHEMICAL AWALTSIS; GAS CHOOMATOGRAPHY; IMPRARED SPECTRA; HAWDBOOK; LUMINESCENCE; QUANTITATIVE CHEMICAL AWALTSIS; WATER

101 Environmental Dynamics of Hercury (Discussion)

Clarkson, T.W.; Coble, A.J.; D'Itri, P.H.; Gage, J.C.; Goldwater, L.; Hartung, R.; Hinman, A.; Jernelov, A.; Jervis, R.E.

Part of Hartung, R. (ed.), Environmental Mercury Contamination, International Conference, 1970, Ann Arbor Science Publishing, Inc. Ann Arbor, Michigan (p. 198-201): 1972

REVIEW: MERCURY: METHYLATION; WATER: AQUATIC ENVIRONMENTS

102 Mercary Concentrations in Fish, Plankton and Water from 3 Western Atlantic Esutaries

Cocords, G.; Cahn, P.H.; Univ. Dept. Marine Sci., Greenvale, NY

J. Pish. Biol., 5(6), 641-647; 1973

MERCURY; CLUPEID; ESTUARIES; PLANKTON; FOOD CHAINS; ZOOPLANKTON; PISH

TAXONOMY: BPRVOORTIA TYRANKUS

Total mercury concentrations were determined in the clupeid. RREVOORTIA TYRANNUS, from three estuaries of the Vestern Atlantic, and in the plankton on which they feed, as well as in the water sampled from the same localities. Although there was some indication that the food chain is a likely source of mercury contamination in these fish, as seen by the very much higher levels found in viscera compared with the rest of the fish, there was no evidence of strong food chain intensification. Fish mercury levels (0.3 to 0.5 oart/106 dry wt) were about twice that for plankton (0.1-0.2 part/106 dry wt), with higher levels in phyto- than in zooplankton.

103
Trace Plements in Bottom Sediments from Upper Peoria Lake, Middle Illinois River

collinson, C.; Shimp, Weil F.

Environmental Geology Notes, Sept., 1972, No. 56

TPACE ELEMPATS; SPDIMENTS; LAKES; I-RAY PLUGRESCERCE; NEUTRON ACTIVATION ANALYSIS; OPTICAL ENTSION: ATOMIC ABSORPTION; RADIOCHEMISTRY; CREMISTRY; SILICOM; ALUMINUM; IRON; MAGNESIUM; CALCTUM; POTASSIUM; CARBON; TITANIUM; MANGAMESE; SODIUM; PROSPRORUS; SULPUR; LEAD; ZINC; CADMIUM; COPPERS; NICKEL; BOKDM; CHRONIUM; BERYLLIUM; VANADTUM; COBALT; MERCURY; APSENIC; BROMINE; LARTHANDH; SCANDIUM

A preliminary study of the chemical composition of bottom sediments from Upper Peoria Lake was made on samples taken from eight sites in the lake which is an impoundment of the Illinods River near Peoria. The samples were subjected to analysis by K-ray fluorescence, neutron activation, optical emission, atomic absorption, radiochemical preparation techniques, and wet chemical methods. Hador constituents determined were silicon, aluminum, iron, magnesiam, calcium, potassium, inorganic carbon, and organic carbon. Titanium, manganese, sodium, phosphorus, and sulfur were found in smaller amounts. Trace elements measured were lead, zinc, cadmium, copper, nickel, boron, chromium, betyllium, vanadium, cobalt, mercury, armenic, bromine, lanthanum, and scandium. Sieve and pipette analyses revealed that the sediments are sandy and clayey silts. X-ray diffraction indicated an illite-kaolinite-chiorite mixed-lattice clay fraction. The results showed that Upper peoria Lake bottom sediments contain more lead, zinc, and chromium than previously studied studied surficial sediments from southern Lake Michigan, but that they have lower levels of arsenic and bromine. Concentrations are directly related to organic carbon content and, to some extent, to the less than 2-micron clay fractions increase southward in Upper Lake peoria and are larger in the mavigation channel than in the shallows. Turbility appears to have an inverse relation to trace element concentration.

nud Molybdenum Toxicity: Abnormal Cell Division of Teratogenic Appearance in NUGLENA GRACILIS

Colmano, G.: Department of Veternary Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

Bull. Contam., Bull. Environ. Contam. Tox. 9(6), 361-364; 1973

CELL DIVISION: MITOSIS: TERATOGENESIS: AMONALIES: MOLY PREMUM; KAPYOKINESIS; NEOPLASIA

TAMONOMY: EUGLENA GRACILIS

Englena cells were grown axenically in continuous light at 24-26 degrees C. Normal molybdenum concentration of the growth medium was found to be 108 ppm. An increase in No concentration of 96, 860, and 960 ppm was shown to produce abnormal cell division and aborrant cell types. Nolybdenum may be considered toxic and may be an inhibitor of cellc. Ar fission with resultant nuclear and chromosomal polyploidy and abnormal mitoses. It is hypothomized that a similar toxicity of molybdenum may activate the uncontrolled growth patterns observed in some neeplastic growths.

105
Trace Element Distribution in Water, Sediment,
Phytoplankton, Zooplankton and Benthes of Lake
michigan: A Baseline Study With Calculations of
Concentration Pactors and Buildup of
Radioisotopes in the Pood Web

Copeland, R.A.: Ayers, J.C.; Environmental Research Group, Inc., University of Michigan, Ann Arbor, MT, 2710p.

ERG Special Peport No. 1: 1972, May

TRACE ELEMENTS: WATER: PHYTOPLANKTON: ZOOPLANKTON: RENTROS: LAKES: CONCENTRATION PACTOR: BIOACCUMULATION: POOD WEBS: CHPONIUM: ZINC: SECTIFENTS; RADIOISOTOPES; INVERTEBRATES

GEOGRAPHICAL DESCRIPTION: U.S. (N), Great Lakes, Lake Michigan

Environmental Research Group, Inc. has conducted an environmental study on samples of phytoplankton, zooplankton, benthos, water and sediment collected from Lake Michigan by the Great Lakes Research Division of the University of Michigan. These samples, collected in 1969-70 prior to the operation of all nuclear plants except Big Rock Point, were analyzed for major and trace elements by ERG. The results of these analyses indicate Lake Michigan is typical of other world environments in its chemical make-up although certain elements (selenium in zooplankton and chromium and zinc in water) show significant variation in distribution within the area surveyed. Many of the biological samples were found to have become contaminated with sediment during the collecting process. FRG created a method, using scandium concentrations, by which this contamination could be corrected for after the analyses were made. Biological investigation of the data indicate that conditions in the southern basin of Lake Michigan are rapidly changing. Major changes in the species make-up of the phytoplankton are being discovered and further changes are expected in the near future. Calculations of concentration factors were made for the biota with respect to both water and sediment. It was found that concentration factors calculated with respect to both water and sediment. It was found that concentration factors calculated with respect to mater were most representative. One of the most important findings was that there is no stepwise increase in concentration factors as one analyses higher and higher members of the food web. This is not surprising since all of the organisms are equilibrating with the same system (Lake Michigan water). Using design data supplied by the utilities and proposed government regulations, FRG calculated the concentrations of radioactivity that could be expected in the invertebrates of Lake Michigan under the proposed title 10 C.F.R. Part 50 Appendix I operating conditions. These calculations indicate that for the invert

106
Trace Element Distributions in Lake Michigan
Pish: A Paseline Study with Calculations of
Concentration Pactors and Eguilibrium
Radioisotope Distributions

Copeland, R.A.; Beethe, R.H.; Prater, W.W.

Ann Arbor, MI; Environmental Research Group, Inc., Ann Arbor, Michigan PP. 143; (1973); 1973 ACTIVATION ANALYSIS: BARIUM 140; CERIUM 144; CESIUM 134; CESIUM 136; CESIUM 137; CHRONIUM 51; COBALT 58; ELEMENTS; FISH; IODINE 131; IRON 59; ISOMBRIC NUCLEI; HANGANESE 54; MEUTRONS; FADIOACTIVE WASTE DISPOSAL; RADIOECOLOGICAL CONCENTRATION; RADIOMUCLIDES; KIMETICS; SILVER 110; STRONTUM 89; STRONTUM 90; TELLURYUM 129; YTTRYUM 91; ZINC 65; ZIRCONTUM 95

107 Cadmium in the Environment, An Annutated Bibliography

Copenhaver, E.D.; Ulrikson, G.U.; Newman, L.T.; Fulkerson, W.; Oak Ridge National Laboratory, Oak Ridge. Tenn.

ORML-EIS-73-17: 1973, April

CADMIUM: BIBLIOGRAPHY

108
Arsenic in the Environment, an Annotated
Bibliography

Copenhaver, E.D.; Ulrikson, G.U.; Newman, L.T.; Van Hook, R.T., Jr.; Oak Ridge National Laboratory, Oak Ridge, Tenn. 37830

ORWL-EIS-73-16; 1973, July

ARSENIC: BIBLIOGRAPHY

109 Production of Trimethylarsine Gas from Various Arsenic Compounds by Three Sewage Pungi

Cox, D.P.; Alexander, M.; Laboratory of Soil Microbiology, Department of Agronomy, Cornell University, Ithaca, NY 14850

Bull. Environ. Contam. Tox. 9(2) 84-88: 1973

TRINETHYLARSINE: ARSENIC; SEVAGE; PUNGI; INDUSTRIAL SEVAGE; AGRICULTURAL RUMOFP; HICROGRANISMS; METABOLIC CONVERSION; SODIUM ARSENATE; SODIUM ARSENITE; HONOMETHYLARSONIC ACID; PH; SOILS; THA; HHA;

TAXONOMY: PENICILLIUM SP; CANDIDA HUNICULA; GLIOCLADIUM ROSEUM; SCOPULARIOPSIS BREVICAULIS; TRICHOPHYTOK SP; METHANOBACTERIUM

A potential source of toxic gases is posed by the release of arsenic compounds in industrial and agricultural wastes into the environment, assuming that microorganisms capable of this metabolic conversion(s) are widespread.
Microorganisms commonly present in sewage and soil were tested as to their capacity in the formation of trimethylarsine when cultured in the presence of sodium arsenate, sodium arsenite, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA). CANDIDA HUMICOLA (Dazewka) is able to produce TMA from all sources tested when growing at pH 5. GLIOCLADIUM ROSEUM Bain produced TMA in the presence of MMA and DMA, but not in the presence of sodium arsenate or sodium arsenite; a PRNICILLIUM produced TMA under similar conditions.

110 Lead-210-Padium-226. Radioactive Disequilibrium in the Deep Sea

Craig, H.; Krishnaswami, S.; Somayajulu, R.L.; Scripps Inst. Oceanogr., Univ. California, San Diego, Calif.

Earth Planet. Sci. Lett. (EPSLA2), 17(2), 295-305: 1973

LEAD 210; SALTWATER; RADIUM 226; RADIOACTIVITY

Ph 210 and Ra 226 profiles have been measured in the North Atlantic and North Pacific Deep Water. The Ph 210 activity is 25% to 80% of that of Ra 226, averages about 50% in each profile, and is lowest in the bottom water. This deficiency of Pb 210 relative to Ra 226 shows that Pb 210 is rapidly and continually scavenged from deep water, probably by adsorption on particulate material sinking from the surface. A method is developed for simultaneous application of the vertical diffusion-advection codel to Ra 226 and Ph 210 deep-water profiles, and the in-situ source terms for both isotopes are obtained as a function of the parametric upwelling velocity. For a positive source term for Ra 226 in deep water, the parametric velocity is limited to a small range (3-12 m/y) and the Geep-Pacific residence time of lead is 54 yr, a value two orders of magnitude smaller than residence times estimated from stable lead concentrations. The model calculations show that an in-situ scavenging process, acting throughout the water column, is required to remove the Ph. Box model calculations yield a similar short residence time for lead in North Atlantic Deep Water, indicating that radioactive disequilibrium for Pb 210, due to fast scavenging, is a general phenomenon through the deep sea.

Hercury Pathways in a Piver and Estuary

Cranston, R.E.; Buckley, D.E.

Environmental Science and Technology, 6(3), 274-280; 1972, March

MERCUPY: WATEP: SUSPENDED PARTICULATES;
SPOIMENTS; RIVERS; ESTUARIES; DILUTION;
ADSORPTION; INDUSTRY; EPPLUENTS; TRANSPORT;
FORMULATION; CHEMISTRY; HOBILITY; BIOLOGICAL
UPTAKE; AMALGAMATION; SILVER; GOLD; PLUTONIUM;
IPON; MANGANESE; COPPER; CHLORINE; BLEACHES;
PLOCCULATION; DEPOSITION; HETHYLMERCORY;
FFFTILIZER PLANTS; PAPER MILLS; CHLOR-ALKALI
PLANTS; SPTTLING POWDS; UPTAKE; SMELTERS;
TRANSPORT

A method for measuring total mercury in water, suspended particulate matter, and bottom sediments has been evaluated. Some data have been applied to a study of the geochemical pathways of mercury in a rural river and estuary system. Concentrations of mercury in the LaHave River (Nova Scotia) are related to the proximity of a small rural town. The dissipation of

mercury in solution appears to be through dilution, as well as by advorption on suspended particulate matter which raises the level in particulate matter to the range of 2.04-34.8 ppm. Bottom sediments in the LaHave River are affected by sedimentation of particulate matter containing high levels of mercury, but the mercury concentration in the bottom sediments ranges from 0.09 to 1.06 ppm. Mercury released to the natural environment from industrial waste effluents appears to be discharged mostly in the dissolved form but may be quite rapidly adsorbed as shown by analyses of suspended particulate matter and bottom sediments.

112
Particulate Lead Contamination Recorded in Sedimentary Cores from Lake Washington, Seattle

Crecelius, E.A.; Piper, David 3.

Prironmental Science and Technology, 7(11), 1053-1055; 1973

SEDIMENT CORES: SEDIMENTS: LEAD; HUMANS; POPULATIONS; PARTICULATES; LEADED GASOLINE; SMELTERS; LAKES

GEOGRAPHICAL DESCRIPTION: U.S. (W), Washington, Seattle, Lake Washington

Examination of two sedimentary cores from Lake Washington reveals a sharp increase in the lead content (from 3--400 ppm) during the past 80 years. The increase in lead parallels the increase in population of the surrounding land. The two major sources of lead are believed to be particulate lead trou the Tacoma smalter (from 1890 to 1913) and automobile gasoline additives (from 1920's to the present).

113 Gamma-Emitting Radionuclides in Chesapeake Bay Sediments Wear Calvert Cliffs

Cressy, P.J., Jr.; Natural Resources Inst., Goddard Space Flight Center, Greenbelt, MD

Part of Ecological Effects of Nuclear Steam Electric Station Operation on Estarine Systems. Volume T. Mihursky, J.A. Matural Resources Inst., ORO--4328-1 (9-15); 1973, August

BISHUTH 214; CESIUM 134; CESIUM 137; CHESAPPARE BAY; COBALT 60; PH; RADIATION HONITORING; RADIONUCLIDE MIGRATION; RUTHENIUM 106; SALINITY; SEDTMENTS; TEMPERATURE DEPENDENCE; THALLIUM 208

GEOGRAPHICAL DESCRIPTION: U.S. (E), Maryland, Chesapeake Bay

114 Concentrations of Manganese, Iron, and Zinc in Juveniles of Pive Estuarine-Dependent Pishes

Cross, P.; Brooks, J.

Conf-710501--P2, pp 769-775; 1971

ESTUARIES; FISH; IPON; MANGAMESE; QUANTITY RATIO; ZINC

115
Relation Between Total Body Weight and
Concentrations of Manganese, Iron, Copper, Zinc,
and Marcury in White Muscle of Bluefish
(POMATOMUS SALTRATRIX) and a Bathyl-Demersal Fish
ANTIMORA ROSTRATA

Cross. F.A.

Pisheries Research Board of Canada J., 30(9), 1287

BODY WEIGHT: MANGAMESE: TROM: COPPER: ZINC: MERCURY: NUSCLES: BLUFFISH: FISH: SALTWATER; BATHYL-DEMERSAL FISH

TAXONDHY: AWITHORA ROSTRATA; PONATONUS SALTRATRIX

Concentrations of mercury increased significantly with size in white muscle of bluefish and a bathyl-demersal fish, but concentrations of manganese, iron, copper, and zinc either remained constart or decreased. Fish residing in two different ecosystems in the Atlantic Ocean may therefore he in a steady state with their environment with respect to the latter elements, but not to mercury. Variations in accumulation patterns of trace metals as a function of size in these species are discussed.

116 Organomercurials in the Environment

Cross, R.J.; pep. Chem., Univ. Glascov, Glasgov, Scot.

Chem. Ind. (London) (CHINAG), (15), 719-21; 1973

RPVIEW: MERCHRY: WATER: ORGANOMERCURIALS

Hercury Accumulation in An Aquatic Ecosystem

Cumont, G.; Montiel, A.; Lab. Cent. Rech. Vet., Vaison-Alfort, Pr.

Trip. Cebedeau (Cent. Belge Etude Doc. Eaux Air) 26 (352), 124-6; 1973

MERCURY; ACCUMULATION; ADDITIC ECOSYSTEMS; MERCURY; BIOACCUMULATION

THE REFECTS OF MERCURIC ACCEPANCE ON Adult Juvenile and Larval Oysters CPASSOSTREA VINGINICA

Cunninghem, P.A.

Am. Zool. 12(3), XXIX; 1972

TISSUES: SHELLFISH: DEPOSITION: RESPIRATION: OXIGEN; VELIGER; LARVAE; MORTALITY; OYSTERS; MERCURIC ACETATE

TAXONOMY: CRASSOSTREA VIRGINICA

119 Trace Element Analyses of Whitefish

Cushing, C.: Watson, D.

BNWL--1750 (Pt.2) 6.14-6.15; 1973, March .

ACTIVATION ANALYSIS; AQUATIC ECOSYSTEMS; CHEMISTRY; RIVERS; PISHES; FOOD CHAIMS; INSECTS; PLANKTON; TISSUES; TRACE ANOUNTS

120 Possible Screening of Surface Charges on Crayfish Axons by Polyvalent Hetal Ions

D'Arrigo, J.S.; Med. Cent., Univ. California, Los Angeles, Calif.

J. Physiol. (London) (JPHYA7), 231(1), 117-28;

CRAYPISH; AXON POTENTIAL; CATTONS; MERVES; METALS; IOMS

The effects of different polyvalent metal ions in the external solution on the threshold membrane potentia) for spike initiation in crayfish axons was stadied by means of intracellular aircrelectrodes. Retal ions tested included 6 divalent (Ca(2+), Mg(2+), Sr(2+), Ba(2+), Co(2+), M(2+)) and 3 trivalent cations (La(3+), Y(3+), Pu(3+)). Identical extracellular concentrations of different cations with the same valence had essentially the same effect on threshold membrane potential. However, a very low concentration of trivalent cations (approximately 225 mM) was equivalent to a much higher divalent cation concentration (13.5 mM) as measured by their effects on threshold potential. Upon a 10-fold increase in concentration, the threshold potential for spike initiation was shifted in a positive direction by 30.6 mV with divalent cations and by 20.8 mV with trivalent cations. A hypothesis involving screening of negative charges at the axonal membrane surface, based on Gouy-Chapman theory, predicts these various experimental results rather closely. Evidently a high megative charged, sufficientto render a screening mechanism possible, exists at the surface of crayfish axons in the region of the Magates. This is discussed in connection with the possible molecular identity of the Magates.

Mercury in the Aquatic Ecosystems

D'Itri, J.M.; Inst. Water Res., Michigan State Univ., East Lansing, HI

Bioassay Tech. Phviron. Chem. (26 VZAG), 3-70; 1973

REVIEW: MERCURY: FRESHWATER ECOSYSTEM: SEDIMENTS; RADIOACTIVITY: TRACERS: MARINE ECOSYSTEM: IONS

A review of the occurrence, distribution, accumulation in sediment, biological methylation, microbial conversion, and biological concentrations of mercury in the aquatic ecceystem, including use of preserved museum fish as Hg pollution indicators, Hg distribution studies with radioactive tracers, the toxicity of Hg in the freshwater ecceystem, and the effects of Hg and morcuric ion in the marine ecceystem, with 235 refs.

122
Variation in the Toxicity of Argenic Compounds to Microsequalisms and the Suppression of the Inhibitory Effects by Phosphate

Da Costa, E.W.B.

Appl. Microbiol., 23(1), 46-53; 1972

YUNGICIDES; OXIDATIVP PHOSPHORTLATION; INTERPRENCE; GROWTH; POTASSIUM ARSENATE; INHIBITOR

TAXONOMY: PORTA MONTICOLA: CLADOSPORIUM HERBARUM

The toxicity of potassium arsenate, as measured by retardation or inhibition of growth on solid nutriant media, showed wide variation among different funci but was consistently reduced by the addition of large amounts of potassium phosphate, with both arsenic-sensitive and arsenic-tolerant fungi. PORIA MONIFOCIA was completely inhibited by 0.0025 m arsenate but was progressively less inhibited as the phosphate content of the medium increased and grew slowly at 0.00 m arsenate when 0.16 m kH(2)PO(4) was added. CLANOSPORIUM HERBARUM showed 364 reduction in growth at 0.08 m arsenate in a low-phosphate medium, but when 0.01 m kH(2)PO(4) was added, arsenate concentrations up to 0.64 m (at which the medium contains 4.8% As) caused no reduction in growth rate. Addition of phosphate also reduced the toxicity of potassium arsenite hut not that of dimethyl sodium arsonate (sodium cacodylate). The counteracting effect of phosphate on arsenate toxicity was found to occur with every one of a wide variety of microorganisms tested. The author interprets the results as supporting the thesis that the fungitoxicity of arsenate is due to its competitive interference with phosphorum in oxidative phosphorylation and not to a reaction with the -SH groups of essential proteins. The latter sechanism is, however, probably operative with disethyl sodium arsonate. The oractical implications of the counter-inhibition phenomenon in laboratory investigations and standard tests of arsenical fungicides, in biochemical research, and in the cownercial use of arsenical biocides are set out.

123 Rffects of Dieldrin on Brown Trout in Pield and Laboratory Studies

Dacre, J.C.; Scott, P.; Med. Sch., Univ. Otago, Dunedin, N.Z.

Wew Zealand Journal of Marine and Freshwater Res. (MZJMES), 7(3), 235-246: 1973

DIELDRIN; TOXTCITY; BROWN TROUT; WATER; FISH

TAKONOHY: SALHO TRUTTA

GEOGRAPHICAL DESCRIPTION: New Zealand, Otago, Silver Stream

The 2ª hr LC50 for dieldrin (I) in brown trout (SALHO TRUTTA) and bottom fauna of Silver Stream, Otaco, New Tealand, after an accidental discharge of 55 1. of a I spray, was 0.016 ppm. The minimum lethal levels of I found in the skeletal muscles, liver, and brain were 1.0-2.0 ppm.

124 Waste Water from Electropicting Plants and Precipitation of Heavy Netals

Daester, H.H.; Jola, M.; Daester-Fairtec A.G., Basel, Switzerland

Korros, Ytskydd (KOYTAD), 8(9), 20-29; 1973

REVIEW; HEAVY METALS; WASTE WATER; ELECTROPLATING; INDUSTRY

125
The Weuro Toxicity of Alkyl Hercury Compounds
Dales, L.G.

Am. J. Med. 53(2), 1972 219-232; 1972

HUMANS: RESPIRATORY TRACT: GASTROINTESTIMAL TRACT: CENTRAL MERVOUS SYSTEM; INHALATION; FUNGICIDES; SEEDS: PISH: FOOD CHAINS; BLOOD; PETUS

The alkyl compounds of mercury present a significant human health hazard. These compounds, which are readily absorbed through the respiratory or gastrointestinal routes and only slowly eliminated from the body, can cause serious damage to the central nervous system, and may lead to death or permanent major disability. Harmful exposure by inhalation has occurred in industrial and agricultural settings, where alkyl mercury compounds are used primarily as fungicides. Serious illness has also resulted from ingestion of both seed troated with alkyl mercury fungicides and of fish from contaminated waters. The latter form of poisoning may occur after the discharge of several forms of mercury into natural hodies of vater, since aquatic microorganisms can convert inorganic mercury to alkyl mercury which then accumulates to dangerous concentrations in the higher rungs of biologic food chains. Although variation in exposure rates makes it difficult to set precise limits for safe environmental concentrations of these compounds, air levels of 0.01 mg/m(2) and food concentrations of 0.5 to 1.0 mg/m(2) and food concentrations of 0.5 to 1.0 mg/m(2) and food concentration of 10 mg/100 ml of blood has been proposed as the maximum permissible for mercury (as alkyl mercury) in exposed persons. The possibility that exposure to very small doses, heretofore regarded as harmless, may have subtle and yet still significant chronic health effects in the adult and not so subtle effects in the human fetus requires exploration.

126
The Big Transformation of Organo Mercury Compounds
Daniel. J.W.

Biochem. J., 130(2), 64-65; 1972

BIOTRAWSFORMATION; ORGANOMERCURY; HICROORGANISMS; RATS; LIVER; FUNGICIDES; SOILS; MFRCUFY

127
The Rinetics of and a Preliminary Hodel for the Uptake of Radio-ying by PHAEDACTYLUM TRICORNUTUM in Culture

Davies, A.G.

Part of Padioactive Contamination of the Marine Environment, Proceedings of Symposium held by the International Atomic Energy Agency, Seattle, Wa, July 10-18, 1972 (403-419) 786 p.: 1973

KINETICS; MODELS; UPTAKP; RADIONUCLIDES; ZINC; TRACERS; CHELATION; GROWTH; METALS

TAXOROWY: PHARDACTYLUM TRICORNUTUR

Using zinc 65-labelling, measurements of the rate of uptake of zinc ions by initially zinc-free cells have been made. Treatment of a suspension of Cells, containing Zinc with a chelating agent indicates that a portion of the metal associated with the cells is loosely bound and probably adsorbed on to the cell surface. The remainder of the watal in the cell is sore firmly based: in the early stages of uptake, it increases linearly with the square root of time and this has been taken to indicate that the uptake of the metal is passive and diffusion controlled. The metabolic zinc content of the cells later passes through a maximum despite the availability of further zinc for uptake and then gradually decreases. This has been interpreted as being due to a reduction in the number of zinc-binding sites (probably protein) within the cells, as they progress through their growth cycle. A simplified model of these events, capable of computerization, has been isomething the content of the cells as the progress.

12A
Effects of Chemical Variations in Aquatic
Environments. III. Lead Toxicity to Rainbow
Trout and Testing Application Factor Concept

Davies, P.H.; Everhart, F.H.; Dep. Vish. Wildl. Biol., Colorado State Univ., Fort Collins, Colo.

GPO, 1.25 dollars, Gowt. Rep. Announce. (U.S.) 73(18), 55: 1973

LEAD; POISOWING; PISH; WATER; RAIMBON TROUT; APPLICATION FACTOR

129
Effects of Wethylmercury Chloride on the Survival and Behavior of the Three-Spined Stickleback (GASTEROSTERS ACULATUS)

Deakins, D.E.; Univ. South. California, Los Angeles, Ca

Univ. Microfilms, Ann Arbor, MT, Order No. 73-18, 805, Diss. Abstr. Int. B, 34(2), 533-534; 1973

MEPCURY; TOXICITY; FISH; BEHAVIOR; STICKLEBACK; SURVIVAL; METHYLMERCURY

TARONAT: GASTEROSTEUS ACULEATUS

130 Case Against Mercury

Dean, R.B.; Mati. Environ. Res. Cent., Environ. Prot. Agency, Cincinnati, Ohio

ATCHE Symp. Ser. 69(129), 279-83; 1973

REVIEW: MERCURY: FISH: TOXICITY

The occurrance of mercury intoxication by exposure to inorganic Hg compounds. In pesticides, consumption of Hg-poisoned fish, exposure to Hg-containing chemical effluents, and legislation to prevent or reduce hazards of Hg are reviewed with 23 refs.

131 Study of Selected Parameters Affecting the Padiation Dose from Drinking Water Downstream of Nuclear Pacilities

Denham, D.; Soldat, J.; Battelle Pacific Morthwest Labs., Richland, Wash.

BW#1.-98--8585: 1973

REPTUMIUM: ARTIMONY 122: ARSENIC 76: CHRONIUM 51; DIFFUSION: DRIMKING WATER: GASTROINTESTINAL TRACT: MAN: MEPTUMIUM 239: RADIATION DOSES: RADIOPCOLOGICAL CONCENTRATION; RADIONUCLIDE MIGRATION: SODIUM 24: ANTIMONY; ARSENIC: SODIUM:

This paper describes a study of some parameters aftecting radiation doses received from consumption of water derived from the Columbia River downstream of the Hanford production reactors. Included were studies of relative concentrations of radionuclides in water entering and leaving the water treatment plants at Richland and Pasco, Washington; sanitary water at a number of points in Richland; and coffee brewed from sanitary water. The removal efficiencies for the alun-floc water treatment plants studied ranged from 80% for pare-earth nuclides to 10% for Columbia to 10% for Columbia the Richland distribution system was used to estimate the average dose to residents consuming the water. Average RI Tract dome calculated for persons residing at each of six locations within the city were 1/3 to 1/2 of those calculated for consumption of water leaving the treatment plant. The average dose received, calculated by weighting these six individual domes by the population distribution, yielded 45% of that calculated for consumption of water leaving the treatment plant. Since coffee represents a safor liquid intake mode for adults, the potential removal of radionuclides during coffee brewing was studied. The concentrations of radionuclides in the water and coffee brewed from it were not significantly different for those radionuclides contributing the most to the GI Tract dose, and hence those doses were not significantly reduced.

132
Paperimental Data on Contamination of Anguilla anguilla by Chromium-51 and it Excretion

Prescamps, 6.; Foulquier, L.; Aquesse, P.; Grauby, A.

C.R. Acad. Sc. Paris, t. 276 (12 fevrier 1973) Series D - pp. 1193-1196; 1973

PISH; CHROMIUM; CHROMIUM 51; INTESTINES; DIGPSFIVE TRACT; LIVER; KIDMEYS; BLOOD; BIOLOGICAL HALF-LIPE; EXCRETION; CONCENTRATION PACTOR; RADIOTRACER TECHNIQUES; ADSORPTION; UPTAKE; TRACERS; INDIVIDUAL VARIATIONS

TAXONONY: AMGUILLA AGUILLA

The Anguilles were kept in soft water contaminated with chromium 51. The fixation of the radionuclide in the fish proceeded rapidly to a state of equilibrium at about the 20th day. The specific activity of the digestive tract was particularly high, representing about 70 percent of the total activity. The radionuclide penetrated the intestine and was carried throughout the organism by the blood. The liver seems to play a storage role. Excretion is rapid during the first few days and then much slower. Thus one dotermines two effective periods of 4 and 19 days for the whole animal and 3 and 17 days for the intestines. By the \$5th day duration of the experiment, the specific extivity of the digestive system decreased rapidly, that of the blood slowly, that of the liver remained stable and that of the kidneys increased slowly. Studies are continuing on the transfer mechanism, effects of the chromium compound on the sechanism and level of contamination, and the effect of the content of stable chromium on the fixing of the radionuclide. Wost of the chromium was adsorbed on the walls of the aquarium and only 0.5 percent taken up hy the Anguilles after 45 days. (Note that there appears to be a discrepancy in the biological half lives: a and 19 days are mentioned in one place, a and 65 on the figures and 20 and a longel time in another place).

133 The Farichment of Reavy Metais in Submerged Plants

Proc. 6th International Water Poll *** On Pesearch June 18-23, 1972, Session 2, Paper 68, 8pp.

ENRICHMENT: BJOACCUMULATION: POTASSIUM: COP-54: LEAD: MICKEL: 71MC: MANGANESE: IRON: PLANTS: AQUATIC BIOLOGY

TAXONONY: SPERMATOPHYTA: BRYOPHYTA: 9ANUNCULUS PLUITANS: NUPHAR/LUTPUM; SAGITTARIA SAGITTIPOLIA: PONTINALIS ANTIPYRETICA: HYGROAM BLYSTEGIUM

134 Aquatic-Biotic Community Structure as an Indicator of Pollution

Dills, G.G.; Pogers, D.T., Jr.; Geological Survey, Division of Water Resources, Circular 80, Project A-022-ALA, University, Alabama

; 1972

PHYSICOCHEMISTRY: RENTHOS: CONMUNITY STRUCTURE: HINES; HIME DRAINAGE: TURBIDITY: HARDWASS: IRON: HANGAMESE; PA: CONDUCTANCE: SULFUR: DISSOLVED OXYGRN: PEOSPRATE: SPECIES DIVERSITY

Physicochemical conditions and benthic wacroinvertebrate community structure were

quantitatively related to varying degrees of acid mine drainage in a small stream system.
Tributaries exposed to acid effluents were characterized by lack of a natural buffering capacity, a reduction in turbidity, a decrease in lead, and an increase in mineral content. Strong positive correlation existed between hardness, iron, manganese, lead, conductance, and sulfur, while dissolved-oxygen content and temperature values were strongly negatively correlated. A step-wise regression analysis showed lead, phosphate, and turbidity to be highly correlated (P is less than .01) with species diversity. Significant differences (P is less than .01) in species diversity existed between acidic and nonpolluted tributaries. Stations located near areas of acid production were consistently lowest in diversity. Species diversity values for the unpolluted stations showed temporal variations with highest values occurring during late Harch and December. The polluted stations showed random fluctuations in diversity values. A regression lice, calculated to show the relationship between lead and species diversity on the basis of periodic measurement of stream lead. Varying degrees of acid mine pollution were reflected by changes in the macroinvertebrate community structure.

135
Possible Inter-Relationship Between Selenium
Toxicity and the Riochemical Function of Trace
Amounts of Selenium

Diplock, A.T.

Presented at the Seventh Annual Conference on Trace Substances in Environmental Realth, University of Missouri-Columbia, Columbia, MO 65201; 1973, June 12-14

SELENIUM: TOXICITY: BIOCHEMISTRY: OXIDATION; DIMETRYL SELENIDE; RATS; ANIMALS; VITAMIN P

Studies with trace amounts of selenium 75 in rats have indicated that a part of a dose of Na (2)-75 SeO(3) becomes converted in the liver to a protein-bound acid-volatile form of the element which is susceptible to oxidation, and appears to be protected from oxidation IN VIVO by dietary vitamin E. Model experiments are described designed to distinguish hydrogen selenide from dimethyl selenide. It is shown, using the model system, that the tissue acid-volatile selenium is not an alkyl selenide and that it is most likely to be a hydrogen selenide. The major route of detoxication of large amounts of selenium is by formation of volatile dimethyl selenide, which is exhaled. The sequence of reactions by which selenium compounds may be converted to dimethyl selenide has been described by Ganther. The possibility is discussed that a similar metabolic sequence may account for the conversion of trace amounts of Ma(2)-75 SeO(3) to the protein-bound selenide of rat liver subcellular organelles.

130 Radiosensitization of Blue-Green Alga AMACYSTIS RIDULANS by Chemical Compounds

nmitriev. A.: Grodzinskii. D.

stud. Riophys. 35(3), 157-163; 1973

ALGAP: AMOXIA: BENZOIC ACID: RADIATION EPPECTS: GAMMA RADIATION: MERCURY COMPOUNDS: MONOCARBORYLIC ACIDS: MINHIPOTHN: ORGANIC CHLORINZ COMPOUNDS: ORGANIC IGNIME COMPOUNDS; ORGANIC IGNIME COMPOUNDS: OXYGEN: PHOTON BEAMS: RADIOSEMSITIVITY

137
Influence of Copper and Zinc Ions on Toxicity of Sodius N-Methyldithiocarbasate to Pusarius Oxysporus P. Specialis lycopersici

Dougch, K.H.; Corden, M.E.; Dep. Bot. Plant Pathol., Oregon State Univ., Corvallis, Oreg.

Arch. Midrobiol. (ARMKA7), 89(4), 345-52; 1973

METHYLDITHIOCARBAHATE; COPPER; ZINC; SYMERGISM; FUNGICIDES

TAXORDRY: PUSARTUM OXYSPORUM

The interactions between the fungicide, sodius N-methyldithiocarbasets (MANDC), and fungitoxic or non-toxic levels of copper or zinc ions were reevaluated. It was shown that non-toxic levels of MANDC generally reduce the fungitoxicity of copper sulfate solutions, while copper sulfate solutions of low toxicity, when combined with MANDC solutions of low toxicity, yielded a highly roxic sixture with an UV spectrus similar to that of disethylthiuras disalfide, a fungicide which is about 100 times more toxic to the test organism, Funarium oxysporum f. sp. lycopersici, as is the compound MANDC. Fungi with a high sensitivity to copper ions are not suitable for demonstrating a toxic 1:1 complex between copper ions and the dithiocarbamate. In high concentrations WANDC proved to be stable even in the presence of copper ions. In these cases, the significantly increased WANDC toxicity, when combined with copper or zinc sulfate, was attributed to the synergistic action of the metal ions on the semipermeability of cytoplasmatic membranes. Since bimodal dosage response curves were obtained for MANDC in the absence of copper or zinc ions in the test medium, the "inversion phenomenom" is probably limited to reactions inside the cell.

138 Study of Lead, Copper, Zinc, and Cadmium Contamination of Food Chains of Han

Dorn, C.R.: Pierce, J.O., II; Chase, G.R.

University of Missouri-Columbia, U.S. Department of Commerce PB-223 018, 121 p.; 1972

LEAD; COPPER; TIMC; CADRIUM; SHELTERS; RUMANS; FOOD CHAINS

Pegults of studies on soil, vegetation, meat and milk contamination in a new lead producing region.

134 Sorption Behaviour of Trace Muclides in Sea Water on Manganese Dioxide

poshi, G.: Krishnamoorthy, T.: Sastry, V.: Sarma,

Indian J. Chem., 11(2), 158-161; 1973, Pebruary

ACTIVATION AWALYSIS; ADSORPTION; ANTIMONY; ARSUNIC; CERTUN; CESIUN; CHENICAL AWALYSIS; CORALT; HAPMIUN; HANGAWESE OXIDES; PADIATION HONITORING; RUTHERIUN; SALIWATER; SELENIUR; SEPARATION PROCESSES; SILVER; STRONTIUN; TIW; TRACE AMOUNTS; URAWIUN; ZINC; ZIRCONIUN; SORPTIVE PROPERTIES

Adsorption behavior of 18 radionuclides, viz. Co, Zr, Ru, Cs, Sr, Hf, Ag, Se, Zn, Co, Ao, Sb, Sn and U, from sea water is studied on anganese dioxide precipitated in situ. Quantitative capture is found for Co, Ru, Zr, Rf, Co and Zn. Comparisons are made with the sorption capacity of ferric hydroxide for the same nuclides. The application of the in situ precipitation in the field of activation analysis and monitoring of radiolestopes released from nuclear installations is discussed. The adsorption on bowdered manganese dioxide was not nearly so good, so much larger quantities were required. Anionic complexes were not adsorbed strongly. Isotopes of silvar, selenium, antimony and tin were not carried quantitatively. In situ precipitation can be used as a preconcentration step with seawater, for neutron activation analysis, but uranium should, but uranium should be removed first to avoid fission product formation during irradiation. Detection limits of several fission products in sequence are given.

140 Interaction Between Water, Trace Blements, and Different Components in the Danube River

Draskovic, R.; Radosavljevic, R.; Tasovac, T.;

Eur-4800 (Vols. 1 and 2), Boris Kidric Inst. of Muclear Science, Vinca, Yugoslavia, p. 1167-74; 1972, May

RIVERS; ELEMENTS; RADIOISOTOPES; REACTION KINETICS; TRACE ELEMENTS; WATER

Prom International symposium on radioecolgoy applied to the protection of man and his environment; Rome, Italy (7 Sept 1973). The environment is a complex system of interacting physical, chemical and biological components. The fate of radioactive and nonradioactive pollutants introduced into rivers and their influence on existing equilibria depend on specific characteristics of the aquatic environment. Temporal variations in ambient trace element concretrations may affect the accuracy of the predictions but these variations are functions of the biological half time of the element in ecosystems. Results of an eleven-year research program are presented concerning the Yegoslav section of the Danube river which included study of the characteristics of the river and its environment; interaction between water and dispersed inorganic and organic matter, and dispersion ability of the river as well as behavior of different trace and radioactive elements in the river and its components including biological and other environmental materials. The analyses show regularities on the large scale.

141 Short-Term Indicators of Sublethal Effects of Copper on Brook Trout, Salvelinus Fontinalis

Drummond, R.A.: Spoor, W.A.: Olson, G.F.: Matl. Water Qual. Lab., U.S. Environ. Prot. Agency, poluth, Minn.

J. Pish. Res. Board Can. (JFPBAK), 30(5), 698-701; 1973

COPPER: TOXICTIY: TROUT: FISH BEHAVIOUR

TAXONDHY: SALVELINUS PONTINALIS

changes in cough frequency, locomotor activity, and feeding behaviour of yearling brook trout were observed within 2-24 hr after exposure to copper sulfate (Cu508) concentrations as low as 6-15 au q cu/l. each of these responses showed promise as a short-term predicator of the concentration range at which chronic exposure to cu might have no permanent effect.

142 nistribution of Trace metals in the Pore Waters of Shallow Water Marine Sediments

Puchart, P.: University of Edinburgh, Scotland

Limnology & Oceanography, 18(4), 605; 1973, July

DISTPIBUTION: TRACE METALS: SALTUATER: SEDIMENTS: PHYSICOCHEMYSTRY: COPPER: WICKEL: ZIWC: LEAD: ATOMIC ABSORPTION SPYCTROPHOTOMETRY

GEOGRAPHICAL DESCRIPTION: Scotland, Lock Pyne

concentrations of seven trace metals in the pore waters of marine sediments from Loch Fyne, scotland, were analyzed by atomic absorption spectrophotometry following solvent extraction. pissolved iron either decreases or increases down the core depending on the type of sediment. copper, nickel, zinc, and lead also showed variable concentrations profiles. This indicates control by different postdepositional reactions in the sediment, which in turn depend on different physiochemical environments generated by variable asounts of contained organic material and different accumulation rates.

143 Radionuclide Optake by Some Preshwater Hydrobionts

Dushauskene, Duzh, M.; Marchyulensau, E.D.P.; Mydnishkene, V.B.; Shuliene, R.I.; Polikarpov, G.A.

Liet. TSP Mokslu Akad. Darbai, Ser. C- 3- Wo. 59, 201-212; 1972

CERIUM 1881: CPSIUM 137; PISH; PLIES; LARVAE; LEAD 210; PLANKTON; RADIOTSOTOPES; RADIONUCLIDES; KINETICS; RUTHENTUM 106; SILT; STRONTIUM 90; UPTAKE; WATER THE Specific Activity of Radionuclides Sorbed by Marine Sediments in Relation to the Stable Element Composition

Duursma, E.K.

Part of Radioactive Contamination of the Marine Environment, Proceedings of Symposium held at the International Atomic Energy Agency, Seattle, WA, July 10-14, 1972 (47-70), 786 p. ; 1973

RADIONUCLIDES; SORPTION; SEDINENTS; ELEMENTS; DISTRIBUTION COEPPICIENTS; SALT WATER

The problem investigated is whether the binding of radionuclides to marine sediments in a waste disposal area can be predicted from studies of the trace metal contents of the sediments. To evaluate this, the experimentally determined distribution coefficients of various radionuclides and the existing corresponding stable isotope distribution were compared for different marine sediments of the major ocean basins. The ratio of the distribution coefficient of the radionuclide to that of its stable counterpart was considered to be a measure of the amount of the stable isotope available for exchange with the radionuclide in seawater. The ratios were normally low, but ranged from about 0.1 to 100% for the different elements and sediments tested. The practical application for waste disposal evaluations is that the ratios estimated for a particular area might be used for a first approximation of the maximum amount of radionuclides that might be held by the sediment at a given specific activity in the seawater.

185 Determination of Mercury Content in Austrian Surface Waters. I. Danube Water and Sediments

Dworsky, R.; Ebner, P.; Gams, H.; Ottendorfer, L.J.; Bundosanst. Wasser Biol. Abwasserforsch., Vienna, Austria

Oesterr. Abwasser-Runcsch., 18(2), 22-27; 1973

MFRCURY; RIVERS; SEDIMENTS; ATOMIC ABSORPTION SPECTEOPHOTOMETRY; INTERNATIONAL STANDARDS

GEOGRAPHICAL DESCRIPTION: Austria, Danube River

The wercury content in water and sediments from the Danube River and its tributaries was determined by atomic absorption spectrophotometry. The water samples were taken from the Austrian stretch of the river. The wercury was constant approximately 0.1 microgram/1 corresponding to an estimated average for surface waters unaffected by external sources. Analyses of sediments from the Danube tributaries gave 0.00 to 1.16 mg/kg in wet mud. Their analyses were below the limit 0.5 mg/kg which is permitted by an international standard.

The Chronic Toxicity of the Copper, Cadmium and Zinc Mixture to the Plathead Minnow (Pimephales Promelas Rafinesge)

Estan. J.G.

Water Research, 7, 1723-1736; 1973

PLATHEAD FIRMOWS; TOXICITY; CADMIUM; ZINC; COPPER; PISH

TAXORDHY: PIMPPHALES PROMELAS

Pathead minnows were exposed to a series or concentrations of a copper, cadmium and zinc mixture during as 12.5 month chronic test in water of 200 mg 1-1 total hardness. The metal concentrations in the mixture were rejected on the basis of results obtained during previous chronic exposures to each of the meals individually in the same water. Strict summation of the chronic toxicities of the metals was not indicated when they were tested in combination. Toxic effects of the mixture attributable to copper appeared to he increased, but that attributable to cadmium was reduced. The effects thought to he due to zinc ware similar in degree to those observed in the single chronic exposure. Summation of effects resulting from a mixture containing shout the same proportions of copper, cadmium and zinc occurred at a much higher, acutely lethal concentration. A lethal threshold was attained in the mixture when each metal was present at a concentration of 0.4 or less of its individual lethal threshold.

1u7
Annotated Bibliography on Biological Effects of Metals in Advatic Environments (No. 1-567)

Pisler, R.; Wational Marine Water Quality Laboratory, U.S. Environmental Protection Agency, West Kingston, Rhode Tsland 02892

Environmental Protection Agency Report number, EPA-R3-73---7; 1973, February

BIBLYOGRAPHY: BIOLOGICAL EFFECTS; HETALS; AQUATIC ENVIRONMENTS

148 Acute Toxicology to an Estuarine Teleost of Hixtures of Cadmium, Copper, and Zinc Salts

Eisler, R.; Gardner, G.R.; Hatl. Har. Water Qual. Lab., U. S. Environ. Prot. Agency, West Ringston, R. T.

J. Pish Biol. (JPIBA9), 5(2), 131 -42; 1973

CADMIUM; TOXICITY; MUMBICHOG; COPPER; ZINC;

TAXONONY: PUNDULUS HETRROCLITUS

Mixtures of cupric chloride and zinc chloride produced more deaths among mumaichogs (FUNDULUS MITEROCLITUS) in synthetic seawater at 20% galinity and 20 degrees than was expected based on the toxicities of the individual salts, and concentrations of cadmium chloride not ordinarily lethal has a negative effect on the survival of fish intoxicated by salts of copper, zinc, or both. Cadmium, copper, and zinc residues for survivors held in mixtures, especially cadmium and zinc mixtures did not conform to patterns observed for single elements. Atomic absorption determinations of cadmium, copper, and zinc residues from mumaichogs surviving 96 hour exposures provided useful indices of total body burdens for these metals but whole body aggregates of cadmium, copper, and zinc from dead mumaichogs were of limited value because of accumulation of the metals after death. Renal and lateral line canal lesions were observed in all fish subjected to copper concentrations greater or equal to 1 MG/L. Renal lesions in fish immersed in mixtures of Cucl2 and Cdc12 showed a damage pattern characteristic of cadmium, and with mixtures of Cucl2 and Znc12 the lesions were typical of copper-induced damage. Epithelia lining the oral cavity were necrotized by the caustic action of Znc12 (60 MG/L) and Cucl2 (8 Mg/L).

149
Riemental Composition of the Pstuarine Telost
PUNDULUS HETEROCLITUS (L.)

Fisler, R.: LaRoche, G.

J. Exp. Mar. Biol. Ecol., 9, 29-42; 1972

MUMMICHOG; SALIMITY; PH; DISSOLVED OXIGEM; SALT WATER; ATOMIC ABSORPTION SPECTROPHOTOMETRY; PISH; CALCIUM; COPPER; IRON; POTASSIUM; MAGMESIUM; MANGANESE; SODIUM; STROMTIUM; ZIMC; SILVER; GOLD; ALUMINUM; BARIUM; BEPYLLIUM; CADMIUM; COBALT; CHROMIUM; CESIUM; LITHIUM; WICKEL; LEAD; RUBIDIUM; THALLIUM; SIZE EFFECTS; AGE EFFECTS; SEASONAL VAPIATIONS; TEMPERATURE EFFECTS

Plements that were consistently present in whole ashed Pundulus Hypercurves (L.) as determined by atomic absorption sepetroscopy were calcium, copper, iron, potassium, magnesium manganese, sodium, strontium, and zinc; not measurable were silver, aluminum, gold, barium, beryllium, cadminm, cobalt, chromium, cesium, lithium, nickel, lead, rubidium, and thallium. This pattern was not affected by the age of the fish, its sexual condition, or the season of collection. Changes in whole body content of selected elements were observed with increasing age; in the range between the and 118 millimeters total body length, large fish contained more calcium and strontium and less potassium, magnesium, sodium, and zinc than small fish; wundulus intermediate in size exhibited intermediate values for these elements. On an ash weight basis, heads were comparatively low in potassium, iron, magnesium, zinc, and strontium and carcasses comparatively high in potassium and low in copper, iron, strontium, and sodium. viscera contained high concentrations of most elements when compared with heads and carcasses, expecially iron, zinc, strontium, and copper. In a study of the effect on whole body elemental content of two size ranges of fundulus, at two water temperatures, two salinities, and two water temperatures, two salinities, and two water temperatures are solumned to a size group, fish kept at 5 or 20 degrees c at salinities of 9 0/00 or 27 0/00 exhibited essentially the same elemental composition after 30 davs; however, fish held for 30 days when compared with those held for only three days contained significantly less calcium, sodium, potassium, magnesium, zinc, copper, and sanganese. In another study on effects of three sea-water formulations, two feeding frequencies, and two medium replacement rates on whole body elemental composition after 30 davs; however, fish held for only three days contained significantly less calcium, sodium, potassium, magnesium, zinc, copper, and and two medium replacement rates on whole body elemental

150 Pesticide Study Series 1: A Catalog of Research in Aquatic Pest Control and Pesticide Residues in Aquatic Environments

Environmental Protection Agency; office of Water Programs

Contract No. 68-01-0349 (Office of Water Programs), GPO No. 5501-0355, Project Officer, C harles D. Reese, Agronomist; 1972, May

PRSTICIDES; AQUATIC BIOLOGY; PEST CONTROL; RESIDURS;

151 Concentrations of Zinc-65 in Marine Poodstuffs and Pacific Coastal Residents

Essig, T.H.; Endres, G.W.R.; Soldat, J.K.; Honstead, J.P.

Part of Radioactive Contamination of the Marine Phylronment, Proceedings of Symposium held by the International Atomic Energy Agency, Seattle, WA, July 10-19, 1972, 651-668

ZIRC; ZIRC 65; RIVERS; HARINE FOODSTUFFS; MBUTRON ACTIVATION; RADIOACTIVITY; FOOD CHAINS; RETABOLISH; SHELLFISH; PRODUCTION REACTOR; EFFLUENTS; HUMANS; HALF-LIFE

GEOGRAPHICAL DESCRIPTION: U.S. (NW). Washington, Hanford, Columbia River

Hanford production reactors and released to the Columbia River in effluent cooling water prior to Pebruary 1971 was zinc-65. This nuclide has a relatively long radioactive half-life (285 days) and is an isotope of an element utilized in metabolic processes by most shellfish and other agustic life forms. Consequently, zinc-65 is found in fish and shellfish in the Columbia River and in the Pacific Ocean near the mouth of the river. The transfer of zinc-65 through various food chains to man has been studied at Manford for a number of years. In the present study, consumption rates of four saefoods were obtained for residents of two coastal communities. These consumption rates were used, together with concentrations of zinc-65 in the foods of interest, to estimate body burdens of zinc-65. The ectimated body burdens were then compared with body burdens determined by whole-body counting techniques. The distributions of the ratios between the measured and calculated zinc-65 body burdens are somewhat flat and not centered on 1.0. However, they could well be typical of data of this type obtained from the general population. Some of the scatter is undoubtedly due to inaccuracies in recalling seafood consumption, and some is quite likely due to real variations in uptake and retention of zinc-65 between individuals. Particularly, the retention of zinc-65 may be a function of the amount of table zinc already in the hody.

Person a low body burdens of stable zinc may pick may redionuclide certainly varies from one person to another because of differences in body metabolism. Considering the many variables, agreement within a factor of two between the measurements and calculations is a reasonable result. Further studies are planned for autumn 1972.

152 Mercury in Public Sever Systems

Fvans , R.L.: Sullivan, W.T.: Lin, S.: Water Oual. Sect., Illinois State Water Surv., Peoria, Tll.

Water Sewage Works (WSWOAC) , 120(2) , 74-6: 1973

HERCORY: SHUAGE: FISH: PAPER: PISH PRODUCTS

GEOGRAPHICAL DESCRIPTION: U.S., Illinois

The geometric mean of total mercury concentrations in five public sewer systems in central Illinois ranged from 1.3 to 1.8 ppb. Illinois standards stipulate a maximum concentration of 0.5 ppb of mercury in public sewer systems. Without lowering the existing tolerance guidelines for mercury in foodstuffs, paper products, drinking water, etc, it would appear difficult to comply with Illinois standards. There appears to be a background concentration of mercury in public sewer systems solely devoid of industrial waste influence.

153

Effects of Ocean Water on the Soluble-Suspended Distribution of Columbia River Radionuclides

Prans, D.W.; Cutshall, N.H.

Part of Radioactive Contamination of the Harine Environment, Proceedings of Symposium held by the International Atomic Energy Agency, Seattle, WA, July 10-14, 1972 (125-139) 786 p.; 1973

ZINC: ZINC 65; AWTIHOMY; SCANDIUM; MANGANESE; MANGAMESF 56; RADTOMUCLIDES; SOLUBLE-SUSPEMSION DISTRIBUTIOM; PLOCCULATIOM; PRECIPITATIOM; ADSORPTIOM; SALTWATER; RIVERS; SALIMITY

GEOGRAPHICAI DESCRIPTION: U.S. (NW), Washington, Hanford, Columbia Piver

The relationships of dissolved concentrations of Hanford radionuclides with salinity in the Columbia River estuary were interpreted in terms of the exchange of the radionuclides between dissolved and suspended particulate matter upon mixing with ocean water in the estuary. Prperiments in which ocean water was added to Columbia River water and to suspended particulate matter collected on filters confirmed the partial desorption of zinc-65 and manganese-58 from the particulate phase. The percentage of zinc-65 and manganese-desorbed varied with experimental approach but desorption of zinc-65 seemed to lie in the range 15 - 45% and manganese-50 in the range 30 - 60%. Wone of the experiments revealed any effect of salinity upon the soluble-suspended particle distribution of chromium-51, antimony-120 or scandium-86. Dissolved concentrations of these nuclides varied inversely with salinity. There was no evidence that any of the radionuclides studied was removed from solution by flocculation, precipitation or adsorption as the result of mixing with ocean water. Ocean water contact partially removed manganese-50 but not zinc-65 scandium-86 or cobalt-60 from Columbia fiver hotton sediments transferred to the maxine environment. The inability of ocean water to desorb zinc-65 from botton sediment contracts with its action with suspended particulate zinc-65.

154 Structural and Physiological Studies on the Parasitic Red Alga Holmsella-Pachyderma

Evans, L.V.; Callow, J.A.; Callow, M.P.

New Phytol, 72 (2), 393-402; 1973

PLORYDOSIDE: MANNITOL; STARCH; PHOTOSYNTHESIS; PRODUCT; CHROMATOGRAPHY; AUTORADIOGRAPHY; ACCUMULATION; PARASITES; ALGAE; RED ALGAE; CARBON

TAXONOMY: GRACILARIA: GRACILARIA-VERRUCOSA

A study has been made of the structural and physiological relationship between the autotrophic red algae, GRACILARIA YERRUCOSA, and the parasitic, chlorophast-free, red alga, HOLMSELLA PACHYDERMA. By means of carbon-10-labelling experiments, the sajor product of photosynthesis in the GRACILARIA was found to be the alcohol glycoside, floridoside, Chromatography and autoradiography showed that mathomatography as transferred to HOLMSELLA and accumulated there as floridoside, mannitol and starch. This transfer probably occurred through endophytic filaments which arise from the base of the garasite and penetrate between the cells of the GRACILARIA.

155
Nethyl Hercury Accumulation in an Aquatic Food Chain. A Model and Some Implications for Research Planning.

Pagetatrom, T.; Asell, B.

Ambio, 2(5), 164-71; 1973

HETHYLMERCURY: BIOACCUMULATION; MATHEMATICAL MODEL; POOD CHAIMS; INTAKE; POOD; OXYGEM; AQUATIC ECOSYSTEMS

Hethyl mercury accumulation in fish is theoretically studied by means of a mathematical model for a three-stop food chain. The model assumes gain of methyl mercury in proportion to intake of oxygen and food, these in turn being size-dependent. Some properties of the model are analyzed with the specific aim of getting quidance for further remearch activities. This analysis lends, quantitatively, support to the belief that direct uptake of methyl mercury from wat er im the most important subject for further study.

Some Aspects of the Quantitative Ecology of

Pagerstrom, T.; Jernelov, A.; Swed. Water-Air Pollut. Res. Iab., Stockholm, Sweden

Vater Per. F, 1193-1202

TRANSPORMATION: AQUATIC PROSTSTERS: PIELD Experiments; Odantitative ecology; nercury; Laboratory studies

TAXONOMY: METANOBACTERIUM AMELIANSKII: PSEUDONOMAS

TAXONOMY: METANOBACTERIUM AMELIANSKII; PSZUDOROMAS

This paper outlines some of the most important
ecological properties of mercury and describes a
sub-model constructed for computer simulation.
Mercury sulfide, MgS, a low solubility compound,
is formed whenever mercury (+2) and sulfur (-2)
are present and mercury may also take over
sulfide ions from other sulfides. MgS may also
be formed monomethyl mercury in the presence of
sulfide ions. HgS, upon oxidation, yields
mercury ions and sulfate (50 (4)) ions. Flemental
mercury results from the physico-chemical or
biochamical reduction (PSEUDOROMAS) of divalent
mercury. Oxidation of elemental mercury has been
shown to occur in an aquatic environment when
organic substances and oxygen are present.
Complexes between divalent mercury and organic
substances are readily formed in water. Mercury
shows a particular affinity for sulph-hydryl
organic substances. Resolubilization of divalent
mercury in the form of soluble organic complexes
may occur occur but reformation of soluble
inorganic complexes are probably not very inordanic complexes are probably not very significent. Pormation of divalent mercury inordanic complexes can be formed with silica thordanic complexes can be formed with silica type or ferro-manganese type compounds. Methyl mercury is formed along one of two biochemical pathways: a nomenzymatic and an enzymatic transfer of methyl groups from methyl cobalamin to inorganic mercury in METANOBACTERIUM AMELIANCEXII; encymatic methylation of mercury yound to homocystein has been shown to occur in Neurospora. Biologic decomposition of methyl mercury occurs in Pseudomanas as well as some higher organisms. Diseathyl mercury is formed higher organisms. Disethyl mercury is formed from inorganic secury or sonomethyl mercury in connection with microbiological activity. UV light mediates the conversion back to elemental mercury, Quantification of the translocation of methyl mercury (and its breakdown products) is presented.

Uptake and Biotransformation of Phenylmercuric Acetate by Aquatic Organisms

Pang, S.C.; Dep. Agric. Chem., Oregon State Univ., Corvallis, OR

Arch. Environ. Contam. Toxicol. (AECTCV). 1(1), 18-26; 1973

PHENYLMERCURIC ACETATE: METABOLISM: PISH: SMAILS; HERCURY; PLANTS; ELODEA; GUPPY; COGNTAIL; BIOLOGICAL HALF-LIF2; FRESHWATER

TARONONY: ELODEA CANADENSIS; CERATOPHYLLUN DEMERSUN: LEBYSTES PETICULATUS; HELISOMA CAMPAN

Guppy (LEBISTES RETICULATUS), snail (HELISONA CAMPANULATA), Elodea (ELODEA CAMADEWSIS), and coon tail (CERATOPHYLLUM DEMERSUM), when exposed to water containing 203 Rg-labeled phenylmetcuric acetate, readily absorbed this compound. The rate of absorption was related to the time of exposure and the compound Concentration; the absorbed phonylmenturic acetate was animals. absorbed phenylmercuric acetate was mainly coverted to inorganic sercury ethylmercuric chloride was a minor metabolic product. The radioactive Rg was not rapidly eliminated from the guppy, elodes, and coontail when the organisms were placed in fresh water, the biological half-life of 203 Hg residues ranging between #3 to 58 days.

Effects of Some Chelating Agents and Their Copper Complexes on Photosynthesis in SCENEDESAUS QUADRICADDA

Fangstrom, I.; Inst. Physiol., Univ. Uppsala, Uppsala, Sweden

Physiol. Plant. (PHPLAI), 27(3), 389-97; 1972

CHELATION: COPPER: ALGAE: PROTOSYNTRESIS: HYDROXYGUINGLIME: TROPOLOME: ISOPROPHY DIMETHYLDITHIOCARDAMATE

TAYONGHY: SCENEDESHUS QUADRICAUDA

The effects on apparent photosynthesis in the green algae SCENEDESMUS QUADRICAUDA of four green algae SCEMEDESHUS QUADRICAUDA OF FOR Chelating substances, 8-hydroxyquinoline (= oxine), beta-isopropyltropolone (= beta-thujaplicin), sodium dimethyldithiocarbamate and 3-(beta-hydroxy-ethyl)-C-pentamethylene-3-azadithiocarbasate have been investigated. The first three compounds mentioned all had an first three compounds mentioned all had an inhibitory effect on photosynthesis, measured as oxygen production with a manometric, a volumetric or a polarographic method. In combination certain concentrations of CuSo(4) bimodal dose response curves were observed, similar to those obtained on the growth of different aircoorganisms. Calculations of the amounts of different complexes that appeared in the nutrient solutions during the experiments are compared with the recorded degrees of inhibition. The results strongly indicate that the 1:1-complexes between copper(2+) and the chela ting substances are the most toxic agents at low concentrations of these compounds. of these compounds.

159
Investigation of Dispersion and Dilution of Suspended Species in River Flow by Radio-Tracer Techniques

Filip, A.; Horis Kidric Institute of Nuclear Sciences, Vinca-Ecograd, Yugoslavia

International Journal of Applied Radiation and Isotopes, 22, 331-337; 1971

DISPERSION: DILUTION: SEDIMENTS: RIVERS: TRACERS; RADIOACTIVITY: TRANSPORT: SORPTION: BROMING 82: LARTHABUM 140: DISTRIBUTION: PRESHWATER: PLOW

Interconnection between soluble and suspended material in a river arises through the process of sorption. This implies that a significant part of the soluble effluent is carried by the ruspended material. As a result, even in the case of extensive sorption, the transport of effluent is influenced by mcchanises having different velocities in the fluid. Attention is paid to the transport phenomena of natural suspended material and to suspended material which can appear in river streams as an effluent. Their behaviour is compared with water soluble material which has negligible sorption. Waturul suspended material and cellulose fibers have been labeled by radioisotope lanthanua-180, and tromine-82 is used as the water soluble tracer. In each test 0.1-1.0 kg of the above mentioned material was released virtually instantaneously as a point source of total activity of approximately 1 Ci. The flow-rate during the experiments was about 3500 m3/sec. Distribution of tracer materials was followed to a distance of 11 km downstream from the injection point. From the concentration-time distribution the

160 Mercury Accumulation by the Presh Water Algae SELFMASTRUM CAPRICORNITUM

Filip, D.S.; Lynn, R.T.

Chesosphere No. 6, 251-254; 1972

MERCURY; BIOACCUMULATION; FRESHWATER; ALGAE; ABSURPTION

TAXONOMY: SELENASTRUM CAPPICOPMUTUR

SELANASTRUM CAPRICORNITUM, a unicellular, fresh water, green algae, was selected for these experiments as a widely distributed representative of low trophic level aquatic plants. Algae cultured in a modified Bristol solution in which 0.1 pps mercury was maintained were exposed to either light, darkness, or were formalin-killed. Analysis for mercury content was made of a hydrolysate of algae cultured under these conditions. Results showed no si gnificant difference in mercury content among the three types indicating that the rapid absorption of organic sercury is solely a passive process.

161 Mercury Contamination of Fish in Worthwestern Ontario

Piareite, N.; Reynolds, L.H.; J. Wildl. Manage. (JWHAA 9), 37(1), 62-8

J. wildl. Manage. (JWMAA 9) 37(1); 62-8; 1973

MERCURY: FISH: MUSCLPS: PIKE; CHLORINE PLANTS; LAKES; WALLPYE; BURBOT

TAXONOMY: PSOX LUCIUS; LOTA LOTA; STIZOSTZDION VITREUM

GEOGRAPHICAL DESCRIPTION: Canada, Ontario (NW)

The maximum mercury levels in Internal muscles of northern pike (ESON LUCIUS), burbot (LOTA LOTA), and walleye (STIZOSTEDIOM VITREUM) from northwestern Ontario were 27.8, 24.8, and 19.6 ppm, respiration measured in specimens taken 50-50 piles downstream from a chlorine plant. They decreased proportionally to the distance from the plant but were increased even 200 miles downstream. The levels in specimens from suspected uncontaminated lakes were generally loss than 1 ppm but frequently greater than 0.2 ppm which is considered as the maximum background concentrations.

162
Effects of Regulatory Guidolines on the Intake of Rescury from Pish. Hecca (Model for the Estimation of the Consumption of Contaminants) Project

Pinch, R.; Fish. Prod. Res. Insp. Div., Watl. Har. Fish. Serv., Washington, DC

Pish. Bull. (FSYBAY), 71(3), 615-626; 1973

MERCURY: FISH: HODELS: INTAKE: REGULATION

Prom a computer model, which uses known levels of microconstituents in 52 kinds of fish to predict the distribution of the daily intake of the microconstituents, it was estimated that intakes of mercury from fish would remain safe if the guidelines for Hg in fish were raised from the present level of 0.5 ppm to 1.5 ppm. The model can be used to predict the distribution of consumer intakes from fish of any constituent present in fish for which the levels in the edible portion of the 52 kinds of fish used in the model are known.

163 Organic Hercury Compounds in Coastal Waters

Fitzgerald, W.F.; Lyons, W.B.; Mar. Sci. Inst., Univ. Connecticut, Groton, Conn.

Wature (London) (Watuas), 242(5398), 452-3; 1973

MERCURY: COASTAL WATERS: ORGANIC MERCURY

GROGRAPHICAL DESCRIPTION: U.S., New York, Connecticut, Long Island Sound, Connecticut River

Water samples from coastal waters and adjacent river waters in the vicinity of Long Island Sound were analyzed for inorganic and total mercury. Particulate matter was not analyzed. A modified flameless atomic absorption technique was used. The precision of analysis for mercury is ?5% based on re peats of a standard sample. As nigh as 50-60% of the mercury present in the sam ples may exist either as organic compounds or in association with organic matter. Total mercury concentrations ((1.E-1 micrograms) for the four sampling sites are: Con necticut River, 0.045; Avery Point Dock, 0.067; Fishers Island Sound, 0.078; Rac e, Long Island Sound, 0.007.

16s Frace Plement Concentration Variations Observed in Marine Organisms That Suggest Caution in Sampling

Folson, T.P.: Hodge, V.P.: Wong, K.H.: Rishore, P.: Guinn, V.P.: Scripps Institution of Oceanography, La Jolla, Calif. Soledad Lab.

TID--26198 Report for the IDOP Workshop on Baseliae Measurements at Brockhaven Wational Laboratory, Upton, NY, May 24-26, 1972; 1973

ANIMALS: AQUATIC PROSYSTERS: BIOLOGICAL VARIABILITY: PLEMENTS: GEOGRAPHY: PLANTS: OUAFTITY PATTO: TRACE AMOUNTS: SEAWATER

This report presents examples to emphasize how areatly concentrations of certain trace elements may vary within a given organism and suggests that importance uust be given to sampling tissues consistently. Relatively little is known about how the several trace elements arm distributed between the vario us organs, and still less about how the concentrations vary in different tissues within the organ. Variations also occur with size and age. Thus, heavy awara ge concentrations of zinc in organs of albaccare occur in the tail fin while low average concentrations of selenium occur in the tail fin. A striking example of high specific local concentration occurs in the outer layers of wik kelp; almost 1000 times higher concentrations of polonium-200 have been found in the outer layers than in the inner layers.

165 Sources and Inventory of Padioactivity in the Aquatic Environment

Poster, P.: Battelle Pacific Northwest Labs., Wichland, Wash.

Battelle Pacific Northwest Labs., Richland, Wash. Contract AT (45-1)-1830, BWWK--SA--0614; COMP-730603--7; 1973, June

ANTIHONY; AQUATIC ECOSYSTEMS; BARIUM 140; BERYLLIUM 7; CARBON 14; CERIUM 144; CESIUM 138; CESIUM 137; CHROMTUM 51; KIVERS; COBALT 58; COBALT 60; COMTAHINATION; DAUGHTYR PRODUCTS; DIPFUSION; REACTORS; PALLOUT; FUEL REPROCESSING; IODINE 131; TRON 55; LIQUITD WASTES; MARGANESE 54; MARINE DISPOSAL; WATURAL RADIOACTIVITY; NIOBIUM 95; WUCLEAR INDUSTRY; BUCLYAR SHIPS; PHOSPHORUS 32; POTASSIUM 40; RADIOACTIVE WASTE DISPOSAL; MARINE DISPOSAL; MARINE 10; PADIOACTIVE WASTE DISPOSAL; MARINE 10; PADIOACTIVE WASTE DISPOSAL; MARINE 10; PADIOACTIVE WASTES; SCANDIUM 46; SNAP BATTERIES; MIPTUM 87; ROTHRWIUM 106; STROMTUM 89; STROMTUM 90; SURFACE WATERS; TERMETIUM 99; THORIUM 232; TPACERS; TRITTUM; URAWIUM 235; URAMIUM 238; YTTRIUM 91; 71KC 65; ZIRCONIUM 95

166
Hercury in Fish and Crustaceans Consumed in

Poussin. A.; Pontaine, A.; Woirfalise, A.; Lab. Anal. nenrees Alisent., Univ. Liege, Leige, Belg.

Arch. Belg. Hed. Trav. Hed. Leg. (ABHHAH), 31(3), 45-52: 1973

MERCURY: CONTAMINATION; FISH; TUNNY; PIKE; RAY: SHARK: CPUSTACEA

GEOGRAPHICAL DESCRIPTION: Belgium

167 Pactors Affecting Plant Uptake and Distribution of Cadaium in Plants

Francis, C.W.; Rush, S.G.

Presented at the Seventh Annual Conference on Trace Substances in Environmental Realth, University of Missouri-Columbia Columbia, NO 55201; June 12-10, 1973

CADMIUM: OPTAKE: DISTRIBUTION : PLANTS: BUSH BEAMS: JAPANESE MILLET; INON; CHELATION; MUTRIENTS; WITPOGEM; PH; SELEMIUM; DTPA; TOXICITY

TAXONCHY: PHASEOLUS VULGARIS (VAR. KENTUCKY WONDEW) BCHING CHLON PROBEHTACIA

Conditions regulating cadaium uptake ty plants are no t well understood. Rush beans (PHASEOLUS VULGARE, war, Kentucky Wonder) grown in nutrient solutions were used to evaluate the offacts of nitrogen, lead, and selenium on plant uptake of cadmium. Japanese millet (ECHINGHLOA PRUMENTACIA) was grown in soil under greenhouse conditions to evaluate the plant availability of cadmium from two chemical forms of cadmium (cdCl(2) and cdO). Plant uptake o f cadmium was nearly tenfold greater from nutrient solutions (ill containing an iron chelate (FeDTPA) at lead 5.6 than at 6.5. In nutrient solutions not containing the iron chelate, cadmium uptake was egual at both lead's. Zinc amendment significantly (f is less than 0.05) decreased root cadmium-10? concentrations; however, significantly greater cadmium-109 concentrations (f is less than 0.05) were found in leaves of bush beans growing in 5 ppm than i ppm zinc with no a pparent zinc toxicity. Bush beans grown in nutrient solutions containing 0.1 ppm selenium contained lower concentrations of applied cadmium 109 than those grow at at selenium corcentrations of 0.001 ppm. Cadmium-109 concentrations in Japanes o millet were significantly (f is less than 0.05) lower in plants grown in soil amended with calcium carbonate soil lead is greater than 7) than those groun at lead 5.1. This was true for soil applications of both the chloride and the oxid o form of cadmium-109. In the first harvest of Japanese millet, cadmium foliar concentrations were significantly (f is less than 0.05) higher for the chloride form than the cride, but in the second harvest, only plants grown in the unlime d treatments showed significantly different coccentrations between the two forms. In weutral to alkaline soils three months after application, the forms of cadmium appart to affect cadmium uptake by plants only to a small degree. Thus, it appears that soil reaction products play a dominant role in cadmium availability to plants.

168 Hercury Content of Sediments from Two Lakes in Dalarna, Sweden

Predriksmon, T.: Qvarfort, U.: Dep. Quaternary Geol., Inst. Geol., Uppsala, Swed.

Geol. Foecas. Stockholm Foech. (GPSPA4), 95(Pt. 2), 237-42; 1973

MERCURY: SEDIMENTS; LAKES

GFOGRAPHICAL DESCRIPTION: Sweden, Dalarna

169 Mercury in Canadian Seals

Presman, H.C.; Horne, D.A.; Pisheries Research Hoard of Canada, Halifax Laboratory, 1707 Lowe Water Street, Halifax, Nova Scotia, Canada

Bull. Environ. Conf. ns. Tox. 10 (3), 172-180; 1973

MERCURY: SEALS: PET-45: METHYLNERCURY

The sercury concentration was determined in rne sercury concentration was determined in ringed and bearded set. claws, tissues from a harbor seal, tissues obtained from 6 gray seals of different sizes and a jes, tissues from ten female harp seals and about purps, and a female gray seal and her fetus. It was suggested that the mercury concentration of the fun and elastic the mercury concentration of the fun and class could be used as indicate to the degree of the seals' mercury containmation. Preliminary results indicate that mercury containmation in these species, from the save licitation, increase with size. The methylmarity concentration of seal pups was lower than that of their methers. The fetus of the seal did not show a preference for mercury over that of the methods its suggested that series may justices enzymous systems that demethylman expansion. systems that demethylute to com, (,

170 Total Mercury and Methylewreamy Content of the American Bel (AMGUILIA RASMPASA)

Preeman, H.C.: Horne, D.A.: Halifax Lab., Pish. Res. Board Canada, Halifax, Nova Scotia

J. Pish. Pes. Board Can. (JPRBAK) 1973, 30(3)

HPRCHRY: AMERICAN TEX: METHYLHERCURY: SEX

TAXONOMY: ANGUILLA ROSTRATA

The total mercury content of american (ANGUILLA POSTRATA) caught in Mova Scotia was 0.72 ppm, and the mathylmarcury content was 0.40 ppm. The re was no correlation between the levels of mercury and the sex or weights of the eels. These eels say be fit for human consumption, as they contain less than 0.5 ppm methylmercury and lens than 1.0 ppm total mercury. Sampling the Rdible Huscle of the Swordfish (XIPHIAS GLADIUS) Por Total Hercury Analysis

Free man, H.C.; Horne, D.A.; Halifax Lab ., Pish-Res. Board Canada, Halifax, Nova Scotia

J. Pish. Res. Board Can. (JPRBAK), 30(8), 1251-2; 1973

SWORDPISH; MERCURY; PISH; AMALYSIS; MUSCLES

TAXONOMY: XIPHIAS GLADIUS

Total mercury was uniformly distributed in the edible auscle tissue of three avordfish, demonstrating that a sample of muscle tissue taken from any region is representative of the whole muscle tissue when used for mercury a natyris. The mean plus or ginus Standard Error total mercury concentrations of longitudinal, depth, and transverse muscle sections from three swordfish were: 1.07 plus or minus 0.04, 1.03 plus or minus 0.04, and 0.99 plus or minus 0.08 microgram/gram; 0.15 plus or minus 0.07, 0.15 plus or minus 0.02 xicrogram/gram; and 0.55 plus or minus 0.01, 0.51 plus or minus 0.04, and 0.59 plus or minus 0.01, 0.51 plus or minus 0.04, and 0.59 plus or minus 0.08 dicrogram/gram, respectively.

Recovery of Rainbow Trout From Aluminum Poisoning

Treeman, R.A.; Dep. Fish. Wildl. Biol., Colorado State Univ., Port Collins, Colo.

Trans. Amer. Fish.Soc. (TAPSAI), 102(1), 152-4;

ALUMINUM; POISONING; PISH; METALS; RAINBOW TROUT

Chemical Element Balances and Identification of Air Pollution Sources

Priedlander, S.K.; V. M. Reck Engineering Laboratories, California Institute of Technology, Pasedena, Calif. 91109

Euriron. Sci. Tech. 7(3) , 235-240; 1973

PARTICULATES: HYDROCARBONS: EMISSIONS: POINT SOURCES; ATMOSPHERP; AIR

hir pollution sources of given types, whether natural or man-made, emit a characteristic set of chemical elements in approximately fixed proportions. If the sources in a polluted region are known, the contributions from each source can be estimated by measuring elemental concentrations at a given point and solving a set of slaultaneous linear algebraic equations. The method has been applied over an 11-br. period and of simultaneous linear algebraic equations. The method has been applied over an 11-hr. period and averaged over particle size. For the period in question, about 15% of the porticulate matter resulted from primary matural sources and 25% from primary man-made sources. About 40% of the total results from atmospheric reactions with one quarter produced by the conversion of gas phase hydrocarbons to particulate form. The estimate for this figure is based on a carbon balance. Altogether, about 70% of the total particulate burden has been accounted for with water probably making up a significant proportion of the missing 30%. Improvement and extensions of the method are discussed. 174 Accumulation of Mercury by Fresh Water Planktonic

Pujita, M.; Hashizume, K.; Watl. Inst. public Health, Tokyo, Japan

Chemosphere (CNSHAG), 1(5), 203-7: 1972

DIATONS; MERCURY UPTAKE; UPTAKE; MERCURY ACCUMULATION; PLANKTON; ACCUMULATION; MERCURY; PP ES HWAT PR

TAXONONY: SYNEDRA HLWA

The accumulation of moreury in SYNEDRA ULWA, a freshwater dintom, grown in a medium containing radioactive mercury was examined. The uptake of mercury from the medium by SYMEDRA occured rapidly after addition of mercuric chloride and atrained a maximum during the first 7 hours. The uptake was mainly due to adsorption on the surface of cells. The concentration of mercury in the SYMEDRA was 1.4 - 6.1 x 10(-4) times its concentration in freshwater. This concentration of mercury in SYMEDRA was found to vary, it being influenced by the concentration of mercury or inorganic ions in the culture medium.

Accumulation of Mercury in the Food Chain. River Model.

Pujita, M.; Hashizume, K.; Inst. Public Health, Minist. Health Welfare, Japan

Soda to Enso (STORBS), 24(9), 303-315: 1973

REVIEW: MERCURY: POOD CHAINS: RIVERS: ALGAE: INSECTS

A review with 3 references. Mercury accumulation in nature is discussed using the experimental river food chain (algae, insects, and fish).

Biological Impact of Combined Metallic and Organic Pollution in the Coeur D'Alene-Spokane River Drainage System

Punk, W.H.; Rabe, P.W.; Filby, R.; Parker, J.I.; Winner, J.P.; Washington State Water Res. Cont., Pullman, WA

PB Report Wo. 222946/6, 202p.: 1973

METALS: RIVERS: BIOTA: ORGANIC COMPOUNDS: CONTAMINATION

GEOGRAPHICAL DESCRIPTION: U.S., Spokane River, Coeur D'Alene Piver

177 Trace Retals and Organisms

Fuwa, K .: Pac. Agric., Univ. Tokyo, Tokyo, Japan

Bussei (BUSIBU), 1973, 14(6) 396-401

RTVIEW: TPACE METALS: COPPER: EUGLENA: ZINC: CARBOXYPPPTTDASE: CAPMIUM: METALLOCYAWEIW; **HICROORGANISHS**

Trace Metals and Organisms

Puwa, K.; Pac. Agric., Univ. Tokyo, Tokyo, Japan

Bussel (BUSTBU) 14(6), 396-401; 1973

PEVIEW; TRACE METALS; COPPER; EUGLENA; ZINC; CARBOXIPEPTIDASE; CADMIUM; METALLOCYANEIN; AQUATIC BIOTA

A review with 5 references on the influence of trace metals on organisms. Experimental results of traces of Cu on EUGLERN, the effect of traces of Zn on Carboxypeptidase and traces of Cd in metallocyanein are discussed.

Migration and Leaching of Metals from Old Mine Tailings Deposits

Galbraith, J.H.; Williams, R.R.; Siems, P.L.

Ground Water, 10(3), 33-44; 1972

HIGRATION; LEACHING; METALS; MINES; TAILINGS; TRANSPORT: BACTERIA; MICROORGANISMS

TRANSPORT: BACTERIA; HICROORGHMISMS

Leaching of heavy metals by ground water passing through mine tailings is caused by the oxidation of sulfides through the action of microorganisms. The pH of the ground water entering the tailings system is reduced by mechanisms within the tailings system itself. Action of sulfide-oxidizing and sulfur-oxidizing bacteria cuases the formation of sulfuric acid, thereby increasing the H and SO(4)2 concentration within the system. Hetal ions go into solution as metal sulfates, and the concentration of H2S increases by the interaction of H and S2. Increase in H2S creates an environment suitable for the growth of sulfate-reducing bacteria which converts SO(4)2 to S2 and simultaneously precipitates metal sulfides at a pH near 6.6. Decrease in pH with depth destroys sulfate-reducing bacteria, and dissolution and leaching of the tailings increase. Four lines of evidence demonstrate the presence of microorganisms in the tailings system: (1) Pe-Hn concretions below the water table at Cataldo Mission Flats, (2) fixation of Ma and K below the water table, (3) precipitation of sulfate salts on the surface of Cataldo Mission Plats, and (4) experiments on two sets of tailings samples, one from the surface which showed predominant aerobic activity and one from below the water table which showed predominant aerobic activity and one from below the water table which showed predominant aerobic activity and one from below the water table which showed predominant anerobic activity. Where oxygen is sufficient, iron oxidizing bacteria oxidize Fe2+ to Fe3+ which forms an insoluble hydroxide. Consequenty, very little iron is found in the ground water vith respect to metals.

180
Transport of Trace Pollutants in Lead Mining Wastowaters

Gale, W.L.; Hardie, M.G.; Jennett, J.C.; Aleti, A.

Part of Hemphill, D.D. (Fd.), Sixth Annual Conference on Trace Substances in Environmental Health, Held at Memorial Union, University of Missouri-Columbia, Columbia, NO, June 13-15, 1972 (p. 95-106) 399p.; 1973

LEAD; COPPER: TINC; HINING; PARTICULATES; HILLS; EPPLUENTS; NUTRIENTS; ALGAE; SILVER; ALGAL GROWTH; ACCUMULATORS; HEAVY HYTAIS; UPTAKE; CADMIUM; PH; DISSOLVER OXYGEN; WATER HARDNESS; PLUORIDES; SUSPENDED SOLIDS; PHOSPHATE; HITRATES; MITRITE; AMMONIA; HATER QUALITY STANDARDS; WATER; RIVPRS; BACTERIA; PROTOZOA; ROTIPERS; MEMATODES; MITNE WASTES

The New Lead Relt region of southeastern missouri, Located in a rural heavily wooded region of the Ozarks became the world's largest lead mining district in 1970. A comprehensive study of the water quality in receiving streams has been made during the past year as part of a continuing interdisciplinary effort to define and quantify the effects of the lead mining industry on the surrounding area. Prior to the full development of the mines, the heavy metals content of area streams was insignificant with hackground values for lead, copper, and zinc in the range of 1 to 20 parts per billion. Because of natural conditions present in the New Lead Belt, there is little problem with dissolved heavy metals in regional streams. Results indicate, however, that considerable quantities of finely ground mineral particles may escape floation and tailings reservoirs and be transported through the aquatic environment, especially during periods of turbulence. In addition to escaping minerals, mine and particularly mill effluents sometimes contain nutrients which encourage the development of complex algel and microconsumer communities. These aquatic forms have been found to trap and assimilate lead in significant quantities. These aquatic forms have been found to trap and assimilate lead in significant quantities. These aquatic forms have been found to trap and assimilate lead in significant guantities. The streams receiving mine and mill effluent, there is an inverse relationship between the content of lead in the organisms of the first trophic level and distance downstream from the sources of contamination. We can conclude from these studies that because of stream and geochemical factors in this part of Hissouri, under present water quality conditions, no significant problem of dissolved heavy metals be higher trophic levels, but whether by consumption of contaminated algae and resultant food chain dissomination, or by dislodgement of the contaminated algae and passive dispersion during storm turbulence, or by sediment transpor

181
The Impact of Lead Mine and Hill Effluent on Acquatic Life

Gale, W.L.; Hardie, M.G.; Whitfield, J.; Marcellus, P.

Presented at the Environmental Session of the

University of Hinnesota Hining Symposium, Duluth, Hinnesota; 1974, January 17

LEAD; WINES; MYLLS; SMELTERS; AQUATIC BYOLOGY; ALGAE; ALGAL BLOOMS; ZINC; MUTRIENTS; HEAVY METALS

182
Photosynthetic Organisms and the Nutritional Impact of Mine and Mill Effluents in the New Load Belt of Southeastern Missouri

Gale, W.L.; Wixson, B.G.; Hardie, M.G.; Jennett, C.J.; Dept. of Civil Engineering, Environmental Research Center

MSF-(RAMM) New Lead Belt Project, University of Missouri-Rolla, 28p.

PHOTOSYNTHESIS; PLANTS; ALGAE; WUTRIENTS; MINES; MILLS; EFFLUENTS; LPAD; ZINC; HEAVY METALS; COPPER; ALGAL BLOOMS

183 Algal Growth Problems and Trace Metals Dissemination in Water Resource Studies in the New Lead Belt of S. E. Missouri

Gale, M.L.: Wixson, B.G.; Mardie, M.G.; Jennett, C.J.; Dept. of Civil Engineering, Environmental Research Center

NSF-(RANN) New Lead Belt Project, University of Missouri-Rolla, 36p.

ALGAE; ALGAL BLOOMS; NUTRIENTS; TRACE HETALS; EUTROPHICATION; SHELTERS; LEAD; WINC; CADMIUM; COPPER

184
Distribution of Dissolved Mercury in the Irish Sea

Gardner, D.: Riley, J.P.; Dep. Oceanogr., Univ. Liverpool, Liverpool, England

Nature (London) (MATURS) 241 (5391), 526-527; 1973

MERCURY: SALT WATER; DISTRIBUTION; SEWAGE; SLUDGE

This study of the distribution pattern of dissolved Hg in the Irish Sea shows that significant pollution occurs in the eastern coastal strip. There are two areas offshore in which the dissolved Hg concentration exceeds 200 ng 1.—1; one of there is an area used for the dusping of sewage sludge from Manchester. Nriel sludges are known to contain up to 150 pps of Hg and, in fact, concentrations of particulate Hg of up to approximately 900 ng 1.—1 were observed in the area. The authors suggest that the observed high concentrations of dissolved Hg found at this station were liberated during bacterial decomposition of the sludge. The dissolved Hg content is also relatively high (up to 443 ng 1.—1) in an elongated patch to the west of the Ribble stuary. The very low levels of dissolved mercury to the aorth indicates that the Hg does not originate from the effluents from the chloring-alkali plant on the River Myre. These two areas lie within that part of the Irish Sea yielding fish which have an average Hg content (0.53 pps dry weight) more than double those from the rest of this sea (average 0.21 pps).

185
Copper Induced Lesions in Estuaring Telegats

Gardner, G.P.; LaRoche, G.; Watl. Mar. Water Oual. Lab., U.S. Environ. Prot. Agency, West Kingston, R.T.

J. Fish. Res. Board Can. (JPRBAK), 30(3), 363-368: 1973

COPPER: POISONING: PISH: MUNNICHOG: SILVISIDE: MECHANORECEPTORS: TOXICITY: ZYGOTES: ESTURIES

TAXONOMY: PUNDULUS HETEROCLITUS: MENIDIA MENIDIA

Cellular changes attributable to copper were observed in the mechanoreceptors of the lateral line canals in the head of adult mummichog (Fundulus heteroclitus) and Atlantic sliverside (Menidia menidia), and the canal epithelium was altered in W. heteroclitus. In both species, lesions were observed in the olfactory organs, which included the chemoreceptive sites. These evidences of Cu poisoning were observed at 0.5, 1.0, and ~ mg/l. roncentrations of cu. renal changes were seen in P. heteroclitus exposed to 1.0 and ~ mg/l., and high cu concentrations administered i.p. to P. heteroclitus induced liver damage. Pry of P. heteroclitus were more sensitive to cu than the adults or their zygotes, and lesions were not evident in developing sensory areas of the lateral line or the olfactory systems in these immature forms.

186
Biological Fffects of Cooling Tower Blowdown

Garton, R.B.; Natl. Phviron. Res. Cent., Corvallis, Oreg.

AICHE Symp. Ser. (ACSSCD), 69(129), 284-92: 1973

ZINC; BLOUDOUN; TOXICITY; CHROMATE; TROUT; ALGAE; POWER PLANTS; COOLING TOWERS

TAXONORY: SPLYWASTRON CAPRYCORNOTOR

Both the zinc phosphate and sodium chromate components of a synthetic blowdown mixture duplicating the blowdown discharge from a proposed power company cooling tower were toxic to juvenile steelhead trout and to the green algae, SELPHASTRUM CAPRICONFUTUR. The blowdown mixture was not toxic when the zinc and CrOb components were removed.

197
Recory DDT and PCB in Harbor Seels
Phoca-vitulina from the Ray of Pundy and Gulf of
Haine

Gaskin, D.P.; Prank, R.; Holdrinet, H.; Ishida, R.; Walton, C.J.; Smith, H.

J. Fish Res. Board Can., 30(3), 471-475; 1973

DIELDRIN: PAT: LIVER: DOT: PCB; SEALS: PORPOISES

TAXONDAT: PROCE FITLINA; PROCESSA PROCESSA

Samples of highber, longissisus suscle, liver, and cerebrus from 12 harbour seals (Phoca wituline) were analysed for DDT, dieldrin, PCBs, and total sercuty content. The results were

compared with those obtained previously for harbour porpoises (Phocoena phocoena). DDT and PCB levels appear to be of the same magnitude in the fat of seals from both southern New Brunswick and southern Maine, being lowest in a lactating female. Virtually no o,p*-DDT and relatively little dieldrin were found in seal fat, in contrast to porpoises, which contained significant amounts of both in the depot fat. Mercury levels were generally similar to those found for porpoises, but total liver Hq was considerably greater in adults free the New Brunswick islands than in those from the southern Maine ledges.

188
The Cycling of Mercury Through the Environment

Gavis, J.: Yerguson, J.T.

Water Res., 6(9), 989-1008; 1972

CYCLING: MERCURY

169 Ground-Water Contamination. An Explanation of its Causes and Effects

Geraghty & Miller

A Special Report by Geraghty and Miller, Inc. Consulting Ground Water Geologists, Port Washington, NY: 1972, May

GROTHD WATER: CONTAMINATION: CESSPOOLS: SEPTIC TANKS; STORM SEWERS; WATER SUPPLIES

Groundwater quality has only recently been seen to have deteriorated as a result of many years of dusping liquid wastes into the ground. Yentually this pollution will enter same water supplies. Comeon sources of groundwater pollution are: cesspools and septic tanks; leaky sanitary and store sewers. The expense and technical probless involved in reclaiming a contaminated aquifer are far quater than for surface waters. Inorganic chemicals are relatively indestructible, are pursistent, and are difficult to remove from water. USPHS has set minimum standards for concentrations of substances acceptable in drinking water. Perseability of geologic formations depends on the rock and the nature of the bedding and fracturing. Geologic units are often underlain by a series of layers of rocks each with its own hydraulic characteristics. Waste fluid movement, both rate and direction, are influenced by the configuration and slope of the water table. The greater the slope, the sore rapid the spread of contaminants. Morsel ground water movement is to river or strums, never the reverse. However, when pusping of the aquifer occurs near a stream, ground water levels are lovered and the hydraulic gradient may be reversed. Saline aquifers may contaminate fresh water aquifers if the two zones are connected by abondoned or improperly sealed wells. There is now no Federal law prohibiting dusping of dangerous wastes on the land, and though most states do have such laws, enforcement is lar.

190 Vater Atlas of the United States

Geraghty, J.J.; Miller, D.W.; Van der Leeden, P.; Troise, P.L.

Water Information Center, Inc., Water Remearch Bldg., Manhasset Isle, Port Washington, NY 11050 Inc., Water Research Rldg., Manhasset Isle, Port Washington, NY 11050 N.Y. ISBN: 0-912398-03-X; 1973

WATER: ATLAS: GEOGRAPHY: MAPS: LAKES: RIVERS

191 Toxic Effects of Metcary on the Activated Sludge

Ghosh, M.M.; Zugger, P.D.; Dep. Civ. Eng., Univ. Haine, Orono, Maine

J. Kater Follut. Contr. Ped. (JMP785), 45(3) 424-33; 1473

MERCURY: ACTIVIATED SLUDGE PROCESS; WATER TREATHEST; SLUDGE; MICROORGANISMS; INNIBITION

A preliminary study was conducted to determine the effect of sercory doued as NGC12 on a hatch-fed mystem of sicroorganisms similar to that found in the activated sludge process. The results of this investigation indicate that sercory at concentrations less than 2.5 mg/l as Mq2 + has little effect on the activity of a mixed aerobic bloams. Movever, at a domage of 5.0 mg/l or higher, serobic biological processes are definitely inhibited. The inhibitory effect of sercory is temporary. It is possible for an aerobic biological process to acclimate to a moderately high domage of sercory. The time required for acclimation increases with the domage of mercury applied to the system. At a domage of 5.0 mg/l, a maximum coor removal of 66 percent was accomplished within 5 hours, and that at a domage of 10.0 mg/l was 52 percent, accomplished in 9 hours. The maximum COD removal in the control was 93 percent, occurring within 3 hours.

192
Pharmacodynamics of Pethyl Hercury in the Painbow
Trout (Salmo quirdners). Tissue Uptake,
Distribution, and Excretion

Ciblin, F.J.; Rassaro, P.J.; Dep. Blochem., State Univ. New York, Maffalo, MY

Toxicol. Appl. Pherescol. (TXAPA9), 2% (1), 81-91;

TEPCURY: RETERTION: PATHBOW TROUT: DINETWYLMEPCORY:: PISH: ELIMINATION: PHARMACONYMANTCS: RETHYLMERCURY: UPTAKE: DISTRIBUTION: EXCRETION: BIOACCUMULATION

PATOWONY: SALMO GAIRDHERT

The tissue distribution, rate of uptake and concentration of 208Hq-labeled methylmercury was investigated in 20 different tissues organs over a period of 100 days following a single intrapastric dose of 0.5 mg Hq/kg hody weight. Wercury content was analyzed by gama scintillation spectrometry. After 1 hr, mercury concentration factors >0.1 were detected in the

blood, heart, liver, spleen and tidney (a concentration factor (CF) of 1.0 equals sercury concentrations in dose). Highest sercury concentrations (CF>7.0) were observed in the blood (at 7 days) and spleen (art 14 days). After 100 days, the CF of the blood was >2.0 and the CF values of the spleen, kidney and liver were >1.0. easieum CF values were reached in the skeletal muncle, brain and lens after 34, 56 and >90 days, respectively. Maximum values were reached in most other timsues/organs at approximately 7 days. Skeletal muncle appeared to function as a reservir for sethylsercury and accumulated 50% of the dose from 34 to 100 days post administration. Wethyl sercury accumulation in the brain was limited to 0.1% of the dose. The rate of sercury excretion appeared to be hiphasic as a result of a slow elimination from the skeletal suscle relative to the other tissues/organs. Reploying both and the slow and fast rate, the half-retention time for sethyl mercury in raishow trout was outimated to he >200 days.

193 Prevalence of Huuan Nental Caries and Water-Borne Trace Netals

Glass, P.L.; Rothman, K.J.; Espinel, P.; Velez, H.: Smith, M.J.; Formyth Dent. Cent., Boston, Hass

Arch. Oral Biol. (AOBIAR), 18(9) 10099-10104: 1973

HAGMESIUM; DENTAL CARTES; MOLYBDENUM; VANADTUM; PLUPOIDE: COPPER: MANGAMESE; CALCIUM

warked differences in the prevalence of dental caries have been observed in two isolated villages in Colosbia, South America. These differences approximate those observed between areas of minimal and optimal fluoride inquestion, although each village has less then 0.1 pps fluoride in the drinking water. Nietary histories reveal resarkedly similar dietary practices. Samples of drinking water were collected from these villages, and analyzed by emission spectroscopy for the concentrations of 21 trace elements. In the case of 13 elements, concentrations were at or below the threshold of detection or showed sinisal variability. Concentrations of calcius, magnesius, molyddenum and wandium were higher in the water samples from the village with the low caries prevalence, while concentrations of copper, iron and sampanes were higher in the samples from the village with the higher prevalence. These differences were highly significant. The caries prevalence in the high caries village was typical of the country as a whole.

198 Solution of Waste Water Problems in Hetal Cutting

Goehgen, M.G.: Coloque, Germany

Wertstatt Betr. (WEUBA9), 106(5) 321-8; 1973

REVIEW; RETALS; LUBRICATION; WASTEWATER; OIL EMULSION; SEWAGE

Hercury

Goldwater, L.J.: Clarkson, T.W.

Part of Lee, D.H.K., Metallic Contaminants and Human Health, Academic Press, New York, Chapter 2 (p. 17-55), 241p.; 1972

MERCURY; CINNABAR; CIRCULATION; LITHOSPHERE;
HYDROSPHERE; ATMOSPHERE; WATER; BIOSPHERE; SOILS;
PESTICIDES; MPRCURIC CHLOPIDE; MERCUROUS
CHLORIDE; FISH; SMELLPISH; PUNGICIDES;
ALKYLMERCURY; AFYLMERCURY; ALKOXYALKYLMEPCURY;
PHEMYLMERCURY; METHYLMERCURY; SLIMICIDES; TUWA;
SWORDPISH; FOUD CHAIMS; PEATHERS; BIPDS;
METHYLATTON; BRAIM; TOXICITY; EMZYMES; BLOOD
BRAIM BARRIER; KIDNEYS; PXCRETION; PECYS;
INHALATTON; PMEUMONITIS: ACUTE; CHRONIC;
SWMPTOMS; CONGRUITAL DEFECTS; CEREBRAL PALSY;
METHAL RETARDATION; POISONING; DOSE-RESPONSF
METHAL RETARDATION; POISONING; DOSE-RESPONSF
METHAL RETARDATION; POISONING; BIOLOGICAL HALF-LIFE;
NICE; PATS; SRALS; MONKPYS; POULTRY; CRAB; PIKE;
PLOUNDER; EELS; DRINKING WATER; BLOOD LEVELS;
BLOOD PLASMA; OCCUPATIONAL EXPOSURES; XNIMALS

Mercury is one of the least abundanct elements, namely about 2.7E-6 percent in the earth's crust. The only commercial ore is the sulfide, cinnabar. Usually the concentration in natural waters is less than 0.1 micrograms per liter but occasionally values up to several micrograms per liter and infrequently higher values. In the lithosphere the range is 3 parts per hillion to 1) parts per million. In the atmosphere normal values are 1 to 10 nanograms per cubic meter. There is some circulation of natural mercury, with it evaporating into the atmosphere, being washed out with rain and flowing into the ocean, etc. Man has affected this natural circulation, in some ways and places seriously. Mercury compounds have been used as simicides in pulp and paper plants, organic mercury compounds have been used as fungicides on seed grain and large quantities of mercury and its compounds have been lost and discharged to streams. Some mercury ahs evaporated and more has been emitted into the atmosphere as a result of burning coal. Within the last 5 years, it has been found that some of this mercury is methylated, is concentrated in little fish, and even more so in large predator fish and in fish-eating birds, to the point that there is a hazard to man, which has resulted in serious pathological effects in Minamata, Japan. Almost all the methyl mercury is absorbed in both fish and man and has a long biological half life in both, so that with a small steady intake, the level builds up. Grabhs of build up and excretion are given. Severe cases of organic mercury peisoning have resulted from eating seed grain treated by mercury fungicides or from eating pork fed on such grain. The predominant feature is permanent organic injury to the brain resulting in weakness, paralysis, loss of vision and disturbed cerebral faltention. Severe cases females without obvious symptoms gave birth to infants without obvious symptoms gave birth to infants without obvious symptoms gave birth to infants with ongenital defects such as cerebral paley, ment

196 Effect of Copper on Hematological Indices and Oxidase Activity of Serum Ceruloplasmin in Carp

GOVOTOVA. M.P.

Ref. Zh. Biol, 18, 43-45; 1971

COPPER; HEMATOLOGY; CARP; TOXICITY; OXIDASE ACTIVITY; SERUM CERULOPLASHIN; MILK

The effect of different amounts of Cu obtained from drv mik on hematological indices and the oxidase activity of the serum cerulolplasmin were studied in carp yearlings. The results confirmed conclusions obtained from work on mammals and suggested the desirable and toxic norms of Cu for carp. The ceruloplasmin oxidase activity was proportional to the amount of Cu in the food.

197 Growth Rates of Sediment-Living Marine Protozoan as a Toxicity Indicator for Heavy Metals

Gray, J.S.; Ventilla, R.J.; Wellcome Warine Laboratory, University of Leeds, Robin Hood's Bay, Yorkshire, England

Ambio, 2(4), 118-121; 1973

GROWTH; TOXICITY: LEAD; ZINC; MERCURY; TEMPERATURE SALINITY; FISH; SHELLPISH; EFFLUENTS; LC 50); MARINE ORGANISHS

The classical method for measuring the toxicity of a chemical to a marine organism is by the LC50 test. In this test the concentration which kills 50 percent of the test organisms in 48 or 96 hours is determined and is frequently used to set upper limits for concentrations in effluent discharge. The test can be criticized on a number of points, a) the duration of the test is too short, when effluent discharge will be continuous, b) should the organism survive the test, it may not grow and reproduce at the tested concentration and in nature the organism may avoid that concentration of chemical (important to migratory fish and shellfish), c) on the assumption that toxicity increases with temperature, summer temperatures are used in the test, whereas stress conditions may be greater at lower temperatures, d) the organisms used are frequently at high trophic levels and are adults, whereas lower trophic levels and larvae are known to be more susceptible, e) chemicals are tested singly, whereas in nature mixtures of chemicals occur. In an attempt to allay such criticisms we have used an organism of low trophic level, a bacterivorous ciliate, and have measured changes in growth rate rather than mortality as criteria of pollution. Using factorial designs and response surface analysis, experimental conditions were optimized with respect to salinity-temperatre commations. With near optimum conditions the effects of mercuric ions (MgCl2), lead ions (Pb Mo3) 2) and zinc ions (MgCl2), lead ions (Pb Mo3) 2) and zinc ions (ZnSO3) were tested each at three concentrations in a 3(3) factorial design. MgCl2 at an added concentration of 0.0025 ppm reduced growth rate by 9.7 percent. On mixing the chemicals, significant supplemental synergistic effects were found at all two factor and three factor combinations. Models of the effects and graphical response surface contours are given. Since many chemicals are likely to interact (supplementally or antagonistically), the method used seems of videspread relevance to toxicity

198
Insecticides, Polychlorinated Biphenyls, and
Hercury in Wild Cormorants, Pelicans, their Eggs,
Mood, and Phylronment

Greichus, Yvonne A.; Greichus, A.; Emerick, R.J.; Fxp. Stn., South Dakota State Univ., Brookings, South Dakota

Pull. Environ. Contam. Toxicol., 9(6), 321-8; 1973

The concentration of organochlorine insacticide residues in and around Lake Poinsett, South navota, decreased in the order fish is greater than bottom sediments is greater than water. The levels of polychlorinated biphenyls (PCB) were greater in fish than in bottom sediments and the PCB levels in both bottom sediments and fish were higher than those of insecticides. Mercury residues were not detected in water, bottom sediments, or fish except carp which also had the highest levels of insecticides and PCD residues. The hodies of adult cormonants and pelicans had 250 and 260 times greater insecticide levels, respectively, more PCB. Levels of PCB and insecticides in nestling cormonants apparently reflected the levels in local fish as both the fish and young birds had more PCB residues than insecticides whereas the opposite was true with the adults. The insecticide and PCB levels in cormonant eggs reflected body levels but in pelican eggs they did not.

199
Concuntration of Trace Elements (Exdine, Pluorine, Cobalt, Copper, Zinc, Manganese, and Molybdenum) in The External Environment and Food in an E ndemic Goiterogenic Region of the Kuba-Khachmas Zone of Azerbaidzhan

Grekalova, T.V.; Wauchno-Issled. Inst. Virusol-Mikrobiol. Gig. Im. Musabekova, Baku, USSP

Azerb. Hed. Zh. (AZHZA6), 50(5), 25-9; 1973

TRACE ELEMPNTS; PLUORINE; MANGAWESE; ZINC; COPPER; MOLTEDENUM; TODINE; COBALT; HUMANS; HEALTH; GOITER

GEOGRAPHICAL DESCRIPTION: Azerbaidzhan, Kuha-Khachmas Zone

The content of all the trace elements examined in water resources of the zone was rather low, with fluorine greater than manganese greater than zinc greater than copper greater than solybdonus greater than iodine greater than cobalt. The intake of fluorine by humans was 1/3 - 1/8 of the optimum concentration, that of iodine approximately 1/2, and cobalt less than 1% of the daily requirement. The trace elements were present in soil in the following d ecreasing order: manganese greater than copper greater than cobalt greater than molybdenum greater than iodine. The content of the trace elements was also low in food products, especially of animal origin. Relatively high was , however, the content of iodine in potatoes and wheat, and that of wanganese and zinc in all the examined products (except milk and cheese); rather low were the contents of cobalt, molybdonum, and copper. Children's iodine demand is satis fied only to 76.1%. Todine, copper, molybdonum, and cobalt were considered high ly deficient in this region. I prophylactics in combination with the other trace elements are proposed.

200 Concentration of Some Metals in Aglae from the Sea of Japan

Gryzhankova, L.N.; Smenko, G.N.; Karyakin, A.V.; Laktionova, N.V.; Inst. Geokhim. Anal. Khim. Im. Vernadskogo, Hoscow, USSR

Okeanologiya (OKWOAP) 13(2), 259-63; 1973

ALGAE: METALS: MANGANESE: COPPER: IRON: SALTWATER: MARINE ALGAE: WICKEL: TITANIUM

TAXOHONY: AGARUM CRIBROSUM; ENTEROMORPHA SP; SARGASSUM PALLIDUM

GEOGRAPHICAL DESCRIPTION: Sea of Japan

The concentration of the polyvalent metals Fe, Mn, Cu, Mi, Co, Ti, V, and Cr in 12 algae species from the Sea of Japan was studied. The studies were carried out with the aid of a 36-channel quantumeter, on red, brown, and green algae. Tran concentrations in brown and green algae was n 19-2%, that of Mn, Mi, and Ti n 10-3%, and Cu, Co, and Cr n 10-4% on a dry wt. basis. The AGARUM CRIBROSUM of the brown algae and EMTERNOMORPHA species of the green algae were the strongest concentrators of polyvalent metals. Float bladders of SARGASSUM PALLIDUM were the richest in metals as compared to other parts of the algae.

201
Environmental Lead in the Wetherlands. A Status
Report on the Overall Situation

Guicherit, R.; Res. Inst. Public Health Eng., TNO, Delft, Wetherlands

Part of Proceedings of International Symposium on Environmental Health Aspects of Lead, Amsterdam, Wetherlands, October 2-6, 1972, Organized jointly by Commission of the European Communities, Directorate General of Social Affairs-Health Protection Directorate and Environmental Protection Agency, NUR 5004 d-e-f. Lusemburg: Commission of the European Communities, Directorate General for Dissemination of Knowlege, Centre for Information and Documentation (2644AJ), 807-17; 1973

LEAD; POLLUTION; AUTONOBILE EXHAUST; ATP; WATER

On Some Trace Metals in the Raltic

Gupta, R.S.: Institute of Oceanography, University of Gothenburg, Sweden

Ambio, 1(6), 226-230; 1972, December

TRACE METALS; SALT WATER; MARINE LIFE; WATER QUALITY; ZINC; COPPER; NICKEL; COBALT; IRON; LEAD

This report on the background values of trace metals in the Baltic presents the most comprehensive information available in this particular area of ecology. Prior to the investigations described Lore, very little data had been recorded. This project was started in January 1970 to investigate the state of some January 1970 to investigate the state of some trace metals in the Baltic, their variation in space and time, and their effect on the area's marine life and water quality. The project is still in progress, Samples are obtained from an extensive network of stations in the Baltic and extensive network or stations in the Baltic and are analyzed by atomic absorption spectrophotometry for zinc, copper, nickel, cohalt, iron and lead. Besides presenting the data in this preliminary report, the author examines the relationship between the concentrations of some of the metals and primary production. He suggests that iron and copper concentrations seem to give a fair indication of some of the metals and primary production. water quality in anoxic zones. And he postulates a possible explanation for the chemistry of nickel in sea water-

Supposed Toxicities of Marine Sediments, Seneficial Pffects of

Gustafson, J.P.

World Dredging & Marine Construction p. 44-49:

TURBIDITY: WATER; CLAYS; ADSORPTION; TON EXCHANGE; DAYGEN DEPICIENCY; CADMIUM; CHROMIUM; LEAD; MICKEL; MERCURY; ZINC; CLAMS; CONCENTRATION: DREDGIN

This author maintains turbidity is beneficial in terms of water pollution. The suspension of clay particles promotes the absorption on the clay particles of heavy metal ions, pesticides, polychlorinated biphenyls, etc. Turbid waters offer some shelter, to larval and inmature marine tife that use bay areas as nursery grounds. By preventing the penetration of light turbidity reduces algal growth. In any event the turbidity produced by dredging is small compared to that produced by nature. Preliminary studies showed some erratic changes but no large increase in the concentration of heavy setals in class subjected to excessive turbidity. The author urges further

Polluted Snow in Southern Norway and the Effect of the Helt Water on Fresh Water and Aquatic Organises

Hagen, A.: Langeland, A.: Zool. Lab., Univ. Oslo, Blindern/Oslo, Worway

Environ. Pollut. (EN VPAP), 5(1), 45-57: 1973

SNOW; SULPATES; HITRATES; ZINC; LEAD; HELT; PISH; PHYSIC-CHEMISTRY; INVESTEBRATES; WATER

GEOGRAPHICAL DESCRIPTION: Horway (S)

In vinter. surface water in some oligo-dystrophic lakes in southern Horway differed physico-chemically from what might be expected. Analyses of snow and of ice-trapped and surface water showed that polluted snow had a and surface water showed that polluted show had a considerable influence on the quality of water in lakes and brooks in the winter and spring.

Great quantities of, for example, SO(4) --, MO(3) --, zinc and lead were found together with high acidity. The zinc concentration and acidity found are known to be dangerous to fish. The contaminants in general have probably had a negative effect on fish and invertebrates. It is probable that oligatrophic lakes are more probable that oligotrophic lakes are more susceptible to contamination than dystrophic la

Significance of pH and Chloride Concentration on Behavior of Heavy Hetal Pollutants: Mercury (II), Cadmium (II), Zinc (II), and Lead (II)

Hahne, H.C.H.; Kroontje, W.

J. Environ. Quality, 2(4), 444-50; 1973

HYDROLYSIS: SALT ACCUMULATION: WATER QUALITY: PH: CHLORIDE; MERCURY; LEAD; CADMIUM; ZINC; COMPLEXES

CHLORIDE; MRRCURY; LEAD; CADHLUH; ZINC; COHPLEXES
Calculations were performed (1) to assess the degree to which Hg(II), Cd(II), Zn(II), and Pb(II) complex with hydroxyl and chloride ions and (2) to evaluate the significance of such complexation in natural systems. Results indicate that both the hydroxy and chloride complexes may contribute to the mobilization of these heavy metal ions in the environment.

Hydrolysis of Hg(II) becomes important at pH values above 10 where Pb(II), Zn(II), and Cd(II) hydrolyze above pH 5, 7, and 8, respectively.

Chlorides complex with Hg(II) at chloride concentrations above 10(-9)H (35 x 10(-6)ppm).

HgCl2 forms above 10(-7.5)H Cl. -(1. x 10(-3)ppm), and HgCl3- and HgCl8(2-) formation occurs above 10(-2)H Cl. -(350 ppm). The HCI appears at chloride concentrations above 10(-3)H (35 ppm), and HCl2 complexes occur above 10(-3)H (35 ppm), and HCl2 complexes occur above 10(-2)H (350 ppm).

Hydrolysis and chloride complexation of these heavy metal ions are important factors affecting the solubility of the sparingly soluble salts of these metal ions. This is most pronounced for mercuric salts. Intrinsic solubilities of the metal-ion hydroxides allow for 160 ppm Zn(II) and 107 ppm Hg(II) to be soluble as complexed Zn(OH) 2 and Hg(OH) 2, respectively. These values are higher than calculated solubilities based on solubility products. An example of the complexes shows that at pH 8.5 and a chloride concentration range of 350-60,000 ppm, Hg(II) and Cd(II) are mainly complexed by chlorides. Zn(III) and Cd(II) are mainly complexed by chlorides. Zn(III) and Cd(II) are mainly complexed by chlorides.

206 Mercury in some swedish Lake Sediments

Hakanson, L.; Wational Swedish Environment Protection Roard, Limnological Survey, Rox 554, 5-751 27 Uppsala, Sweden

Ambio, 3(1), 37-43; 1974

HERCORY; LAKES; SEDIMENTS; RELEASE; DISTRIBUTION; SORPTION; PH

GEOGRAPHICAL DESCRIPTION: Sweden, Lake Ekoln, Take Bjorken, Southern Lake Vattern

The significance of mercury as a biologically acrive pollutant has been recognized for more than 15 years. Increased mercury content of bottos sediments and fish characterizes many water systems as a result of industrial and other types of pollution. Due to the release from contaminated sediments, mercury may continue to contaminate the water environment, even if the discharge of the pollutant is halted. Some of the factors that influence the distribution of mercury in lake sediments are discussed are discussed and some quantitative data is given about the situation in three different Swedish lakes; Lake Ekoln, Lake Biorken, and Southern Lake Vattern. Factors that affect the distribution are: the amount and type of mercury discharged; the size, topography, and water turnover of the lake; and the water quality of the lake (pM, nutrition, suspended and dissolved satter). Laboratory tests have indicated that the affinity and distribution of mercury (Mg2+) for inorganic and organic particles show a significant pM dependency. Practically all the mercury in the sediments is adsorbed by organic particles and very little mercury is found in the interstitial water or adsorbed by inorganic materials.

207 Metabolism and Metabolic Action of Lead and Other Meavy Metals

Hammond, P.B.; Coll. Vet. Med., Univ. Minnesota, St. Paul, Minn.

Clin. Toxicol. (CTOXAO), 6(3) 353-65; 1973

REVIEW: HEAVY METALS; METABOLISM; DISTRIBUTION; TPANSLOCATION; ANIMALS

A rayley with 28 references the metabolism of metal compounds their distribution and translocation in animals, and dose-response relationships of the heavy metals are covered.

208
Water Quality Studied on Texas Gulf Coast

Hann, R.W., Jr.; Slovey, J.F.

World Dradging & Marine Construction, p. 30-34; 1972. December

WATER QUALITY; DREDGING; TURBIDITY; SEDIMENTS; DREDGING SPOILS; SEASONAL VARIATIONS; SPOIL DISPOSAL; RUNOFF; MERCURY; LEAD; ZINC; COPPER; CHRONION; CADMIUM

GEOGRAPHICAL DESCRIPTION: U.S. (SW), Texas, Texas Gulf Coast, Houston Ship Channel, Neches River, Sabine River

Water quality problems are presented from the point of view of dredgers. Information on the heavy metal contamination of sediments in the flouston Ship Channel, Neches River and Sabine River is given. Heasurements of the biochemical oxygen demand, chemical oxygen demand, oil and grease proffles and sedimentation rates are included. Problems of minimizing pollution, spoil disposal, spoil area runoff are mentioned Professional study, evaluation and planning should precede actual dredging.

209 Accuration, Retention and Elimination of Zn 65 in Fresh Water Organisms Studied in Pond Experiments

Hannerz, L.

Wational Water Protection Service, Drottningholm, Sweden

p bond 62 x 33 x 4 ft was lined with polyethylene sheets welded together. Water, plants and gravel were introduced and a continuous flow of untreated water from Lake Halar was arranged. One hundered small pikes and about 5000 fry of roach and perch were introduced. In all 3.27 mci 2n 65 was gradually dosed into the water to a mean concentration of about 3 x 10(-6) uCi/Ng. The activity concentrations were continuously recorded in pond water, sediments, plants, invertebrates and fish. Considerable concentrations of 2n 65 were found in the bottom sediments (concentration factor: about 20,000). Zn 65 was taken up in the emergent parts of the water plants to low concentrations. The submersed parts of the plants had much higher concentrations indicating a considerable surface absorption. Several explanations for this surface absorption are conceivable. The attached sicroflora and microfauna are believed to play important roles in this connection. Also in invertebrates high concentrations of 2n 65 were found. The concentration factor for chironomid larvae was 1700, for snails 590 and for leaches 400. The mean concentration factor for pike was about 1250. The variation in concentration between individual fishes was, however, considerable. It was found that the 2n 65 concentration of the fish was inversely related to its length.

The Effect of Some Sulfur and Hercury Containing Pungicides on Pacteria

Hansen, J.C.: Institute of Hygiene, University of Aarhus, Denmark

Chemosphere No. 4, 159-162: 1972

FUNGICIDES; TOXICITY; BACTERIA; INHIBITORY EFFECTS; SOILS; MICRORGANISMS; MERCURY; MERCURIALS

TAXONONY: PSEUDONONAS

As a result of their use in agriculture and horticulture fundicides are introduced into both terrestrial and aquatic environments. In these ecosystems the biomass will react with the foreign compounds. To determine whether fundicides may be able to change the composition of bacterial population 17 fundicides were tested for toxicity to 211 bacterial strains. There is a marked inhibitory effect of the fundicides to bacteria. From the results it was concluded that Captan will be of no risk to a bacterial population, while the dithiocarbamates possess more pronounced antibacterial activity, especially to gram-positive organisms. Provironmental pollution may thus favor higher gram-negative ratio. The same effect was seen with mercurial fundicides; some pseudomonads, especially, show remarkable resistance to wercurials and are often seen as the dominant organisms in heavily polluted sediments.

211
Accumulation and Loss of Cobalt and Cesium by the Marins Clas, NYA AREMARIA, under Laboratory and Pield Conditions

Harrison, P.L.

Part of Radioactive Contamination of the Marine Environment, Proceedings of Symposium held by the International Atomic Energy Agency, Seattle, WA, July 10-14, 1972 (453-470), 786 p.: 1973

BIOACCUMULATION; CLAMS; COBALT; CESIUM; SALTUATER; LABORATORY STUDIES; FIELD STUDIES; MARINE BIOLOGY; COBALT 60; CESIUM 137; KINETICS: TRACERS

TAXONOHY: HYA ARENANIA

The accumulation of Co 60 and Cs 137 by class was followed in the laboratory in aquarium systems in which the levels of radioactive and stable caesium and cobalt were held constant. At 3- to 21-day intervals during the 6-month accumulation period, groups of 8 animals were removed from the water and their soft tissues were dissected into 7 different organs and tissues. The concentrations of both Co 60 and Cs 137 in the edible tissues increased capitly and then levelled off at concentrations of Co 60 that were about 200 times that of the water and of Cs 137 that were about 5 times that of the water. Variations in concentration among the body parts were larger for Co 60 than for Cs 137. The effect of stable element concentration in water on the accumulation rates were assessed in groups of animals saintained in seawater containing 0.5,

2.5 and 12.5 mg/litre each of stable cobalt and caesium. Little regulation of caesium accumulation was observed at these concentrations; the rates of accumulation increased with the concentration in water. Some regulation of cobalt occurred at the higher concentrations. The accumulation of Co 60 and Cs 137 was followed also in clams introduced into a discharge canal receiving radioactive waste from a boiling-water reactor. Groups of 6 animals were sampled at 3-week intervals and concentrations were measured in the pooled, total soft tissues. Results obtained in the field will be compared to those obtained in the laboratory. Loss of Co 60 and Cs 137 was followed in animals that had accumulated a radioactive burden in the laboratory and then were transferred to unfiltered oceanic water at a marine station. Loss of Co 60 by the whole clam was monophasic, that of Cs 137 was biphasic. The kinetics of accumulation and loss were described by exponential equations. The rate constants of accumulation and loss und the steady-state concentration factors are being used in models to predict the dose to man from the consumption of animals exposed to radioactive releases.

212
Content of Lead and Some Other Herry Elements in
Different Fish Species From a Fjord in Western
Norway

Rawre, G.W.; Underdal, 8.; Christiansen, C.; Vet. Coll., Oslo, Norway

Proc., Int. Symp., Environ. Health Aspects Lead {26YVAJ} 1973, 99-111; 1972

ZINC; PISH; LEAD; CADMIUM; SALTWATER

The cadmium content of fish from a Worwegian fjord near a zinc factory was greater than that of fish from the open sea. The Cd and lead content of the fish livers was approximately the same, but the Pb content of muscles from the same samples was approximately 10 times higher than the Cd content. The mean ratio of liver Pb to muscle Pb was about 6, whereas the mean liver Cd/muscle Cd ratio was about 42. A highly significant correlation was found between the 2n content and the Cd content of the liver. The 2n uptake in fish from a polluted area like this was not seriously affected, but the Pb uptake was increased greater than 10 times when the 2n and Pb outlets into the sea were nearly the came. When the outlet of Pb into the sea was greater than 100 times the content of the 2 elements in fish liver was nearly equal, in fact slightly higher for Cd, but the content in fish muscles was about 10 times higher for Ph than for Cd.

213 Cadmium Concentration in Some Pish Species from w Coastal Area in Southern Norway

Havre, G.W.; Underdal, B.; Christiansen, C.

Oikos 28 (1), 155-157; 1973

COASTAL WATERS: PRESHWATER: WATER; HERRING: PIKE; PERCH; COD; COALPISH; WHITING; CADMIUM; PISH

GEOGRAPHICAL DESCRIPTION: NOTWAY (S. Coast)

214
The Use of Pxperimental Streams to Determine
Environmental Pactors Responsible for the
Productivity of Aquatic Communities

Haydu, E.P.: Weyerhaeuser Company, Longview, WA

Weyerhaeuser Company, Longview, WA, report

EXPERIMENTAL STREAMS; PRODUCTIVITY; AQUATIC COMMUNITIES; ANNUAL VARIATIONS; TROPHIC LEVELS; SEASONAL VAPIATIONS; EMPTGY PLOW; NATER

GEOGRAPHICAL DESCRIPTION: U.S. (NU), Washington, Longview

Comprehensive biological studies utilizing outdoor experimental streams have been under way at Weyerhaeuser Company's St. Helens Tree Parm near Longview, Washington, zince 1965. The water for these streams is furnished by a nearly upring which maintains a fairly uniform flow as well as uniform physical and chemical characteristics. The study was designed to proceed in two distinct phanes: (1) develop detailed background information on the seasonal and annual variations in the physical, chemical, and biological characteristics of the streams; determine the flow of energy through the major trophic levels of the aquatic community: (2) manipulate physical, chemical and biological features of the streams to determine their effects on the composition and production of the aquatic community. Phase I is near completion and Phase ? is expected to get under way by the spring of 1971. The overall purpose of the study is to develop a better understanding of the factors responsible for the production of aquatic organisms in fresh water streams in order to better protect and manage this resource. Such an understanding may make it possible to utilize man's waste discharges to surface vaters advantageously by minimizing the creation of nuisance conditions while, at the same time, productivity of desirable species.

215 Characteristics of the Mitrogenase System of the Blue-Green Alga ANABABMA CYLINDRICA

Haystead, A .: Stewart, W.D.P.

Arch #ikrobiol 82(4), 325-336; 1972

BACTERIA: LEGUMES-D: METALLO-PROTEIN: IRON; THIOLS: ATP: MAGNESIUM: COBALT: MANGAN ESP; COPPER: ZINC: IOMS: FRREDOXIN: MIDROGEMASE: WITROJEM FIXATIOM: PROTOSYNTHESIS: ELECTROW TRANSPORT: PLUE GREEN ALGRE: ALGRE

TAVORDRY: AWABABRA CYLINDRICA

The requirements for activity of blue-green algal nitrogenase have been studied. The optimal concentration ranges for ATP and Wa2520% are 2-3 mm and %-10 mm respectively. A segmestes requirement has been confirmed but the enzyme is not specific for Mg2+, Co2+ and Mn2+ will also support activity but Ca2+, Cu2+ and Zn2+ will not. The partially purified enzyme is soluble

and specific activities of 50-100 nucles C2H4/mg protoin/min have been obtained. The biochemical characteristics of the enzyme, as determined in studies using enzyme inhibitors, are similar to those of bacterial and legume nitrogenases in that the enzyme is a metallo-protein containing iron and reduced thiol groups and the redox capacity of the enzyme involves a possible valency change in the iron. The transfer of electrons from H2 via a bacterial hydrogenase has been shown to be mediated, at least in part, by ferredoxin. The role of ferredoxin and the interrelationships between photosynthosis, reductant pool and hydrogen metabolism are discussed in the light of recent results obtained by ourselves and other workers.

216
Radionwclide Transport Studies in the Mumboldt
Pay Marige Environment

Heft, R.B.; Phillips, W.A.; Ralaton, H.R.; Steels, W.A.

Part of Radioactive Contamination of the Marine Environment, Proceedings of Symposium held by the International Atomic Energy Agency, Seattle, WA, July 10-14, 1972 (595-613), 786 p.: 1973

RADIONUCLIDES; TRANSPORT; MARINE BIOLOGY; NUCLEAR POWER PLANTS; LIQUID WASTE; EPPLUENTS; SEDIMENTS; AWALTSIS

GROGRAPHICAL DESCRIPTION: U.S. (V), California, Eqreta, Pumboldt Bay

Operation of the Pacific Gas and Electric Company nuclear power reactor (65 MW (e) boiling water) at Humboldt Bay, Eureka, California, produces as a by-product in low concentration in aqueous solution a number of radionuclides (fission products, Zn 65, Co 60, Mn 58, H3, etc.). At irregular intervals the accumulated radioactive liquid waste is released into the Bay in accordance with limits prescribed by the Atomic Energy Commission and the State of California Morth Coastal Regional Water Control Board. The Lawrence Livermore Laboratory, in co-operation with the Pacific Gas and Electric Company, has undertaken a program to study the transport of the released radionuclides through the Humboldt Bay marine environment. The Ray is considered to be divided into five aqueous pools. Within each pool, the radionuclides are partitioned among some or all of the following compartments — aqueous solution, bottom sediment, suspended sediment, benthic algae, selgrass, phytoplankton. The Apprimental program consists of three main parts — assay of each release for gasma-emitting radionaclides; monthly analyses for radionuclide and stable element concentration in each of the listed compartments; and intercompartment exchange rate studies. Padionuclide release data accumulated since April 1971 is compared with monthly measurements of radionuclide release data accumulated since April 1971 is compared with monthly measurements of radionuclide release data accumulated since April 1971 is compared with monthly measurements of radionuclide release data accumulated since April 1971 is compared with monthly measurements of radionuclide release data accumulated since April 1971 is compared with monthly measurements of radionuclide release data accumulated since April 1971 is compared with monthly measurements of radionuclide release data accumulated since April 1971 is compared with monthly measurements of radionuclide release data accumulated since April 1971 is compared with monthly measurements of radionuclide release data accumulated

217 Chemistry and Occurrence of Cadmium and Zinc in Surface Water and Groundwater

Hem, J.D.; W.S. Geological Survey, Menlo Park, CA 98025

Water Resources Research, 8(3), 661-669; 1972, June

CADRIUM: ZIWC: SURPACE WATER: WATER: CARBOWATES: HYDROXIDES: ACCUMULATIOF: CHROMIUM: COBALT: LEAD: MPPCUBY: SULFATES: SPHALERITE: PLATING: WASTE WATER: GROUND WATER: REMOVAL: SORPTION: SILICATES: ATOMIC ABSORPTION SPECTROPHOTOMETRY

GPOGRAPHICAL DESCRIPTION: U.S.

The sedian concentration of zinc in 726 filtered samples of water taken from rivers and lakes of the United States in November 1971 was close to 20 microgram/1 and the sedian concentration of cadmins was a little below 1 sicrogram/1. The concentrations of both elements tended to be consistently higher in water from northwastern and southeastorn states. Chemical thermodynamic calculations summarized by solubility graphs suggest that the carbonate and hydroxide solubilities of these elements are higher than incommentations commonly found, but for 24 of 80 analyses for which chemical equilibrium computations could be made, saturation with respect to one or both of the metals was closely approached. Finc solubility way also be controlled by silicate in some waters. Biological factors and sorption by stream sediments may also be significant controls. Concentrations of cadmium above 10 microgram/1 may be stable in water having low total solute concentrations and pH and can be difficult to remove by conventional water treatment processes.

218
Availability of Trace Elements to Plants with Respect to Soil-Palat Interaction

Hemphill, D.D.

Part of Ropps, H.C. (Ed.), Cannon, H.L. (Ed.), Annals of the New York Academy of Sciences, Volume 199, Geochemical Environment in Relation to Health and disease (p. 46-61); 1972, June 28

SOILS; PLANTS; TRACE ELEMENTS; AVAILABILITY;
MYCROGGAMISMS; PH; TEMPERATURE EFFECTS; MOISTURP
EFFECTS; SPECIES VARIATIONS; ORGANIC MATTER;
MYCROGGAMISMS; PH; TEMPERATURE EFFECTS; MOISTURP
EFFECTS; SPECIES VARIATIONS; ORGANIC MATTER;
MYTROGER; OXIGEH; ACCUMULATORS; PROSPECTING;
BIOLOGICAL INDICATORS; SILICOM; ALUMINUM; IRON;
CALCIUM; SODTUM; POTASSIUM; MAGNESIUM;
MYAMADIUM; ZINC; COPPER: COBALT; MOLVEDENUM;
IOFINE; DEPICTYMC; CAPES; PERTILIZERS;
TOXICITY; BANAWA; CITRUS; SWEET CHEERY; RASBERRY;
CHLORIUM; BOROW; MPTARE; ADSORPTIOM;
THTERACTIONS; COMPETITIOM; CATION EXCHANGE
CAPCITY; RGOTS; POOT MORPHOLOGY; GEMETIC
CONSTITUTIOM; CHRONIUM; STEMS; PLANT DISEASEX;
CATTLE; SHEFF; ANWALS; FORAGE; CITRUS; APPLES;
GLADIOLI; GOITER; SRITHATER; RQUATIC PLANTS;
CORN; LETTUCE; LFAD; HIGHWAYS; SHELTERS; OATS;
SUNAR REETS; ALPALYM; CABBAGE; CEPTALS;
PIWEAPPLE; TOMATORS; SPIWACH; MOLYBDEMOSIS;
SULVATES; SELENIUM; FRUIT TPEES; PEACHES; BARLET;
WEGETABLES; RIVERS; IRRIGATION; ITAI ITAI
DISEASE; MERCURY

TAXONONY: ASPERGILLUS NIGER

The main Gource of major and trace elements for man and animals is plant materials. The adequacy

or deficiency of plant materials in supplying the dietary needs of animal life depends upon several factors. The concentration of all minerals in plants depends upon the interaction of the plant species with the soil and environmental conditions during growth. The total amount of an element in the soil is not necessarily a reliable guide to the amount that is available. Various extractants are used to determine available levels of elements; these tests may be well correlated with the uptake by certain species but are not valid for other species. Chemical extractants may not indicate the interactions of elements that influence availability and cannet indicate the influence of environmental factors of soil moisture and temperature. However, the genetic constitution of the plant plays a major role in mineral element uptake, and the selenium accumulator species provide an outstanding example of this genetic effect. The ability of a plant to accumulate minerals from a specific soil can be determined only by analysis of the plant parts. A detailed paper with 55 references. See koywords for items not covered in abstract.

219 Contamination with Lead of Water in Bastern Belgium

Heusghen, C.; De Graeve, J.; Lab. Chim. Hed. Toxicol. Ryg., Univ. Liege, Liege, Belg.

Trib. Cebedeau (Cent. Belge Etude Doc. Fauk Air) 26(354), 204-15; 1973

LEAD: WATER: CONTAMINATION; UPTAKE

220 Lead Content of Water Supply in East Belgium

Heusgher, C.; De Graeve, J.; Lab. Toxicol., Univ. Liege, Liego, Belgium

Part of Proceedings of International Symposium on Environmental Realth Aspects of Lead, Austerdam, Metherlands, October 2-6, 1972, organized jointly by Commission of the European Communities, Directorate General of Social Affairs-Health Protection Directorate and Environmental Protection Agency, UR 500% d-e-f. Luxemburg: Commission of the European Communities, Directorate General for DissoJination of Knowledge, Centre for Information and Documentation (267VAJ), 85-92; 1973

LEAD: DRINKING WATER: WATER PIPES

GEOGRAPHICAL DESCRIPTION: Belgium, Verviers

The lead content of the drinking water of the town of Verviers (Relgium) was 1-1.5 mg/l. Lead plumbing was the main contributing factor.

221 Drinking Water Contamination by Lead in Rastern Belgium

Heusghes, C.; De Graeve, J.; Lab. Chim. Hed. Toxicol. Byg., Univ. Liege, Liege, Beig.

Trib. Cebedeau (Cent. Belge Etude Doc. Eaux Air) (TCRBAR), 26(35a) 204-15: 1973

LEAD; CONTAMINATION; DRINKING WATTR; WATER

.

and the state of t

GEOGRAPHICAL DESCRIPTION: Belgium

227
Copper and Tinc in Estuarine Waters Wear a
Coal-Fired Electric Power Plant. Correlation with
Cyster Greening

Hill, J.M.; Helz, G.R.; Dep. Chem., Univ. Maryland, College Park, MD

Environ. Lett. (EVLTAX) 5(3), 165-74; 1973

COPPER: ZINC: ESTUARIES: COAL: POWER PLANTS: OYSTERS: BIOACCURGIATION: WATER

GFCGRAPHICAL DESCRIPTION: U.S. (NE), Maryland, Chalk Point Power Plant

Oysters in waters around the Chalk Point Power Plant, Waryland, accumulate copper, especially in the summer; however it appears that the power plant itself is not the primary copper source. A series of water samples collected in the summer of 1972 and analysed for both Cu and Zn reveal first, that the concentration of both metals increased during the summer, second, that this increase was greatest in hottom waters, and third, that waters near the power plant contained more copper than those elsewhere. Horizontal distribution of copper in the water agrees with the previously observed horizontal distribution of copper accumulation in oysters. The maximum Cu concentration observed in the water was 31.5 ag/1; maximum Zn was 50.4 mg/l. It is suggested that the power plant's cooling water, which contains dissolved oxygen and is chlorinated during the summer, is oxidizing metal-rich organic matter and sulfides in the sediments near the plant, releasing Cu and Zn to the water.

223
The Physico-Chemical Behavior of Radioactive
Cerium in Seawater

Hirano, S.; Koyanagi, T.; Saiki, M.

Part of Radioactive Contamination of the Marine Environment, Proceedings of Symposium held by the International Atomic Pherry Agency, Scattle, WA, July 10-14, 1072 (47-54), 786 p.: 1973

PHYSICO-CHEMISTRY: RADIOACTIVITY: CERIUM: CERIUM 144: TRACERS: SALTWATER; PH

An investigation has been carried out since 1969 on the nature of chemical species and existing states of radioactive cerium in seawater by means of filtration, ion-exchange and solvent extraction with carrier-free Ce 188 as a tracer in pursuit of the physico-chemical behaviour and its effect on biological concentration. From the results of the experiments it was corolated that radioactive cerium added into seawater exists mainly in dissolved forms and 20 - 25% of cerium becomes particulate forms having a diameter more than 0.0% mp after the aging for 40 days; almost

all of the radioactive cerium exists as ionic species in seawater or easily dissociates into ionic forms even after being associated with other anions present in seawater; although the ionic forms or easily dissociable species are the dominant existing states in the seawater with lowered pH below %, radioactive cerium is hydrolysed slowly when the pH is greater than 6 and forms complexes by hydroxide or chloride ions in seawater or changes to polymerized forms; and it was reported that the residence time of natural cerium in the sea is about 80 years and the forms of precipitation for natural cerium is Cen2. Threfore, it is inferred that the equilibrium between natural cerium and radioactive cerium added in seawater is achieved after a considerable time.

220
Retention of Fall-Out Constituents in Toper
Layers of the Pacific Ocean as Estimated from
Studies of a Tuna Population

Hodge, V.F.: Polson, T.R.: Young, D.R.

Part of Radioactive Contamination of the Marine Environment, Proceedings of Symposium held by the International Atomic Energy Agency, Seattle, #A, July 10-14, 1972 (263-275), 786 p.; 1973

RETENTION: SALTWATER: PLUTONIUM: PLUTONIUM 239; ZINC: ZINC 65; COBALT 60; COBALT: MANGAMESS 54; MANGAMESS; CESIUM 137; CESIUM: ATTENDATION; PISH; TUNA: PEPSISTENCE; SILVER; SILVER 108M; STLVER 110M; ALBACORE

Repeated measurements of cobalt-60, zinc-65, manganese-54, caesium-137, milver-110m, silver-108m, and plutonium-239 in several organs of albacore tuna suggest that the upper layers of the north Pacific Ocean can retain large fractions of several species of trace elements for periods of a decade or more. For example, caesium-137 concentrations in the livers and muscle tisques of North Pacific albacore caught from 1965-1971 decreased to half in about 10 years. In comparison, the reported mate of imput from fall-out during this period decreased more rapidly, closest to half in one year. This muggests a strong retention of caesium-137 in the upper water masses which are accessible to the fish. It is of interest to note that long environmental persistences in the upper creanic layers are also indicated for some other nuclides that are much more highly accumulated by organisms than is caesium. For example, cobalt-60 and silver-108m concentrations in albacore liver tissues fell to half during this period in 2.6 and 7.1 years respectively. Plutonium-239 concentrations in the livers decreased to half in about 3.5 years. The attenuation rate of zinc-65 was discontinuous between 1965 and 1968. This fact, along with observation of comparatively high ratios of zinc-65 to cobalt-60 in tunas of the southern heuisphere following 1968, suggests that new large weapons were tested that gave off relatively large amounts of zinc-65.

225 Chemistry of Trace Elements in Soils with Reference to Trace Element Concentration in Plants

Hodason. J.P.

Part of Heaphill, Delbert D. (Ed.), Proceedings of University of Missouri 3rd Annual Conference on Trace Substances in Environmental Health, XIII 391 p. University of Missouri: Columbia, WO, 45-58: 1970

ROCK: CHEMISTRY: ANIMALS: LEACHILE; ORGANIC
NATER: ADSORPTION: ABSORPTION: PARTICLE SIZE
SORPTHE; PH: OXIMATON: BOROW: IRON: HANGAWESE:
COPPER: ZIWC: COBALT: HOLYBDENUH; WICKEL;
CHPORIUM: SPLEWIUM; AMSERIC: LEAD: VANADIUM:
TRACE FLEMENTS; SOILS: PLANTS; CYCLE;
ENVIRONMENTAL PACTORS; BARTLLIUM; BROWIMM;
CADHIUM; INDIME; STRONTIUM; AVAILABILITY: COMPLEX
PORNARYOM

The interrelationship in the content of trace clements among rocks, soils, plants and animals in any particular geographical location are complex. The factors influencing plant elemental composition are: '. elemental content of rocks that five rise to soil; 2. soil forming factors: 7. availability of elements in soil; 2. plant interaction with its environment; and 5. the hostility of the environment. Mone of these factors can be excluded when considering the 'race element content of plants.

2/6 Matural Dispersion of Mercury from Publipubi, Northland, New Zealand

Hoggins, P.T.; Brooks, P.R.; Dep. Chem., Biochem., Hiophys., Hassey Univ., Palmerston Worth, R.Z.

New Realand Journal of Marine and Treshwater Ras. (MZJABS), 7(1-2) 125-32; 1973

MERCURY: RIVERS: WATER: HOLLUSCS: DISPERSION

GEOGRAPHICAL DESCRIPTION: New Zoaland, Mcrthland, Puhipuhi

227 Mercury in Pish and Shallfish. Periew

Holden, A.V.; Freshvatur Fish. Lab., Pitlochry, Scotland

J. Food Technol. 4(1), 1-25; 1973

PISH: REVIEW: MERCURY; SHELLPISH

228
Present Levels of Mercury in Man and MIs
Environment

Holden, A.V.

Part of Technical Report Po. 137, Rercury Contamination in Was and his Environment, International Atomic Energy Agency, Vienna, Austria (p. 163-68), 181 p.; 1972, July

MERCUFY: CONTAMINATION; HUMANS: BIRDS: FISR; FUNGICIDES: CHLOR-ALKALI PLANTS; ELECTRICAL APPARATUS; FOSSIL FUFLS: STELTERS; PAINTS; CATALYSIS; PULP: PAPER MILLS; ATMOSPHERS; MAXINTH ACCEPTABLE CONCENTRATION; RAIN; SHOW; RIVERS; MEDITON ACTIVATION ANALYSIS; COLORINETPY; GAS CHRONATOGRAPHY: SUSPENDED MATTRE; SALTWATER; COMPLETES; SOILS: SEDIMENTS;

METHYLMERCURY: PLANTS; TREES; VEGETABLES;
CABBAGE: CARROTS: UPYARE; BIOACCOMMULATION; SENDS;
GPASSES: YLOUR; RICE: TOBACCO; RESIDUES; AQUATIC
PLANTS; CJMCTMITATION FACTUR: ADSORPTION; ALGAE;
INVERTEBRATES; PRUIT PLIEJ; EGGS; FISH; PIKE;
SHELLFISH; OYSTERS; LOBSTERS; CRAB; HUSSELS;
EUTROPHICATION; OLIGOTROPHIC; POODS; TOXICITT;
SEED DRESSINGS; PENTHEPS; LIVER; KIDNEYS;
PHEASANTS; HATCHABILITY; DDT; BRAIN; DEER;
ANTHALS; RABBITS; FARTIMS; SKUNKS; POXES;
MOSKRATS; SEALS; RATS; UPINE; BLOOD; HAIR;
MERCORY 203; PECES; BIOLOGICAL HALF-LIPE

Untike many toxic substances produced synthetically by Man, sercury occurs naturally in organic combination in living organisms. With the addition of mercury in wastes discharged to the environment from mining operations, by the environment from mining operations, by industrial uson, through the disposal of medical preparations, or by its incorporation in agricultural chemicals, populations of many species of wildlife now have elevated levels of mercury. In some areas, the original natural levels of mercury in the flora and fauna may not be difficult to determine. In living tissues mercury appears to exist almost entirely as mothylmercury, probably bound to proteins. Sacterial or enzymatic processes can convert other inorganic or organic forms to methylmercury. The natural mercury levels in both fresh water and marine fish are generally less than 0.2 mg/kg in ruscle tissue, and the natural than 0.2 mg/kg in ruscle tissue, and the natural level in birds is probably of the same order. Host analyses of birds have, however, been made on liver and kidney, rather than on muscle tissue as used for field investigations on fish. as used for field investigations on fish. Relatively fewer uncontaminated samples of birds have been examined. The distribution of mercury between tissues, in fish, birds and mammals, is such that kidneys and liver contain the highest concentrations, those in muscle, brain and blood being significantly lower, although this is only a generalization. Hany populations of fish and birds examined in Scandinavia and Morth America, in areas where mercury is used by industry or in agriculture, have been found to contain concentrations at least one order higher than the upper limit of the estimated matural range. Individual birds found dead, or dying in experimental work on mercury poisoning, have contained 30 mg/kg or more in liver.

Concentrations of a similar order have been found in humans dying or organomercury poisoning, and there is some evidence that marine fish found dead off Japan contained about 20 mg/tg in muscle tissue. The concentrations of mercury present in some populations of birds and fish have been found to be abnormally high as the result of pollution but, with the exception of some species of birds in Sweden, there is little evidence that of birds in Sweden, there is little evidence that these elevated concentrations have as yet had any direct toxic effect whereby the species have been placed at risk. However, the levels sometimes found in fish and birds may render them unacceptable as human food. The maximum persimulations of sercury established in some countries are 0.5 or 1.0 mg/kg, values only 2.5 or 5 tir. To the approximate upper limit estimated for many ritural populations. Thus, such populations can tolerate only small increases in mercury concentrations if they are to remain acceptable for human consumption. 229
Midration and Redistribution of Zinc and Cadmium
in Marine Estuarine System

Holmes, C.W.; Slad, E.A.; McLerran, C.J.; U.S. Geological Survey, Corpus Christi, Texas 78411

Fnv. Sci. Technol. 8(3), 255-259; 1974

HIGRAPION; REDISTRIBUTION; ZIMC; CADMIUN; SPRIMENTS; SALTWATER; PSTUARTES

GEOGRAPHICAL DESCRIPTION: U.S. (W), Texas, Corpus Christ! Bay

A survey of trace-element levels in the estuarine sediments of Texas shows that Corpus Christi Bay has anomalously high concentrations of zinc and cadmins. Maps of elemental abundance within the bay indicate large concentration gradients, the highest values being mear the harbor entrance. Seasonal determinations of metal levels in the harbor and bay waters also revealed variations with time. During summer, stagnation of the harbor water increases the concentration of metals so that significant quantities precipitate in the reducing environment of the bottom water. In winter, the exchange of water between the bay and the harbor increases, and metals are redissolved from harbor deposits, washed into the bay, and adsorbed by particles settling to the hottom.

230
Geochemistry and Transport of Manganese, Iron,
Cobalt, Copper, Zinc, Cadalum, and Lead in the
Fresh-Water and Estuarine Environments of the Big
Cypress-Frerglades Region of Florida

Horvath, G.J.; Florida State Univ., Tallahassee, Pla.

Univ. Microfilms, Ann Arbor, Mich., Order No. 73-25, 116, Diss. Abstr. Int. B 1973, 34(4), 1574-5

WATER: SWANPS: ESTUAPIES; GEOCHENISTRY; HANGANESE; IRON; CODALT; COPPER; ZINC; CADMIUM; LEAD

231
Accumulation of Soluble and Particulate Fadionuclides by Estuarine Fish

Hoss. D.: Paptist. J.

National Marine Pisheries Service, Beaufort, NC). 1971. Prom 3rd national symposium on radioecology; Oak Ridge, Tennessee, USA (10 May 1974).

CERIUM 104; CHRONIUM 51; ESTUARIES; FISH:
RADIOECOLOGI; FOOD CHAINS; GASTROINTESTINAL
TPACT; MUSCLES; RADIONUCLIDES; KINETICS;
SEDIMENTS; UPTAKE; WATER; ZIKC 65

A series of experiments was conducted to measure the accumulation of Zn 65 (soluble in seawater) and Ce 144 and Cr 51 (particulate in seawater) by estuarine fish, musmichog (Fundulus heteroclitus), flounder (Paralichthys sp.),

Atlantic croaker (Micropogon undulatus), and menhaden (Brevoortia tyrannus). Comparisons were made between (1) accumulation of 2n 65 and Ce 144 from food and from water, and (2) accumulation of 2n 65 and Cr 51 in the presence and absence of sediment substrate. Under experimental conditions the presence of a sediment substrate reduced the accumulation of both 2n 65 and Cr 51 by Atlantic croaker. Of the tissues analyzed, croaker muscle accumulated the least amount of both isotopes. Higher levels of 7n 65 were accumulated by mumichog from food than from water. In contrast neither mummichog nor flounder accumulated appreciable amounts of Ce 144 from food. Accumulation of Ce 144 in the gastrointestinal tract of menhaden vas attributed mainly to swallowed seawater.

232 Mercury Concentrations in Fish of the Great Swoky Mountains Wational Park

Huckabee, J.W.; Oak Ridge National Lab., Tenn.

ORNL-IM-3908, 17 p.: 1972, November

PLY ASHES; COAL; MERCURY; PISH; MERCURY POLLUTION; ATOMIC ABSORPTION SPECTROPHOTOMETRY; HATMBOW TROUT; BROOK TROUT; STONEROLLER; TROPHIC LEVELS; BIOCONCENTRATION; CHRONIC EXPOSURES

TAXONONY: SALMO GAIRDNERI; SALVELINUS PONTINALIS; CAMPOSTOMA ANOMALUN

Excessive mercury concentrations ostensibly due to pollution have been resported in fish tissue from Asia, worth America, and Europe. However, the concentrations of mercury occurring naturally in fish tissue have not been well defined; published values range from 0.02 ppm to 0.2 ppm mercury. Organisms free from mercury pollution are difficult to find due to the wide distribution of mercury-containing fly ash deriving from the burning of coal. In order to obtain data on mercury concentrations in fish at or near natural background levels, 121 fish of three species were collected from high altitude streams 15-20 miles from the nearest fly ash or other pollution source. Mercury analysis was by flameless absorption spectrophotometry. There was no significant difference in mercury. Concentrations among fish analyzed whole, with gastrointestinal tract removed, or a strip of axial musculature. There was no significant difference in mercury concentration in all samples of one species and each separate sampling of one species. There was no systematic change in mercury concentration in the fish along an elevational gradient. The mercury concentration (mean values in ppm) were: rainbow trout (SALMO GATROMERI), 0.036; brook trout (SALVELINUS PONTINALIS), 0.018; stoneroller (CAMPOSTONA AMONALUY), 0.039. There was no evidence of trophic level concentration of mercury, since the primary consumer stonerollers had a higher mean mercury concentration than the secondary consumer Rainbow trout collected at the same sampling station. These results indicate that all fish acquire about the same tissue concentrations of mercury at chronic exposure to very low levels.

213
Reutron Activation Analysis for Studying the Role
of Humic Acids During Transport of Trace Plements
in the Marine Diocycle

Hulfer, D.: Strohal, P.

Part of Nuclear Activation Techniques in the Life Sciences, Vienna International Atomic Energy Agency, 1972, 385-390. Prom Symposium on Nuclear Activation Techniques in Life Sciences, Blad, Yugoslavia, CONF-720N25: 1972, April 10

ACTIVATION ANALYSIS; ANTIHOMY; CESIUM; COBALT; EUROPIUM; HUNIC ACIDS; IRON; MULTI-ELEMENT ANALYSIS; NEUTRONS; QUANTYATIVE CHEMICAL ANALYSIS; SCANDIUM; SELEMIUM; SILVER; STRONTIUM; TRACE AMOUNTS: TRANSPORT: BIOCICLE

The role of humic acids in the transport of trace elements in marine biocycle has been investigated by means of neutron activation analysis. It is a well-known fact that humic acids can accusulate certain trace elements, but little is known about their selectivity under certain physico-chemical conditions. Humic acids isolated from the Worth Adriatic sediments were hydrolysed to their main components, namely to amino acids, phenols, sugars and condensed benzene core. Each of the mentioned components can also fix some trace elements. Degradation of humic acids in the environment occurs by the action of microorganisms and during this step certain trace metals become available to marine animals through standard physiological processes. In this work neutron activation analysis was applied to the qualitative and quantitative determination of trace elements in humic acids of marine origin, and in their hydrolysis products. The trace elements measured were Ps, Co, Sc, Sh, Fu, Cs, Se, Ag and Sr. The concentrations obtained ranged from 10(-2) to 10(-8)g of a certain microconstituent per gram of sample. The results concerning the role of humic acids in the cycle of trace elements in marine biocycle are discussed. The experimental data are compared with the laboratory experiments dealing with the determination of stability constants for metal complexes of humic acids and their hydrolysis products. From these data it is possible to suggest the ecological importance of trace elements honded to humic acids in a certain region.

234 Cadmium and Zinc Toxicity and Synergism to Ploating Aquatic Plants

Hutchinson, T.C.: Czyrska, H.; Department of Botany and Institute of Environmental Sciences and Engineering University of Toronto, Toronto, ontario

Water Pollution Research in Canada 1972, 59-65, Institute of Environmental Sciences and Engineering Publ. No. EI-3; 1972

CADMIUM; ZINC; TOXICITY; SYMERGISM; AQUATIC PLANTS; UPTAKE; GROWTH

Ploating aquatic plants have been used in a study of the uptake, toxicity and synergism of cadmium and rinc. Both of the species used were found to accumulate the metals, from even very low levels in solution. Cadmium at 0.01 ppm had an inhibitory effect on growth; and 0.1 ppm was enough to cause death. A concentration factor of

up to 9500 times occurred; with clear implications of potential food chain effects. Interspecific competition was found to be a further factor influencing metal toxicity. Interspecific competition was found to be a further factor influencing metal toxicity. In hatural "field" situations, biological competition is the norm. Cadmium and zinc acted synergistically together. Zinc markedly increased the inhibitory effect of cadmium, even though it was itself stimulatory. The presence of one metal also increased the uptake of the other. The ecological implications are discussed.

235
Removal of Metal Ions and Oil from Waste Water

Ichiki, N.: Makade, K.: Mitsui Wining and Smelting Co., Ltd.

Ger. Offen. (GWXXBX) 2313640 (C 02C), 11 p.; 1972, March

WASTE WATER; HETALS; REMOVAL; CADMIUM; LEAD; OIL; ELECTROLYSIS; ALUMINUM; ZIMC; ALLOY; ANODE; COAGULATION; POLTACRYLAMIDE; PLOTATION

236
Determination of the Diffusion Coefficient of Radioelements in the Rhone Sediments

Tjuin, M.: Picat, P.: Saas, A.: Grauby, A.: Department of Environmental Contamination, Matl. Inst. Radiol. Sci., Chiba, Japan

Health Physics (RLTPAO), 24(6), 665-672; 1973

RADIONUCLIDES; SEDIMENTS; RHOME SEDIMENTS; CERTUM 141; CESIUM 137; HANGANESE 54; STRONTIUM 85; ZINC 65; ANALYSIS; DIPFUSION; CERTUM; COBALT; CESIUM; HANGANESE; STRONTIUM; ZINC

The transfer phenomena of cerium-141, cobalt-60, cesium-137, manganese-54, strontium-85 and zinc-65 in the Rhone sediments were studied in the laboratory. The transfer of the various radicelements in the environment concerned obeys Pick's second law of diffusion. The diffusion coefficients (D) of strontium-85 and manganese-54 were determined. They are respectively 2.1 x 10(-2) cm (2)/day and 1.1 x 10(-2) cm (2)/day. The values of the diffusion coefficients of the other elements were not determined accurately enough due to their fixation very near the sediment hed surface. However, they are expected to follow the same diffusion law according to the experimental protocol used. The stable elements in the Rhone sediments were analysed by various spectro-photometric methods and by neutron activation.

237
Radioactive Contamination of the Marine Environment

International Atomic Energy Agency

Proceedings of a Symposium, Seattle 10-14, July 1972, 786 pp., Vienna; Symposium on the Interactions of Radioactive Contaminants with the Constituents of the Marine Environment; 1973

RADIONUCLIDES; RADIOACTIVITY; MARINE BIOLOGY; CONTAMINATION; SALTWATER

238
Result of Pluvial Zinc Pollution on the Zinc
Content of Littoral and Statutoral Organisms in
Cardigan Ray, Wales

Treland, M.P.; Dep. Zool., Univ. Coll. Wales, Aberystwyth/Cardiganshire, Wales

Environ. Pollut. (ENVPAP) 4(1), 27-35; 1973

TINC: SEAWERDS: MOLLUSCS: MARINE ORGANISMS: FILTER FEEDERS: DISTRIBUTION: SALTWATER

TAXONDHY: LITTORINA LITTOREA

GEOGRAPHICAL DESCRIPTION: Wales, Cardigar Bay

Following fluwiel zinc pollution, the concentration of zinc in seawed was related to that in the external medium, while the zinc in the mollusk Littorina littorea reflected that found in the food supply. An anomalous distribution of zinc in filter-feeding animals might indicate a species specificity for metal uptake.

239
Distribution of Alkyl Arsenicals in Model
Prosystem

Isensee, A.P.: Kearney, P.C.: Woolson, E.A.: Jones, G.E.: Williams, V.P.: Agricultural Environmental Quality Institute, Agricultural Research Center, ARS, U.S. Department of Agriculture, Beltsville, ND 20705

Env. Sci. Tech., 7(9), 841-845; 1973, September

CAPPON 14; BIOMAGNIFICATION; ALKYL ARSENICALS; MODEL ECOSYSTEM; C14-LABELED CACODYLIC ACID; DIMETHYLAPSINE; DMA; POOD CHAINS; ALGAE; SHAILS; FISH; APSENIC; AQUATIC ECOSYSTEMS

TAXONOMY: DAPHNIA MAGNA

Distribution of carbon-14-labeled cacodylic acid (CA) and disethylarsine (DHA) among aquatic organisms in a model ecosystem was studied. Pish, DAPHMIA HAGNA, snails, and algae were exposed to CA and DMA for 3, 29, 32, and 32 days, respectively. Lower food chain organisms (algae and DAPHMIA) bioaccumulated more CA and DMA than did higher food chain organisms (snails and fish). Amounts accumulated indicate that CA and DMA do not show a high potential to biomagnify in the environment. An increase in biomass (primarily algae) over 32 days largely accounted for a gradual loss of CA and DMA from solution.

240 Chemical Behavior of Ruthenium-106 in Seawater and Uptake by Marine Organisms

Ishikawa, M.; Sumiya, M.; Saiki, M.

Part of Radioactive Contamination of the Marine Environment, Proceedings of Symposium held by the International Atomic Energy Agency, Sestile, WA, July 10-14, 1972, (359-366), 786 p.; 1973

RUTHENIUM; CHEMISTRY; SALTWATER; MARINE BIOLOGY; PHYSICO-CHEMISTRY

TAXONOMY: MERETRIX LAMARKI

The physico-chemical behavior of prepared ruthentum-106 chloro- and nitrosyl chloro-complex species were investigated by filter paper electrophoresis using 0.1% Mac10(4) as a supporting electrolyte. Ruthenium-106 chloro-complexes (III,IY) in a seawater system were fractionated physico-chemically into at least four "anionic", one "neutral" and one "cationic" species. The electrophoretic mobilities of fractionated ruthenium-106 species in seawater were found to be constant for the nitrosyl chloro-complexes (III) during the aging period from 2 to 200 h, but remarkable changes were observed on the electrophoretic patterns of ruthenium-106 chloro-complexes throughout the experimental periods. It appears, in both cases, that significant physicochemical changes take place within the initial stage after addition of ruthenium-106 complexes. Biological uptake experiments in clams, MERETRIX LAMARCKI, were carried out with electrochromatographically fractionated ionic species of ruthenium-106 nitrosyl chloro-complexes. The gill and mid-gut gland (liver) showed high concentrations for all the fractionated species. Considerable differences of concentration factors (concentration ratio) of ruthenium by clams were observed in the anionic, cationic and neutral species, i.e. the concentration factor of the cationic fraction was 10 times higher than that of the other fractions. The order of the concentration factor was as follows: "cationic" is greater greater than "neutral" is greater than "anionic" species.

241 Cadmium Content and Distribution in the Mud, Blood Clams, Fish Flosh, and the Alga, PORPHYRA TENERA, in the Ariake Bay

Ishio, S.; Ohba, N.; Tanaka, Y.; Tadokoro, S.; Pac. Agric., Kyashu Univ., Tukuoka, Japan

Mippon Suisan Gakkaishi (WSUGAF), 39(6), 705-712; 1973

CADMIUM; CLAMS; ALGAB; TOXICITY; PISH; HUMANS

TAXONOMY: PORPHYRA TEMERA

The cadeium content in the mud obtained from the Ariaks Bay, Japan, was in a range from 0.4 to 15 pps. on the basis of the maximum persissible amount of Cd intake by man, 0.3 mg/day, the intake of class should be restricted to 90-700 g/day. No significant amount of Cd was detected in fishes. The conten in dried algae (PORPHYRA TEMBERA) was in a range of 0.3-4.0 pps, indicating that the human consumption of algae as food is not hazardous.

242 Concentration of Heavy Hetals in Sediment Cores from Selected Wisconsin Lakes

Inkandar, T.K.; Koeney, D.R.; Department of Soil Science, University of Wisconsin, Madison, WI

Phv. Sci. Technol., 8(2), 165-170; 1974

COPPER: ZINC; CAONTON; LEAD; CHRONION; MICKEL! SEDTMENT CORES; EMPICHMENT; RUMOPF; SEWAGE; ATMOSPHERIC LOADING; LAKES; PRESHWATER

GROGRAPHICAL DESCRIPTION: U.S. Wisconsin

The concentrations of Cu, Zn, Cd, Pb, Cr, and Wi in sediment cores from five hard-water and five soft-water lakes in wisconsin were determined. Pased on estimates of sedimentation rates, the sediment samples used for estimation of the early cultural or precultural concentrations were deposited into to too years ago. The precultural concentrations of Cu, Zn, Cd, and Pb were, in mearly all cases, less than those of postcultural and especially of sodern (0-10 cm) sediments. In general, there was no significant trend in the vertical distribution of Ni, but four of the 10 lakes had accumulated Cr in recent times. The accumulation of Cu in three of the hard-water lakes investigated was related to copper sulfate (used as an algalcide) input from 1919 to 1988. Surface enrichment may have been due to rusoff from urban and agricultural lands and from sewage inputs. The noticeable buildup in Pb was attributed mainly to atmospheric loading.

243
Removal of Heavy Metals from Aqueous Solutions
Twerson, M.L.; Rockwell International Corp.

Ger. Offen. (GWIXBX) 2315238 (C 228), 31 Mar 1972 17 pp.: 1972, March 31

CADRIUM; REMOVAL; WATER; COPPER; MERCURY; MEAVY METALS; WASTE WATER;

244 Interaction of Heavy Motallic Ions with Microorganisms

Izaki, K.; Fac. Agric., Tohoku Univ., Sendai, Japan

Seikagaku (SEIKAQ) 45 (5), 219-33: 1973

REVIEW; METALS; MICROORGANISMS; INHIBITORY EFFECTS

A review with 68 references is given on the wechanism of the inhibitory effect of heavy metal ions on microorganisms, and on the resistance of the organisms to heavy metals.

285 Cadmius Content in See Water, Bottom Sediment, Pinh, Lichen, and Elk in Finland

Jankkola, T.; Takahashi, H.; Miettinen, J.K.

Part of Coulston, P. and Korte, F. (Mds.), Environmental Quality and Safety, Vol. 2. Global Aspects of Chemistry, Toxicology and Technology as Applied to the Environment. 18, 333 p. Georg Thimes Publishers, Stuttgart, W. Germany. Academic Press, Inc., New York, NY, p. 230-237; 1973

CADMIUM; SEDIMENTS; PISH; LICHENS; ELK; SALTWATER GEOGRAPHICAL DESCRIPTION: Finland

286 Cadmius Content of Sea Water, Bottom Sediment, and Fish, and its Elimination Rate in Fish

Jaakkola, T.: Takahashi, H.: Soininen, R.; Rissenen, K.: Meittinen, J.

Part of Radiotracer Studies of Chemical Residues in Pood and Agriculture. Vienna-International Atomic Pnergy Agency, from Radiotracer Studies of Chemical Residues in Yood and Agriculture Reeting, Vienna, Austria, October 25-29, 1971 (69-75); 1972

CADMIUM: PISH: QUANTITY RATIO: SALTWATER: SEDIMENTS: CADMIUM 115; METABOLISM: TRACER: ELIMINATION

247
Influence of Lead and Other Metals on Fish Delta - Aminolovalinate Dehydrase Activity

Jackie, E.; Watl. Mar. Water Qual. Lab., U.S. Freiron. Prot. Agency, West Kingston, R.I.

J. Pish Res. Board Can. (JPRBAK) 30 (4), 560-2; 1973

LEAD; FISH; ANIMOLEVULIWATE DEHYDRASE; MERCURY; PLOUMDER; SILVER; SILVER NITRATE; EMZYME ACTIVITY: CADMIUM: MPTALS; MUMNICHOG

TAXONONY: PUNDULUS HETEROCLITUS; PSEUDOPLEURONECTES AMERICANUS

The prolonged exposure of massichog (FUNDULUS HETERCCLITUS) and winter flounder (PSENDOPLEURONECTES AMERICANUS) to a 50 ppm initial concentration of lead nitrate resulted in reduction of liver and kidney delta-aminolevulinic acid dehydrase activity. The 50 ppm Pb(NO3)2 concentration decreased to 0.7 ppm total Pb in 24 hr and remained at this level indefinitely. Cadmium chloride, zinc chloride, and silver nitrate all increased the enzyme activity. Prolonged exposure to 0.02 ppm mercury chloride (initial concentration) produced a marked inhibition of the enzyme activity in the early stages followed by a partial recovery. The concentration also dropped from an initial concentration of 0.02 ppm to 0.001 ppm and remained at that concentration for up to 1 week.

748 A Peview of Outboard Motor Effects on the Aquatic Prvironment

Jackivicz, T.P.; Kuzminski, L.H.

Jour. Water Poll. Control Fed., 45, 1759; 1973

BOATS: REVIPW: MOTORS: OIL; CRGAWIC COMPOUNDS: ADVATIC BIOLOGY: WATERCRAFT

Various aspects of outboard motor operation, including the sagnitude of watercraft usage, operation and efficiency of a two-cycle engine, composition of outboard motor fuels, and compounds emitted during operation are reviewed. Compounds emitted during operation are reviewed. The insulation of crankcase liquids and from unburned fuel passing through the combustion chasher. Over half the original fuel mixture for outboard motors may be emitted unburned into receiving waters. Factors affecting the quantity of compounds exhausted from outboard motors include horsepower rating, crankcase mize, composition of fuel mixture, tuning of the engine, and speed of operation. Some of the compounds measured in water contaminated by motor exhaust include volatile and nonvolatile oil, lead, and phenols.

249 Aqua Regia for Quantiative Recovery of Mercuric Sulfide from Sediments

Jacobs, L.W.; Keeney, D.R.; Cepartment of Soil Science, University of Visconuin, Madison, WI 53706

Environmental Science and Technology 8 (3), 267-268: 1970

DIGESTION PROCEDURE; SEDIMENTS; PERCURIC SULFIDE; MERCURY; RECOVERY

A digestion procedure consisting of a 2:1 concentration of 9 (2)50 (4):HMO(3) plus KHnO(4)-K(2)5(2)0(8) oxidation to be inadequate for quantitative recovery of HgS, a Hg compound that may be present in reduced materials such as river and lake sediments and vaste sludges. Since HgS or Hg(II) associated with metal sulfide phases may be a significant fraction of the total Hg in these substances, incomplete dissolution of these Hg(II) sulfide phases during sample digestion will cause total Hg concentrations to be underestimated. An aqua regia digestion procedure which quantitatively recovers HgS from sediments is described, and is recommended for total Hg analyses of sediments. The authors found that N=no(4) and K(2)S(2)0(8) must be included with aqua regia to obtain complete recovery of five other Hg compounds implicated in Hg transformations and pollution in the environment. Monaqua regia procedures being used to analyze sediments or sludges for total Hg should be tested for quantitative recovery of RgS,

250 Literature of Mercury: Availability of English Translations

Jenne, S.A.; Sanders, W.

Jour. Water Poll. Control Fed., 45, 1952; 1973

BIBLICGRAPHY: MERCURY: TRANSLATIONS

All references to published non-English language articles contained in five recent major reviews of sercury in the environment have been compiled. The availibility, as of July 1, 1971, and the source of English translations is indicated in this compilation of 280 papers. Only 109 are available in English translation. A number of the references compiled are not listed in standard abstract journals and hence could not be verified. These references are primarily from the Japanese and Swedish literature.

251 Problems in Lead Mining Waste Control

Jennett. J.C.: Wixson, B.C.

Water Poll. Control Assoc. J., 44(11), 2103-2110; 1972, November

LEAD; HIWING; HIWING WASTEWATER; WASTE CONTROL; CALCIUM; MAGNESIUM; HARDWESS; PH; AQUATIC BIOLOGY; STREAMS; PRECIPITATION; ABSORPTION; TOXICITY; LEAD; ZIWC; COPPER; DIATOMS; ALGAE

TAXOMONY: SYMEDRA; WAVICULA: CYMBELLA

GEOGRAPHICAL DESCRIPTION: USA, Missouri

Environmental problems have occurred in streams below the mines and mills of the New Lead Belt or viburnum Trend of southeast Missouri, principally because of liquid wastes produced by the operations. Selected chemical and physical parameters were measured and evaluated: calcium, magnesium, total water hardness, pH, because these factors may affect aquatic life by the precipitation or absorption of heavy metals. No significant changes in stream water quality was observed for alkalinity, hardness, pH or DO. Previous studies of heavy metals in control steams indicated that the normal unpolluted background values for lead, zinc, and copper were in the range of 6 to 12 mg/l. Under existing conditions, any heavy metals remaining in solution from the milling process are precipitated rapidly in the settling and treatment lagoons by the slightly basic (ph 7.5 to 8.2) mine wastewater and do not pose a toxicity problem in the lagoon effluent at the present. Hological examination of water samples indicated that the three diatom genera SYMEDRA, MAYICULA, and CYMBELLA were useful as hiological indicators. SYMEDRA and NAYICULA were tolerant of mining effluent and CYMBELLA intolerant.

SYMEDRA became the dominant population close to treatment discharges while CYMBELLA, abundant in control steams, almost disappeared in polluted streams. The visible prolific growth of gray-colored slime mats in the area streams was the first obvious sign of mining pollution.

252 Studies on the Concentration of Iron 55 in South Pacific Ocean Water and Marine Organisms and in the Columbia River

Jennings, C.; Oregon Coll. of Education, Honmouth, Oregon

Progress Report, March 1, 1972 - November 30, 1972, Report RLO-2231-1, Contract NT (45-1)-2231, Oregon College of Education, Monmouth, Oregon; 1972

ADUATIC ECOSISTEMS; RIVERS; DISTRIBUTION; PISH; FOOD CHAINS; TROM 55; QUANTITY RATIO; RADIONUCLIDES; KINETICS; SQUAW PISH; CARP; PADIONUCLIDE MIGRATION; ZINC 65; IRON; ZINC

TAKOHOMY: CYPRINUS CARPTO: PTYCHOCHULAS OREGONENSE

GEOGRAPHICAL DESCRIPTION: U.S. (NW), Washington, Oregon, Columbia River, Howary Dam, Pacific Ocean

one study traced the decline of iron 55 and zinc 55 activity in Columbia River fish with time and detected the variations in the length of time for a given tissue to cycle the radionuclide out of it. The common squaw fish, PTYCHOCHULAS OREGONENSE, and the common carp, CYPRINUS CARPIO, from the collections made near the Henary Dam on the Columbia River were used. The second study dealt with the concentration of iron in Pacific ocean organisms—pink shrimp, auphausid, Pacific herring, anchovy. Preliminary findings indicated that iron concentrations were low in organisms in equatorial regions and higher in the temperate zones.

253
Behavior of Mercury in the Environment

Jensen, S.; Jernelov, A.

Part of Technical Report No. 137, Hercury' Contamination in Man and his Environment, International Atomic Energy Agency, Vienna, Austria (p. 43-7), 181 p.; 1972, July

MERCURY; SEED DRESSINGS; BIRDS; INDUSTRIAL WASTES; NATURAL SOURCES; SLINICIDES; COMPLEXES; MERCURY SOLVIDE; ALKYLMERCURY; PHENYLMERCURY; ALKOXIALKIMERCURY; METHOXYETHYLMERCURY; SOLUBILITY PRODUCT; AEROBIC; AWAEROBIC; METHYLATION; CHEMISTRY; SEDIMENTS; SUSPENDED MATTER; WATER

A discussion of the chemistry of inorganic and organic mercury compounds, and their interconversions in water sediments, etc. under serobic and anaerobic conditions, including methylation and degradation. The mercury problem is mainly based on the occurrence of mercury in fish in the form of methylmercury, usually resulting from methylation outside the fish. since dimethylmercury is quite volatile, it is important to know what the main result of methylmercury. The dimethylmercury or dimethylmercury. The dimethylmercury may be broken down in the air and deposited with precipitation. Thus, both mercury and dimethylmercury are cycled in the atmosphere, with the latter cycle being the more important for the local contamination of organic mercurials.

The Anifauna of Sweden as Indicators of Environmental Contamination with Hercury and Chlorinated Hydrocarbons

Jensen, S.; Johnels, A.G.; Olson, M.; Westermark,

Part of Proceedings of the 15th International Ornithological Congress, 455-465; 1972

BIRDS; BIRD POPULATIONS; PESTICIDES; MERCURY; CHLORIMATED HYDROCARBONS; SRED BATTNG BIRDS; PHEA SANTS; PARTRIDGES; PIGEONS; ONLS; SEASONAL VARIATIONS; SEED DRESSINGS; NEUTRON ACTIVATION ANALYSIS; PERTHERS; PREDATORY BIRDS; HISTORICAL TRENDS; ALKONYALKYLMERCURY; PHENYLMERCURY; ALKYLMERCURY; GOSHAWK; LIVER; STARLINGS; PISH; CHLOR-ALKALI PLANTS; PULP; PAPER MILLS; OSPREY; METHYLMERCURY; GREBE; NETHYLATION; PH; SOLUBILITY; GROBGRAPHIC VARIATIONS; BIOLOGICAL HALF-LIFE; DDT; POLYCHLORIMATED BIPHEFYLS; GUILLEHOTS; FAT; EGGS; CORMORANTS; EAGLES; MERGARSERS; DUCKS

GEOGRAPHICAL DESCRIPTION: Sweden

The concentration of mercury and chlorinated hydrocarbons in several varieties of Swedish birds is discussed, including historical trends during this century, mostly based on feather analyses. Seasonal variations related to the use of alkylmercury seed drossings are given for some seed eating birds. The levels of mercury in fish eating hirds show a more gradual rise, while that in the seed eating birds showed a very rapid rise with the use of alkylmercury seed dressings and a reduction following the ban of such dressings. Some work was done with migrator; birds and inferred an environment less polluted with mercury in Africa. Some work was done on the contamination of fats and eggs by chlorinated hydrocarbons (DDT 5 PCES).

255 Hercury Food Chains

Jernelov, A.

Part of Hartung R. (ed.) Environmental Mercury Contamination. International Conference, 1970, Ann Arbor Science Publishing, Inc. Ann Arbor, Michigan) p. 174-177; 1972

BIOACCUMULATION; MERCURY; FISH; MICROORGANISMS; PIKE; WHITEFISH; FOOD CHAIMS; METHYLATION; METHYLMERCURY; BOTTOM PAUNA; ANIMALS

In order to study the accumulation of mercury in fish, 1500 kg of Northern pike were caught in heavily contaminated waters in Sweden. Pish inside the stomachs of the pike, mostly whitefish, were analyzed for mercury. Rottom fauna, on which the whitefish feed, were also analyzed for mercury. Accumulation up the food chain was observed to be 10-15% of intake at each step level. Investigation of the capacity of microorganisms in fish to methylate mercury yielded anomalous data. Subsequent findings showed that certain microorganisms which are predominant in fish slime during the late winter and early spring in Sweden have a high capacity to methylate mercury, while those present the rest of the year do not have the same capacity. Those microorganisms which methylated mercury, or which did so at a very high rate, only methylated mercury when kept on a fish extract substrate, but not when kept on a meat extract.

256
Pactors in the Transformation of Hercury to Methylmercury

Jernelov, A.; Inst. Water Air Pollut. Res., Stockholm, Swed.

Part of Hartung, R. (ed.) Environmental Mercury Contamination. International Conference, 1970, Ann Arbor Science Publishing, Inc. Ann Arbor, Michigan (p. 167-172), 000 1970: 1972

NETHYLATION; LAKES; WATER; PHENYLHERCURY; INDUSTRIAL WATER; HUSSRL; TUBIFICID SEDIMENT; SEDIMENTS; TRANSPOPHATION; MERCURY; HETHYLHERCURY

257 Studies in Sweden on Peasibility of Some Nothods for Pestoration of Mercury-Contaminated Bodies of Water

Jernelov, A.; Lann, H.; Swed. Water Air Pollut. Res. Lab., Stockholm, Swed.

Environ. Sci. Technol. (ESTHAG) 7(8), 712-18; 1973

MERCURY: WATER: METHYLMERCURY: RIVERS: LAKES: SEDIMENTS: METHYLLTION: PISH: METHYLLTION RATE: DREDGING: MERCURY SULFIDE: PM: ADSORPTION

Laboratory experiments and small-scale field tests have been performed to investigate some theoretically possible methods to restore mercury-contaminated lakes and rivers. Properties of the different methods with respect to practical use are discussed. The following methods have been suggested: removing of mercury deposits by dredging; converting mercury to mercuric sulfide with a low biological methylation; binding of mercury to inorganic material-such as silica minerals—to achieve lementhylation; the introduction of ferric ions and manganese ions which adsorb heavy metals in the form of oxides which subsequently crystallize; covering of mercury deposits with mercury-binding or inert material, retarding the release of methylated mercury into water; increasing of ph so that the biological methylation process will produce volatile dimethyl mercury rather than monomethyl mercury.

258 Mercury Accumulation in Pood Chains

Jernelov, A.; Lann, H.

Oikos 22(3), 403-406; 1971

PISH; ANIMALS: HERCURY; ACCUMULATION; FOOD CHAINS

The relation between methyl mercury concentrations in the liver and in muscle of fish indicates the relation between accumulation and excretion rates of methylmercury. The total mercury content of benthic animals is of little interest when one calculates the rate of mercury transport from benthic animals to fish that feed on them. This is because the percentage of methyl mercury in the total mercury content of the benthos is generally low (much lower than the percentage in fish) and the total mercury content is quite variable. The methyl mercury transportation from benthic fauna to bottom feeding fish is evidently small. By comparing the total mercury content of the three ecological subgroups of benthic animals, it seems possible to separate situations where release of mercury prevails from situations where release of mercury prevails from situations where it has ceased.

259
Riological Effects and Physical Properties in
the Marine Environment of Aliphatic Chlorinated
By-Products Prom Vinyl Chloride Production

Jernelov, A.; Rosenberg, R.; Jensen, S.; Swed. Water Air Pollut. Res. Lab., Goteborg, Swed.

Water Ros. (MATRAG) 6(10), 1181-91; 1972

VINTL BYPRODUCTS; ANIMALS; EPC; TAR; SALTWATER; BIOLOGICAL EPFECTS

TATOMONY: OPHRYOTROCHA LABRONICA; BALAWUS BALAWOIDES; ALLIUM CEPA

A mixture of short-chained aliphatic hydrocarbons, the so called ENC-tar, is formed as a byproduct from vinyl chloride production in quantities of approximately 75,000 tons per annumin worthern Europe. Most of this is dumped into the sea. In 1970, concentrations of EDC-tar from the Worth Sea were reported to be as high as 10 per cent of that causing acute toxic effects on marine organisms. This work was undertaken to find out the behavior of some components of the EDC-tar in the marine environment. Dumped into the sea, EDC-tar has a tendency to disperse and to adhere to particles. Acute toxicity of these C1-C components, evaluated by LC50 08 h tests, was found to be approximately 2.5-9 ppm for some marine animals. Accumulation factors of between 10 and 3 x 10(3) were estimated for animals presented to EDC-contaminated sea water. Accumulation in cod fed with EDC-contaminated shrimp was higher in liver than in muscle. Excretion was rapid when feeding was discontinued, and the biological half-lives of the C1-C compounds were found to be a few weeks. Sublethal EDC concentrations were found to bring about disorders in growth in the Polychaete OPHRYOTROCHA LABRONICA and to reduce swimming ability in the barnacle BALANUS BALANOIDES. In ALLIUM CEPA, c-mitotic effects of EDC-tar were observed.

260 Lead Availability Related to Soil Properties and Extractable Lead

John, M.K.

J Environ. Qual. 1(3), 295-298; 1972

WICKEL; ALUMINUM; PH; SOILS; AVAILABILITY; LEAD; EXTRACTION; PLANTS; HEAVY METALS; UPTAKE; CONTAMINATION; OBGANIC MATTER; LETTUCE; OATS

TAXONONY: LACTUCA SATIVA: AVENA SATIVA

Lead content of lettuce (LACTUCA SATIVA L.) and oats (AVENA SATIVA L.) was related to lead extracted from 29 contaminated soils by several different extraction procedures. Correlation studies showed that 1N nitric acid extractable lead was significantly related to lead in lettuce; however, milder extraction with 0.01N nitric acid and 1N ammonium acetate provided a better correlation with lead content of cat shoots and roots. Soil properties, particularly soil pH, were also important when attempting to predict plant lead. Lead zvailability was related to soil pH, extractable aluminum, and total nickel. No relationship with organic matter was observed.

261 Cadmium Contamination of Soil and Its Uptake by Cats

John, M.K.: Chuah, H.H.: VanLaerhoven, C.J.; Research Station, Canada Department of Agriculture, Agassiz, BC, Canada

Environmental Science and Technology, 6(6), 555-557; 1972, June

SGIL; PLANTS; ROOTS; HYPERTENSION; FOODS; PUNGICIDES; TRANSLOCATION; ABSORPTION; DISTRIBUTION; SHELTERS; RATTERIES; CANHIUN; CONTANINATION; UPTAME; OATS; ACCUMULATION; HUNANS; SMELTPRS; EMPHYSEMA; CHPONIC BRONCHITIS; ANTHALS; PLANTS; ZINC; OIL; TIRES

The extent of cadmium contamination of soils in the lower Praser Valley (5W, British Columbia, Canada) was evaluated. Mitric acid-soluble cadmium in the surface samples among 33 auricultural soils averaged 0.88 ppm. However, nitric acid-soluble cadmium reached as high as 95 ppm in a surface sample taken near a battery swelter, but this level decreased considerably with distance and depth. The effect of soil application of carbonate, nitrate, chloride, sulfate, and phosphate salts of calcium on cadmium uptake by oats was determined in a growth chamber study involving soils taken near a battery smelter and from farmland. Oats grown on the contaminated soils contained very high amounts of cadmium in the roots, with smaller amounts in the above-ground portions. Soil treatments affected the cadmium content of roots significantly but did not affect the cadmium content of tops.

262 Lead Uptake by Lettuce and Oats as Affected by Lime, Nitrogen and Sources of Lead

John. M.K.: Van Leerhoven, C.

J. Environ. Qual. 1(2), 169-171; 1972

LRTTUCE; OATS; UPTAKE; LEAD; LIMING; MITROGEN; SOILS; SULPUR; PHOSPHORUS

TAXONONY: LACTUCA SATIVA: AVENA

Uptake of lead by lettuce (LACTUCA SATIVA L.) and oats (AVENA SATIVA L.) as a result of application of lime, nitrogen, and verious sources of lead to the soil was studied in a growth chawber experiment. Soil application of lea increased the uptake of lead by lettuce to a greater degree than by oats. Application of lime repressed the uptake of added lead by both plants, while application of low levels of nitrogen reduced the uptake of lead by lettuce and oat roots only. Application of lead chloride lowered the amount of sulfur and phosphorus in plants, but levels of other elements studied were not affected by any lead treatment.

263
Factors Affecting Plant Uptake and Phytotoxicity of Cadmium Added to Soils

John, M.K.; VanLaerhoven, C.J.; Chuah, H.H.; Research Branch, Canada Department of Agriculture, Agassiz, B.C., Canada

Environ. Science and Technology, 6(12), 1005-1009; 1972, November

CADMIUM: CADMIUM CHLORIDE: SOILS: RADISMES; LETTUCE: AVAILABILITY: EXTRACTANTS; CONCENTRATION: NICKEL: IRON; ZINC; COPPER; ACCUMULATION; UPTARE; GROWTH RETARDATION; CHLOROSIS; ATOMIC ABSORPTION SPECTROPHOTOMETRY; COLORITATELY

For a set of 30 surfac bsoils, addition of 50 mg of cadmium, from cdc12, to 500 grams of soil reduced yields and sharply increased cadmium level in analyzed portions of radish and lettuce plants when compared with those plants grown on control soils. For the treated soils, plant cadmium was significantly related to cadmium extracted from soil by neutral W ammonium acetate. The W HC1 and M HW03 extractions did not indicate plant availability but removed most of the soil cadmium. From among 18 potential independent variables, stepwise linear regressions to predict cadmium found in plant parts harvested from treated soils included a measure of the relative ability of soild to adsorb cadmium, acetate-soluble cadmium in the soil, soil reaction, and organic matter as significantly contributing independent variables. Plant cadmium levels were significantly correlated with amounts of nickel, iron, zinc and copper inithe same plant portion. Results of this study indicated that the cadmium pollutant may readily be taken up from the soil and may result in potentially hazardous accumulation of cadmium in plants. Besides its effect on the cadmium levels, the treatment produced toxicity symptoms and reduced yields.

264
Early Actions of Cadmium in the Wat and Domestic Fowl - VI. Testicular and Muscle Blood Plow Changes

Johnson, A.D.; Turner, P.C.

Comp. Blochem. Physiol., 41(3A), 451-6; 1972, March 1

RATS; ANIHALS; MALPS; POULTRY; TESTES; BLOOD PLOW: CADMIUM: CADMIUM CHLORIDE; ZINC; ZINC ACETATE; HEMORRHAGE; EDEMA; SUBCUTANBOUS; PRETREATMENT

Male rats and domestic fowl were injected subcutaneously with 0.03 m-moles cadmium chloride (Cd)/kg body weight with some rats previously pre-treated with zinc acetate (Zn). Parly rolative blood flow changes were studied. In the fowl no blood flow changes were detected due to cadmium. In the rat cadmium resulted in a sharp increase in blood flow to the testis at 2.5 and 10 min after cadmium followed by a return toward normal. Zinc pre-treatment resulted in blood flow which was higher than in untreated rats. However, when this pre-treatment was followed by cadmium the sharp changes in blood flow, found in rats treated with cadmium but without zinc pretreatment, were not manifest. This also resulted in a more rapid return to control levels. Cadmium acts on the vasculature of the testis of the rat but not that of the domestic fowl and zinc pre-treatment in the rat moderates the action of cadmium on the vasculature.

265 Arsenate in the Western Morth Atlantic and Adiacent Regions

Johnson, D.I.; Pilson, M.E.O.

Journal of Marine Research, 30(1), 40; 1972, January

APSENATES: ARSENIC: POOD CHAINS: SALTVATER

Arsenate concentration at 2% stations in the North Atlantic, Caribbean, and Gulf of Mexico averaged 0.028 gram atom per liter at the surface and 0.02% in deep water. Being chemically similar to phosphate, it may enter the marine food chain.

266

Mercury In Marine Organisms of the Tay Region

Jones, A.M.; Jones, Y.; Stewart, W.D.P.

Wature, 23A, 164-165; 1972, July 21

MERCURY; METAL!; ALGAE; HOLLUSCS; ATOMIC ABSORPTION SPECTFOPHOTOMETRY; PLANTS: AMINALS; ADSORPTION; STIPE; HOLDPAST; UPTARE; CTENIDIA; ACCUMPLATION; SALTWATER; GREY STAL; EIDER DUCK; BIFDS; LIVEP; KIDNEYS; PHEASANTS; CONVIDS

Nercury concentrations in marine organisms (algae, molluscs) and in the grey seal and eider duck were determined by atomic absorption spectrophotometry. A few measurements on the distribution of mercury in these organisms were 6.3 and 20.0 parts per million in dry tissue. Plants and organisms collected at Broughty Ferry in the Tay estuary were high in mercury but those collected from the sea north of Arbroath contained negligible amounts.

267
Concentration of Copper, Lead, Zinc, and Cadmium in Shallow Marine Sediments, Cardigan Bay (Wales)

Jones, A.S.; Marine Sci. Lab., Univ. Coll. Worth Wales, Menai Bridge, Wales

Mar. Geol 14(2), M1-M9; 1973

SEDIMENTS; RETALS; COPPER; LEAD; ZINC; CADMIUM; SALTWATER

268 Lead Uptake from Solution by Perennial Ryegrass and Its Transport from Roots to Shoots

Jones, L.H.; Clement, C.R.; Hopper, H.J.; Grassland Res. Inst., Hurley/Berkshire, Engl.

Plant Soil, 38 (2), 403-414; 1973

LEAD; ENGLISH BYEGRASS; TPANSLOCATION; PLANTS; TPANSPORT; UPTAKE; ROOTS; SHOOTS

The uptake of lead by roots and its transport to the shoots was examined with perennial ryegrass in solution cultures. Root uptake as measured by the decrease in concentration of lead in an aqueous solution containing 1 mg Pb/1 as lead (NO(3))-2 was rapid, almost complete, and unaffected by removing the shoots or killing the roots. Lead bound in the roots was not released by exchange with Ca or Ba ions. The distribution of lead within the plant was examined at intervals after a single, 3-day exposure to various levels of lead added to a nutrient solution. The total uptake, or lead burden, increased with increasing rates of addition and ranged from 281 to 9969 mg/Ph per 3 plants. The proportion of the lead reaching the shoots at the first harvest (7 days after adding lead) was 3.5 to 22.7 per cent of total uptake, the lover value heing for plants with the greatest burder. Transport to the shoots continued throughout the experimental periods of 21 and 28 days but did not exceed 28.9 per cent of total uptake. The concentration of lead in shoots at the first harvest ranged from 0.2 to 58.4 ppm and that in the corresponding roots from 5.5 to 5310 ppm. At later harvests, and after cutting, the concentration in the shoots decreased; an exception was in plants with the greatest lead hurden. It is concluded that roots of actively growing ryagrass provide; barrier which restricts the movement of lead to the above-ground parts of plants, and so to animals or man.

269 Holywienum Transport in Dillon Reservoir

Jorden, R.M.

Part of Transport and the Biological Effects of Molybdenum in the Environment, Progress Report, January 1, 1973 (p. 64-93), 375 p.; 1973, January

MOLYBDENUM; WATEP; RESERVOIRS; MASS BALANCE; TAILING PONDS; MIXING; INTERNAL CYCLING; STRATIFICATION; SEDIMENTS; ALGAE; CONCENTRATION FACTOR

In April 1972, Dillon Reservoir contained some 180,000 pounds molybdenum in solution. During flay and June 1972 some 280,000 pounds molybdenum entered the Reservoir from Ten-Hile Creek and an additional 100 pounds each from the Snake and Blue Rivers. This massive slug input during the spring runoff resulted from an apparent need to discharge waters from the tailings ponds of Climax Molybdenum company in order to prevent washout, an event worthy of avoiding. By November some 39,000 pounds molybdenum was diverted toward Denver (in the South Platte River drainage) and 187,000 pounds was discharged to the Colorado River drainage. This event resulted in an observed increase to 220,000 pounds molybdenum in Dillon Reservoir and an indicated 12 percent bookkeeping error when comparing deposits-withdrawals to the balance, the latter being larger. The flow through of some 20,000 pounds into the existing 187,000 pounds of this strategic element masked the apparent biologically-induced-internal cycling which was indicated the previous year.

270 Aqueous Release of Molybdenum from Won-Point and Point Sources

Jorden, R.H.: Meglen, R.R.

Part of Hemphill, D.D. (Md.), Seventh Annual Conference on Trace Substances in Environmental Health, Held at Memorial Union, University of Missouri-Columbia, Columbia, NO, June 12-14, 1973; 1973

MOLYBDENUM; RELEASE RATES; DRAINAGE; MINING; TRANSPORT; STREAMS; WATER

GROGRAPHICAL DESCRIPTION: U.S. (SW)

The aqueous mass release rate of molybdenum per unit of drainage area (gram year-1 mile-2) has been letermined for a number of locations in Colorado and New Mexico and it has been estimated for the world. Pelease rates for unmined molyblenum-rich deposits in a acidic alpine environment and for non-rich alkaline environments are very similar to one another and to the world rate. However, release rates for streams draining areas of active molybdenum mining-milling exceeds the rates in unmined areas by a factor as high as 1074 times. A log-log fit of release rate versus drainage area vividly depicts the existence of point and non-point sources. This relationship also indicates that 10E5 square miles of drainage area is required to "dilute out" the elevated levels emanating from point sources in Colorado.

271 Lead Inclusion Bodies in Osteoclasts

Jsu, P.S.; Krook, L.; Shively, J.N.; Duncan, J.P.; Pond, W.G.

Science (181 (498) 447-448: 1973

LEAD; OSTEOCIASTS; PIGS; MUCLEUS; INCLUSION BODIES; TOXICITY; CHRONICITY; RESORPTION; BONES; OSTEOCYTES; OSTEOLYSIS

Inclusion bodies occur frequently in the nuclei and rarely in the cytoplasm of osteoclasts in pigs with experimental lead poisoning. The light and electron microscope picture of unmineralized sections are similar to those described for liver cord cells and renal tubular cells. Intranuclear inclusion bodies occurred in abundance in liver cord cells and in renal tubular epithelium in pigs with lead in their diets; none were found in controls. Lead inclusion bodies were not observed in osteoblasts or osteocytes. Secocytic osteolysis is the primary mechanism in bone resorption in both physiological and pathological situations. During osteolysis, the osteocyte is metabolically very active and responds quickly to lead intoxication, and with greater chronicity it dies and the dead bone tissue us resorbed by osteoclasts.

272 Distribution of Chemical Flaggats in White Sea Deposits

Kalinenko, V.V.; Inst. Okeanol. Im. Shirshova, Moscow, USSR

Dokl. Akad. Nauk SSSR (DANKAS), 208(4), 948-950;

SEDINENTS: TRACE ELEMENTS: OFGANIC MATTER; DISTRIBUTION

273
This wine Pyrophosphate-Retal Ion Complexation.
Equilibrium and Kinetics

Katz, R.B.; Kustin, K.; Dep. Chem., Drandeis Univ., Waltham, Mass.

Biochim. Biophys. ACTA (BBACAQ), 313(2), 236-248; 1973

THIAMINE: PTROPHOSPHATE: METALS: COMPLEKES: MAGNESIUM: MANGAMESE: COBALT: COPPER: ZINC

Acid dissociation constants of thiamine pyrophosphate were from pH titration data at 25 in 0.1M KNO3. Stability constants of the metal ionthiamine pyrphosphate complexes NTPP and MHTPP+, where H is Mg(2*), Mn(2*), Co(2*) were determined from pH titration data at 25 in 0.1M MedNBr utilizing a Newton-Raphson algorithm to solve simultaneous mass balance equations and a reiterative nonlinear least-squares approach to compute the constants. The stabilities of these complexes did not follow the Irring-Williams order, but instead were typical of the order generally found with phosphate ligands. The kinetics of complexation of Mi(2*) and Mg(2*) with thiamine pyrophosphate were studied by the temperature-jump method. The concentration dependence of the relaxation times observed was not consistent with the common assumption that the concentration of the intermediate ion pair fulfills the steady-state conditions, but was consistent with the more general expression of the 2-step mechanism of complex formation. The results are in agreement with the rate determining loss of a water molecule from the inner coordination sphere of the metal ion. Nevertheless, for those cases in which the rate of water dissociation from the intermediate ion-pair is known experimentally, this rate invariably was slightly less than the rate of solvent exchange. This effect is examined and its implications discussed. For systems where calculation of the fraction ion-pair using experimentally determined values is possible, it can be concluded that the greater the charge at the binding site, the more predominant the inner sphere complexes.

Absorption of Lead in Drinking Water

Kempf, T.; Inst. Wasser, Borden Lufthyg., BGA, Berlin, Ger.

Part of Proceedings of International Symposium on Environmental Realth Aspects of Lead, Amsterdam, Netherlands, October 2-6, 1972. Organized dointly by Commission of the European rommunities, Directorate General Social Affairs-Health Protection Directorate and Environmental Protection Agency, EUR 500h d-e-f. Luxesburg: Commission of the European Communities, Directorate General for Dissemination of Knowledge, Centre for Information and Documentation (2679AJ), 785-58; 1973

LPAD: ABSORPTION: DRINKING WATER

275
Cadmiam Accrual in a Plowing Marine Microcosm
Kerfoot, V.B.

Part of Ryther, J.H., WHOI-73-2, The Use of Plowing Biological System in Aquaculture, Sewage Treatment, Pollution Assav, and Pool-chain Studies, Woods Hole Oceanographic Institution, January 1, 1972 - December 31, 1972, Unpublished Hanuscript, 11 p.: 1972

HICROCOSHS: MARINE ORGANISHS: ACCUMULATION:
CADMIUM: TRACE ELEMENTS: SEDIMENTS: OYSTERS;
CLAMS: WORMS: SHRIMP: ALGAR: PHYTOFLAWRTON:
SHELLPISH: MATEPIAL BALANCE: ECOSYSTEM ANALYSIS:
CADMIUM IODIDE: PERSISTENCE: COMCENTRATION;
UPTAKE: SAMD: QUAHOGS: AQUATIC ECOSYSTEMS

An experimental flowing warine microcosm has been prepared to be used for the evaluation of chronic accumulation of trace materials released into coastal waters. To test the performance of the microcosm, trace quantities of cadmium were added to the seawater flowing through compartments filled with representative samples of sediment and marine life. A material balance of the cadmium introduced into the microcosm reflects the removal of 15% of the cadmium by sediment and hiota. The hulk of the retained cadmium was incorporated in the sediment (62%) and the cysters (30%). However, the greatest enrichment occurred in algae, shrimp, and sand worms. These results suggest that cysters, temporarily, and sediments, ultimately, serve as reservoirs for cadmium in the marine environment.

276

The Accumulation of Metal by Organisms Cultured in a Combined Tertiary Treatment-Aguaculture System

Kerfoot, W.B.; Jacobs, S.A.

Part of Ryther, J.H., WHOI-73-2, The Use of Plowing Biological Systems in Aquaculture, Sewage Treatment, Pollution Assay, and Food-Chain studies, Woods Hole Oceanographic Institution, January 1, 1972 - December 31, 1972, Unpublished Manuscript, 10 pp.; 1972

ACCUMULATION; METALS; AQUACULTURE; SEWAGE;
PHYTOPLANKTON; OYSTERS; ZINC; CHRONIUM; CADMIUM;

Two studies of long-term exposure to a single effluent to assess the possibility of metal accumulation by organisms cultured in a combined tertiary treatment-aquaculture system have been

conducted. The first study used a marine microcosm wherein sewage-cultured phytoplankton were fed to cysters. In the second study shellfish cultured in large outdoor tanks were ansayed for metal content. No significant increase in metal content occurred in organisms feeding on algae cultured in secondary effluent. In fact the concentration of several metals (zinc, chromium, cadmium and lead) actually decreased.

277
Predmeditated Cadmium Contamination of a Combined Waste Water Treatment - Aquaculture System

Kerfoot, W.B.; Jacobs, S.A.

Part of Eyther, J.H., WHOI-73-2, The Use of Flowing Biological Systems in Aquaculture, Sawage Treatment, Pollution Assay, and Food Chain Studies, Woods Role Oceanographic Institution, January 1, 1972- December 31, 1972, (Unpublished Manuscript); 1972

CADMIUM; AQUACULTURE; SEWAGE; EPPLUENTS; SHELLPISH; ALGAE; FOOD CHAIMS; BIOACCUMULATION; PLANKTON; INGESTION; ABSORPTION; TRACE METALS

The use of sewage effluent as a nutrient source in aquaculture of foodstaffs for human consumption may introduce contaminants of three types into the food chain: (1) microbial; (2) organic; and (3) inorganic including trace metals. The accumulations of cadmium in shellfish in an experimental tertiary treatment-aquaculture systems was investigated. Cadmium was introduced into the food chain (1) in plankton cultures, and (2) directly into the seawater system in which the shellfish are cultured. Cadmium way be obtained by shellfish by either absorption or ingestion. Even considering the algae in which cadmium is absorbed at the highest rate, and using the highest measured percentage retention, the rate of cadmium increase due to ingestion of algae is only about 1/10 of that absorbed directly from the seawater solution at the same level of contamination.

278

Mercury Content of Modern and Old Striped Bass
(HOROME SAXATILIS)

Rerfoot, W.B.; White, G.G.

Part of Ryther, J.H., WHOI-73-2, The Use of Flowing Biological Systems in Aquaculture, Sewage Treatment Pollution Assay, and Pood-Chain Studies, Woods Role Oceanographic Institution, January 1, 1972 - December 31, 1972, Unpublished Manuscript, 13 p.; 1972

PISH; MERCURY; BASS; AGE; BJOACCUMULATION

TAXONOMY: MORONE SAXATILIS

A common marine sportfish, MORONE SAXATILIS, shows a progressive increase in mercury content with natural age. In a study of fish ranging up to 12 years of age, the mercury content of axial muscle exhibited an annual increase of .059 micrograms of mercury per gram of wet weight of tissue. The rate of accumulation was significantly higher than that observed previously in fresh water lake trout of similar sizes and ages. However, no difference in metal content was detected between present-day marine bass specimens and similar individuals from museum collections.

Absorption of Copper Yons by CANDIDA UTILIS Cells

Khovrychev, M.P.; Inst. Mikrobiol., Moscov, USSR

Mikrobiologiya (MJRDA5), 42(5), 839-848; 1973

COPPER: ARSORPTION; YEAST; CUPRIC SULPATE: TODACETATE

TAXONDRY: CAMDIDA UTILIS

The saturation level of copper in the C. UTILIS cells was reached 2 hr after they were placed in a sedium containing cupric sulfate (12m). A pH range of 3-7 and a temperature of 30 degrees were optical for Cn absorption. The relation between the rate of Cu absorption and its concentration in the medium was described by the Michaelis-Henten Equation. Hg or Ph ions, iodoscatate, KCW, or 2,4-dipitrophenol at 0.1-1.0 Hm inhibited the absorption of Cu. The absorbed Cu ions could be washed out of the cells by 0.12 HCL, but not by H2O or Hack (80HM) solution.

280 Studies on the Contents of Hercury, Cadsius, Lead and Copper in Edible Seaweeds in Korea

Kin, C.Y.

Bull. Korean Fish Soc 5(3), 88-96; 1972

MERCURY: CADMIUM: LEAD: COPPER: SEAWEEDS:

TAIONOMY: ENTPROMORPHA SP; UNDARIA SP; PORPHTRA; LAMIMARYA SP; HIZIKIA SP

281 Seasonal Pluctuations of Ionic Copper in Knights Pond, Massachusetts

Kimhall, K.D.; Dep. Zool., Univ. Massachusetts, Raberst, Mass.

Limnol. Oceanogr. (LIOCAH) 18(1), 169-72; 1973

COPPER IONS; PONDS; ZINC; SEASONAL VARIATIONS; MUNNICHOG; CADMIUM; PRESHWATER; COPPER

TAXONDHY: FUNDULUS HPTEROCLITUS

GEOGRAPHICAL DESCRIPTION: U.S. (NE), Massachusetts, Knights Pond

Effects of mixtures of chloride salts of cadmium, copper and zinc on survival, whole body residues, and histopathology of mummichog, FUNDULUS HETEROCLITUS (L.), were investigated in synthetic seawater at 20% salinity and 20 degrees C. Wixtues of Cu ?+ and ?n 2+ as indicated by 96 h bioassay studies produced more deaths than expected on the basis of toxicities of individual components. Concentrations of Cd ?2+ not ordinarily lethal exerted a negative effect on survival of fish intoxicated by salts of copper, zinc, or both. Atomic absorption determinations of Cd, Cu, and Zn residues in mummichog which

Burvived 96 h exposures to each of these toxicants provided useful indices of total body burdens for these metals. Residues from survivors held in mixtures, especially Cd 2+ and Zn 2+ mixtures, did not confors to patterns observed for single elements. Whele hody aggregates of Cd, Cu, and Zn from dead mannichogs were of limited worth owing to possible accumulation of these metals from the medium after death. Renal and lateral line canal lesions were noted in all fish subjected to copper concentrations of ? mg/l and higher. Renal lesions observed in fish immersed in mixtures of Cu 2+ and Cd 2+ assumed a damage pattern characteristic of Cd 2+; with mixtures of Cu 2+ and Zn 2+, lesion were typical of Cu 2+-induced damage. Lesions induced in lateral line epithelium by Cu 2+ were not affected by either Cd 2+ or Zn 2+. Epithelia lining the oral cavity were necrotized by the caustic action of high levels of Zn 2+ (60 mg/l) and of Cu 2+ (8 mg/l).

282 Selenium Compounds in Nature and Medicine. R. Metabolism of Selenium by Plants and Microorganisms

Rlayman, D.L.; Shrift, A.; Dep. Biol. Sci., State Univ. New York, Binghamton, NY

Part of Org. Selenium Compounds: Their Chem. Biol. 1973, 760-814 Klayman, D.L. (Ed.). Wiley: New York, MY: 1971, November

REVIEW: SELEMIUM; HETABOLISM; MEDICIME; BIOLOGY; PLANTS: MICROGRGANISMS

A review 1wth 306 references.

283
The Intiuence of an Industrial Plant on the Chemistry of Quaternary Waters in its Vicinity, Upper Odra River Valley

Kleczkowski, A.S.: Kowalski, J.: Inst. Hydrogeol. Eng. Geol., Acad. Min. Metall., Mickewicza 30. Cracow, Poland

Bull Acad Pol Sci Ser Sci Terre 20(1), 65-70; 1972

INDUSTRY: EFFLUENTS; CHEMISTRY; WATER; RIVERS; SULFATES; CHLORIDE; SODIUM; POTASSIUM; WITDATES; MINERALIZATION; HYDROCHEMISTRY

GEOGRAPHICAL DESCRIPTION: Poland, Upper Odra

From an area of 100 square km surrounding a chemical plant, more than 400 samples of water were taken in monthly saries (1969-1970). In the non-isolated water-bearing horizon, marked changes in the chemical composition of water down to 15 m depth were established (500, Cl. Na • K, NO3 mineralization). This is connected with hydrochemical characteristic zonality and extension of pollution by chimney exhalations into the atmosphere and their infiltrations (5 and N).

286
Thteraction of Temperature and Copper Ions as Orienting Stimuli on the Locamotor Rehavior of the Goldfish (CARASSIUS ADRATUS)

Kleerekoper, H.: Waxman, J.B.: Matis, J.: Dep. Riol., Texas & and M Univ., College Station, Tex.

J. Fish Res. Board Can. (JPRBAK) 30(6), 725-8: 1973

GOLDFISH: BEHAVIOR; COPPER; PISH: TEMPERATURE;

TAXONORY: CARASSIUS AURATUS

Movements of single golifish (CARASSIUS AURATUS) were conitored in a free choice situation comprising zones of laboratory water or copper-containing water (0.010 ppm as CuCl2) each at two temperatures, 21.1 +- .1 and 21.5 +-.1 C. Pish entered the copper zone at 21.1 C significantly less frequently and spent less time there per entry as compared to the noncopper zone ("avoidance" behavior). The copper zone at 21.5 C became significantly "attractive" to the fish in terms of both frequency of entry and time spent. In the same terms, laboratory water at 21.5 C was "attractive" to the fish but became significantly more so in the presence of copper ions at the concentration of 0.010 ppm.

285
Heavy Metals: Pallout Around a Power Plant

Klein, D.H.: Russell, P.: Department of Chemistry, Hope College, Holland, Mich. 49423

Environ. Sci. Tech. 7(4), 357-358; 1973

SOILS: COAL: POWER PLANTS: SILVER: CADMIUM: COBALT: CHRONIUM; COPPER: IRON: MERCURY: NICKEL: TITAMIUM: ZINC: METALS: WIND PATTERNS

Soils around a coal-burning plant are enriched in Ag. Ci. Co. Cr. Cu. Fe, Hg, Ni, Ti, and Zn. Plant materials are enriched in Cd, Fe, Wi, and Zn. Soil enrichments correlate with wind patterns and with the metal content of coal except of Fg, which is only slightly enriched.

286 Heronry Levels in Marine Biota

Klemmer, H.; Luoma, S.W.; Lau, L.S.; Univ. Havaii, Honolulu, Havaii

Report NOAA-73022303, 3 p.; 1973, Jan.

MEPCURY; MARINE BIOTA; ANIHALS; FISH; SEDIMENTS; SALTWATER; BENTHOS; TRANSPORT; POOD CHAINS; PLANKFON; HERBIVORE; CARNIVORE; BIOACCUMULATION

Studies of Eq levels in a wide range of biota collected from a mearshore area on Kacai indicate that benthic feeders accumulate Hg better than animals feeding above the sediment-water interface. The most effective pathway of Eg transport may not be through a linear food-chain from plankton to herbivore to carnivore. Greater concentrations of Eg may be found in organisms associated with short food chains linked directly to the benthos.

287 Seasonal Variations of Cadetum, Copper, Manganese, Lead, and Zinc in Water and Phytoplankton in Monterey Bay, California

Knauer, G.A.; Martin, J.H.; Hopkins Marine Station, Calif.

Limnology & Oceanography, 18(4), 597; 1973, July

PHITOPLANKTON; SURFACE WATERS; CADMIUM; COPPER; HANGANESP: ZINC: SEASOFAL VARIATIONS; SALTWATER

GROGRAPHICAL DESCRIPTION: U.S., California, Monterey Ba,

Surface water and mixed phytoplankton sasples, collected over one year in Monterey Bay, Calif., were analyzed for chimium, copper, manganese, lead, and zinc. The phytoplankton had little effect on element concentrations in water with the causium, however, decreased during peak periods of productivity. Generally, metal levels in nearshore surface waters depended more on hydrographical fluctuations than on biological factors. Surface water collected on a transect between Hamaii and Monterey were also analyzed for these trace metals, for inshore and offshore comparisons. Levels of copper, manganese, and zine were usually higher inshore than offshore but those of cadmium and lead were almost always higher inshore.

288
Distributions of Radionuclides in Reef Corals:
Opportunity for Data Retrieval and Study of
Effects.

Knutson, D.W.; Buddemeier, R.W.

Part of Radioactive Contamination of the Marine Environment, Proceedings of Symposium held by the International Atomic Emergy Agency, Seattle, WA, July 10-14, 1972 (735-745), 786 p.: 1973

SEASONAL VARIATIONS; MUCLEAR EXPLOSIONS; AUTORADIOGRAPHY: RADIONUCLIDES; REEFS; CORAL; DISTRIBUTION; CARBON 14; DATA RETRIEVAL; STRONTIUM 90; UPTARE; RADIOACTIVITY

GEOGRAPHICAL DESCRIPTION: Enivetok

Autoradiography of sectioned massive corals from Eniwetok has revealed the presence of discrete bands of radioactivity identifiable with specific nuclear test series. I-radiographs of these and other corals show structural density variations which comparison with the autoradiography demonstrates to be seasonal in nature. The coral structure thus contains a reasonably reliable internal calendar. Residual Sr 90 activities have been determined for the Eniwetok corals, and a Fanning Island coral has been used to reconstruct the uptake of excess C14 at that location. In addition to peraitting retrieval of past radionuclide concentrations as sampled by the corals, the method permits retrospective study of the crganism's structural response to incorporation of the radioactivity.

289
Temoral of Fercury in Industrial Waste Water
with Chelate Regin

Kohayashi, Y.; Tanaka, A.; Sugai, H.; Dep. Saf. Eng., Tokohawa Watl. Univ., Yokohawa, Japan

Bull. Fac. Png., Yokohama Wat. Univ. (DPPTAS), 22, 45-63: 1973

MERCURT; PEMOVAL; WATER; RESIR; METALS; CHELATES; ADSORPTION; INDUSTRY

290
Mercury-Selenium Correlations in Marine Mammals

Koepan, J.F.: Peters, W.H.M.: Koudstaal-Rol, C.H.M.: Department of Toxicology, Agricultural University, Wageningen, The Wetherlands Interuniversity Reactor Institute, Delft, The Wetherlands

Wature 245, 385-386: 1973

HERCURY; SELENIUM; CADMIUM; ZINC; ANTIRORY;
MARTNE BIOLOGY; AMIRALS; SEALS; DOLERINS; LIVERS;
SYNERGISM

Cadmins, arsenic, selenium, zinc, and antimony were measured in juvenile seals, adult seals, porpoises, hottle-nosed dolphins and dolphins. The concentration of mercury in the livers of these marine mammals seems to be strongly correlated with the concentration of selenium, but not with any of the other elements. This association may point to a protective mechanism in response to mercury incorporation by marine mammals.

291 Ecological Implications of Dimethyl Mercury in an Aquatic Food Chain.; Project Completion Rept. 1

Kolh, L.P.; Porcella, P.B.; Widdlebrooks, E.J.; Utah Water Research Lab., Logan. 405 725

Agency Rept wo. W73-13657, OWRB-B-070-Utab (3); Proj. OWRR-B-070-Utah, 55 p.; 1973, June

WATER; ANIMALS; DYMETHYL MERCURY; AQUATIC ECOSYSTEMS; MERCURY; POOD CHAIRS; AQUATIC AHIMALS; TOXICITY; ALGAE; PISH; DAPHNIA; MERCURY ORGANIC COMPOUNDS: MICROORGANISMS; METHYLATION

The purpose of these studies was to investigate a variety of ecologically significant interactions between dimethyl mercury and the aquatic environment in which it may be present. Laboratory studies indicate dimethyl mercury may be a major product of microbial methylation in organic mercury. The physical, chemical, and biological factors affecting the transport and food chain distribution of dimethyl mercury have remained unclear. Results are presented of laboratory studies of volatilization rates of dimethyl mercury from water as a function of temperature and mixing conditions. Absorption kinetics and equilibrium concentration of dimethyl mercury in algae, daphnia, and fish are reported. Toxicity to fish, and studies of metabolism of the compounds by microbes are discussed. Mercury-203 labeled dimethyl mercury was used in the study, and in all tests the organisms used were live counted. A unique method was developed for measuring dimethyl mercury uptake in algae. In water, dimethyl mercury was found to behave similarly to nonreactive gases such as oxygen.

292 Recological 1 plications of Dimmthyl Hercury in an Aguatic Food Chain

Kolb, L.P.; Porcella, D.B.; Middlehrooks, C.J.; Utah Water Research Laboratory, College of Engineering, Itah State University, Logan, UT 88322

Report Wo. PRWG-105-2; Contract DI-19-31-0001-3659; Monitoring; 1973, June

RERCURY: DIRETHYL MERCURY: METHYLATION: ALGAE: PISH: RADIOFSOTOPES: VOLATILIZATION: ADSORPTION: DESORPTION: TOXICITY: UPTAKE: KINETICS

TAXONONY: DAPHNIA

Laboratory studies indicate discthyl mercury way be a major product of microbial methylation of inorganic mercury. Although another methylation product, wonomethyl mercury, har been extensively studied, the physical, chemical, and biological factors affecting the transport and food chain distribution of dimethyl mercury have remained unclear. This report reprosents results of laboratory studies of volatilization rates from water as a function of temperature and mixing conditions, uptake kinetics and equilibrium concentrations in algae, DAPHNIA, and fish, toxicity to fish, and studies of metabolism of dimethyl mercury by microbes. Mercury-203 labeled dimethyl mercury was used in the study and in all tests the organisms used were live counted. A unique method was developed for measuring dimethyl mercury was found to behave similarly to non-reactive gases such as oxygen volatilization occurred rapidly.

293 Levels of Copper and Manganese Trace Plements in River Vaters, Soils, and Plants of the Southern Ukraine

Kolesnikova, V.G.; Kasatkina, L.A.; Malakhova, C.P.; Kazychenko, V.I.; Babov, D.M.; Odess. Ned. Inst. In. Piergova,Odessa, USSR

Gig. Sanit (3), 110-11: 1973

COPPER: MANGAWESE: SOILS: PLANTS; RIVERS: TRACE ELEMENTS: FRESHWATER

GEOGRAPHICAL DESCRIPTION: USSR, Ukrane

794 Concentrations of Pive Trace Metals in the Waters and Cysters (CPASSOSTRRA WIRGINICA) of Mobile Bav, Alabama

Kopfler, P.C.; Hayer, J.; Gulf Coast Water Supply Per. Lab., Prviron. Prot. Agency, Dauphin Tslands, Ala.

Proc. Nat. Shellfish. Ass. (PSMFAM) 63, 27-34, 1972; 1973

TRACE ELFMENTS: CADMIUM; OYSTERS: CHRONIUM; COPPER; LEAD; ZINC; WATER; SALTWATER; FRESHWATER; PUROFF: DISCHARGE

TAYONOMY: CPASSOSTREP VIRGIRICA

GEOGRAPHICAL DESCRIPTION: U.S. (S), Alabama, Mobile Ray

Pros January 1959 through June 1969, gamples of water and oysters were collected at monthly intervals from eight locations in Mobile Bay, Alabama. These samples were analyzed for cadmide, Chromiue, Copper, lead and zinc by atomic absorption spectrophotometry and the results analyzed statistically. Oysters from Mobile Bay contained less cadmide, copper and zinc than the average concentration reported for Atlantic Coast oysters. The concentration of chromium was approximately the same while the lead concentration was about two times that of the average value for Atlantic Coast oysters. Oysters collected from the western side of the Bay were found to contain a significantly greater concentration of copper and zinc than oysters collected from the eastern side. These differences were attributed to differences in river systems that contribute the fresh water discharge and rumoff to opposite sides of the Bay. Although concentrations of the trace metals investigated were 10(%3) - 10(%5) higher in oysters than the concentrations in the environmental water samples, poor correlation was observed between the two sets of data.

295 Arsenic Distribution in Deep Subsurface Waters of the Middle Caspian Artesian Wasis

Rortsenshtein, V.W.; Karaseva, A.P.; Aleshina, A.K.; Vses. Wauchno-Issled. Inst. Prir. Gazov, Moscow, USSR

GeoKhimiya, (a), 612-17; 1973

APSENIC; SUBSURPACE WATERS; ARTESIAN BASIT; WATER

The deep subsurface waters in the Jurassic and Cretaceous formations occur at a deeth of 3-5 km in the southern Mangyshiak zone. The highly mineralized (10-150 g/l) subsurface waters in the carbonatic-terrigenous facies are perdominantly of the MaCl type with a high concentration of Br, T, B NN 4, and naphthemic acids. Results of colormetric estimation of As (10-120 ug/l) in the waters are presented. The concentration of As tends to increase with depth. An inverse correlation exists between the As and the Cl contents.

296
Uptake of Mercury by Pints and Its Distribution in Living Organisms in an Environment with Increased Concentration of this Element

Kosta, L.; Byrne, A.R.; Stegnar, P.; Zelenko, V.; "Jozef Stefan" Institute, University of Ljubljana, Yugoslavia

Part of Radiotracer Studies of Chemical Residues in Pood and Agriculture. Proceedings of a Combined Panel and Research Coordination Committee., Vienna, 25-29 October 1977. International Atomic Energy Agency, Vienna; 1972

ANIMELS; DISTRIBUTION; PISH; METHYLMERCURY; UPTAKE; MERCURY; PLANTS; TRANSPORMATION; BIOTA; MINIMG; DISTILLERY; INDUSTRY; HUMANS

GEOGRAPHICAL DESCRIPTION: Yugoslavia, Idrija

The extent of biological transformation of inorganic mercury was measured on fish at a typical inorganic source (mine and distillation plant in Idrija, Yugoslavia) using a newly developed isolation method for methyl mercury. Results are tabulated on the uptake levels and distribution of mercury in the organs of plants, animals and humans. For the latter, beard has been shown to be an advantageous indicator of the exposure.

297
Mechanisms of Mercury Transformation in Bottom Sediments, Part II. Final Report.

Krenkel, P.A.; Burrows, W.D.; Shin, E.B.; Taimi, K.I.; McMullen, E.D.

Technical Report Number 32, Environmental and Water Resources Engineering, Vanderbilt University, Mashville, TN, 319 p.: 1973, October

MERCURY; METHYLMERCURY; SEDIMENTS; TRANSFORMATION

298
Mechanisms of Mercury Transformation in Bottom
Sediments, Part I. Final Report

Krankel, P.A.; Reiners, R.S.; Burrows, W.D.

Technical Report Number 31, Environmental and Water Resources Engineering, Vanderbilt University, Washville, TW, 303 p.: 1973, Hay

HERCURY: METHYLMERCURY: SEDIMENTS: TRANSPORMATION

299 Aquatic Ecology

Krishnamurthy, K.: Rao. S.

BNW: 1650(Pt.2), p. 1.1-1.27; 1972, Dec.

AQUATIC ECOSYSTEMS; BIDLOGICAL STRESS; PISHFS; INSECTS; TPMPERATURE; AMINALS; GROWTH; AMINALD; BACTERIA: RADIATION EPPECTS; DOSE-RESPONSE RELATIONSHIPS; INPECTIOUS DISEASES; RADIOACTIVE HASTES; TRITIUN; TROUT; RIVERS; DIFPUSIOF; MEPCURY; METABOLISM; TOXINS; UPPARE; BIOLOGICAL REPERCTS; GASES; LIQUID WASTES; SYMERGISM; THERMAL POLLUTION; DISEASE RESISTANCE

GEOGRAPHICAL DESCRIPTION: U.S. (NW), Washington, Columbia River, Priest Rapids Dam, HcWary Dam, Monneville Dam

Mercury levels in all river and waste vater samples were less than methodological sensitivity, i.e., 0.1 ug/liter (or 0.1 ppb). Sediments behind Priest Papids, McMary, and Bonneville Dams on the Columbia River contained 0.115, 0.331 and 0.096 ug mercury/g of sediment on a dry weight basis. Thus, McMary Dan sediments, stituated below the confluences of the Yakims, Snake, and Walla Malla Rivers, contained significantly higher mercury levels than sediments behind Priest Rapids Dam, above the confluence of these rivers or Bonneville Dam, below McWary Dam.

300 Mercury Residues in Fishes from Water Bodies in Tirol

Kroczi, W.; Pechlaner, H.; Wetscher, M.; Inst. Biochem., Tieraerztl. Hochsch., Vienna, Rustria

Wien. Tieraerztl. Monatsschr. (WTMOA3), 60(5), 161-170; 1973

MERCURY: PISS

GEOGRAPHICAL DESCRIPTION: Austria, Innsbruck, Inn River

Mean mercury contents of fish caught in Tirol were 0.3 ppm for cyprinids and 0.8 ppm (90% <0.2 ppm) for salmonics. Fish caught in the Inn River near Innsbruck and in some of its tributaries were heavily contaminated (0.5- greater than 1.0 ppm). High Hg levels were also found in fish from certain lakes, whereas levels in fish from breeding farms averaged 0.06 ppm.

301 Lead, Cd, Zn, Cu, and Co in Streams and Lake Waters of Cayaga Lake Basin, New York

Rubota, J.: Mills, F.L.: Oglesby, R.T.: Agronomy Department, and the SCS, U.S. Plant, Soil, and Mutrition Laboratory, Cornell University, Ithaca, M.Y. 14850; Department of Matural Resources, Cornell University, Ithaca, NY 14850

Rnv. Sci. Technol. 8(3), 243-248; 1974

LFAD; CADMIUM; ZIMC; COPPER; COSALT; LAKES; PRESHWATER

GEOGRAPHICAL DESCRIPTION: U.S. (NE) New York,

Cayuga Lake, Ithaca

Waters of 12 tributary streams of Cayuga Lake were studied to determine the levels and seasonal and geographic patterns of trace elements in the Cayuga Lake basin, a primarily rural area. Trace elements in soluble form (filtered water) and in suspended particulates were studied. The trace element concentrations were generally low, but a seasona! pattern reflecting higher concentrations with high stream flow was noted in the case of Pb. Values for streams of rural areas reflect levels associated with normal geochesical processes and soil weathering. An impact of urbanization was, reflected in higher levels of the trace elements in suspended particulates carried by these streams that flow through Ithaca, W.T. A basis has been established to evaluate changes in trace element load with future changes in land use and urbanization.

302 Transport of Cs 137--II Interaction with Bed Sediments

Kudo, A.; Gloyna, E.P.; Civil Engineering Department, The University of Texas at Austin, Texas, U.S.A.

Water Research, 5, 71-79; 1971

TRANSPORT: CESIUM 137; SEDIMENTS: WATER: SORPTION: HODELS: RIVERS: PLUME: UPTAKE

The purpose of this study was to describe the transport of Cs 137 in an aqueous environment. The interaction phenomena, i.e., uptake and release of Cs 137 by sediments, were observed by using a set of flumes each 17 m in length and a model river which was 61 m long. The greatest uptake rate, Kat, by bed sediment was 88.7 x 10E-8 ((cpm cmE-2)/(cpm cmE-3))/sec) with a velocity of 0.504 m/sec (1.65 ft/sec) and a flow rate of 38.2 l/sec m (0.410 cfs/ft). In this case the mediant transport rate was 117.5 g/sec x m (0.0795 lb/sec x ft). The uptake rate increased as the mean velocity in the channel increased. The desorption rate of Cs 137 was low, being less than 1 per cent per month for a mean flow velocity of 3.0 cm/sec. This rate was obtained in a fresh water system where the concentration of total dissolved solids was about 600 mg/l.

303 Level of Metals in Cell Structures of Plants Differing by Radioresistance

Kulikov, B.M.; Cent. Asian Res. Inst. Phytopathol., Tashkent, USSR ,

Radiobiologiya (RADOA8), 13(5), 792-796; 1973

RADIORESISTANCE; PLANTS; CELLS; METALS; PADTORIOLOGY

300 Lead Contamination of Snow

Laberre, N.; Milne, J.B.; Oliver, B.G.; Water Management, Ontario Ministry of the Environment, Ottawa, Department of Chemistry, University of Ottawa, Water Quality Research Division, Department of the Environmenta, Ontario, Canada

Water Research, 7, 1215-1218; 1973

SHOW; LEAD; LEADED GASOLINE; GASOLINE; SEWERS;

Snow from disposal sites and along roads contained considerable lead due to the combustion of leaded gasolines by automobiles. In spite of lead concentrations up to \$330 ppm in the sample sediment, the highest concentration in the filtrates was 0.21 ppm with the average, 0.04 ppm. Thus, the dumping of snow away from water-course instead of directly into them significantly reduces lead contamination of the waters from this source.

305 Laboratory Studies of the Purification Kinteics of Piver Water Isere by Sedimentary Suspensions. Case of 61Cr, 59re, 60Co, 85Sr, 106Ru, 137Cs, 141Ce, and 203Fg

Lachet, R.Z.

Radioprotection 7(3), 143-157: 1972

LABORATORY STUDIES; KINTICS; CERIUM; CESIUM; CHROMIUM; CODALT; IRON; MRRCURT; PURIFICATION; RADIONUCLIDE MIGRATION; RIVERS; RUTHERIUM; SEDIMENTS; STROMTUM; RADIONUCLIDES; CHROMIUM 61; IRON 59; COBALT 60; STROMTUM 85; RUTHERIUM 106; EDTA: CHRUATION

The kinetics of purification of water containing radionuclides by sedimentary suspension can be interpreted as a function of time by an empirical equation of the form R=R(o) (I + i/a)n where "a" and "a" are two parameters fixed by the least squares method and where "Ro" and "R" are respectively the activities of water initially and after time "t". This fit proves both satisfactory and highly significant under all studied cases: sediments: screened (fine sands or silt) or unscreened in I g/l or 20 g/l concentrations; Radionuclides: 51cr, 59Fe, 60Co, 85Sr, 106Ru, 137Cs, 1atCe, 203Rg, with or without a carier; under chloride, nitrate, citrate, acetate, nitrato-nitrosyl or EDTA forms.

306 Uptake of Lead by Alfalfa and Corn from Soil and Air

Lagerwerff, J.V.; Armiger, W.H.; Specht, A.W.; U.S. Soils Lab., Beltsville, ND

Soil Sci. (SOSCAK) 115(6), 455-60; 1973

LEAD; PLANTS; SOILS; CORW; ALPALFA; UPTAKE; ABSORPTION; LINING

Growth and Pb uptake by corn and alfalfa were measured in potted Chester sitt loam at two soil pR levels (5.2 and 7.2) and with HCL-extractable soil Pb levels of 12, 60, 113, and 212 ppm. Most treatments were carried out in a greenhouse. In addition to aerial Pb associated with nearby heavy traffic, fallout of particles of leaded paint constituted a contamination hazard. The control treatmen of Corn was carried out also at a nearby outside location, i.e., in the absence of leaded-paint particulates. While the fallout of Pb was almost three times heavier inside than outside, the aerosol Pb concentration outside was almost twice as large as the one inside. The latter was reflected by the tassels only. All other plant parts, especially in the upper plant section, reflected the heavier Pb fallout inside than outside. Generally, this is associated with higher statistical variability. The plant parts in the lower plant section distinctly reflected increases in soil Pb content. Rinsing the tops of alfalfa removed more Pb from plants growing on unlimed soil than from those on limed soil. The amount Pb so removed from the tops increased section of Pb from the roots to the tops.

307
Exchange Adsorption or Precipitation of Lead in Soils Treated with Chlorides of Aluminum, Calcium, and Sodium

Lagerwerff, J.V.: Brower, D.L.: Matl. Agric. Res. Cent., Agric Res. Serv., Beltsville, MD

Soil Sci. Soc. Amer., Proc. (SSSAN8), 73(1) 11-13: 1973

ADSORPTION; PRECIPITATION; LEAD; EXCHANGE; SOILS; CHLORIDE; ALUMINUM; CALCIUM; SODIUM; PH; ALKALINITY

The exchange behavior of Pb2+ present in small concentrations in kaolinitie, montmorillonitic, and illitic soils pretreated with Al3+ or Ca2+, and kept at a number of salt (Cl) levels, was in agreement with mass-action law principles. The mean values of the Gapon exchange coefficient describing the distribution of ions between the adsorbed and solution phases in Cecil, Vinsum, and Yolo soils were 0.31, 0.11 and 0.22 for Pb-Al systems. In Na+ treated, alkalized soils, Pb precipitated. The solubility of the pracipitate increased with decreasing pH and concentration of salt (NaCl). The solubility in solutions used for suspending the soil was less in the presence than in the absence of soil. This may indicate that the Pb-soil complex is less soluble than the precipitate formed in solution, so that when soil is present the composition of the precipitate shifts toward a less soluble form. This would imply a multi-component nature of the precipitate.

308 Hercury Methylation in an Aquatic Environment

Langley, P.G.; Lab. Div., T.W. Beak Consult. Ltd., Toronto, Ont.

J. Water Pollut. Contr. Fed. (JWPFA5) 45(1), 44-51: 1973

PH; REDOX POTENTIAL; MICROORGANISMS; AQUATIC CHEMISTRY; THANSPORMATION; MERCUPY; METHYLATION; PISH; METHYLAPROUNY

The restults show that laboratory-controlled methylation studies are an excellent scientific tool that can be utilized successfully to monitor methylmercury accumulation in one important aquatic community. The results also indicate that mercury methylation depends on a number of parameters. These include temperature, pH, redox potential, microbial activity, mercury concentration, and organic concentration. Methylation of existing mercury contamination in aquatic environments is a serious hazard because under certain favorable conditions methylation can occur in sediments with fairly low mercury concentrations. This study indicates that, for practical purposes, environmental mercury methylation is too slow a process to permit a natural rehabilitation through purging of contaminated sediments. It would seem that mercury-contaminated sediments would require many decades to purge themselves to natural levels. Apart from mercury removal by dredging, which has not yet been proven successful, the approach of sealing off mercury-contaminated sediments shows promise as a rehabilitation measure and warrants further investigation.

309 Analysis of Toxic Responses in Marine Poikilotherms

LaPoche, G.; Gardner, G.P.: Eisler, R.; Jackin, P.H.; Yevish, P.P.; Zaroogian; G.E.; National Har. Water Qual. Lab., West Kingston, R.J.

Ricassay Tech. Environ. Chem. (26VZAG) 199-216; 1973

COPPER; ANALYSES; POINTLOTHERMS; SALTWATER; HITRILOTRIACETATE; WTA

TAXOBONY: PUNDULUS MERCENARIA LOPHOGOBIUS

Larsen, H.P.; Shou, J.K.P.; Ross, L.W.

310 Chesical Treatment of Metal-Bearing Mine Drainage

Jour. Water Poll. Control Fed., 45, 1682; 1973

EPPLUENTS; LIME; MINES; MEUTRALIZATION; PH; SULFUR; COMPUTER SIMULATION; MODELING; BEMOVAL

Heavy metals can be removed from mine drainage waters by a two-stage treatment process involving lime and sulfide additions, the process has been demonstrated in the laboratory and the field, using water from drainage-polluted Rocky Mountain streams. Computer simulation of the equilibrium behavior of metal hydroxides and sulfides is adequate as a predictive tool for metal removal.

Concentrations of Some Trace Metals in Pelagic Organisms and of Mercury in Mortheast Atlantic Ocean Water

Leatherland, T.M.; Burton, J.D.; Culking, F.; McCartney, M.J.; Morris, R.J.

Deep-Sea Res. Oceanogr. Abstr. (DROAA), 20(8), 679-685; 1973, August

ACTIVATION ANALYSIS; ANTIHONY; ARSENIC; CADMIUM; CRUSTACRA; FISHES; HERCURY; WRUTRON BEAMS; HUCLEAR REACTIONS: TRACE AHOUNTS; ZINC; SALTWATER

312 Arsenic in Marine Fish and Invertebrates

LeBlanc, P.J.; Jackson, A.L.; T.W. Beak Consultants Ltd., Toronto, Ont.

Har. Pollut. Bull. (MPMBAZ), 4 (6), 88-90; 1973

ARSENIC; PISH; CRUSTACEA; CRAB; INVERTEBRATES; SALTHATER

313
Ahsence of Acute Effects on Threespine
Sticklebacks (GASTEROSTRUS ACULEATUS) and Coho
Salmon (OMCORNYMCHUS KISUTCH) Exposed to
Resuspended Marbor Sediment Contaminants

LeGore, R.S.; DesVoigne, D.M.; Coll. Fish., Univ. Washington, Seattle, Wash.

J. Pish. Res. Board Can. (JPRBAK), 30(8), 1240-1242: 1973

DREDGING: SEDIMENTS: FISH: TOXICITY: STICKLEBACK: SALMON

TAXOBONT: GASTEROSTEUS ACULEATUS; ONCORHYNCHUS RISUTCH

314
Effect of Copper Sulfate Algicide Doses on the
Energy Metabolism of Common Carp (CYPRINGS
CARPIO) and Goldfish (CAPASSSIUM AURATUS)

Leonte, E.; Inst. Biol. "Traian Savulescu", Bucharest, Rome

Bul. Cercet. Piscic. (SCPCB7), 31(1-2), 137-144; 1973

COPPER SULFATE: PISH: TOXICITY: ALGICIDE: RESPIRATION: CARP: COPPER

The O consumption of CYPRINUS CARPIO and CARASSIUM AURATUS was depressed by the presence of 0.1-0.7 sg copper sulfate/L. in the waters. Death occurred at 2-20 hr, depending on the dose. The O consumption decreased steeply following the addition of CuSO4, reaching a plateau which lasted less than 9 hr, and decreased again thereafter, leading to the death of the fish. Toxicity to fish might limit the use of CuSO4 as an algicide.

75

H

315
Wercury in the Environment. A Global Review Tucluding Recent Studies in the Delaware Bay Pegion

Lepple, F.K.; Delaware University, Newark, Delaware

WIIS CON-73-10620, NORA-73040201, 76 p

MERCURY; RAVIEW; SALINITY; SALIWATER; SEDIMENTS

GEOGPAPHICAL DESCRIPTION: U.S. (HE), Delaware Bay

water samples were obtained by boat and at some shore stations. Although upper Bay values are significantly higher than those in the lower portion, no simple correlation exists between total mercury content and salinity. Especially striking is the relative high concentration (0.4 to 0.5 pph mercury) region near the center of the bay. An expected correlation between transparency (Secchi disc measurements) and sediment load was not borne out if one assumes that total mercury content is directly related to the amount of particulate matter.

316 Removal and Recovery of Heavy Hetals from Waste Water

Lewandovski, R.; Etudes et Procedes D'Assainissement Puratrr Epap

Ger. Offen. (GWXXBX) 2316047 (C 02C), 29 pp.; 1972, March

PEATY METALS; REMOVAL; WASTE WATER; COPPER; CARMIUM; PALLADIUM; TIM; CONSERVATION; LEAD; CYANTOR

317
Reduction of Copper Toxicity in a Marine Copepod by Sediment Extract ;

Lewis, A.G.; Whitfield, P.; Ramnarine, A.; Inst. Oceanogr., Univ. British Columbia, Vancouver, B.C.

Lisnol. Oceanogr. (LYOCAR) 18(2), 324-5; 1973

COPPER; TOXICITY; COPEPODS; SEDIMENTS; CHELATION; SALTWATER

TAXONDRY: COPEPODA; CALABOIDA; EUCHAETA JAPONICA

Seawater extracts of marine sediments from two areas were added to copper-enriched seawater in which the prefeeding states (ogg, WI, WII) of SUCHAPTA JAPONICA (Copepoda: Calancida) were maintained. Survival with the sediment extracts was greater than without, indicating an ability of some part of the extracted waterial to reduce the toxicity of the copper. The effect of the extracts was compared with that of a synthetic chelating agent to provide an "equivalent" value.

316 Anaowalous Arsenic Concentrations in Chautauqua Lake

Lis, S.A.; Hopke, P.F.; Dep. Chem., State Univ. Coll., Fredonia, NY

Paviron. Lett. (BVLTAX) 5(1), 45-51; 1973

ARSENIC: LAKES: WATER: AWALYSIS

45

GEOGRAPHICAL DESCRIPTION: U.S. (NE), New York (SW) Chautaugua Lake

During a preliminary survey of Chautauqua Lake, a lake in southwestern New York State, levels of dissolved argenic between 3.5 and 35.6 ppb were measured. Possible relationships between the arsenic concentrations and other measured parameters are presented.

319 Health Aspects of Arsenicals in the Environment

Lisella, P.S.; Long, K.R.; Scott, H.G.

Journal of Environmental Health, 34(5), 511-518; 1972, March

ARSENIC: CHEMOTHERAPY; POISONING; TOXICITY; WOOD PRESERVATIVES; SHEEP DIPS; IMSECTICIDES; SODE BODENTICIDES; HERBICIDES; SOAPS; GERMICIDES; SODIUM ARSENITE; LEAD ARSONATE; OCCUPATIONAL EXPOSURES; SODIUM ARSENATE; DISODIUM METHYL SODIUM ARSONATE; DSMA; DALLIGRASS; CALCIUM ARSONATE; DSMA; DALLIGRASS; CALCIUM ARSONATE; DSMA; DALLIGRASS; CACCOVLIC ACID; METHYL ARSENIC ACID; PLANTS; SILVICIDES; DEFOLIANTS; LEAD ARSENATE; BEER; SELENTUM; TOLEBANCE LEVELS; PRESTICIDES; CHRONIC; CANCER; CARCINGGENS; KERATOSES; TOBACCO; HAIR; LUNGS; WATER; GRASSES; LEAD; CANCER; DERMATOSES; INHALITION; INGESTION; ABSORPTION; SUBPTOMS; SULPHTOMS; THERAPY; BAL; SHELLFISH; DRINKING WATER; APPLES; MAILS; SKIN; INTAKE; EXCRETION; SOILS; TRANSLOCATION; POTATO; ANALYTICAL PROCEDURES; MEUTRON ACTIVATION ANALYSIS; ATOMIC ABSORPTION SPECTPOPHOTOMETRY; ARSENIC; WATER; FISH; SHELLPISH

A review of arsenic and its compounds as poisons and medicines. Arsenic compounds are used widely in wood preservatives, sheep dips, insecticides, herbicides, rodenticides, defoliants, etc. so more than 100 different population groups have some possibility of occupational exposure. Arsenicals may be absorbed by inhalation, ingestion or through the skin. Effects may be principally quastrointestinal disturbances or, in others, nervous manifestations (headache, vertigo, swelling in joints, restlessness, irritability, visual disturbances, etc.). Treatment of arsenic poisoning involves inducing vomiting, quastric lavage and then a saline cathartic. Interauscular injection of dimetcaprol (BAL) may be used. There is some question still unresolved, as to whether arsenic or its compounds cause cancer. They do result in dermatoses and keratoses. Arsenic combines with sulfhydryl groups so is found in hair, nails and skin as well as being eliminated in urine and feces. Small quantities of arsenic compounds may enter the diet as residues of insecticides on apples, potatoes, etc. or as residues of arsanilic acid growth additives in cattle and poultry feels (supposed to be discontinued several days before marketing). Shellfish and fish sometimes contain measureable amounts of arsenic. Water in parts of Argentina contains enough arsenic to cause a chronic poisoning, but U.S. city water is sostly satisfactory in this respect. Hethods of analysis for trace amounts of arsenic are discussed briefly.

320 The State of Cobalt in Seawater and Its Uptake by Marine Organisms and Sediments

Lowman, P.G.: Ting, R.Y.

Part of Radioactive Contamination of the Marine Environment, Proceedings of Symposium held by the International Atomic Energy Reenty, Seattle, WR, July 10-10, 1972 (369-383), 786 p.; 1973

AQUATIC CHEMISTRY: COBALT: UPTAKE: MARINE ORGANISMS: PADYONUCLIDES: PHITOPLA WKTOM: TOOPLA WKTOM: CLAMS: CRUSTACEA: TRACERS; LOBSTERS: SPECIFIC ACTIVITY: SHRIMP.

Two methods, the critical pathway and the specific activity approach, have been used to predict hazards to man and other animals from the introduction of radionuclides into the mrine environment. Valid application of the specific activity method is dependent upon the similarity of the physical-chemical forms of the introduced radionuclides and the corresponding natural element in the marine environment. The present work is concerned with the development of methods for investigating the chemical-physical forms of naturally occurring cobalt in seawater, the application of the methods to seawater in tropical areas and the uptake of the different forms of the element by marine organisms. Carrier-free inorganic Co 58 and Co 60 and high specific activity cyanocobalamin Co 57 were used as tracers for ionic and complexed cobalt. Stable cobalt in seawater, tagged with the ionic and complexed radionuclides, were preconcentrated by standard methods and analysed for stable and radionuclide content. The chemical yields for each form of radionuclide and the amounts of the different forms which were found in seawater are reported. Uptake of ionic and complexed cobalt by suspended and bottom sediments and by phytoplankton, zooplankton, brine shrimp, marine clams, pelagic crustacea and the spiny lobster were measured. The results show that significant errors may occur if concentration factors for marine organisms, based on comparisons of the stable element in seawater and in the living organisms, are calculated without consideration of the chemical-physical forms of the

321
The Toxicity of Hercury in Han and Animals

Lu, P.C.; Berteau, P.E.; Clegg, D.J.

Part of Technical Report No. 137, Mercury Contamination in Man and his Environment, International Atomic Energy Agency, Vienna, Austria (p. 57-86), 181 p.; 1972, July

MRRCURY; CONTAMINATION; HUMANS; ANIMALS; FOODS; PISH; ADI; METHYLMERCURY; TOXICITY; POISONING; INHALATION; BRAIN; MYCCARDIUM; LIPID SOLUBILITY; ACUTE; PPERUBONITYS; SYMPTOMS; TREMORS; CEMTRAL MEPVOUS SYSTEM; PROTEINURIA; GINCIVITIS; STOMARITIS; SALIVATION; MERCURIALENTIS; HYPERSENSITIVITY; URIME; BLOOD; ABSORPTION; MERCURIC CHLORIDE; MIDNEYS; MICE; MERCURY 203; LIVER; BRAIN; PHENYLMERCURY; POULTRY; RABBITS; GUINER PIGS; DOGS; EXCRETION; BIOLOGICAL MALF-LIFE; TOXICITY; PHEASANTS; BIMDS; CATS; REPRODUCTIVE FAILURES; TERATOGENS; MINAMATA DISEASE; ATAXIA; PLACENTA; PLACENTAL TRANSFER; SEED DRESSINGS; ELECTROCARDIOGRAPHY; MERKURAN; HAIR; BLOOD; DEGRADATION

Exposure to mercury or its compounds may result in serious intoxication. It may occur among workers engaged in certain occupations or among individuals accidentally consuming grossly

THE TENENT OF THE PARTY STATES AND A STATE OF THE PROPERTY OF THE PROPERTY OF THE PARTY OF THE P

contaminated food. This type of health problem is more readily identifiable and usually involves relatively small numbers of individuals. On the other hand, the potential health hazards of low levels of mercury in food is of greater concern, because the symptoms and signs of poisoning might not be readily diagnosed and because a very large number of people may be affected. It is well documented that mercury is present in different foodstuffs, although its levels vary according to the type of food, background level of mercury in the environment, etc. The health hazards involved in the consumption of such foods depend not only on the levels of mercury but also on the chemical nature of the mercury compounds because they possess different toxicities. Since it is impossible to completely eliminate mercury from our food, and because its levels vary greatly, it is imperative that appropriate tolerance levels of mercury compounds in foods be established for use by regulatory agencies in order to protect the health of the consumer. Such tolerances must be based on proper evaluation of relevant toxicological and related data. Although a considerable literature exists on mercury to date, there do not appear to be sufficient studies which permit the assessment of an acceptable daily intake (ADI) for man. This conclusion has been reached in the toxicological evaluations of organomercury dompounds as assessed by the FAC/WHO Joint Meetings on Pesticide Residues in 1965, 1968 and 1967 (PAO/WHO, 1965, 1967a, 1968) and by the Joint FAC/WHO, HOS, 1967, 1969, 1960 and 1967 (PAO/WHO, 1965, 1967b, 1970). The latter, at its 1970 meeting, noted the various points of toxicological concern (epidemics of poisoning, the higher sensitivity of the foetus, the severity and persistence of central nervous system damage, and the relation between mercury exposure and chromosome breaks in 1ymphocytes) and urged that further work be initiated before an ADI could be established. Meanwhile, it recommended that mercury contamination from all sources

322
Fungicidal Activity of Some Alkyl- and Arylcarboxylatocopper(II) Complexes

Lucanska, B.; Blahova, M.; Hulkova, O.; Rratsmar-Smogrovic, J.; Dep. Imorg. Org. Chem., Pharm. Fac., Bratislava, Czech.

Acta Pac. Pharm., Univ. Comeniana (APPCAG), 24, 29-51; 1973

COPPER: COMPLEXES: PUNGICIDES ...

TAXONONY: SCLBROTINIA; PHYTOPHTHORA; MICROSPORUM; TRICHOPHYTON; EPIDERMOPHYTON

47

en met namme de la laterative de la région de la laterative de la région de la régi

323
A Study of the Mercury Content of Fish from Various Sources

Luckens. H.R.

Presented at 11th Annual Meeting, Society of Toxicology, Williamsburg, VA, March 5-9, 1972, (p. 43); 1972

SEED DRESSINGS; MERCURIAL PUNGICIDES; MERCURY; PUNGICYDES; OCEAMS: RIVERS; PISH; WATER; SEDIMENTS

The mercury content of fish, bottom sediments and receiving waters from various sources was determined. Pish were obtained from: farm ponds receiving drainage from fields in which crops had been from from seeds treated with mercurial dressings; the Great Lakes; ocean fishing grounds; rivers receiving drainage from farms on which crops had been raised using meeds treated with mercurials; and rivers receiving wastes containing inorganic mercury. Total mercury content of fish tissues ranged from 0-2 ppm, and mercury content was usually related to the fish feeding habits. In addition, mercury content was not uniform throughout the entire filet but was related to the type of musculature from which the sample was taken.

320 Absorption and Metabolism of Arsenic in Pish

Lunde, G.; Cent. Inst. Ind. Res., Blindern/Oslo,

Piskeridir. (Morway) Skr., Ser. Teknol. Unders. (PSTURW) 5(1-2), 15 p.; 1972

ARSENIC: METABOLISM: MAINBOW TROUT; EYES; GILLS; ABSORPTION: FISH; MICROORGANISMS

On the basis of the results obtained during these experiments it can be concluded that fish are able to synthesize both fat soluble and water soluble arseno organic compounds from the inorganic arseno in the feed eaten by the fish. However, this inorganic arsenic plays an insignificant role as source for the organic bound arsenic found in fish. The major part is supplied as already synthesized arseno organic compounds, from lower stages in the marine food chain. An accumulation of arseno organic compounds in specific organs shows that the compounds may possibly have a significance for fish. It is proposed that this may be as a bacteriostatic agent which acts to protect those regions of fish which are especially vulnerable to attack from microorganisms. Inorganic arsenic present in the water will also be absorbed by the fish, but neither water soluble nor lipid soluble arseno organic compounds could be detected by the available methods used in this investigation.

325
The Synthesis of Fat and Water Soluble Arseno
Organic Compounds in Marine and Limnetic Algae

Lunde, G.; Central Institute for Industrial Research, Oslo 3, Norvay

Acta Chemica Scandinavica 27, 1586-1594,; 1973

BIOSTFTHESIS: PAT: SOLUBILITY: LIPIOS: ARSENIC; ARSEND-ORGANIC COMPOUNDS: MARINE PIOLOGY: LIMNOLOGY: LAKES: SALTFATER: ALGAE 326 Trace Motal Contents of Fish Meal and of the Lipid Phase Extracted from Fish Meal

Lunde, G.; Cent. Inst. Ind. Re., Blindern/Oslo, Norway

J. Sci. Pood Agr. (JSPARE), 24(0), 413-419; 1973

LIPIDS: FISH: TRACE RLEMENTS; SELENIUM; FISH OILS; FISH HRAL

327
Analysis of Trace Elements, Phosphorus, and Sulfur, in the Lipid and the Won-Lipid Phase of Halibut (HIPPOGLOSSUS HIPPOGLOSSUS) and Tunny (THUWNUS THYWNUS)

Lunde, G.; Cent. Inst. Ind. Res., Oslo, Norway

J. Sci. Pood Agr. 24(9), 1029-38; 1973

TUNA; HALIBUT; TRACE ELEMENTS; PHOSPHORUS; SULFUR; LIPID; PISH; TUBFY; AWALYSIS

TAXONONY: HIPPOGLOSSUS HIPPOGLOSSUS; THUNHUS

328
Temperature Effects on Mercury Accumulation,
Toxicity, and Metabolic Rate in Rainbow Trout
(SALMO GAIRDWERI)

Macleod, J.C.; Pessah, E.; Preshwater Inst.; Pish Res. Board Canada, Winnipeg, Manitoba

J. Pish Res. Board Can. (JFRBAK) 30 (4), 485-92;

PHENTLHERCURIC ACETATE; MERCURIC CHLORIDE; PIOACCUMULATION; MERCURI; TOXICITI; PISH; METABOLISM; TEMPERATURE; MEDIAN TOLERANCE LIMIT,

TAXOROHY: SALMO GAIRDWERI

The toxicity of Hg in rainbow trout fingerlings was related to temperature and chemical formulation of the Hg at 10 deg. C, the 28-hr TLM concentration (Median tolerance limit) for mercuric chloride was approximately 30 times that for phenylercuric acetate. The 96 hr TLM values for NgCl2 at 5, 10, and 20 degrees were 0.40, 0.28, and 0.22 mg/kg/1. The velocity of mortality was also linearly related to temperature, and temperature directly affected the accumulation of Hg in the fish muscle. The active metabolic rate, increased by higher temperatures, was depressed by HgCl2, and higher temperatures augmented the depressant effect.

329 Toxicity of Lead Witrate to Algae

Malanchuk, J.L.; Gremendling, G.K.; Dep. Biol. Sci., State Univ. Coll., Plattsburgh, MY

Water, Air, Soil Pollut. (WAPLAC), 2(2), 181-190;

LEAD: WITHATPS: TOXICITY: ALGAE

TAXONDMY: COSMARTUM; ANABABHA; CHLAMYDOMONAS; NAVICULA; OCHROMONAS

Lead nitrate was toxic to 4 species of fresh water algae grown in low salt medium approximating the salt concentration of natural advantic environments. PD50 (concentration causing a 50% reduction in CO2 fixation compared with controls after 24-hr exposure) values of 5 mpm Pb for COSMARIUM BOTRITIS and 15-18 ppm Pb for AMABABMA SP., CHEAMIDDHONAS REINMARDIT, and NAVICULA PRELICULOSA were calculated for 1-2 ml samples containing 0.12-0.5% mg dry cell wt./ml. the high surface: vol. ratio for C. COTRITIS may account for its increased sensitivity. Concentrations of Pb (MO3)2 up to 30 ppm did not inhibit CO2 fixation in OCHROMOWAS MALHAMMENSIS, but produced a concentration dependent icrease in CO2 fixation.

330 Copper Micronutrient Requirement for Algae

Manahan, S.P.; Smith, W.J.; Dep. Chem., Univ. Missouri, Columbia, MO

Environ. Sci. Technol. (ESTHAG), 7(9), 829-833; 1973

ALGAE; COPPER: NUTRITION

TAXONOMY: CHLORELLA: OOCYSTIS

331
Heavy Metal Ton Interaction and Transport with Synthetic Complexing Agents and Detergent Phosphate Substitutes in Aquatic Systems; Completion Rept 1 Jul 7 1-30

Manahan, S.R.; Smith, M.J.; Missouri Water Resources Pesearch Center, Rolla

Missouri Water Resources Research Center, Rolla; P8 213 252/0; Contract DI-14-01-0001-3525; Monitoring Agency Rept No. W73-02112, OWRR-A-049-F0(1); Proj OWRR-A-049-H0; 198 p.; 1972, August

ION SELECTIVE ELECTRODES; WATER; POLLUTION EFFECTS; PLANTS; ALGAL GROWTH; DETECTIOB; PCTPLT COMPUTER PROGRAM; PORTRAM 4 PROGRAMMING LANGUAGE; DETERGENTS; ALGAR; NUTRINNTS; COPPER; WATER ALYSIS; EDTA; CHELATION; TRACE ELEMENTS; CHLORELLA; ELECTRODES; RUPPERS; CHENISTRY; CALIBRATION; LEAST SQUARES METHOD; COMPUTER PROGRAMS; POTENTIONETRIC ANALYSIS; PORTRAM

332 Chelation and Olation Reactions of Metal Ions in Aqueous Solution. Final Report.

Martell, A.F.; Texas Agricultural and Mechanical Univ., College Station. Dept. of Chemistry

Texas Agricultural and Mechanical Univ., College Station. Dept. of Chemistry, Contract At (40-1)-3621; ORO--3621-19; 1973, June 15

AQUEOUS SOLUTIONS; CALCIUM; COMPLEXES; CHELATES; CHEMICAL REACTIONS; OALTION; COPPER NICKEL; POLYMERIZATION; THORIUM; URANIUM; URANYL COMPOUNDS

333 Chelation and Olation Reactions of Metal Ions in Aqueous Colugition

Martell, A.R.; Texas Agricultural and Mechanical Univ., College Station. Dept. of Chemistry

ORO-3621-19, Contract AT (40-1)-3621, 7 p.

A summary of work performed during a five-year contract period is presented. Pour areas of general study include the chelation and olation of metal ions, new multidenate ligands, mixed ligand chelates, and the structure determination of metal chelates in solution. Papers that have been published are listed.

334 Elemental Composition of Plankton

Martin, J.H.; Knauer, G.A.; Hopkins Mar. Stn., Stanford Univ., Pacific Grove, California

Geochim. Cosmochim. Acta 37(7), 1639-53; 1973

PLANKTON: MINERALS: TRACE ELEMENTS

Mercury Uptake by Poly Amine-Carbohydrates

Masri, M.S.; Priedman, M.

Environ. Sci. Technol., 6(8), 745-746; 1972

UPTARE: POTATO: CHITOSAN: STARCH: CELLULOSE: DISTRIBUTION: HERCURY; POLYAHINES; HITROGEN; HERCURIC CHLORIDE

Chitosan (deacetylated chitin), other polyamines derived from cellulose, polyamines derived from dialdehyde starch, and poly (aminostyrene) bind mercury in large amounts from water solutions of MgCl2. In contrast, unmodified starch and cellulose adsorb very little mercury, while chitin (with acetylamin groups) binds much less than chitosan. In several instances the adsorbeats bound more than one atom of mercury per nitrogen and more than their own weight of mercury. These results show that amino groups in natural and synthetic polymers are effective binding sites for mercuric chloride and point first to the possible utility of such polymers as adsorbeats for mercury, and second, to the possible role of naturally occurring polymers in the distribution of mercury in the environment.

336 Selected Metals in Sedigents, Water, and Biota in the Illinois Piver

Mathis, B.J.; Cummings, T.F.; Dep. Biol., Bradely Univ., Peoria, ILL.

J. Water Pollut. Contr. 7ed., 45(7), 1573-83: 1973

SEDIMENTS: CHROMIUM; RIVERS; TUBIFICIDS; CLAMS; PISH; COPPER; NICKEL; LEAD; LITHIUM; ZINC; COBALT; CADMITH

The Illinois Piver has been receiving domestic and industrial wastes from Chicago and other cities located along its shores for years, and the drastic decline in hiotic diversity has been well documented. In the present study an atomic absorption spectrophotometer was utilized to determine the concentrations of copper, mickel, lead, chromium, lithium, zinc, cobalt, and cadmium in water, bottom sediments, tubificids, clams, and fishes taken from the Illinois River. The bottom-dwelling tubificids and clams closely reflected the concentrations of metals found in bottom sediments. A concentration gradient ranging from highest levels in worms, intermediate levels in clams, and lowest levels in fish fillets was observed for copper, nickel, lead, chromium, lithium cobalt, and cadmium (Pigures 2 and 3). Zinc, however, exhibited a partial reversal of this trend. It was present in highest concentrations in clams, at intermediate levels in worms, metals were more highely concentrated in bottom sediments. The water component of the river exhibited the lowest concentration of metals with the exception of lithium.

337 Electrolytic Recovery of Zinc from Zinc-Containing Waste Water Deposits

Matsnav, A.I.; Sinev, O.P.; Rossinskii, W.P.; Ukr. Inst. Tnzh. Vodn. Khoz., USSR

Khim. Volokna (KVLKA4), 15(4), 28-29; 1973

FINC: RECOVERY; WASTE WATER: WATER

338
Recury Inhibition on Lipid Biosynthesis in
Preshwater Plgae

Matson, R.S.; Mustoe, G.P.; Chang, S.B.

Environ. Sci. Technol., 6, 158; 1972

MERCUPY: MPTHYLMERCURY: BIOSYNTHESIS: LIPIDS: GALACTOLIPIDS: CHLOROPRYLLS: PROTOSYNTHESIS: INHIBITION; ALGAE: MICROORGAWISHS; CHLOROPLASTS: PRESHWATER

TAXONOMY: ANKISTRODESHUS BRAUNII; BUGLENA GRACILIS

Mercuric chloride and methyl mercuric chloride inhibited the biosynthesis of lipids, especially galactolipids and chlorophylls in photosynthetically grown freshwater algae, ANKISTRODESHUS BRAUNII and EUGLENA GRACILIS. Three and one-half parts per million of mercuric chloride gave 50% inhibition of galactolipid biosynthesis, 98% inhibition, of chlorophyll synthesis in A. BRAUNII, and a slightly smaller degree of inhibition in E. GRACILIS. Also, 2 ppm of methyl mercuric chloride caused 85% inhibition

of galactolipid biosynthesis and 98% inhibition of chlorophyll biosynthesis in A. BRAUNII. Both mercuric chloride and methyl mercuric chloride strongly inhibited the galactosyl transferase activity for the galactolipid biosynthesis in the chloroplasts isolated from EUGLENA cells and spinach leaves.

339
Phenylmercuric Acetate: Metabolic Conversion by Microorganisms

Matsumura, P.; Gotoh, Y.; Boush, G.N.

Science 173, 49-51; 1971, July

MICROORGANISMS: PHEMYLMERCURIC ACETATE; DIPH BNYLMERCURY; ORGANOMERCURIALS; METABOLISM

Phen ylmercuric acetate, an organomercurial that has been widely used as a fungicide and slimicide, was found to be metabolized quickly by soils and agustic microorganisms. One of the major metabolic products was identified to be diphenylmercury. In none of the cases has a methylmercury derivative been found among the microbial metabolic products of phenylmercuric acetate.

340 Factors Influencing Translocation and Transformation of Mercury in River Sediment

Matsumura, F.: Gotoh, T.: Boush, G.M.: Dep. Pntomol., Univ. Wisconsin, Madison, WI

Bull. Phytron. Contam. Toxicol. (BECTA6) 8(5), 267-272; 1972

HERCURY; TRANSLOCATION; RIVERS; SEDIMENTS; TRANSFORMATION; MICROORGANISMS; ORGANIC MATTER; PH

Three factors contribute to the release of mercury into water: alkaline pH, the organic content of sediments, and microorganisms. Such processes are not necessarily directly related to methylmercury formation. The most profound effect, in terms of increased mercury level in waters, was observed when the pH of the system was increased above 7. It appears that the release of mercury into water from sediments can be controlled by two factors: the first being its relation to organic matter at high pH, and the second the changes in the state of mercury itself at high pH. The degree of influence of microorganisms on the fate of mercury is not clear. In one experiment considerable microbial growth was associated with high amounts of Rg in water, microorganisms were isolated, incubated with 203RgCl2 for 10 days, cells harvested through centrifugation, and in all cases, microorganisms absorbed almost all of the available Hg.

341 Effects of Dissolved Zinc on the Gills of the Stickleback GASTEROSTROS ACCLEATOS

Matthiessen, P.: Brafield, A.B.: Queen Elizabeth Coll., Univ. London, London, England

J. Fish Biol. (JPIBA9), 5(5), 607-613; 1973

ZINC; TOXICITY; FISH; GILLS; CALCIUM; STICKLEBACK

TAXONOMY: GASTEROSTEUS ACULEATUS

342 Cation Exchange Capacity and Exchangeable Netals in a South Plorida Watershed

Mattraw, H.C.; Plorida State Univ., Tallahasssee, Pr.

Univ. Microfilms, Ann Arbor, Mich., Order Mo. 73-11, 320, Diss. Abstr. Int. B 33(11), 5420-21:

343 Trace Elements: A Growing Appreciation of Their Effects on Man

Maugh, T.H., TT

Science, 181, 253-254; 1973

PHARMACOLOGY: PATHOLOGY: HUMAWS: POPULATIONS: TRACE ELEMENTS: HEALTH: HETABOLISH: DISEASE: LPTHALTY

The pharmacologic and pathologic effects of normal, below normal, and elevated levels trace elements in humans and populations recently has become a great concern in the medical and scinntific community. Abnormally high, or low, concentration of certain trace setals in humans may interfere with metabolic processes to the extent that disease, or death, may occur. Further studies will undoubtedly reveal startling facts concerning the essential (beneficial) and harmful interactions between trace elements and human health.

344
Wateral Content of Chromium (6+) Ion in the mrinking Waters used by the Inhabitants of a Rulgarian Village

Mauther, G.: Lichev, W.: Kenova, M.: Mancheva, V.: Ivanova, S.: Zakharieva, V.: Zakharieva, Z.: Georgieva, E.: Vasilev, V.: Obedin. Mauchnoizsled. Inst. Khig. Okhr. Tr., Sofia, Fulgaria

Khig. Zdraveupazvane (KRZDAN), 16(1), 42-47; 1973 CHROHIUB: DRINKING WATER; WATER GEOGRAPHICAL DESCRIPTION: Bulgaria

345 Toxicity of Methyl Mercury for Steelhead Trout Sperm

McIntyre, J.D.; Oregon Cooperative Fishery Unit, Oregon State University, Corvalis, Oregon 97331

Bulletin of Environmental Contamination and Toxicology 9(2), 98-99; 1973

STEELHEAD TROUT; TROUT; MYTHYLHERCURY; CHLORIDE; SPERM; PERTILITY; FISH; MERCURY; GENETIC BYPECTS

TAKONOMY: SALMO GAIRDNEPI

In a study designed to determine the genetic effects of sercury toxicity for steelhead trout (SALNO GAIRDWERI) it became necessary to determine the concentrations of methylmercuric chloride that would reduce sperm viability. The percentage of eggs that were not fertilized at each concentration of mercury indicated that concentrations of 1.0 ppm and greater reduced sperm viability as compared to the control. The experimental design did not permit studies of the chronic effects on sperm of lower concentrations of methylmercury; however, the extreme sensitivity of steelhead sperm to a level of mercury that often occurs in fish tissue was evident.

346
Investigation of Some Factors in the Biochemical Conversion of Mercury Pollutants to Toxic Methyl-Mercury Effected by Micro-Organisms in a Maxine Sediment; Research Rupt. Report on a Trident Scholar Project

McRinney, M.; Maval Academy, Annapolis, ND 245600

Report No. USMA-TRPN-32; Honitoring Agency Rept No. 18, 98 p.; 1972, May 19

HERCURY: HARINE BIOLOGY: HICHOORGANISMS; REVIEW; SOLUBILITY; TOXICITY; CHEMICAL ANALYSIS: GAS CHROHATOGRAPHY; ATONIC SPECTROSCOPY; HICROOGANISMS; ANALYSIS; SPECTROCHEMICAL ANALYSIS; TRACE ELEMENTS; ORGANONERCURIALS; HETHILMERCURY; CHELATION

The aim of the investigation was to find some of the factors involved in the conversion of mercury pollutants to toxic methyl-mercury by microorganisms in marine sediments. Research resulted in the definition of the two primary problems; modeling and analysis. A successful modeling technique was then developed, after restrictions in design were found desirable. A successful analytical technique, which had not been applied as such to biological samples, was developed and used with good results. These two solutions were then combined in an investigation of the conversion factors; pollutant type and level; conversion time; movement of water over the sediment (removal of Me-MG produced); chelation; eutrophication; and oxygen content of the water above the sediment.

347
Purification of Industrial Solutions and Waste
Waters at the Balkhash Hydrometallurgical Plant

Hekler, L.I.; Gorođetskii, M.I.; Zinkovskii, V.A.; Porubasv, V-P.; Kvyatkovskii, A.M.; USSR

Tsvet. Hetal. (TVHTAX), 7, 51-54; 1973

HETALLURGY; DETOXIFICATION; INDUSTRY; WASTE WATERS; REMOVAL

Here the sublethal Amounts of Cadmium and Mercury on the Metabolism of Zinc 65 by Freshwater Pish

Merlini, M.; Argentesi, F.; Brazzelli, A.; Oregioni, B.; Pozzi, G.

Part of PUR-4900 d.C.i.e., International Symposium, Radioecology Applied to the Protection of Man and his Environment, Rome, 1971. Proceedings. Held Roma 7-10 September, 1971. Luxenburg (Commission of the Puropean Communities) QH 5435 ISB 1971, (1327-44): 1972, May

CADRIUM: 775H; PRESHWAFER; HERCURY; HETABOLISN; PADTOMUCLIDES; RIMPTICS; RESPONSE; ZINC 65; AQUATIC BIOLOGY; RADIOACTIVITY; RADIATION EPPECES; RADVATION; BUTTIENTS; ZINC; MICPOMUTRIENTS; LAKES

TAXONOMY: LEPONIS GIBROSUS

Tt is known that aquatic envirionments which receive nuclear reactor effluents contain the neutron-induced radionuclide zinc-65. As a result, aquatic organisms are exposed to a radioactive essential micronutrient known to be physiologically important. Thus, radiozinc enters into the metabolic pools of these organisms just as its stable counterpart. Recent studies utilizing 65zn have helped delineate the biological pathway of this essential element for a better understanding of mineral metabolism and the fate of this important nuclide in an edible freshwater fish, LEPORIS GIBBOSUS, L. from Lake Haggiore (northern Italy). In addition, increased industrial and agricultrual pollution makes argent studies of the effects of heavy metals on vital physiological processes. Cadmium and mercury are two of the heavy metals frequently encountered as pollutants of inland waters and they affect the normal behavior of zinc in freshwater fish. The results of studies conducted on the effects of sublethal quantities of Cd and Hg on the metabolism of Zinc-65 in LEPORIS GIBBOSUS will be presented and discussed.

309 Lead and Cadmius Distribution in the Particulate Effluent from a Coal-Fired Boiler

Mervin, Predrick

Dissertation, The Univ. of Yova, Order No. 73-699, 174 pages.; 1972

LEAD: CADMICH: DISTRIBUTION: EPPLORUTS: POWER PLANTS; COAL: VERYLLIUM; ENTSSIONS: PARTICLE SIZE: ATOMIC ABSORPTION SPECTROPHOTOMETRY; RESPIERALE FRACTION

This study was designed to evaluate the total emissions and the distribution of concentration with particle size for cadmium and lead in the particulate effluent from a coal-fired boiler. Particular attention was given to the concentration and amounts of these materials in the respirable size range (less than 5 m). Additional information was obtained on the distribution of beryllium and other elements in the particulate effluent. Particulates were collected using a sampling train which consisted of a Los Almoos Scientific Laboratory miniature cyclone followed by a six stage Andersen Sampler followed by an inline membrane filter. After collection, the various size ranges of particulates were analyzed quantitatively for cadmium and lead, using atomic absorption and for beryllium using fluorescence emission spectroscopy. These analyses showed that the largest amounts of cadmium and lead were in the respirable size fractions. An increase in concentration with decreasing particle size was also shown for lead and cadmium. The limited number of samples analyzed for beryllium indicated that there was not an increase in concentration in the smaller particulate size fractions of the samples.

350 Some Remarks on Mercury as an Aquatic Pollutant and Its Implications

Miettinen, J.K.; Department of Radiochemistry, University of Helsinki, Helsinki, Finland

Part of Radiotracer Studies of Chemical Residues in Pood and Agriculture. Proceedings of A Combined Panel and Research Coordination Committee, International Atomic Energy Agency, Vienna, 61-68; 1974

HERCHEY; WATER; CONTAMINATION; TRANSFORMATION; HETHTLHERCURT; PISH; SWORDPISH; TUNA; HUMARS; BLOOD; HAIR; TEMPERATURE; BIOLOGICAL HALF-LIPE; HETABOLISH; FRESHWATER

The chemical transformation of mercury in nature and the eventual mechanisms of sethylation of mercury are discussed. Hercury levels in marine fish, especially tuna and sworzfish from different regions and in fresh-water fish are reviewed. The effect of temperature on the biological half-time of methyl mercury in fish is described. Recommended concentration limits of mercury in fish in the USA, Canada, Japan, Sweden and Finland are presented. The correlation between methyl-mercury communition and Hg-level in blood and hair, as well as the differences of the metabolism of methyl mercury and inorganic mercury in man are discussed.

151
Dynamics of Absorption Rates, Endogeneous
Proceetion, Tissue Turnover, and Homeostatic
Control Mechanisms of Zinc, Cadmium, Manganese,
and Nickel in Ruminants

Miller, U.J.; Dep. Dairy Sci., Univ. Georgia, Athens. Ch

Fed. Proc., Ped. Amer. soc. Exp. Biol. (PEPRA7) 32(8), 1915-20; 1973

REVIEW: TPACE ELEMENTS: MANGAMESE: ZINC: CADMIUM: MICKEL: TISSUES: RUMINANTS: ABSORPTIOM: EXCEPTIOM: CONTROL MECHINSISM; ANTHALS: MANHALS: CATTURE. MILK.

After reaching the ruminant duodeum, zinc and manganess are absorbed guite rapidly, with transfer from intestinal sucosa to blood as the rate-limiting step. After absorption, manganese turnover rates in most tissues are much more rapid than those for zinc, but the rate of each decreises with time, both totally and a spercentage of that retained. This inideates that increasing proportions of zinc and manganese are in tisques and combinations that hold them with high affinity. Although always low, cadming turnover is extremely slow after the first few days. Absorption change appears to be the major seans of zinc homeostasis, with endogenous excretion (and milk in lactating cows) making some contribution. In contrast, variable endogenous excretion in of major and perhaps dominant importance in manganese homeostasis, with differences in absorption probably playing a lesser role. Mormally, a cadmium metabolic load does not materially affect total absorption or endogenous excretion of a radioactive cadmium dose. This absence of homeostatic control is in sharp contrast to manganese and zinc. However, little cadmium is absorbed; most of that absorbed is retained for a very long time. Manganese and nickel absorption normally appear to be quite low; however, with the newborn calf, high manganese absorption values have heen obtained. Wilk zinc content is somewhat related to dietary intake, but the variability in milk is far less, with is much as 18% of dietary zinc going into milk of cows fed a low zinc diet and as little as 0.8% with high zinc intake. Although the data are far less adequate, ruminants appear to have some homeostatic control of nickel. Regardless of the route or mechainsism, homeostasis of zinc, manganese, and nickel probably is a reflection of change wary greatly among tissues for each element, suggesting very different homeostatic control mechanisms.

352
Rinding of Silver Sulfadiazine to the Cellular Components of PSENDOMONAS ARRUGINOSA

Modak. S.M.; Pox, C.I.; Dep. Surg. Microbiol., Columbia Univ. Coll. Phys. Surg., New York, NY

Riochem. Pharmacol. (BCPCA6), 22(19), 2391-2404;

SILVER; SILVER SULPADIAZINE; PSEUDOMONAS; DNA; BACTERIA; CHEMICAL BONDS

TAXONOMY: PSEUDONOMAS AERUGINOSA

12

353 Effect of Temperature Variations on Growth, Reproduction, Amino Acid Synthesis, and Fat and Sugar Content in UtVA FASCIATA Plants

Mohsen, A.P.; Wasr, A.H.; Metwalli, A.M.; Alexandria University, Alexandria, United Arab Republic

Hydrobiologia (HYDRB8), 42(4), 451-460; 1973

ULVA: GROWTH: TEMPERATURE EPPECTS: ALGAE: METALS; ASINO ACIDS: LIPIDS: LOGARS: BEPRODUCTION: SYMPHESIS

TAXONONY: ULVA PASCIATA

354 Differentiation of Chemical States of Toxic Species, Especially Cyanide and Copper, in Water

Hontgomery, A.C.; Stiff, H.J.

International Symposium on Identification and Heasurement of Environmental Pollutunts, Ottawa, Ontario, Canada, 375-379; 1971, June 14-17

TOTICITY; CHEMISTRY: CYANIDZ; COPPER; CARBON DIOXIDE; ANNOXIA; CHRONIUN; HYDROGET CYANIDE; ANTOO ACIDS; POLYPEPTIDES; HOMES; HETRODOLOGY; AWALYSIS

The toxicity of some substances to fish is governed by considerations of chemical equilibirum. Thus it appears that carbon dioxide, aumonia, and hydrogen cyanide are toxic, whereas the ions with which they are in equilibrium are not. A nomegram for the calculation of the proportion of free ammonia is presented. Hydrogen cyanide may be in equilibrium with metallocyanide complexes as well as with cyanide ion. The equilibria involved and the methods of analysis available for free hydrogen cyanide are discussed. Rexavelent chronium is present in water as chromate and hydrogen chromate in equilibrium. Copper forms soluble complexes with carbonate, amino-acids and polypeptides, humic substances, and cyanide. A large fraction of the copper present is often is suspension. Sethods of analysis to differentiate the soluble states of copper, and the implications of this analysis, are discussed.

355 Plumbosolvency of Waters

MOODE, M.R.

Wature 243, 222-223; 1973

LEAD; PLUMBOSOLVERCY; DEINKING WATER; PH; TEMPERATURE; PIPES; SOLUBILITY

Lead poisonings in the Clasglow area resulting from use of lead water pipes in buildings caused the authors to investigate the effects of various factors on the plumbosolvencies of waters. It was found that plumbosolvency increased considerably outside the pH range 6 to 8. Plumbosolvency increases exponentially with temperature up to a maximum temperature examined (60 degrees C).

346 Gastrointestinal Absorption of Different Compounds of Cadmiun-115M and the Effect of Different Concentrations in the Rat

Moore, W.J.; Stara, J.P.; Crocker, W.C.; Hatl. Prviron. Res. Cent., Environ. Prot. Agency, Cincinnati, Chio

Environ. Res. (EMVRAL) 6(2), 159-164: 1973

HATS: ABSORPTION; CADMIUM 115M; CHLORIDE; ACETATE: SULFATES; RETENTION; DISTRIBUTION; CADMIUM; GASTROIMTESTIMAL ABSORPTICY; CONTANTMATION

The absorption and retention of three different compounds of (115M) Cadmium and the effects of variations in concentration were studied in female rats. After a single oral dose, the chloride, sulfate, and acetate forms of (115M) Cd did not significantly influece the absorption, retention, or distribution of the (115M) Cd in the tissues. The only organs containing significant abounts of (115M) Cd were the liver, kidney, and gastrointestinal tract. Thereases in concentration of cadmium resulted in more cadmium being absorbed from the gastrointestinal tract, although the amount absorbed was not proportional to the increase in concentration.

357 Cadming Enrichment in Wecker Pish

Mueilar, G.: Foerstner, U.:: Lab. Sedimentsforsch., Univ. Heilderberg, Heidelberg, Germany

Waturwissenschaften (WATWAY), 60(5), 258-259; 1973

CADHIUM: PISH: LIVER

TAXONOMY: LEUCISCUS RUTILIS

The (006) cadmium content of the liver and flesh of leuciscus rutilis captured in the Neckar River near the mouth of the Enz (Germany) was .LEQ.5690 and .LEQ.260 PPB, Pesp., which was 190- and 52-Fold, respectively, higher than in fish captured in the same river near Dilsberg. The former fish were not suitable for human food.

358
Application of Plotation for the Treatment of Waste Water

Mukai, S.; Fac. Eng., Kyoto Univ., Kyoto, Japan

Hyomen (HYMNA7), 11(3), 129-144; 1973

REVIEW: FLOTATION: WASTE WATER: HEAVY METALS:

359 Electron Microscope Autoradiography of Ridney after Administration of (210) Pb in Mice

Hurakami, H.; Hirosawa, K.; Department of Public Health; Department of Anatomy, Paculty of Medicine, University of Tokyo, Hongo, Tokyo 113

Maturs, 245, 153-154; 1973

Poly

PLECTRONNICROSCOPY: AUTORADIOGRAPHY: BIOACCUMULATION: LEAD; LEAD 210; LEAD 218; RADIOACTIVITY: RADIOACTIVE EQUILLERIUM; CYTOPLASM; EPITHELIAL CELLS; MICE; AMIMALS;

KIDEST: MISOCHONDETA

Electron microscopic autoradiography was used to demonstrate the precise localization of (210) Ph in some organelles in the tubular epithelial colls of the mouse kidney. Male mice were injuried lattraperitoneally with a solution containing (210) Ph (210) Bi, and (218) Po in radiography equilibrium. In the epithelial colls, norw than half of the grains were found on mitochondria and about third in the cytoplasm, half of such were associated with cytoplasmic meabunance. Few grains were located in the nuclei of epithecial cells. Accumulation in the nuclei of epithecial cells. Accumulation in the nuclei of epithecial cells, accumulation in the nuclei of epithecial cells accumulation in the nuclei of epithecial cells.

360
Adiorption-Desorption Fquilibria of Some
Radionuclides in Sediment-Presh-Water and
Sediment-Seawater Systems

Hurray, C. M.; Hurray, L.

Part of Radioactive Contamination of the Harine Environment, Proceedings of Symposium held by the Interactional Atomic Energy Agency, Seattle, WA, July 10-14, 3972 (105-122) 786p.; 1973

ADSORPTION; DESORPTION; SEDIMENTS; PRESHMATER; SEAWAZER; SALTWATER; RADIONUCLIDES; COBALT; COBALT 60H; ZINC; ZINC 65; SILVER 110H; PH

Knowledge of the behavior of radionuclides in estuarine environments is required in the understanding of their regulation in coastal areas. The present paper describes experiments that were carried out to investigate the uptake of certain radionuclides on fresh-water scidiments in river water (adsorption) and their subsequent release from the sediments to the seawater (desorption). It was found that for the radiouuclides studied, (60)Co(m), (75)Zn, (110)Ag(m), their behaviour was vary individual. Laboratory results suggest that certain factors strongly affect the adsorption-desorption characteristics of the sediment. The influence of important factors such as the pH of the river, estuary and seawater, the concentration of sediment and trace element in the river water, the speciation of the trace element, the mineralogy of sediment, the formation of particulate material in the river water and floculation of this by sediment in the estuary and sea, and salinity effects on desorption, are discussed. Prom a knowledge of these factors, it is possible to predict, as a first approximation, for a given sediment the amount of radionuclide that will be taken up by a given weight of fresh-water sediment in a very simple river system under equilibrium conditions. Hhen this sediment reaches the marine environment the amount of desorbed radionuclide can be calculated. An example of a predictive calcuation for adsorption desorption of Var river sediment is given for conditions of pH, sediment load and tracer concentration that are typically found in this system.

361 Arsenic Oxidation State in the Presence of Microorganisms. Examination by Differential Pulse Polarography

Myers, D.J.; Hoimbrook, M.E.; Otteryoung, J.; Morrison, S.M.; Dep. Chem., Colorado State Univ., Port Collins, Colorado

Environ. Lett. (FVLTAX), 5(1), 53-61; 1973

AFSENIC: HICKORGANISMS: OXIDATION; POPERGGRAPHY; OXYACIDS; SPURGE: EPPLORNTS

TAYONOMY: PSEUDOMONAS FLUORESCENS

nifferential pulse polargraphy was used to annitor changes in the oxidation state of arsenic when arsenic oxyacids were acted upon by microorganisms. Arsenite is chesically altered in raw sewage, activated sludge, and sewage effluent under acrobic conditions; it was shown that in the presence of oxygen, activated sludge oxidizes arsenite to arsenate. Activated sludge under anaerobic conditions first reduces arsenate to arsenite. At longer times the arsenite apparently is further reduced. Aerobic cultures of PSEUDOMONARS PLHORESCENS also reduce arsenate to arsenite.

362 Heavy Metals in Wastewater and Treatment Plant Fffinents

Mytelka, A.T.; Czacher, J.S.; Guggino, W.B.;

Jour. Water Poll. Control Ped., 45, 1859: 1973
REHOVAL: WASTEWATER: SEWAGE: EPPLUENTS: AWALTSIS

The findings of the Interstate Sanitary Cosmisssion's (New York, New Jersey, and Connecticut) routine heavy metals analyses of municipal wastewater treatment plants is presented. The results show that many plants receive and discharge heavy metals above prudent limi's. In order to minimize the hartful effects of these heavy metals, state-of-the-art techniques must be implemented to achieve as close to 100 percent removal as is possible before these metals enter the sever systems allow wastewater to by-pass treatment plants and discharge, unireated, directly into the receiving waterways.

Analysis of Some Inorganic Constituents in Well Waters and Their Sediments

Wanda, R.S.; Kapoor, Krishna; Pluoride Study Unit, Dent. Coll. Hosp., Luchnow-3, Ottar Pradesh, India

Indian J Hed Dec 60(6), 949-952; 1972

ANALYSIS; ELEMENTS; NUTRIENTS; PLUORIDES; PROSPRATE; WAGESSIUM; CALCTUM; CHLORIDE; HARDMESS; STASONAL VARIATIONS; WELL WATERS; WATER; SEDIMENTS

GEOGRAPHICAL DESCRIPTION: India

Well water snaples (100) were analyzed for their contents of fluoride, phosphate, Mg, Ca, chloride and hardness for each of the 3 seasons to discover if there were differences in the concentration of these constituents in the sedimented and respective clear snaples. A study of seasonal variation in sediments and clear snaples was included. All these constituents were significantly greater in the sediments than in the clear snaples in the summer. Fluoride in the monsoon and fluoride, phosphate and mg in the winter sediment snaples were significantly higher. Analysis of variance applied to the data rawealed significant seasonal differences for each constituent. The content of these constituents was highest during the summer season in both the modiment and clear water snaples than during the winter and the monsoon.

364
Toxicity of Lead Witrate in the Carp
(CIPMINUCARPIO). Data on the Modifications of
the Nucleoprotein and Carbobydrate Metabolism

Marbonne, J.F.; Muray, J.C.; Serfaty, A.; Lab. Ecophysiol. Univ. Paul Sabatier, Toulouse, France

C.R. Soc. Biol. (CRSBAW) 167 (3-4) 572-5; 1973

CARP: PROTEOLYSIS: GLYCOGEN: LEAD: LEAD WITRATE: RETABOLISM: PISH: LIVER: WUCLEOPROTEIN

TAXUNGHY: CYPRINUCARPIO

"stabolic modifications induced by exposure of carps to 3.5 ppm lead nitrate consisted primarily of glycogen accumulation, proteolysis, and decrease in hepatic proteosynthesis.

365 Occurrence Porms of Cobalt, Mickel, and Copper in Subsurface Waters of Hugodzhary

Nazarova, L.V.: Dement'Ev, V.S.: Davletgalieva, K.M.: Inst. Gidrogeol. Gidrofiz, Alma-Ata, USSR

Izv. Akad. Nauk Kaz. SSP, Ser. Geol. (IKAGA8), 30(4), 40-45; 1973

COPPEB; SUBSURFACE WATERS; NICKEL; CODALT; WATER; FORMULATION

GEOGRAPHICAL DESCRIPTION: USSR, Mugodzhary

1. 1.

366
Biological and Photobiological Action of
Pollutants on Aquatic Microorganisms

Neely, W.C.: Swith, R.C.: Cody, R.H.: McDuffie, J.R.: Lansden, J.A.: Water Resour. Res. Inst., Auburn Univ., Auburn, AL

PB Report No. 220167/1, Water Resources Research Institute, Auburn University: 1973

MICRODRGAMISMS; PHOTOBIOLOGY; METALS; IONS; INSECTICIDES; ANTHES; MYCOTOXIN; BACTERYA; PARAMECION; WATER

TAXONOMY: PARAMECTUM CAUDATUM: ESCHERICHIA COLI

The various aspects of the biological and photobiological action of pollutants on aquatic microorganisms have been explored in a series of studies covering a wide range of chemical species and two classes of aquatic microorganisms, paramecia and bacteria. Certain metal ions, insecticides, polycyclic amines, and mycotoxins are capable of drastic alteration of the life processes in test strains of either bacteria or paramecia or both. In some cases concurrent exposure to light and the pollutant was necessary; in others the toxic and (or) mutagenic reactions were independent of light exposure. In particular the uranyl ion, beta-naphthylamine, and aflatoxin B1 were phototoxic while the insecticide, phygon, was strongly dark-toxic. All agents affected PARAMECIUM CAUDATUM and all but aflatoxin B1 affected ESCHERICKIA COLI.

367
Biodegradation of Phenylmercuric Acqtate by Mercury--Resistant Bacteria

Melson, J.D.; Blair, W.; Brinckman, F.E.; Colwell, R.R.; Iverson, W.P.; Mational Bureau of Standards, Washington, DC 24080; Dept. of Microbiology, University of Maryland, College Park, MD; Dept. of Microbiology, University of Maryland, College Park, MD

Applied Microbiol. 26(3), 321-326; 1973

ORGANIC COMPOUNDS; BIODETERIORATION; PUNGICIDES; PRENYLHERCORIC ACETATE; HENCORY; DECOMPOSITION PRACTIONS; BENZEME; BACTERIA; VOLATILIZATION; MERCORY/ACETATO-PHENYL

Selected cultures of mercury-registant bacteria degrate the fungicide-slimicide phenyl mercuric acetate. By means of a closed system incorporating a flameless atomic absorption spectrophotometer and a vapor phase chromatograph, it was demonstrated that elemental mercury vapor and benzene were products of pheynlmercuric acetate degradation.

368 Behavior and Distribution of Radioactive Substances in Constal and Estuarine Waters

Michiwaki, T.; Honda, T.; Kimura, T.; Morishima, H.; Koga, T.; Miyaguchi, Y.; Kewai, H.

Part of Radioactive Contamination of the Harine Environment, Proceedings of Symposium held by the International Atomic Phergy Agency, Seattle, WA, July 10-14, 1972 (177-193), 786 p.; 1973

DISTPIBUTION; RADIONUCLIDES; COASTAL WATPRS; ESTUARIES; RADIOACTIVITY; SALIBITY; PH; SEDIMENTS: YTTRION 91; CERIUM 144

To understand the problems of environmental redicactive contamination due to continuous

discharge of low-level liquid radioactive waste into the seawater, a study must be made of the behaviour and distribution of various nuclides which may occur in both ionic and colleidal or particulate state in the coastal and estuarine waters. However, the behaviour and distribution of the various radionuclides in the estuarine water are such more complicated than those in the open sea, because of the complex topographical and marine meteorological variations and the changes in salinities and pH of the water. Since thorium and rare-earth elements had been continuously discharged through a small river into the estuarine water at Osaka Bay, a study was made of the variation of concentration of these elements under various natural conditions. Experimental studies on adsorption of these elements on some bottom sediments were also carried out in the vater were different salimities and pH. One important factor influencing the concentration of the elements in the water is tidal oscillation. The gross beta activities in water at the same location in the estuary widely varied at each time of sampling. The average values from April to December in 1966 were 9.5 plus or minus 6.9 pci/litre at higher tidal level, 85 plus or minus 68pci/litre at middle tidal level and 157 plus or minus 106 pci/litre at lower tidal level respectively. However, the concentrations of thorium and total rare-earth elements in the water were not observed to change regularly with the tidal change. The dispersion of the elements in the estuarine water were not interproted by simple dilution and diffusion of the slement in water mass. The presence of the water flats, as well as the marine meteorological conditions, seem to affect markedly the distribution of the element in the estuarine water were not the sediment but also by the salinity and pH of the water. The highest distribution coefficients of the sediment but also by the salinity and pH of the water. The highest distribution coefficients of the claw in the clay sediment were obtained at the ch

369
Analysing Soil Water and Solute Hovement Under Pield Conditions: Soil Huisture and Irrigation Studies

Wielson, D.R.; Biggar, J.W.; University of California, Davis, CA

Proceedings of a Panol Organized by the Joint PAO/IREA Division of Atomic Energy in Pool and Agriculture, International Atomic Energy Agency, Vienna, 1973, p. 111-127; 1973

WATER MOVEMENT; PLUX; SOIL PROPILE; DIPPUSION EQUATIONS; POTENTIAL RQUATIONS; SOIL WATER; SOILS; TRANSPORT

Methods are reviewed for assessing water content distribution and water flux out of a soil profile using potential or diffusion equantions and data obtainable by means of a neutron aristre meter or by tensioneters. It is suggested that the neutron guage be used to assess the hydraulic conductivity varsus soil-water content relations of field soils together with the reliability of these measurements taken over land areas of sufficient size to be of use in the management and control of soil-water and solutes for crop production.

370 Concentrations and Distributions of Long-Lived Fallout Radionuclides in Open Ocean Sediments

Woshkin, V.P.; Boven, V.T.

Part of Radioactive Contamination of the Harine Environment, Proceedings of Symposium held by the International Atomic Energy Agency, Seattle, WA, July 10-18, 1972 (671-686), 786 p.; 1973

PALLOUT: RADIONUCLIDES; PLUTONIUM; SEDIMENTS; STROWTIUM; STROWTIUM 90; CESIUM; CESIUM 137; ACCUMULATION; SALTWATER; MODELS; AQUATIC ECOSYSTEMS

Analyses of deep open-ocean sediment cores from the north and south Atlantic and the Nediterranean Sea show the presence of Sr 90, Cs 137 and Pu 139,138 in measurable amounts distributed to depth within the sediment columns. Comparison of the quantities of these radionuclides eccumulated in the mediments with either ecitarted integrated deliveries to the sea surface or the measured inventories in the overlying water masses has been used to estimate the residence times of the radionuclides in the atlant entered the season of the radionuclides in the atlant entered these of the radionuclides in the atlant entered times are orders of magnitude shorter than those estimated for the stable elements. Plutonium, we find, is being removed from the water column significantly more rapidly than either Sr 90 or Cs 137. The ratio of Cs 137 to Sr 00 in the sediments is higher than that found in precipitation, suggesting that a larger fraction of ocean water Cs 137 is associated with medimenting particles than has been previously assumed. A simple medal assuming platonium to associate with a mired population of particles, sinting at rates of 392 to 70 m/yr, predicts very well both the relation of sediment inventory of ulutonium to depth of sediment, and the plutonium distribution vertically in the water column.

371 Precipitation and Hydrolysis of Ratallic Tons. V. Mickel(II) in Aqueous Solutions

Novak-Adamic, D.N.; Cosovic, B.; Bilinski, H.; Branica, M.; Inst. Rudier Boskovic, Zagreb, Yugoslavia

J. Inorg. Mucl. Chem. (JTMCAO) 35(7), 2371-82; 1973

WICKEL: HIDROXIDE: HIDROXISS: HETALS; PRECIDITATION: AQUITOUS CHEMISTRY

The change in solubility of nickel(II) hydroxide as a function of PH in aqueous solutions of 0.55 M solium chloride and 1 M soldium perchlorate was investigated. The precipitation was studied over a vide concentration range of nickel(II) ion 2 x 10(-1) M less than Mi2* less than 5 x 10(-6) M and PH 2 greater than pH 8. Several different mixing procedures for the preparation of the solutions were employed, and the results are discussed regarding the differences in the observed precipitation pH region. Tyndallometric and polarographic methods were used to analyse the systems (24 hr after the mixing at 25 degrees C). Graphical analysis of the solubility curves indicates the presence of species of charge 2* as the predominant one in aqueous solutions in equilibrium with the solid phase. The exceptions found for some solutions at concentrations higher than 5 x 10(-2) W of Mi(2) plus) are due to high local concentration of OH-ions. Assuming the nonhydrolytic species Mi(2plus) is predominant, ... solubility product RHO was evaluated.

The Influence of Temperature and Salinity on the Toxicity of Cadmius to the Piddler Crab (UCA PUGILATON)

O'Rara. J.

Pishery Bulletin, 71(1), 149-53; 1973

CADMIUM: TOXICITY: SALIMITY: TEMPERATURE: RECTROPLATING DISCHARGES: MIMP WASTES: CRAB: ACOTE: GILLS: BIOACCUMULATION: CONCEMPRATION PACTOR: GREEN GLAND: DEPATOPANCREAS: MUSCLES

TAXONOMY: UCA PUGILATOR

The concentrations of cadeius lethal to the fiddler crab, UCA PUGILATOR, were determined for various environmental regimes of temperature and salinity. Fortality was greatest in high temperatures and low salinities when tested for 200 hr. Concentrations of cadeius were greatest in green gland followed by gill, hepatopancreas, and suscle.

373 Cadmium Uptate by Fiddler Crabs Exposed to Temparature and Salinity Streams

O'Hara, J.; Belle W. Baruch Coactal Res. Inst., Univ. South Carolina, Columbia, S.C.

J. Pinh Res. Board Cen. (JPRBIK) 30 (6), 846-8; 1973

CRAB; CADMIDM; METABOLISM; SALIMITY; TEMPERATURE; UPTAKE; HORTALITY

TAXONOMY: UCA PUGILATOR

Recent experiments by the author have shown that cadmium accumulations in the gills of fiddler crabs exposed to different concentrations of cadmium did not exceed 100ug/q(ppm) Cd(2plus) wet weight, and that crabs died shortly after this level was reached. In the present experiment sale crabs were placed in each environmental combination of 33, 25, and 10 ut at both 10% and 30% satinity. Temperature was found to have little effect on the accumulation of cadmium in the gills at high satinity while it had a strong effect at low salinity. Crabs exposed to high temperature and low salinity had the greatest amount of cadmium in the heaptopancreas. The body burden increased over time in all temperature-salinity regimes tested reaching 17.48 ug at 13 c, 10%.

370
Hechanisss of Heavy Hetal Toxicities

Cehme, Prederick, W.

Clinical Toxicology, 5(2), 151-167; 1972

HEAVY HETALS: TOXICITY: HECHANISHS; PHARMACOLOGY

375
Treatment of Water Containing Concentrated
Yerrocyanides

ogura, P.: Sanei Suiko Co., Ltd.

Japan. Kokai (JKXXAP) 73 42966 (13(7)A2, 13(7)A21, 91 C91), 07, 2 pp.; 1971, October

PERROCYANIDE: CALCIUM: CHLORIUE: ZINC: WATER; PRECIPITATION AGENT

176 Effect of Hercury on Teast

chimeyer, P.; Pilgerakis, C.; Ruehlen, D.; Forschungsstelle Prof. Ohlmeyer, Univ. Tuebingen, Tuebingen, Germany

7. Waturforsch., Teil C (2MFCAP), 28 (9-10), 628; 1073

YEAST: MERCURY CHLORIDE; GENETICS; MERCURY

Hercury chloride (Egcl2) increased in 1.5 % 102-5m the generation time of SACCHARONYCES CERTYISIAE and induced genetic changes. Heartreated cells produced a lower amount of dry substance as compared with untreated cells. Their N2-CO2 ratio in glucose solution was increased. Hey treated cells were able to sporulate.

377
Application of Isotope Techniques for Studies on Mechanisms of Land Contamination and Water

Ohmowo, Y.; Suzuki, H.; Saiki, H.

Proc. Jap. Conf. Radioisotop. No. 10, 499-503; 1972, April

ACTIVATION AWALTSIS; BPONIME: DYSPROSIUM; EUROPIUM; PLOW RATE; IGLAND HATENWAYS; WATER; CERIUM 188; CYSIUM 137; CONTANTWATKOM; DRIWKING WATER; FALLOUT; LAND POLLUTIOM; RAECOACTIVE WRSTE DISPOSAL; RUTHEWIUM 106; SEDIMMUTS; SOILS; STROWFIUM 90; COWS; FISH; IODIWE 131; HILK; PLANTS; RADIOWUCLIDE HIGRATIOF; UPTAKE; MERCURY; HERCURY 203; TRACERS

378 Heavy Metal Levels of Ottawa and Rideau Wiver Sediments

Cliver, B.G.; Inland Waters Dir., Dep. Environ., Ottawn, Ont.

Environmental Science and Technology, 7(2), 135-7; 1973, February

RIVERS: SEDIMENTS; LEAD; MERCURY; ZINC; COPPER; MICKEL: COBALT; IRON; MANGAMESE; CHROMIUM; ATOMIC ABSORPTION SPECTROPHOTOMETRY; INDUSTRIAL MASTES; SEWAGE; FISH; TOXYCLITY; PARTICLE SIZE; SLINICIDES; METHOXYETHYLMERCURIC ACETATE; AUTOMOBILE PHISSIONS

Sediment samples were collected at two-mile intervals along the Ottawa and Rideau Rivers near Ottawa, Canada, in July, 1971. The sediments were analyzed for lead, mercury, zinc, copper, nickel, cobalt, iron, manganese, and chromium using atomic absorption spectrophotometry. The surface areas of the samples were measured and taken into consideration when deciding whether or not metal

levels were unusually high. Some anomalously high beavy metal concentrations found in the sediments in certain locations appeared to be related to pollution of the rivers by municipal and industrial waste water discharges and waste disposal practices.

379 Ecological Dynamics of Watersheds

Olsen, S.

RioScience, 22(3), 158-161; 1972, Harch

HODELS: EMERGY FLOW; PUNCTIONS: WATERSHEDS: ATMOSPHERE: WATER: SOILS: TRRPERATURE: LIGHT: PH: PLANTS: AMUNALS: AQUATIC BIOTA: TERPESTRIAL ECOSYSTEMS: AQUATIC ECOSYSTEMS: TERRESTRIAL BIOTA

A graphi transfer function model is developed to demonstrate in a simple though comprehensive form the pathways for energy, water and elements within a watershed. A watershed is taken as the best example of a complete ecosystem, containing both errestrial and aquatic parts with their populations of producers, consumers, and decomposers. This transfer function model represents only a first step toward the development of quantitative, mathematical models that can serve to describe the cosplicated interactions between the environment and the hicts. While the model can be used for different ecosystems containing aquatic and terrestrial parts, it is planned more specifically for treatment of the data accumulated in the studies on the Fern Luke watershed. Those data cover both the terrestrial and aquatic environments. Some of the measurements have been made regularly for more than twelve years and include observations on air (temperature, husidity, pressure, precipitation, solar radiation, wind direction and velocity); water (temperature, oxygen, specific conductance, limit of visibility and light penetration, ph, alkalinity, various chemical elements, and data are available on terrestrial producers (general knowledge of the flora, assessment of biomass, mass of %, %, and p); aquatic producers (general knowledge of the masmals, repetiles, amphibia, and birds); and aquatic consumers (quantitative data on couplanton, bottom animals, insect emergence, crayfish, and steelhead trout, including modelling of the population dynamics of the fish). Experiments have been performed on the sovement of elements (with the use of 32P, 85Rh, and 35Ca) in Douglas fir, by application of radioisotopes to the lake (32P, 45Ca, 99No, and 13II), and by full or partial mineral fertilizations of the lake.

380
Uptake Pathways of Hethylmercuric Chloride and Mexcuric Chloride by Rainbow Trout (SALHO GATROWERT) with Special Reference to Ultrastructural Changes of the Gill

Olson, K.R.; Richigan State Univ., Past Lausing, $\mathbf{M}\mathbf{I}$

Univ. Microfilms, Ann Arbor, MI, Order No. 73-20, 386, Diss. Abstr. Int. 8, 34(3), 1238-1249; 1973

HERCURY CHLORIDE: UPTARF; RAINBOW TROUT; METHYLMERCURY; GILLS; METABOLIC PATHWAYS; PISH; MERCURY

TAXONOTY: SALHO GAIRBNERI

R11
Uptake of Hethyl Mercuric Chloride and Mercuric
Chloride by Trout. Uptake Pathways into the Whole
Animal and Uptake by Erythrocytes in Vitro

Olson, K.R.; Bergman, H.L.; Promm, P.O.; Dep. Physiol., Michigan State Univ., East Lansing, Michigan

J. Pish. Res. Roard Can. (JPRBAR) 39(9), 1293-9;

METHYLHERCUPY; UPTAKF; TROUT; ERITHROCYTE BIMDING; BYOACCUMULATION; FISH; MERCURY; MERCURY 203

TAROHONY: SALMO GAIRDNERI

Esophageal ligation GiG not affect the mate of uptake of either 203Hg-labeled mercuric chloride or methylmercury chloride (275 ng/l., 24 hr exposure) by nonfeeding rainbow trout (SALHO GATROWREN). Thus Hg2+ and H3Hg+ uptake appeared to be by way of the gills. CH3Hg+ entered the fish faster than Hg2+, and was selectively accumulated in the kidney, muscle, gill, heart, and liver. However, Hg2+ appeared to Cross the gill membrane and enter the fish without requisite methylation. Up to 90% of the CH3Hg+ hound to red cells during 40 min in vitro incubation with whole blood. Only 9% of the Hg2+ bound to red cells in whole blood; however, up to 66% bound to red cells washed and suspended in Ringer's solution prior to incubation with Hg.

392 Lake Superior Periphyton in Relation to Water Quality

Olson. T.A.: Odlang. T.O.

Water Pollution Control Research Series, 18050 DBH 02/72: 1972, Pebruary

WATER QUALITY; PPRIPHTTON; ALGAE; GROWTH; PRODUCTION: TEMPERATURE; LIGHT; NUTRIENTS

TAXONDAY: SYMEDDA: ACMMANTHES; MAVICGLA; CYMBELLA; GOMPHONMA

GEOGRAPHICAL DESCRIPTION: U.S., Great Lakes, Lake Superior

Laboratory and field studies were conducted to evaluate the importance of periphyton in western Lake Superior with special reference to the ake-up and distribution of the periphyton growths and to the overall importance of productive capacity of this assemblage or organisms. The taxonomic protion of the investigation indicated that over 90% of the total number of organisms were distons and that the phyla to which these diatons belonged were the Chrysophyta, the Chlorophyta, and the Cyanophyta. Predominant genera were SIMEDNA, ACHMANTRES, WAVICULA, CYMBELLA, and GOMPHOWEMA. In many respects, the periphyton of Lake Superior was similar to that found in streams and there was evidence that the interrelated factors that affected periphyton growths were temprature, light intensity, depth of water, water novements, nutrient levels, and the type of substrate. Artificially denuded rocks demonstrated definite re-growth but after 46 days this growth level was

only 18% of that occurring naturally. The mean total counts of organisms in the primary sampling area ranged from 497,000 to 1,470,000 per square centimeter of rock surface. Studies of the pigment concentrations showed that the biomass of periphyton along the North Shore 37 Lake Superior resemble those of other oligotrophic bodies of water and range from 0.338 to 3.59 mg of total pigment per 100 square centimeters of rock surface. Pigment ratios indicated that the Lake Superior periphyton was dominated by the Chrysophyta. Assimilation values for Stony Point Bay averaged 1,38 grams of carbon fixed per gram of chlorophyll in 1967. In Stony Point Bay, the total standing crop in terms of dry weight was 55.5 tons. In re-greath studies, chlorophyll levels were observed to increase by an average of 0.057 grams (57 ags) per square meter per day. The efficiency of energy utilization in Stony Point Bay was found to he 0.082%, a typical value for algal communities.

3B3 Removal of Chromate from Cooling Tower Blowdown by Reaction with Electrochemically Generated Ferrous Hydroxide

Onstott, E.I.; Gregory, W.S.; Thode, E.F.; University of California, Los Alasos Scientific Laborrtory, Los Alasos, NH 075Nb; New Newico State University, Las Cruces, NH 88001

Ynviron. Sci. Tech. 7(4), 333-337; 1973

COOLING TOWERS: CHROHIUM: TOWS: BLOWDOWN; PERROUS HYDROXIDE: PRECIPITATION: REMOVAL

Treatment of cooling tower blowdown with electrochemically generated Fe (OH) 2 quantitatively reduced Cr(VI) to Cr(III) and concurrently precipitated it without pH adjustment. Concentrations of Cr(VI) of less than 0.005 mg/l were achieved. Fe (OH) 2 treatment also precipitated a large fraction of the phosphate and other ions (anions) to improve product effluent quality significantly with respect to total dissolved solids. Steady-state generation of Fe (OH) 2 in blowdown was accomplished with high Paraday efficiency in a flow cell which utilized sacrificial low-carbon steel anodes and stainless steel cathodes. Colloids were formed under sost electrolysis conditions, and special procedures were required to cotain filterable precipitates.

Sediment Water Interactions

Oshvald, W.R.

J. Environ Qual 1(4), 360-366; 1972

PISH: YOOD CHAINS; TORBIDITY; EUTROPHICATION; SEDIMENTS; WATER

Sediment originating from soil erosion has physical, chemical, and biological effects on water resource use. Sediment particles pollute water to the extent that their presence reduces water quality for a particular use. The physical presence of sediment produces turbidity. Turbid water has impaired vater quality for most uses. Reduction in light penetration due to suspended sediment may alter oxygen relationships in surface water. Production of fish and other aquatic life is reduced by excess turbidity. Taste and odor, temperature, and abrasiveness of water may be altered by the physical presence of sediment.

Cadmium Residues in the Environment

Page, A.L.; Pingham, P.T.; Dep. Soil Sci. Agric. Eng., Univ. California, Riverside, CA

Residue Rev. (FREVAR), 48, 1-44; 1973

REVIEW; CADMIUM; TOXICITY; FOOD; SOILS; WATER; ATMOSPHERE; PLAWIS; HUMANS; BACKGROUND LEVELS; INDUSTRY: PRODUCTS: CONTAMINATION

A review with 79 references dealing with dealing with the natural occurence, production, uses, and residues of cadmium in soil, water, air, vegetation, and foods, and human toxicity.

386 A Survey of the Lead Content of Fish from 49 New York State Waters

Pakkala, I.S.; White, M.W.; Burdick, G.E.; Harris, P.J.; Lisk, P.J.

Pesticides Monitoring Journal, 5(4), 348-355; 1972. March

LPAD; WATER; LAKES; RIVERS; PISH; CONCENTRATION; TOXICITY; TOXIC MECHANISMS; GILLS; SKYM; SEAPOOD; SHELLPISH; EMPICHMENT; EMZYMES; SULFHYDRYL GROUPS; SPECTES; SET; AGE

GROGRAPHICAL DESCRIPTION: U.S. (PB), New York, Cayuga Lake, Lake Canudice, Lake Canadiagua, Lake Frie, Lake Healock, Lake Pleasant, Lake Raquette, Hudson River, Great Lakes

An analytical survey was made of the total lead concent of a19 fish of valious species sampled in 1969 from a9 New York State waters and a group of lake trout samples in 1970 from Cayuga Lake only. Most often, lead concentrations ranged from 0.3 to 1.5 pps, but a few samples contained levels up to 3 pps. Fish from cartain wavers included Lakes Canadice, Canadiagua, Erie, Hemlock, Pleasant, and Raquette and the Hulton Siver showed higher lead levels more consistently than fish from other waters. No correlation was noted between lead concentration and the size, species, or sex of fish, and lead did not appear to be cumulative in the lake trout of known age up to 12 years from Cayuga Lake.

187
Release, Fixation and Transport of Hercury

Parks, G.A.; Dickson, P.W.; Leckie, J.O.; McCarty, P.L.; Berendsen, P.; Pering, K.L.

Part of Trace Flements in Water: Origin, Fate, and Control: 1. Mercury, Progress Report, Stanford University, March 1, 1972 to February 1, 1973 (p. 65-109) 287 p.; 1973

TPAMSFORMATION: MTRCURY: OXIDATION:
VOLATILIZATION: ALKYLATION: CXMABAR: KIMETICS:
AWABROBIC SYSTEMS: SOLUBILITY: VAPOR PRESSURT:
SFDIRENTS: METHYLARCURY: SLUDGE; ABROBIC
SYSTEMS: SULPIDES: METHYLATION: LEACHING:
ANALYSIS: FIXAYION: TRANSPORT:

studies on transforgation of mercury from one form to another have concentrated on alcrohiologically mediated changes, with emphasis on oxidation of sulfides of mercury, volatilization of Hg(II), and alkylation. Direct evidence for microhial mediation of HgS oxidation has not yet been obtained as the chemistry has proven to be quite complex. Hg(II) released by oxidation of cinnabar (HgS) is tightly adsorbed back onto remaining cinnabar, making analysis

difficult. Impure synthetic metacinnabar is oxidized much more rapidly than cinnabar, especially athigh and low pW. Thus, form as well as environmental conditions is highly important in kinetics of oxidation. Tricer studies are continuing in order to separate biological and chemical factors, and leaching studies using mercury ores and mine waste have begun. Hg(II) added to biological systems was volatilized, probably through conversion of HgO, in varying degrees. Greatest volatilization was observed in aerobic systems, and was brought about by the presence of certain biological growth media, and by sterilized effluents from secondary wastewater treatment plants. In other cases it was associated directly with the growth of microorganisms. The extent of volatilization was reduced by suspended solids, perhaps through formation of unreactive complexes of by adsorption of the volatilo species. Volatilization was insignificant in annaerobic systems where the potential for complex formation was high. The ease of reduction (Hg(II) to HgO) implied by volatilization losses, the relatively high solubility and vapor pressure of matallic mercury, and the presence of metallic mercury in sediments combine to form a strong case for the significance of metallic mercury as a source material. The same case can be made for HgO (aq) and mercury vapor as highly mobile forms of mercury in the environment. Hethylmercury was found in digested sludge from a municipal treatment plant and was increased in concentration through addition of Hg(II).

Analysis by extraction techniques also suggest it is formed in aerobic systems using synthetic media, but confirmation is required. The concentration of methylmercury formed is a function of Hg(II) added. Current emphasis is on a survey for evidence of methylmercury formation in benthic sediments from the study srea.

388
Rethylation of Hercury by Microorganisms.;
Technical Research Project Termination Rept.,1
Sep. 71-30 June 72,

Parks, Leo W.; MacDonald, Elizabeth M.S.; Oregon State Univ., Corvallis. Water Resources Research Inst.

Monitoring Agency Rept. No. W72-14921, OWRR-A-015-ORE(1); Proj. OWRR-A-015-Gre; 23p.; 1972, June 30

AWALTSIS: DITHIZONE AWALYSIS; MERCURY; IOW EXCHANGE; MERCURY COMPOUNDS; CHEMICAL AWALYSIS; IOW EXCHANGE RESTMS; ERRORS; PURIPICATION; INPURTIES; COLORTHEIRIC AWALYSIS; ORGANOMERCURIALS; CHELATION

Both organic and inorganic forms of merchry are analyzed by a modification of the classical dithizone method in the range 0-50 microgram. The separation of mercury from the bulk of interfering ions much as Cu(+2), Fe(+3), B1(+3), Hg(+2), Ca(+2), and Na(+) can be accomplished simply by use of chelating resins. No matisfactory method of separating inorganic mercury compounds from organizating inorganic mercury compounds from organizating inorganic by differential elution was found. Mercury is not appreciably volatile in hot oxidizing acidic solution and the elaborate refluxing systems of the standard dithizone method are unnecessary.

389
Theory of Water Movement in Soils. Part 9: The Dynamics of Capillary Rise

Parlange, J.Y.; Aylor, D.

Soil Sci. 114(2), 79-81; 1972

WATER MOVEMENT; SOILS; NUMERICAL SOLUTION; CAPILLARY ACTION; MATHEMATICAL METHODS; MODELS

A simple analytical representation fro the one-dimensional capillary rise of water in porous media is derived in this work, which is valid for all times. The present solution reduces to the proper limits both for t 0 and for t 8. For the case of folo clay, the analytical solution and philip's numerical solution are in complete agreement for times up to 10(6) sec., which is the limit of validity for Philip's time series expansion. However, Philip's time series expansion. However, Philip's solution describes only the early stages of the capillary rise, typically less than 10 per cent of the complete rise, while the present technique describes the whole phenomenon.

390
Preliminary Survey of Hercary and Other Hetals
Contained in Animals From the Praser River
Wadflats

Parsons, T.R.; Bawden, C.A.; Heath, W.A.; Inst. Oceanogr., Univ. of British Columbia, Vancouver, B.C.

J. Pish. Res. Board Can. (JPRBAK), 30(7), 1014-16; 1973

METALS: CRAR; HOLLUSCS; MERCURY; SILVER; CADMIUM; COPPEE; SEWAGE OUTPALLS; SEWAGE

TAKORONY: CRASSOSTREA GIGAS; NYA AREMARIA;

crabs taken from the Sturgeon Bank of the Praser River mudflats contained 7-fold the amount of mercury of crabs of comparable size taken from the Roberts bank, the Cowichan River estuary, or Kitimat Arm. The mean Hg content of molluscs from Sturgeon Bank was 0.33 ppm, compared with 0.12 ppm in those from other areas. Silver, cadmium, and copper levels were also higher in animals from Sturgeon Bank, while cobalt, manganese, nickel, lead, and zinc levels showed no geographic pattern. The Vancouver city sever outfall, rather than the Praser River itself, is probably the source of high heavy metal concentrations.

391
Spreading of Heavy Metals in Plowing Water in the Region of Occurrence of Natural Deposits and of the Zinc and Lead Industry

Pasternak, R.: Zak. Biol. Wod., Pol. Akad. Wauk, Cracow, Poland

Acta Hydrobiol., 15(2), 145-66; 1973

HPAYY METALS; STREAMS; WATER; LEAD; ZINC; MINING; INDUSTRY

392 Occurrence and Cumulation of Microcomponents in Bottom Sediments of Dam Reservoirs of Southern Poland

Pasternak, K.; Glinski, J.

Acta Hydrobiol., 14(3), 225-255; 1972

ACCUMULATION; SEDINEWTS; LEAD; ZINC; DAMS; RESERVOIRS; WATER

The total amount of microcomponents in sediments depends above all on their grain composition. An exception here are sediments of reservoirs supplied with strongly polluted water. The quantitative differentiation of microcomponents within each granulometric group of sediments, as well as between single samples from various zones of the reservoirs, shows a tendency to a relationship with the quantity and quality of clayey and organic matter in the sediment. The presence in the substratum of the catchment basin of the reservoirs of rock layers containing Zn and Pb sinerals, or dust coming from the Zn and Pb industries, have some influence on the increase in the amount of these components in the sediments. The main source of microcomponents in the sediments of pure reservoirs are suspansions brought in by the water of the river, and remains of organisms developing in the reservoirs. The degree of cumulation of microcomponents in the sediments of dam reservoirs is much highe; than in land soils and the soils of fish-ponds. The degree of concentration of some microcomponents in the sediments of polluted reservoirs corresponds in general to the quantity and quality of pollution.

C,

343 Radioecology of Certain Holluscs in Indian Coastal Naters

Patel, B.; Valanju, P.; Mulay, C.; Balani, H.; Patel, S.

Part of Radioactive Contamination of the Marine Environment. Vienna-International Atomic Energy Agency (pp. 307-330). From Symposium on the Interaction of Radioactive Contaminants with the Constituents of the Marine Environment, Seattle, Washington, USA, 10 Jul 1972, 14 Jul 1972, See STI/PUB--313-COMF-720708; 1973

AQUATIC ECOSISTEMS; CALCIUM; CESIUM 137; COASTAL WATERS; CESIUM; CORRLT; COBALT 58; COBALT 60; COPPER; DIFFUSION; BAUSKELETOM; FOOD CHAINS; GASTROIMTESTINAL TRACT; SALTWATER; LODINE 131; TROW; LYVER; MAGMESSIUM; BANGAMESP; COUINE; HARINE DISPOSAL; METABOLISM; HOLLUSCS; MICKRL; THOSPHORUS; POTASSIUM; RADIOACTIVE WASTE DISPOSAL; RADIOMUCLIDES; KINETICS; RADIOMUCLIDE HIGRAFIOM; MIGRATIOM; RETENTIOM; STROMTIUM; TISSUES; UTTAKE; ZIWC; TISSUE DISTRIBUTION

TAXONOMY: APLYSTA BENEDICTI

Rnowledge of the distribution patterns of stable elements in the marine biosphere is an essential prerequisite for understanding the problems of radioactive contamination of marine biota, especially as regards indicator species. This paper discusses the distribution of a few major and trace elements of metabolic significance in the sea-hare APLYSIA BENEDICTI Bliot, which moves shorewards in coastal waters during colder months. The population was found to accumulate trace elements belonging to iron family atomic nos. 23-28). Of the various tissues analysed, the hepatopancreas and intestime including the gut-content showed higher concentrations of Co, Fe and Mi, whereas Fe was deposited in buccal mass. The hio-accumulation of Zn, Cu, Sr and Ca in whole animal and various tissues is also discussed in relation to environment. The APLYSIA BENEDICTI population from Tarapur waters which receive radioactive wastes (I-131, Cs-137, Cr-51, Co-60, Mn-5a, etc.) from a bolling-water reactpr, was found to accumulate Co-58 and Co-60 in the soft-tissues. Hepatopancreas and gut-content contained the highest concentration of radiocobalt. Iodine-131, on the other hand, was concentrated in horny internal shell, possibly as a means for disposal. The spawn chords of this species were also found to accumulate I-131 from the environment. This species could therefore be used as an indicator of radionuclides of cobalt, although its occurrence in nearshore waters is strictly seasonl.

394 Radioecology of Benthic Fishes off Oregon

Pearcy. W.G.: Vanderploed. H.

Part of Radioactive Contamination of the Marine Environment, Proceedings of Symposium held by the International Atomic Energy Agency, Seattle, WA, July 10-14, 245-259, 786p.; 1973

RADTORCOLOGY; BENTHOS; FISH; ZINC; ZINC 65; COBALT; COBALT 60; MANGAMESE; MANGAMESE 54; CERIUM 144; CERIUM; CESIUM 137; CESIUM; POTASSIUM; POTASSIUM 40; COASTAL WATERS; SPECIFIC ACTIVITY; RADIONUCLIDES; TRANSPORT; WATER

TAXOHOMY: LYPOSETTA EXILIS: SEBASTOLOBUS

GEOGRAPHICAL DESCRIPTION: U.S. (HW), Oregon, Coast

Gauna-exiting radionuclides were found in benthic fishes from dopths of 50-2800 m off the Oregon coast from 1964-1971; Zn-65, Co-60, Mn-54, Ce-144, Cs-137 and K-80 were present. Zinc-65, originating mainly from the nuclear reactors on the Columbia River, was the predominant artifically induced radionuclide. Levels of Zn-65 per gram and specific activities of Zn-65 decreased markedly in several species of fishes between 1965 and 1971 because of the shutdown of reactors. This decrease was greater for small than for large LYOPSETTA EVILIS during 1970-1971, Specific activities decreased with increasing depth, both for individual species inhabiting broad depth ranges and for different species inhabiting different depths. Specific activities of Zn-65 were inversely related to body size for L. EXILIS and SYBASTOLOBUS. Other variations of Zn-65 were related to trophic position. Fishes that preyed on low trophic level pelagic animals had higher specific activities than fishes that preyed on benthic invertebrates. Such pelagic feeders may play an important role in accelerating the transport of some radionuclides or elements to the sea floor.

Heavy Retals in Somerset Marine Organisms

Peden, J.D.; Crothers, J.H.; Waterfall, C.E.; Beasley, J.; Cty. Anal. Lab., Cty. Hall, Taunton/Somerset, England

Mar. Pollut. Bull. (MPNBAZ) 4(1), 7-9; 1973

CADMIUM; MARINE ORGANISMS; HUMANS; HEAVY METALS; SALTWATER; KIDNEYS; LIMPETS; ANALYSES; MOLLUSCS

TAKONONY: PATRLLA VULATR

GEOGRAPHICAL DESCRIPTION: England, Somerset, Devon. Taunton

Limpets PAYBLIA VULGATE from 11 cities along the Somerset coast and 7 from Devon had concentrations rising to very high levels toward Anomaouth. Limpets collacted from near low tide mark contain more cd than individuals living in a higher situation. Finallyses of a number of apparently normal human organs from accident victies showed very high levels of Cd in 87 kidneys. These levels are approximately, equivalent to 5.80 ppm of the net wt. There is virtually no Cd present in the kidneys of the new-born child.

396
The Roles of Pood and Water in the Accumulation of Radionuclides by Farine Teleost and Rlasmobranch Pish

Pentreath, P.J.

Part of Radioactive Contamination of the Marine Environment, Proceedings of Symposium held by the International Atomic Energy Agency, Seattle, WA, July 10-14, 1972 (421-435) 786 p.: 1973

FOOD CHAINS: BIOACCUHULATION: MARIWE TELEOST: ELASMOBRANCH FISH: PISH: CESIUM: CRSIUM 137: TOXICITY: BIOLOGICAL HALF-TIMES: GASTROINTESTIMAL ABSORPTION

A theoretical estimation of the input of many radionuclides into fish, and the relevant roles of food and water, is formulated on the basis of known concentration factors. The importance and methods of estimation of biological half-times in such calculations is also discussed. The accumulation of many fission product nuclides is low due to poor absorption across the gut wall, with the exception of soluble elements such as casium-137 where both food and water play an egual part. For many neutron activation products, however, the contribution from water nlone may be considered to be very small. Experimental evidence is given on the accumulation of certain neutron activation products from water by both teleost and classabranch marine fish in relation to their large stable element pools, water fluxes and drinking rates. Calculations on the required dietary input are equated with known feeding rates, and the required retention of such elements is compared with results obtained both from labelled pellets introduced into the gut and from labelled food species. The results imply that, unlike caesium-137, which is increased along the food chain, wany neutron activation products (heavy metals) are decreased in concentration at such higher trophic levels. The implication of such work for metal toxicity studies is also discussed.

397
Accumulation from Water of Zinc-65, Manganese-54, Cobalt-58, and Iron-59 by the Mussel, MYTLUS

Pentreath, F.J.; Pish. Radiobiol. Lab., Minist. Agric. Pish. Food, Lowestoft/Suffolk, England

J. Har. Piol. Ass. U.K. (JHBAAK), 53(1), 127-43; 1973

MUSS PLS; UPTARE; RADIONUCLIDES; IRON; ZINC; ZINC 65; IRON 59; SALTWATER; MANGAMESE; COBALT; MANGAMESE 54; COBALT 58; BIOACCUMULATION MODELS

TAXOHOMY: MYTILUS EDULUS

The accumulation from sea water of Zn-65, Mn-54, Fe-59, and Co-58 by the mussel, MYTILUS EDULIS, has been studied in relation to the stable element levels of these isotopes both in the sea water and in individual tissues. For all four radion/clides the greatest accumulation occurred in the stomach and digestive gland samples and further localization of Zn-65 and and Fe-59 was demonstrated by autoradiography. As the animals were starved during the accumulation period the loss of stable elements by individual tissues was also followed. Again the most notable effect occurred in the digostive gland tissues with the

exception of a large loss of iron by the foot. Autoradiography showed that after two weeks accumulation Fe-59 occurs in large clusters in the foot, notable in the byssus gland area. These clusters disappear after a further two week period and may thus be secreted into new byssus threads. The accumulation of nuclides was examined using a single exponential model and values obtained for flux rates, biological half times and a symptotic values were compared with the stable element concentration factors. An analysis of parameters of exchange of nuclides in individual tissues with the water was further examined using the Kendall coefficient of concordance which demonstrated that the highest exchange occurs in the order of stomach and digestive gland is greater than gill is greater than foot is greater than mantle is greater than gonad is greater than adductor. The application of Priedman test of two-way analysis of variance indicated that the order obtains for all four nuclides studied, despite the fact that in the aquaria used zinc and cobalt were largely soluble; that manganese was partly in the particulate form with the radionuclide used; and that iron was largely particulate in both stable and active forms. There is an indication that as well as accumulating nuclides via particulate matter in suspension the mucus itself is capable of sequestering them, even though they are in the soluble form, and may even preferentially accumulate soluble forms. The actual role of water in the accumulation of the nuclides studied appears to be relatively minor compared with that of food accumulation as estimated by difference from the calculated stable element values.

398
Physico-Chemical Characteristics Of Pive
Ruthenium Salts During Preshwater to Marine
Transition

Peperstraete, H.; Vos, J.; Van Puyebroeck, S.; Vanderborght, O.

Part of Radioactive Contamination of the Marine Environment, Proceedings of Symposium held by the International Atomic Energy Agency, Seattle, WA, July 10-14, 1972 (219-221) 786 p.; 1973

PHYSICOCHEMISTRI; RUTHEMIUM; RUTHEMIUM SALTS; PRESHWATER; SALTWATER; PLECTROPHORESIS; BIOLOGICAL AVAILABILITY

The changes in Physico-chemical characteristics such as mobility in high-voltage electrophoresis, of different Ru-salts in solution are considered during their transition from fresh water to marine conditions. The biological availability for some indicator organisms is also assessed under the same controlled laboratory conditions. The five tested solutions of Ru salts show a different electrophoretic separation pattern. This pattern changes by aging, probably principally by polymer formation. Dilution has no marked influence on this pattern, neither after dilution with fresh water nor with seawater.

399
Distribution of Cadmium, Cobalt, Copper, Iron,
Manganese, Wickel, Lead and Zinc in Dissolved and
Particulate Solids from 2 Streams in Tennessee

Perhac, R.M.; Dept. of Geology, Univ. of Tennessee, Knoxville, Tenn., U.S.A.

J. Hylrol. (Amst.), 15(3), 177-186; 1972

DISTRIBUTION: CADMIUM: COBALT: COPPER: IRON: HAMGANESE: NICKEL: LEAD: ZIEC: PARTICULATE SOLIDS: STREAMS

GEOGRAPHICAL DESCRIPTION: U.S. (52), Tennessee

In order to study metal distribution in streams, four water samples were taken from two streams in mortheast Tennessee. One drains an area of exposed minor zinc mineralization. Three classes of solids were extracted from the water: coarse particulates (greater than 1500 A), colloidal patticulates (less than 1500 A), colloidal patticulates (less than 1500 A, greater than 100 A) and dissolved solids. Each particulate fraction was extracted by continuous flow altracentrifugation. The dissolved solids in the remaining effluent were recovered by evaporation. Of the total solid, the discolved fraction accounts for over 95%; colloids make up less than 1%. The three solid fractions were totally dissolved and analyzed for Cd, Co, Cu, Fe, Mn, Fi, Fb and Zn. The dissolved solids always contain the lowest concentrations of metal (ppm metal in solid); the colloids have the highest, typically more than 10 times that of the dissolved material. The coarse particulates occupy an intermediate position. Despite its low concentration, generally over 90% of each metal occurs with the coarse particulates, less than 10% occurs with the coarse particulates, less than 1% as colloids.

900 Trace Hetals in Solway Firth Sediments

Perkins, E.J.; Gilchrist, J.P.; Abbott, O.J.; Halcrow, W.; Har. Lab., Univ. Strathclyde, Garelochhead/Bunbartonshire, Scotland

Mar. Pollut. Bull. (MPMBAZ), 4(4), 59-61; 1973

TRACE METALS: ESTUARIES: SEDIMENTS

GEOGRAPHICAL DESCRIPTION: Scotland, Solway Firth

401 Mercury in Tunas. Review

Peterson, C.L.; Klawe, W.L.; Sharp, G.D.; Scripps Inst. Oceanogr., Inter-Am. Trop. Tuna Comm., La Jolla, CA

WOAA Pish. Bull. (PSYBAY), 71(3), 603-613; 1973 REVIEW: MERCUPY: TONA: FISH 402 Meutron Activation Analysis of Some of the Biologically Active Trace Elements in Pish

Pillay, K.K.S.; Thomas, C.C., Jr.; Hyche, C.H.

Part of Hemphill, D.D. (Ed.), Seventh Annual Conference on Trace Substances in Environmental Health, Held at Hemorial Union, University of Missouri-Columbia, Columbia, HO, June 12-14, 1972. 1972

NEUTRON ACTIVATION ANALYSIS; TRACE ELEMENTS; FISH; ANALYSIS; COPPER; MERCURY; ZINC; CADMIUM; ARSENIC; SELEMIUM; CHRONIUM; CHRICAL SEPARATIOM; SAMPLE PREPARATIOM; WALLEYE; YELLOW PPRC4; WRITE BASS; CHAWREL CATFISH; PRESHWATER DRUM; CARP; COHO SALMOM; WHITE SUCKER; GIZZARD SHAD; AGE WARLATIOMS; BIOACCUMULATIOM; BIOCONCENTRATION

High specific neutron activation analysis procedures involving post irradiation chemical separations were developed for the determination of copper, mercury, zinc, cadmium, arsenic, selenium and chronium in fish tissues. The procedures developed were used to determine the levels of these biologically active elements in some of the commercially important fish species of Lake Brie. The nuclear analytical procedures developed generally involved the irradiation of fish tissues followed by wet-ashing in the presence of nonradioactive carriers. From the hosogeneous solution of the tissue digest, the elements of interest were chemically isolated and the radioactivities were measured by scintillation gamms ray spectrometry. The results reported included both the determination of the precision and accuracies of each of these elemental analyses and a survey of these seven elements in nine major fish species of Lake Brie.

403 Hercury Pollution of Lako Brie Ecosphere

Pillay, K.K.S.; Thomas, C.C., Jr.; Sondel, J.A.; Hyche, C.H.

Presented at Third Mortheast Regional Meeting of the American Chemical Society, October 11-14, 1971, Buffalo, NY, 24 D.; Environmental Research, 5, 172-181; 1972

MERCURY: AIR: PARTICULATES: SEDIMENTS: PLANKTON; ALGAE; WATER: BRAIN; HUMANS: NEUTROW ACTIVATION AWALYSIS: PISH: FISH TISSUES: COAL: WALLEYE: TELLOW PERCH; WHITE BASS: CHANNEL CATTISH; PRESFUATER DRUM; CARP: COHO SALMON: WHITE SUCKER; GIZZARD SHAD: SMALLHOUTH BASS: SMELT

GEOGRAPHICAL DESCRIPTION: U.S., Great Lakes, Lake Brie

The distribution of mercury in the ecosphere of Lake Erie was monitored using a highly sensitive and reliable neutron activation analysis procedure. A variety of samples from the fauna and flora of the lake as well as those from its issediate environment were analyzed for their mercury content. The results of this survey indicate a widespread distribution of mercury in air particulates; coal samples of the region; sedicents, plankton/algue and fish samples from the lake; and in the brain tissue: of long-term residents of the Lake Trie Basin. Air particulates from a stations in Buffaic ranged from 1-30 nanograms per cubic meter, with wide variations due to atmospheric conditions.

4

una Incomplete Fuchange Reaction Between Radioactive Ionic Zinc and Stable Watural Zinc in Scawater

Piro, A.; Bernhard, M.; Branica, M.; Verzi, M.

Part of Radioactive Contamination of the marine Environment, Proceedings of Symposium held by the International Atomic Energy Agency, Seattle, NA, July 10-14, 1972 (29-44), 786 p.; 1973

AQUROUS SOLUTIONS: ISOTOPES: ISOTOPIC EXCHANGE: RADIONUCLIDES; KINETICS; SALTHATER; SODIUM CHLORIDE; ZINC: ZINC 65: COMPLEXES

An apparatus which permits the simultaneous determination of stable and radioactive ionic zinc in aqueous solution is described. With this apparatus it is possible to investigate the exchange reactions between stable ionic and complexed zinc and radioactive ionic zinc in NaCl solution and seawater. In WaCl (30% S), in presence of a complexing agent, after about one hour the In 65 is distributed between the non-complexed and complexed fractions in the same way as the stable isotope is not uniformly distributed in all physico-chemical states present in the seawater but it dilutes only in the ionic and particulated fractions. Even one year after the addition of In 65 the radioactive zinc has not entered the complexed fraction. The consequences of this fractionation for the interpretation of tracer experiments and hazard evaluation are discussed.

405 Heavy Metals in British Waters

preston, A.; Fish. Food Fish. Lab., Minist. Agric., Lovestoft, Engl.

Wature (London) (Watuas), 242(5393), 95-7; 1973

METALS: SALTWATEP: SEAWEEDS

Seawater sampling revealed that certain areas of British coastal waters have elevated concentrations of some metals by comparison with the general levels prevailing in other areas. Analyses of seaweed samples from these "polluted" areas a decade ago showed overall no significant differences in concentration except for cadmium, which may have fallen, on the average.

406 British Isles Constal Waters the Concentrations of Selected Heavy Metals in Sea Water Suspended Matter and Piological Indicators a Pilot Survey

Preston, A.; Jefferies, D.F.; Datton, J.W.R.; Harvey, B.R.; Steele, A.K.

Environmental Pollution, 3, 69-82; 1972

WATER; SALTWATER; HETALS; SUSPENDED HATTER; BIOLOGICAL INDICATORS; SEA WEEDS; SEDIMENTS; BIOACCUMULATION; SAMPLING; ZINC; COPPER; IRON; HANGAMESE; NICKEL; SILVER; CADMIUM; LEAD; ATONIC ABSORPTION SPECTROPHOTOMETRY; FUCUS; PORPHYRA; LIMPEYS; CONCENTRATION FACTOR; TRACE ELEMENTS; PLANTS: ALGAE

GEOGRAPHICAL DESCRIPTION: Great Britain, Coastal ... Waters

Data, from British Isles coastal waters, on the concentrations of selected metals in sea water and biological indicators, have been obtained by analytical techniques based on atomic absorption spectrophotometry. The results show that there are some areas where significant contamination exists, and the east Irish Sea appears to have the highest concentrations of most metals. However, data in most regions indicate that the concentrations of the metals examined are not significantly higher than those in the open atlantic Ocean adjacent to the British Isles. The sampling of seaweeds strongly suggests that concentrations of most metals, including those in polluted areas, have changed little over the ten years up to 1970; the concentrations of cadmin may well, on average, have fallen over this period. In the Irisk Sea, where the most detailed examination has been made, there is a rapid decrease in sea water concentrations from the shoreline to offshore, and in general, the proportions of a metal associated with suspended matter remain fairly constant with respect to vaciations of total concentrations in either time or space.

407
Reavy Metal Content of Surface and Ground Waters of the Springfield-Joplin Areas, Hissouri

Proctor, P.D.: Kisvarsanyi, G.: Garrison, E.: Williams, A.

Part of Hemphill, D.D. (Ed.), Seventh Annual Conference on Trace Substances in Environmental Health, Held in Hemorial Union, University of Hissouri-Columbia, Columbia, Ho, June 12-14, 1973: 1974

COPPER; LEAD; ZINC; CADMIUM; MERCURY; IROM; SEASOWAL VARIATIONS; WATER; GROUND WATER; SURPACE WATERS; HIMING

GEOGRAPHICAL DESCRIPTION: U.S., Missouri, Springfield, Joplin

some 200 water samples were collected in fall, spring and summer from springs, streams, lakes and smlected water wells within a radius of six miles from the populous centers of Springfield and Joplin, Missouri, respectively. Samples were analyzed for copper, lead, zinc, cadmius, mercury and iron. Joplin is within a former very productive zinc mining district. Springfield lies 72 miles to the east. Water well samples represent deep and shallow rock sources. Heavy metal contents in the waters show local concentrations in each area. Heavy metal highs are generally related to known mineralization. Seasonal variations in metal contents are generally restricted to the surface or near surface environment and certain metals. Locally, cadmin, lead, zinc, and iron exceed the acceptable PBS limits for public drinking water. The majority of water samples, however, have heavy metal contents well below the established PBS limits. Maximum ranges of heavy metal values for the two areas are in pph: Joplin: copper (less than 1-330), lead (less than 1-18), zinc (less than 1-13, contents well less than 1-19, zinc (less than 0.1), cadmium (less than 1-16), iron (less than 1-31), lead (less than 1-25). High zinc values are related to known lead-zinc mineralization in the Joplin area, and to lead-zinc prospects east of Springfield. Lverage cadmium values are related to known lead-zinc mineralization in the Joplin area, and to lead-zinc prospects east of Springfield. Lverage cadmium values are related to known lead-zinc mineralization in the Joplin area, and to lead-zinc prospects east of Springfield. Lverage cadmium values are related to known lead-zinc mineralization in the Joplin area, and to lead-zinc prospects east of Springfield. Lverage cadmium values are related to mown lead-zinc mineralization in the Joplin area, and to lead-zinc prospects east of Springfield. Lverage cadmium values are related to mown lead-zinc prospects east of springfield. Lverage related to the springfield versus the deep wells of Joplin area but in very

b08 Absorption of Nickel and Cobalt (Siogenic forms) from Sea Water by Watural Iron and Mançanese Hydroxides

Pronina, N.V.; Varentsov, I.H.; Spektorova, L.V.; Spektorov, K.S.; Ovsyannikova, H.; Geol. Inst., Moscov, USSR

Geokhimiya (BEOKAQ), (6), 876-87; 1973

HICKEL; ABSORPTION; COBALT; IRON; MANGANESE; SALTWATER; HYDROXIDE

TAXONOMY: PLATINOMAS SP

The absorption of nickel and cobalt was experimentally studied using deionized sea water and with the addition of biogenic forms of nickel and cobalt from planktonic algae (PLATIMOWAS SP.) the nickel and cobalt concentrations were estimated polarographically. The rate of removal of %i (20.0-47) and Co (28.0-44 microgram/l) was determined and is related to the flow rate of the sea water (in the dynamic variant) and to the time of interaction (in the static variant). The initial stages of absorption have an ion-exchange character. During the later stages, nonexchangeable difficulty-absorbable Co and %i complexes were formed. The chemosorption is accompanied by the autocatalytic oxidation of these metals. Under both the dynamic and static conditions, the absorption of Co is higher than that of %i.

409 Optake of Metal Ions by Lichens. Modified Ion-Exchange Process

Puckett, K.J.; Meiboer, B.; Gorzynski, H.J.; Richardson, D.H.; Dep. Biol., Laurentian Univ., Sudbury, Ont.

New Phytol. (MEPHAV), 72(2), 329-42; 1973

RETALS; IONS; UPTARE; LICHENS; EXCHANGE PROCESSES; ION EXCHANGE; COMPLEXES; IRON; COPPER; NICKEL; ZINC; LEAD

Reavy metal ions were absorbed by lichens to different degrees in laboratory experiments. The relative capacities for uptake from solutions containing a single metal ion were Pe, Cu is greater than Hi is greater than Pb is greater to is greater than Zn. Competitive uptake studies revealed the selectivity sequence Pe is greater than Pb is greater than Cu is greater than Ni, Zn is greater than Co. The sequences are in accord with a cation uptake mechanism involving exchange modified by metal-complex formation.

Correlations between laboratory studies and the metal content of lichens growing in the vicinity of a smelter are discussed.

410
Radionuclide Transport in an Aquatic Model System
Purushothaman. R.

Part of Hemphill, Delbert D. (Ed.), Trace Substances in Environmental Health. IV. Columbia, MO. - University of Missouri, (178-185); 1971

TRANSPORT: AQUATIC ECOSYSTEMS: HODEL ECOSYSTEM; CESIUR 137: CLAYS: COMPANIBATION; RCCKUP; POWER REACTORS: RADIOACTIVE WASTES: HIGRATION; RADIORUCLIDES; RIVERS; STRONTIUM 85; WASTE DISPOSAL; WATER; CESIUR; STRONTIUM

The radioactive wastes at very low concentrations as released by the nuclear power facilities into an aquatic system pose complex problems such as the transport of the radionuclides for further dilution downstream, simple and complex chemical changes of the radionuclide, and the concentration and subsequent release of the radioactive materials in the aquatic biota and sediments depending upon the nature and condition of the environment. The paper deals with the study conducted to evaluate the effects of selected clay suspensions on the transport of Sr-85 and Cs-137 in a model river, An instrumented flume was used to simulate a slow-mowing, turbid stream which did not recieve any extraneous biodegrabable organic pollutant. Modified longitudinal dispersion relationships were used to describe the transport of radionuclides in the turbid stream. Data were obtained from instantaneous release of Sr-85 and Cs-137 with suspended letapulgite and Kaolinite clays. Results showed that suspended clays in the model river system produced a significant reduction in the transport of Cs-137. The transport of ST-85 is not affected to a considerable degree since most of the Sr-85 remained in solution.

ull continuous and Some Effects of Mine prainage on Primary Productivity of the Coeur D'Alene River, Delta and Lake.; Technical completion Rept.

Rabe, P.W.; Wissner, R.C.; Hinter, R.P.; Idaho Univ., Moscov. Water Resources Research Inst.

Contract DI-14-01-001-3212; Monitoring Agency mapt. No. OWRF-A-030-IDA (2); Proj. OWRF-A-030-IDA 28p.; 1973, January

ANYMALS: PLANTS: EUTROPHICATION; RIVERS; LAKES; PRODUCTIVITY; ZINC; COPPER; CADMIUM; TOKICITY; METALS: TALLINGS: SILVPR; LEAD; PH; BIOASSAT; PHYTOPLANKTON; ZOOPLANKTON; THOUSTRIAL WASTES; ALGAE; SUSPENDED SEDIMENTS; ACIOS; MINES; EXCAVATIONS

GEOGRAPHICAL DESCRIPTION: US (NW), Idaho, Coeur D'Alene River

Variations in primary production and physiochemical measurements in the Coeur n'Alene River and Lake in Idaho were examined. These bodies of water have received mine tailings and metallic sulfide minerals for the last 80 years. Metal concentrations Hn, Cd, Hg, Ca, Pb, Cu, Zn, Pe, Na and K: water quality and phytoplankton composition-density were determined. Additional sampling included unpolluted portions of Coeur D'Alene Lake and the unaffected St. Joe river. Wannoplankton frum Coeur D'Alene Lake were exposed to known concentrations of Cu(2+), Cd(2+), Zn(2+) and dilutions of Coeur D'Alene

river water under controlled light and temperature. Inhibitory effects of separate and interacting metals on carbon-14 uptake by algae were assessed with factoral bioassays and response surfaces.

412 Plant Uptake of Soil and Atmospheric Lead in Southern California

Rabinowitz, N.B.; Inst. Geophys., Univ. California, Los Angeles, Calif.

Cherosphere (CMSHAP) 1(4), 175-80; 1972

UPTARE; LEAD: ATHOSPHERE: PLANTS; OATS; LETTUCE; SOILS

It was found from growing lettuce and oats in soils with stable isotope tracer, that the concentration of lead in the diffuse roots was about the same as in the soil, while in the leaves, the concentration of lead from the soil was only 0.5 to 3% as much. Atmospheric lead in the water-washed leaves was 50 to 20 ppm in the mountains and 50 to 200 ppm sear the freeway. Some of this lead was translocated downward in the plant; 4 to 10 ppm atmospheric lead was found in the tap roots of lettuce grown near the freeway. It commercial lettuce more than 90% of the 3 to 25 ppm lead present was from the atmosphere. Wild oats were found to be a useful indicator of atmospheric lead. A survey in Southern California shows automobile exhaust lead transported 50 to 100 kilometers.

atta Lead Metabolism in the Normal Human: Stable Isotope Studies

Rabinovitz, 4.B.; Wetherill, G.W.; Kopple, J.D.

Science, 182, 725-727; 1973

LEAD; HETABOLISH: HUMANS; ISOTOPES; DIET; TRACERS; LEAD 204; ATHOSPHERE; INHALATION; RIMETICS: BLOOD; SKELETON; SOFT TISSUES; HODELS

Rinetic and metabolic balance studies in a healthy man fed a diet normal in lead content and labeled with lead-20% indicated that approximately two thirds of his assimilated lead was dietary in origin; the remainder was inhaled. Ribetic analysis shows that the icotopic data can be interpreted by a three-compartment model: 1. primary blood (etythrocyte); 2. soft tissue; 3. skeleton. No horeostatic mechanisms for maintaining lead concentration in the blood were seen.

Distribution of Metallic Element Complexes Between an Anion Exchange Resin and Water-Methanol-Hydrochloric &cid Mixtures

Rastoix, H.: Commissariat a L'Energie Atomique, Saclay France. Centre D'Etudes Nucleaires

Commissariat A L'Energie Atomique, Saclay Prance. Centre D'Etudes Nucleaires, CEA-R--4450: 1973, Jane

AMIONS; CADMIUM; CADMIUM COMPLEXES; CHLORIDE; ETHANOL; HYDROCHLORIC ACID; TOM EKCHANGE; HETHANOL; SEPARATION PROCESSES; URAWIUM; URANYL COMPOUNDS; WATER als The Accumulation of Arsenic from Arsenic Rich Natural Waters by Aquatic Plants

Reay, P.F.; Appl. Biochem. Div., Dep. Sci. Ind. Res., Palmerston North, New Zeeland

J. Appl. Rcol. 9(2), 557-565; 1972

BIOACCUMULATION; PLANTS; AQUATIC PLANTS; TOXICITY; ARSENIC; WATER; NATURAL WATERS

GROGRAPHICAL DESCRIPTION: New Zealand, Waikato

Several aguatic plants were found to accumulate As from the Waikato River (New Zealand) to levels well above those associated with toxicity. The species examined differed in the concentrations to which they accumulated (As) and the average values ranged from JO-650 mg/kg of the dry weight. Accumulation was influenced by the amount of As in the water but not by the amount in the river and lake bottoms. The withdrawal of As from the river water by aquatic plants does not seem to markedly affect the discharge of As into the sea.

416
The Acute Toxicity of Some Heavy Metale Toward
Benthic Organisms

Rehwoldt, R.: Lasko, L.; Shaw, C.; Withowski, R.; Environmental Science Program, Marist College, Poughkeepsle, NY

Bull. Environ. Contam. Tox. 10(5), 291-294; 1973

TOXICITY; METALS; BENTHOS; MERCURY; IONS: EGGS; ADULTS; WATER; RIVERS

TAXONOMY: CHIROMOMOUS: GAMMARUS

GEOGRAPHICAL DESCRIPTION: U.S. (HE), Wew York, Rudson River, Poughteepsie

The acute toxicity of some heavy metals toward benthic organisms in the Poughkeepsie reach of the Hadson River was determined by use of standard TLm(24-96hr). The mercury ion is the most toxic ion studied and is more toxic toward the benthic organisms in this reach than toward the fish studied in the same area. With the exception of CHIROHOHOUS and GAMHARUS, benthic organisms tend to be more able to withstand heavy metal imputs than fish. Also, the eggs are less susceptible to imputs than adults.

ally A Historchy of Hodels for the Behtvior of Hercury in the Ecosystem

Reiniger, P.; Prissel, M.J.; Poelstra, P.; Beek, R.

Part of Welsh, C.W. (Edited by). International Atomic Energy Agency Proceedings Series. Muclear Techniques in Environmental pollution. Symposium. 810p. Illus. Haps. Unipub, Inc.; New York, H.Y., W.S.A. 407-418; 1971

CHPOHATOGRAPHY: TRANSPORT: SOILS: RADIOACTIVITY: MERCURY: HODELS: RCOSTSTEMS: COMPUTER SIMULATION

For locating the key questions in a particular pollution problem, a quantitative innight into the intercelationship of its various processes is necessary. This insight may be obtained by means of a mathematical model. The involved and dynamic nature of pollution problems demands models of a great complexity.

Computer-simulation languages developed recently (Continuous System Simulation Languages) may be a great help in setting up and using such models. They have been employed by the authors to model chromatographic transport processes in soil in view of radioactive pollutants and salinity problems. In the Metherlands an interdisciplinary working group has been set up to study the behaviour of mercury and its compounds in the environment. The possibilities of designing a hierarchy of models for the quantitative description of this problem is illustrated and discussed. In such a hierarchy, each model may be developed and tested meparately, but it is essential that the output (results) of a lower model may be used as input for a higher model. This point, and more general aspects of the simulation technique, are demonstrated by the example of two echelons of models dealing with the bahaviour of mercury compounds in soil.

418 Transfer of Zinc-65 from Sediments by Marine Polychaete Worms

Reafto, S.C.; Int. Lab. Mar. Radioact., Int. At. Energy Agarcy, Honaco

Mar. Biol. (HBIOAJ), 21(4), 305-316; 1973

POLYCHAETES: WORMS; ZINC 65; UPTARE; RADIOISOTOPES; SALTWATER; RELEASE; SERIMENTS

the Persistence of Heavy Metals in Soils and Matural Vegetation Following Closure of a Smelter

Roberts, T.M.; Goodman, T.G.; Department of Ectany, University College of Swansea, South Wales, U.K.

Presented at the Seventh Annual Conference on Trace Substances in Environmental Health, University of Hissouri-Columbia Columbia, MO 65201; 1973, June 12-14

PERSISTENCE: ZINC; LEAD; SHELTERS; CADMIUS; CONTABINATION; PLANTS; LEAVES; BIOACCUMULATION; TRACE STOSTON BY NO. 2005 CONTABLES; SOILS; MOSSES; MUNOFF;

TAXOHONY: SPYNUN CUPRESSIPORME VAC. PILIPORME: PESTUCA RUBRA

Persanent closure of a zinc/lead smelter located in the Lower Swansea Valley, South Wales in May 1971, resulted in a marked decrease of zinc, lead and crease contamination of leaves of PESTUCA RUBRA. In the absence of substantial metal fellout in the winter of 1971/72, metal accumulation in over-wintering leaves was such reduced compared with corresponding data for the winter of 1970/71. In contrast, quantities of metals in the epiphytic moss, HTMUN CUPRESSIFONKE var. FILIFORME reflected the past history of metal fallout, as the amounts in the living tissues decreased only slowly after closure of the smelter. The exchangeable levels of heavy metals in soils of open habitats fell after closure of the smolter an a result of runoff and wind erosion. Extrapolation of the soil data indicates a return to background levels within five years. In contrast, the rate of loss of oxchangeable heavy metals from closed grassland communities in metals alover which is in agraement with published data.

and the second of the second o

420 Transport and Depletion of Radionuclides in the a Columbia River

Robertson, D.E.; Silker, W.B.; Langford, J.C.; Petersen, M.R.; Perkins, R.W.

Part of Padioactive Contamination of the Marine Environment, Proceedings of Symposium held by the International Atomic Energy Agency, Seattle, MA. July 10-18, 1972 (101-155), 786 p.; 1973

PADIONUCLIDES: TRANSPORT: DEPLETION: RIVERS; SECURENTS; AQUATIC BIOTA; IRON: IRON 55; ZINC; ZINC 65; MUROPIUM; PUROPIUM 152; EUROPIUM 150; COBALT; COBALT; COBALT 60; HARGANESE; MANGANESE 50; SCANDIUM: SCANDIUM 46; ANTHONY; ANTINONY 125; CERIUM; CERIUM 140; CESIUM; CPSIUM 137; PLUTONIUM; PLUTONIUM 239; RADIOACTIVE DECAY; SALTWATEP; SCOURIVG

GEOGRAPHICAL DESCRIPTION: U.S. (NW), Washington, Hanford, Columbia River

The radionuclide transport and depletion processes in the Columbia River are being characterized following the closure of the last of the Hanford plutonium production reactors in January, 1971. Radionuclide concentrations are periodically being measured in river vater, sediments and bluta between Manford and Monneville Dam to determine the rates and mechanisms of the processes which govern the distribution and behaviour of the radionuclides in the Columbia River system. All the short-lived radionuclides in the river have now decayed, but some residual long-lived radionuclides have remained, being associated mainly with sedimentary deposits in the reservoir behind McMary Dam. The most abundant radionculfides remaining in the river now Fe 55, Zm 65, Em 154, Co, 60, Em 152, Em 154, Mm 5m, and Sc 46. Also prement in much lower concentrations are Sb 125. Cs 137, Ce 185, and Fu 239. These radionuclides are tightly bound to the mediments and enter the river mainly by resuspension, especially during the high river flow in the spring and early summer. The depth distributions of radionuclides in mediment cores collected at various locations in the reservoirs behind fifther. The Dalles, and Sommerille dams are being present concentrations of radionuclide in the river water are low, large volume water sampling up to 1000 litres) is required and is being done it the four daw sites downstream from Manford to determine radionuclide concentrations, physicochemical forms and transport in the river over 96% of the Columbia River radionuclides of Ramford origin which enter the river from bottom sediments are in particulate forms. The main mechanism for remaining radioactively from the river system other than by radioactive decay, is by scouring of surface sediments during high river flow, and their subsequent transport into the profit Ocean. The dissolution of sediment attached Columbia River radionuclides upon their entry into the marine environment is being studied by leaching Columbia River sediments with sommers. Since the ne

azi Lead Output in Streamflow from a Watershed Ecosystem

Rolfe, G.; Edgington, J.; Dep. For., Univ. Illinois, Urbana, IL

Water Resour. Bull. (WARBAQ) 9(2), 372-5; 1973

LEAD; WATERSHEDS; AQUATIC ECOSYSTEMS; STREAMS; TRANSFORT; MODELS; MATHEMATICAL SOLUTIONS; TETPARTNIL LEAD; AUTOMOBILE EMISSIONS; SEDIMENTS

Investigations of the movements and effects of lead in an %6 square mile watershed ecosystem are currently in progress by an interdisciplinary team of scientists at the University of Illinois at Champaign-Urbana. The objectives of this study are to understand and mathematically model the movements and effects of lead in an ecosystem. The primary lead input into the system (2,340Kg/30 d) is tetraethyl lead from automobile exhaust. The main output channel for lead in the system is streamflow, including sediment associated lead. Analyses of samples from four stream gaging stations over a six months periods showed that lead output in urban vs. rural areas: 1. varies considerably in the dissolved / sediment ratio from 29:1 to 2:1, rural, 5:1 to 2:1; and 2. output is equal to about 70% input, rural 2-3% input. Both of these differences can be attributed to the relatively impervious urban surface area.

\$22 Lead Uptake by Elected Tree Seedlings Rolfe, G.L.; Dep. Forest., Univ. Illinois, Urbana, Ill.

J. Enviror. Qual., 2(1), 153-157; 1973

TREES: LEAD; ABSORPTION; SOILS; PHOSPHORUS; UPTARE; HEAVY HETALS

Rost of the numerous investigations concerning lead in the environment have dealt with the lead concentrations in various environmental components. These investigations have failed to describe the movement of lead in the environment and factors influencing this movement. Several sources including soil, water, and air give rise to lead in plants. Soil as a source of lead is the concern of this study. The experiment was a completely random design in a factorial arrangement with eight tree species, five soil lead levels [0 to 600 pps], three soil types, and two phosphate levels (0 to 336 kg/ha) replicated three times. Results indicate statistically significant levels of lead in the leaves, stems, and roots of all eight tree species with all treatment combinations except the control. Uptake was significantly affected by soil lead concentration with higher uptakes associated with higher soil lead levels. Lead uptake by plants was reduced by approximately half when high levels of soil P was present. Other soil factors had no significant effects on lead uptake in the study.

423 Modeling Lead Pollution in a watershed -- Ecosystem

Rolfe, G.L.; Chaker, A.; Melin, J.; Ewing, B.B.

Journal of Environmental Systems, 2(4), 339-349; 1972, Recember

LEAD: TRANSPORT: ACCUMULATION: WATERSHEDS:
AQUATIC ECOSYSTEMS: CROPS: PASTURES: FORESTS:
CITIES: AUTOMOBILE EMISSIONS: AIR: WATER: SOILS:
PLANTS: RNIMALS: SEASONAL WARIATIONS: SPATIAL
LOCATION: TERRESTRIAL ECOSYSTEMS: MODEL ECOSYSTEM

An interdisciplinary study is in progress at the university of Illinois at Urbana-Champaign under a grant from the Mational Science Foundation RAMM Program. Objectives of the study include understanding and modeling the movements and effects of heavy metals (initially lead) in the environment. A model has been constructed which simulates the movements and predicts the accumulation points of lead in a 76-square wile watershed-ecosystem in Champaign County, Illinois. The model includes components of both aquatic and terrestrial ecosystems and represents the ecosystem by a network of nodes and branches where the nodes represent the components of the ecosystem in a general sense and the branches indicate possible transport mechanisms between nodes. Results of a two year simulation using a network of 36 nodes and 121 branches is presented the model provides a method for the study of pollutant transport and accumulation in ecosystems.

424 Chemistry of Phenylmercury Compounds in the Aquatic Environment

Rolfe, W.L.; Zepp, R.G.; Gordon, J.A.; Baughman, G.L.

Chemosphere No. 6, 273-278: 1972

PHENYLHERCUPY; KINETICS; CLEAVAGE; DIPHENYLHERCURY; DEMERCURATIOF; WATER; PHENYLHERCURIC SALTS; PH; TEMPERATURE; AQUATIC ENVIRONHENTS: MERCURY

The kinetics of acid cleavage of diphenylmercury and phenylmercuric salts, percuric-salt cleavage of diphenylmercury, and demercuration of phenylmercury in aqueous solution at 25 degrees C has a half-life of eight days at pH 4, the lowest pH commonly found in natural waters. Cleavage of phenylmercuric salts by acid is at least two orders of magnitude slower. Reactions of diphenylmercury with mercuric salts are strongly pH-dependent and may be important in acid natural waters. Demercuration of phenylmercuric salts is extremely slow even at 120 degrees C and is unimportant in the environmental mercury cycle.

Radioactivity in Juvenile Columbia River Salmon. Model to Distinguish Differences in Movement and Feeding Habits

Romberg, G.P.; Renfro, W.C.; Dep. Oceanogr., Oregon State Univ., Corvallis, Oregon

Trans. Amer. Pish. Soc. (TAPSAI), 102(2), 317-22; 1973

SALMON; RIVERS; PALLOUT; RADIOACTIVITI; PHOSPHORUS 32; ZINC 65; FISH; PHOSPHORUS; ZINC; MODELS; FRESHWATER

GEOGRAPHICAL DESCRIPTION: U.S. (NW), Washington, Columbia River

The P-32 specific activities and Zn-65 concentrations were measured in juvenile salmon collected from the Columbia River during winter and spring of 1969. An environmental uptake study involving marked juvenile chinook salmon indicated that p-32 specific activity values reach a maximum sooner than values for Zn-65 concentration. The uptake study also suggested a short lag period before hatchery fish released to the Columbia River began rapid uptake of P-32 and Zn-65. A graphical model based on P-32 specific activities and Zn-65 concentrations was constructed which allows fish to be classified and differentiated with regard to their past feeding of movement behavior. Use of the model indicated that some hatchery fish released to the river either had feeding behavior unlike other hatchery fish or were not in the Columbia River the entire time from release until collection. Application of the model to a sample of 24 unmarked juvenile salmon collected from the Columbia River revealed several different groups of fish.

426 Focus on Marine Ecology

Romeril, M.G.; Mar. Biol. Lab., Cent. Blectr. Generating Board, Fawley, England

Chem. Brit. (CHMBAY) 9(3) 103-5; 1973

CHLORINE: POWER PLANTS; EPPLUENTS; NUTRIENTS; NETALS: SALTWATER; MARINE ECOLOGY; IRON; COPPER; ZINC: CLAMS; NOLLUSCS; COCKLES

CT-

427
netection of Molybdanum Enrichment in the
Environment Through Comparative Study of Stream
prainages, Central Colorado

Runnells. D.D.

paper presented at the 7th Annual Conference on Trace, Substances in Environmental Health at Columbia, Missours; 1973, June 12-14

MOLY BORNUM; ENRICHMENT; STREAMS; FRESHWATER; PLANTS: SOILS

GEOGRAPHICAL DESCRIPTION: 11.5., Colorado

A Major molybdenum deposit is being mined at climar, CO. Significant quantities of dissolved molybdenum are released into Ten-Mile Creek from the deposit, either naturally or through man's activities. Ten-Mile Creek drains into Dillon neservoir. Water from this reservoir is used for irrigation and at certain times of the year as drinking water in Denver. The upper Blue River flows parallel to Ten-Mile Creek, but drains an area which is only poorly mineralized and is not mined. By comparison of the content of molybjenum in the natural materials from these two drainades, it is clear that the concentrations found in a highly mineralized, disturbed area are such higher than those in a poorly mineralized, undisturbed area. A third study site in the alpine environment in Colorado consists of a mineralized, undisturbed area at Mt. Aetna in the southern Sawatch Ange. Samples from Mt. Aetna demonstrate that the concentrations of molybdenum in water and plants in the alpine environment can be guite low, even when the soils contain high concentrations of the metal.

428 Geochamistry of Molybdenum

Runnells, B.D.: LeGendre, G.: Lindberg, F.: Brown, D.: Smith, E.: Harthill, H.: Katz, B.

Part of Transport and the Biological Effects of Holybienum in the Environment, Progress Report, January 1, 1973 (p. 33-63) 375 p.: 1973, January 1

MOLYBDENUM; MINES; MOLYBDENUM MINES; URANIUM MINES; DRINKING WATEP; INDUSTRIAL EPPLUENTS; SOILS; PLAWTS; INDICATOR PLANNS; WILLOW; TREES; GEOCHEMISTRY; PILER ATTON; DISSOLVED SOLIDS; PARTICULATPS; AUSORPTION; WELLS; GROUND WATER; MOLYBDENOSIS; SIMPTOMS; DIARRHER; HAIR LOSS; AIPALPA; SEDIMENTS; VASTE WATER; MOLYBDENUM REHOVAL; TOTAL; LEACHING; GLACIATION; UPTAKE; IRFIGATION; AVAILABILITY

Molybdenum concentration was determined in the streams and soils of Central Colorado near molybdenum mines, uranium mills, and control areas. Values sufficient to cause molybdenosis in cattle in certain areas were found. Alfalfa upon which cattle graze takes up molybdenum deposited from irrigation water. A considerable difference between available and total molybdenum in soils was common. In some areas the molybdenum may have been dispersed from ore deposits by glaciation. In water the molybdenum occurred almost entirely as dissolved solids. Molybdenum (up to 98 percent) was removed from water by adding ferric chloride in solution (up to 10%).

929
Response of Fresh-Water Protozoan Artificial
Communities to Metals, When an Artificial
Presh-Water Protozoan Community was subjected to
diffent Concentrations of Zinc, Copper, Chronium,
Phenol, Lead

Ruthwen, J.A.; Cairns, J.J., Jr.; Biol. Dep., Virginia Polytech. Inst., Blacksburg, VA

J. Protozool, (JPROAR), 20(1), 127-35; 1973

HANGAMESE; COBALT; WITRIC ACID; PROTOZOA; ALUHIBUR; RCETIC ACID; COPPER; ZIMC; PHENOL; LEAD; PRESHWATER; HANGAMESE; COBALT; WITRIC ACID; ACMIC ACID; ALUHINUR; TIN; HYDROCHLORIC ACID

TATOMONY: PERAMENA TRICHOPHORUMC; EMGLENA GRACILIS

Por 3 hr in a test system through which pond water flowed continuously, the percent survival of colonizing species fluctuated with the concentration of each toxicant. Protozoa appeared more resistant to PHOH, K2Cr207 and Cu than daphnia; however, some protozoa were more sensitive than daphnia to Zn. HWO3, and HC1. The median tolerance limit values for protozoa exposed to Cu and Zn for 24 hr were: 1.6 and 7.0 mg/1. respectively. Of the substances tested, Cu and Nn were the most toxic; PERANEMA TRYCHOPHORUM and EUGLENA GRACILIS were generally the most resistant species.

030 A Revaluation of the Marine Geochemistry of Uranium

Sackett, W.M.; Mo, T.; Spalding, R.F.; Exner, M.E.

Part of Radioactive Contamination of the Marine Environment Proceedings of Symposium held by the International Atomic Energy Agency, Seattle, WA, July 10-18, 1972 (757-769) 786p.; 1973

SALTWATER; GEOCHERISTRY; URANIUM; SEDIMENTS; SIMES; CARBONATES; HUMANS; PROSPHATE; PENTILIZERS; SOILS; SILICEOUS OOZES

Approximately 10 exponent 15 ug/yr of dissolved uranium rie being removed from the ocean by each of the generally accepted significant sinks for uranium-carbonate deposits and deep anoxic basin sediments. However, these sinks account for only 10% of the estimated present-day input of uranium. Possible explanations for this discrepancy are: (1) contemporary input values are too high owing to a significant contribution from man's effects, such as uranium input via phosphate fertilizers or world-wide cultivation leading to premature leaching of uranium from soils, or (2) there are other important uranium sinks such as the abundant siliceous cozes or continental shelf anoxic sediments.

431
Behavior of Trace Elements in Seawater and Marine
Organisms

Saiki. W.

Proc. Jap. Conf. Radioisotop. No. 10, 298-301;

ALGAE; AQUATIC ECOSYSTEMS; CERIUM 148; CESIUM 137; PALLOUT; PISH; MICROANALYSIS; NIOBIUM 95; OHAMITATIVE CHEMICAL ANALYSIS; RADIONOCLIDES; KINETICS; RADIONOCLIDE MIGRATION; RUTHENIUM 106; SEDIMENTS; STROMTUM 90; TRACE ELEMENTS; TRACERS; ZIRCONTUM 95; RADIORCOLOGY; SALTWATER

432
Transport of Radionuclides in Lake and River
Systems Flowing Through Areas Characterized by
Precambrian Sedrock and Peat-Bogs

Salo, A.: Voipio, A.

Part of Radioactive Contamination of the Marine Environment, Proceedings of Symposium held by the International Atomic Energy Agency, Seattle, WA, July 10-14, 1972 (195-217) 786 p.; 1973

TPANSPORT: RADJONUCLIDES; LAKES; RIVERS; BEDROCK; PEAT BOGS; CONDUCTIVITY; PH; TURBIDITY; BICARBONATE; STRONTIUM; STRONTIUM 90; CESIUM; CESIUM 137; PHOSPHORUS; MITRATES; AMMONIUM; MITROGEN; SILICATES; SULPATES; CHLORIDE; IROM; ALUMINUM; MANGAMESE; COPPER; ZIMC; SODIUM; POTASSIUM; MANGAMESE; COPPER; ZIMC; SODIUM; SOILS; IONS; BLECTROLITES

GEOGRAPHICAL DESCRIPTION: Baltic Bay, Bonthmian

Strontium-90 and caesium-137 were determined together with the discharge meter cubed/s and the following stable chemical components: conductivity, pH, colour, turbidity, HCO3, PON-P, total-P, NO3-N, MH3-N, total-N, SiO3-Si, SON-S, chloride, iron, aluminium, magnesium and calcium in two lake and river systems discharding into the Bothnian Bay (Baltic Sea) in 1965-70. The water samples were taken monthly at one sampling station in the smaller (1330 km2) and at five stations in the larger (4315 km2) lake and river system. Deposition was collected at three stations. The ratio was calculated of the deposited amounts to the amounts that are transported concerning the above mentioned radionuclides and some stable components in both the catchment areas and the sub-regions of the lake and river systems. A factor analysis was used in an nt+empt to find the main factors affecting the behaviour of the different chemical components, especially that of the radionuclides strontium-90 and caesium-137. When interpreting the results of the factor analysis, the chemical features and other possible environmental factors were taken into consideration. The regional differences are discussed. Special attention was paid to the annual changes in the factors affecting the behaviour of strontium-90 and caesium-137. The most obvious factors determining the systems are: (i) That determining the behaviour of the main electrolytes (Mg2*, NA*, K*, C2*, SiO3-Si, MCO3, Cl-). All these components have good correlations to the

The factor common to those variables which show annual variations in their deposition in the catchment areas, e.g. strontium-90; and (iii) A group of factors reflecting the quality of the soil, eventually characterized by the organic (younger) and inorganic (older) constituents of the soil.

433 Sorption of Copper on Lake Monona Sediments. Effect of MTA (Mitrilotriacetic Acid) on Copper Release Prom Sediments

Sanchez, I.; Lee, G.P.; Water Chem. Program, Univ. Wisconstn, Madison, Wis.

Water Res. (WATRAG), 7(4), 587-93; 1973

COPPER; SORPTION; SEDIMENT; WITRILOTRIACETIC ACID; MTA; LAKES; SULFIDES; ORGANIC COMPOUNDS

The results of this investigation on the factors controlling the binding capacity of copper by Lake Honona sediments have shown that this capacity is primarily related to the alkalinity (Ca, Mg carbonates present in the sediments). Apparently organics and sulfides play a minor role in binding copper to sediments; in the case of sulfides, most probably for reasons of low content rather than for reasons of solubility of cupric sulfides. Over very dilute copper solutions, sulfide in the sediment should control the binding mechanism. The sediment should control the binding mechanism. The sediments investigated show a relatively large binding capacity amounting to approximately 26 mg of copper heing fixed per gram of dry sediments. The addition of large amounts of NTA to Lake Honona sediments resulted in an increase in the amounts of iron and manganese leached from the sediments. However, the copper released from the sediments decreased with increasing NTA. Extrapolation of the results obtained from Lake Honona sediments to other lakes should be done with caution. Lake Honona is a highly calcareous lake with large amounts of calcium carbonate present in the sediments. Studies would have to be Conducted on non-calcareous lakes to determine whether or not similar behavior would be found with respect to the binding of copper to the sediments and the effects of NTA on copper release.

Uptake of Selenium by Aquatic Organisms

Sandholm, M.: Oksanen, H.E.: Pesonen, L.: Dep. Med., Coll. Vet. Med., Helsinki, Finland

Limnol. Oceanogr. (LIOCAH), 18(2), 496-9; 1973

SELENIUM; UPTAKE; PLANKTON; PISH; ALGAE; DAPHNIA; BIOCONCENTRATION

TAXONOMY: SCENEDESHUS DIMORPHUS; DAPHNIA PULEX

The Se content of aquatic organisms was lowest in aquatic plants, warying frow 0.02 to 0.14 ppm (dry wt). Plankton samples contained from 1.1 to 2.4 ppm, fishes cultured in ponds 0.5 to 0.9 ppm, and fishes from natural environments 1.0 to 2.9 ppm. The phytoplankter, SCENEDESHUS DIMORPHUS, actively concentrated Se-73-selenomethionine, but neither actively nor passively concentrated inorganic selenite. The zooplankton, consisting wostly of DAPHHIA PULEX, absorbed Se-75 from selenite. In aquariums fish concentrated only a small amount of organic or inorganic Se directly from water, but did concentrate Se from food.

435 Adverse Effects of Cadmium on Brook Trout Testis and on In Vitro Testicular Androgen Synthesis

Sangalan, G.3.; Challora, H.J.; Pizheries Res. Board Canada, Halifax Lab, Halifax, Nova Scotia, Canada

Riol Peprod 9(4), 394-03; 1973

TROUT; CADMIUM; TESTIS; ANDROGEN; BIOSYNTHESIS; TOXICITY; HORMONES; PRESHWATER

436 Aquation of Transition Hetal Acetates in Acetic Acid

Sawada, K.; Tanaka, M.; Fac. Sci., Nagoya Univ., Magoya, Japan

J. Inorg. Rucl. Chem. (JIRCAO), 35(7), 2455-64; 1973

TRANSITION; METAL ACETATES; AQUATION; MANGAMESE; MYDRATION; COBALT; MICKEL; ZINC; COPPER; CRYSOSCOPY

Solubilities of manganese(II), Cobalt(II), nickel(II), and zinc(II) acetates in a cetic acid were measured at 25 C to investigate the aquation of these metal acetates. The equilibrium of copper (II) acetate is substituted by a water molecule in acetic acid: Cu2(OAc) %(HOAc) 2+H20-Cu2(OAc) 4 (H20) (HOAc) +HOAc. The constant for this equilibrium was estimated to be 0.6 plus or minus 0.3.

437 Natural 210Pb and 210Po in a Marine Environment

Schell, W.R.; Jokela, T.; Eagle, R.

Part of Radioactive Contamination of the Marine Environment, Proceedings of Symposium held by the International Atomic Energy Agency, Seattle, WA, July 10-14, 1972 (701-722) 786 p.; 1973

LEAD; LEAD 210; POLONIUM; POLONIUM 210; SEDIMENTS; SALTWATER; PALTOUT; EROSION; CRUSTACEA; SABLEFISH; MARINE ORGANISMS; TRACERS

TAXONOMY: ANOPLOPONA FINBRIA

A regional sampling program has been initiated to determine the existing levels of Pb 210 and Po 210 in sediment, organisms and water from different depths in a salt-water sound and a fresh-water lake. The collections have been made fresh-water lake. The collections have been made with plankton nets, midvater trawls, sediment corers, and a large volume water sampler consisting of 0.3 micron Hillipore filters and Al203 morption beds (200 to 2000 litres). The efficiency of collecting lead from fresh and salt water by the Al203 beds has been determined. The sample analysis was made using Po 208 tracer for yield determination and low background alpha spectroscopy which separates the energies of Po yield determination and low background alpha spectroscopy which separates the energies of Po 200 from Po 210; the ingrowth and decay of Po 210 were used to determine Pb 210. Computer programs have been completed for data analysis, sorting, and retrieval. One interpretation of the early results of sample analysis from the fresh-water and salt-water environments is that the processes of erosion and leaching can contribute significantly to the concentration of Pb 210 and Po 210 in the aquatic environment. Regional differences are found which depend on the geological strata. Both the erosion process and geological strata. Both the erosion process and the atmospheric fallout process must be considered as sources of these radionuclides in the aquatic environment. An unusually large concentration of Po 210 has been found in the liver of a sablefish, ANOPLOPOMA FIMBERA; the zooplankton in the same region also had a high Po 210 concentration. The nektonic crustacea have the highest Po 210/Pb 210 ratio of the organisms collected at about 100. A program has been initiated for measuring naturally occurring radionuclide in the aquatic environment of the Puget Sound basin. Studies of the pathway of Po 210 and Pb 210 through the food chain illustrate 210 and Pb 210 through the food chain illustrate the distribution of these radionuclides. The source of Pb 210 and Po 210 is from precipitation, erosion, and leaching; the distribution and concentration are shown in the analysis of the biota. It is appearent that the Po 210 is not supported during growth of organisms since the ratio of Po 210/Po 210 is greater than unity. The crustaces are found to have the largest ratio of Po 210/Po 210, about 100. The high Po 210 concentration was observed in larger fishes whose food is these crustaceans. Part of this Po 210 could be assimilated directly from the water. Specific activity value for Pb210/sicrogram Pb, below those which are normally present, may be an indication of pollution in certain regions. The study is still in the early stages of development. A more complete data evaluation must await the results of samples collected and analyzed over a longer time period. time period.

438'
Pallout Mn 54 Accumulated by Bay Scallops
ARGOPECTEM TRRADIANS (Lamarck) Near Beaufort,
North Carolina

Scholske . C. L.

Part of Radioactive Contamination of the Harine Environment, Proceedings of Symposium held by the International Atomic Energy Agency, Seattle, WA, July 10-14, 1972 (331-345) 786 p.: 1973

HANGANESE; HANGANESE 54; BIOACCUMULATION; SCALLOPS; RADIOACTIVITY; MOLLUSCS; ESTUARIES; GILLS; MUSCLES; MANTLE; GONAD; VISCERA; SPAFOOD; HUMAN HEALTH

TAXONONY: APGOPECTEN IRRADIANS

GEOGRAPHICAL DESCRIPTION: U.S. (SE), North Carolina, Lamark

Bay scallops were collected in estuarine waters near Beaufort, Worth Carolina, during the period of January 1963 to June 1966 and analysed for gamma radioactivity originating from fallout. Most of the gamma radioactivity was Mn 5%, with scallops containing 30 times more Mn 5%, with scallops containing 30 times more Mn 5%, with scallops containing 30 times more Mn 5%, with scallops containing 30 times and end declined after October 1963 and October 1964 and declined after October 1963 and October 1964 and declined after October 1964, with a half-life of approximately 2%0 d. Concentrations of Mn 5% in the 7% samples collected were a function of collection sites in the estuary, size of the scallops, and tissue type. Amounts of Mn 5% were determined in seven different tissues. Kidneys contained the greatest concentrations, about 100 times more than adductor muscle, gills, mantle, gonad, visceral mass, and liquid. Maximum concentrations in kidneys were 100 pci/g wet weight. Kidneys are a small fraction of the total weight, so concentrations in the combined soft parts are about a factor of 100 lower than the kidney. Stable element content of scallop tissues was determined also, and kidneys again contained at least 100 times more stable manganese than any of the other tissues.

Variations in specific activities (pci Mn 5%/microg Mn) among the different tissues were greater than could be explained by physical decay and possible turnover rates in the organism. Mechanisms of Mn 5% and stable manganese accumulation are postulated from data on specific activity of different tissues, mode of scallop feeding, and results of laboratory experiments in which scallops were fed phytoplankton labolled with Mn 5%. These data are important because kidneys of bay scallops concentrate Mn 5% more than any other biological system known. Public health implications are minimized because only the adductor muscle is sold as seafood.

439 Ecological Implications of Fallout Radioactivity Accumulated by Estuarine Pishes and Mollusks

Schelske, C.L.; Great Lakes pesearch Div. Michigan Univ., Ann Arbor, HI; Center for Fstuarine and Henhaden Research, National Marine Pisheries Service, Besufort, NC

Contribution No. 000, Great Lakes Research Division, University of Michigan, Ann Arbor, HI. Atomic Energy Commission (COO-2003-9)

CERIUM 144; CESIUM 137; ESTUARIES; FALLOUT; FISH; MANGARESE 54; HOLLUSCS: HONITORING; RADIOECOLOGY; BUTHERIUM 106; TIME DEPENDENCE; FINC 65; CERIUM; CESIUM; HANGANESE; ZIMC; RADIOIS "JOPES; CLAMS; CYSTERS; MUSSELS; SCALLOPS

TAKOHOHY: HERCENARIA MERCENARIA; HODIOLUS

DEMISSUS; CRASSOSTREA VIRGINICA; ARGOPECTEN TERADIANS

Fallout radioactivity accumulated by estuarine organisms near Beaufort, North Carolina, was measured from October 1953 to October 1966. Sixteen species of fish were analyzed for fallout radioactivity. These fish were separated into four groups based on the predominant radioisotopes accumulated in the environment. One group contained cosium-137, another group manganese-50, another group cesium-137 and manganese-50, and a fourth group contained little or no measurable quantity of either radioisotope. Mektonic feeders comprised the group that contained cesium-137 and benthic feeders contained manganese-50. The results of these measurements suggest that the radioactivity accumulated by mollusks and fish reflects different ecological niches. Seven radionuclides were identified in the soft parts of hard clams, MERCEMARIA MERCEMARIA; marsh mussels, MODIOLOS DEMISSUS; American oyster, CRASSOSTREA VIRGINICA; and hay scallops, ARGOPECTEN IRRADIANS. Clams, mussels and oysters accumulated relatively large amounts of Ce-144 and Ru-106. The radioisotope present in greatest concentrations in oysters was zinc-65 and in bay scallops was manganese-50. Laboratory experiments on the accumulation of zinc-65 and manganese-50 confirmed these results.

aug Relation of Trace Metals to Muman Health

Schroeder, H.A.: Darrow, D.K.

Environmental Affairs, 2(1), 222-236; 1972, Spring

TRACE ELEMENTS: HUMANS: HEALTH; INDUSTRY:
ANIMALS: SALTWATER; LEAD; CADMIUM; TOXICITY;
BICKEL; HYPERTERSION; EMPHYSEMA; CARCINGENESIS;
ANTHONY; BERYLLUM; BERYLLOSIS; MERCURY;
BETHYLMERCURY

The effects of various trace elements on human health have been reviewed in the light of annual industrial consumptions, natural abundances (on the earth's crust, in sea water, and in the contents of Reference Man) and changes in experimental animals fed low doses for life. Fourteen metals and two non-metals are essential for life or health of mammals. All but two are mined in large amounts, are abundant on the earth's crust, and are found in human tissues in wizeable quantities. Most of these metals are non-toxic to mammals in ordinary concentrations. Five metals occur in low abundances, are consumed industrially in sizeable amounts, occur in the body of man, and are toxic of themselves. Of these, lead and cadmium are prevalent in man. Wine metals have low orders of toxicity and occur at low crustal abundances. Right have little or no toxicity, of which six are abundant. Hetals in the environment of potential hazard to man are lead, by far the largest pollutant, cadmium, which may influence hypertension and emphysema, nickel as the carbonyl which is carcinogenic, antimony which is toxic, beryllium which can cause beryllosis, and methyl mercury which is highly toxic. At present levels of exposure, lead, cadmium, and possibly nickel are potentially hazardous to health. Only under special circumstances and in special compounds are a few other elements hazardous.

441 Trace Metals in Carbonate and Organic Rich Sediments

Segar, D.R.: Pellenbarg, R.E.: Rosenstiel Sch. Mar. Atmos. Sci., Univ. Miami, Miami, FL

Mar. Pollut. Bull. (MPMBAZ), 4(9), 138-142; 1973

TRACE METALS; WATER; SEDIP MTS; ORGANIC COMPOUNDS; CARBONATES

442 Mercyry in Seals Prom Eastern Canada

Sergeant, D.R.; Arastrong, P.A.; Freshwater Inst., Pish. Res. Board Canada, Winnipeg, Manitoba

J. Pish. Res. Board Can. (JFRBAK), 30(6), 843-6;

SEALS; MERCURY; DIET; SALTWATER; POOD CHAINS

TAXONDAY: HALICHOERUS GRYPUS; PHOCA VITULINA; PHAGOPHILUS CROENLANDICUS; CYSTOPHORA CRISTATA

Mercury concentrations in seals of 4 species from eastern Canada were greatest in the liver (less than 387 ppb, usually 1-100 ppm), and lowest in blubber (0.1 ppm), with auscle levels of less than 0.16-2. 35 ppm. The liver Hg/muscle-Hg ratios for the adults were greater than those for 2 freshwater fish species and 3 species of domestic animals exposed to Hg in their diet. Hg in the seals increased with age and varied with the position in the marine food web of the organisms they ate, and were higher for the grey (HALICHORRUS GRYPUS), Harbon (PHOCA VITULINA), and Hood (CYSTOPHORA CRISTATA) seals which ate large pelagic and benthic fish and cephalopods, than for Harp seals (PAGOPHILUS GROENLAWDICUS) which ate small pelagic fish and crustaceans.

443
Transport of Lead in the Environment

Servant, J.; Lab. Phys. Aerosole Echanges Atmos., Univ. Paul Sabatier, Toulouse, Fr.

Part of Proceedings of International Symposium on Environmental Health Aspects of Lead, Amsterdam, Retherlands, October 2-6, 1972. Organized dointly by Commission of the European Communities, Pirectorate General Social Affairs-Health Protection Directorate and Environmental Protection Agency, EUR 5004 d-e-f. Luxenburg: Commission of the European Communities, Pirectorate General for Dissemination of Knowledge, Centre for Information and Documentation (261VAJ), 155-64; 1973

LEAD; TRANSPORT; RAIRWATER; LAKES; WATER; SOILS

uuu Decline of Zn 65 in Marine Mussels Following the Shutdown of Hanford Reactors

Seymour, A.H.: Nelson, V.A.

Part of Radioactive Contamination of the Marine Environment, Proceedings of Symposium held by the International Atomic Energy Agency, Seattle, WA, July 10-14, 1972, (277-285), 786 p.; 1973

ZINC; ZINC 65; MARINE ORGANISMS; SALTWATER; PLUTONIUM; POWER REACTORS; ECOLOGICAL HALF-LIFE; MUSSELS: RADIONUCLIDES TAROBONY: MITILUS EDULIS; MITILUS CALIFORNIUS

GEOGRAPHICAL DESCRIPTION: U.S. (NW), Washington, Hanford, Columbia River, Pacific Ocean

The shutdown of the last of the eight original plutonium production reactors at the Hanford Atomic Plant in February 1971, eliminated the source of practically all the radionuclides in the Columbia River and in the plume of Columbia River water in the Pacific Ocean. Zinc-65, perhaps the most biologically important of the Hanford-produced radionuclides in the marine environment, continues to be present in both the biota and the water fifteen months after shutdown. The amounts of Zn 65 in massels at the mouth of the Columbia River and along the Washington coast have been monitored since 1961, and data from these observations have been used as reference values to measure the loss of Zn 65 related to the shutdown of the reactors. The amount of Zn 65 in the soft tissues of MYTILUS EDULIS from the Rorth Jetty at the mouth of the Columbia River declined from 40 pci/g of dry tissue in Vebruary 1971, to 6 pci/g, dry, in May 1972. The effective half-life for Zn 65 was calculated to be 130 d and the loss of Zn 65 by processes other than physical decay, in terms of half-life, was calculated to be 277 d. The latter value is called ecological half-life rather than biological half-life, since there is some uptake of recycled Zn 65 but at a rate less than the rate of loss of Zn 65 by alological processes. At North Head, 5 km north of the Columbia River, the amount of Zn 65 and Zn in M. CALIFORNIANUS and the rate of decline was less than comparable values for North Jetty mussels, although the specific activity values, micro Ci Zn 65/g Zn, for mussels from both locations, collected on the same day, were similar. The Zn 65 effective half-life value for North Head mussels from seven locations on the Washington Coast and in the Strait of Juan de Puca, to a distance from the Columbia River and to time after reactor shutdown.

eq5 Polonium-210 and Lead-210 in the Hydrosphere

Shannon, L.V.; Cherry, R.D.; Div. Sea Fish., Sea Point, South Africa

Proc. Symp. Hydrogeochem.istry Biogeochem 1, 284-92; 1973

FOOD CHAINS; POLONIUM 210; HYDROSPHERE; LEAD; FISH; ISOTOPES; POLONIUM; BIOACCUMULATION; SALTWATER; LEAD 210; PHYTOPLANKTON; ZOOPLANKTON

Determinations gave average concentrations of Pb 210 and Po 210, respectively. Sea water (29) 0.038, 0.020 pCi/l: phytoplankton(4) 27, 76pCi/kg; zooplankton(13) 31, 380 pCi/kg; pelagic fish (6) S, 1260 pCi/kg. The increase in Po 210 up the food chain is notable. Po 210 was found to be preferentially concentrated in fish liver (up to 1278 pCi/kg).

446 Stabilities of Some Heterocyclic Amine Complexes. IT

Sharma, R.C.; Bhattacharya, P.K.; Fac. Sci., Maharaja Sayajirao Univ. Baroda, Baroda, India

J. Indian Chem. Soc. (JICSAH), 50(3), 232-3; 1973

NTCKEL; HETHYLPTRIDINE; COMPLEX; AQUEOUS SOLUTIONS; STABILITY; COLLIDINE; LUTIDIEN;

In the present work the reactions between Ni(II) and di- and tri-methyl pyridines (2:4-lutidine, 2:6-lutidine and 2:4:6-collidine) have been sutdied in aqueous solution. The experimental data reveals that the stabilities of the complexes are in the order of <44-lutidine complexes han 2:6-lutidine complex less than 2:8:6-colludine complex which is in accordance with the basicities of the ligands (2:4-lutidine less than 2:6-collidine). Exact linear relationship, however, does not hold good. The extend of H-L phi interaction, differs depending on the number and position of the -CH3 group introduced in the ring. Litidine complexes are more stable than pyridine and picoline complexes as expected from higher basicities of the lutidines. With the increase in temperature the basicities of the ligands go down and there is corresponding decrease in the permation constants.

447
Uptake of Mercury by Chlorella and its Effect on Potassium Regulation

Shieh. Y.J.: Barber

Planta (BERL) 109(1) 49-60; 1973

MEMBRANE PERMEABILITY: POTASSION: MERCURY: UPTAKE: REGULATION: CCCP; DCCD; CYSTEINE

TAXONOMY: CHLORELLA PYRENOIDOSA

Addition of mercuric chloride at concentrations which resulted in an overall binding level of about 8 maoles Hg/l packed cells and above caused a breakdown in the permeability of the cell membrane as indicated by a net efflux of internal K(+). Below this level in region of 2 mmoles Hg/lpacked cells the rate of K(+) transfer across the cell surface was stimulated without affecting the internal K(+) level. Maintainence of the stimulation was dependent both on time and dose. Enhancement of the rate of K(+) turnover was associated with a fast component of the inorganic mercury uptake which could be removed by washing with cysteine. The mercury stimulated K(+)/K(+) exchange was inhibited by low temperature, by the uncompler CCCP and the energy transfer inhibitor DCCD. Overall binding concentrations of inorganic mercury below 0.5 mmoles/1 packed cells had no effect on the K(+) transport system. In contrast to mercuric chloride, methyl mercuric chloride over similar concentration ranges did not seem to induce a breakdown in the permeability barrier or directly interact with the K(+)/K(+) exchange but more likely influenced the latter by inhibiting in racellular processes.

448 Icelandic Geothermal Activity and the Mercury of the Greenland Icecap

Siegel, B.Z.; Siegel, S.M.; Thorarisson, F.

Wature Vol. 241, p. 526; 1973, Pebruary 23

GEOTHERMAL ACTIVITY; ICECAPS; MERCURY; VOLCANOS; SEDIBENTS

In response to the controversey over mercury found in Greenland ice cores, information about natural sources and modes of dissemination of the element is needed. Atmospheric mercury can be introduced by degassing of fluid magmas, and release from fine ash, and long range transport of volcanic electa eastward from Iceland is well established. The presence of substantial sercury levels in deep North Atlantic sediments located S, SW, and W of Iceland may also reflect long term transport and fallout of Icelandic mercury in nearby waters. Whatever may be the significance of time -variable mercury levels, they cannot be viewed as evidence for human input when it is recalled that from the mid-17th century to the present, Iceland has recorded nearly 50 volcanic eruptions.

449 Metals as Pollutants in Air and Water, An Annotated Bibliography

Sinha, g.

Ocean Engineering Information Series vol. 6: 1972 METALS; ATMOSPHERE: WATER; BIBLIOGRAPHY 450 Lead Accumulation within Nuclei of Moss Leaf Cells

Skear, H.; Ophus, E.; Gullvag, B.M.; Department of Physics, Department of Botany, The University (MEHT), 7000 Trondheim

Nature 241,215-216: 1973

HOSSES; MUCLEUS; CELLS; PIOACCUMULATION; ELECTRON MICROSCOPY; CYTOPLASM

TAXONOMY: RYTIDIADELPHUS SOUARROSUS

It was postulated that as lead is used as a stain in routine electron microscopy the presence within cells of lead derived from pollution might by revealed directly from transmission electron micrographs, provided that the local concentration of the metal in the cell was high enough and that no heavy metal stains were used during initial preparation. As bryophytes are known to accumulate heavy metals in concentrations which are chosen for other groups of plants. Posses were chosen as the emergence. of plants, Rosses were chosen as the experimental material. Specimens of RYTIDIADELPHUS SQUARROSUS were cultivated in a greenhouse and watered once a day for three weeks with a series of lead acetate solutions. A comparison of electron acetate solutions. A comparison of electron micrographs from unstained polluted material with micrographs from leaf samples from control plants revealed electron-dense inclusions in the cells from the lead-treated samples while no such inclusions were found within the cells of control plants. Samples of R. squarrosus growing 250 m from a busy city road revealed electron dense particles within cell nuclei. X-ray analysis of the electron-dense inclusions confirmed that the particles contained lead. Other reas in teh catoniam which showed electron-dense precibates cytoplasm which showed electron-dense precitates were also examined but except for one case, no lead could be demonstrated.

Effect of Molybdenum Phomphate Glasses Containing Trace Elements on the Productivity of SCEMEDESHUS ACUTUS

Skarenkova, K.; Gabrovski, K.; Inst. Genet. Plant Breed., Scfia, Bulgaria

Dokl. Sel'Skokhoz. Akad., Sofia (DSKAA7), 6(1), 33-B; 1973

HOLYBDENUM; HOLYBDENUM PROSPRATE; IRON: COBALT: COPPER: MANGAMESE: ALGAR; BIONASS; GROWTH; PH; TRACE ELEMPNTS; NUTRITION

TAXONOMY: SCENEDESHUS ACUTUS

Growth prosecting effects of 5 different
3-component mo phosphate glasses on S. ACUTUS
were studied. The Mn-containing (10% An(2) 0(3))
glass at a concentration of 25-150 mg/l of medium
enhanced the growth and at higher levels
inhibited the growth and at higher levels
inhibited the growth. Maximum increase of 150%
in blomass was obtained on the 5th day at 100
mg/l level. In the case of Co-containing (10%
COO) glass, Op to 60 mg/l, algae yield
increased, with maximum yield at 15 mg/l. The
Cu-containing (10% COO) glass enhanced growth hy
120-130% at levels of 5-10 mg/l. The
Cu-containing glass at a concentration of 10-20
mg/l increased growth by 120-130%. A
concentration of 30 mg/l of Cu was toxic. Growth
was increased by 115-118% by Fe-containing glass
(30% Fe(2)0(3)) at a concentration of 5-20 mg/l.
In all the tests, no significant pR change of the
medium was noticed.

Particulate Netals in Waters of Sorfjord West HOLAGA

Skei, J.M.; Price, N.B.; Calvert, S.E.

Ambio, 2(4), 122-124; 1973

LEAD; BIOACCUMULATION; SALTWATER; LEAVES; PLANTS; ELECTRON MICROSCOPY; MOSSES

TAXONOMY: RYTIDIADELPHUS SQUARROSUS

The purpose of the present investigation was to determine the levels of suspended particulate copps (Cu), zinc (Zn) and lead (Pb) in the waters of Sorfjord, West Worway, and to use this information to trace the dispersal pattern of metal-containing industrial waste which is discharged into the fjord at its southern extremity near the town of Odda. The investigation has shown that concentrations of these metals in fjord, esocially Zn and Pb, are up to two or three times higher than in natural sea water. Metals have been detected in both surface and subsurface waters 50 km away from the area of metal discharge. Considering the hydrography and the relationship of Zn and Pb in different waters, it seems possible to draw the conclusion that two distinct bodies of contaminated water outflow from the fjord. However, during periods of high river runoff, the dispersal of metals in subsurface waters will be different, and at such times we predict that pollution of the inner fjord will be greatest. The purpose of the present investigation was to

453 Comparison of the Lethality of Various Combinations of Heavy Metals and Water Temperature to Juvenile Rainboy Trout

Slatkin, D.; Jones, K.; Geigler, F.; Wolf, A.; Fouler, J.; Kraner, H.: Cronkite, E.; Battelle Pacific Northwest Labs., Richland, WA

Battelle Pacific Northwest Labs.. Richland, WA: BNWL-SA-4704; CONF-730505-6; Part of Thermal Ecology Symposius. Aiken, SC. 3 May 1973; 1973

TOXICITY; CHEMICAL POLLUTION; TEMPERATURE; PISH; TOALCITY, CHARLOW POLLOTION; TOPPERATORE; FISH; SYMERGISH; ANTAGONISH; ADDITIVITY; THERMAL POLLUTION; MUCLEAR POWER PLANTS; AQUATIC ORGANISMS; METABOLIC RATE; BIOASSAY; PROPORTIONAL DILUTER; RAIMBOW TROUT; CRAYFISH; DAPRNIA; GROWTH; REPRODUCTION; LETHALITY; MERCURY; CHLORIME; PERSHWATER

In the light of the combination of chemical and In the light of the combination of chemical and thermal water pollution potential of nuclear power plants, this study was undertaken to define the toxicity of heavy metals at various temperatures in rainbow trout. Using a 96h TL50 standard continuous flow bloassay, a two- or three-fold difference in resistance to the toxicant was seen depending on the ambient temperature at which the fish had been maintained. 454
Tutnover and Vertical Transport of Zinc by the
Euphausid MEGANYCTIPHANES NORVEGICA in the
Ligurian sea

Smell, L.P.; Powler, S.W.; Internat. Lab. Mar. Radioactivity, Internat. Atomic Energy Agency, Monaco.

Haring Biol. 18(4), 284-290; 1973

TURMOVER; VERTICAL TRANSPORT; TRANSPORT; EUPHAUSID; PARTYCIPATORY YURMOVER; SALTWATER; ZINC

TAXONONY: REGARYCTIPHANES NORVEGICA

u55 Flux of Zinc Through a Macroplanktonic Curstacean

Small, L.P.: Powler, S.W.: Reckes, S.

Part of Radioactive Contamination of the Marine Environment, Proceedings of Symposium held by the International Atomic Energy Agency, Seattle, WA, July 10-14, 1972 (437-452) 786 p.: 1973

FLUX; ZINC; PLANKTON; MACROPLANKTON; CRUSTACEA; MODELING; SALTWATER; LINEAR SYSTEMS; INGESTION

TAXONOMY: MEGANYCTIPHANES MORVEGICA

A simple, linear model has been employed for an hearistic examination of the flux of zinc through the emphausiid MEDINYCTIPHNES NORYEGICA in the mediterranean Sea. The model is generated from the basic equation ke = Hu e + Lambda e, where ke is the rate of ingestion of particulate zinc by the emphausiid, Hu e is retention of the element in newly elaborated body tiscue, and Lambda e is the rate of elimination of the element. For a first approximation, the ke term is assumed to apply only to ingestion of particulate zinc, though the model can also be made to incorporate direct uptake of zinc from solution. The ke term breaks down into ke = (QIPi), where Qi = zinc concentration in ingested food and Pi = ingestion rate. The Me e term is equivalent to (QQFQ), where Qg = zinc concentration in new tissue added in growth, and Pg = growth-rate. The Lambdae e = (QIPf) + (QmPm) + (QcPc) + (QxPx) + Pe, where Qf, Qp, Qc, and Qx are zinc concentrations in facces, moults, dead carcasses, and non-viable eggs, respectively, and Pf, Pm, Pc, and Px are the respective rates of production. The Pe term accounts for excretion of dissolved metabolic productions. Over the life span of M. NORYEGIC! some of the terms are discontinuous (Px, for example), and all are non-linear. Therefore, we have selected "ecologically significant" segments of the impact on zinc flux, from blomass estimates; and have summed linear approximations of these selected requents. Using adult animals feeding and defecating for 12 h each day, maximum Lambda e estimates (126.61 ug zn lost/g dry weight/day) plus maximum c estimates (2.38 ug Zn retained/g dry weight /day) vielded a maximum estimate for

Re (130.99 ub Zn ingested/g dry weight/day). Similarly, near-minimum estimates of Lambde e and Mu 3 gave a near-minimum estimate of Ke (51.22 ug Zn/g dry weight/day). The Zn concentration in the food of M. MORVEGICA was calculated to be approximately 400-500 ug Zn/g dry weight to satisfy the elimination and growth terms. Measured Zn concentration in "natural" foods of the euphausiid avaeraged 570 ug Zn/g dry, an estimate reasonably close to the calculated concentration. The Zn budget in M. MORVEGICA is thus adequately described, and indicates that faecal pellet deposition (QFP) is the most significant tera (representing over 90% of the Zn flux). Applicability of the above approach, and the most sensitive parameters, are discussed relative to other elements and other organisms.

456 Mercury in Sediments from the Thames Estuary

Smith, J.D.; Nicholson, R.A.; Moore, P.J.; Geochem. Div., Inst. Geol. Sci., London, Engl.

Environ. Poliut. (ENVPAP) 1973, 4(2) 153-7

MERCURY; SEDIMENTS; ESTUARIES; ATOMIC ABSORPTION SPECTROPHOTOMETRY

Unconsolidated surface sediments from the outer Thames estuary were analysed for mercury using a flameless atomic absorption technique. Sediment samples examined comprised fifteen which were freshly collected and twenty provided by the Sritish Museum (Department of Mineralogy) from a collection assembled over the past forty-five years. Comparison of results for the two groups indicates that there has been littly overall change in this period, but levels in these recent sediments are generally higher than those obtained for samples of London clay deposited in Rocene times (approximately 50 million years ago). Mercury contents of the sediments range from 0.012 to 0.550 pps, with the higher concentrations usually occurring in sediments containing a high proportion of fine particles.

457
Analytical Handbook for the Determination of Arsenic, Cadmiun, Cobalt, Copper, Iron, Lead, Hanganese, Mercury, Mickel, Silver, and Zinc in the Marine and Estuarine Environments

Smith, R.G.; Windom, H.L.

Unpublished Manuscript: Technical Report Series No. 72-6, 62 p., Geogria Marine Science Center, University System of Georgia, Skidaway Tsland, Geogria: 1972, September

AWALTTICAL CHEMISTRY; ARSENIC: CADMIUM; COBALT; COPPER; IRON; LEAD; MANGANESE; MERCURY; WICKEL; SALTWATER; ESTUARIES

456 Geochemistry of Selenium in Deposits in the Worthwestern Part of the Pacific Ocean

Sokolova, E.G.; Pilipchuk, M.T.; South, Sect., Inst. Oceanol., Gelendzhik, USSR

Geokhimiya (GEOKAQ), 10, 1537-1546; 1973

SELTHIUM: GEOCHEMISTRY: BENTHONIC SEDIMENTS; OCTANS; PIXATION: IRON SULFIDE; ORGANIC COMPOUNDS; SEDIMENTS

u59
Hethylmercury: A Bacterial Degradation in Lake
Sediments

Spangler, W.J.; Spigarelli, J.L.; Rose, J.M.; Miller, H.M.

Science 180, 192-193; 1973, April

METHYLHERCURY; BACTEPIAL DEGRADATION; SEDIMENTS; GAS CHROMATOGRAPHY; MASS SPECTROMETRY; LAKES; BACTERIA; MICROORGANYSMS; PRESHWATER

u60 Northwest Pishery Center Research on Effects of Environmental Contaminants on Marine Organisms,;

S^ansby, M.F.; Alverson, D.L.; Mational Marine Planeries Service, Seattle, Wash. Northwest Pisheries Center

GPA 73(21) COM-73-50645-05-06-02; Report No. MRF-PAPER-979; Monitoring Agency Rept No. NOAA-73072305-2, 8 p.: 1973

PISH; AQUATIC ANIMALS; LIPE CYCLES; CONTAMINATION; BIOCHEMISTRY; SALTWATER; PHYSIOLOGY; PWIMAL DISEASES; MERCURY; PESTICIDES; POLLUTION EMPRCTS

The authors set forth the plans developed by the members of the Northwest Fishery Center to conduct research on the offects of environmental contaminants on marine organisms. Their studies involve a three-pronged attack. At a very basic research lovel, chemists, biochemists, and biophysicists are looking into pathways within the fish or other marine organisms to learn how contaminants move about during different stages in the life history of the organisms. The nature of biochemical investigations, laboratory investigations in physiology and field research is briefly described.

461 Mercury Concentrations in Sediments of the Lake Pric Basin. Ohio

Stith, D.A.: Ohio Geol. Surv., Columbus, Ohio

Ohio, Div. Geol. Surv., Informa. Circ. (ODGCA9) No. 40, 1-14; 1973

HERCURY: SEDIMENT: LAKES

GPOGRAPHICAL DESCRIPTION: J.S., Ohio, Lake Erie Rasin

Traces Metals in Cores from the Great Marsh, Leves, Deleware

Strom, R.N.; Biggs, R.B.; Department of Geology, College of Marine Studies, University of Delaware, Wewark, Deleware 15711

Department of Commerce Grant 2-35223; DEL-SG-12-72, CMS No. 2 GL-105; 1972, December

LEAD; ZINC; COPPE ι_{ℓ} ; CADMIUM; WATER; CHROMIUM; IRON; CORE SAMPLES; HARSHES; SEDIMENTS

Four twelve-foot cores and one eighteen-foot core were taken near Lewes, Delaware. Samples were taken at two foot intervals down the core beginning at two feet below land surface. The samples were analyzed for zinc, copper, chromium, iron, lead and cadmium. The levels of lead and cadmium were below the level of detectability by the methods used (i.e. less than 1 ppm in the sediment sample). Zinc showed a slight increase in average concentration with increasing depth. Copper and cadmium showed no significant changes with depth. There appears to be no significant difference in the metal concentrations between the less than 63 u and greater than 63 u fractions.

063 Chemical Basis for Homing of Atlantic Salmon (SALHO SALAH) to a Hatchery

Sutterlin, A.M.; Gray, R.; Fish. Res. Board Canada, Dep. Environ., St. Andrews, New Brunswick

J. Pish. Res. Board Can. (JPRBAK) 1973, 30(7) 985-9

SALMON; HOMING; COPPER; COPPER SULPATE; CHEMISTRY

Based on recoveries from traps situated at a hydroelectric dam and a hatchery 1500 m downstream, the return location of hatchery reared and wild Atlantic salmon is examined. During the fall runs of 1971 and 1972,97% of ascending wild salmon returned to the dam; only 3% were recovered at the hatchery. Despite the fact that the hatchery discharge contributed only 1/1000th of the river's flow, 67% of the hatchery-reared fish returned to the hatchery and 33% to the dam. Tank tests demonstrated a clear-cut preference by hatchery adults for diluted hatchery effluent vs. river water. Wild fish showed no-preference by hatchery adults for diluted hatchery effluent vs. river water. Wild fish showed no preference to either water. Well water, a component of hatchery effluent, was avoided by both hatchery and wild fish. Addition of CuSo(%) to preferred water altered its effectiveness.

a6t
Effect of Copper on Uptake of Diquat-14C by
HYDRILLA

Sutton, D.L.; Haller, W.T.; Steward, K.K.; Blackburn, R.D.

Weel S.i. (WRESA6), 20(6), 581-3; 1972

DIQUAT: UPTAKE; HYDRILLA; COPPER; HERBICYDES; AQUATIC PLANTS; PLANTS; CARBON 14

TATORUNY: HYDRILLA

hff Distribution and Background Levels of Mercury in Sediment Cores From Selected Wisconsin Lakes

Syers, J.K.; Iskandar, Y.K.; Keeney, D.R.; Dep. Soil Sci., Univ. Wisconsin, Madison, Wis.

Water, Air, Soil Pollut. (WAPIAC), 2(1), 105-18;

MERCURY; LAKES; SEDIMENTS; DISTRIBUTION;

GEOGRAPHICAL DESCRIPTION: U.S. (N), Wisconsin, Madison

The vertical distribution of Hg in sediment cores from a range of hard—and soft-water lakes in wisconsin was evaluated in terms of potential sources of Hg during the nineteenth and twentieth centuries. For the Hadisch lakes, the trends in Hg distribution were related to variations in sewaga inputs during the last 80 yr. It is unlikely that either inputs of sewage or erosional products are rosponsible for the observed accumulation Hg in the most recent sediments from three lakes in northeastern wisconsin. Background levels varied from 0.01 to 0.24 pps of Hg (intact sediment basis) in precultural sediments from the Wisconsin lakes investigated. There was no consistent relationship between the concentration of Hg and other sediment components of potential importance in the retention of Hg.

466 Analytical Studies: Biochemical Studies

Thomas, C.C., Jr.: Hassaro, E.J.

Part of Investigation of Heavy Metallic Pollutants in the Great Lakes Ecosystem, Quarterly Progress Report for the period ending March 3, 1972, 15 p. Toxic Materials Central Pile: 1972

HERCURY: CADMIUM: ZINC: COPPER: ARSENIC: CHROMIUM: SELENIUM: FISH: WALLEYE: SMELT: SLIMY SCULPTW: RAINBOW TROUT: HETHTLMERCURY: UPTAKE: BIOLOGICAL HALF-LIPE: BLOOD: SPLEEN: KIDNEYS: LIVER: LENS: MUSCLES: RAIN: MERCURY

Assay: of fish for mercury, cadmium, zinc, copper, arsenic chromium and selenium were made. Studies to identify the proteins finding mercury are continuing and the distribution and half life of mercury in various fish organs were studied further. Initially the blood and spleen have the highest concentrations, but the mercury in these organs clears quickly and, at the end of some months, most of the mercury is in the muscles (about half the dose or two-thirds of that remaining in the fish). Mercury builds up slowly in the brain but is released even more glowly. The half retention was approximately 200 days, but is was being released at an even slower rate at this time.

467
The Distribution of Mercary in the Sediments of take Ontario

Thomas, R.L.

Canadian Journal of Earth Sciences 9, 636-651; 1972

MERCURY: DISTRIBUTION: SEDIMENTS; LAKES; PRESHWATER; BIOCONCENTRATION

GEOGRAPHICAL DESCRIPTION: Canada, Lake Ontario

Total mercury has been analysed in the surface 3 cm of sediment taken from 287 sample stations on an 8 km grid on Lake Ontario during 1968. The mercury distribution shows well-defined trends which can be related to sediment type; the concentration of mercury increasing from the shallow mearshore coarse sediments outwards, into the central, deep-water basin sediments composed of fine silty clays and clays. The average concentration of mercury in the nearshore sediments is 355 ppb. Regions of high mercury concentration (in the order of 2000 ppb) occur along the southern margin of the main lake basin and in the western (Niagara) basin of the lake. The dispersion pathways of these two regions point to the Niagara River as the prime source of mercury input to Lake Ontario. Most of this mercury is believed to be of industrial origin. An additional area of high mercury concentration with values up to 20,000 ppb, occurs at the eastern end of Lake Ontario (Kingston Basin) in the region of the lake rlose to the outlet to the St. Lawrence River. These high values in organic-rich, fine sediments are likely related to processes of biological concentration. The concentrations of mercury observed in the recent sediments of Lake Ontario can be accounted for by an average minimum daily input of 125 lb (56.7 kg) of mercury of which an estimated 42 lb (19.0 kg) is of natural origin and the remaining 83 lb (37.6 kg) is from industrial sources. The vertical distribution of mercury in a selected sediment core suggests that industrial mercury input commenced about the turn of the century, rose rapidly to CIRCA 1943 and, since then, has shown a slow but continued rise to the time of core retrieval in 1970.

468
The Distribution of Mercury in the Surficial Sediments of Lake Muron

Thomas, R.L.

Can. J. Earth Sci., 19(2), 194-204; 1973

DISTRIBUTION; MERCURY; SEDIMENTS; WEATHERING; INDUSTRY; CYCLING

GEOGRAPHICAL DESCRIPTION: U.S.A., Lake Huron

Total mercury has been determined in 163 samples of the topmost 3 cm of sediment taken from Lake Huron during 1969. Total mercury values range from 5% to 805 ppb with a mean of 222 ppb and a standard deviation of 162 ppb. The mercury distribution in the lake sediments shows a trend for increasing concentration from nearshore and mid-lake shallow water, coarse sediment deposits outwards into the fine-grained sediment in the deeper water basins. The application of a quartz correction to compensate for the dilution by an inert constituent reveals two major anomalies of higher mercury concentration. The SAGINAW ANOMALY occurs in the southern basins of the lake and is believed to be due to the input of industrial mercury from Saginaw Bay; the BRUCE ANOMALY in the northeastern part of Manitoulin basin is believed to be due to the weathering of sulfide deposits with subsequent concentration in the lake sediments being relate? To major water circulation patterns in the lake. From statistical analysis the mercury is believed to be bound in the sediments predominantly adsorbed or complexed by organic matter with subsidiary adsorption by the surfaces of iron sulfides and hydrated iron oxide - inorganic phosphorus complexes.

usq Application of the Stainton Syringe Method to the Analysis of Mercury in Natural Waters

Thompson, J.A.: McComas, P.T.: Pish. Har. Serv., Pac. Environ. Inst., West Vancouver, B.C., Canada, Canada

Environ. Lett. (RVLTAX), 5(3), 189-97; 1973

MERCURY; PATURAL WATERS; STAINTON SYRINGE METHOD; AWALTSIS: WATER

A relatively inexpensive, simple and precise method for the analysis of sub-managram quantities of wercury in natural waters is described. Through a combination of a solvent extraction procedure and a "cold-wapor" technique, standard deviations of plus or minus 0.0049 and plus or minus 0.0112 were obtained at the mean concentrations of 0.023 and 0.166 ng/ml respectively. Recoveries of 90% are reported.

u70 Concentration Factors of Chemical Elements in Edible Aquatic Organisms

Thompson, Stanley E.; Burton, C. Ann; Quinn, Dorthy J.; Ng, Yook C.

UCRL-50.0 (Pev. 1), UCRL-5054 (Rev. 1), Lawrence Laboratory, Livermore, CA. Bio-Hedical Division, TID-4500, UC-48. October 10, 1972, p. 1-77; 1972, October 10

CONCENTRATION FACTOR; POODSTUPFS; ELEMENTS; AQUATIC HIOLOGY: REVIEW

471
Environmental Geochemistry: Some Recent Studies in the United Kingdom

Thornton, I.; Webb, J.S.

Part of D. Hemphill (Ed.). Seventh Annual Conference on Trace Substances in Environmental Health, University of Missouri-Columbia, Columbia, NO 65201: 1973, June 12-14

GEOCHEMISTRY; AGPICULTURP; ESTUARIES; PISHERIES; GEOCHEMICAL RECOWNAISSANCE; MOLTBREMUM; ZINC; MINING; SHELTERS; SEDIMENTS; OYSTERS; MOTTOM PAUWA; SALTWATER

GEOGRAPHICAL DESCRIPTION: United Kingdom; England; Wales

The paper outlines some recent applications of geochemical parameters to agriculture, estuarine fisheries and pollution studies and discusses the Group's current programme in environmental geochemistry in relation to the geochemical atlas of England and Wales. Examples are shown of the results of geochemical reconnaissance indicating both extensive molybdenum anomalies and multi-element 'low' patterns in relation to animal health, and anomalous patterns due to old mining and smelting activities which are also of potential agricultural significance. Contamination of zinc in waters and sediments has been related to the failure of oyster larvae in a hatchery in North Wales and base-line studies show wide geochemical variation in other estuaries used for oyster production. The effect of the disposal of sewage sludge on trace element distribution in waters and sediments has been studies in the Pirth of Clyde and related to the distribution of bottom fauna.

472 Distribution of Zn, Fe, Hn, and Sr in Harine Pishes of Different Feeding Rabits

Ting, R.: Puerto Rico Muclear Center, Mayaque

Puerto Rico Nuclear Center, Mayague, COMP-710510--P2, 709-720; 1971

BONES; DISTRIBUTION; PISH; INTESTINES; IRON; MAWGAMESE; MUSCLES; SKIN; STRONTIUM; ZINC; TISSUE DISTRIBUTION; SALTWATER

473
Sublethal Cytotoxic Effects of Mercaric Chloride
on the ciliate TETRANYMENA PYRIFORMIS

Tingle, L.E.; Pavlat, W.A.; Cameron, I.L.; Med Sch., Univ. Texas. San Antonio, Tex.

J. Protozool. (JPRAR), 20(2) 301-4; 1973

MERCURY: TOXICITY: PROTOZOA: MERCURIC CHLORIDE

TAXONONY: TETRAHYMENA PYRIFORMIS

Mercuric chloride at a sublethal concentration of 0.50 mg/l caused deleterious changes in T. PYRIFORMIS cell motility, activity of the water expulsion vesicles, and cell shape, whereas at a lower concentration (0.25 mg/l) it was without effect. The higher sublethal HgCl2 concentration elicited damage of several cell structures, and this damage persisted and accumulated with time up to 24 hr. at the lower HgCl2 concentration. There were extensive changes after 1-hr exposure involving primarily mitochondria; however, all major changes were repaired after 24 hr of constant exposure to HgCl2, indicating adaptation to the toxicant.

674 Losses of Zinc 65 to Inorganic Surfaces in Marine Alcal Mutrient Medium

Tomlinson, F.D.; Renfro, W.C.; Department of Oceanography, Oregon State University, Corvallis, Ore. 97331

Envir. Sci. Technol. 6(12), 1001-1005; 1972, Wovember

MARINE BIOTA; ADSORPTION; UPTAKE; INORGANIC SUPFACES; MARINE PHYTOPLANKTON; ZINC 65; SALTWATER

The nature and magnitude of Zn-65 losses from a marine algal nutrient addium through adsorption to increance surfaces were examined. In the pH range 6.3-7.5, a precipitate formed in the medium. These particles accumulated up to 70% of the Zn-65 in the medium within 24 hr at pH values near 7.5 Zn-65 uptake at a nH of 6.3 was negligible. The filtered seawater hase of the nutrient medium was used to study Zn-65 losses to glassware surfaces. The relationship between the percent adsorption of Zn-65 from a contained seawater sample and wetted-glass surface area/pipette sample volume was found to be linear for borosilicate glass volumetric pipettes in the size range tested (1-15 ml). At pH 8.0, glassware with surface area/sample volume ratios as small as those of 20-wl volumetric pipettes adsorbed 7-11% of the contained sample activity. Use of polypropylene apparatus was found to significantly reduce zinc losses. It was concluded that Zn-65 adsorption by inorganic surfaces could result in serious errors in measurements of Zn-65 uptake by marine phytoplankton.

475

Recovery of Heavy Metal Compounds by Microogranisms. II. Incorporation of Phenylmercuric and Mercuric Acetate Into Microorganisms Tolerant to Them

Tomoyeda, H.; Horitsu, H.; Azuma, T.; Fac. Agric., Gifu Univ., Gifu, Japan

Nippon Nogei Kagaku Kaishi (NWKKAA), 47 (1), 51-5; 1973

MERCURY; BACTERYA; MERCURY COMPOUNDS; MICROSGRAISMS; HEAVY HETALS; ACTIVATED SLUDGE

TAXOROMY: PSEUDOHOMAS OVALIS

A microorganism tolerant to both phenylmercuric acetate and mercuric acetate was found in activated sludge. It was identified as PSEUDOMONAS OVALIS. Both compounds were incorporated into the precipitate and the supernatant fractions obtained by the centrifugation of the cell homogenate at 26.000g for 15 min.

476 Heavy Metals in Fish from Scottish Waters

Topping, G.: Mar. Lab., Aberdeen

Aquaculture, 1(4), 373-377; 1973

HEAVY METALS; PISH; POOD CHAINS; PLANKTON; PISH; COPPER; ZING; CADMIUN; LEAD

GEOGRAPHICAL DESCRIPTION: Scotland (coast)

The concentration of four heavy metals (copper, zinc, cadmium and lead) has been measured in four species of commercial fish collected from Scottish waters. From the limited numbers of fish and areas examined there appears to be little difference in concentration of any one metal between areas for the same species. It is suggested however that there may be a difference in trace metal content of plankton feeding fish and bottom feeding fish.

Hicrobial Uptake of Lead

Tornabene, T.G.: Edwards, H.W.

Science, 176 (4041), 1334-1335; 1972

MICROORGANISM: UPTAKE: LEAD; LEAD COMPOUNDS

TAKO NONY: MICROCOCCUS LUTEUS: AZOTOBACTER SP

MICROCOCCUS LUTEUS and AZOTGBACTER sp. cells grown in broth in contact with a dialysis membrane containing lead bromide were found to immobilize 1.9 and 3.1 x 10(2) milligrams of lead per gram of whole cells, on a dry weight basis, respectively. Culture turbidity and cell count measurements on these and other cell cultures show that lead bromide, lead iodide, and lead bromochloride in concentrations approaching solubility limits have no detectable effect on overall growth rate and cell viability. Analyses of cellular subfractions reveal that fractions of cell wall plus membrane contain 99.3 and 99.1 percent of the lead found associated with MICROCOCCUS LUTEUS and AZOTGBACTER sp., respectively. The remainder is found associated with the cytoplasmic fractions.

878 Effects of Lead on Bacterial Membranes

fornabene, T.G.; Edwards, H.W.

Part of Heaphill, D.D. (Ed.), Seventh Annual Conference on Trace Substances in Environmental Health, Held at Memorial Union, University of Missouri-Columbia, Columbia, HO, June 12-14, 1973; 1973

MEMBRANES; LEAD; GROWTH RATE; CELL VIABILITY; CYTOPLASH; LIPIDS; CELL MEMBRANES; CELL WALLS; CELLS; BACTERIA; MICROORGANISMS

Previous work shows that bacterial cells can take up substantial quantities of lead from solution without apparent effects on overall growth rate and cell viability. Lead retained by these whole cells is associated essentially completely with the cell wall and membrane, and very little reaches the cytoplasm. The present paper deals with interaction of lead with membrane lipids of M. LUTEUS. Effects of membrane lipids composition and structure upon lead retention is discussed.

479 Characterization of Bottom Sediments: Cation Exchange Capacity and Exchangeable Cation Status

Toth, S.J.; Ott, A.N.; Department of Soils and Crops, College of Agriculture and Tovironmental Sciences, Rutgers University, New Brunswick, NJ 08903

Environ. Sci. 6 Tech., 4(11), 935-939; 1970, November

SEDIMENTS; CATIONS; EXCHANGE CAPACITY; EXCHANGEABLE CATION STATUS; IRON; MANGANESE; RIVERS: ESTUARIES; PRESHWATER

Two parameters, cation exchange capacity (CEC) and exchangeable cation status (ECS), were used to characterize bottom sediments collected from rivers, bays, and freshwater impoundments. It was necessary to investigate the effect of drying on CSI and exchangeable Fe and En to arrive at satisfactory modifications of soil techniques used for these parameters. Wide variations were obtained in CEC and ECS values for the sediments. CEC and ECS values may be utilized for determining saltwater intrusions and pollution effects.

080 Water Quality and Pish Life Below Sewage Outfalls

Tsai. Chu-Fa

Trans. Amer. Pish. Soc., 102(2), 261-292; 1973, April

WATER QUALITY; PISH; SEWAGE OUTPALLS; CHLORINE; TURBIDITY; SLUDGE; SPECIES DIVERSITY

GEOGRAPHICAL DESCRIPTION: U.S. (E), Virginia, Haryland, Pennsylvania

comparative studies of water quality and fish species diversity in stream locations immediately above and below the outfalls of 149 secondary sewage treatment plants were made in Virginia, Maryland, and Pennsylvania. Sewage chlorine and turihidity increment resulting from sludge were found to be major causative factors for fish species diversity reduction below the outfalls.

Trace Element Trapping in Pteropol Tests

Turekian, K.K.; Katz, A.; Chan, L.; Dep. Geol. Geophys., Yale Univ., New Haven, Conn.

Limnol. Oceanogr. (LIOCAH), 18(2), 240-9; 1973

IRON; PTEROPOD; PLANKTON; TRACE ELEMENTS; OCEANS; SALTNATER; CERTUR; LANTHANUH; SAMARIUH; EUROPIUM; THORIUM; SCANDIUM; CHROMIUM; COBALT; LATTHONY; SELENIUM

GEOGRAPHICAL DESCRIPTION: Jorden, Gulf of Aqaba: U.S. (ME), New York, Long Island Sound

Pteropod tests from the Gulf of Aqaba and the South Atlantic Ocean and "bulk" (soft tissue) plankton samples from Long Island Sound were analyzed by instrumental neutron activation analysis (INAM) for 11 trace metals (Fe, Ce, La, Sm, Eu, Th, Sc, Cr, Co, Sb, Se) to study the trapping and transport mechanisms for these metals in the oceans and the capability of pteropods to modify the composition of seawater during this process. The internal correlations among these metals strongly suggest that a finely particulate (less than 0.2 m) authigenic iron-rich phase (hydrated oxide or phosphate) is trapped by both the soft and hard tissues of plankton and that this phase is the major carrier of several of the trace metals. Assuming that the iron-rich floc-trapping mechanism is applicable to all pelagic calcareous tests, then the downward flux of iron and associated trace elements carried by these tests can be assessed. To the precision of current knowledge about the transport and dissolution of calcium carbonate in deep water, this assumption leads to the conclusion that the iron and the associated trace elements have residence times in the deep water of the same order of magnitude as that of the deep water itself.

482 Distribution of Zirconium, Titanium, Nickel, Cobalt, Lead, Copper, and Other Elements in the Surface Layer of Recent Deposits in Lake Balkhash

Turovskii, D.S.; Lubchenko, I.Y.; Cherkasova, E.V.; Geol. Inst. Moscow, USSR

Litol. Polez. Iskop (1), 47-55; 1973'

SEDIMENTS; LAKES; ZIRCONIUM; TITANIUM; NICKEL; CUBALT; LEAD; COPPER; DISTRIBUTION; GALLIUM; VANADIUM; CHRONIUM; IRON; MANGAMESE; PROSPHORUS; HOLFBDENUM; CARBON; ORGANIC COMPOUNDS; TRACE ELEMENTS; ACCUBULATION

The majority of the elements studied came from suspended watter carried into the lake by the Tli River. Four groups of elements can be distinguished, which, in the order of increasing geochemical mobility, are (1) Ir and Ga; (2) Ii, V, and Cr; (3) Fe, Fn, P. Cu, Ph, Co, and Wi; and (4) Mo and C. Distribution of the elemnts is governed by the hydrodynamics of the basin, resulting in enrichment of the finest sediments with elements of group (3). Yr accumulates in the coastal sands, while the maximum concentration of group (2) occurs in coarse and also in small size aleurites.

ug3 Henry Retals Pollute Nature, May Reduce Productivity

Tyler, G.

Ambio, 1(2), 52-59: 1972, April

ZINC: COPPER: CADMIUM: CHROMIUM: MICKEL;
VARADIUM: POSSIL: PUELS: LEAD: IRON: MARGAMESE:
HIGHIC ABSORPTION SPECTROPHOTOMETRY: CALCIUM:
HAGMESIU': POTASSIUM: SOUPUM: PHOSPHORUS: SULPUM:
ACCUMULATION: MOSSES: IOM EXCHANGE: GEOGRAPHIC
VABIARIONS: HEAVY METALS: COMPLEXES: LICHENS;
LITTAR: HUNUS: GRASSES: SEDGES: HERBS: UPTAKE:
HOOTS: SPRUCZ MEEDLES: RAIM; PEATS:
CONCEMYRATION: CHELATION: DECOMPOSITIOM RATE:
MOLTBORNUM: DEFICIENCY: BARKS: TWIGS: LEAVES:
PLANTS: WATHE: TREES

Mosses and lichens accumulate heavy metals from vain or dry deposition by ion exchange. Atomic absorption spectrophotometry is a first and sensitive method for analyzing for heavy metals. Other plants accumulate heavy metals through the roots, transfer a part to the shoots, and then after wilting and litter formation accumulate more by ion exchange. Some plants are superficially rooted in the heavily polluted, acid humas layer and have a considerable uptake of heavy metals. In peat bogs the author has found cadmium up to 5.1 parts per million dry weight and lead up to 180. He speculates that such concentrations may lead to a reduced decomposition rate, which will lead to increased litter, minerals bound in unavailable form and therefore reduced production. This accumulation could be made available all at once by clear cutting or by forest fires or it could be lost to the ground water. There could also be other affects, e.g., an increase in copper and zinc may enhance production by providing micronutrients.

484
Mercury as a Hydrospheric Pollutant. 1.
Accumulation and Excretion in TAPES DECUSSATUS L.

Unla, M.Y.; Heyraud, M.; Keckes, S.

Part of Ruivo, M. (Rd.), Marine Polintion and Sea Life, Food and Agriculture Organization of the United Mations, Conference held in Rome Italy, December 9-18, 1970. Fishing News (Rooks) Ltd., 110 Ficet Street London, ECGA 2JL England, (p. 292-5) 623 v.: 1972

RADIOMUCLIDES; TISSUES; TISSUE DISTRIBUTION; MERCURY; MERCURY 203: MERCURY CHLORIDE; BIOACCUMULATION; EXCRETION; TRACERS; BIOLOGICAL MALP-LIFE; BIVALUES

TAXONONY: TAPES DECUSSATUS

Mercury-203 chloride was incorporated in bivalves from sea water solution, in food (PTAEODACTYLUN culture) and by injection into the foot muscle. Accumulation from sea water was quite tapid. By the first two methods the biological half life was 1-2 weeks, but it was much longer for the injected material (of the order of a year or more). The distribution of the mercury is given for each group for a time period of 52 days. Much of the mercury was in the visceral organs in all 3 cases.

985 Dptake of Mercury by Caged Rainbow Trout (SALMO GAIRDWERI) in the South Saskatchewan River

Othe, J.F.; Atton, P.B.; Royer, L.M.; Freshvater Inst., Fish. Res. Board Canada, Winnipeg, Manitoba

J. Fish. Res. Board Can. (JFRBAK), 30(5), 643-50; 1973

RERCURY; RETERTION; RAINBOW TROUT; FISH; BIVERS; UPTAKE; RETERTMENCURY

TAXONOMY: SALHO GAIRDNERI

When rainbow trout (S. GAIRDMERI) were held in cages in the South Saskatchewan River following curtailment of mercury discharges to the river, a rapid uptake of Hg by the fish occurred during the first warm summer period (1970) with much less uptake during the rest of the year. A second summer experiment (1971) produced no significantly different results suggesting that a long-term contamination existed within this river system. Analyses showed that the hulk of Hg present in the fish carcasses was present as methylmercury.

086 Distribution of Certain Trace Elements in Marine Sediments Surrounding Valcano Island (Italy)

Valette, J.W.; Cent. Rech. Sedimentol. Mar., Cent. Univ., Perpignan, France

Ores Sediments, Int. Sedimentol. Congr., 8th., 321-37; 1973

TRACT ELEMENTS; SEDIMENTS; PUNAROLB; SALTUATER; DISTRIBUTION; PATER

GEOGRAPHICAL DESCRIPTION: Italy, Vulcano Island

487 Accumulation of Certain Trace Elements in Marine Organisms from the Sea Around the Cape of Good Hope

Van As, D.: Pourie, H.O.: Vleggaar, H.

Part of Radioactive Contamination of the Harine Environment, Proceedings of Symposius held by the International Atomic Emergy Agency, Seattle, WA, July 10-14, 1972 (615-623) 786 p.; 1973

ACTIVATION ANALYSIS: ALGAE: ANTIHONY: AQUATIC ECOSYSTEMS: CRSTUM: CHRONIUM: COASTAL HATERS: COBALT: CPUSTACEA: PISH: IRON: HANGANESE: METABOLISM: HOLLUSCS: HUCLERR POWER PLANTS: QUANTITATUP CREMICAL "MALYSIS: RETENTION: SEAFOOD: SAITWATER; STRONTIUM; TISSUES: TRACE ELPHNTS; JPTAKE; ZINC

TAXONOMY: POPPHYRA CAPBUSIS; ECFLUNI MAXIMA; ULVA SPP.; SUHRTA VITATTE; HALIOTIS MIDRE; DONAX SERPA; MITTLIS MERIDIONALIS; JASUS LILANDII

GEOGRAPHICAL DESCRIPTION: South Africa, Cape of Cape Hope, Capetown

An investigation of the recipient capacity of the sea for radioactive effluent from a site on the west coast of South Africa, 25 km north of Cape Town, nacessitated the determination of concentration factors for those nuclides which would probably be present in the effluent of the proposed nuclear inatallations. Stable element analyses were done for these corrosion elements which are known to have high accumulation factors and which have induced radioactive isotopes of long half-lives, e.g., Cr, Fe. In, Co, Hn and Sb, as well as for the stable counterparts of the fission products strontium-90 and cesium-137. Various methods of sample preparation e.g., freeze drying, dry and wet ashing, and of sample analyses, e.g., atomic absorption and neutron activation, were used in parallel and the results compared. The marine organisms which are either regularly consumed or which may have future econosic importance were investigated. These species included algae (PORYPHYRA CAPENSIS, ECKLONIA MAXIMA, ULVA spp., SUBHIA VITATTE), MOLIUSCS (HALLOTIS HIDRE, DONAX SERRA, HYTILUS MERIDIONALIS) and Crustacpa (JASUS LALAMDII), as well as various line and pelagic fishes of commercical importance. Analyses were normally performed on the edible parts of the species only. With regard to coastal and off-shore waters, measurements of the soluble and particulate fractions of these elements were made and different techniques of sample storage and sample preparation, e.g., deep freezing and freeze-drying, were compared.

488
Radioisotope Techniques in Delineation of the Environment Behavior of Cadmium

Van Hook, R.I., Jr.; Blaylock, B.; Bondietti, E.; Francis, C.; Huctabee, J.W.; Reichle, D.; Sweeton, F.; Witherspoon, J.; Oak Ridge Wational Lab., TN

Part of Joint IAEA/RHO/FAG Symposium on Muclear Techniques in Comparative Studies of Food and Environmental Contamination, Relsinki, Finland, August 27-31, 1973: IAEA/SM-175/22; CONT-730817-2.; 1973

CADRIUM; CADMIUM 109; DISTRIBUTION; ECOSYSTEMS; FOOD CHAIMS; PLANTS; SEDIMENTS; SOILS; TOXICITY; TPACES; TRANSPORT; BIOCONCENTRATION; MICROCOSMS; PIFLD STUDIES; ASSIMILATION; TURNOFER: WATER

Radioisotope technniques are being developed and

utilized at Oak Ridge National Laboratory (ORRL) for evaluating the environmental behavior of toxic elaments such as cadaium in aquatic and terrestrial ecosystems. Tracer techniques using Cd-109 in microcosm, field plot, and stream systems are providing information on hogeochesical cycling and distribution of cadmium in the environment. Parameters being measured include adsorption capacity for cadmium in mineral soils and sediments; uptake rates of cadmium in various plants species from both soils and nutrient solution as affected by pH, competing cations, and chemical form of cadmium; and distribution of cadmium in various components of both aquatic and terrestrial ecosystems following application of Cd-109 to soil, vegetation, or directly to streams. Food chain parameters being estimated with Cd-109 include uptake, assimilation, and turnover by both aquatic and terrestrial organisms. Information obtained in these radiotracer studies in providing insight into the behavior of cadmium in aquatic and terrestrial ecosystems, especially transport rates of cadmium and potential biomagnification or distribution in Lood chains. The factors which influence the incorporation of cadmium into vegetative material as well as those affecting residence time in ecosystems have been identified. Use of Cd-109 also has permitted evaluation of a cadmium specific electrode as a tool for rapid assay of free cadmium ions in soil solutions.

489
Uptake and Loss of Tinc-65 and Cobalt-60 by the Russel TyTilus EDULIS L.

Van Weers, A.W.

Part of Radioactive Contamination of the Marine Environment, Proceedings of Symposium held by the International Atomic Energy Agency, Seattle, WA, July 10-14, 1972 (385-400); 786 p.; 1973

AQUATIC ECOSISTEMS; AUTORADIOGPAPHT; BIOLOGICAL RALP-LIFE; COBALT 60; COBALT; GASTROIMTESTIMAL TRACT; KIDNEYS; HOLLUSCS; RADIORCOLOGY; RADIOBUCLIDES; KINETICS; RADIORUCLIDE MIGRATION; RETENTION; SALTWATER; TISSUES; UPTAKE; ZINC 65;

TAXONOMY: MYTILIS EDULIS

The uptake of zinc-65 and cobalt-60, directly from seawater, by the mussel MYTILUS EDULIS L. and the subsequent loss of the radionuclides in non-radioactive seawater were studied with animals kept unfed during the experiments. Concentration factors measured for the radionuclides for periods up to 60 d are much lower than the values for the stable elements, which range from 3000 to 11000 for zinc and from 1200 to 4500 for cobalt in the soft parts. The pattern of loss is described by loss from two relatively short-lived components and one long-lived component the relative importance of the latter increasing with the length of the proceding uptake period. The biological half-life of the long-lived component ranges from 18 - 60 d for zinc-65 and from 57 - 72 d for cobalt-60. As shown by autoradiography, zinc-65 is accumulated to a high extent in the kidney and cobalt-60 both in the kidney and the digestive gland. It is concluded that, as far as uptake of zinc-65 and cobalt-60 directly from seawater is concerned, both the relatively slow accumulation and the subsequent loss will reduce the risk of contamination of mussels following incidental releases of these radionuclides in coastal waters.

440
Dynamics of /Sup 65/Zn in Benthic Fishes and
Their Prey Off Oregon

Vanderploeg, N.: Oregon State Univ., Corvallis.

Oregon State Univ., Corvallis, RLO--2227-T-12-37; 1973, June

ANNELIDS; CRUSTACEA; DIFFUSION; PISH; GEOGRAPHY; MATHEMATICAL SOLUTIONS; HOLLUSCS; RADIOECOLOGY; SALTWATER; RADIONUCLIDES; KIMETICS; SMASOWAL VARIANTONS

The intra- and interspecific differences of zinc-55 specific activity in benthic fishes on the continental shelf off Oregon during 1970-1971 are examined. The dvanmics of zinc-65 specific activity in the fishes are shown to be governed by a basic equation which applies generally to any radionuclide accumulated through the food chain. Evidence is presented that suggests that zinc-65 was in a form more available to the food chain than stable zinc in meawater. The dynamics of zinc-65 sa in the fishes are useful for understanding some aspects of the fishes' ecology. A theoretical framework is met up for determination of energy flow in free-living populations of fishes and other animals from their specific activity dynamics. Geographical patterns in zinc-65 specific activity in the benthic fishes and their prey are shown useful for deducing the migratory habits of the fishes. Migration or its absence is suggested for some fishes for which no literature is available.

491

Northeast Pacific Ocean - Premininary Hodel and Analysis

Vanderploeg, H.; Oregon State Univ., Corvall.s

Oregon State Univ., Corvallis; CONY-710501--P2; p. 840-848; 1971

BIOLOGICAL MODELS: PISH: POPULATIONS: RADIOACTIVE WASTES: RADIOACTIVITY: RETENTION: UPTAKE: ZINC: ZINC 65: SALTWATER: SOLE

492 Arsonic in the Lipid Extracts of Marine Invertebrates

Vaskovsky, V.E.; Korotchenko, O.D.; Kosheleva, L.P.; Levin, V.S.

Comp. Blochem. Physiol. B. Comp. Blochem., 41(4), 777-784; 1972

LIPIDS; ARSENIC; INVERTEBRATES; SALTWATER; THIM-LAYER CHROMATOGRAPHY; SAPONIFICATION

TAXONONY: ANNELIDA: MOLLUSCA; ASTEROIDEA

The quantitative contents of As in the lipid extracts of 27 species of marine invertebrates, related to various systematic groups, were determined. Arsenic was found in the lipids of the representatives of all phyla. ANNELDA. HOLLUSCA and ASTEROIDEA had the highest arsenic content whereas spongia had the lovest. The libids of animals of the same species with different habitats had a different As content. Thin-layer chromatrgraphy was used to compare As-containing substances obtained from various organisms. Animals from different groups had different As-containing compounds. The main portions of As-containing substances saponify.

493
Toxicological and Food-Technological Problems of Rethylmercury in Fish

Vercruysse, A.: Massart, D.L.; Lab. Parmacognosie, Pytochem. Toxicol., Vrije Univ. Brussel, Sint-Genesius-Pode, Belgium

Farm. Tijdschr. Belg. (FNTBB2), 50(4), 272-290; 1973

REVIEW; MERCURY; PISH; METHYLMERCURY; TOXICOLOGY; FOOD; CONTABINATION

nga The Crayfish, ORCOMECTES VIRILIS, as an Indicator of Hercury Contamination

Verneer, K.

Can. Field Wat., 86(2), 123-125; 1972

CFAYPISH: MERCURY: BIOLOGICAL INDICATORS: CONTAMINATION: LARES; BIOCONCENTRATION

TAXONOMY: OCCHECTES VIRILIS

The crayfish, O. VIRILIS, is a good indicator of mg contamination in different water bodies. Crayfish muscle contained 3 times as much mg as the remaining hody. Mercury levels did not differ significantly in samples collected from various parts of the shore of a highly contaminated lake.

495 Hercury in Aquatic Bir&s at Clay Lake, Western Ontario

Vermeer, K.; Arastrong, F.A.; Hatch, D.M.; Can. Wild. Serv., Edmonton, Alberta

J. Wildl. Manage. (JWMAA9), 37(1), 56-61; 1973

MERCURY; MUSCLES; BIRDS; CRAYPISP; DUCKS: GULLS; GOLDENEYES; MERGANSERS; BIOCOMCENTRATION; TEALS; AQUATIC BIRDS

TAXOBORY: LARUS ARGENTATUS; ANAS PLATTRITUCHOS; ANAS DISCORS; BUCEPHALA CLANGULA; RERGUS BERGANSER; LOPHODYTES CUCULLATUS; ORCONECTES VIRILIS

GEOGRAPHICAL DESCRIPTION: Canada, Ontario, Clay Lake

Total mercury levels ranging from 2 to 16 ppm in engs did not appear to affect the "atching and fledging of herring gulls (LARUS ARCENTATUS). Mercury levels in breast muscles of 5 American pidgeons (MARECA AMERICANA), 16 mallards (ANAS PLATIENYNCHOS), 17 blue-winged teals (ANAS PLATIENYNCHOS), 17 blue-winged teals (ANAS PLATIENYNCHOS), 17 common goldeneyes (BUCEPANLA CLANGULA), 17 common mergansers (MERGUS BERGAMSER), and 7 hooded mergansers (LOPHODYTES CUCULLATUS) averaged 0.5, 6.1, 6.5, 7.8, 6.8, and 12.3 ppm respectively at Clay Lake 8-6 weeks prior to the hunting season in 1971. Methyl mercury in five ducks ranged from 69 to 99 percent of total mercury. Crayfish (ORCOMECTES VYRILIS) muscle contained the highest mercury levels of food items found in esophagi and stomaths of ducks; the high values in breast muscles of hooded mergansers are likely related to their feeding on crayfish.

496
Temperature-Salinity Stress and Mercury Uptake in the Fiddler Crab

Vernberg, W.B.; O'Hara, J.; Belle W. Baruch Coastal Res. Inst., Univ. of South Carolina, Columbia, S.C.

J. Pish. Res. Board Can. (JFRBAK), 29(10), 1491-4; 1972

MERCURY: UPTAKE: CRAB: STRESS; TEMPERATURE; SALINITY: MERCURY 203: TOXICITY

Uptake of Hg-203 was determined in gill and hepatopancroas tissue from fiddler crabs (UCA PUGILATOR) maintained under six temperature-salinity regimes. Although the total mercury was relatively constant under all experimental conditions, the percent of mercury in each of the tissues was markedly different. At higher temperatures the crabs seem able to transport mercury from gill tissue to the hepatopancrease more effectively than at lower temperatures. This could be a factor in the toxicity of mercury to fiddler crabs at low temperature.

497
The Synergistic Effects of Temperature, Salinity, and Hercury on Survival and Metabolism of the Adult Piddler Crab, UCA PUGILATOR

Vernberg, W.B.; Vernberg, J.

Pishery Bulletin, 70(2), 415; 1972, April

PIDDLER CRAB: SYNERGISM: TEMPERATURE EFFECTS:

SALINITY EFFECTS: HERCCRY: SURVIVAL: HETABOLISM: GILLS: REPATOPANCREAS: GREEN GLAND: CRAB

TAXONONY: UCA PUBLIATOR

In a study undertaken to determine the effect of a sublethal concentration of mercury on the metabolism of adult fiddler crabs, gill tissues were found to be the major site of fig concentration. Lesser amounts accumulated in the hepatopancreas and green gland. Hetabolic rates were affected by prolonged fig exposure both under optimum environmental conditions and under temperature and salinity stress.

ugh Determination of the Mode of Deposition of Elements in Matural Solution

Volkov, G.A.; Shakhbazova, L.W.

Izv. Yyssh. Ucheh. Zaved., Geol. Razved. 16(5), 111-17; 1973

COPPER; WATER; DEPOSITION; MATURAL WATERS; ARSENIC COMPOUNDS; ARSENIC; MERCUPY; CARBON DIOXIDE; IGAS; CHLORINE; SULFATES; SODIUM; PUTASSIUM; CALCIUM; HAGHESIUM; PLUORIME; BICARBONATE; THERMODYWANICS

Thermodynamic data are presented to study the modes of migration and deposition of Cu, As, and Hg in the CO2-rich waters of Dzhili-Su in the northern Caucasus. The concentration of Cl-, SO 4(-2), CHO3(-), Na plus + K plus, Ca 2 plus, Mq 2 plus, F(-), Cz, As, and Hg in the waters was determined. Cu is deposited as easily dissociated carbonate molecules and only a sixth of total Cu is deposited as Cu (2 plus) cations. Hg is deposited as HgCl2 plus) and as HgCl4(2-) The As is present as AsO4(3-), HAsO4(2-), H2AsC4-, and H3AsO8.

499 A Continuous Culture of Desulfovibrio on a Medium Containing Mercury and Copper Ions

Vosjan, J.H.; Van Der Hoek, G.J.

Weth. J. Sea Res., 5(4), 440-444; 1972

CONTINUOUS CULTURE; MERCURY; COPPER; MICROORGANISMS; TOXICITY; GROWTH

TATOMONY: DESULPOVIBRIO

The effects of the toxic metals fig and Cu on the growth of DESULPOVIBRIO in a continuous culture was studied. It appeared that in such a culture the metals are continually rendered harmless by the precipitation of metal suphides, while in batch cultures in the same medium no growth takes place. The overflow of the continuous culture no longer contains any toxic metal, as is proved by microbial growth occurring after addition of some substratum. Microbiological processes could be used to render toxic metals innocuous, to remove them from polluted water, and to fix them as sulphides.

The Use of Fish Hovement Patterns to Monitor Zinc in Water

Waller, W.T.: Cairns, J., Jr.

Water Research, New York, 6(3), 257-269: 1972,

ZINC; PISH; MOVEMENT; STRESS; DETECTION; TURBIDITY: WATER

The feasibility of using fish movement patterns measured by light beam interruption for continuous monitoring of response to line was investigated. The apparatus does not interfere with fish movement and detects premortal aberrations in movement caused by zinc. Detection of stream occurs in rafficient time to permit survival of test fith if stress conditions are reversed at time of detection. The lowest concentration of zinc detected during a 96-h exposure was between 3.64 and 2.94 mg per liter zinc (? plus). The system's range of effective measurement as related to turbidity is discussed.

501 Mercury in Fish, Sediments, and Water in Lake Oahe, South Dabota

Walter, C.M.: Environmental Protect

J. Water Pollution Control Pederation, 45(10), 2203; 1973, October

PISH; SEDIMENTS; WATER; MERCURY; PIKE; WALLEYE; LAKES

GEOGRAPHICAL DESCRIPTION: U.S., South Dakota, Lake Othe

Analyses of total mercury content were made for fish, sediment, and water samples collected in several locations in Lake Oahe, S.D., and its tailwaters. Mercury concentrations equal to or exceeding 0.5 mg/kg occurred in 30 of 225 fish samples tested. Higher concentrations were found mostly in predatory game fishes, primarily northern pike and walleye, from the Cheyenne River arm.

502 Mercury Concentration in Surface Sediments as Related to Water Masses in Western Lake Erie

Walters, L.J.: Herdendorf, C.E.; Dept. Geol., Powling Green State Univ., Blowling Green, Ohio

Compass Signa Gamma Epsilon, 50(4), 5-10; 1973

MERCURY: SEDIMENTS: LAKES: PRESHWATER

Levels of Holybdenum in Hilk and its Relation o Levels in Cattle Feeds and Irrigation Water

Ward, G.M

Part of Transport and the Biological Effects of Molybdenum in the Environment, Progress Report, January 1, 1973 (p. 176-186) 375 p.: 1973, January 1

HOLT BDENUM; MILK; FEEDS; IRRIGATION WATER; DRINKING WATER; SAMPLING; HAY; SILAGE; SOILS; DAIDIES; POOP CHAINS

Description of the food-chain relationships of molybdenum with suphasis on milk have been more difficult than anticipated. The original postulate was that agricultural areas utilizing irrigation water with higher levels of molybdenum would produce feed with higher levels and in turn wilk with higher levels. The concept is probably correct but conclusive evidence for this relationship have not been obtained readily. It was thought that the milk tank trucks which collect milk from specific areas would readily spot the farming areas with the highest concentration. However, a closer look at the milk pick-up operation and dairy farm management systems soon destroys this illusion. The reasons are that (1) milk is picked up from most farms on alternate days, as a result each truck in essence has two routes; (2) farms are added and dropped from particular routes frequently for a variety of reasons; (3) the variation is herd size is great (30-400 cows) meaning that one or two farms may have a grossly dispreportionate effect on the mean level found for the truck. Added to those variables are those associated with feeding systems. Some dairies, usually the largest ones, produce very little or none of the feed for their herds. For these reasons tank truck samples may be used to locate farms that may have high levels of aolybdenum in the milk but for environmental studies of molybdenum movement the emphasis will have to be on individual farms. The tank truck surveys, of course, provide a rapid estimate of the molybdenum intake through milk by a metropolitan population.

500
Molybdenum Concentrations in Tissues of Rainbow
Trout In SALMO GAIRDNERI and Rokamea Salmore
ONCORHYNCHUS MERKA from Waters Differing Widley
In Molybdenum Content

Ward. J.V.

J. Pish. Res. Board Can., 30(6), 841-842.; 1973, June

TRACE ELEMPNTS; DETECTION LIMIT; X-RAY FLUORESCENCE ANALYSIS; MUSCLES; BOMES; ALGAE; NITROGEN FIXATION; TOXICITY; LIVER; KIDNEYS; SKIN; PISH; ANALYSIS; HOLFBDENOM; ACCUMULATION PACTORS; WATER; BYOACCUMULATION

TAXONOMY: SALMO GAIRDMERT: OMCORRENCHUS MERKA

SALMO GAIRDHERI and ONCORNINCHUS MERKA were procured from three waters. Dillon Reservoir had approximately 300 ppb molybdenum in its waters; Eleven mije Reservoir had approximately 6 ppb; Cline's yish Hatchery waters were below the limits of detection. Water mamples were measured spectrophotometrically. Various fish organs were removed, saked, and analyzed for molybdenum using x-ray fluorescence to determine accumulation factors (concentration in wet organ/concentration in water). Fish organs from the high (300 ppb) molybdenum water had mean accumulation factors of less than 1.0 with the exception of S. GAIRDHERI stomachs (1.1) and O. MERKA bone (1.1). Fish organs from the low (6 ppb) molybdenum water had mean accumulation factors ranging from 1.7 in muscle to 24.4 in bone. Fish organs from the water with trace amounts of molybdenum had absolute concentrations ranging from 5-118 ppb. Muscle was consistently the lowest in molybdenum; bone was generally the highest. The organs of O. MERKA generally exhibited lower molybdenum concentrations than the organs of S. GAIRDHERI. All fish organs analyzed exhibited an inverse relationship between the ambient concentration and the accumulation factor; thus it appears as if the accumulation factors for molybdenum in salmonids are hiologically determinant. There was no significant correlation of molybdenum concentration with age; this agrees with research on terrestrial animals.

cycling of Radionuclides in Columbia River Biota

Watson, D.G.; Cushing, C.F.; Coutant, C.C.; Templeton, W.L.

Can. J. 2001. 51(2) 143-150: 1973

CYCLING; RADICHUCLIDES: CHRONIUM 41; CONTAMINATION; FISH; FLOW GATE; ISOTOPE RATIO; TEMPERATURE: PHOSPHORUS 32; PLANKTON; REACTORS; COOLING SYSTEMS; ZINC 55; SEASONAL VARIATIONS; CHRONIUM; PHOSPHORUS; RIVERS; WATER

GEOGRAPHICAL DESCRIPTION: U.S. (WW), Washington, Columbia River

A study of the cycling of six radionuclides in Columbia River biota was initiated in Pebruary 1966 to define the interspecies and seasonal variations in concentrations. These data were related to major ecological factors such as light, temperature, flow, and stable element concentrations. Concentrations of radionuclides in Columbia River vater are generally inversely proportional to flow levels, with highest values in winter and lowest in summer. This is related to dilution by seasonal runoff. 32P, 6527, and

concentrations in the biota. Levels followed a pattern of high levels in winter and low values in summer. This relationship was particularly apparent in those organisms with high surface to volume ratios whose dominant mode of uptake is adsorption. The influence of the seasonal run-off overwhelmed the heneficial effects of seasonal changes in light and temperature in spring. The magnitude of seasonal changes decreased in the higher trophic levels. Concentration factors (CF) were highest of the biologically important radionuclides 32P and 65Zn and were highest in the primary producers. CFs decreased in higher tropical levels.

506
Distribution and Tissue Retention of Mercury-203
in the Goldfish (CARASSIUS AURATUS)

weisbart, M.; Dep. Biol., Wayne State Univ., Detroit, Mich.

Can. J. Zool., 51(2), 143-150; 1973

TISSUES; MERCURY; METABOLISM; GOLDPISH; MERCURY 203; DISTRIBUTION; RETENTION; BIOLOGICAL HALP-LIPE

TAXONONY: CARASSIUS AURATUS

Goldfish injected intraperitoneally with Hg-203(NO(3) (2) lost mercury at an apparent constant rate resulting in a hiological half-life of 568 h. Correlated with this loss was a linear increase in the amount of mercury in the water. The mercury-203 content in the tissues displayed four different responses. (1) Gall bladder, gonad, and spleen tissues showed no significant regressions. (2) Eye, kidney, and intestinal tissue manifested significant losses of mercury, but the rate of loss was not significantly different from that of the body as a whole. (3) Gill, heart, skin, and swin bladder tissues lost mercury at rates faster than the body as a whole. (4) Brain, liver, muscle, and head kidney tissues showed no significant losses of mercury.

Geothermal Mercury Pollution in New Zealand

Weissberg, B.G.; Zobel, M.G.R.; Chemistry Division, D.S.I.R., Lower Rutt

Bull. Environ. Contam. Tox., 9(3), 148-155; 1973

GEOTHERNAL DISCHARGES: TROUT: SEDIMENTS: ADSORPTION: COPE SAMPLES: ATOMIC ABSORPTION SPECTROPHOTOMETRY: MERCURY: PRESHMATER: WATER

GFOGRAPHICAL DESCRIPTION: New Zealand, North Island, Waikato River

Rainbow and brown trout and sediments from Waikato River lakes and some of the Rotorua lakes in New Zealand's Morth Island were sampled and analyzed by flameless atomic absorption technique. These waters drain from thermal areas not associated with mercury ore deposits. Sediment core samples, obtained from water depths of up to 33m were also sampled and analyzed. The results indicate much higher concentrations of mercury in trout living in waters receiving considerable geothermal discharges than in trout living in similar waters receiving little or no geothermal discharges. The concentrations of mercury in sediments showed no apparent variation with increasing depth (i.e., age) of sediments.

508
Behavior of Cesium-134, Strontium-85, and Zinc-65
Radionuclides Released to Water Basins. Study on an Experimental Laboratory Model.

Weissbuch, H.; Clain, L.; Botegatu, E.; Freund, S.; Avaravarei, Y.; Public Health Hed. Res. Inst., IASI, Rome

Part of Health Phys. Probl. Intern. Contam., Proc. TRPA (Int. Radiat. Rot. Ass.) Eur. Congr. Radiat. Prot., 2nd (27FKAY), \$21-\$30, Bujdoso, Z. (Ed.), Akad. Kiado, Budapest, Hungary; 1973

RADIONUCLIDES; ACCUMULATION; WATER: SEDIMENTS; CESTUM 134; MODELS; RELEASE; STRONTIUM 85; ZINC 65; LABORATORY MODEL

The accumulation of Cs 13m, Sr 85, and Zn 65 in hed sediments of the Danube and Siret basins and in the Bicaz Peservoir was studied using exptl. lab. models. Most of the Zn 65 and Cs 13m and 80% of Sr 85 are retained by the Danube sediment. Acidification decreases the accumulation of all of the radionuclides in the sediment. Alky. Promotes the accumulation of Sr 85, with no effect on Zn 65.

509
Methylmercury as Percentage of Total Mercury in
Plesh and Viscera of Salmon and Sea Trout of
Viscous Ages

Westoo, G.: Food Lab., Natl. Sweden Food Adm., Stockholm, Sweden

Science (SCIEAS), 181(4099), 567-8; 1973

METHYLMEPCURY; MERCUPY; MISH; SEA TROUT; SALMON; SALTWATER: AGR

TAXONOHY: SALHO SALAR; SALHO OCLA

Total mercury in the flesh of salmon (SALMO SALAR) (1- to 7-year old) and sea trout (SALMO OCLA) (1- and 2-year-old) increased with age and averaged 93% methylmercury irrespective of age. In the viscera of 1- and 2-year old salmon and sea trout methylmercury constituted only 26-67% of the total Hg, also irrespective of age. Thus, the proportion of methylmercury to total Hg did not increase in salmon or sea trout (muscle plus viscera) with age.

510 Occurrence and Transport of Arsenic in the Upper Sugar Creek Watershed, Charlotte, North Carolina

Wilder, H.B.; U.S. Geol. Surv., Raleigh, W.C.

U.S., Geol. Surv., Prof. Pap. (XIPPAN), (No. 800-D), 205-10; 1972

ARSENIC; TRANSPORT; STREAM PLOW; WATERSHEDS; SEWAGE TREATFINT

GEOGRAPHICAL DESCRIPTION: U.S. (SE), North Carolina, Charlotte, Fort Mill, Upper Sugar Creek Watershed

During the months of June and July 1971, the U.S. Geological Survey made a special study of the occurrence and transport of arsenic in the Sugar Creek, S.C., drainage area. It was found, during the week of June 29-July 5, that despite the fact that no known disposal of arsenic wastes had taken place in over 3 months, total arsenic concentrations ranging from 115 to 260 mg/l were still entering the tributary Irwin Creak through

a sewage treatment plant, down from 1,100 mg/l in October 1970. The most contaminated phase of the agueous system was suspended solid material in the treated sewage, which contained arsenic in amounts of 20,400 to 500,000 mg/kg by weight. Arsenic was found to be concentrating in the streambed materials, which, on Juny 28, contained concentrations of from 7,000 to 35,000 mg/kg. On July 29-31, 1971, samples were taken at Sugar Creek near Fort Hill, S.C., during a minor flood. These samples showed that during the flood most of the arsenic was being transported in the suspended-sediment phase and that arsenic discharge closely paralleled total suspended-sediment discharge. On February 25, 1972, dried sludge from storage beds at the treatment plant contained as much as 1,700,000 mg/kg/s 870.000 mg/kg/sb and 120,000 mg/kg Cr.

511 Mercury in the Marine Environment. Concentration in Sea Water and in a Pelagic Food Chain

Williams, P.M.: Weiss, H.V.: Inst. Nar. Resour., Univ. California, La Jolla, Calif.

J. Fish. Res. Board Can. (JFRBAK), 30(2) 293-5;

MERCURY: ZOOPLAWKTON; SALTWATER; FOOD CHAINS; SEDIMENTS

GEOGRAPHICAL DESCRIPTION: U.S. (W), California, San Diego

Mercury in seawater, in a pelagic food chain, and in bottom sediment was determined at a single station 430 km southeast of San Diego, California. The concentration of mercury in rooplantton slightly increased with depth of collection. The mercury content in almost all of the higher trophic levels of organisms collected at greater depths was indistinguishable from the concentration of mercury in rooplankton at these depths. Mercury concentration in the seawater column was essentially constant below 100 m and significantly higher at the surface. This vertical profile of mercury content is not ascrobable to biological activity.

512 Transport of Trace Hetals to the Atlantic Ocean by Three Southeastern Rivers

Windom, H.L.; Beck, K.C.; Smith, R.

Southeastern Geology, 12, 169; 1971

RIVERS; SALTWATER: FRESHWATER: TRANSPORT: TRACE INTALS: IRON: MANGAMESE: RUNOFF: SEDIMENTS; ACCUMULATION: ESTUARIES

Composition of trace metals in solution in estuaries of three southeastern rivers are similar. Dissolved iron and possibly manganese decrease in concentration going from fresh to saline waters owing to precipitation. The composition of trace metals in suspended sediment from the estuaries of the three rivers differs, suggesting a relationship to the composition of the respective drainage basin. The total amount of trace metals transported to the Atlantic in both solution and suspension by these rivers appears to be insufficient to supply more than about 100 Km2 of average Atlantic deep sea sediment. River runoff appears to be inadequate to explain the trace metal accumulation of North Atlantic deep-sea sediments.

508
Rolybdenum Concentrations in Timsues of Rainbow
Trout In SALMO GAIRDMERI and Robames Salmore
OHCORMYNCHUS WERKA from Waters Differing Widley
In Molybdenum Content

Ward. J. V.

J. Fish. Res. Board Can., 30(6), 841-842.; 1973, June

TPACE ELEMPHTS; DETECTION LIMIT: X-RAY PLUDRESCENCE ANALYSIS; HUSCLES; BONES; ALGAE; NITROGEN PIXATION: TOXICITY; LIVER: KIDNES; SKIN; PISH: ANALYSIS: HOLYBDENUH; ACCUMULATION PACTORS: WATEP; BIOACCUMULATION

TAXONOMY: SALMO GAIRDMERT; ONCORNYNCHUS HERKA

SALMO GAIRDMERI and OMCORNINCHUS WERKA were procured from three waters. Dillon Reservoir had approximately 300 ppb molybdenum in its waters; Eleven Mile Reservoir had approximately 6 ppb; Cline's Fish Hatchery waters were below the limits of Metertion. Water samples were measured spectrophotometrically. Various fish organs were removed, ashed, and analyzed for molybdenum using x-ray fluorescence to determine accumulation factors (concentration in wet organ/concentration in water). Fish organs from the high (300 ppb) molybdenum water had mean accumulation factors of less than 1.0 with the exception of S. GAIRDMERI stomachs (1.1) and O. MERKA bone (1.1). Fish organs from the low (6 ppb) molybdenum water had mean accumulat_on factors ranging from 1.7 in nuscle to 20.4 in bone. Fish organs from the water with trace amounts of molybdenum had absolute concentrations ranging from 5-118 ppb. Muscle was consistently the lowest in molybdenum; bone was generally the highest. The organs of O. MERKA generally exhibited lower molybdenum concentrations than the organs of S. GAIRDMERI. All fish organs analyzed exhibited an inverse relationship between the ambient concentration and the accumulation factors for molybdenum in salmonids are biologically determinant. There was no significant correlation of molybdenum concentration with age; this agrees with research on terrestrial animals.

505

Cycling of Radionuclides in Columbia River Biota

Watson, P.G.; Cushing, C.P.; Coutant, C.C.; Templeton, W.L.

Can. J. Zool. 51(2) 143-150; 1973

CYCLING; RADJONUCLIDES; CHROHIUM 51; CONTAMINATION; FISH; FLOW RATE; ISOTOPE RATIO; TEMPERATURE; PHOSPHORUS 32; PLANKTON; REACTORS; COOLING SYSTEMS; ZINC 65; SEASONAL VARIATIONS; CHROMIUM; PHOSPHORUS; RIVERS; WATER

GEOGRAPHICAL DESCRIPTION: U.S. (NW), Washington, Columbia River

A study of the cycling of six radionuclides in Columbia River biota was initiated in Pebruary 1966 to define the interspecies and seasonal variations in concentrations. These data were related to major ecological factors such as light, temperature, flow, and stable elament concentrations. Concentrations of radionuclides in Columbia River water are generally inversely proportional to flow levels, with highest values in winter and lowest in summer. This is related to dilution by seasonal runoff. 32P, 65Zn, and

Sicr were the elements present in highest concentrations in the biota. Levels followed a pattern of high levels in winter and low values in summer. This relationship was particularly apparent in those organisms with high surface to volume ratios whose dominant mode of uptake is adsorption. The influence of the search run-off overwhelmed the heneficial effects of seasonal changes in light and temperature in spring. The magnitude of seasonal changes decreased in the higher trophic levels. Concentration factors (CF) were highest of the biologically important radionuclides 32P and 65Zn and were highest in the primary producers. CFs decreased in higher tropical levels.

506 Distribution and Tissue Retention of Mercury-203 in the Goldfish (CARASSIUS AURATUS)

Weisbart, M.; Dep. Biol., Wayne State Univ., Detroit, Mich.

Can. J. Zool., 51(2), 143-150; 1973

TISSUES: MERCURY: METABOLISM; GOLDFISH; MERCURY 203; DISTRIBUTION; RETENTION; BIOLOGICAL HALP-LIFE

TAXONOMY: CARASSIUS AURATUS

Goldfish injected intraperitoneally with sg-203(80(3) (2) lost mercury at an apparent constant rate resulting in a hiological half-life of 568 h. Correlated with this loss was a linear increase in the amount of mercury in the water. The mercury-203 content in the tissues displayed four different responses. (1) Gall bladder, gonad, and spleen tissues showed no significant regressions. (2) Eye, kidney, and intestinal tissue manifested significant losses of mercury, but the rate of loss was not significantly different from that of the body as a whole. (3) Gill, heart, skin, and swim bladder tissues lost mercury at rates faster than the body as a whole. (4) Brain, liver, muscle, and head kidney tissues showed no significant losses of mercury.

507 Geothermal Mercury Pollution in New Zealand

Weissberg, B.G.; Tobel, M.G.R.; Chemistry Division, D.S.T.R., Lower Rutt

Bull. Phviron. Contam. Tox., 9(3), 148-155: 1973

GEOTHERNAL DISCHARGES; TROUT; SEDIMENTS; ADSORPTION; COPE SAMPLES; ATOMIC ABSORPTION SPECTROPHOTOMETRY; MERCURY; FRESHWATEP; WATER

GPOGRAPHICAL DESCRIPTION: New Zealand, North Island, Waikato River

Rainbow and brown trout and sediments from Waikato River lakes and some of the Potorua lakes in New Zealand's North Island were sampled and analyzed by flameless atomic absorption technique. These waters Grain from thermal areas not associated with mercury ore deposits. Sediment core samples, obtained from water depths of up to 33m were also sampled and analyzed. The results indicate much higher concentrations of mercury in trout living in waters receiving considerable geothermal discharges than in trout living in similar waters receiving little or no geothermal discharges. The concentrations of mercury in sediments showed no apparent variation with increasing depth (i.e., age) of sediments.

508
Pehavior of Casium-134, Strontium-85, and Zinc-65
Radionuclides Relensed to Water Basins. Study on an Experimental Laboratory Model.

Weissbuch, H.; Clain, L.; Sotegatu, E.; Freund, S.; Avaravarei, I.; Public Health Med. Res. Inst., IASI, Rome

Part of Hyalth Phys. Probl. Intern. Contam., Proc. TRPA (Int. Gadiat, Rot. Ass.) Eur. Congr. Radiat. Prot., 2nd (27FRAY), 421-430, Bujdoso, E. (Ed.), Akad. Kiado, Budapest, Rungary: 1973

RADIOHUCLIDES; ACCUMULATION; WATER; SEDIMENTS; CESTUM 13%; MODELS; PELEASE; STRONTIUM 85; ZINC 65; LABORATORY MODEL

The accumulation of Cs 13%, Sr 8%, and Zn 6% in hed sediments of the Danube and Siret basins and in the Bicaz Peservoir was studied using exptl. lab, models. Host of the Zn 65 and Cs 13% and 80% of Sr 6% are retained by the Danube sediment. Acidification decreases the accumulation of all of the radionuclides in the sediment. Alky. Promotes the accumulation of Sr 6%, with no effect on Zn 6%.

509 Methylmercury as Porcentage of Total Nercury in Plesh and Viscera of Salmon and Sea Trout of Various Ages

Westoo, G.; Food Lab., Watl. Sweden Food Adm., Stockholm, Sweden

Science (SCIEAS), 181(4099), 567-A: 1973

METHILHEPCUPY: MERCUPY: PISH; SEA TROUT; SALMON; SALTWATER; AGP.

TAXONDRY: SALHO SALAR: SALHO OCLA

Total sercury in the flesh of salmos (SALMO SALAR) (1- to 7-year old) and sea trout (SALMO OCLA) (1- and 2-year-old) increased with age and averaged 93% sethylmercury irrespective of age. In the viscera of 1- and 2-year old salmon and sea trout methylmercury constituted only 26-67% of the total Hg, also irrespective of age. Thus, the proportion of methylmercury to total Hg did not increase in salmon or sea trout (muscle plus viscera) with age.

510 Occurrence and Transport of Arsenic in the Upper Sugar Creek Watershed, Charlotte, Worth Carolina

Wilder, N.B.; U.S. Geol. Surv., Raleigh, N.C.

U.S., Geol. Serv., Prof. Pap. (XIPPAM), (No. 800-9), 205-10; 1972

ARSEMIC: TRANSPORT: STREAM FLOW; WATERSHEDS; SEWAGE TREATFRET

GEOGRAPHICAL DESCRIPTION: U.S. (SE), North Carolina, Charlotta, Purt Hill, Upper Sugar Creek Watershed

During the months of June and July 1971, the U.S. Geological Survey made a special study of the occurrence and transport of arsenic in the Sugar Creek, S.C., drainsge area. It was found, during the week of June 29-July 5, that despite the fact that no known disposal of arsenic wastes had taken place in over 3 months, total arsenic concentrations ranging from 115 to 260 mg/l were still entering the tributary Irwin Creek through

a sewage treatment plant, down from 1,100 mg/l in October 1970. The most contaminated phase of the agueous system was suspended solid material in the treated sewage, which contained arsenic in amounts of 24,400 to 500,000 mg/kg by weight. Atsenic was found to be concentrating in the streambed materials, which, on June 28, contained concentrations of from 7,000 to 15,000 mg/kg. On July 29-31, 1971, samples were taken at Sugar Creek many wort Hill, S.C., during a minor flood. These samples showed that during the flood most of the arsenic was being transported in the suspended-sediment phase and that armenic discharge closely paralleled total suspended-sediment discharge. On February 25, 1972, dried mindge from storage beds at the treatment plant contained as such as 1,700,000 mg/kg/s 870.000 mg/kg/sb and 120,000 mg/kg Cr.

511 Mercury in the Marine Environment. Concentration in Sea Water and in a Pelagic Pood Chain

Williams, P.M.; Weiss, H.V.; Inst. War. Resour., Univ. California, La Jolla, Calif.

J. Pish. Res. Board Can. (JFRBAR), 30(2) 293-5; 1973

HERCURY: ZOOPLANKTON: SALTWATER: FOOD CHAIRS: SEDIMENTS

GEOGRAPHICAL DESCRIPTION: U.S. (W), california, San Diego

Mercury in seawater, in a pelagic food chain, and in bottom sediment was determined at a single station \$30 km southeast of San Diego, California. The concentration of mercury in zooplanton slightly increased with depth of collection. The mercury content in almost all of the higher trophic levels of organisms collected at greater depths was indistinguishable from the concentration of mercury in Ecoplanton at these depths. Mercury concentration in the seawater column was essentially constant below 100 m and significantly higher at the surface. This vertical profile of mercury content is not ascrobable to biological activity.

512 Transport of Trace Hetals to the Atlantic Ocean by Three Southeastern Rivers

Window, R.L.; Beck, K.C.; Smith, R.

Southenstern Geology, 12, 169; 1971

RIVERS; SALTWATER; FRESHWATER; TRANSPORT; TRACE HETALS; IRON; HANGAWESE; RUNOPP; SEDIMENTS; ACCUMULATION; ESTUADIES

Composition of trace metals in solution in estuaries of three southeastern rivers are similar. Dissolved from and possibly manganese decrease in concentration going from fresh to saline waters owing to precipitation. The composition of trace metals in suspended sediment from the estuaries of the three rivers differs, suggesting a relationship to the composition of the respective drainage basin. The total amount of trace metals transported to the Atlantic in both solution and suspension by these rivers appears to be insufficient to supply more than about 100 Km2 of average Atlantic deep sea Rediment. River runoff appears to be inadequate to explain the trace metal accumulation of worth Atlantic deep-sea sediments.

513 Arsenic, Cadeium, Copper, Mercury, and Zinc in Some Species of Morth Atlantic Finfish

Windon, H.; Stickney, R.; Smith, P.; White, D.; Taylor, F.

3 Fish Res Foard Can., 30(2), 275-279; 1973

LIVER; EUSCLES; ARSENIC; COPPER; MERCURY; CADHIUM; ZINC; PIMPISH; SALTWATEP

TAXONOMY: CHOMORICHTHYS: OSTEICHTHYS

Arsenic, cadmins, copper, mercury, and zinc analyses of 91 individuals representing 35 species of Morth Atlantic finfish (CHONDRICHTHYS and OSTEICHTHYS) indicate that there metals occur at similar levels in both inshore and offshore species. CHONDRICHTHYS and OSTEICHTHYS have similar concentrations of all the metals, excepting arsenic which is higher in CHONDRICHTHYS. Analyses of various tissues in CHONDRICHTHYS reveal higher metal concentrations in the liver except for mercury which was higher in muscles.

514 Evaluations of Stream Pollution and Trace Substance in the Yew Lead Belt of Missouri

Vixson, B.G.: Bolter, P.: The University of Missouri-Polla, Rolla, MO

Part of D.D. Hemphill (5d.). Fifth Annual Symposium on Trace Substances in Environmental Health, University of Missouri-Columbia (143-152): 1972

STREATS; LEAD; HIVING; TRACE SUBSTANCES; HILLS; EPPLUENTS; WATER; QUALITY; COPPER; ZTNC; ALGAE; ALGAL PLOOPS; CARBON DIORIDE; PROSPHATE; HITROGRA; BRUTHOS; BACTERIA; HICHOORGAWISHS

GEOGRAPHICAL DESCRIPTION: U.S., Missouri (SE), New Lead Bolt, Viburnan Trend

Stream pollution studies have been carried out in the Viburnum Trend or "New Lea? Belt" of S.E. Wisson; to evaluate the effects of trace substances in wastes from lead-zinc mining operations. Data were collected to evaluate the character of individual wastes and to study the effectiveness of stabilization legoons in treating milling effluent discharges into area streams. Mine discharge water, milling operations, combined mine-mill effluent and legoon system effluent, were sampled. Water quality samples were also taken in streams below the wine lagoons and were compared with those from control sites located on unpolluted streams. Biological, chemical and physical parameters were evaluated, along with trace metal determinations of lead, zinc and copper. Potential pollutional characteristics were determined at all sampling sites, with special emphasis on the concentration of trace substances by excessive algal growths. Studies of mine offluent entering streams have indicated that mining wastewaters contain carbon dioxide and sufficient phosphorus to combine with mitrogen present in the stream water and cause undesirable benthic growths in bacterial-algal mats. Background concentrations of lead, zinc and copper rarely exceeded 20 ppb (parts per billion) in streams; however, concentrations up to 1,000 ppb have been determined in settling ponds. Recommendations are presented for the effective control of trace substances associated with wastewater from the lead-zinc mining industry in sortheant Missouri.

515
An Investigation of Environmental Pollution by Load and Other Heavy Metals from Industrial Development in Southeastern Missouri

Wimmon, B.G.: Tranter, W.H.

Progress Report, Dept. of Civil Engineering, Environmental Research Center, WSF-RAWN New Lead Belt Project, University of Missouri-Rolla, 13pp.

LEAD; COPPER; ZINC; ATHOSPHERE; SOILS; INDUSTRY; MINTING; MILLS; REMOTE SENSING; EFFLUENTS

GEOGRAPHICAL DESCRIPTION: U.S., Missouri (SP), Wow Lead Belt

An interdisciplinary investigation of environmental pollution is underway in the New Lead Relt area of southeastern wissouri to determine the effect of lead, zinc, copper, cadaius and other heavy metals. The preliminary results for the air, soil and water investigations are presented and the planned future investigations are discussed with emphasis on applications of remote sensing to monitor the environment.

516
The Plux of Mn, Fe, and Zn in an Estuarine
Ecosystem

Wolfe, D.A.; Cross, P.A.; Jennings, C.D.

Part of Radioactive Contamination of the Marine Environment, Proceedings of Symposium held by the Interntational Atomic Energy Agency, Seattle, WA, July 10-14, 1972 (159-175) 786 p.; 1973

MANGAMESE; IRON; ZIWC; RADIONUCLIDES: ESTUARIES; PISH: CRUSTACEA; PLANKTON; SEDIRPHTS: INFAUNA: MACROINVERTEDRATES; EPIBENTHOS; TEMPERATURE; SALINITY; PH; RUNOPP; MADINE BIOTA; WATER

GEOGRAPHICAL DESCRIPTION: U.S. (SE), North Cacolina, Newport River

cycling of radionuclides in estuarine ecosystems involves a complex network of interactions among sediments, dissolved components, blota, and fluctuating environmental variables, e.g. temperature, salinity, and ph. Accurate orediction of the distribution of radionuclides in the various components requires a thorough understanding of the flux of stable elements through the system. Efforts to model the fluxes of Mn, We and In through and within coastal plain estuaries of southeastern Upited States of America are described. Data have been derived mainly from extensive study of the Newport River estuary, a North Carolina embayment of about 31 kez receiving run-off from a total watershed area of about 340 km2. Trace metals have been analysed on a seasonal basis in water, sediments, and dominent organisms from several locations in this ecosystem. Ecological studies by colleagues at the Center have produced estimates of seasonal variability and blomass for the major primary producers, zooplankton, and the dominant species of macroinvertebrates (infauna and epibenthos) and fish. Since the estuary is shallow (less than 1 a at mean low tide), flushing is dominated by the semidiurnal tide (0.8 masplitude), and except during periods of very heavy rain, run-off has little effect. Hajor imports of Hn, Pe and In to the estuary consist of suspended and dissolved species in the run-off, sediment bed-load, tidal inputs, and the late winter-spring immigration of fish and crustaceans. Hajor exports are tidal flushing of dissolved and suspended trace metals (including plankton), the autumn emigration of fish and crustaceans. Hajor exports are tidal flushing of these metals. Biological transport processes were most important in the case of In, for which commercial harvest and emigration may account for more than 10% of the annual input from the watershed. The complexities of progressing from this static "annual budget concept" to a dynamic model of trace metals flow through the troplic structure of Newport River estuary is discussed

517 Cycling of Elements in Estuaries

Wolfe, D.A.; Rice, T.R.; National Harine Pisheries Service, Beaufort, N.C., Atlantic Estuarine Pisheries Center

Pishery Bulletin, 70(3), 959-72; 1972

ESTUARIES; RADIONUCLIDES; CYCLING; SENAGE;
ACCUMULATION; SALT WATER; TRACE ELEMENTS:
ESSENTIAL TRACE ELEMENTS: CALCIUM; MAGNESIUM;
POTASSTUM; SODIUM; COBALT; COPPER; IRON;
MANGAMPSE; ZINC; ALUMINUM; MOLYBDENUM; SILICON;
VANADIUM; CESIUM; CHROMIUM; NICKEL; BEDIDIUM;
STRONTIUM; TIN; ANTIHOMY: ARSENIC; BARIUM;
BERYLLIUM; BISHUTH; CADMIUM; LRAD; MERCUBY;
SELEMIUM; SILVER; THORIUM; SEDIMENTS; DISSOLVED
ORGANIC COMPLEXES; SUSPEMBED PARTICULARES;
POLYCHAETES; CHELATES; EDTA; COMPLEXES;
COBALAMIN; BIOMASS; ADSORPTION; ION EXCHANGE;
ZIMC 65; RAIN; RUNOFF; TIDAL FLUSHING; SEASOMAL
VARIATIONS; PHOSPHORUS; NITROGEN; PH; SALINITY;
MUTRIENTS; CESIUM 137; RUTHENIUM 106; OYSTRRS;
PISH; CONCENTRATION FACTOR; ASSIHILATION; UPTAKE;
MODELS

Meaningful evaluation of the ecological stresses imposed by man's release of heavy metals or radicisotopes into estuaries requires an improved understanding of the interactions between the waste materials and the functional components of the ecosystem. The types of information required for the development of useful models for the cycling of contaminant metals (both radicactive and stable) in extuarine ecosystems are reviewed. With particular reference to the coastal plain estuaries of the southeastern United States, the major reservoirs of those metals, the mechanisms and pathways of elemental transformation and rates of elemental turnover among reservoirs, and the responses of these processes and reservoirs to environmental change are discussed. A conceptual systems model is presented as the preliminary phase in the development of dynamic mathematical models of elemental cycling.

518 A Progress Report on Mercury

Wood, J. M.

Environment, 14(1), 33-39; 1972, January

MERCURY: APSENIC; SEWAGE; FUNGICIDES;
MPTHYLMERCURY: DISCHARGE; METHYLATION; PISH;
MEHYLMERCURY: HALP-LIFF; ANALYTICAL METHODS;
ATOMIC ABSORPTION SPECTROPHOTOMETRY: MEUTROM
ACTIVATION ANALYSIS; GAS CHROMATOGRAPHY; SEWAGE
TREATMENT: PERTILIZERS; RUMOPF: DREDGING; WATER
QUALITY; LEGAL ASPECTS; MICROORGANISMS

The mercury problem is now well defined: There are huge amounts of inorganic wercury remaining in sediments, which is slowly being converted to methyl mercury, even after the discharge of wercury has been greatly reduced. Purther, methyl mercury compounds are still used as fungicides in the U.S., but not in Sweden. The companies involved and the locations of the more serious pollution are given. The author calculates that less than U.2 percent of the mercury in sediments has been converted and that approximately 500 years would be required to clean the system by biological methods. He mentions other possibilities, such as dredging (which he says redistributes the contamination and did not help at Minamata), covering the sediments and improving water quality so the nicroblal populations decrease. The author and his studients studied the methylation process. Carbon, nitrogen, phosphates and trace metals provide food for the microorganisms and this determines their population level. The rate of methylation depends on the concentration of inorganic mercury and the population level of microorganisms. Poor sewage treatment and runoff from overfertilization have made the situation worse. Fish take up the methyl mercury in food and from the water. Methyl mercury has a half-life in fish of MOO-1000 days in fish (flounder, perch, vike, eels). Thus, the accumulation can increase significantly even at a rather low intake. The author is critical of some of the analytical work and decisions. Plameless atomic absorption is cheap but gives lower values. The author prefers heutron activation as being far more accurate. Purther, the author prefers a direct analysis for methyl mercury, e.g. by gas chromatography rather than total sercury, since this is the critical compound. While there is some mercury of natural origin being methylated, industrial pollution has greatly magnified the problem in recent years. The author discusses legal aspects in the U.S. and Canada.

519
Mechanisms for Methylation of Hercury in the
Environment

Wood, J. M.; Penley, M.W.; DeSimones, R.E.

Part of Technical Report No. 137, Hercury Contamination in Man and his Environment, International Atomic Energy Agency, Vienna, Austria (p. 49-66), 181 p.; 1972, July

HERCURY: CONTANYMATION; METHYLATION; COZMZYNES; NUTRIENTS; METHYLCORPINOIDS; METHYLCORALAMIN; ENZYMES; MERCURY COMPOUNDS

A complex paper on the methylation of mercury. Methylation can proceed under both aerobic and anaerobic conditions and the rate is greater where pollution and nutrients lead to an abundant population of the suitable bacteria. 520 Persistence and Reactions of Carbon 14-Cacodylic Acid in Soils

Woolson, E.A.; Kearney, P.C.

Environmental Science and Technology, 7(1), 47-50; 1973, January

ARSENIC; CACODYLIC ACID; SOILS; PERSISTENCE; CARBON 14; CARBON; AVAILABILITY; ARSINE; ALKYL ARSINE; DEGRADATION; EXTRACTANTS; SOLUBILITY; BIOD EGRADA BILITY

Carbon-14-labeled cacodylic aci1 (hydroxydimethylarsine oride) was prepared by reacting 14carbon-methyl iodide with methyl dichloroarsine. Concentrations of 1, 10, and 100 parts per million of cacodylic acid were established in three soils of varying iron and aluminum content. At 2, 4, 8, 16, 74, and 32 weeks, soils were analyzed for 14Carbon and total arsenic in the mater-soluble (ws), calcium (Ca), iron (Fe), and aluminum (Al) fractions.

Initially, cacodylic acid was distributed in the following fractions: ws is greater than > Al is greater than Fe is greater than Ca. In contrast, inorganic arsenate (54) was largely present in the Fe and Al fractions. Cacodylic acid permistence was a function of soil type and after 32 weeks the following amounts of 14carbon were recovered in each soil type by combustion: Christiana (23%), Hagerstown (53%), Lakeland (62%), a decrease in both total tacarbon and total arsenic occurred in all soils with time. A pungent garlic odor was detected in soils receiving 100 parts per million, suggesting the production of a volatile alkyl arsine. The logs of arsenic suggests that one route of cacodylic acid loss from aerobic and anerobic soils is by alkyl arsine volatility. Degradation under aerobic conditions also occurred by cleavage of the carbon—As bond, presurably yielding CO2 and As08 (3-). This degradation is presumably Que to microbiological action.

521
Mussels and Barnacles as Indicators of the Variation of Mn 54, Co 60, and Zn 65 in the Marine Environment

Young, D.R.: Polson, T.P.

Part of Radioactive Contamination of the Marine Environment, Proceedings of Symposium held by the International Atomic Energy Agency, Seattle, WA, July 10-14, 1972 (633-649) 786 p.; 1973

MUSSELS: BARNACLES: BIOLOGICAL INDICATORS: MANGAMESE: MANGAMESE 50: COBALT: COBALT 50: SALTWATER: THERMONUCLEAR TESTING: PALLOUT: COASTAL WATERS

TAXONOMY: MYTILUS CALIFORNIAMUS; MYTILUS EDULIS

The intertidal byssal bussel MYTILUS CALIFORNIANUS and the oceanic gooseneck barnacle LEPAS MATIFERA are efficient indicators of spatial and temporal changes in levels of three radiometals in the marine environment. LEPAS specimens collected from the northeastern Pacific during the first half of 1960 demonstrated oceanic-to-coastal ratios of Mn 50, Co 60, and Zn 65 fallout from the 1961-1962 thermonuclear tests of approximately 3:1, 4:1, and 2:1, respectively. Caesium-137 in the surface layers of the two sectors (whose centres lie about 1500 and 300 km west of San Diego) also showed a 3:1 oceanic-to-coastal enhancement of fallout from this source. MYTILUS specimens collected during 1963-64 along the northeastern Pacific Coast showed a fairly uniform distribution of Mn 54 and Co 60 between latitudes 46 and 29 north, but dramatically reflected the point source of Ranford-produced Zn 65 emanating from the mouth of the Columbia River. Relatively high zinc-65 concentrations, possibly related to this source, were letected in MYTILUS, the ecological half-times of the three nuclides observed in the invertebrates between mid-1963 and late 1964 at specific intertidal, coastal, and oceanic platforms were consistent with radioactive decay rates. This suggests an approximate equilibrium between input and removal of these radiometals in the mixed layer. Mussel and barnacle tissue-to-seawater enrichment factors for the three nuclides exceed 1000. In MYTILUS 4 to 6 cm in length, size variations had no significant effect on nuclide concentration, but 70% of the Co 60 and Zn 65 soft-tissue radioactivity was located in the kidneys and digestive glands of this organism. Bay mussels (M. EDWLIS) taken from the coastal surf zone showed concentrations similar to those in M. CALIFORWIANDS, but H. EDWLIS in two nearby bays had lower values. Intertidal coastal aussels and gooseneck barnacles recently collected from 14 california stations indicate average 1971 "baseline concentrations" of Mn 54, Co 60, and Zn 65 of 0-5, 0-4, and 0-11 pci/

522
Hercury Concentrations in Dated Varved Harine
Sediments Collected Off Southern California

Young, D.P.; Johnson, J.N.; Soutar, A.; Issacs, J.D.; South. California Coastal Water Res. Proj., El Segundo, Calif.

Nature (London) (NATURS), 204 (5814), 273-5; 1973

MERCURY: SEDIMENTS: SALTWATER

GEOGRAPHICAL DESCRIPTION: U.S., California (S. Coast)

523 Effect of Copper and Silver Ions on Algae

J. Water Pollut Control Fed. 44(8), 1972 1643-1647

PISH; TOXICITY; ALGICIDE; GROWTH; INHIBITION; ALGA B; COPPER; SILVER; SYNERGISM

TAXONOMY: EUDORINA PEDIASTRUM

Young, R.G.; Lisk, D.J.

This study explores the possibility of synergism between Cu and Ag in the control of algal blooms on the theory that if such action does occur, total ions with recognized toxicity to fish and other wildlife would effect control of some algal species. In this work 0.3mg/1 copper or copper-silver mixture was lethal to all blue-green algae tested. The green algae were more resistant, however. The copper silver combination was slightly more effective than copper alone under the conditions used, but will be of questionable utility in the field when increased risk to desirable fish and the economic factor of the cost of silver salts are considered.

524 Prediction of Incipient Lethal Levels of Copper to Juvenile Atlantic Salmon in the Presence of Humic Acid by Cupric Electrode

Zitko, P.; Pisheries Research Board of Canada

Bull. Env. Contam. Tox., 10(5), 265; 1973, November

LETHALITY; SURVIVAL; COPPER; AGE: SALMON; HUMIC ACIDS; LIGNOSULPONATES; PULP MILLS; EFFLUENTS; COMPLEXES; INDUSTRY; ORGANIC COMPOUNDS; CURPIC JOHS; SALTWATER

The toxicity of copper to juvenile Atlantic salmon in the presence of humic acid is described. The incipient lethal levels of copper are predicted from the potential of a cupric ion selective electrode. This technique might be extended to other copper-complexing substances such as lignosulfonates, pulp mill effluents in general, and various organic compounds.

525 Release of Heavy Metals from Sediment by witrilotriacetic Acid NTA

Zitko, V.; Carson, W.V.; Biol. Stn., St. Andrews, New Brunswick

Chemosphere 1(3), 113-118; 1972

HPAYY MPTAL RELEASE; SEDIMENTS; MITRILOTRIACETIC ACID; NTA; COPPER; IRON; ZIMC; CADMIUM; MERCURY; YOM EXCHANGE; FISH; RIVERS; MINING

Cupric, zinc and ferric ions are released from aquatic sediments by nitrilotriacetic acid (*TA). Model experiments indicate that cadmium and mercuric ions behave similarly. Concentration of NTA as low as 1.0 mg1(-1) produces in some cases measurable release of these ions. The release of heavy-metal ions is somewhat depressed by increased water hardness. In model experiments with ion exchange resins NTA affects only ions bound to carboxyls and has no effect on ions bound to sulfo groups. Widespread use of NTA would result in NTA concentrations in the order of 10-20 mg1(-1) in surface waters. Since even low concentrations of NTA release heavy-metal ions from sediments, direct discharge of NTA into surface waters should be limited as much as possible. For the same reason, the use of NTA as a fish-protecting agent in rivers affected by base-metal mining pollution is not recommended. These studies were conducted on the sediments in the Morthwest Miramich Piver and its tributary, the Tomogonops River, New Brunswick, Canada, which drain a hase-metal mining area.

526
Methylmercury in Freshwater and Marine Pishes in
New Brunswick, in the Bay of Pundy and on the
Nova Scotia Banks

zitko, V.; Pinlayson, B.J.; Wildish, D.J.; Anderson, J.M.; Kohler, A.C.

Pish Res Board Can 28(9), 1285-1291; 1972

PISH; SALTWATER; INDUSTRY; ATHOSPHERE; PPESHWATER; HERCHRY; HETHYLHERCURY; BELS; PICKER EL; WHITE PERCH; YELLOW PERCH; BROOK TROUT; ATLAWIC SALMON

In only two cases was the level of methylmercury in marine fish above 0.13 parts per million. Presh water fish ranged from approximately 0.1 to 1 or 2 parts per million. Some of the freshwater sampling locations were near industrial activity; others suggested pollution by airborne mercury. Methyl mercury in eels from one New Brunswick lake has not changed over 46 years, so some of the elevated levels may be natural.

527
Active Phase of Assimilation of Plutonium 239 by
the Marine Algae Ascophyllum Nobosum

Zlobin, V.S.; Zlobin, V.

Polyar. Mauch.-Isoled. Proekt, Inst. Morsk. Ryb. Khoz. Okeanogr., No. 29, 169-175(1971).; 1973

ALGAE; ANMONIUM COMPOUNDS; BIOLOGICAL EFFECTS; CADMIUM COMPOUNDS; CHLORIDES; CYANIDES; INHIBITIOM; PLUTONIUM 239; RADIONUCLIDES; KIMETICS: RESPERATION: UPTAKE

A study was made of the problem of accumulation of Pu 239 by the brown alga Ascophyllum nodosum during suppression of cell respiration. As the inhibitors the author used sodium cyanide in a concentration of 1 102-4 m, ammonium chloride 10 mM and 100 mM and cadmium chloride 2 mM. It was established that they cause a increase in the Pu 239 accumulation factors in dependence on the substrate on which the act. A study was made of the mechanism of his phenomenon and it was possible to establish the dependence of the intensity of cell respiration and the accumulation factor. The article gives hypotheses on the means and methods by which Pu 239 in a colloidal state penetrates through the cell membrane.

Abbott. 0.J. 400

Abdulinh, M.T. 9

Adamovic, V.H. 10

Aquesso, P. 132

Ahr, W.M. 11

Al-Rawi, H.Y. 31

Albenesius, E.L. 12

Albert, P. 13

Aldrin, J.P. 14

Alekseenko, V.A. 15

Aleshina, A.K. 295

Aleti, A. 180

Alexander, M. 16, 109

Allaway, W.H. 17

Allen, C.P. 33

Allen, H. g. 46

Alverson, D.L. 460

Amin-Zaki, L. 31

Ancellin, J. 18

Anderson, J.M. 526

Anderson, M.N. 19

Anderson, W. 20

Andreeva, K. 21

Andren, A.W. 22

Angino, E.E. 23

Argentesi, F. 348

Armiger, W.H. 306

Armstrong, F.A. 442, 495

Asell. B. 155

Aston, S.R. 24, 25, 61

Atton, F.M. 485

Aubert, J. 26

Aubert, M.J. 26

Auerbach, S. 27

Avaravarel, f. 508

Avarques, M. 18

Ayers, J.C. 105

Aylor, D. 389

Azusa, T. 475

Babcock, R.S. 28

Babov, D.M. 293

Bacci, E. 29

Pahns, T.K. 72

Baisero, G.R. 30

Bakir, F. 31

Balani. M. 393

Baldwin, A.D. 32

Balylock, B.G. 33

Daptist, J. 231

Barber 447

Batelli, H. 26

Bartlett, G.A. 34

Batra, S. 35

Bandin, J.P. 36

Baugh, L. H. 37

Baughman, G.L. 38, 424

Bawden, C.A. 390

Bayer, A.G. 57

Beamer, P. 58

Beasley, J. 395

Heck, K.C. 512

Becker, C.D. 39, 40

Beek, H. 417

Beethe, R.H. 106

Beloteleva, M. 21

Beninson, D.J. 78

Berendsen, P. 387

Bergman, H.L. 381

Berlin, M. 13, 41

Bernhard, M. 404 Berteau, P.E. 321

Bertine, K. 98

Bhattacharya, P.K. 446

Biggar, J.W. 369

Biggs, R.B. 462

Bigwood, E.J. 42

Bilinski, E. 43

Bilinski, H. 371

Bingham, P.T. 385

Bisogni, J.J., Jr. 44

Bittel, R. 45

Black, J.A. 46

Blackburn, R.D. 464

Blahova, M. 322

Blair, W. 367

Blaylock, B. 488

Bobrovski, A. 47

Bolter, B. 48, 514

Bondietti, E. 488

Botezatu, E. 508

Bothner, M. 49

Bottari, 2. 50

AUTHOR INDEX Bouroncle, C.A. 51 Boush, G.M. 339, 340 Hovard, P. 18 Bowen, V.T. 370 Braffeld, R.E. 341 Brailovakii, S.M. 52 Braman, R.S. 53 Branica, H. 371, 404 Brazzolli, 4. 349 Brereton, A. 54 Drinckman, P.R. 367 Brinn, D.G. 55 Broderius, S.J. 56 Brooks, J. 114 Brooks, R.R. 226 Brost, H.R. 57 Brower, D.L. 307 Brown, D. 428 Brown, E.R. 58 Brown, H.G. 59 Bruk, L.G. 52 Bruland, K.W. 98 Brungs, W.A. 60 Bruty, D. 24, 61 Bryan, G.W. 62 Buchauer, M.J. 43 Backley, D.E. 111 Buddemeier, R.W. 288 Bulavin, Y.T. 60 Bulthuis, D.A. 65 Bumbu, Y.V. 66 Burdick, G.E. 386 Burgess, J. 67 Burrell, D.C. 68 Burrows, W.D. 69, 297, 298 Burton, C. Ann 470 Burton, D.T. 72 Burton, J.D. 311 Butherus, D. 48 Button, D.K. 70 Byrne, A.P. 296 Cadmus, E.L. 71 Cahn, P. H. 102

Cairns, J., Jr. 72, 73, 74, 75, 76, 77, 500

Cairns, J.J., Jr. 429

Callegaro, A. 30

Callov, J.A. 154 Callow, M.H. 154 Calvert, S.E. 452 Cameron, I.L. 85, 473 Cancio, D. 78 Canuti, A. 79 Carbonneau, 4. 80 Carey, A.G., Jr. 81 Carmody, D.J. 82 Carpenter, R. 49 Carr, P.A. 83 Carr, R.A. 84 Carru, A.M. 94 Carson, W.V. 525 Carter, J.W. 85 Cavalie, G. 86 Cearley, J.E. 87 Chaker, A. 423 Chalmers, R.K. 88 Chan, L. 481 Chang, 5.8. 338 Chang, S.Y.J. 51 Chase, G.R. 138 Chau, T.K. 89 Chen, W.S. 90 Chen. R. 48 Cheng, T.C. 91 Cheremisinoff, P. 92 Cherkasova, E.V. 482 Cherry, R.D. 445 Chester, R. 24, 61, 93 Chesterikoff, A. 94 Chesterikoff, C. 9% Cheung, S.K. 95 Childs, E.A. 96, 97 Chow, T.W. 98 Chow, T.J. 99 Christiansen, C. 212, 213 Chuah, H.H. 261, 263 Ciaccio, L.L. (Ed.) 100 Ciallella, W.R. 78 Clain, L. 508 Clarkson, T.W. 31, 101, 195 Clegg, D.J. 321 Clement, C.R. 268 Coble, A.J. 101

Cocords, G. 102

Cody, R. M. 366

Coleman, R.I. 87

Collinson, C. 103

Colmano, G. 104

Colvell, R.R. 367

Copeland, R.A. 105, 106

Copenhaver, E.D. 107, 108

Corden, M.R. 137

Cosgrove, G.E. 33

Cosovic, B. 371

Coutant, C.C. 505

Cox, D.P. 109

Craig, H. 110

Craig. J.R. 65

Cranston, R.W. 111

Crawford, D.L. 97

Crecelius, E.A. 112

Cressy, P.J., Jr. 113

Crocker, W.C. 356

Cronkite, F. 453

Cross, P. 114

Cross, P.A. 115, 516

Cross, R.J. 116

Crothers, J.H. 395

Culking, P. 311

Cusmings, T.P. 336

Cusont, G. 117

Cunningham, P.A. 118

Cushing, C. 119

Cushing, C.E. 505

Cutshall, N.H. 81, 153

Czachor, J.S. 362

Czyrska, H. 234

D'Arrigo, J.S. 120

D'Itri, P.M. 101

D'Itri, J.M. 121

Da Costa, E.W.B. 122

Dacre, J.C. 123

Daester, H.H. 124

Dales, L.G. 125

Damluji, L. 31

Danchev, V.V. 15

Dariel, J.W. 126

Daniel, S. 26

Darrow, D.K. 040

Davies, A.G. 127

Davies, P.H. 128

Davletgalieva, K.M. 365

De Graeve, J. 219, 220, 221

Deakins, D.E. 129

Dean, R.B. 130

Bement'Ev, V.S. 365

Denham, D. 131

Descamps, B. 132

DeSimones, R.E. 519

DesVoigne, D.M. 313

Dhahir, H.I. 31

Dickson, P.W. 387

Dickson, K.L. 72, 73

Dietz. F. 133

Dilgerakis, C. 376

0111s, G.G. 134

Dimitrova, L. 21

Diplock, A.T. 135

Dixon, F.L. 95

Dmitriev, A. 136

Doherty, R.A. 31

Domsch, K.H. 137

Donnier, B. 26

Dorn, C.R. 138

Doshi, G. 139

Draskovic, R. 140

Drummond, R.A. 141

Duchart, P. 142

Duncan, J.R. 271

Dunker, S.S. 70

Dushauskene, Duzh, N. 143

Dutton, J.W.R. 406

Duursma, E.K. 25, 144

Dvorsky, B. 145

Dyer, I.A. 90

Eagle, R. 437

Baton, J.G. 146

Ebner, F. 145

Echegaray, R.M. 51

Edgington, J. 421

Edwards, 9.W. 477, 478

Eisler, R. 147, 148, 149, 309

Elwood, J.W. 33

Emerick, R.J. 198

Endres, G.W.R. 151

Environmental Protection Agency 150

Espinal, P. 193

Essig, T.H. 151

Evans , R.L. 152

Evans, D.W. 153

Evans, L.V. 154

Evans, T. 23

Everhart, W.H. 128

Ewing, B.B. 423

Exner. H.B. 430

Eyman, L.D. 33

Pagerstrom, T. 155, 156

Pang, S.C. 157

Pangstrom, I. 158

Perguson, J.P. 188

Filby, R. 176

Filip, A. 159

Filip, D.S. 160

Figreite, N. 161

Finch, R. 162

Finkles, J. 13

Pinlayson, B.J. 526

fitzgerald, W.F. 163

Fleischer, R.B. 95

Flerov, V.E. 15

Flid, R.W. 52

Poerstner, U. 357

Folson, T.R. 164, 224

Polson, T.R. 521

Pontaine, A. 166

Ponteneau, A. 14

Foreback, C.C. 53

Poster, P. 165

Fouassin, A. 42, 166

Poulquier, L. 132

Pourie, H.O. 487

Powler, J. 453

Fowler, S.W. 454, 455

Fox, C.L. 352

Francis, C. 488

Francis, C.W. 167

Prank, #. 33

Prank, R. 187

Fredriksson, I. 168

Freeman, H.C. 169, 170, 171

Presman, R.A. 172

freund, S. 508

Priberg, L. 13

Priedlander, S.K. 173

Friedman, M. 335

Trissel, M.J. 417

Fromm, P.O. 381

Pujlta, H. 174, 175

Pulkerson, 9. 107

Punk, W.H. 176

Pawa, K. 177, 178

Gabrovski, K. 451

Gaffke. J.W. 96, 97

Gage, J.C. 101

Galbraith, J.H. 179

Gale, N.L. 180, 181, 182, 183

Gambarotta, J.P. 26

Gams, H. 145

Garban, B. 94

Gardner, D. 93, 184

Gardner, G.R. 148, 185, 309

Garrison, t. 407

Garton, R.B. 186

Gaskin, D.E. 187

Gavis, J. 198

Geisler, F. 453

Georgieva, E. 344

Geraghty & Miller 189

Geraghty, J.J. 190

Ghosh, M.M. 191

Giblin, P.J. 192

Gilchrist, J.R. 900

Glass. R.L. 193

Glinski, J. 392

Gloyna, E.F. 302

Goebgen, B.G. 194

Goldberg, E.D. 98

Goldwater, L. 101

Goldwater, L.J. 195

Golub, H. 362

Goodman, T.G. 419

Goolsby. D.A. 20

Gordon, J.A. 38, 424

Gorodetskii, M.I. 347

Gorzynski, M.J. 409

Gotoh, Y. 339, 340

GOVOCOVA, H.P. 196

Goyer, R.A. 13

Grauby, A. 132, 236

Gray, J.S. 197

Gray, R. 463

Greenspan, I. 58

Gregory, W.S. 383

Greichus, A. 198

Greichus, Yvonne A. 198

Grekalova, T.V. 199

Greuendling, G.K. 329

Griffith. N.A. 33

Grodzinskii, D. 136

Gryzhankova, L.N. 200

Guequeniat, P. 18

Guggino, W.N. 362

Guicherit, R. 201

Guinn, V.P. 164

Gullwag, B.M. 450

Gupta, R.S. 202

Gustafson, J.P. 203

Rabib, Y. 92

Hagen, A. 20s

Hahne, H.C.H. 205

Hakanson, L. 206

Halcrow, W. 400

Hall, J.W. 70

Haller. W.T. 465

Hausond, P.B. 207

Hann, R.W., Jr. 208

Hannerz, L. 209

Hansen, J.C. 210

Hardie, M.G. 180, 181, 182, 183

Harris, F.J. 386

Harrison, P.L. 211

Harriss, R.C. 22

Harthill, W. 428

Hartung, R. 101

Harvey, B.R. 406

Hashizume, K. 174, 175

Hatch, D.R. 495

Havre, G.W. 212, 213

Haydu, E.P. 214

Haystead, A. 215

Hazdra, J.J. 58

Heath, W.A. 390

Heft, R.R. 216

Heisbrook, H.E. 361

Helz, G.R. 222

Hes. J.D. 217

Hemphill, D.D. 48, 218

Henderson, R. 13

Hensley, C.P. 59

Hentschel. C. 57

Herdendorf, C.R. 502

Hernberg, S. 13

Heusghem, C. 219, 220, 221

Heyraud, M. 484

Hill, J.H. 222

Hinman, A. 101

Hirano, S. 223

Hirosawa, K. 359

Hodge, V. P. 164, 224

Hodgson, J.P. 225

Hoggins, P.E. 226

Holden, A.V. 227, 228

Holdrinet, H. 187

Holmes, C.W. 229

Honda, Y. 368

Honstead, J.F. 151

Hopke, P.K. 318

Hopper, M.J. 268

Horitsu, H. 475

Horne, D.A. 169, 170, 171

Horvath, G.J. 230

Hoss, D. 231

Huckabes, J.W. 232, 488

Huljev, D. 233

Hulkova, O. 322

Husserstone, L.G. 62

Nutchinson, T.C. 234

Hyche, C.M. 402, 403

Ichiki, M. 235

Tjuin, H. 236

International Atomic Energy Agency 237

Ireland, H.P. 238

Isensee, A.R. 239

Ishida, K. 187

Ishikawa, M. 240

Ishio, S. 241

Iskandar, I.K. 242, 465

Issacs, J.D. 522

Ivanova, S. 300

AUTHOR INDEX Iverson, M.L. 243 Iverson, W.P. 367 Izaki, K. 244 Jaakkola, T. 245, 246 Jackin, E. 247 Jackis, E.H. 309 Jackivicz, T.P. 248 Jackson, A.L. 312 Jacobs, L.W. 249 Jacobs, S.A. 276, 277 Jefferies, D.r. 406 Jenne, E.A. 250 Jennett, C.J. 182, 183 Jennett, J.C. 180, 251 Jennings, C. 252 Jennings, C.D. 516 Jensen, S. 253, 254, 259 Jernelov, A. 101, 156, 253, 255, 256, 257, 258, Jervis, R.E. 101 Jetler, D.Y. 95 John, H.R. 260, 261, 262, 263 Johnels, A.G. 254 Johnson, A.D. 264 Johnson, D.L. 265 Johnson, D.H. 46 Johnson, J.W. 522 Jokela, T. 437 Jola, 8. 124 Jolley, R.L. 33 Jonas, R.R. 43 Jones, A.M. 266 Jones, A.S. 267 Jones, G.E. 239 Jones, K. 453 Jones, L.H. 268 Jones, Y. 266 Jorden, R.M. 269, 270 Jsu, P.S. 271 Kalinenko, V.V. 272 Kapoor, Krishna 363 Karaseva, A.P. 295 Karyakin, A.V. 200 Kasatkina, L.A. 293 Katz, A. 481

Katz, B. 428

Katz, H.B. 273

Kawai, H. 368 Kazantzis, G. 13 Kearney, P.C. 239, 520 Keckes, 5. 455, 484 Keeney, D.R. 242, 249, 465 Rehoe, R.A 13 Keith, L. 58 Kempf, T. 274 Kenova, M. 344 Kerfoot, W.B. 275, 276, 277, 278 Khalidi, A. 31 Khovrychev, M.P. 279 Kim, C.Y. 280 Kimball, K.D. 281 Kisura, Y. 368 Kishore, R. 164 Kisvarsanyi, G. 407 Klave, W.L. 401 Klayman, D.L. 282 Kleczkowski, A.S. 283 Kleerekoper, H. 284 Klein, D.H. 285 Klemmer, H. 286 Knauer, G.A. 287, 334 Knutson, D.W. 288 Kobayashi, Y. 289 Koeman, J.H. 290 Koga, T. 368 Kohler, A.C. 526 Koide, M. 98 Kolb, L.P. 291, 292 Kolby, N.I. 28 Kolesnikova, V.G. 293 Ropfler, F.C. 294 Kopple, J.D. 413 Korotchenko, O.D. 492 Kortsenshtein, V.N. 295 Kosheleva, L.P. 492 Kosta, L. 296 Kostyushin, A.S. 52 Koudstaal-Hol, C.H.H. 290 Kowalski, J. 283 Koyanagi, T. 223 Kraner, H. 453 Kratsmar-Smogrovic, J. 322 Krenkel, P.A. 69, 297, 298

Krishnamoorthy, T. 139

Krishnamurthy, K. 299

Krishnamurthy, M. 95

Krishnaswami, S. 110

Krocza, W. 300

Krook, L. 271

Kroontje, W. 205

Krusteva, D. 21

Kubota, J. 301

Kudo, A. 302

Kulikov, B.N. 303

Kustin, K. 273

Kuzminski, L.W. 248

Kvyatkovskii, A.M. 347

Kwapinski, J.B.G. 58

LaBarre, N. 304

Lachet, B.Z. 305

Lagerverff, J.V. 306, 307

Laktionova, N.V. 200

Langeland, A. 204

Langford, J.C. 420

Langley, p.G. 308

Lann, R. 257, 258

Lansden, J.A. 366

Lanza, G. 73

LaRoche, G. 149, 185, 309

Larsen, H.P. 310

Lasko, L. 416

Lau, L.S. 286

Lawrence, A.W. 44

Leatherland, T.H. 311

LeBlanc, P.J. 312

Leckie, J.O. 387

Lee, G.P. 433

LeGendre, G. 428

LeGore, R.S. 313

Lemaitre, P. 14

Leonard, E.N. 60

Leonte, E. 314

Lepple, P.K. 315

Levin, V.S. 492

Levandovski, R. 316

Levis, A.G. 317

Lichev, N. 300

Lin, S. 152

Lindberg, R. 428

Lis, S.A. 318

Lisella, P.S. 319

Lisk, D.J. 386, 523

Llauro, J.A. 78

Long, K.R. 319

Lord. H. 54

Lowman, P.G. 320

Lu. F.C. 321

Lubchenko, I.Y. 482

Lucanska, B. 322

Luckens, M.H. 323

Lunde, G. 324, 325, 326, 327

Luoma, S.N. 286

. Lynn, R.I. 160

Lyons, W.B. 163

MacDonald, Elizabeth M.S. 388

Macleod, J.C. 328

Magneson, L.M. 23

Malakhova, C.P. 293

Malanchuk, J. L. 329

Manahan, S.E. 330, 331

Mancheva, v. 344

Mancy, K.H. 46

Marcellus, P. 181

Marchyulenene, E.D.P. 143

Martell, A.E. 332, 333

Martin, J.H. 287, 334

Masri, M.S. 335

Massaro, E.J. 192, 466

Massart, D.L. 493

Mathis, B.J. 336

Matis, J. 284

Matsnev, A.I. 337

Matson, R.S. 338

Matsumura, F. 339, 340

Matthiessen, P. 341

Mattraw, H.C. 342

Haugh, T.H., II 343

Mautner, G. 300

Mayer, J. 294

McCartney, M.J. 311

McCarty, P.L. 387

McComas, P.T. 469

McDuffie, J.R. 366

McIntyre, J.D. 345

McJunkin, A.R. 12

McMim, J.M. 60

McKinney, G.L. 59

McKinaey, M. 346

McLerran, C.J. 229

McMullen, E.D. 297

McMabb, C.D. 65

Meglen, R.R. 270

Meittinen, J. 246

Hekler, L.I. 347

Melin, J. 423

Melotti. A. 30

Merlini, M. 348

Hervin, Fredrick 349

Metwalli. A.M. 353

Middlebrooks, E.J. 291, 292

Miettinen, J.K. 245, 350

Miller, D.W. 190

Miller, H.H. 459

Miller, W.J. 351

Mills, E.L. 301

Milne, J.B. 304

Minicacci, D.p. 46

Minter, R.F. 411

Miyaguchi, Y. 368

No. T. 430

fodak, S.M. 352

Nohmen, A.F. 353

Hokryak, A.S. 66

Montgomery, A.C. 354

Montiel, A. 117

Moore, M.R. 355

floore, P.J. 856

Moore, W.J. 356

Horgan, E.L. 74

Morisbina, F. 368

Morris, R.J. 311

Morrison, S.M. 361

Morse, H.L. 70

Muchlen, D. 376

Mueller, G. 357

Mukai, S. 358

Mulay, C. 393

Murakami, M. 359

Muray, J.C. 364

Hurray, C.N. 360

Murray, L. 360

Murtadha, M. 31

Mustce, G.E. 338

Huzychenko, V.I. 293

Myers, D.J. 361

Mytelka, A.I. 362

Makade, R. 235

Manda, R.C. 363

Warbonne, J.P. 364

Wast, A.H. 353

Mazarsva, L.V. 365

Meely, W.C. 366

Weiboer, E. 409

Welson, D.J. 33

· Welson, J.D. 367

Helson, V.A. 444

Newman, L.T. 107, 108

19. Took C. 470

Nichivaki, Y. 368

Micholson, R.A. 456

Mielson, p.R. 369

Wisher, M. 21

Moirfaline, A. 42, 166

Noshkia, v.z. 370

Novak-Adamic, D.H. 371

Nyanishkene, V.B. 143

O'Hara, J. 372, 373, 496

Odlaug, T.O. 382

Ochme, Frederick, W. 374

Oglesby, R.T. 301

Ogura, R. 375

Ohallora, S.J. 435

Ohba, N. 241

Ohlaeyer, P. 376

Oh sono, Y. 377

Oksanen, R.E.: Pesonen, L. 430

Oliver, R.G. 304, 378

Oliivon, b. 94

01sen, S. 379

Olson, G.F. 141

Olson, K.R. 380, 381

Olson, M. 254

Olson, T.A. 382

Onstott, R.I. 383

Ophus, E. 450

Oregioni, B. 348

Oshvald, W.R. 394

Osteryoung, J. 361

Ott. A.H. 479

Ottendorfer, L.J. 145

Ovsyannikova, W. 408

Padgham, R.C. 24

Page, A.L. 385

Yakkala, I.S. 386

Parker, J.I. 176

Parks, G.A. 387

Parks, Leo W. 388

Parlange, J.Y. 389

Parsons, R. 37

Parsons, T.F. 390

Pasternak, K. 391, 392

Patel, B. 393

Patel, S. 393

Pavlat, W.A. 473

Pearce, J.B. 82

Pearcy, W.G. 395

Pechlaner, H. 300

Peden, J.D. 395

Pellenbarg, R.E. 441

Penley, M.W. 519

Pentreath, P.J. 396, 397

Peperstraete, H. 398

Perhac, R.M. 399

Pering. K.L. 387

Perkins, R.J. 400

Perkins, R.W. 020

Pessah, B. 328

Peters, W.H.H. 290

Petersen, M.R. 420

Peterson, C.L. 401

Phillips, W.A. 216

Picat, P. 236

Pierce, J.O., II 138

Pilipchuk, M.P. 458

Pillay, K.K.S. 402, 403

Pilson, M.E.Q. 265

Piper, David Z. 112

Piro, A. 404

Pitt, W.W. 33

Poelstra, P. 417

Polikarpov, G.A. 143

Pond, W.G. 271

Forcella, D.B. 291, 292

Porubaev, V.P. 347

Pozzi, G. 348

Prater, W.W. 106

Preston, A. 405, 406

Price, N.B. 452

Proctor, P.D. 407

Proning, M.V. 408

Pruefer, P. 27

Puckett, K.J. 409

Purushothaman, K. 410

Quinn, Dorthy J. 470

Qvarfort, U. 168

Rabe, P.W. 176, 411

· Rabinowitz, H.B. 412, 413

Radosavljevic, R. 140

Ralston, H.R. 216

Ramnarine, A. 317

Rao, S. 299

Rastoly, H. 414

Reay, P.P. 415

Rehwoldt, R. 416

Reichle, D. 488

Reimers, R.S. 298

Reiniger, P. 417

Renfro, W.C. 418, 425, 474

Renzoni, A. 29

Reynolds, L.H. 161

Rice, T.R. 517

Richardson, D.H. 409

Riley, J.P. 93, 184

Rissenen, K. 246

Roberts, R.F. 46

Roberts, T.H. 419

Robertson, D.R. 420

Robinson, J.L. 59

Rogers, D.T., Jr. 134

Rolfe, G. 421

Rolfe, G.L. 422, 423

Rolfe, N.L. 424

Romberg, G.P. 425

Romeril, M.G. 426

Rose, J.M. 459

Rosenberg, R. 259

Ross, L.W. 310

Rossinskii, N.P. 337

Rothsan, K.J. 193

Poyer, L.M. 485

Royle, L.G. 9

Runnells, D.D. 427, 428

Rush . S. G. 167

Passell, E.R. 12

Russell, P. 285

Ruthven, J.A. 429

Saas, A. 236

Sackett, W.M. 430

Saenko, G.W. 200

Saiki, M. 223, 240, 377, 431

Salo. A. 432

Sanchez, I. 433

Sanders, W. 250

Sandholm, N. 434

Sangalan, G.B. 435

Sarma, T. 139

Sastry, ₹. 139

Savada, K. 836

Schell, W.R. 437

Schelske, C.L. 438, 439

Schroeder, H.A. 440

Scott, C.D. 33

Scott, D. 123

Scott, H.G. 319

Segar, D.A. 441

Serfaty, A. 364

Sergeant, D.E. 442

Servant, J. 443

Seymour, A.H. 444

Shakhbazova, L.N. 498

Shannon, L.V. 445

Sharma, R.C. 446

Sharp, G.D. 401

Shaw. C. 416

Shieh, Y.J. 447

Shimp, Weil P. 103

Shin, E.B. 297

Shiomi, M.T. 89

Shively, J.N. 271

Shou, J.K.P. 310

Shrift, A. 282

Shugart, H.H. 33

Shuliene, R.Y. 143

Siegel, B.Z. 448

Siegel, S.M. 448

Siems, P.L. 179

Silker, W.D. 420

Sinov, O.P. 337

Sinha, E. 449

Skaar, H. 450

Skarenkova, K. 451

Skei, J.H. 452

Slad, E.A. 229

Slatkin, D. 453

Slowey, J.F. 209

Small, L.P. 454, 455

Smith, E. 428

Smith, J.C. 31

· Smith, J.D. 456

Smith, M. 187

Smith, M.J. 330, 331

Smith, W.J. 193

Smith, R. 512, 513

Smith, R.C. 366

Smith, R.G. 457

Soininen, R. 246

Sokolova, B.G. 458

Soldat, J. 131

Soldat, J.K. 151

Somayajulu, B.L. 110

Sondel, J.A. 403

Soutar, A. 98, 522

Spalding, R.P. 430

Spangler, W.J. 459

Sparks, R.E. 72, 74, 75, 76, 77

Specht, A.W. 306

Spektorov, K.S. 408

Spektorova, L.V. 408

Spigarelli, J.L. 459

Spoor, W.A. 141

Stansby, M.B. 460

Stara, J.P. 356

Steele, A.K. 406

Steele, W.A. 216

Stegnar, P. 296

Steward, K.K. 464

Stewart, W.D.P. 215, 266

Stickney, R. 513

Stiff, H.J. 354

Stith, D.A. 461

Stoner, J. 93

Strohal, P. 233

Strom, R.W. 462

Sugai, M. 289

Sullivan, J.T. 91

Sullivan, W.T. 152

Sumiya, M. 200

Sutterlin, A.M. 463

Sutton, D.L. 864

Sazaki, A. 377

Sweeton, P. 488

Syers, J.K. 465

Tadokoro, S. 241

Talai, K.I. 297

Takahashi, R. 245, 246

Tanaka, A. 289

Tanaka, M. 436

Tanaks, T. 241

Tagovac, T. 140

Taylor, F. 513

Temkin, O.M. 52

Templeton, W.L. 505

Tharin, D.W. 12

Thatcher, T.O. 40

Thode, E.P. 383

Thomas, C.C., Jr. 402, 403, 466

Thomas, R.L. 467, 468

Thompson, J.A. \$69

Thompson, Stanley E. 470

Thorarisson, P. 848

Thornton, T. 54, 671

Tikriti, S. 31

Ting, R. 472

Ting, R.T. 320

Tingle, L.E. 473

Tomasevic, 7. 10

Tomlinson, R.D. 478

Tomoyeda, M. 475

Topping, G. 476

Tornabene, T.G. 477, 478

Toth, S.J. 479

Trabalka, J.R. 33

Tranter, W.H. 515

Trayanova, H. 21

Tremblay, J-L. 80

Troise, P.L. 190

Tsai, A. 90

Tsal, Chu-7a 480

Turekian, K.K. 481

Turner, P.C. 264

Tarovskii, D.S. 482

Tyler. G. 403

Ulrikson, G.W. 33, 407, 108

Underdal, B. 212, 213

Unlu. M.F. 484

Uthe, J.P. 485

Valanju, P. 393

Valette, J.W. 486

Van As. V. 487

Vau Der Hoek, G.J. 599

Van der Leaden, f. 190

Van Rook, R.T., Jr. 108, 438

Yan Leerhoven, C. 262

Van Puyubroeck, S. 398

Van Weers, A.W. 489

Vanderborght, O. 398

Vanderploog, H. 394, 490, 491

VanLaerhoven, C.J. 261, 263

Parentsur, I.E. 408

Vasiley, V. 344

Vaskovsky, V.B. 492

Velez, A. 193

Ventilla, B.J. 197

Vercruysse, A. 093

Vermeer, R. 494, 495

Vernberg, J. 897

Vernberg, W.S. 496, 497

Verzi, M. 404

Vicedomini, N. 50

Vilguta, A. 18

Vleggaar, M. 087

Voipio, A. 432

Volkov, G.A. #98

Vos. J. 398

Vosjan, J.H. 499

Wacker, H. 57

Waller, W.T. 72, 74, 75, 76, 77, 500

Walter, C.M. 501

Walters, L.J. 502

Walton, C.J. 187

Ward, G.4. 503

Ward, J.V. 504

Waterfall, C.E. 395

Watson. D. 119

Watson, D.G. 505

Waugh, T.C. 23

Waxman, J.B. 284

Webb, J.S. 54, 471

Weisbart, M. 506

Weise, G. 27

Weiss, H.V. 511

Weissberg, R.G. 507

Weissbuch, H. 508

Westermark, T. 254

Westlake, G.P. 74

Westoo, G. 509

Wetherill, G.W. 413

- ·

Wetscher, H. 300

White, D. 513

White, G.G. 278

White, M.W. 386

Whitfield, J. 181

Whitfield, P. 317

Wilder, H.B. 510

Wildish, D.J. 526

Wilkniss, P.E. 83, 84

Williams, A. 407

Filliams, P.H. 511

Williams, R.R. 179

Williams, V.P. 239

Windom, H.L. 457, 512

Windon, H. 513

Winner, J.E. 176

Wirhowski, P. 416

Wissmer, R.C. 411

Witherspoon, J. 488

Wixson, B. 48

Wixson, B.C. 251

Wixson, B.G. 19, 182, 183, 514, 515

Wolf, A. 453

Wolfe, D.A. 516, 517

Wolfe, N.L. 38

Wong, K.M. 164

Wood, J.M. 518, 519

Woolson, E.A. 239, 520

Yasso, W.E. 82

Yevish, P.P. 309

Young, D.R. 224, 521, 522

Young, R.G. 523

Zakharieva, V. 344

Zakharieva, Z. 344

Zarembski, Y. 47

Zaric, M. 140

Zaroogian, G.E. 309

Zelenko, V. 295

Zepp, R.G. 38, 424

Zinkovskii, V.A. 347

Zitko, P. 524

Zitko, W. 525, 526

21obin, M.S. 527

20bel, 3.5.3. 507

Zagges, V.D. 191

KEYWORD INDEX

135 KRANORD INDEX ABSORPTION 12, 13, 65, 90, 160, 225, 251, 261, 274, 277, 279, 306, 319, 321, 324, 351, 356, 408, 422 ALLOY 235 ALUMINUM 103, 149, 172, 218, 235, 260, 307, 429, 429, 432, 517 ACCUMULATION 117, 154, 174, 217, 258, 261, 263, 266, 275, 276, 370, 392, 423, 482, 483, 508, 512, 517 ANALGEMENTION 111 AMERICAN EEL 170 ACCUMULATION PACTORS 504 AMINES 366 ACCUMULATORS 180, 218 AMINO ACIUS 37, 353, 354 ACETATE 356 AMINOLEVULINATE DEHYDRASE 247 ACETIC ACID 429, 429 ARMONIA 180, 354 ACETYLENE 52 AMMONTUM 432 ACID PLANT 19 AMMONTUM COMPOUNDS 527 ACIDS 411 ANAEROBIC 7, 253 ACTIVATED SLUDGE 475 ANAPROBIC PONDS 65 ACTIVATION ANALYSIS 106, 119, 139, 233, 311, 377, ANAPROBIC SYSTEMS 387 ACTIVIATED SLUDGE PROCESS 191 ANALYSES 309, 395 AWALYSIS 48, 73, 171, 216, 236, 318, 327, 346, 354, 362, 363, 387, 388, 402, 469, 504 ACUTE 92, 195, 321, 372 ADDITIVITY 453 ANALYTICAL CHEMISTRY 457 ADI 321 ANALYTICAL METHODS 518 ADSORPTION 7, 18, 23, 37, 49, 98, 111, 132, 139, 153, 203, 218, 225, 228, 257, 266, 289, 292, 307, 360, 428, 474, 507, 517 ANALYTICAL PROCEDURES 319 ANCHOVETA 51 ADULTS 416 ANDROGEN 435 APROBIC 253 ANIMAL DISEASES 460 AMROBIC PONDS 65 ANTIMALS 99, 135, 164, 195, 207, 218, 225, 228, 255, 258, 259, 261, 264, 266, 286, 290, 291, 296, 299, 321, 351, 359, 379, 411, 423, 440 APROBIC SYSTEMS 387 ABROSOLS 63 ANIONS 414 AGE 278, 386, 509, 524 AMMELIDS 490 AGE EPPECTS 149 ANNUAL VARIATIONS 214 AGE VARIATIONS 402 ANODE 235 AGRICULTURAL RUNOPP 109 ANONALIES 104 AGRICULTURE 17, 971 ANOXIA 136 AIR 8, 173, 201, 403, 423 ANTAGONISM 453 AKLYMERCURY 41 ANTIBODIES 299 ALBACORE 224 ANTIHONY 131, 139, 153, 165, 233, 290, 311, 420, 480, 881, 487, 517 ALPALPA 218, 306, 428 ALGRE 18, 19, 57, 62, 65, 66, 136, 154, 158, 160, 175, 180, 181, 182, 183, 186, 200, 215, 228, 239, 241, 251, 266, 269, 275, 277, 291, 292, 325, 329, 330, 331, 338, 353, 382, 403, 406, 411, 431, 434, 451, 887, 504, 514, 523, 527 ANTIHONY 122 131 ANTIHONY 125 420 APPLES 218, 319 ALGAL BLOOMS 181, 182, 183, 519 APPLICATION FACTOR 128 ALGAL GROWTH 190, 331 APRICOT 219 ALGICIDE 314, 523 AQUACULTURE 276, 277 ALGICIDES 57 AQUATIC ANIHALS 291, 460

ALKALINITY 307

ALKALINITY 307

ALKONYALKYLHERCURY 195, 253, 254

ALKYL ARSENICALS 239

ALKYL ARSTNE 520

BLKYLATION 387

ALKYLATION 387

ALKYLMERCURY 195, 253, 254

BLANK PAGE

KEYWORD INDEX

AQUATIC ECOSYSTEMS 18, 45, 49, 74, 74, 117, 119, 155, 156, 164, 165, 239, 252, 275, 291, 299, 370, 379, 393, 410, 421, 423, 431, 487, 489

AQUATIC ENVIRONMENTS 101, 147, 424

AQUATIC ORGANISMS 453

AQUATIC PLANTS 27, 87, 218, 228, 234, 415, 464

AQUATIC VASCULAR PLANTS 65

ACUATTON 67, 436

AQUEOUS CHEHISTRY 371

AQUEOUS SOLUTIONS 47, 332, 404, 446

ARSENATES 70, 265

ARSENIC 1, 8, 11, 12, 53, 58, 103, 108, 109, 131, 139, 225, 239, 265, 295, 311, 312, 318, 319, 319, 324, 325, 361, 402, 415, 457, 466, 492, 498, 510, 513, 517, 518, 520

ARSENIC COMPOUNDS 498
ARSENIC TRIOXIDE 319

ARSENTC 76 131

ARSTHO-ORGANIC COMPOUNDS 325

ARSTNE 520

APTESIAN BASIN 295

ARTIFICAL MEANDERS 19

ARTLHERCURY 195

ASPARTATE 96

ASSIMILATION 488, 517

ATAXIA J27

ATLANTIC SALHON 526

ATLAS 190

ATROSPHERE 9, 32, 41, 46, 63, 99, 173, 195, 228, 379, 365, 412, 413, 449, 515, 526

ATHOSPHENIC LOADING 202

ATOMIC ABSOPPTION 103

ATCHIC ABSORPTION SPECTROPHOTONETRY 48, 98, 142, 145, 149, 217, 232, 263, 266, 319, 349, 378, 406, 456, 483, 507, 518

ATORIC ABSPORTION SPECTROPHOTORETEN 92

ATORIC SPECTROSCOPY 346

ATP 215

ATTENDATION 224

AUTORATION 100

AUTOMOBILE 98

AUTOMOBILS EMISSIONS 378, 421, 423

AUTOROBILE EXHAUST 201

AUTORADIOGRAPHY 154, 288, 359, 489

AVAILABILITY 218, 225, 260, 263, 428, 520

AVOIDANCE 28%

AYON POTENTIAL 120

BACKGROTED 465

BACKGROUND LEVELS 385

BACTERIA 34, 57, 179, 180, 210, 215, 299, 352, 366, 367, 459, 475, 478, 518

BACTERIACIDES 57

BACTERIAL DEGRADATION 959

BAL 319

DAWANA 218

BARIUM 21, 149, 517

BARTUM 140 106, 165

BARKS 483

BARLEY 218

BARNACLES 521

BARYLLIUM 225

BASS 278

BATHYL-DEMERSAL PISH 115

BATTERIES 92, 261

BEDROCK 432

BEER 319

BEHAVIOR 74, 129, 284

BENTHONIC SEDIMENTS 450

BENTROS 81, 105, 134, 286, 394, 416, 514

BENZALKONIUM RESIN 57

BENZARTHRACENE 58

BENZENE 367

BENZOIC ACID 136

BERTLLIGH 103, 149, 440, 517

BERTLLIUM 7 165

BERTLLOSIS 440

BIBLIOGRAPHY 2, 3, 4, 39, 55, 107, 108, 147, 250,

SICARBONATE 66, 432, 498

BIOACCUMULATION 8, 13, 60, 80, 87, 97, 105, 117, 133, 155, 160, 192, 211, 222, 228, 255, 277, 278, 286, 328, 359, 372, 381, 396, 402, 406, 415, 419, 438, 485, 450, 452, 484, 504

BIOACCUMULATION MODELS 397

BIOASSAY 46, 72, 91, 411, 453

BIOCHEMISTRY 135, 460

BIOCONCENTRATION 232, 402, 434, 467, 488, 494, 495

BIOCYCLE 233

BIODEGRADABILITY 520

BIODETERIORATION 367

BIOGEOCHEMISTRY 7

BIOINDICATOR 62

BIOLOGICAL AVAILABILITY 398

BIOLOGICAL EFFECTS 197, 259, 299, 527

BIOLOGICAL HALP-LIPE 36, 92, 132, 157, 195, 228, 259, 321, 350, 466, 489, 489, 506

BIOLOGICAL HALF-TIMES 13, 396

BIOLOGICAL INDICATORS 218, 406, 494, 521

BIOLOGICAL MODELS 491

RETWORD INDEX CADMIUM 280, 281, 285, 287, 290, 294, 301, 311, 316, 336, 348, 349, 351, 356, 357, 372, 373, 385, 390, 395, 399, 402, 406, 407, 411, 414, 419, 435, 440, 457, 462, 466, 476, 483, 488, 513, 517, 525 BIOLOGICAL MONITORING 74, 75, 77 BIOLOGICAL STRESS 299 BIOLOGICAL UPTARP 111 BYOLOGICAL VARIABILITY 169 CADMIUM CHLORIDE 263, 264 BTOLOGY 282 CADMIUM COMPLEXES 414 BIONAGNIPICATION 239 CADHIUM COMPOUNDS 527 BIOHASS 34, 65, 451, 517 CADMIUM IGDIDE 275 BIOSPHERE 195 CARNTON 109 BAS BIOSYNTHESIS 325, 338, 435 CADMIUM 115 246 BIOTA 176, 296 CADMIUM 1158 356 CALCIUM 35, 78, 103, 109, 193, 218, 251, 307, 332, 341, 363, 375, 393, 432, 483, 498, 517 BIOTRANSPORMATION 126 BIRD POPRIATIONS 254 CALCIUM ARSONATE 319 BIRDS 53, 195, 228, 253, 254, 266, 321, 495 CALIBRATION 331 BISBUTH 517 CANCER 319, 319 RISHUTH 214 113 CAPILLARY ACTION 389 BIVALUES 484 CARBON 103, 482, 520 BLEACHES 111 CARBON DIOXIDE 30, 354, 498, 514 BLOOD 41, 125, 132, 195, 228, 321, 321, 350, 413, CARBON 14 86, 154, 165, 239, 288, 464, 520 BLOOD BRAIN BARRIER 195 CARBONATES 217, 430, 441 BLOOD PLOW 264 CARBOXIPERTIDASE 177, 178 BLOOD LEVELS 195 CARCINOGENESIS 440 BLOOD PLASMA 195 CARCINOGERS 319 BLOWDOWN 186, 383 CARNIVORE 286 BLUE GREEN ALGAE 215 CARP 196, 252, 314, 364, 402, 403 BLUEPISH 115 CARROTS 228 BLURGILLS 33, 69, 74, 75 CATALYSTS 228 BOATS 248 CATION EXCHANGE CAPCITY 218 BODY WEIGHT 115 **CATIONS 120, 479** BONES 271, 472, 509 CATS 321 BOROH 103, 218, 225 CATTLE 218, 351 BOTTON PAUNA 255, 471 CCCP 997 BPAIN 92, 195, 228, 321, 321, 403 CELL DIVISION 104 BREATHING 75 CELL HENBRANES 478 BRONINE 103, 225, 377 CELL VIABILITY 478 BRONINE 82 159 CELL WALLS 978 BROOK TROUT 232, 526 CELLS 303, 450, 478 BROWN TROUT 123 CELLULOSE 335 BUPPERS 331 CENTRAL NERVOUS SYSTEM 125, 321 BULLHEAD 60 CEREALS 218 BURBOT 161 CEREBRAL PALSY 195 BUSH BEARS 167 CERTUM 10, 59, 139, 223, 236, 305, 394, 420, 439, 481 CABBAGE 218, 228 CERIUM 101 236 CACODYLIC ACID 319, 520 CERIUM 144 18, 106, 143, 165, 223, 231, 368, 377, 394, 420, 431, 439 CADMIUM 1, 4, 43, 48, 63, 65, 66, 80, 85, 87, 89, 92, 103, 107, 138, 146, 148, 149, 167, 177, 178, 180, 183, 203, 205, 208, 212, 213, 217, 218, 225, 229, 230, 234, 235, 241, 242, 243, 245, 246, 247, 261, 263, 264, 267, 275, 276, 277,

CESIUM 18, 47, 139, 149, 211, 224, 233, 236, 305, 370, 393, 394, 396, 410, 420, 432, 439, 487, 517

```
KETWORD INDEX
CRSIUM 134 106, 113, 165, 508
                                                                  CLAMS 36, 203, 211, 241, 275, 320, 336, 426, 439
CESIUM 136 106
                                                                  CLAYS 23, 61, 203, 410
CESIUM 137 18, 25, 106, 113, 143, 165, 211, 224, 236, 302, 370, 377, 393, 394, 396, 410, 420, 431, 432, 439, 517
                                                                  CLEAVAGE 424
                                                                  CLUPEID 102
CESSPOOLS 189
                                                                  COAGULATION 235
CHANNEL CATPISH 33, 402, 403
                                                                  COAL 222, 232, 285, 349, 403
CHELATES 89, 289, 332, 517
                                                                  COALFISH 213
CHELATION 90, 95, 127, 158, 167, 305, 317, 331, 346, 388, 483
                                                                  COASTAL WATERS 32, 34, 49, 55, 78, 81, 82, 163, 213, 368, 393, 394, 487, 521
CHENICAL ANALYSIS 100, 139, 346, 388
                                                                  COBALT 19, 45, 65, 85, 103, 139, 149, 199, 202, 211, 215, 217, 218, 224, 225, 230, 233, 236, 273, 285, 301, 305, 305, 360, 365, 378, 393, 394, 397, 399, 408, 420, 429, 429, 429, 436, 451, 457, 481, 482, 487, 489, 517, 521
CHENICAL BONDS 352
CHENICAL POLLUTION 453
CHEMICAL REACTIONS 332
CHEMICAL SEPARATION 402
                                                                  COBALT 58 106, 165, 393, 397
                                                                   COBALT 60 18, 25, 113, 165, 211, 224, 305, 393, 394, 420, 489, 521
CHENTCALS 6, 26, 40
CHEMISTRY 20, 38, 103, 111, 119, 225, 200, 253, 283, 331, 354, 463
                                                                   COBALT 60H 360
                                                                  COCKLES 426
CHENOTHERAPY 319
CHESAPBARE BAY 113
                                                                   COD 213
CHITOSAW 335
                                                                   COENZYNES 519
CHLOR-ALKALI PLANTS 92, 111, 228, 254
                                                                   CORO SALMON 402. 403
CHLORELLA 331
                                                                   COLIFORM BACTERIA 58
CHLORIDE 20, 32, 52, 205, 218, 283, 307, 345, 356, 363, 375, 414, 432
                                                                   COLLIDINE 446
                                                                   COLORINETRIC ANALYSIS 388
CHLORIDES 527
                                                                   COLORIMETRY 92, 228, 263
CHLORENATED HYDROCARBONS 58. 254
                                                                   COLUMBIA RIVER 49
CHLORINATION 33, 52
                                                                   COMMUNITY STRUCTURE 134
CHLORINE 67, 74, 111, 218, 426, 453, 480, 498
                                                                   COMMUNITY STRUCTURE ANALYSIS 73
CHLORINE PLANTS 161
                                                                   COMPARISON INDEX 73
CHLOROPHYLLS 338
                                                                   COMPETITION 218
CHLORGPLASTS 338
                                                                   COMPLEX 446
CHLOROSIS 253
                                                                   COMPLEX FORMATION 50, 225
CHROMATE 185
                                                                   COMPLEXES 56, 67, 205, 228, 253, 273, 322, 332, 409, 409, 483, 517, 524
CHROHATOGRAPHY 154, 228, 417
CHRONIUM 1, 3, 8, 59, 65, 67, 90, 92, 103, 105, 132, 149, 203, 208, 217, 218, 225, 242, 276, 285, 294, 305, 336, 344, 354, 378, 383, 402, 462, 466, 481, 482, 483, 407, 505, 517
                                                                   COMPUTER PROGRAMS 331
                                                                   COMPUTER SIMULATION 310, 417
                                                                   CONCENTRATION 65, 92, 203, 263, 275, 386, 483
CHRONIUM 51 106, 131, 132, 165, 231, 505
                                                                   CONCENTRATION FACTOR 36, 10" 132, 228, 269, 372,
CHRONIUM 61 305
                                                                     406, 470, 517
CHRONIC 195, 319
                                                                   CONDUCTANCE 134
CHROWIC BRONCHITIS 261
                                                                   CONDUCTIVITY 432
CHRONIC EXPOSURES 77, 232
                                                                   CONGRNITAL DEFECTS 195
CHRONICITY 271
                                                                   CONSERVATION 88, 316
                                                                   CONTANTINATION 10, 51, 58, 165, 166, 176, 189, 219, 221, 228, 237, 260, 261, 308, 321, 350, 356, 377, 385, 410, 419, 460, 493, 494, 505, 519
CIRRABAR 7, 29, 195, 387
CIRCULATION 195
CITIES 423
                                                                   CONTINUOUS CULTURE 70, 499
CITRATE 50, 90
                                                                   CONTROL MEASURES 75
CITRUS 218, 218
                                                                   CONTROL MECHINSISM 351
```

```
KEYWORD INDEK
CONTROLS 17
                                                                 DCCD 447
COOLING SYSTEMS 505
                                                                 DDT 11, 187, 228, 254
COOLING TOWER BLOW DOWN WATER 92
                                                                DECOMPOSITION RATE 483
                                                                DECOMPOSITION REACTIONS 367
COOLING TOWERS 186, 383
COONSTAIL 65
                                                                 DEER 228
COORTAIL 157
                                                                 DEPICIENCY 218, 483
COPEPODS 317
                                                                 DEPOTANTS 319
 OPPER 8, 23, 30, 34, 43, 48, 52, 57, 59, 60, 63, 65, 68, 89, 91, 95, 103, 111, 115, 133, 137, 138, 141, 142, 146, 148, 149, 158, 177, 178, 180, 142, 183, 185, 193, 196, 199, 200, 202, 208, 215, 218, 222, 225, 230, 242, 243, 251, 263, 267, 273, 279, 280, 281, 284, 285, 287, 293, 294, 301, 309, 314, 316, 317, 322, 330, 331, 336, 354, 365, 378, 390, 393, 399, 802, 406, 407, 409, 411, 426, 429, 432, 433, 436, 451, 457, 462, 463, 464, 466, 476, 482, 483, 498, 499, 513, 514, 515, 517, 523, 524, 525
COPPER
                                                                DEGRADATION 321, 520
                                                                 DELTAS 34
                                                                DEMERCURATION 424
                                                                 DENTAL CARIES 193
                                                                 DEPLETION #20
                                                                 DEPOLLUTING AGENTS 80
COPPER IONS 281
                                                                 DEPOSITION 111, 118, 498
COPPER NICKEL 332
                                                                 DEPTH VARIATIONS 48
COPPER SULFATE 319, 463
                                                                 DERRATOSES 319
CORAL 288
                                                                 DESCRPTION 49, 292, 360
CORE SAMPLES 462, 507
                                                                 DETECTION 331, 500
CORMORANTS 259
                                                                 DETECTION LIBIT 504
CORM 218, 306
                                                                 DETERGENTS 331
CORROSION INHIBITORS 92
                                                                 DETOXIPICATION 347
CORVIDS 266
                                                                 DEUTERIUM 12
COWS 377
                                                                 DEVELOPMENT 66
CPAB 195, 228, 312, 372, 373, 390, 496, 497
                                                                 DIARRHEA 428
CRAYFISH 120, 453, 494, 495
                                                                 DIATORS 34, 174, 251
                                                                 DIELDRIN 123, 187
CROPS 423
CRUDE OIL 58
                                                                 DIET 42, 413, 442
                                                                 DIFFUSION 18, 49, 131, 165, 236, 299, 393, 490
CRUSTACRA 78, 166, 311, 312, 320, 437, 455, 487,
                                                                 DIFFUSION EQUATIONS 369
CRYSOSCOPY 436
                                                                 DIGESTION 59
CTENIDIA 266
                                                                 DIGESTION PROCEDURE 249
CUPPIC SULFATE 279
                                                                 DIGESTIVE TRACT 132
CURPIC IONS 524
                                                                 DILUTION 111, 159
CYANIDE 56, 316, 354
                                                                 DINETHYL MERCURY 291, 292
CYANIDES 527
                                                                 DIMETHYL SELENIDE 135
CYCLE 225
                                                                 DIRETHYLARSINE 239
CYCLING 188, 468, 505, 517
                                                                 DIMPTHYLARSINIC ACID 53
CYSTEINE 447
                                                                 DIMETHYLMERCURY 38, 192
CYTOGENTICS 33
                                                                 DIMETRYLTELLURIDE 16
CYTOPLASH 359, 450, 478
                                                                 DIPHENYLMERCURY 339, 424
C14-LABELED CACODYLIC ACID 239
                                                                 DIQUAT 464
DATRIES 503
                                                                 DISCHARGE 294, 518
DALLIGRASS 319
                                                                 DISCRIMINATION PACTORS 78
DAMS 392
                                                                 DISEASE 303
DAPHNIA 291, 434, 453
                                                                 DISEASE RESISTANCE 299
DATA RETRIEVAL 288
                                                                 DISODIUM METRYL SODIUM ARSONATE 319
```

DAUGHTER PRODUCTS 165

KRYWORD INDEX DISPERSION 159, 226 BLASHOBRANCH PISH 396 BLECTRICAL APPARATUS 228 DISSOLUTION 49 DISSOLVED ORGANIC COMPLEXES 517 ELECTROCARDIOGRAPHY 321 DISSOLVED OXYGEN 58, 134, 149, 180 ELECTRODES 331 DISSOLVED SOLIDS 428 ELECTROLITES 432 ELECTROLYSIS 235 DISTILLERY 296 DISTRIBUTION 28, 83, 99, 142, 159, 167, 184, 192, 206, 207, 238, 252, 261, 272, 288, 296, 335, 349, 356, 368, 399, 465, 467, 468, 472, 482, 486, 488, 506 BLECTRON MICROSCOPY 450, 452 **ELECTRON TRANSPORT 215** ELECTRONNICROSCOPY 359 DISTRIBUTION CORPFICIENTS 144 ELECTROPHORESIS 398 DISTRIBUTION PATTERNS 68 BLECTROPLATIN WASTES 92 DITHIZONE ANALYSIS 388 ELECTROPLATING 124 DIURNAL VARIATION 75 ELECTROPLATING DISCHARGES 372 DMA 239 ELEMENTS 106, 140, 144, 164, 363, 470 DHH 38 BLIMINATION 192, 246 DNA 352 ELK 245 DOGP'ISH SHARK 97 RLODEA 157 DOGS 321 EMISSIONS 8, 98, 173, 349 DOLPHINS 290 EMPHYSEMA 261, 440 DOSE-RESPONSE RELATIONSHIP 195 ENERGY FLOW 214, 379 DOSE-RESPONSE RELATIONSHIPS 299 ENGLISH RYEGRASS 268 DPH 38 ENRICHMENT 133, 242, 386, 427 DRAINAGE 28, 270 ENVIRONMENTAL FACTORS 225 DREDGING 7, 203, 208, 257, 313, 518 ENVIROPMENTAL SAPEGHARDS 19 DPEDGING SPOILS 208 ENVIRONMENTAL SURVEYS 73 DRINKING WATER 92, 131, 195, 220, 221, 274; 319, 344, 355, 377, 428, 503 ENZYME ACTIVITY 247 DSMA 319 ENZYMES 195, 386, 519 DTPA 167 RPC 259 DUCKS 254, 495 EPIBENTHOS 516 EPITHELIAL CELLS 359 DUCKWEED 65 DUST PALL 98 EROSION 419, 437 DYSPROSIUM 377 ERRORS 388 EAGLES 254 ERTTHROCYTE BINDING 381 EARLY WARNING 75 ESSENTIAL TRACE PLEMENTS 517 ESTUARIES 20, 22, 34, 55, 62, 68, 102, 111, 114, 185, 222, 229, 230, 231, 368, 400, 438, 439, 456, 457, 471, 479, 512, 516, 517 ECOLOGICAL HALF-LIFE 444 ECOSYSTEM ANALYSIS 275 ECOSYSTEMS 45, 417, 488 ETHANOL 414 EDERA 264 EUGLPHA 177, 178 EDTA 90, 305, 331, 517 EUPHAUSID 454 EELS 195, 526 EUROPIUM 233, 377, 420, 481 EPPLUENTS 33, 55, 65, 88, 92, 111, 151, 180, 182, 197, 216, 277, 283, 310, 349, 361, 362, 426, 514, 515, 524 EUROPIUM 152 420 EUROPIUM 154 420 EUTROPHICATION 183, 228, 384, 411 EGGS 228, 254, 816 EGGSHELLS 53 EVAPORATION 7 BICAVATIONS 411 SH 34

EXCHANGE 307

EIDER DUCK 266

```
KEYWORD INDEX
EXCHANGE CAPACITY 479
                                                                           PISHERIES 22, 471
EXCHANGE PROCESSES 409
                                                                           FISHES 119, 299, 311
                                                                           PIXATION 387, 458
EXCHANGEABLE CATION STATUS 479
EXCRETION 13, 132, 192, 195, 319, 321, 351, 484
                                                                           PLATHEAD HINNOWS 146
EXOSKELETON 393
                                                                           PLIES 143
EXPERIMENTAL STREAMS 219
                                                                           PLOCCULATION 68, 111, 153
EXTRACTANTS 263, 520
                                                                           PLORA 99
EXTRACTION 260
                                                                           PLORIDOSIDE 154
ETES 324
                                                                           FLOTATION 235, 358
PACULTATIVE PONDS 65
                                                                           FLOUNDER 195, 247
PALLOUT 25, 36, 165, 370, 377, 425, 431, 437, 439, 521
                                                                           PLOUR 228
                                                                           PLOW CHARACTERISTICS 20
PAT 187, 254, 325
                                                                           FLOW DYNAMICS 159
PAULTS 7
                                                                           FLOW RATE 377, 505
PAUNA 81, 99
                                                                           PLUME 302
FEATHERS 195, 228, 250
                                                                           FLUORESCENCE ANALYSIS 48
FECES 195, 228
                                                                           FLUORIDES 180, 363
PEDERAL 5
                                                                           FLUORINE 199, 218, 498
PERDBACK 75
                                                                           PLUROIDE 193
PEEDS 503
                                                                           PLUX 369, 455
PERREDOXIN 215
                                                                           FLY ASHES 232
PERROCYANIDE 375
                                                                           POLIAR APPLICATION 48
PERROUS HYDROXIDE 383
                                                                            FOOD 79, 155, 195, 385, 493
PERTILITY 345
                                                                            FOOD CRAIMS 18, 45, 102, 119, 125, 138, 151, 155, 175, 195, 231, 239, 252, 255, 258, 265, 277, 286, 291, 384, 393, 396, 442, 445, 476, 488, 503, 511
PERTILIZER PLANTS 111
PERTILIZERS 218, 430, 518
PETUS 92, 97, 125, 169
                                                                            POOD WEBS 105
FIDDLER CRAB 097
                                                                            POODS 228, 261, 321
FIELD EXPERIMENTS 156
                                                                            POODSTUFFS 280, 470
PIELD STUDIES 211, 488
                                                                            FORAGE 218
PILTER FEEDERS 238
                                                                            FORMENIPERA 39
PILTRATION 59, 428
                                                                            PORESTS 423
PINFISH 513
                                                                            PORMULATION 111, 365
PISH 7, 18, 29, 33, 42, 43, 51, 56, 58, 60, 72, 74, 75, 76, 77, 78, 79, 92, 96, 97, 102, 106, 114, 115, 123, 125, 128, 129, 130, 132, 143, 146, 149, 152, 157, 161, 162, 166, 171, 172, 185, 192, 195, 197, 204, 212, 213, 224, 227, 228, 228, 231, 232, 239, 241, 285, 246, 247, 252, 254, 255, 257, 258, 278, 284, 286, 291, 292, 296, 300, 308, 312, 313, 314, 319, 321, 323, 324, 326, 327, 328, 336, 311, 384, 319, 321,
                                                                            PORTRAN 331
                                                                            PORTRAN & PROGRAMMING LANGUAGE 331
                                                                            POSSIL 483
                                                                            POSSIL PUELS 228
   323, 326, 326, 327, 328, 336, 311, 345, 350, 357, 364, 377, 378, 380, 381, 384, 393, 361, 401, 402, 403, 425, 431, 434, 445, 453, 460, 466, 472, 476, 476, 480, 487, 490, 491, 493, 500, 501, 504, 505, 516, 517, 518, 523, 525, 526
                                                                            POTES 228
                                                            348
                                                                            PRESHWATER 8, 43, 49, 157, 159, 160, 174, 213, 242, 281, 293, 294, 301, 338, 348, 350, 360, 398, 425, 427, 429, 435, 453, 459, 467, 479, 502, 507, 512, 526
                                                            439,
FISH BEHAVIOUR 141
                                                                            PRESENATER DRUM 402, 403
PISH KILLS 76
                                                                            PRESHWATER ECOSYSTEM 121
                                                                            PROG 35
PISH MEAL 326
FISH OTLS 326
                                                                            PROTT PLTES 228
FISH PRODUCTS 152
                                                                            PRUIT TREES 218
FISH TISSUES 903
                                                                            PUCUS 62, 406
```

```
KEYWORD INDEX
```

FUEL REPROCESSING 165

PUELS 483

PUNAROLE 486 FUNCTIONS 379

PUNGI 109

FUNGTCIDES 31, 122, 125, 126, 137, 195, 210, 228, 261, 322, 323, 367, 518

PURNACING 19

GALACTOLIPIDS 338

GALENA 48

GALLIUH 482

GAMMA RADIATION 136

GAS CHRONATOGRAPHY 100, 228, 346, 459, 518

GASES 299

GASOLINE 58, 300

GASTROINTESTINAL 319

GASTROINTESTINAL ABSORPTION 356, 396

GASTROINTESTINAL TRACT 125, 131, 231, 393, 489

GENETIC CONSTITUTION 218

GENETIC EPPECTS 345

GENETICS 376

GEOCHEMICAL RPCONNAISSANCE 471

GEOCHEMESTRY 23, 25, 230, 428, 430, 458, 471

GEOGRAPHIC VARIATIONS 08, 98, 254, 483

GEOGRAPHY 164, 190, 490

GEOLOGY 24

GEOTHERNAL ACTIVITY 448

GEOTHERMAL DISCHARGES 507

GERNICIDES 319

GILLS 43, 92, 324, 341, 372, 380, 386, 438, 497

GINGIVITIS 321

GIZZARD SHAD 402, 403

GLACIAL PJORD 68

GLACIATION 428

GLADIOLI 218

GLUCOSE 86

GLYCOGEN 364

GLYCYLGLYCINE 37

GOALS 75

GOITER 199, 258

GOLD 111, 149

GOLDENETES 495

GOLDPISH 284, 506

GONAD \$38

GOSHAWR 254

GRAPES 218

GRASSES 228, 319, 483

GREBE 254

GREEN GLAND 372, 497

GREY SEAL 266

GROUND WATER 189, 217, 407, 428

GROUNDFISH 96

GROWTH 54, 122, 127, 197, 234, 299, 353, 382, 451, 453, 499, 523

GROWTH INHIBITION 70

GROTTH RATE 478

GROWTH RETARDATION 263

GUIDELINES 5, 6, 41

GUILLEMOTS 254

GUINEA PIGS 321

GULLS 495

GUPPY 157

HAPNIUM 139

HAIR 228, 319, 321, 350

HAIR LOSS 428

HALF-LIFE 151, 518

HALF-TIME 69

HALIBUT 327

HANDBOOK 100

HARDNESS 134, 251, 363

HATCHABILITY 228

HAY 503

HEADACHE 319

HEALTH 199, 343, 440

HEART RATE 91

HEAVY NETAL RELEASE 525

HEAVY HETALS 27, 46, 59, 80, 85, 124, 180, 181, 182, 207, 243, 260, 316, 358, 374, 391, 395, 422, 475, 476, 483

HEAVY METALS REHOVAL 59

REMATOLOGY 196

REMORRHAGE 264

REPATOPANCREAS 372, 497

MERBICIDES 319, 464

HEREIVORE 286

RETOS 483

HERRERG 213 HIGHWAYS 218

HISTORICAL TREEDS 98, 254

ROLDFAST 266

ROLOGRAPEY 73

ROMING 953

RORMONES 435

RORSETAIL 218

HUHAN HEALTH 038

KEYWORD INDEX

HUMANS 8, 10, 31, 41, 42, 45, 53, 112, 125, 138, 151, 199, 228, 241, 261, 296, 321, 343, 350, 385, 395, 403, 413, 430, 440

HUNTC ACIDS 233, 524

HUMUS 48, 354, 483

HYDRAT TON 436

HYDRILLA 964

HYDROCARBONS 173

HYDROCHRMISTRY 283

HYDROCHLORIC ACID 414, 429

HYDROCYANIC ACID 56

HYDROGEN CYANIDE 354

HYDROGENASE 215

HYPROLYSIS 205, 371

HYDROPHYTES 65

HYDROSPHERE 195, 445

HYDROXIDE 371, 408

HYDROX IDES 217

HYDROXYQUINOLINE 158

HYPERSENSITIVITY 321

HYPERPENSION 261, 440

ICE SHEFT 83

ICECAPS 448

IMPURITIES 388

INCLUSION BODIES 271

INDICATOR PLANTS 428

INDIVIDUAL VARIATIONS 132

INDUSTRIAL EPPLORATS 22, 428

INDUSTRIAL SEWAGE 109

INDUSTRIAL WASTES 75, 76, 98, 253, 378, 411

THOUSTRY AL WATER 256

INDUSTRY 8, 19, 20, 55, 111, 124, 283, 289, 296, 347, 385, 391, 880, 868, 515, 524, 526

INFAUNA 516

INFECTIOUS DISEASES 299

INFRARED SPECTRA 100

INGESTION 277, 319, 455

INHALATION 125, 195, 319, 321, 413

INBIBITION 57, 191, 338, 523, 527

INHIBITOR 122

INHIBITORY EFFECTS 210, 244

THEATO WATERWAYS 377

THORGANIC SURPACES 474

INSECTICIDES 11, 319, 366

INSECTS 119, 175, 299

THTAKE 92, 155, 162, 319

INTERACTIONS 64, 218

THTERPERENCP 122

INTERNAL CYCLING 269

INTERNATIONAL STANDARDS 145

INTESTINES 90, 132, 472

INVESTEERATES 18, 81, 105, 204, 228, 312, 492

IODACETATE 279

TODINE 199, 218, 225, 393

IODINE 131 106, 165, 377, 393

TON EXCHANGE 30, 203, 388, 409, 414, 483, 517,

ION EXCHANGE RESINS 388

ION SELECTIVE ELECTRODES 331

IONS 30, 95, 120, 121, 215, 366, 383, 409, 416, 432, 498

IRON 18, 23, 34, 65, 103, 111, 114, 115, 133, 134, 149, 167, 200, 202, 215, 218, 225, 230, 233, 252, 263, 285, 305, 378, 393, 307, 399, 406, 807, 808, 409, 420, 426, 832, 451, 857, 462, 472, 479, 881, 482, 483, 487, 512, 516, 517, 525

IRON SULPIDE 7, 458

TRON 55 10, 165, 252, 420

IRON 59 106, 305, 397

IRRIGATION \$28

IRRIGATION WATER 503

· IRRITABILITY 319

ISOMERIC NUCLEI 106

ISOPROPHY DIMETHYLDITHIOCARBAHATE 158

ISOTOPE RATIO 505

ISOTOPES 45, 404, 413, 445

ISOTOPIC ABUNDANCE 98

ISOTOPIC EXCHANGE 404

JAPANESE HILLET 167

KARYORINZSIS 104

KERATOSES 319

KIDNEY 359

KIDNETS 69, 132, 148, 195, 228, 266, 321, 395, 466, 489, 504

KINETICS 30, 00, 67, 70, 95, 106, 127, 143, 211, 231, 252, 292, 305, 348, 387, 393, 404, 013, 020, 031, 089, 090, 527

LABORATORY HODEL 508

LABORATORY STUDIES 156, 211, 305

LACTATE 43

LAG 75

LAGOONS 34

LAKES 8, 29, 89, 103, 105, 112, 161, 168, 190, 206, 242, 256, 257, 301, 318, 325, 348, 386, 811, 832, 832, 833, 883, 859, 861, 865, 867, 402, 494, 501, 502

LAND POLLUTION 377

LANTHANUR 35, 103, 481

LANTHANUR 140 159

LARVAR 118, 143

```
KRYWORD INDEX
LASERS 73
                                                                         LOSS 80
LC 50) 197
                                                                         LUBRICATION 194
LEACHING 7, 179, 225, 387, 428
                                                                         LUMINESCENCE 100
LEAD 9, 11, 12, 15, 19, 23, 23, 48, 50, 58, 59, 63, 68, 80, 92, 98, 99, 103, 112, 128, 133, 138, 142, 149, 180, 181, 182, 183, 197, 201, 202, 203, 204, 205, 208, 212, 217, 218, 219, 220, 221, 225, 230, 235, 242, 247, 251, 251, 260, 262, 267, 268, 271, 274, 276, 280, 294, 301, 304, 306, 307, 316, 319, 329, 336, 349, 355, 359, 364, 378, 386, 391, 392, 399, 406, 407, 409, 411, 412, 613, 619, 421, 422, 423, 429, 437, 440, 443, 445, 452, 457, 462, 476, 877, 470, 482, 483, 514, 515, 517
                                                                         LUNGS 319
                                                                         LUTIDIEN 446
                                                                         MACROINVERTEBRATES 516
                                                                         MACROPHITES 65
                                                                         MACROPLANKTON 455
                                                                         MAGNESIUM 30, 103, 149, 193, 215, 210, 251, 273, 363, 393, 432, 483, 498, 517
LEAD ARSENATE 319
                                                                         MALES 264
LEAD ARSONATE 319
                                                                         MARNALS 351
LEAD CORPOUNDS 477
                                                                         MAN 131
LEAD SITEATE 360
                                                                         MANGANESE 18, 23, 48, 65, 103, 111, 114, 115, 133, 134, 149, 153, 193, 199, 200, 215, 216, 224, 225, 230, 236, 273, 287, 293, 351, 378, 393, 394, 397, 399, 406, 408, 420, 429, 429, 432, 436, 438, 439, 451, 457, 472, 479, 482, 483, 487, 512, 516, 517, 521
LEAD 204 413
LEAD 210 110, 143, 359, 437, 445
LEAD 218 359
LEADED GASGLINE 112, 304
                                                                          MANGAWESE OXIDES 139
                                                                         MANGAMESE 54 18, 106, 153, 165, 224, 236, 394, 397, 420, 438, 439, 521
LEAST SQUARES METHOD 331
LEAVES 48, 218, 419, 452, 483
                                                                          MARNITOL 154
LEGAL ASPECTS 518
                                                                          HANTLE 438
LEGUMES-D 215
                                                                         MAPS 190
LENS 466
                                                                          MARINE ALGAB 200
LETHAL LIMIT 92
                                                                          MARINE BIOLOGY 26, 211, 216, 237, 240, 290, 325,
LETHAL TOLERANCE MEDIAN 72
LETHALITY 343, 453, 524
                                                                          MARINE BIOTA 51, 286, 478, 516
LETTUCE 218, 260, 262, 263, 412
                                                                          MARINE DISPOSAL 18, 165, 393
TICHERS 245, 409, 483
                                                                          MARINE ECOLOGY 426
LIPE CYCLES 460
                                                                          MARINE ECOSYSTEM 121
LIGHT 379, 382
                                                                          HARINE POODSTUPPS 157
LIGNOSULFORATES 524
                                                                          MARINE LIFE 202
 LIME 310
                                                                          MARINE ORGANISMS 197, 238, 275, 320, 395, 437,
                                                                             994
LIMING 262, 306
                                                                          HARINE SHYTOPLANKTON 474
 LINHOLOGY 23, 325
                                                                          MARINE TRLEOST 396
LIMPETS 395, 406
                                                                          MARLIN 14
LINEAR SYSTPMS 455
                                                                          MARSHES 462
LIPID 327
                                                                          MARTINS 228
LIPID SOLUBILITY 321
                                                                          HASS BALANCE 269
LIPIDS 325, 326, 338, 353, 478, 492
                                                                          HASS SPECTROTETRY 98, 459
LIQUID WASTR 216
                                                                          MATERIAL BALANCE 275
LIQUID WASTES 165, 299
                                                                          MATERNAL LOAD 97
LITHIUM 47, 66, 149, 336
                                                                          NATHENATICAL ARTRODS 389
LITHOSPHERE 195
                                                                          NATHENATICAL HODEL 155
LITTER 483
                                                                          MATHEMATICAL SOLUTIONS 421, 490
LIVER 69, 126, 132, 187, 228, 254, 266, 321, 357, 364, 393, 466, 504, 513
                                                                          KAXIHUH ACCEPTABLE CONCERTRATION 229
LIVERS 290
                                                                          HECHANISHS 374
```

MECHANGRECEPTORS 185

LOBSTERS 228, 320

```
KRYWORD INDEX
HEDIAN TOLERANCE LIMIT, TLM 328
                                                                                 METHODOLOGY 25, 354
MEDICING 282
                                                                                 HETHOXYETHYLMERCURIC ACETATE 378
SPLT 200
                                                                                 HETHOXYETHYLM ERCURY 253
HEHBRANE PERMEABILITY 447
                                                                                 METHYL ARSENIC ACID 319
HEMBRANES 078
                                                                                 WETHYLARSONIC ACID 53
                                                                                 METRYLATION 44, 92, 101, 195, 253, 254, 255, 256, 257, 291, 292, 308, 387, 518, 519
HERCURIAL PUNGICIDES 323
MERCURTALEMTIS 321
                                                                                  HETHYLATION RATE 257
MERCURIALS 210
                                                                                 HETHYLCOBALAMIN 519
HERCURIC ACETATE 118
                                                                                  METHYLCORRINGIDS 519
MERCURIC CHLORIDE 195, 321, 328, 335, 473
                                                                                 RETRYLDITHICCARBARATE 137
MERCUPIC SULPIDE 249
                                                                                  METRYLHERCURY 22, 31, 38, 69, 92, 117, 129, 155, 169, 170, 192, 195, 228, 254, 255, 256, 257, 296, 297, 298, 308, 321, 338, 345, 346, 350, 380, 331, 387, 480, 459, 466, 485, 493, 509, 518, 518, 526
MERCHROUS CHLORIDE 195
MERCURY 5, 7, 8, 10, 12, 14, 22, 24, 28, 37, 38, 41, 42, 44, 49, 51, 52, 58, 69, 80, 83, 84, 89, 92, 93, 94, 96, 97, 101, 103, 111, 115, 116, 117, 117, 121, 126, 130, 145, 152, 156, 157, 160, 161, 162, 156, 168, 169, 170, 171, 174, 175, 184, 171, 192, 195, 197, 203, 205, 206, 208, 208, 217, 226, 227, 229, 232, 243, 247, 249, 253, 259, 255, 256, 257, 258, 266, 278, 285, 286, 289, 290, 291, 292, 296, 297, 299, 300, 305, 308, 311, 315, 321, 323,
                                                5, 97, 101, 17, 121, 121, 126, 129, 161, 162, 163, 175, 180, 188, 188, 104, 210,
                                                                                  METHYLPTRIDINE 446
                                                                                  METHAL RETARDATION 195
                                                                210,
                                                                 250,
                                                                                  MICE 195, 321, 359
                                                                 280.
                                                                                  MICROANALYSIS 431
   299, 300, 309, 308, 311, 315, 335, 338, 340, 345, 346, 348, 377, 378, 380, 381, 387, 388,
                                                 321, 323,
                                                                 328
                                                350, 367,
390, 401,
                                                                                  WICROSTOLOGY 16
                                                                 402
   803, 407, 416, 417, 828, 480, 853, 456, 857, 860, 461, 465, 468, 469, 473, 475, 888, 488, 496, 897, 898, 501, 502, 511, 513, 517, 518, 519, 522,
                                                                                  MICROCOSTS 275, 488
                                        440, 442, 447, 465, 466,
                                                                448.
                                                 ao 3,
                                                                                  MICRONUTRIENTS 348
                                                                 295
                                                506, 507
525, 526
                                                                 509
                                                                                  HICHOOGANISHS 218, 346, 475
HERCURY ACCUMULATION 174
                                                                                  HICROOGRANISHS 44
MERCURY CHLORIDE 376, 380, 484
                                                                                  MICROORGANISM 16. 477
                                                                                  HICROORGAMISHS 18, 29, 109, 126, 177, 179, 191, 210, 244, 255, 282, 291, 308, 324, 338, 339, 340, 346, 361, 366, 459, 478, 499, 514, 518
MPRCURY COMPOUNDS 136, 388, 475, 519
MERCHRY ORGANIC COMPONEDS 291
HEPCURY POLLUTION 232
                                                                                  MIGRATION 7, 15, 179, 229, 393, 410
MERCURY SULPIDE 253, 257
                                                                                  MILK 196, 351, 377, 503
HERCURY UPTAKE 174
                                                                                  HILLING 19
MERCORY 203 69, 228, 321, 377, 381, 484, 496, 506
                                                                                  HILLS 180, 181, 182, 514, 515
HERCURY/ACETATO-PHENYL 367
                                                                                  HINAHATA DISEASE 321
HERGANSERS 254, 495
                                                                                  HINE DRAINAGE 139
MERKURAN 321
                                                                                  MINE WASTES 180, 372
METABOLIC CONVERSION 109
                                                                                  MINERALIZATION 283
METABOLIC PATHWAYS 380
                                                                                  MINERALS 23, 334
HETADOLIC RATE 453
                                                                                  MINES 19, 134, 179, 181, ift, 310, 411, 428
METABOLISM 35, 03, 86, 151, 157, 207, 206, 282, 299, 320, 328, 339, 303, 308, 350, 360, 373, 393, 413, 487, 497, 506
                                                                                  MINING 180, 251, 270, 296, 391, 407, 471, 514,
                                                                                  MINING WASTEWATER 251
METAL ACETATES 436
                                                                                  MITOCHONDRIA 35, 359
METAL PINISHING 88
                                                                                  MITOSIS 104
METALLO-PROTEIN 215
                                                                                  MIXING 269
HETALLOCYANDIN 177, 178
                                                                                  BMA 109
MPTALLUPGY 347
                                                                                  HOBILITY 111
METALS 12, 13, 23, 62, 63, 64, 120, 127, 147, 172, 176, 179, 194, 200, 235, 244, 247, 266, 267, 273, 276, 285, 289, 303, 353, 366, 371, 390, 405, 406, 409, 411, 416, 419, 426, 449
                                                                                  HOCKUP $10
                                                                                  MODEL ECOSYSTEM 239, 410, 423
 METHANOL 514
                                                                                  MODELING 310, 455
```

KEYWORD INDEX

MODELS 127, 162, 302, 370, 379, 389, 413, 417, 421, 425, 500, 517

HOISTURE EFFECTS 218

HOLLOSCICIDES 91

MOLLUSCS 34, 78, 226, 238, 266, 390, 393, 395, 426, 438, 439, 487, 489, 490

MOLYBDENOSIS 218, 428

HOLYRDENUM 104, 193, 199, 218, 225, 269, 270, 427, 428, 451, 471, 482, 483, 503, 504, 517

HOLYBDENUM PHOSPHATE 451

MOLYBORNUM REMOVAL 428

MONITORING 74, 439

HOWITORS 73

HOWRETS 195

HONOCARBOXYLIC ACIDS 136

HONOMETHYLARSONIC ACID 109

NONTHORILLOWITE 23

MORTALITY 72, 118, 373

HOSSES 419, 450, 452, 483

HOTORS 248

HOVEMENT 75, 500

HULTI-BLEMENT ANALYSIS 233

MURHICHOG 148, 149, 185, 247, 281

MUNICIPAL SEWAGE 8

MUNICIPAL WASTE TREATMENT 65

MUSCLES 35, 115, 161, 171, 231, 372, 438, 465, 472, 495, 504, 513

MUSKRATS 228

MUSSEL 256

MUSSELS 36, 228, 397, 439, 444, 521

HYCOTOXIN 366

HYOCARDIUM 321

NAIAD 87

HATLS 319

NATURAL RADIOACTIVITY 165

NATURAL SOURCES 253

WATURAL WATERS 9, 53, 415, 469, 498

KAUSEA 319

NEMATODES 180

NEOPLASIA 104

REPTORIUM 131

REPTUNIUM 239 131

NERVES 120

NEUTRALIZATION 310

NEUTRON ACTIVATION 151

HEUTRON ACTIVATION ANALYSIS 92, 103, 228, 254,

319, 402, 403, 518

RESTRON BEAMS 311

NEUTRONS 106, 233

NICHE 33

MICKEL 8, 23, 65, 66, 68, 89, 103, 133, 142, 149, 200, 202, 203, 225, 242, 260, 263, 285, 336, 351, 365, 371, 378, 393, 399, 406, 408, 409, 436, 480, 446, 457, 482, 483, 517

HINHYDRIN 136

NIOBIUM 95 165, 431

NITEATES 34, 180, 204, 283, 329, 432

MITRIC ACID 429, 429
MITRILOTRIACETATE 309

NITRILOTRIACETIC ACID 433, 525

NITRILOTRIACETICACID 89

NITRITE 180

WITRITES 34

MITROGER 167, 218, 262, 335, 432, 514, 517

NITROGEN PIXATION 215, 504

NTA 309, 033, 525

NUCLEAR EXPLOSIONS 288

NUCLEAR INDUSTRY 165

NUCLEAR POWER PLANTS 216, 453, 487

NUCLEAR REACTIONS 311

NUCLEAR SHIPS 165

NUCLPOPROTEIN 364

NUCLEUS 271, 450

NUMERICAL SOLUTION 389

NUTRIENTS 58, 167, 180, 181, 182, 183, 331, 348, 363, 362, 426, 517, 519

NUTRITION 330, 451

OALTION 332

OATS 218, 260, 261, 262, 412

OCCUPATIONAL EXPOSURES 41, 195, 319

OCEANS 99, 323, 458, 481

OIL 235, 248, 261

OIL EMULSION 194

OLIGOTROPHIC 228

OPTICAL BRISSION 103

ORES 7

ORGANIC CHLORINE COMPOUNDS 136

ORGANIC COMPOUNDS 10, 176, 248, 367, 433, 441,

458. 482. 524

ORGANIC TODINE COMPOUNDS 136

ORGANIC HATTER 218, 225, 260, 272, 340

ORGANIC MERCURY 163

ORGANOCHLORINE INSECTICIDE 11

ORGANOMERCURIAL SALTS 38

ORGANOMERCURIALS 116, 339, 346, 388

ORGANOMERCURY 126

ORGANOMETALLIC COMPOUNDS 16, 136

KEYWORD INDEX OSPREY 254 PHARMACODYNAMICS 192 OSTECCLASTS 271 PHARMACOLOGY 343, 374 PHBASANTS 228, 254, 266, 321 OSTROCYTES 271 OSTEOLYSIS 271 PHENOL 429 OWLS 254 PRENTLMERCURIC ACETATE 157, 328, 339, 367 OXALATE 90 PHENYLMERCURIC SALTS 424 OXIDASE ACTIVITY 196 PRENYLMERCURY 38, 195, 253, 254, 256, 321, 424 OXIDATION 135, 225, 361, 387 PROSPHATE 34, 58, 70, 134, 180, 363, 430, 514 PHOSPHORUS 103, 218, 262, 327, 393, 422, 425, 432, 482, 483, 505, 517 OXIDATIVE PHOSPHORYLATION 122 OXIDE 12 PHOSPHORUS 32 165, 425, 505 OXFACIDS 361 PHOTOBIOLOGY 366 OXYGEN 30, 63, 118, 136, 155, 218 PHOTOCHENISTRY 38 OXYGEN DEPICTENCY 203 PROTON BEAMS 136 OYSTERS 54, 118, 222, 228, 275, 276, 294, 439, 471, 517 PHOTOSYNTHESIS 154, 158, 182, 215, 338 PACIFIC OCEAN 49 PHYSIC-CHEMISTRY 204 PHYSICO-CHRMISTRY 223, 240 PAINTS 92, 228 PALLADIUM 316 PHYSICOCHEMISTRY 46, 134, 142, 398 PAPER 152 PHYSIOLOGY 87, #60 PAPER MILLS 111, 228, 254 PHYTATE 90 PARAMECIUM 366 PHITOPLANKTON 105, 275, 276, 287, 329, 411, 445 PARASITES 154 PICKEREL 526 PARTICIPATORY THRNOVER 450 PIGEONS 254 PARTICLE SIZE 349, 378 PIGHENTS 92 PARTICLE SIZE SORTING 225 PIGS 271 PIRE 161, 166, 195, 213, 228, 255, 501 PARTICLES 49 PARTICULATE SOLIDS 399 PINEAPPLE 218 PARTICULATES 7, 68, 112, 173, 180, 403, 428 PIPES 355 PARTITION COEPFICIENTS 23 PLACENTA 321 PARTITION MATHEMATICS 23 PLACENTAL TRANSPER 321 PLANKTON 102, 119, 103, 170, 277, 286, 334, 403, 434, 455, 476, 481, 505, 516 PARTRIDGES 254 PASTURES 423 PLANT DISEASES 218 PATHOLOGY 343 PLANTS 27, 48, 63, 65, 80, 99, 133, 157, 164, 167, 182, 218, 225, 228, 260, 261, 261, 266, 268, 282, 293, 296, 303, 306, 319, 331, 377, 379, 385, 406, 411, 412, 415, 419, 423, 427, 428, 452, 464, 483, 488 PCB 187 PCTPLT COMPUTER PROGRAM 331 PEACHES 218 PLATING 217 PEAT BOGS 432 PLUMBOSOL VENCY 355 PEATS 463 PLUTONIUM 111, 224, 370, 420, 444 PERCH 213 PLUTONIUM 239 224, 420, 527 PERCOLATION 65 PHEUMONITIS 195, 321 PERIPHTTON 382 POIRILOTHERMS 309 PPRSISTENCE 224, 275, 419, 520 POINT SOURCES 173 PEST CONTROL 150 POISONING 31, 41, 92, 126, 172, 185, 195, 319, PESTICIDES 150, 195, 254, 319, 460 PH 34, 70, 72, 109, 113, 134, 149, 167, 180, 205, 206, 218, 223, 225, 251, 254, 257, 260, 307, 308, 310, 340, 355, 360, 368, 379, 411, 424, 432, 451, 516, 517 POLAROGRAPHY 47, 92, 361 POLLUTION 201

POLLUTION EFFECTS 331, 460

・イクをよりては、1972年で、1972年では、1972年に、1972年では、1972年に、197

```
KETWORD INDEX
POLONIUM 437, 445
POLONIUM 210 437, 445
POLYACRYLAHIDE 235
POLYAMINES 335
POLYCHARTES 418, 517
POLYCHLORIWATED BIPHENYLS 254
POLYGRAPH 75
POLYMERIZATION 332
POLYPEPTIDES 354
PONDEROSA PINE 218
PONDS 281
POPULATIONS 112, 343, 491
                                   - (数)
PORPHYRA 406
PORPHYRIP 95
PORPOISES 187
POTASSIUM 47, 103, 133, 149, 218, 283, 393, 394, 432, 447, 483, 898, 517
POTASSIUM ARSENATE 122
POTASSIUM 40 165, 394
POTATO 319, 335
POTENTIAL EQUATIONS 369
POTENTIONETRIC ANALYSIS 331
POULTRY 195, 264, 321
POWER PLANTS 40, 186, 222, 285, 349, 426
POWER REACTORS 39, 81, 410, 444
PRECIPITATION 153, 251, 307, 371, 383
PRECIPITATION AGENT 375
PRECONCENTRATION 92
PREDATORY BIRDS 250
PREEMERGENCE HERBICIDES 319
PREGNANCY 92
PRETERATHENT 264
PRODUCT 154
PRODUCTION 8, 382
PRODUCTION REACTOR 151
PRODUCTIVITY 214, 411
PRODUCTS 385
PROPORTIONAL DILUTER 453
PROSPECTING 218
PROTEINURIA 321
PROTECLYSIS 364
PROTOZOA 85, 180, 429, 473
PSECROSORAS 352
```

PTEROPOD 481

PULP 228, 254

DITTO MITTE 528

PUBLIC WATER SUPPLIES 92

```
148
 PURIFICATION 305, 388
  PERIDINE 446
 PTEOPHOSPHATE 273
  QUARIOGS 275
  QUALITY 510
  QUANTITATIVE CHEMICAL ANALYSIS 47, 100, 233, 431,
  QUANTITATIVE ECOLOGY 156
  QUANTITY RATIO 114, 164, 246, 252
  RABBITS 228, 321
  RADIATION 348
  RADIATION DOSES 131
  RADIATION EFFECTS 33, 136, 299, 348
  RADIATION MONITORING 113, 139
  RADIOACTIVE DECAY 420
  RADIOACTIVE EQUILLIBRIUM 359
  RADIOACTIVE WASTE DISPOSAL 18, 106, 165, 377, 393
  RADIOACTIVE WASTES 165, 299, 410, 491
  RADIOACTIVITY 36, 110, 151, 159, 165, 223, 237, 288, 348, 359, 368, 417, 425, 438, 491
  RADIOACTIVITY: TRACERS 121
  RADIOBIOLOGT 303
  RADIOCHEMISTRY 103
  RADIOECOLOGICAL CONCENTRATION 106, 131
  RADIOECOLOGY 18, 231, 394, 431, 439, 489, 490
  RADIOISOTOPES 45, 105, 140, 143, 292, 418, 439
  RADIONUCLIDE MIGRATION 18, 113, 131, 165, 252,
    305, 377, 393, 431, 489
  RADIONUCLIDES 33, 69, 106, 127, 143, 144, 153, 216, 231, 236, 237, 252, 288, 305, 320, 348, 360, 358, 370, 393, 394, 397, 404, 410, 420, 431, 432, 444, 484, 489, 490, 505, 508, 516, 517, 527
  RADIORESISTANCE 303
  RADIOSENSITIVITY 136
  RADIOTRACES TECHNIQUES 132
  RADISHES 263
  RADIUM 226 110, 165
  RAGWEED 218
  RAIN 228, 466, 483, 517
  RAINBOW TROOT 43, 128, 172, 192, 232, 324, 360, 453, 466, 485
  RAINWATER 443
  BASBERRY 210
  RATE INHIBITION 87
  RATS 126, 135, 195, 228, 264, 356
  RAY 166
  REACTION KINTTICS 140
  REACTORS 165, 505
  RECTRCULATION 19
```

. 0 0

```
KETWORD INDEX
RECOVERY 30, 249, 337
                                                                         SAPE LIMITS 8
RED ALGAE 154
                                                                         SALINITY 113, 149, 153, 315, 368, 372, 373, 496,
RELISTRIBUTION 229
                                                                         SALIWITY EPPECTS 497
REDOX POTENTIAL 44, 308
                                                                         SALIVATION 321
REEFS 288
                                                                         SALMON 313, 425, 463, 509, 524
WEGULATION 162, 007
                                                                         SALT ACCUMULATION 205
RELEASE 206, 418, 508
                                                                         SALT MARSHES 34
PELEASE RATES 270
                                                                         SALT WATER 26, 144, 149, 184, 202, 517
REMOTE SENSING 515
                                                                         SALTS 21
REMOVAL 12, 30, 71, 217, 235, 243, 289, 310, 316, 347, 362, 383
                                                                         REPRODUCTION 353, 453
REPRODUCTIVE PAILURES 321
RESERVOIRS 269, 392
                                                                            460, 471, 472, 474, 481, 486, 487, 489, 490,
491, 492, 509, 511, 512, 513, 521, 522, 524, 526
RESIDUES 71, 150, 228
RESIM 289
                                                                         SAMARIUM 481
RESORPTION 271
                                                                         SAMPLE PREPARATION 402
RESPIRABLE PRACTION 349
                                                                         SAMPLING 19, 406, 503
RESPIRATION 74, 118, 314, 527
                                                                         SAND 275
PESPIRATORY TPACT 125
                                                                         SAPONIPICATION 492
RESPONSE 348
                                                                         SAPROBIC SYSTEM 73
RESPONSE TIME 75
                                                                         SARCOPLASHIC RETICULUM 35
RETERTION 18, 192, 224, 356, 393, 485, 487, 489,
                                                                         SCALLOPS 438, 439
                                                                         SCANDIUM 103, 153, 233, 420, 481
REVIEW 1, 10, 13, 42, 46, 79, 88, 101, 116, 121, 124, 130, 175, 177, 178, 198, 207, 227, 244, 248, 282, 315, 346, 351, 358, 385, 401, 470, 493
                                                                         SCANDIUR 46 165, 420
                                                                         SCOURING 420
RHONE SEDIMENTS 236
                                                                         SEA FOOD 42
RICE 218, 228
                                                                          SEA TROUT 509
RIVERS 15, 20, 23, 28, 39, 94, 111, 119, 140, 145, 151, 153, 159, 165, 165, 175, 176, 180, 190, 226, 228, 252, 257, 283, 293, 299, 302, 305, 323, 336, 340, 378, 386, 410, 411, 416, 420, 425, 432, 832, 879, 485, 505, 512, 525
                                                                         SEA WEEDS 406
                                                                         SEAFOOD 45, 386, 438, 487
                                                                          SEALS 169, 187, 195, 228, 290, 442
ROCK 225
                                                                          SEASHELLS 53
ROCKS 7
                                                                         SPASONAL VARIATIONS 65, 149, 208, 214, 254, 281, 287, 288, 363, 407, 423, 490, 505, 517
RODENTICIDES 319
ROOT MORPHOLOGY 218
                                                                         SEAWATER 164, 360
ROOTS 48, 218, 261, 268, 483
                                                                         SEAWEEDS 62, 238, 280, 405
ROTIFERS 180
                                                                         SEDGES 483
RUBBER 12
                                                                          SEDIMENT 433, 461
RUBIDIUM 47, 149, 517
                                                                         SEDIMENT CORES 112, 242
RUBINANTS 351
                                                                          SEDIMENTATION 65
                                                                         SEDIMENTS 7, 8, 15, 18, 22, 23, 28, 25, 28, 33, 34, 49, 61, 65, 81, 82, 98, 103, 105, 111, 112, 113, 121, 142, 144, 145, 159, 168, 206, 208, 216, 228, 229, 231, 236, 245, 246, 249, 253, 256, 257, 267, 269, 272, 275, 286, 297, 298, 302, 305, 313, 315, 317, 323, 336, 340, 360, 363, 368, 370, 377, 378, 384, 387, 392, 400, 403, 405, 418, 420, 421, 428, 430, 431, 437, 441, 488, 456, 458, 459, 465, 465, 467, 468, 471, 479, 482, 486, 488, 501, 502, 507, 508, 511, 516, 517, 522, 525
RUNOPP 68, 208, 242, 294, 419, 516, 517, 518
RUNOFF: SEDIMENTS 512
RUTHENTUM 18, 45, 139, 240, 305, 398
RUTHENIUM SALTS 398
RUTHENIUM 106 18, 25, 113, 143, 165, 305, 377, 431, 439, 517
RYE 218
                                                                          SEED DRESSINGS 228, 253, 254, 321, 323
SABLEPISH 437
```

150 KEYWORD INDEX SEED BATING BIRDS 254 SHELTER 19 SEE05 125, 228 SMELTERS 48, 63, 111, 112, 138, 181, 183, 218, 228, 261, 261, 419, 471 SELFWITH 1, 135, 139, 167, 218, 225, 233, 282, 290, 319, 326, 402, 434, 458, 466, 481, 517 SWAILS 91, 157, 239 SELENIUM DIMETHYLSELENIDE 16 SWAP BATTERIES 165 SPPARATION PROCESSES 139, 414 SNOW 204, 228, 304 SEPTIC TANKS 189 SOAPS 319 SODIUM 34, 47, 86, 103, 131, 149, 218, 283, 307, 432, 483, 498, 517 SERUM CERULOPLASMIN 196 SETTLING PONDS 19, 111 SODIUM ARSENATE 109, 319 SEWAGE 33, 98, 109, 152, 184, 194, 242, 276, 277, 361, 362, 378, 390, 517, 518 SODIUM ARSENITE 86, 109, 319 SEWAGE OUTWALLS 390, 480 SODIUM CHLORIDE 404 SEWAGE TREATMENT 59, 510, 518 SODIUM 24 131 SEWERS 304 SOFT TISSUES 413 SEX 170, 386 SOIL 261 SHARK 166 SOIL PROPILE 369 SHEEP 218 SOIL WATER 369 SOILS 7, 11, 48, 63, 109, 126, 195, 210, 218, 225, 228, 260, 262, 263, 285, 293, 306, 307, 319, 369, 377, 379, 385, 389, 412, 417, 419, 422, 423, 427, 428, 430, 432, 443, 488, 503, 515, 520 SHEEP DIPS 319 SHELLFISH 118, 151, 195, 197, 227, 228, 275, 277, 319, 319, 386 SHOOTS 268 SOLE 491 SHRIMP 274, 320 SOLUBILITY 18, 72, 254, 325, 346, 355, 387, 520 SILAGE 503 SOLUBILITY PRODUCT 253 SILICA 34 SOLUBLE 95 SILICATES 217, 432 SOLUBLE-SUSPENSION DISTRIBUTION 153 SILICEOUS OOZES 430 SORPTION 144, 159, 206, 217, 302, 433 SILICON 103, 218, 517 SORPTIVE PROPERTIES 139 SILT 49. 143 SPATIAL LOCATION 423 SILVER 111, 139, 149, 180, 224, 233, 247, 285, 352, 390, 406, 411, 517, 523 SPECIES 386 SILVER WITRATE 247 SPECIES DIVERSITY 73, 134, 480 SILVER SULFADIATINE 352 SPECIES VARIATIONS 218 SILVER 108# 224 SPECIFIC ACTIVITY 81, 320, 394 SILVER 110 106 SPECTROCHEMICAL ANALYSIS 346 STLVER 110# 224, 360 SPERM 245 SILVICIDES 319 SPHALERITE 48, 217 SILVISIDE 185 SPINACH 218 STRES 65, 65, 430 SPLEEN 466 SINTERING 19 SPOIL DISPOSAL 208 SPRUCE WEEDLES 483 SIZE EFFECTS 149 SKELETON 413 SQUAW PISH 252 SKIN 319, 386, 472, 504 STABILITY 446 SKUNKS 228 STABILIZATION PONDS 65 SLINICIDES 92, 195, 253, 378 STAINTON SYRINGE METHOD 469 SLINY SCULPIN 466 STANDARDS 5, 92 SLUDGE 59, 184, 191, 387, 480 STARCH 154, 335

STARLINGS 254

STATE 5

SHALLHOUTH BASS 403

SMELT 403. 466

KEYWORD INDEX STEELHEAD TROUT 345 TECHNETION 99 165 STEMS 218 TELLURIUM 16 STICKLEBACK 129, 313, 341 TELLURIUM 129 106 TEMPERATURE 20, 34, 58, 72, 284, 299, 328, 350, 355, 372, 373, 379, 382, 424, 453, 496, 505, 516 STIPE 266 STONATITIS 321 TEMPERATURE DEPENDENCE 113 STONEROLLER 232 TEMPERATURE EFFECTS 149, 218, 353, 497 STORAGE 84 TEMPERATURE SALINITY 197 STORM SEWERS 189 TERATOGENESIS 104 STRATIFICATION 20, 269 TERATOGENS 321 STREAM FLOW 510 TERRESTRIAL BIOTA 379 STREAMS 251, 270, 391, 399, 421, 427, 514 TERRESTRIAL ECOSYSTEMS 379, 423 STRESS 496, 500 TESTES 264 STRESS DETECTION 75 TESTIS 435 STRONTIUM 18, 78, 139, 149, 225, 233, 236, 305, 370, 393, 410, 432, 472, 487, 517 TETRAETHYL LEAD 92, 421 STRONTIUM 85 18, 236, 305, 410, 508 THALLIUM 149 STRONTION 89 106, 165 THALLIUM 208 113 STRONTIUM 90 106, 143, 165, 288, 370, 377, 431, THERAPY 319 THERMAL POLLUTION 299, 453 SUBCUTANEOUS 264 THERMODYNAMICS 498 SUBMERGED WATER PLANTS 27 THERMONUCLEAR TESTING 521 SUBSURFACE WATERS 295, 365 THIANINE 273 SUGAR BEETS 218 THIN-LAYER CHROMATOGRAPHY 492 SUGARS 353 THIOCYANATO 67 SULPATES 58, 85, 204, 217, 218, 283, 356, 432, THIOLS 215 SULPHYDRYL GROUPS 319, 386 THORIUM 332, 481, 517 THORIUM 232 165 SULFIDES 44, 387, 433 SULFUR 48, 103, 134, 218, 262, 310, 327, 483 TIDAL PLUSHING 517 SULFUR DIOXIDE 19 TIME DEPENDENCE 439 SURFACE WATER 217 TIN 139, 218, 316, 429, 517 SURPACE WATERS 93, 165, 287, 407 TIRES 12, 261 TISSUE DISTRIBUTION 393, 472, 484 SURVIVAL 129, 497, 524 SUSPENDED NATTER 228, 253, 406 TISSUES 118, 119, 351, 393, 484, 487, 489, 506 SUSPENDED PARTICULATES 111, 517 TITANIUM 103, 200, 285, 482 SUSPENDED SEDIMENTS 23, 411 TLH 72 SUSPENDED SOLIDS 180 THA 109 SWAMPS 230 TOBACCO 228, 319 SWEET CHERRY 218 TOLERANCE LEVELS 319 SWORDFISH 14, 51, 171, 195, 350 TOLUENE 58 SYMPTOMS 41, 92, 195, 319, 321, 428 TONATOES 218 SYNERGISM 92, 137, 234, 290, 299, 453, 497, 523 TOTAL 428 SYNTHESIS 52, 353 TOXIC MECHANISMS 386 TAILING PONDS 269 TOXICANT 75 TOXICITY 8, 13, 16, 26, 31, 40, 54, 56, 72, 75, 76, 85, 87, 92, 123, 129, 130, 135, 141, 146, 148, 167, 185, 186, 195, 196, 197, 210, 218, 228, 234, 241, 251, 271, 291, 292, 313, 314, 317, 319, 321, 321, 328, 329, 341, 346, 354, 372, 374, 378, 385, 386, 396, 411, 415, 416, 435, 440, 453, 473, 488, 496, 499, 504, 523 TAILINGS 19, 179, 411 TAR 259 TEA 218

TEALS 495

```
KEYWORD INDEX
TOXICOLOGY 493
                                                                               URINE 41, 53, 228, 321
                                                                                VANADIUM 103, 193, 218, 225, 482, 483, 517
TOXIGRAMS 92
TOXINS 299
                                                                                VAPOR PRESSURE 387
TRACE AHOURTS 119, 139, 164, 233, 311
                                                                                VAPORIZATION 89
TRACE CYCLING 17
                                                                                VEGETABLE 218
TRACE ELEMENTS 2, 8, 23, 61, 66, 103, 105, 140, 199, 218, 225, 272, 275, 293, 294, 326, 327, 331, 334, 343, 346, 351, 402, 406, #31, 440, 451, 481, 482, 486, 487, 504, 517
                                                                                VEGETABLES 228
                                                                                VEGETATION 63
                                                                                VELIGER 118
TRACE METALS 68, 82, 142, 177, 178, 183, 202, 277, 400, 441, 512
                                                                                VERTEBRATES 18
TRACE SUBSTANCES 419, 514
                                                                                VERTICAL TRANSPORT 454
TRACER 246
                                                                                VERTIGO 319
TRACER TECHNIQUES 49
                                                                                VERYLLIUM 349
TRACERS 69, 78, 127, 132, 159, 165, 211, 223, 320, 377, 413, 431, 437, 484, 488
                                                                                VINYL BYPRODUCTS 259
                                                                                VINYL CHLORIDE 52
TRANSFORMATION 16, 156, 256, 295, 297, 298, 308, 340, 350, 387
                                                                                VISCERA 438
TRANSITION 436
                                                                                VITANIN P 135
TRANSLATIONS 250
                                                                                VOLATILIZATION 292, 367, 387
TRANSLOCATION 48, 207, 261, 268, 319, 340
                                                                                VOICANOS 448
TRANSPORT 7, 45, 70, 111, 111, 159, 179, 216, 233, 268, 270, 286, 302, 369, 387, 398, 410, 417, 420, 421, 423, 432, 443, 454, 488, 510, 512
                                                                                WALLEYE 161, 402, 403, 466, 501
                                                                                WASTE CONTROL 251
TREES 48, 228, 422, 428, 483
                                                                                WASTE DISPOSAL 410
TREMORS 321
                                                                                WASTE PURIFICATION 12, 21
                                                                                WASTE WATER 21, 30, 71, 88, 124, 217, 235, 243, 316, 337, 358, 428
TRIMETHYLARSINE 109
TRITIUM 33, 165, 299
                                                                                WASTE WATERS 347
TROPHIC LEVELS 214, 232
                                                                                WASTES 92
TROPOLONE 158
                                                                                WASTEWATER 65, 194, 362
TROUT 141, 186, 299, 345, 381, 435, 507
                                                                                WATER 3, 4, 15, 16, 23, 29, 32, 37, 47, 56, 58, 62, 64, 71, 73, 74, 77, 80, 82, 84, 92, 94, 98, 99, 100, 101, 105, 111, 116, 123, 128, 140, 143, 180, 190, 195, 201, 203, 204, 213, 214, 217, 219, 221, 222, 226, 230, 231, 243, 253, 256, 257, 269, 270, 283, 289, 291, 294, 295, 302, 318, 319, 319, 323, 331, 337, 344, 350, 358, 363, 365, 366, 375, 377, 379, 384, 385, 386, 391, 392, 394, 803, 806, 407, 410, 414, 415, 816, 423, 424, 841, 843, 849, 862, 869, 483, 486, 888, 998, 500, 501, 504, 505, 507, 508, 514, 516
TOBIFICID SEDIMENT 256
TUBIFFICIOS 336
TUMORS 58
TUNA 14, 195, 224, 327, 350, 401
TUNNY 166, 327
TURBIDITY 134, 203, 208, 384, 432, 480, 500
                                                                                   514. 516
TURNOVER 454, 488
                                                                                WATER ANALYSIS 23, 331
TWIGS 483
                                                                                WATER CHEMISTRY 23
ULVA 353
                                                                                WATER CHLOSIDE 38
UPTARE 18, 69, 70, 111, 127, 132, 183, 167, 174, 180, 192, 218, 219, 228, 231, 234, 260, 261, 262, 263, 266, 268, 275, 288, 292, 296, 299, 302, 306, 320, 335, 373, 377, 380, 381, 393, 397, 409, B12, 818, 422, 428, 838, 887, 468, 466, 474, 477, 883, 885, 487, 489, 991, 496, 517, 527
                                                                                WATER BARDNESS 180
                                                                                WATER HOVEHENT 369, 389
                                                                                 WATER PIPES 220
                                                                                 WATER QUALITY 6, 74, 202, 205, 208, 382, 480, 518
                                                                                WATER QUALITY STANDARDS 77, 180
 URANIUM 139, 332, 414, 430
URANIUM MINES 428
                                                                                 WATER SUPPLIES 189
                                                                                 WATER TREATMENT 191
 URANIUM 235 165
                                                                                WATERCRAFT 248
URANTUM 238 165
URANYL COMPOUNDS 332, 414
                                                                                WATERSHEDS 379, 421, 423, 510
 URIDIUM 87 165
                                                                                WEATHERING 468
```

```
KETWORD INDEX
WELL WATERS 363
WELLS 428
 WHEAT 218
WHITE BASS 402, 403
WHITE PERCH 526
WHITE SUCKER 402, 403
WHITEPISH 255
WHITING 213
WILLOW 428
WIND 419
WIND PATTERNS 285
WOOD PRESERVATIVES 319
 WORMS 275, 418
 X-RAY 48
X-RAY FLUORESCENCE 103
X-RAY FLUORESCENCE ANALYSIS 504
YEAST 279, 376
 YELLOW PERCH 402, 403, 526
 TTTRIUM 91 106, 165, 368
 ZEOLITE 61
ZINC 8, 15, 18, 23, 35, 45, 48, 54, 59, 63, 65, 66, 68, 72, 74, 76, 77, 81, 85, 95, 103, 105, 114, 115, 127, 133, 137, 138, 139, 142, 146, 148, 149, 151, 153, 177, 178, 180, 181, 182, 183, 186, 197, 199, 202, 203, 204, 205, 208, 212, 215, 217, 218, 222, 224, 225, 229, 230, 234, 235, 236, 238, 242, 251, 252, 261, 263, 264, 267, 273, 276, 281, 285, 287, 290, 294, 301, 311, 336, 337, 341, 348, 351, 360, 375, 378, 391, 392, 393, 394, 397, 399, 402, 404, 407, 409, 411, 419, 420, 425, 426, 429, 432, 436, 439, 441, 454, 455, 465, 471, 472, 476, 483, 487, 489, 491, 500, 513, 514, 515, 516, 517, 525
 ZINC ACETATE 264
```

ZINC 65 18, 25, 36, 81, 106, 151, 153, 165, 224, 231, 236, 252, 348, 360, 394, 397, 404, 418, 420, 425, 439, 444, 474, 489, 491, 505, 508, 517

ZOOPLANKTON 102, 105, 320, 411, 445, 511

ZINC SULFATE 75

ZIRCONIUM 139, 882

ZYGOTES 185

ZIRCONIUM 95 106, 165, 431