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1. SUMMARY.

In making transient studies on the behaviour of gas
cooled graphite moderated thermal reactors, one of the sets of
mathematical equations involved is that for reactor heat
transfer.

These equations have for inputs: reactor power,
reactor. gas flow and reactor inlet gas temperature; and produce
as output, reactor outlet-gas temperature, the uranium and
graphite reactivity affecting variables, and the maximum fuel
element temperatures..

The paper considers the derivation of such equations.
From the consideration of a unit length of one fuel element
channel in the core, partial differential equations of the
system are determined. These are integrated in space, to give
the form required for analogue computer studies, i.e. simultan-

eous ordinary non-linear differential equations.

: The final equations are given for two variants in
moderator design, viz: a solid-block -type of moderator, and a
. moderator involving in part a graphite fuel element supporting
. sleeve. . I ' - e S

Account is taken of heat transfer by conduction in
the solids, and by convection and thermal radiation in and
between the gas spaces. I
2, SYMBOLS..

bl  a conbtant equgl to Vqy/Wy

ot A, -4,
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by a constant equal to Vp/W,
Ca heat capacity per unit length of can !
: Vo,
Cel heat capacity per unit length of gas inside sleeve
Cec2 heat capacity per unit length of gas outside sleeve
Cm1 heat capacity per unit length of sleeve
Cmo heat'capacity per unit length of main moderator
CmS heat capacity per unit length of surface region of
s0lid moderator
Cmb  heat capacity per unit length of bulk region of
s0lid moderator . . |
Cu heat capacity per unit length of uranium
fr variation of heat transfer coefficient of convection
with gas flow '
Hp heat generated per unit length of channel at the point
of maximum can temperature
Hmax maximum value of heat generation per unit length in
the channel:
l 5+ Cos ¥ L,
At a constant equal to 3(!-» Qo Tk L‘
kp, ksz, k5, k7 are defined by equatlon (29)
kg, kg constants defined by equations (23), (26)
yi length along channel from cold end
L total length of uranium in channel
I effective extrapolated length of axial flux .
m the ratio W/We
" the ratio B/Pg
P reactor power production
: oy
Pe channel power production
’ T,
™ radius in uranium at point £ ' >
Ra . heat transfer coefficient for radiation between can

and sleeve
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heat transfer coefficient for radiation between
sleeve and main moderator

Ra (Ta4 - Tm#4) )

Rg (Tml4 - Tm24) g .
4 A1l temperatures in

Ra (Tmad - Tmf") ) absolute degrees

Ra (Tma4_— Tedt)

etc. are defined by assumption 16

can temperature at point £
mean sleeve temperature at point .2
mean main moderator temperature at point £

mean uranium temperature at point £

gas temperature ingside sleeve at point-ﬁ

gas temperature outside sleeve at point'Z
gas inlet or cold duct femperature

outlet temperature of gas inside sleeve
outliet temperature of gas outside'sieeve'
mixed gas outlet or hot duct temperature

maximum can temperature in the reactor

maximum uranium temperature in the reactor

local value of Ty at point where Tpg occurs
local value of Tpj at point where Tpg, occurs

local #alue of Tml'at‘point where Tmé occurs

" statistically weighted mean value of temperature T

heat transfer coefficient for‘conduction in uranium

heat transfer coefficient for convection between can
and gas !

heat transfer coefficient for convection between
sleeve and gas inside sleeve

heat transfer coefficient for convection between
sleeve and gas outside sleeve
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Us heat transfer coefficient for convection between main

moderator and gas : : «
Ug heat transfer coefficient for conduction in uranium

where Tpa occurs : »
Uq heat transfer coefficient for convection between can

and gas at point where Tp, occurs

Uj0 heat trénsfer coefficient for conduction in solid
moderator between surface and bulk regions

ML V2  gas velocities inside and outside sleeve, respectively
w reactor gas flow
channel total gas flow

d,p,X proportions of power generated in fuel, sleeve and main
moderator respectivelyd+ g+%¥ = 1.

$ the ratio __§£

3, INTRODUGTION.

1. In simulating the transient behaviour of a nuclear
reactor and its heat removal and power generation system,

the various components are treated as separate blocks with
appropriate interconnecting variables, Typical blocks are:
Reactor Neutron Kinetics, Reactor Heat Transfer, Steam Raising
Uni%. Heat Transfer, Steam Turbine and Generator.

2. . The Neutron Kinetics block accepts reactivity as a-
variable, and produces reactor power as output. The Reactor
Heat Transfer block simulates the remaining important
variables in the reactor,

2. o Three important types of information ‘are provided by
the equations comprising the Reactor Heat Transfer block:

(a) The relationship between the nuclear power
produced and the heat removed from the reactor. .
The heat removed is given by the gas flow rate
- multiplied by the enthalpy gain. In practice
the temperature rise and a mean specific heat is’
used for enthalpy gain.

(b) The temperature variations which affect reactivity. b
: For a CO2 cooled reactor, only the uranium and
graphite temperature changes produce significant
reactivity changes.
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transfer equations is obtained from the above considerations.

(e)
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The perturbation theory of neutrons indicates
that in- general the overall reactivity in a

reactor should be obtained by weighting the local
reactivity by the square of the local flux.

This is known as statistical weighting. Thus to
obtain a s1ng1e temperature to indicate reactivity
change, it is necessary to weight the local
temperatures in the same way, along the channel and
across the core radius, although arithmetic mean
values are appropriate across a single fuel element.

The appropriate temperature for the uranium effect
is not known exactly, but as it is probably between
the mean uranium surface and the overall bulk mean -
uranium temperature, both these cases are always
considered. .

The reactivity change in the moderator is more
complex, since the temperature coefficient varies
with temperature, and with distance from the fuel
element. Experiments have been carried out by
the U.K.A.E.A. on a moderator system consisting

of two concentric graphite cylinders per fuel
element, and relative reactivity coefficients have
been measured for this system.

Thus to defermine the reactivity'changes due t0
temperature in the reactor, it is necessary to

produce.

For the uranium, a constant coefficient operating

on either the statistically weighted mean uranium
temperature, or the statistically weighted surface
uranium temperature; and for the graphite, two
appropriate statistically weighted mean temperatureu,
with separate non-linear temperature coefficients.

,The ‘maximum - temperatures whieh occur in the core.

The " important temperatures are the maximum uranium
and maximum can temperature, and the gas outlet
temperature. Other temperatures are not in ‘
general of. sufficient importance to warrant their

- deliberate 1nclusion in the equations.

It has been found that representing the maximum
. temperatures as simple ratios of other appropriate

temperatures does not give an adequate accuracy
for these temperatures and separate equations

_have to be obtained for the maximum temperatures.

The required form of outputs from the reactor -heat

It is found convenient to use the mean can temperature instead
of the mean surface uranium temperature, with little error,
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considering the uncertainty of the uranium coefficient. This
saves introducing another variable, and does not result in

any reduced accuracy of the simulation. The final block
diagram for the equations is then as in fig. 1.

5. The input variables are the reactor power (P), the
gas flow (W), and the cold duct .temperature (Tei).

6. . The outputs are the hot duct temperature (Teo), of
the mixed gas; the reactivity affecting temperatures, mean
uranium (T,;), mean can (Ty) and the two moderators (Tpi)
(Typ2); and the maximum temperatures of the ‘uranium (Tmu$ and
the can (Tma) °

Ta | The object of the present paper is to present
equations which will enable the various output variables
mentioned above to be determined as tlme-varying functions of

P, W and Teio
8s o Two caseés are considered, one with a reactor having'

graphite sleeves to support the fuel element, and the other
for a reactor with a solid moderator and no sleeves.

4., BASIC PRINCIPLES.

9, . "'As the reactor heat transfer equations are only one
part of the complete reactor simulation, it is desirable that
these equations are not more complicated or extensive than
necessary. = Because of this, it is essential to reduce the
three-~dimensional time varying basic partial differential
equations to a set of ordinary differential equations Whlch
eliminate spatial effects.

10, . This is accomplished by considering first a unit
length of one channel of the reactor;- producing the partial
differential equations for this point; and integrating these
along the length of that channel; then the resulting equations
are extended to include the entire core.

11, . The numerical values of the various parameters are

" then determined from a knowledge of the steady state full
power value of these parameters. ' In order to make the best
use of the fuel element cans, it is essential that the
specified maximum can temperature shall be attained in each
channel. As the reactor power output per channel is less
at the edges of the core than the centre, it is necessary
elther to fit a gas throttle to each channel, or to vary the
channel dimensions across a core, or both

12, . - One result of this design feature is that the gas

outlet temperature from the channels varies only slightly
across the core, being higher at the edges.
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13, . Assumption 1.

Reactor heat transfer equations applying satis-
factorily to one channel will apply equally to
the entire core, provided that suitable mean
values are used for the parameters in the
equations.

In a power producing reactor the radial flux

shape is usually flattened in the central regions
by the introduction of absorbing material; thus

a large number of the channels will behave identic-
ally. To take the overall behaviour of all
channels into account it is usually adequate to

use the statistically weighted parameters for the
entire reactor to define a single "effective
channel", representative of the whole core,

14,, The steady state temperature distributions of the
gas and fuel elements in one channel are indicated in fig. 2.
The positions along the channel where the maximum uranium and
maximum can temperature occur are not the same, but the
difference is small.

15.. Consider a unit length of a single channel. The
arrangement of the components is shown in fig. 3.

The channel consists of a fuel element (uranium
bar and can), the cylindrical graphite-supporting sleeve for
the fuel element, and the main graphite. The latter is
arranged for convenience of calculation in a cylindrical
geometry, and the resulting "cell" is identical with that
taken for nuclear phys1ca1 calculatlons.

The steady state temperature profile at one section
of the channel is indicated on the figure, and also the local
mean temperature of the components.

16, . Assumptiene 2 - 15,

2 The heat generation along the channel is equivalent
- to a cosine distribution based on a length equal
to the total uranium length plus the flux extrapol-
ation distance at each end of the channel.

It can be shown from a consideration of the actual
discontinuous heat production that this is very
nearly correct for heat transfer. The flux dis-
tortions due to temperature, poisoning, control
rods and end effects will not in general have a
large effect on the averaged temperatures.

3. The heat generation is divided between the uranium
- and the moderator in a ratio which is constant
along the channel. :
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10.

11.

12,

The radial heat flow out of the graphite surface
of a cell is zero., This will be true in the
flattened flux region, and nearly true elsewhere,
in view of assumption 1.

A1l ax1al heat conduction in the solids is
negligible compared to the radial heat transfer.
This may be demonstrated numerlcally to be
reasonable°

The convectlve heat transfer'from the can and the
moderators to the gas is proportional to. the
difference between the mean temperatures of the
so0lid concerned and the gas.

The radiative heat transfer_between the can and
the moderators is proportional to the difference
of the fourth powers of the appropriate absolute
mean temperatures, at a point in the channel.
Provided that the surface temperatures are close
to the mean temperatures, this will be reasonable.

The radiation absorption in the gas is negligible.

' The uranium temperature distribution at a point

in the .channel retains its steady state shape
throughout any transient. The effective time-
constant for the change in temperature profile
is of the order of 10 seconds, and consequently
for most transients, this assumption w111 hold

‘reasonably.

The can temperature is substantially uniform
throughout its thickness. The error produced
by this assumption is small,

The gas temperatures inside and outside the
graphite 'sleeve are each uniform in the radial
direction. Experimental checks have been made
on this assumption.

The temperature distributions of the moderators
at a point in the channel each retain their steady

- gtate shape durlng a trensient.

For the sleeve, the shape will be very nearly

" linear under all conditions. For the main
moderator, the shape will probably change somewhat

during transients, and the assumption could bve

eliminated at the expense of complexity by consider—

ing a "many-regloned" moderator in the ‘same way
that the "two-regioned" system is devised (see
Section 8),
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13. A1l specific heats, thermal conductivities, heat
transfer coefficients, gas densities and velocities
are independent of heat rate and temperature.

The change with temperature of most of these
parameters is not large, and suitable average
values taken along the chammel will give
reasonable simulation. For transients

involving large temperature changes, the constants
(particularly specific,heats)_need ad justment to a
new average value, or should be included as
temperature varying functions.

14, The heat content of each component is adequately
“represented by the appropriate mean temperature.

As arithmetic mean temperatures across the cell
are used, and the radial change in specific heat
is small, this assumption is justified.

15, There is no gas leakage through the sleeve.

Some leakage will occur, but not sufficient to
affect the heat transfer characteristics.

17. From assumption 9, .and noting that the heat loss

“from the uranium is proportional to the temperature-radius

sloEe' ‘1V.vat the edge, then this loss is also proportional
to {(Tu-Ta)-

5, DERIVATION OF AVERAGE: -EQUATIONS.

18.. . The heat balance equations-at a section of the
channel distance £ from the cold end may now be written down,
thus:- L R ' '

heat produced - heat lost
by conduction

' Heat gain in uranium

Heat gain in can = héat transferred in by
_ - conduction - heat lost to
gas by convection - heat
lost to sleeve by radiation

heat produced + heat gained
from can by radiation - heat
lost to both gas streams by
convection - heat lost to

main moderator by radiation

;Heat gain~ih sleé#e'

Heat gain in main heat produced + heat gain by
moderator radiation from sleeve - heat
lost by convection to gas
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Heat.gain in each gas stream = heat transferred to
' : each -stream by
convection

19, 50, %ymbollcally -

Cuz éu OLHW“;COS“/(Q“—) — W (To-—ro.) | | (1)

Ta = » - — .
Cmé = \)\LT\) -T-A,)—Uz_(_ra, ch) Ro.nru | | (2)

Cwm BTM\ = |BHYM\1~Q° '%) —U3(T"‘""T°‘) - U4'(Tm\‘TFi’-) (3)

. +Qam\ - RM\ma

Ces ‘<>T°' et BT“) ua(n:rc.) + 03(1:.,.-7'5.) (5)

Ceal E%— -\—'\s.z%%’—");—_ Ug (Tom=Tea) +Vs (Tmz"—rc1> ©

20, - The v*al statistically weighted mean values are
aetormj_nea by mu1t¢blylnp each term by the (flux shape factor)
i.€. Cos™ I: > , and integrating along the length of the
channel. “‘v Tz ,

Thus, for a variable X, the statistically weighted
mean value, X, is given by
.

| ;gcos—‘i(.e L)AL - JXCDS (- )4 -
21, °

Performing the operation on equatlons (1) to (6)
abov99 using the values of the resulting integrals from
Apnendlx 1, gives:-

O\Tu ARF ‘ | ,
Cu i< L-c -U(T\, T&) : N (8)
Ca,i?: U, (TV T&) \)‘2.(,1—0\. Tct) Ro.m\ ' _ (9)
P - — |
Cmi c;"‘;n\ F‘“ 3 _03(1-..“-1-6.) \)4(TM\‘T62.) - (10
+ Ra.wn Rmmo_ _
Cm c\"\'m_ 8‘2 Pe _ US(Tmz‘T';q_) + Rm\'mq_ . o (11)
[
ATc\ E'A’\ - 2%, _(Tus u.)SmL (4- ) AT fo
Ccu (Tc; ch.)+LL. (\+ " S L)Ltrc aS'm"::‘ _}Sm L'( a)o\l,

= V2(Ta-Tey) + V3 (Femi-Te) (2
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’ (-
Te . sTee, wr 5 o
RN (R
Clge " T ° tby (1 Qins= 2 g Tary

= Ugq (:‘—-m\":rcz.)-'\' Vs (Fma=Te2) (13)

2240 Assumption 16.

The radiation average Raml which by definition is 4
given by Ra{ {Fés__l-rmﬂl , 1s equal to Ra{ﬁ'a)*—b'm)}

This assumption, which has no physical basis, was
determined numerically in a variety of cases, and
found gquite accurate.

2340 The steady states of the equations (1) to (6) may

be found as outiined in Appendix 11, and introducing the
normal design requirement that TclO = Tc20 in any steady state,
then, neglecting the radiation terms:-

Tt Teo |, (TeaTY SR (4-5)

(a) Te=Ta= —5 P (14)
. 2L,
(v) :T—"c\ = Tea = T‘—\';-:.,_L& (15)

(¢) The integrals in equations (12) and (13) both
‘ venish, _

24.. Assumptions 17-18.

17. The presencé of radiation has a hegligible effect
‘on the above steady states. The error is usually

about 3% at full power,

18. In any transient state, the integrals .in equations
(12) and (13) both vanish, and the temperatures
Tcl0 and Tc20 will be given bys: -

Tel = Tei + TclO _
S B (16)
Te2 = Tei-+ Te20

2 , | -(17)

Assumption 18 is probably the most important of the
assumptions necessary, since without it the axial
averaging would not be readily possible, Consider-
able analytical and computer work has established
that for a wide range of conditions the reactivity
controlling mean temperatures remain accurate, even
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if sometimes the outlet gas and maximum temperatures
suffer reductions in accuracy. In general,
provided that the gas transit time up the channel
remains small compared to the time taken for
significant changes in.the variables, the assumption
will be reasonable.

254 From assumption 13, the gas velocities at ahy point
in the channel may be written in terms of the channel gas flow,

thus: )

5\ = b, We

s, = baWe (18)
26, - The mixed gas temperatures Tgq willbresult from Tcio
and Te20, such that =~ = :

(Cc\'\f‘ + ch"\rz.) Teo = CaVn Teo + CeaV2 Tero
or, using equations (16) and (17),

2{_Cc.\>\-:l:c\ + Ccz\:z:r.cz} .
T:,o = - Ted (19)

 Ceisy + Ceaoa |
27. Using equations (16) to (18) in (12) and (13) gives:

Cey {ﬁf‘\' 2R t“'lc ('—rc\'TcZ.)} = U;_ ("rv'—rc.)-t— \)3(71'..\.-:!'2.) (20)

Lo B ak

and the reQuirement to énsure that Tcl0 = Tc20 in the steady
state: .

Lo . Vg
Cc\“"\ ok * Uz4Uq (3

U V4

Thié last equation, as noted above, neglects the
effects of radiation. .

6., DERIVATION OF MAXIMUM EQUATIONS.

28e. Equations (8) to (11) and (19) to (22) are
gufficient to produce the reactivity controlling temperatures,
and the gas outlet temperature.

aTc We ¢ Tea): T .
& 2 (T - VaCur o)+ Us (o) (5,

<)
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_ In order to find the maximum urenium and can
temperatures further equations are necessary.

29, . Assumption 19.

The maximum uranium and maximum can .temperatures
occur at the same point along the channel. The
error here is very small,.

20, - Consider a unit 1eﬁgth of channel at the point
where(t?e maximum temperatures occur, which is shown in
fig. (4).

From assumptlon 9, following the method used before,
the heat loss from the uranium is proportional to (Tul « Tma),
and also:

Tw~ Tma g o
Tog — _n“k ¢, a constant - (23)
31. . Following the method used for deriving the mean
equations, the maximum equations may be written down:
AT o
= Ve (Tul-T
Cv dw\: : \\Q ‘o ( wl - Mo) (24)
o Ve
Co.,(\——— = UB(T\IQ“T“\\)*\)7 Twma~ e ) - Rwawd _
ok | ( ) (25)
32 Assumptions 20 - 23. |
20. mhe raulozgﬁ;izﬁk is constant in any transient,
. TC( Ql.
= -9%9, say (26)

This is equivalent to assuming that equation (14)
.holds in the transient state, and that the point
where the maximum temperatures occur does not
vary with time. The accuracy of the -assumption
will fall with decrease in both power and gas
flow.

21. The sleeve temperature Tm4 may be taken equal to
- Tck for radiation purposes. The effect of small
" changes in the lower temperature of the radiation
term is not large, in general. This assumption
eliminates the need for another equation to
represent Tm#, and so avoids a complete duplication
of mean and maximum equations.
22. The convective heat transfer coefficients are
functions of local gas flow only.

The dependence on flow is uSuelly measured for
- heat transfer coefficients based on surface
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" temperatures, and the assumption will only be
true using such functions if the mean temperatures

- Ta, Tma, Tml, Tm2 are close to their appropriate
surface temperatures. This is so, in general.

23, The ratio of gas flows inside and outside the
sleeve is constant, This will be so for
turbulent flow in both regions. As the ratio is
by/bo, this ensures that if equation (22) holds
for one power and flow, it will hold very nearly
for all powers and flows, as Uz and Uy are generally
the same functions of flow.

33> From assumption 1, the relationship W = mWe may be
written, where mis a constant. Hence, with this and
assumptions 22, 23, the convective heat transfer coefficients
may be written

Uv\"a 'E'n(W)) ™ =2, 3, 4, 5, 7 ' - (27)

o, §7 will be identical, and in general5 4 f
will also be identical, the latter being closely represented
by W 0.8, as the moderator surfaces are smooth.

34.. From assumption 2, Hg may be written in terms of Po:
ch
From assumption 1, Peo may be written in terms of P:
P:‘h,?(, !
(29)
where both & and m are constants.
39.. - Collecting all the relevant equations gives the
final set:-
- - A . K -T,
v ax L (To-Ta) (30)
CofEEE'T ‘(Tb;ThJ kz‘2&0<f"ﬁn) ‘aawu
(31)
Co ‘L_T"Q, ASP. _ Uy (TyL-Tima) -
e mL ' : (32),

C o_a‘;r_"L?'_ = Ug ‘(_T\‘)-t"TMA) - k-]f-y(\ﬂ/) (TMA"TOQ-) - Rmacl
dk , (33)

*
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c,,;.j” ?‘*P — R o) i Te) = Rafu) G Tes)

+ Ro.m\ - Rm\ma

(lw\?’-(;:;‘-—j-;—w‘\?—= b—’g\; ’;ks‘j's(w) (Tm:.‘Tc?—> + Rmme (35)

{&Tu +2\ab \((Tq‘Tq)} < ko ,SW)(T« ~Tey) (36)
+R3 F3 W (T Tar)

Cen (\‘\?L+2\§ LZN(TQ‘TCL$ k‘,‘-h(w) (Tm\ -:'-Fcz) (37)
| +Rsfs (W) (T - Teo)

Teg = ke Ter A(Rs-) Tel (38)

Tno = kg Tut —kg-) Twa (39)

. - {,CC\$\?C‘ + Cczhl:—rc.?.} . |

Tcof’ Caby + Cea by T Ted >(.40)

7o CALCULATION OF PARAMBTERS.

36 . The most straightforward method of obtaining the
various constants in the equations (30) to (40) is, where

‘possible, to determine the appropriate full power steady state

values of the variables, and solve the steady state equations
for the constants with these values of the varlables sub-

stituted,

37a. The mean values to apply to the equations are

" determined from the reactor as-a whole, Since statistically

weighted mean temperatures are required, the temperatures,
power and flow must all be weighted appropriately. The
temperatures must be arithmetically averaged across the cell,
and statistically weighted along the channel and across the
core.

384 ' The value of M is determined by calculating the

statistically weighted mean channel power Pc, and relating

this to the total power produced P,

394 : The constant § is found by calculating from the
steady state data the actual heat output Hg, in the centre
channel, and relating this to P, for the mean channel,

v40. . The constants & ? Yand R are determined from

nuclear physical consideratlons.
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41.. Equation (22) gives the ratio by/bo.

0

42, . The thermal capacities Cu, Ca, Cml, Cm2, Ccl, Cc2
must be calculated from the unit length of the channel.

43.3' The values Ry and R are found from the calculated x
(or measured) heat radiation between the elements at the
specified mean temperatures in the full power state.

44. . 211 the other constants may be determined from the
_above, by substituting the stafistically weighted mean
temperatures at full power into the equations. It is usually -
reasonable and more. straightforward to neglect the radiation
terms at this stage, the error being small.

45, . It should be noted that using the ratio b1/bs in
equations (36) and (37) removes the necessity of calculating
wm, the term 2k being found as a whole.

mL

46, - If the units of temperature are degrees centigrade,
power, megawatts and time seconds, then the units of the
equations are MW/ft, The various terms are: for the mean
equations, the statistically weighted mean MW/ft. for the
reactor as a-whole; and for the maximum equations, the.
actual MW/ft. at the maximum point in the centre channel.

8. EXTENSION OF EQUATIONS FOR A SOLID MODERATOR REACTOR.

Te. If the reactor core does not include graphite

fuel element sleeves, somewhat different problems arise.

The surface of the moderator will display the same reactivity
behaviour and temperature transients as a sleeve, particularly
when, under high irradiation, the graphite thermal conduct-
ivity has fallen considerably. '

48, - Since moderator relative reactivity coefficients are
known at present only in terms of two c¢ylindrical regions of
moderator, it is necessary to produce two mean temperatures
of the moderator for such regions. :

49, s The unit length of moderator in a channel is shown
in Fig. 5. -

' Two cylindrical regions are defined - the inner
diameter is that of the channel, the outer diameter is that F
of the cell, to give the correct graphite volume, and the
interface is arranged so that the ratio of the two regions
is within the range for which experimental results are ,
available. : _ ¢

50, - For the regions, arithmetic mean temperatures Tpg
for the "surface" region, and Tpp for the “bulk" region .
are defined, both for heat transfer and thermal capacity, .
making use of assumption 14.
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51.. The heat input to the surface region is identical
to that of the sleeve, and the heat production in each
region is the same as that for the sleeve and main moderator,

52.- Assumption 24;

The heat transfer between the regions is
proportional to (Tms-Tmb). Analytical checks

on the final equations show that this assumption
is valid over a wide range of operating conditions.

53, Then the partial differential equations become:

| CmsBTMS =
-1

@Hmﬁa‘% (‘Q'La‘) -Vs (Tms "Tu)— Y, o(Tmszm@ (41)
+ Rams

(L“b@ﬂiﬁl

222 28 Rk G T (4-5) + Ui T k)

(42)

54.. These equations are then averaged exactly as for
equations (1) to (6) giving, finally

ATws . — o
Crms 22 = L:: -ks‘f3(W)ﬁms’-Tc\)' U\O(TMS 'TML) (43)
+Rams
NI = = |
C"""h :-b_ = -Th:-.-\- U\o( Tws ‘Tmla) _ | (44)
554« Equations (43), (44) replace equations (34), (35)

Equations (36), (37),.(4Q)are replaced by

Cq t—:‘;. + 2::_:/ ﬁc\‘Tch}r b;-f,_(w)ﬁa_?c.)

.+ kg‘f3(w)ﬁms- ?c,.) (45)

Tco, = 27"‘ - TC(: (46)

The final heat transfer equations are then (30) to
E33§, (38), (39)_and (43) to (46), with Raml in

31) changed to Rams.
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9. CONCLUSIONS

56. T™wo sets of equations have been produced, one for

a reactor having graphite sleeves supporting the fuel elements,
and the other for a reactor with a so0lid moderator and no
sleeves., ‘

57. The assumptions involved in each case have been
detailed, and briefly discussed. They are in general of a
physical rather than mathematical nature, and most may be
shown to be at least reasonable. :

58, . Certain of the assumptions are capablé of being
reduced or modified, and work is still proceeding in the
development of these equations,

59. The radiation terms, while of little importance in
the full power steady state, become large in certain fault
conditions, and their inclusion is essential.
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11. APPENDIX 1.

Cei‘tain integrals which occur in the text
(hj:Co?E(Q- S)al = 3[4 + z>SnzE (g-_)]
| - FLv st S ] e
L
LTI Ll st (1]

= ?[%S\ L -\—39"\»-“"‘]

"" ‘_‘\gn\.— - 3'8‘ ZLJ

L ST (54 GsTE

= 31\’ 2L, (48)
“ ' L L
D) PGJumCos’-ﬁ(Q-i)AQ - Roar. & = (49)
) _S Hw...‘cns ,_‘(e" )J‘Q N \-\mwc. (54'6051&)3\/\'\.2‘_.
. 7_ .
§o G E(Q'@"‘_Q E(r g shm)
_ P $+Cos
C O 3(l L Sie I‘,_-)
- ch_ ~ (50)
Ui By RLE S
g o Integrating by parts’ gives
2.1, za\r“( v W [N
—— T N T Swm=— ‘f-" OLQ_
L(\‘\' gm. Ly ){' C|C0$ L‘( 7')]" Li (\+ S 1ﬂ—>‘5 ' o 2)
A, P |
2 Uuo"’“] Gsan, 2wy -

+ j TeSin 2‘(“' )A'Q
L(\ + gm, —) L, (l"'j_—'s“\v‘—) (51)
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Now from Appendix II, the steady state value of Tel
is given by

L/

T(,| _ _Tc,:, +Tao Crcm':ru)g\l’\. L,({'_ o
2 o ZS\w ;—‘:‘"—: .o »

The integral in (51) can be modified by forming an
identity with the above expression.

Thus, multlplylng by S‘W\. ;_\ (Q' "'=) and integrating gives

T. \+"r .
3, - & Cie_ Ucio- (—L) . .
jb{ Tz Y SWT (- g_)} Sin 2T (e-5)aL

= | {Tem T o 0.y S e )
"Nz as Tel and ’ﬁlg

are constant for the integration

jrc.smz“ DN~ (;?;T‘Q J SHE(eg)GT e E)da

. . S
= j T°|S|v\ ™ (4- z,)o\Q \(Tuo"rd) L va\ %‘(4-%)]

‘_ .
WS “2‘_ 3
- j Teq s:&‘f(e L)ou 2L (To-Tet) Sin 5,
° 3w

and the identity is:~

b ' -
S Tey S\'v\.?%‘" (e- z,>d~Q = 2t Faer Tee (e T“)

. 2 Z.L\
T Crca'-'ﬂ.g)gml. (e z,) %l L
+j{ - 25T }Sm——(l--)dl

(52)
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Substituting "(52) in (51) gives the integral expression (V)

as
ap T ,
27, (Tcw‘T“) Cos 1‘11; + 2V, W . < 2L (Tas-Ter )ng\l 12%:.
L(H’ g\r\ —‘) LL.(H' S E) 3w

2’\)’\'\“‘ | q'ae TL)S“\§ (0 l-) WAy C
¥ LL (\-\' = 9\“ )j{n‘ S““E[‘-l(‘e--i)AQ

1\’L
zs 2L,

which reduces to.

. L
v, (g Ted) 2w (TS (2- z,)}

— . i \ - &'Q
L LL.(\»(;tr}_S‘:.\%)‘L{ 28 EE D
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12, APPENDIX II.

Steady State Solution - outline of approach

Taking the steady states of equations (1) to (6),
and eliminating directly all terms except Tel and Tc2 gives

chx VA
Cc\"ﬁ‘u (0(_\'01;\-\% ﬁ) “W*Cos.f (Q z) _ V3 04 (Tc\—'rc.'a.)

3*
(54)
_ U4RmM\+U3Rme_
Vg +V4
¥ | | :
oo, 0%z _(Wal¥a a)p s [g-&) 4 Yala
c2 LB-Q Us*uq?) Mok ‘_‘('Q 2_)+ q’(.,TQ'—rcz)
(55)

4+ Va Ram: +V3 Rwime

Vz+Vea -
Multiplying (54) by CeaVp and (55) by Ce\™i | subtracting
and dividing by Ca\Cer VW Va gives, neglecting the radiation
terms

-.(Tc\-m) AGsT (#-5) - 8 (Te-Tea) | (56)

where A_Ce\(‘c,,’\f\"’lf {ch,"‘y (6(*' P) Ce Vi (X+U u‘\@) W o

and B. Ce QL VN, = 03 2 (Cq'\r\‘\' Cc?.t\r?—)
Integrating (50),

-B8L
To-Tep = Fe +———- ‘_BQs‘{u—ﬁf:“:Sm%M- )]_

and the boundary conditions are Tcl—Tc2 = 0 at ,e = 0 and £.=

= F 4+ —= LT -
o= F ot Y_Bcosu_\ = Swit -
-BL
o) :.Fe -+ 7_ .«7_ ‘_B&sz‘_ + L(s‘ 2L.|

and the only legitimate solution of equations (57) is P = A =0

L/
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Thus: (a) Pel = Te? everywhere

(1) Cavi | At © (58)
‘ca'\fzf X+ u;’:w 8
Then, adding (54) and (55) gives finally ,
(0) Tey=Tep = WitTe | (Teo-Te) S F(£-§) (59)
’ ' Q'SG“EEi;

the last result including radiation if (&) holds in that
case,
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