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STABILIZATION OF BALLOONING MODES WITH SHEARED TOROIDAL
ROTATION

ABSTRACT

A new code demonstrates the stabilization of MHD ballooning modes by
sheared toroidal rotation. A shifted-circle model is used to elucidate the physics and
numerically reconstructed equilibria are used to analyze DIII-D discharges. In the
ballooning representation, the modes shift periodically along the field line to the next
point of unfavorable curvature. The shift frequency (dQ/dg where Q is the angular
toroidal velocity and g is the safety factor) is proportional to the rotation shear and
inversely proportional to the magnetic shear. Stability improves with increasing shift
frequency and, in the shifted circle model, direct stable access to the second stability
regime occurs when this frequency is a fraction of the Alfvén frequency
w, =V,/qR. Shear stabilization is also demonstrated for an equilibrium
reconstruction of a DIII-D VH~-mode.

I. INTRODUCTION

The maximum achievable value of beta (the ratio of thermal to magnetic
energy) is determined by Magneto-hydrodynamic (MHD) stability. In unbalanced
neutral-beam heated discharges [1,2], however, the rotation energy can be a
significant fraction of the thermal energy of the plasmas and can influence MHD
behavior.

We investigate the evolution of short wavelength perturbations with broad
extent across flux surfaces. Such perturbations are very general; they may describe
non-stationary (convective) amplification as well as arrays of locally resonant
eigenmodes [3]. Convective amplification is of particular concern in cases where the
growth rate estimated by neglecting the effect of rotation is larger than the rotation
shear frequency.

We consider equilibria with purely toroidal rotation,

v= RQ(‘V)@ 1)

where R is the major radius, (;3 is a unit vector in the toroidal direction and the

rotation frequency Q(l;/) is a function of the poloidal flux y. The perturbations are
described by [4]

A AM@—q6-01 )
where ¢ is the toroidal angle, 0 is a poloidal angle defined to make field lines
“straight” and q is the safety factor. Unlike for static ballooning modes, the eikonal is

time dependent; we must solve an initial value problem.




Loss of confinement results most directly from convection between the core and
the plasma boundary. This occurs when the phase of the eikonal is constant across the
flux surfaces, or for 6= (dQ/dg)t. As a result the extended eddy experiences
alternately the effect of favorable and unfavorable curvature. This is the primary cause
of stabilization by sheared rotation for roroidal instabilities.

In Section II we present the approximations used in the shifted circle model. In
Section III numerical solutions to shifted circle equations provide an s—o diagram.
Section IV presents numerical solutions for DIII-D equilibria and Section 'V is a
summary of results and conclusions.

IIl. EQUATIONS

The linear perturbation of an equilbrium with sheared toroidal rotation is
described by the stream function ¥, the poloidal flux w, the velocity along the field
line vy, the pressure p and the mass density p. The stream function J is related to the
electrostatic and magnetic potentials by ¥ = (¢ +A- '\7) / B. We assume an isothermal

equation of state.

The exact ballooning mode equations which are solved in Section IV are given
in Miller et al. [5]. Here, the standard shifted-circle model is obtained by considering
a low-beta equilibrium in which the pressure varies rapidly in a thin radial shell [6].
We generalize this approach by assuming that the velocity is small but changes
rapidly in the same region. The density of kinetic energy is typically no greater than
20% of the pressure in present experiments. The shear of the velocity, by contrast, is
comparable to the magnetic shear in the core. Accordingly, we neglect centrifugal
forces for the shifted circle equilibrium and focus instead on the velocity shear.

In dimensionless form, our model equilibrium results in the ballooning mode
equations

I =-0(68)F+3ph— LW 3)

o[58 )] 2ar(ep-vialo(er (0] o
0. W=~ &)

9:p=—Lp 2+[ 26 —20(8,7) % - o(6)¥] ©6)

where h(9,1.’)=s9-sv1'—asin6 is proportional to the integral of the local
magnetic shear along the field-line, 1+h2? is proportional to the norm of the
wavevector, F(G,T) = cos6 +sin6 h(@,’r) is proportional to the triple product ¢

the curvature, wavevector and magnetic field, and 0'(9) =s, (8" +2cos 9)
determines the convective acceleration resulting from field-line interchange. We have




normalized time to the sound wave transit frequency and distances to the connection

length, 7 =1/t, =tV,/gR,, where V, =+/T/m. As a result the Alfvén velocity
parameter VA is inversely proportional to the square root of beta. The perturbation

amplitudes have been normalized according to ¥, =v,B/p,V,, ¥ = xq°/rBV,,
W =g’ /B, p=p/p () Lastly, L, =R, Inp,(w)o,v.

The three parameters of interest are the pressure gradient o =-2g° / L, Vi ,

the magnetic shear s =rd.q/q, and the velocity shear s, = Ryrd Q/V,. Note that

values of sy of order 1 have been observed in VH-mode plasmas in DIII-D [1]. With
sheared rotation, as can be seen from Egs. (3-6), the s—0—sy diagram depends on three
subsidiary parameters: V4, g the safety factor, and € the inverse aspect ratio. In the

next Section we will take g=2, €=0.1 and set V, =+/40, corresponding to a 3 value of
5%

As pointed out by Hameiri and Chun,[H&C] the equations are periodic in time
in a coordinate system precessing along the field-line, 1=0—(s,/s)7. It follows
from the Floquet theorem that the solution has the form [7]

X(n.7)= Y, xm0e" %

where the Floquet characteristic functions x,(7,7) are periodic,

x;(n,7)=x,(n,7+T), and the growth rates ¥, of the individual Floquet modes may
be complex. There is a direct correspondence between the Floquet characteristic
functions and the radial eigenfunctions, and the Floquet growth rates are equal to the
eigenvalues of the normal modes [3].

In most of the present work the growth rate is obtained from the integrated
quantity

Ar) = JI:"“‘ (5(2 + 22497 + ﬁ’)d@ (8)

by calculating the logarithm of the amplification during a period T, where
T=2rs/s,. Thatis,

Y=/ DIn[AG +T)/A®)] . 9)

A more rigorous approach using Floquet's theorem has also been used. One can
identify the dominant ¥, eigenvalue and its complex conjugate from the 3x3
determinant

1 x(1,,T) x(1,,7)
e x(m,t+T) x(n,,T+T)|=0. (10)
e x(n,T+2T) x(1,,7+2T)




ll. SOLUTION OF THE EQUATIONS

To solve the set of equations (3—6) we have written an initial value code which
uses two-step Lax-Wendroff differencing [8]. Initial conditions are obtained by
starting without rotation shear and letting an unstable ballooning mode form.

A. MODE STRUCTURE

The evolution of the perturbed pressure as a function of theta is shown in Fig. 1
at six different times for s=0.5, a=1, and sy=0.25. The mode initially remains in the
bad-curvature region, despite the increase of the phase shift between neighboring
poloidal harmonics. As the ballooning-angle increases further, the mode eventually
shifts along the field line to the next point of unfavorable curvature where its poloidal
harmonics may again be in phase (Fig. 1). The process is then repeated.
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Fig. 1. Evolution of the pressure profile p(6,t) for s=0.5, 0=1, 5,=0.25.




In Fig. 2 we show the growth rate as a function of (sy/s)/V A (the dimensionless

form of dQ/dq) with s=1 and a=2 for f=1.6% and 5%. The additional curve
corresponds to an incompressible model obtained by neglecting the bracketed term on
the right hand side of Eq. (6).

Three conclusions can be drawn from Fig. 2. First, the structure of the f=1.6%
and 5% curves is clearly due to compressibility and the sound wave. Second,
stabilization occurs at a lower value of sy in the compressible model. Third, increasing
beta is stabilizing at least up to B=5%.

For magnetic shear s<<1, motion of the mode center is not as important,
because the mode is not as well localized in ©; weak shear is more easily stabilized
than strong shear for a given sy,.

B. s—o DIAGRAM

We have constructed a modified s-alpha diagram for sy=1 and sy=2. The data
was obtained by choosing 11 values of magnetic shear, s={0.1, 0.2, 0.4, 0.6, 0.8, 1.0,
12,14, 1.6, 1.8, 2.0}, and scanning alpha in increments of 0.1 over the entire range
for which there exists an unstable static mode. The results are shown in Fig. 3 We see
that the unstable region is eroded on both the first and second stable sides. For small
enough magnetic shear s, complete elimination of the unstable region results. In this
range of 3(~5%), a rough criterion for complete stabilization is

S—V2(1/3)VA an
S

{(Y)Na vs. (Sy /S)Na

0.30

0.25

0.20 -

0.15

(Y)Na

0.10 —

0.05 —

0.00 ~

-0.05 T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 150

(sv / s)/VA

Fig. 2. Growth rate YV4 versus (sy/sYVA with s=1 and a=2 for B={0.5%,1.6%,5%,16%)
and the incompressible model.
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Fig. 3. s—adiagram for two different values of sheared toroidal rotation: sy=1 and s,=2.

or

€@, (1/3)2A
dg Ryq

(12)

where V, is the actual Alfvén velocity and we have used s, /s= R,g [(dQ/ dg) /
VT]. For weak values of magnetic shear, s < 0.1 the coefficient 1/3 in Eq. (11)
should be replaced by a value approaching one.

IV. NUMERICAL EQUILIBRIA AND STABILITY

The equilibrium reconstruction code EFIT has been modified to include toroidal
rotation. The code uses data from a 16 channel motional-Stark effect diagnostic and
external magnetic data. The pressure and toroidal rotation profiles are constrained by
the measured kinetic profile and the charge exchange recombination diagnostic,
respectively. The most distinctive feature of these equilibria is the diplacement of the
pressure surfaces from the magnetic flux surfaces.

Using EFIT and the initial value ballooning code, we have examined the
ballooning stability of a DIII-D VH~mode discharge [1] in some detail. The rotation
energy is 10% of the thermal energy. EFIT was used to construct equilibria both with
and without plasma rotation. The ballooning stability was then determined for the two
equilibria using the initial value code. The ballooning results of the static case as well
as other static cases have been checked with the existing ballooning mode codes,
MBC and CAMINO, and found to be in reasonable agreement.

All flux surfaces were stable for the equilibrium reconstruction of the discharge
without rotation, while 2 out of 41 flux surfaces were found to be unstable for the
equilibrium reconstruction with rotation. These unstable flux surfaces were near the
center of the plasma; the percentage of the total poloidal flux on these surfaces was
13-15%. Unlike the shifted circle model, this analysis includes the effects of finite
toroidal rotation (centrifugal and Coriolis effects). The instability appears to arise
from an interaction between the rotation and the rotation shear.




The dimensionless parameters for the two unstable flux surfaces were (s =
0.063, sy = 0.164, V =5.60, s,/(s V) = 0.46) and (s = 0.108, s, = 0.207, V5 = 5.74,
sy/(s V 5) = 0.33). The criterion of Eq. (11) suggests that both of these flux surfaces
should have been shear stabilized. However, Eq. (11) is not expected to hold for such
low values of magnetic shear. We find that the s = 0.063 flux surface can be stabilized
by a 25% increaes in s, or by a 25% decrease in s, which gives a value of s,/(s V) =
0.58. The s = 0.108 surface was more difficult to stabilize, requiring an increase of sv
by 60% or a decrease of s by 50%, with a resulting s,/(s V) of 0.53 to 0.66. Note
that in such a weak shear region, an adjustment of the magnetic shear by these
amounts has a negligible effect on the g profile, suggesting that stable profiles can be
found within the experimental range of error.

Although the profile changes required here for stabilization were modest, this
case demonstrates that rotation can influence ballooning stability.

V. SUMMARY & CONCLUSIONS

The initial value ballooning code demonstrates stabilization of MHD ballooning
modes by sheared toroidal rotation. We have developed a shifted-circle equilibrium
model and extended the s— X diagram to describe the effect of sheared toroidal
rotation. We find that the unstable region of the s— & diagram is reduced on both the
first- and second-stable sides by sheared toroidal rotation. The dominant parameter

determining where the unstable region is eliminated is (sv/s)/‘/:q

or (dQ/dg)R,q/ V, where V, is the actual Alfvén velocity.

Using the full set of equilibrium and ballooning mode equations including
toroidal rotation and toroidal rotation shear we have examined the stability of
numerically reconstructed equilibria. Although some destabilization can occur
through an interaction between the rotation and rotation shear, once again we find that
increasing the rotation shear is stabilizing.
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