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. Abstract: - ' The photoconversion.of N-methyldiphenylamine to N-

'Q<methyigarbazole (C) pasfbeenustudied.by steady illumination

‘measurehents of carbazele quantum:yields, and.flashtphbtoytié

ﬂ-measurements of transient yields and decay/kinetics; in de-

- gassed and aerobic solutien, from.room.temperature to -140°.

- The results.established that.the. reaction proceeds via the

'.amine triplet (Tr) ‘which transferms into another intermediate,

absorbing at 610- nm,:which is. a531gned to meethyl 4a 4b-di- -

hydrocarbazele'(DHC).p ThlS trans1ent may elther revert back
te;amine:or react aerobically“or anaerob1Cally‘to form.carba-

zole. . Thé complex deﬁendeneefef carbazeleiand dihydregarbazole

-yieid*énnéngen concentration_and temperatureAis.discussed.

o)
The: processes Tr - DHC. and DHC '——2—5 C are. demonstrated by

flash: photolySis, despite unfavorable overlapping absorptions
in the: latter case.,:Extinction coeff1c1ents of Tr and DHC

are obtained, and. feur rate constants which are. involved in

. the kinetics aﬁove75140°vare¢determined directly by flash -

. photoelysis. The.resnlts are closely censistent. with a dif-

fﬁsion—controlled rate.for:Qngen qﬁenchingjef the amine.trip-

let, Activatienﬁenergies are: Tr. - DHC, Ep+= 5.5 kcal-mok;

'DHC - MeDPA (ring-opening), E, =:17.0 kcalimol 71.. The‘inter-

A

esting anaerobic reaction DHC - Carbazole, with. EA < 100 cal

. T . ' ‘
-mole ", is discussed.




-2

Thg exidatiVe;photoéyclization“of diphenyiamines to car-
‘bazoles is a éomplex reaction whose detailed steps exhibiti_
.some remarkable kinetic features. Heweﬁer,-despite much re-
'séarch,.there is still debaté and‘cqnfusion regarding, the gen-
érai reaction,scﬁeme. Before any of the:intefgsﬁing,mechan-
istic_prpblemg can be trea?ed,:it,is neceésary_to résoive thése
diSagreéments.

In ear1ier:pub1i¢atiéns,pn:the photoconversion. of N-methyl .
.diphenylamine‘(MeDPA) and triphenylamine:to the: corresponding

_carbazoles, ’

the following_reaction-patternAwas;proposed for
the ovefall process: (The broken arrows (k; and_ks) indicate

fluorescence and phosphorescence emission).

Triplet (Tr) -

abs | K1l Xy | kyload Kk -
[ 0s]

| ¥ Y .Y

ke — —

MeDPA Carbazole

This scheme inclﬁdes tWo sequential intermediates, the triplet
state (Tr) of the amine and ahother speéies, seen in flash
_photolysis and absorbing'at 610 nm. for.reasons which are
further discussed latér, this'“.610.'l transient was assigned to

. the N-methyl-4a,4b-dihydrocarbazole (DHC).



- DHC.can eitﬁér-revert back.tofparent diphenylamine by-fhe ring
z@penihg.readtién, kg, or fea§£<to form.the_carba201e<via‘both
anaerobic (k10) and aerobic (k11) pafhways.
vThiSSpattern.was‘proposed to explainithe observed depenQ
denée:éf_carbazole quantum.field2’3”and triplet and DHC life-
times on:exygen'concéhtrétien:énd temperature; as well as.thé
sequgnceS-ngtriplet, DHC'and carbazo1e abéorption seen.in
‘Jflash:experimentslz_'Other wquers haye_sihce repeated and ex-
'tended.sqmé of our-measurementé énd essentially éonfirmed our
obseryatiens.l However, différenées §f interpreta£iop.have
arisen. For exémple, Shiéuka and'éo-wquers have. used . the
‘ abeVe-reactien;ﬁattefn.tg éélculate'rate.qoﬁstants,and‘éétiva—
“tien energieé for the varieus steps frem;measureméﬁgs of
carbazole:yiéld as.funcinniéf feméerature and cpncentfation'

’” ‘ However, on. the basis

. of oxygen, sensitizefs and qguenchers.
of room.teﬁperatﬁré.flash.expérimenté, they conclude‘thgt.the
;éldf tfansient cannofAbe.ideﬁtified.witﬁAthe DHCiprecufsor
of carbazole. Kemp. et gl.'have.obéerved'thé.610»band in

;pulSe radiolysiS‘éf triphenylamine solutiens, but take this

speciés tQ~bé the amineltriplet,.'6 Othérs7;have<seen:both
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triplet andn6losabsorptiénain.flagh;photolysis:of tfiphenyl=
~amine, bﬁt:leaveaopennthe:possibility that these transiénts
.aré-fermed simultanepuslyvraﬁher than sequentially. Svesh=-
- nikeva.and Snégo?s.conClude thétwthetphotocyclizationnof
jMeDPA‘pgoceedsfin.équal amountsithroﬁgh.singlet.and}triblet
ziﬁtermediates, whileinnoharég’haS'proébsed,that the triplet
_may not:be.involved at. all. |

| In order to.clarify the situation and help. identify
problems which still remaiﬁ, we . present here a more detailed
- and coherent. account. of eur work than has hitherto'been given,
together with the resuits;éf-further studies which appear to
us to: be definitive in:establishing and refining the above
reactioh.schéme. While this  paper deals:mainiy;with-MeDPA,
the.genefal reaction. pattern. is typical for a wide variety .

' ‘ : A 10
- of diphenyl. and dinaphthylamines.

" Results. and Discussion

I, Carbazole Quantum. Yields -

Illuminatibnuof’MeDPA:inAfluidAsolvents~1éads td N-methyl
carbazole, easilyfidentified-by its characteristié absorption
. spectrum (Fig.Ale). The:péak at. 343 nm (decadic molar ex- |
tinétién coefficient, ¢ =‘5800'cm2 mohgl) doestno£ overlap

~with reactant. absorption (Fig.‘iA) and is convenient for
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-quantum.yield determinations. The’gyclization.pr0ceeds4in.a
wide variety éf‘solventsAkmq#hylcyclohexané (Mcﬁ), ethaneol,
EPA, silicone:oi1) andfin;both:aegassedzand aerated media.
However, the:quantuﬁuyields:of.the aerobic (@é) and'anaéfobic
(mc) ;eactions have.quife different‘temperature dependence,
- as shéwnain:Fig. 2. In MCH, air.satﬁratéd~at room. tempera-
fture, @é deqreaSes.gtgédily from.0.42 at room température
wto.0.04-ét:-iQO°..AInxdégassed MCH, @ is quite.smél;iat»room
:température-(aﬁéut-0.0l),riéés between 0 and -50° to ; very

¥.= 0.40). between -100° and. -140° and.drops

2,3,5

-broad. maximum (mc
\

agaih.toward;zero:below -160°, (Our earlier results;2

‘@é = 0.3 at réom.temperafure and,@c ~ 0.2 at.-70° are tgo
low, becéu$e éf a.systematic calibration error.) These
'measurementé are:in.good~qualitatiye.aéreemént,with, bﬁt are
.soméwh#t;lowef than, the results of Shfzﬁka et gl}4’5 This
seems té.beipartly, butlnoé eﬂtirely, due\to the different
‘vélue (e = 39004cﬁ2.m015}) faken:by.shizuka'for the:thethyl-

carbazole 343anm\extinctionucqefficient; (The: lower. ¢ ap-

pears to correspond to.the. value: in ethanol, rather than MCH.)

‘II_° .The,6l0vnm.Flash:Transient:'Spectrum;,Anaerobic Yield

- and Decay Kinetics.

;'A,“ngectrum_f.‘Elagh;illumin@tionAof MeDPA' in. aerated

. or degassed. solvents and at temperatures down.to -=140°
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produces the. transient. species whese spectrum.is shown.in
Fig. 1D. . In additioen. te the:main:band at 610-nm, a broad
~low. maximum:occurs areund:370ﬂnm,-overlapping,the.long=wave

carbazole: absorptien-peak.

- B. .AnaerébicADHC1Yie1d,-=Under constant conditions .
- of amine concentratien. and flash inténsity,.aﬁd-ét tempera=
‘tures such_ﬁhat the.transient‘is.fqrmEd raéidly comparedfté
the:flash duratioﬁ; KT5>~-100°, see below) , the relative
yyiéld'of DHC:is measured. by the initial ¢hange-in absorbance,’

A : immediately following. the excitation.flash. Since

%210 ,
the. transient lifetime (T<>440 msec) is 'much longer than. the
flash duration . (7 Usec) good values of ADo.are:obtained. It
is found that th; anaerobic DHC:yield is essentially constant
from.20° to-—1§0° (Fig.. 3) . Below this temperature, the
yiéld.faIISZéffrand at‘-1é0°, no DHC is seen. . This behavior
-may'beaunderstood'in terms of the reiative temperature depen-
»dence-of the-vafioué pathways'byxwhich £he;amine.trip1et
decéys}z . As shoewn:below, kg isxmuch:faster"than;k5:0r4k5[M]
down.to~4l40°, sé that above this. temperature, all triplet

(withatemperature;indgpendeht.yield) leads to DHC.

~C. .Pnaerobic: DHC Decay Kinetics and Formation.oef Car-

ﬁbazolef Determination. of ko and'klo:-"The constancy of DHC

YieldAbetween.20°.and -140° (Fig. 3) must be reconciled: with
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theAstrong4Variatiéﬁain anaerobic carbazéle yield over this
same temperafu:g’range (Fig.. 2B). This may be.déne.on.the
~basis of the tem?érature deéendence*ofx610=transient.decay.

: In4absehce:of:oxygen, DHC disappearance is accufately
firstaordér,.withglifgtimes of about 40 msec at room.tempera-
ture, increasiqé‘ﬁo‘l sec atx-30°.‘AH6Wever, beIOW'—30°,
the<aﬁaerobic~deéay;becomes remarkably;independént.ofjtemperan
tuﬁre.2 Figﬁre'4A;gives an Arrhenius plot.of the first. order
DHC‘transien£ decay-rate:inuvafious s.olvents_° It is apparent

'thaf.two.éharplyydifferent,prdcesses are invelved. The first'
freactioh,vwhich.contrelé the anaefobic.décay at high tempera-
tures, givés a good Arrhenius line, with activatien. energy of
l7fﬁca1smolé-l. Aé»the:temperature is lowered, this dgcay
-path.gives way to a. second, temperature—independent,.pgocess
.which becomeénratefcontrplling,below~730°, Cdmparing.the
anaerebié deéaytpafe-and.carbazole<quantum.yieid'(Fig. 2B,
2C and Fig. 4A,x_44c)' it:is eVi.d:ent: that.the rise in g - with
.decreasing_témperature:corréspongé qualitatively'with the
-transitioen. frem:the first. to the second mode of DHC.decay.
A Aécordingly, wé identify the £emp¢raturefdgpenden£,process as
the ring-opening:back. reaction, DHC: - MeDPA;_for whichaﬁe

find (Fig. 4a):

It

Ko :1014;exp (-17,000/RT) seé_i
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Thevstriking:temperature-indgpendént:anaerobic,decay, rate
-Iimitingjat,lowftemperatures'and,asseciated.Withahigh car-
bazolefyield,-is assigned. to a rate controlling step in
the reactien. DHC - carbazole. . For this process,. Fig. 4A

~.gives
- j . - 1 - . . . . . 1 ..
k10 =:1.2. sec (E10.< 0.10:kcal mole ™) ..

. Thus, in.degassed:selution.above-—l40°, when. the DHC:yield
~is censtant, @;‘is controlled. by compétitionabetwee?.kg ;nd
*ki10. - These:results constifute very strong,evidencé that
_the 610 transient:is a direct.infermediate-infanaerobic

-carbazole. formation.

III. Aerobic DHC Decay Kinetics and Yield; Formation.of

Carbazole. and determination.of kj;.-

' A. Kinetics - Oxygen accelerates the disappearance. of
thea610.transientAand_iﬁ*éXCess leads to accurate pseudo-
.first.order decaygkineﬁics.. Figure 4B«§ives an Arrhenius
plot fof the decay=in.ethanol, air-saturated at.room:tempera-
ture. At~thiS‘oxygenAconéentration and:frem-room.témperaﬁure
te,-100°; the;aérobic~decay,is.verf-much faster than the
anaerobicﬂrate, ahdAessentially;all'DHCLis:trapped:by the
. eXygen reaétion. - The  line of Fig. 4B thus represgnté the

- ‘ : o . =3 s
- temperature. variation: of k;i:. Taking (0] = 2.3 % 10 M,5 11



" -we . obtain

~,kll'=.1,2.x.108 exp:(fz,BOO/RT) Mfl 4s_c-3c_1

B. . Aerobic-fields‘gf‘bHC and Carbazole:- The rela-
tive. yield: of DHC&innpfesence:offoxygenAwas agéin;measured
“by théfinitial tranSient.absorﬁance as foundabylexfxapela=
tionaofAthe-décay curve.béci.to zefo_fime éfter tﬁe flash.
' The strict first-erdef;kinetics'facilitates'this; In. sharp
gentfast'to the anaerobic situation, it is found,tﬂat'the
aérébiquHC-yielé,_propértion§1 to (ADpjélo, falis_sFeadilyv
:aé the,temperature:iS'lowered.: Tﬁié effect‘may-be.understeod
(see:belowf as the result- of inc;eaging, diffuéion-controlled
. oxygen quenching,of the -amine triplet (k}) relative toAits
.more4strongly-temperature-depéndent cyclizationuto DHC, kg-
The.decggase.inuaerobic-DHC:yield;with tempefatufe
élosély;éaralleisAﬁhe4fallAin:aer§bic carbazole quantum.yield
(Fig.. 23) . 'ThiS‘cqrrespgndence'is shown in Fig. 5;~iﬁaWhich

~the. initial flash abserption.change (ADO)él at a given. tempera~-

| 0]
tu;e-i§2910tted against thejsteédy-illuminationAvalue:of

.@é measured at the;sameEtemperature, It.is seenAthat.the-fwo,
yields.are-proportional,to each. other over tﬁe entire tempera-
,ture‘range. ‘ThiS'is in.accord withzouf réaction,scheme, since

at.highnoxygen_cencentratien,fwhere.all‘DHC:decays via the

: rapid. aerobic- pathway, k1:[02] (Fig. 4B), the carbazole yield
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should: be :controlled  simply- by the.initial'DHC.yiéld. .We con-
clude~thatithe:GiOﬂtransient.is»an.intéimediate;leading-to
. carbazole :in the éerebic'aS‘welllas.anaerebic;reactions}
The: "610" species is-assigned: a dihydro-carbazole :structure

- for three reasons. First, its appearance:as intermediate: in

diphenylamine:cyclization=fesemblesuotherclabile.species‘ob-

2, and- reversible

~serv¢dzingrelatedtoxidatiﬁe-cyclizatioﬁ
:phofochromic ;eactions;14 4éecond;-the‘;ing-opening;back re-
:action W610"~;?MeDPA,,has:angactivationuenergy cloée to;thaf
- of similarly. assigned processes indihydrephepanthrenes'.1

. Third, the absorption .at 610 nm:isu}easonable,-fér a . system

.of six conjugated double bonds, in.a charge-resonance zwitter-

ion .structure (DHC).

IV. The:TripletﬂState of MeDPA and Formation .of DHC; Deter-

-mination.of ky.and kg.

In:rigid media at liquid nitregen témperafureé, MeDPAl
' phesphoresces.étreng1y at,430unmf5;and:neither:DHC.nor'éarba?
-zéle.are formed;2’5 AsAthe<temperaturé is raised ébove -150°
both;610»transiént.absérption~and.(anaerobic) éarbazole‘formév
tion-develop,;énd;£be;phospﬁorescenceii#tensity diminishes.
However; at‘these31®w.ﬁemperatures;4the 610:ab§orp#ion§is»hét
the first.flash:transient to be seen. Instead, below. -100°

a:new initial transient. appears absorbing at.540:'nm (Fig..1C)
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-whose‘first.erder decay-rate jmeasurédfat;v155°) closely matches

both‘the-decayfef 4301nmnphogphereScence?emitted.from.the fluid

 solution (Fig.. 6) and: the.grewing-in:ef th'e.\6410‘.nm.bané115

(Fig.. 6:and: Fig.. 7C). ‘We conclude thét:the:540‘nm.inter~
" mediate is the{MeDPA triplet, and’that.thié givés rise: to DHC
'at'temperétufes:abevé~-1509. Similar‘resultS'have been: obtained
;inﬁloﬁitemperature flaSh4experiments5onuffiphenylamine.2’7’10
.fTheAtriplettlifetimeAdecreases.sﬁronglygwith.increaéing
,teméerature. Abovef-100°; the:540¥trénsient,is:too.short—
-1i§ed‘té be detected:by sﬁandard~flaShuphoﬁolytic'méans, and
.610:1is thewonlyrintermediaté.seeh, but:1éser techniques'permit‘
.thé.triplet dgéayft¢ADHC:t0>b§:follewéd:up 't;o.-room.temp‘era‘tum:ie".1‘5
'Iﬁadegasséd:selution, the.rise-in.DHCiyieldzwithwincfeasing
ftemperature~and5particu1arlyf£he constantmyield.above’-150°
(Fig. 3) indigétes'that.thislshorteningyof triplet_lifetime‘is
‘qauseduessentiallyjby.the:increasg.in.rate of DHC. formation,
: kg. Figufe 3~Sh§WSgthat.already'at.-l40° kglmﬁSt.ﬁe,fast
enougﬁ to deminafe'théAtwe coméeting,triplet decay‘procesées,
4 firét-order‘rédiativg and raéiationless ﬁransitionutoAthe
ground;state'xks) and%pseudo-first-oréer triﬁlet guenching
;by-advéntitieus quénche;s (k¢[M]). 1In agreement with this,
an.activation‘energy of,5,5:kcal_mo;e-liis obtainéa from. an
vArrhenius-pléf-éf the.fi;stAO?der'rate constant. for triplet

(540' nm. transient) decay, over the temperature range



.sities and amine concentrations, o
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(-140°‘to,-100°):in which the lifetime: is aécesSibleﬁto direct

flashathtélytic;measurement (Fig.. 8, open.circles);.,This

. value. is censiderablyfhigherfthan.that.expected‘for-ksxand‘ks,
“but is in accerd with.the cyclization. of amine triplet to

‘DHC. . From. Fig. 8, we obtain-

:kg.=-8 x:lbll ekp'(-5,500/RT) seé-¥

The;highAfrequenéy:factortof”keaimplies that DHC»iS first

.formed:in. its trigleﬁAState, and-direct.evidence for this: has

: alreadyfbeenagiveh by*means.ef,lasér photelysis.1

. fTerryigglgl._havezparticdlaflyfremarkedwonzthe‘anomalously‘

;llarge”temperafure sensitivity*éf'theatriéhgnylamine triplet

'Alifetime;7 ' This phenomenon arises,'as:is now apparent, from
zthe.exisfencerf the femperature-depeﬁdent:deéay“patﬁway, ks?
: leading;te-DHC. . Other substitqted diphenylamines, which are

:highly;photostable;'formaneiﬁher carbazoles nor DHC, and. show

"nermal" 1lifetime-temperature behavior.157l7

»Further-ihféfmatién.regardingfk7-and;ke is given by the

feffect‘9f~aerobic'v$; anaerebic conditions. en.the yield.of DHC

at various temperatures (Fig. 3 and 5) . VOxygen-will influ-
ence.@DHctby;competitive quenching of both the singlet. and
triplet states of. the amine. Also, at coenstant flash inten-
is proportional to
pac 5 PTOPOrtio] |

(AD9)610° . Therefore, using primes to denote solutions
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containing: exygen,

. 0 , ﬂ]:- , 3, |
oy _ P60 X4 T o Kg T Y
. ® ‘DHC 0 Ll 3 ‘ !
: (AD.)610 | k, or kg T
. whence
3 .= o _cpl . (2)
T (AD )610 | F

The7ratioamFﬂwéu is about 1.10 for air saturated MCH at
. 4 . ' . .
room . temperature, and rapidly becomes even.closer to unity as
the temperature is lowered. - We. therefore  take: this factor to

be unity over the entire. range. Hence:

(aD7) 214 ) kgt kg [M] +kg
0 ek | x | _
(8D g1 g+ kg (M) + K L02] +kg (3)

Above: -140° k .andxké[M].aré~much,smallet than kg and may be

5
'negiected; Thus, using‘the:measuréd DHC.yield ratio, we may

déterminé:ky[oz] from-kg . at iow.teﬁperafures, where kg;is directly
‘7measﬁrable; At higher temperafures, wheré:ka.is too~fast|t6
T.be'measured,-we{mayrqséume‘k7 to beﬁdiffusioﬁacontrelleanaﬁd

evaluate.. kg thereby.

. : i

We first considér the: high température case, -100° to +20°.

. The diffusien-controlledﬁraté constént‘was takén.to'béls
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. = 1610 il gee™l T are.
.k7(T) = 3.x:107 (nzo/nTX M~ sec 7, whe:.-*e.‘n2 and,hT\are.the

0
' . s am O o . .19 .
- solvent viscosities at 20°:and.T°;respect1ve1y. 9-~Inaa1r-4

o-3.45-11

. saturated MCH, '[0,] = 2.3 x 10 and Fig. 3.gives

(AD?{610‘=-O.6O=at.allafemperatureS-above.-140°. . The: observed

4

610,withatemperature-is.given in Fig. 5, and

variation. of (AD?)
. extends' over about-a tenfold;-range.2
-TﬁeJtriplet”lifetimes gf'thusrobtained,in,the‘tempefature:
;ange,-iooo fo +20°, andlih MCH' .solvent,. are shown in. the
Arrhenius plot.of Fig. 8 (dark circlgé). .Thesejvalues.agree
- very well with. those exfrépolated from.direct flash photolysis
.measﬁreménts.of kg in;ethanol,.in theglower temperature: range
(Fig. 8,4open4circles).- This agreement, éo;re;pendingﬁto the
-use of Eq-,3;atAlower‘£emperatures to'obtainak7;fromkdirectly
r measured triplet.lifetimes; confirms.the-overallAconsistency.
guefnour,assuﬁptiens, as well as‘the.value given bY'Ware,for
vthetoxygenuquénching‘rate-constantfat r'coom‘temper;:\-ture'.:18 In-
~deed, the excellent Arrhéniué:liﬁe (Fig.~8), covering a varia-
tion.in.the rate constant.of five orders ofAmagniEudé, is'
"perhaps the;best evidence tﬁat in.degassed.solution the triplet
. decays by'only one patﬁway,~k8, throughout the range_censiaergd,
_iﬂ:accord.withuoﬁr interprefationhof.the.resﬁlts-éf Eig.-3.
 FuftherueVidence that.carbazole:is.fofmed yia théAtfip=
let is, of course, the}sehsitizati@n:of theAreaction:by trip-

4,21 : ' s
let donors, ’“7-and. its: inhibition. by triplet quencher.s.4 10
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" It:is:'netewerthy. that the. sensitized reaction also involves
: Sy . =2 .
DHC foermation. ¥Flashing a. solution.of 10 M propiophenone

3'MAMeDPA1using,filtered excitation .(Schott W.G 360,

_and 10~
2 rm) absérbed.onlyrby'the:ketone gave DHC' transients in

"expectedzamounts.'_No DHC:was formed in.similar blank ex-

. periments, omitting the sensitizer.

. V. Rate of Formation.of Carbazole: by Flash-Phbtolysis.

The:mdstfdirect e&idence:that DHC is the carbazole -
:precursér~would be: the flash-photolytic- observation.of growing-
~in;ofAéatbazole,absorptién»gt.a.rate equal tO-ﬁhe diéappear=
ance .of the 6§O:transiént. However, at room. temperature
:and:in.air-sa%prated Mcﬁ solution, fhe'absorbénce at. 341 . nm
.. shows simply'axéharp rise,_coincidentgwithgthelflash, and no
_ ) ,
further.growthrcérresponding,t0x610»decay (Fig. 9, a,b). On
}.this:basis,'doing,flash‘experimenté énly aturoomgfemperéture
and‘apparentiyyéssumihg,that_all 341 nm. absorption must be
_assigned to carbazole, Shizuka et El.AhaQe cencluded that
£ﬁé«610vtransientAcannot:be.identified with the dihydroe-
carbazole:intermed;atezin‘the reaction.’5 This argﬁment,ne-
glects the possibility of overlapéiﬁg abserption.befween
.decaying;precursor andlgrewing-in“product. In. fact, above

300: nm, DHC:absorption.is within experimental error évery-

where greater than. carbazole (as shown. by decreasing. rather
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thaﬂ.ihcreésing}transient.abserétion) except at- 341 nm, where
an- isosbestic region.e#ists (see below). The difficulty of
résolving,thé'343:nm=carbazole:peak.iS'increased by;ﬁhe'rather

' widé:monochroﬁatér~slitS'neededain flésh”werk. (Thé‘band—
.width;in.thisAwavélength regioh;isiabout 5 nm). Thus, in
;presgncerf'Qxygen; the absorption.at: 341l nm.remains station-
ary-aftér»thegflash.aéxéiO:decays énd«carbézoleAgrOWS'in

(Figs. 9,'A,ﬁ)., ﬁeﬁévér,‘reliable'correctionamay-be:ﬁadeufor
‘the overlapping.abSGfptionzb§ firstfesfablishing¢the com-
‘plete:DﬁC;spectrumuuhder gonditionsnwhere very- little carba-

- zole 'is forﬁgd, i.e.;Ain aegassed solutien étuioom;temperature
pwhere:ﬁg,is rate-controlling. In.this case, the transient.decay
a£:6101nm:is,identicél w?th fhat.at 341-nm (Fiés, 9, E,F).
,'Sincéionly;one.speéies appears, we:may.determine the rela= ,
_tive extinction éeefficiéhts at.theée wavelengths. The DHC '
.iniﬁiallabsérptiop;_andAits decay, at.341.£mAcap thus be
gbtained even‘infaerobic'séluﬁien, fromvthé.measured absorp-
tion.chanées étA6i0lnm,'Where theré is noe. overlap. Deducting
~this 341 ﬁmxabspfétionffromlthe flaéh;profile:of Fig..9A,

we find.thatuforjaérebic solutions the,initial.ADg41 cor-
responds. solely tefDHC:fermatiqh,.and that "product" absorp-
éion‘grows-in,exponentiailyrat,a rate. equal to DHCQdisappear=
-ance. . Moreover, the:irreversible:increase in.absorption

(Figure: 9A) corresponds to the. amount.of carbazole:.formed
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'as.determinedjspectrophotometrically after a number: of

flashes. A“direct;seguential4felationship.ie thus es-
‘tablished. between. the two species, DHC'andAcarbazole.
Frem.the,abéve Eesulfs, we also determine the absolute ex~-
tinctiongeoefficientS}of DHC (Fig..1). This was done:by
coemparing (ADP)élduper flashawith.thelﬁotal carbazoie.pro—
.duction;inbeerobic‘solutien.at.room.temperature. Since
4the.trip1et.decays qﬁantitativelypto'DHC~in.degassed MCH,
we: may then: estimate ‘the triplet. extinction (Fig..l) from
_1OW«temperature<oscillescope traces by comparing: the: ini-
tial (triplet). ADO;with,the'residual absorption. of the

relatively long-lived DHC (Fig. 6A,C). (For details see

- experimental section).

VI. DHC:and Triplet:QuantumzYields.

Thus fer,.We:ﬁave:discuSSed‘the.yields of DHC:and

'3triplet~en1y;in.felative te;ms, based. on relative inten-
.sitiestof:the flash,trensients; In. view of the fesults
'.givenvﬁere, we:mey;now.Safelyfexclude~the:formal-possibil-.
- ity that these species'are.produced'inAside‘:eaetions par-

allel to carbazole.formation,s’a.and;proceed to determine

_ their abseluteAyields. |

Iﬁ,air-satﬁrated MCH, above.e100°{ we' have. seen. that

all DHC.disappeare.Via the. exygen reaction,-klo[02],
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~1eading,£e carbazole (Figs..4B:ahd.5). Since at - room.tem-

‘perature;.méi=~0,42, it fellows that_¢éHC}> 0,42..~Under

steady-illuﬁination, the'aerobiCAroom;temperature-reaction

- leads to excellenﬁfisosbestiC'points,l the spectra are. com-

'4§99edﬂonly:of the~amine:and carbaZéle, and'hydregenuperoxidé
- is" formed in.stoichiometfié amounts.x21 . Thus, the aerebic
'conversiqh;ef DHCAto carbaZole:ihVolves~little_orAno.side
Jreactienzandlwé taketméHcté-wé:= 0.42 at 20°.

Comparing. the amouhﬁnéf DHCufermed'by equal flash. inten-

sities in. degassed and aerated solutiens at.room.tempera-

r 3

610 = 230;.50 that. in. degassed

e £ 0y, . .0
-ture, we find (AD.) .4,/ (AD)
- solutien, where triplet.quenchiﬁg;byjexygen does not. com-

\

0.84. As shOwnubnyig; 3, this yield remains

pete, ppe ™

.cénstantuddwn~texfl40°, We. have . established that in.this

temperature range, all triplet decays to DHC. .Hence,'above

. =140° = 0.84. The quite: high triplet. yield. in

> ®pac T Pry
-MeDPA, determined in.this Qay, is close to that measured for
triphenYla@iné:byrthe stilbene-isemerizatio#.technique,2?
and correspehds.to the value given;by Shizuka et 31;4 How-
ever, thisulatter»agréémént.is fortuitiéus; arising ffom
;the.éombined effects~éf a carbazole gquantum yield dif-
ferent frem ours and a different,chéice.ef rate constant

. for diffusion'jcon'troll:.éd.oxygen-.quenching.4 . The..sum (0.88)

of triplet and fluorescence yields (wF‘= 0,04)3’ - seems - to
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différ.signiiicantly;from‘unityfahd it appears that a small

-amount . of radiationless transition from.the excited singlet

also occurs (ms so 0.12).
'S17So

VII. The. Nature of the Anaerobic: Reaction

'Making,the'steédyfstate assumption~our'reaction,scheme

Y

- leads to the'following,expréssionnf&f the‘carbazoleuquantum

. yield in.the anaerobic- case: .

°

k, | kg B k
ke t

- - ] . : (4)
P T ok, +x.+k X -

10
- 10

Ky tky tiky 5 F kglM) * kg o t'X

' At all temperatures abeve -140° the . first factor of Eqg. 4-is

0.84, the second factor is

eéSentially;unity;in.this.temperature range (Fig. 3; Pppe™ 0,84)

and s0. 9, should vary as the third factor, klO/(ké + klb).

Fig. 2 compares the temperature dependence of the function

,klo/(kg + klo) with that of the experimental Ppe It is seén

L

that. the rise in carbazole yield with. decreasing temperature
eccurs at'a‘somewhat_lower‘temperature than.corresponds simply

to .the suppression.of k .This focusses attention. on.the

9.

‘details of the very interesting anaerobic'DHC:~-carbalee

. reaction.

. The . rate constant,=kio,~is characterized: by an extra-

~erdinarily, low frequency factor-and esSehtiallygzero.ehergy
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~of~activation.. We:have.proposed'earliefz_ﬁhat:thiS‘érocess
.-might .be a.tunnelling,reaétion, eliminatingtmolecular'hydro—lA
gen. .Heﬁever{ cbntfary!te repépts-onAtheusituationain.dia
APhenylamine;3.n0:H2,formatiénnis:observed‘in.MeDPA,photolysis
(;méunts:less thahul%ﬁef theoretical should have been‘deteéted
in.experimentssusingha<McLeodfgauge).233 Alée, the Valueé
. of kg.andxklo.are.identical for'both:ordinafy.andféérdeutero-
'MebPA;23 :Thus, eliminaﬁionzdf H; cannot accounf.fér;kfo,
.and;in.the;abéénce §f explicitly;added,oxidants, it.is eleafly
necessérygto identify'théthydregen,gcgeptor‘in.the‘reaction;
The:iimiting;low temperature value of @C‘ghows that
 despite.the<strict1y first order character of kio. about half
of thefDHC{=in.the.mos£ favofable case,' must be tfansformed
intoAa«product‘other than. carbazole. These kinetic and yield
”reéuits;suggeét.therefore~that“klo, withfité‘femarkable:kinetic
'pafameters,'cor:esponds to'a~raté-limiting,unimélecular trans-
fermation;of DHC. 'ThiS»processfis‘thén.fellowed, at low
5temperatures,:by.ammere.fapid dismUtationireactionAresulting
tin'a,éaﬁbazolerieiduOf aboﬁt 0.5. Atnstewhatiﬁigher;temu
- peratures, we-beliéve.other:¢o?petinggprocesses.may.occur
aftef the\klo,transformétion; which.decreése.thg cafbazole
;iyield stili.further; . The difference: between the empirical
@C‘and*klo/fk9~+'klo) curvés‘(Fig.AS) thus:measﬁres the.effeét

of these side reactions. Further;Amore definite conclusioens
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require full chemical identification of all the products of
the low temperature anaerobic reaction. This work is well

2
-under way‘,'4

Experimental

Materials —.meethyldiphenylamine-(MeDPA) (Eastman Kodak
Analytical Grade) was used without further purification. The

solvents used were uv grade (Merck Uvasol).

Quantum yields - The light seource was a current-stabil-

- ized medium pressure mercury lamp (Osram-HgnB) frbm.which
the>313.5 nm 1iné was isolated by means of a high intensity
(Bausch. & Lomb) monochromator. The abéolute guantum yield
of thethyl—carbazole formation was detéyminéd.in‘aerated
:methylceyclohexane solution at 23°, by ferrioxalate actinometry
according to Hatchard and Parker?6 Carbazole concentrations
were<calculated:fromAabsorptionAspectra, using a molar de-
cadic extinction. coefficient ¢ = 5,800 cmg/mole for the N-
methyl-carbazole peak at 343 nm. Quantum yields under other
reaction conditions were measured relative to the room tem-
perature aerobic value. For measurements at different.tem-

- peratures (Fig. 2A,B) the photolysis cell(quartz, 1 cm) was
thermostated in. a copper block, through which was passed a

controlied stream of cold nitrogen gas. Temperatures
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remained constant. to within.one degree: over thérwhoie-fanée
studied. The block, cohtaining,oéeningS‘for the. passage of
light, was supported in.a quartz. Dewar with plane windows.
The entire assembly was mounted in the cell compartment,of4
a éary~14_spéctrophotometer, and could be rotated 90° to
permit;either photolysis (through an. aperture in the side—‘
wéll<of the cell compartment) or measurementlof the ab-

sorption. spectrum of the. solution. The: reference. cell was

“kept. at room.temperature. In blank experiments the: base-

line was found to be constant. at all temperatures over the

" entire: spectral region. Spectra-wereurecorded-at~each?tem=

perature before.illuminaﬁion,and,after-abeut.2,4,5,8.and.1Q%
.conversion. Within;experimental error the quantumiyields
were independent. of exposure timé wﬁich.varied‘betwéen:2.min
and 2 hrs, depending;on temperature and quéntum~yield, The

relative amounts of carbazole formed were calculated from

.the récordéd spectra by comparing the change in. absorbkance

at 260 nm.and (in.aerated solution) at 343 nm., The. absor-

bance of the.solutions varied between 0.3 - 0.45 at 313 nm

.due to solvent. contractions and to the fact that the solutiens

were not made up to exactly the same concentrations. Appro-

-priate corrections were made for the amount. of light absorbed.

. i
-The carbazole quantum.yields in. air-saturated solution.

(Fig. 2A) are estimated to be.accurate to * 10%. However,
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beéause of side.reactions which occur in.degassédusolutions
(see Sect.. 7) and whicﬁ,are'more serious at higher tempera-
‘tures (-40° to +.20°), guantum yields in anaerobic .selution
.are-less reliable. We assume.thatAthe.change:in-abserbance
~at‘260vnmirepresentsvenly.the.cenversien:of N=methleaiphenyi—
.amine to N-methyl-carbazole, and: that the absq;ptionaofiside.
-predubtslmayrbe~neglected; Thus, the quan@umuyiéld‘valﬁes
given:inaFig, 2B:are upper limits,,whichfmgynbezlO.to'ZO%
-téo.hightbetweena°120°'and 60° (Sect..7) and much tee-high

. above =-40°, ' -

Extinction. coefficients

A. N-methylcarbazole. - Theeex?inction»coefficient.of
N-methyl carbazele;was determined:using’a carefully: puri=-
fied'sample.which wés»photochemically-synthesizea.. MeDPA
(3 g in. 2.1 methanel) was illuminated for 8 hrs at 23° with

.an- Osram: HQA-250 lamp. The sQlutioﬁ_Was aefated evéry;2
“hrs. The:light-brownuéroduct (2.5 g) ebtained upon.eyapora=l
tion was vacuum.sublimed, 3 x recryst{ fromuﬁethanel (white
-needlés,Amp:93° li£,26fﬁp'éi°) and again. vacuum.sublimed to
‘avoidlihclusions4§f.solvent; At 343. nm. ¢ = 58bO.i 50 cmz/ '

- mole in. MCH,. and 4000. + 1@O-cm2mmole'innethanol,z.The,low

- value. in. ethanel. is due to broadening of the.abserptionabands.
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- B. 4N¥methy1—4a,4b-dihydrocarbazole.(DHC) - A.solutien
cof 1.1 X‘10—4”M‘MeDPA‘in,air-éaturated’MCH4was flashed: 14
times and the change of optical density recorded at. 610.nm

with flash apparatus. The oscilloscope traces were. extra-

polated. to zero time (AD?)élo-and the sum-compared with the

amqunﬁ.of carbazole producea. The:létter was calculated
from:thé:absorptiénfspectrum of the flashed solution. . The
::opticalAdensity;at»343:nm.was 0.056 = 0.001 (1 cm path-
length) énd E(ADQXélofwas 2.0;i 0.1 (10 cm. pathlength) . 1In
. order to avoid a‘concentrafion“gradient.of the trénsient
'_DHC due te inhomogeneous excitétion:of the solute, a: narrow
flashﬁcell‘l.x 15.x'100 nm, which. has been. described  else-

: 2 "y . .
where, ! was used. The extinction.coefficient at.610 nm

. 2
] = i . .
is eDHC 21000 2000 cm /mple.

C.'MeDPA'Triplet State - As shown in Sect. 5, the amine

‘t:iplet.in;degassed solution.above -140° decays guantita-

tively to DHC. Therefore the ratio .

R,()f)«. = eTRﬁ(54o) /GDHC(”_ = ADTr,(54O)/ADDHC_()\)f

where-Ap;r is the ghangé in.Qﬁtical denéity«at:540'nm.of a
> low temperature amine solution: immediately after flashing,

-]

DHC(X) is the residual

’ corresponding to. the. triplet, and Ab

optical denéitysat wavelength A éorresponding,to‘the
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long-lived DHC. If X is«taken<toAbe~540‘nm, then. both
o < . .

, and. AD®__ . ‘ : _ “on le :

ApTr . DHC can. be measured-on,a single oscilloscope

-trace (Fig.7A). However, AD2

DHC_(540) is rather small and

‘alies»on»é~steepislopé‘of the DHC spectrum. If X is taken

. at.the: DHC: maximum, 6l0:nm; then.detéfmination,of R(610)
requires two flashes and.sweeps (Fig. 7C) with possible
erfors arisihg,fromlvariatién:iniflashaintensity. . The
change in amine cqncentration:between,successive fléshes.
is'negligible‘at.the.concentrations used. The,a&eragezof
several. measurements at-;155°'giyes R(540)- = 3.0, % 0.3 and
R(610). = 1.25 % 0.03. Using the extinction.coefficient
.eDHClof DHC;détermined at room.temperatgre.wg obtain
"eTrK54O)~= 26,000 -+ 3,000 cmz/mole. This value is a. lower
-limit. because eDHC-may*be‘higher~atAlower temperatures,
The:experimentally=determined‘isbsbéSticvpoint.at:574«nm
and~-155° agrees very well with the isosbestic point.in Fié.
1C,D, where. a. low temp. spectrum (C) is combined with.one
measured. at room.temp. (D), using. the ratios R(X)'giyen‘above.

This*indicateé that . the DHC spectrum. does not chénge dras-

tically with. temperature.

Preparatien. of selutiens - For the anaerobic experiments
the .solutions were thoroughly degassedéen a- high: vacuum. line

by standard freeze-pump-thaw technigue until stick vacuum
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on.a McLeod'gauge~was reached. When the effect of oxygen
“on.the reaction was investigéted, the solutioﬁs were air-
satur&ted at room temperatﬁre~anithen cooled down to. the
deSifed<temperature.' Iﬁ.the flésﬁ='ahd aﬁsorption.cells
theiliquid had. only a few m@zAéontact-to air and we there-
fore assumed that the'oxygen1c§ncentrationjdid'not change

significantly. on cooling.

Flash apparatus - 'Theiéapacitor energy dissipated
. through. a. spark gap and twé‘éir filled (~ 200:torr) flash
_capillary tubes inxséfies was 150:jou1e (0.75 WF, 20:kV).
The.lifetime T% of the flash.was 7 Usec with. a. nen-exponen-
tial tailef~aboﬁt 20. usec duration. . The detection.5ystém
Acénsisted Qf a.paraiiel\1ight4beamlfrom.a<lOOvW‘iodiné=
quartz.lamp,which passed~through the cylindrica1 qua¥tz
cell of 12 mm. i.d. -and 100 mm oéﬁical pathlength and which
-waé focussed. onto the entrance slit of a 500 mm Bausch. &
Lomb- grating. menochromater., .Close to the exit slit.a 1P28
photomultiplier with cathede follbWe; was mounted. . The
electrical signal was recorded with.a:549 Tektfonix Sterage .
Oscillescope. . The reproducibility éf the flash»output:was
better than 5% within a sefies-of measurements.

For the low temperature-ekéerimepts the flash.cells

were mounted: horizentally in. a quartz Dewar with.plane end
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Windowsz The temperature was regulated by a stream of cold
*nitrogénaand.kept constant;within:i 1°. After the<desi£ed
temperature was reached in.the Dewar, the golﬁtion was
allowed to. equilibrate for at least 20 min., When quantum
'yields obtained from flash experimen£s are compared (Fig. 3

/(AD?) ! ) the average of at.least 5 indepen-

0
~and 53 (8D g 610

dent.expefiments is given. In.cases where: the. carbazole
quantumuyieid-was high (degassed sol. at‘low temp., aerated
1561,.at'room,temp.) care. was taken to keep the concentration
. of thé‘reactant always in 1arge excess to avoidAapprgciable
light absorption.by the phetoproduct.

All absorption. spectra were measured on a Cary 14

spectrophotometer.
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Fi_guré Captiens

Fig. l.:ﬁAbgpgRtion-spectrawinimethylcyclohéxane_(A,B.D) and EPA (C)
A: N-.methyld‘-i.pﬁeriylaminev‘at + 20°.
B:Fmeethylcarba201e:;;-+-20°.

C: Triplet absorptionuspéctrumaof N;methyldiphenyiamine
at - 155°;
D:‘N=methyl—4a,4b-dihydrocarbazble at + 20°.

/

The: ratio. € . has’ been. determined at.-155°, ¢ how-

*pac’ S Tr DHC’
-ever, at + 20°. (see exp. sect.). Curve C was drawn under

the: assumption: that . e .does not change with. temperature.

DHC

Fig. 2 - Quantum:yields of_meethylcafbazole,formation-as a functien
.of temperature. . Selvent: MCH. A: directly;measured.inuair-
saturated.solution;-B:,directly;measured’inﬁdegassed.solu-_
tien; C: calculated from the ratio kio/(ke + kio). The

values for ko andiklotwere~taken from Fig. 4A (cf. sectien.2c).

- . Fig.. 3 - Change'ef:opticél density;a£:6ld:nm, kAD9)6io, after flashiné
a2 x 104 M degassed solution.of MéDPA‘in MCH (+ 50° ﬁo

- -100°) and 3-methylpentane (- 120° and -140°) at different
temperatures in_é Quaftz:cell'of.10:cm:optica1~péthlength.

‘The values given are extrapolated to zero time (see. text) ..




Fig. 4 -

Fig. 5 -
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Arrhenius’ plot. of the decay of DHC menitered at 610 nm.in
different solvents. A: degassed solution (1/7); B: air-
saturated solution (1/7'). Ethanol (¢); 3-methylpentane

(A); EPA 5:5:2 (©); MCH (A); silicone oil (®); hexadecane

. i
(0) . For comparison the anaerobie-carbazole guantum:yield,

P (cf. Fig. 2). is shown as a fuﬁction:ofAlOOO/T.(dashed

. line, curve Q).

4

Change: of optical density at 610 nm, (AD°)610,

after flashing

a 2 x.10_4:M,»solutionaof MeDPA.in.a quartz cell of 10 cm

.Opticai-pathlength~vsL carbazole guantum.yield ®’', both. in .

air-saturated MCH.at‘correspondihg temperatures.

Comparative decay of transient (triplet) absorbance at

530 nm (dark circles) and phospherescehce.emission_at 430
L . ~ . : ~—4

nm (open circles), following flashing of 1 x.10 M MeDPA.

Temp. = -  155°. solvent ethanol.

Oscilloscope traces éfter flashing a 2 x;10f4*M, degassed

solution. of MeDPA‘in.3.ethanol.at.-155°. Vertical scale,

: percent.transmission (T) or phdsphorescence intensity (Ip)

in arbitrary units; time scale, 1 msec/div. 7a: decay of

.the amine triplet. at 540. nm, overlapped by the: slow decay

.of DHC (horizental. part.of the curve). 7b: decaY;of the
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‘aminé:éhosphorescencefat¢440vnm. .The $teep:part.at the very
*béginﬁing;of the. curve is due - to .flash :stray ‘light. . 7c:
.grbwing—in;6f DHC;at 610 .nm, ‘overlapped by. the amine :trip-

let absorption (fast‘riseuof:the}curve:at the very. beginning) .

~Fig. .8 - Arrhenius plot.of MeDPA triplet decay (1/TTr).}.DarkiCi:cles:
values.caléulated frem.eq.A(B);vsolvent,xMCH;JOpen circles:

directlyﬁmeaSured:by'flash;photolysis;.solvent,~ethanol}'

-Fig. .9 - Oscillesbope'traces aftef flaéﬁinggaUZ‘x110=4-Masolutienxof
,MeDPAfin:MCH. uVertical scale, pércent transmissien (T). The
:flashJinténsity'inxtheuaeratédasamplés.kaﬂandﬂb)uwas‘twice

' as:high,as¢in:the degassed samples (é, d, e,-and:f);to;make

‘the traces directiy:domparable.
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