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Dynamical Behavior of Multi-Robot Systems Using Lattice Gas Automata
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ABSTRACT

Recent attention has been given to the deployment of an adaptable sensor array realized by multi-robotic systems. Our group
has been studying the collective behavior of autonomous, multi-agent systems and their applications in the area of remote-
sensing and emerging threats. To accomplish such tasks, an interdisciplinary research effort at Sandia National Laboratories
are conducting tests in the fields of sensor technology, robotics, and multi-robotic and multi-agents architectures. Our goal is
to coordinate a constellation of point sensors that optimizes spatial coverage and multivariate signal analysis using unmanned
robotic vehicles (e.g., RATLERs, Robotic All-terrain Lunar Exploration Rover-class vehicles). Overall design methodology
is to evolve complex collective behaviors realized through simple interaction (kinetic) physics and artificial intelligence to
enable real-time operational responses to emerging threats. This paper focuses on our recent work understanding the
dynamics of many-body systems using the physics-based hydrodynamic model of lattice gas automata. Three design features
are investigated. One, for single-speed robots, a hexagonal nearest-neighbor interaction topology is necessary to preserve
standard hydrodynamic flow. Two, adaptability, defined by the swarm’s deformation rate, can be controlled through the
hydrodynamic viscosity term, which, in turn, is defined by the local robotic interaction rules. Three, due to the inherent non-
linearity of the dynamical equations describing large ensembles, development of stability criteria ensuring convergence to
equilibrium states is developed by scaling information flow rates relative to a swarm’s hydrodynamic flow rate. An initial
test case simulates a swarm of twenty-five robots that maneuvers past an obstacle while following a moving target. A genetic
algorithm optimizes applied nearest-neighbor forces in each of five spatial regions distributed over the simulation domain.
Armed with knowledge, the swarm adapts by changing state in order to avoid the obstacle. Simulation results are
qualitatively similar to lattice gas.

Keywords: Physics-based models, lattice gas automata, hydrodynamics, nearest-neighbor topology, adaptability, stability,
genetic algorithms, neuro-fuzzy network.

1. INTRODUCTION

The distribution and control of a point sensor grid mounted on a multi-robotic platform has gained recent interest. To realize
such a system requires both robots and their sensors to be simple, small, and inexpensive. Leveraging the high interconnect
density, the redundancy of information, and the ability to move endows the system with the intelligence, robustness, and
functionality necessary to perform complex remote-sensing applications such as plume mitigation and ground-penetrating
radar [30-32]. As the number of robots increases and applications necessitate a heterogeneous profile, the global and internal
dynamics of the system become nontrivial. This paper models the kinetic motion of multi-robotic systems using particle
physics techniques and develops design criteria in relation to standard hydrodynamic (and electrodynamic) physical laws.

The authors in reference [4] consider the origin of cooperative behavior by asking the following question: “Given a group of
robots, an environment, and a task, how should cooperative behavior arise?” Many designs and/or architectures answer
various parts afforded by this premise. Designs targeting applications in the manufacturing industry have developed a
manufacturing workcell [6] by coordinating materials handling robots with production machines through broadcast
communications and a materials transport technique [7] where robots cooperate indirectly through load-balance sensors.
Inspired by biological organisms, cellular robotic architectures [10] are built around a decentralized hierarchical system that
incorporates local and global communications in its search for pollutants [8] and transport of materials {9]. In the latter,
theoretical calculations determine the optimal number of cells (robots) necessary to carry out the task. Other robotic systems
based on biological observation pattern their collective behavior after swarms of bees or flocks of birds [21]. Learning
mechanisms evolve collective intelligence in motion planning scenarios [11] and communication and information processing
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in dynamical obstacle avoidance [12]. Similarly, tasks involving geometrical formations are encountered, such as circle [14]
and line (or path) formation between two points within an unknown environment [15]. From these and many other examples
some key features resurface {4]. One is a system infrastructure, which considers parameters such as robot
heterogeneity/homogeneity functionality distribution and communication techniques, local versus global. Two is interaction
recognition, examples of which include collision avoidance between robots and hazard assessment from the environment.
Three is a collective mechanism capable of realizing complex behaviors through simple rules. Four is intelligence, trained or
learned, which provides adaptability and flexibility in task or mission execution. This includes information gathering and
interpretation that related to reconfiguration (path planning, interaction types, and pattern formation). Five is surety, which
assures stability at all levels — a single robot, the full robotic system, and the successful execution of its mission -- and
permeates throughout the design methodology. To date, few papers deal with the dynamics and stability associated with
large ensembles of robots [5,13]. Our new technique leverages the framework of physics-based models, thus defining
features three and five and assigning stipulations on the rest.

Our motivation is to understand multi-robotic systems (swarms) in the context of physics-based N-body particle models,
which unites many relevant features: collective motion, internal dynamics, adaptability, and stability. Two models under
study are lattice gas automata (LGA) [16-20], the modeling of hydrodynamic behavior seen in gases and liquids, and particle-
in-cell (PIC) [22-25] codes, the modeling of electro- and magneto-hydrodynamics found in plasmas [33]. Each model
provides the theoretical framework that realizes macroscopic particle behavior according to local (microscopic) interaction
physics, significantly reducing the complexity of a single robot. A comprehensive description of the design technique
follows (overall design concept see [30-33]). Each robot is endowed with attributes, sensors and communications interpreted
by local cooperative learning neural processes that enable real-time operations controlling movements through robotic forces
(call pseudo-forces) or Al mechanisms (neural networks, fuzzy logic). Globally operating expert systems monitor collective
behavior leveraging the high density of interconnects between each robot’s processing unit, thus providing the high-level of
information needed to accomplish an overall task, such as reconfiguring to optimize signature signal integrity,
communication pathways, and image quality. Evolutionary computation algorithms imprint onto the system the robot’s local
attributes, the swarm’s global properties, and the mission objectives according to the rules set forth by physics-based models.

A case study simulates a multi-robotic system adapting to its environment while performing a task: overcome an obstacle (a
wall) while tracking a wind-blown gaseous plume. Some of the design issues include determining an optimal nearest-
neighbor topology, optimizing local interactions that initiate global behaviors allowing the robots to maneuver past an
obstacle, and assuring stable performance. In section II, the LGA model shows how it can used to understand swarm
dynamics. In section III, case study simulations are performed. Two local interaction techniques are considered: the use of
forces inspired by electromagnetics and neuro-fuzzy networks. In section IV, results and future work are discussed, and in
section V, conclusions are stated.

2. PHYSICS-BASED MODELS

Nonlinear dynamical effects increase as the number of robots increases. Internal stresses induced by environmental
influences can create instabilities making the system unpredictable. LGA links key design elements of the multi-robotic
system to theoretically derived physical properties of hydrodynamics. Within the framework of statistical mechanics, local
(microscopic) interactions result in statistically significant global (macroscopic) behavioral patterns, such as flow (speed),
density (size), and viscosity (maneuverability/adaptability. Requiring LGA (swarms) to successfully reproduce the standard
hydrodynamic equations of the Navier-Stokes equation sets physical design boundaries that can eliminate instabilities
associated with hydrodynamic behavior, such as turbulence created from excessive shear forces.

In the next subsections, LGA is introduced as a viable model for multi-robotic collectives. The next three subsections discuss
the theoretical consequences of LGA in system design: nearest-neighbor topology, adaptability, and stability.

2.1. Lattice Gas Automata




Situated on the ground is a lattice structure, typical examples in two \/ \/ \)‘/ \/
dimensions are the square and the hexagon. Each robot propagates with \/\/\ / \
constant speed along the physical links between lattice sites (propagation -

operator) and interacts changing direction at the lattice nodes (collision \ /\/\ /

operator). In practice, the robots form this imaginary hexagonal structure by /\/ ;}'\

first using a compass to normalize the robots’ direction and designing a

hexagonal sensor array to setup potential fields, to determine direction (lattice
edges), and to anticipate nearest-neighbor interactions. Lattice edge length, the \ /\ / \ /\/
robot’s mean free path, must be kept relatively large compared to its turning
radius (as measured through its fuzzy distance attribute). At each time-step Just after application of propagation

two operators, propagation and collision (interaction), act on the robot operator

ensemble, thus defining the dynamics of the system. Combining the effects
from local interaction rules that obey particle (density) and momentum
conservation laws and invariance under the underlying lattice group
symmetries, global hydrodynamic behavior (Navier-Stokes equation) results
[17].  If robots are allowed to move with multiple-speeds, additional
conservation laws are required; only single speed robots are considered here.
The maintainability of these properties under environmental conditions is the

focus of this section. N / \ / \ /\ /

Next, the form and variables of the kinematic equation are discussed. In order
for LGA to be tractable toward understanding swarm dynamics, local robot
density functions, defined as the average of the single-particle (single-robot)
distribution  function, are assumed uncorrelated (molecular chaos
approximation). The result is the Boltzmann transport equation [18-20]
(derived from the momentum-balance equation). ;

Just after application of
collision/interaction operator

Figure 1. Top, motion of robots along
hexagonal lattice edge entering lattice
sites. Right, collision or interaction
operator, preserving both momentum

3, ( pu, ) =-0,01,, 1) and particle number.

p is the macroscopic (hydrodynamic) density, and u,, is the hydrodynamic velocity. Its lattice gas analogy is p = Z N, .

N; is the averaged single-robot distribution function, and i is an index over the lattice directions. The lattice vectors, and a

robot’s velocity, are defined by ¢, or (ca ., where Greek indices indicate Cartesian coordinate directions. IT.g, the

momentum flux density tensor, is expanded in terms of higher-order ranked tensors representing stresses due to shear and
compression.

In the absence of viscosity (shear), the inviscid form of equation 1, Euler equation, describes the equilibrium distribution.
Shear stresses develop due to spatial velocity gradients (friction) internal to the swarm. Inclusion of the microscopic
collision rules in the momentum flux density tensor produces highly nonlinear hydrodynamic effects. The linearized
Boltzmann transport equation is formed by performing a linear approximation to the nonlinear collision operator and keeping
only the first order (linear) term. A thermodynamic transformation moves the system from one equilibrium state to another,
where a change in the equilibrium state may be due to the environment. Validity of this transformation depends on how fast
the perturbed system converges to its new state. Collision/interaction rates, nearest-neighbor communications, and neighbor
symmetry topologies are important factors allowing the robotic ensemble to quickly reach equilibrium when adapting to its
environment: avoiding obstacles, prevailing wind-patterns, maneuvering within an unknown terrain. If the system converges
slowly or produces oscillations, it may become unstable. Training (or evolving) swarm behavior not to exceed these limits
assures a level of stability during ground sensor movements.

2.2. Nearest-Neighbor Topology

Robotic interactions can be done indirectly through communications, data transmission through rf broadcast or optical (Iaser)
beams, or directly through sensor measurements, identifying obstacles or recognizing the presence of bio/chemical agents.
Implementing IR laser beams provides directionality and eliminates communication interference simplifying robotic




platforms (miniaturization) and allowing for asynchronous, parallel operations'. Such a technique renders LGA congruent
with multi-robotic systems, leading to an optimal nearest-neighbor topological design.

First, a design criterion is established: standard hydrodynamic behavior must be maintained (e.g., Navier-Stokes equation).
This basic condition demands all internal tensor stresses as defined by the momentum flux density tensor of rank-4 (shear)
and lower must be isotropic, where isotropic requires the tensor to be invariant when acted upon by the discrete symmetry
group of the underlying lattice structure. To accomplish this task, let us assume environmental conditions act on the swarm
creating various internal stresses that modify its current steady-state configuration. If the parameters defining the
macroscopic equilibrium state, swarm’s density and momentum, change slowly, the transitional single-robot distributions, N,
can be approximated by a perturbation series in terms of these same macroscopic variables and their derivatives (Chapman-
Enskog expansion ) [18,19].
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must be invariant under the lattice symmetry group. Listed in table 1 is the highest ranked tensor that leaves the swarm’s
transport equation invariant under the different polyhedral symmetry groups. As a result, the optimal nearest-neighbor
topology is six or hexagonal; the robot’s single speed and enforcement of momentum conservation excludes the heptagonal
lattice structure. It is important to note that introducing multiple speeds may create additional complexity but also reduces
the number of neighbors while maintaining an isotropic rank-4 (stress) tensor, a square lattice being an example.

2.3. Adaptability Polynomial  Isotropic

. . - . G T
Adaptability is synonymous with maneuverability. It is defined as the rate-of- roup ensors

deformation of the swarm. Excessive forces created by environmental changes
result in shear stresses (internal frictional forces) causing the swarm to become
unstable and break apart. The strength of these forces (viscosity) is due to spatial
velocity gradients internal to the swarm and depend on the microscopic
interactions between neighboring robots. Intelligent manipulation of these
interactions or viscosity empowers the swarm to control (optimize) its shape and
flow in response to external hazards.

Rank-3,-5,.,,

Rank-4, -6, ...

Rank-3,-7, ...
The viscous term in the Boltzmann transport equation depends on the interaction
operator. For a hexagonal lattice, one such interaction (collision) between four

robots shown at the top of figure 1 is . Rank-7, ...

A[N]=}/4(N1N2N3N4N5N6 _N1N2N3N4N5N6)> (%) Table 1. Maximum ranked tensor
where invariant under polynomial group
N =1- N.. 6) symmetries.

The non-linearity of these terms complicates the analysis. By keeping shear rates
(i.e., swarm reconfiguration rates) small, the collision operator can be linearly approximated about the swarm’s equilibrium
distribution, N*., Inserting the eigenvector and eigenvalue solution of this characteristic equation into the Chapman-Enskog
expanded form of the Boltzmann transport equation determines the kinematic viscosity of the swarm [19].
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! Because of the LGA size, number of particles, spatial and time variations appear uncorrelated. In practice, this may not be true for
modest sized multi-robotic systems and may require simulations with a mechanism that builds in asynchronous time evolution.




The viscosity is a function of the average single-robot density and the interaction rules. By expanding and contracting, the
swarm can increase or decrease its viscosity which allows it to control its maneuverability; and, by controlling its interactions
(communications) between neighboring robots, it can deform which allows it to adapt to its environment. Therefore, when a
robot encounters an obstacle it modifies its form and flow by introducing shear forces. Also, its internal time-scale quickens.
To maintain a continuous equilibrium transition requires an increased rate of interactions or communications relative to
swarm movements, effectively renormalizing the lattice length and time scales relative to the change, the obstacle. Similar
considerations occur when tracking wind-blown plumes (sensor-developed flow), terrain topologies (represented by potential
field barriers), and internal reorganization. Practical limits must be set to prevent instabilities.

2.4. Stability

A stability analysis qualifies and quantifies perturbations, parameter deviations, preventing convergence toward an
equilibrium state. Two considerations in this analysis include the transitional path (transients) between equilibrium
distributions and the relative propagation rate of information and the swarm’s dynamics.

A slow deformation of the swarm is analogous to performing many infinitesimal transitional rotations between equilibrium
states. This series of transitions are due to changes in the swarm’s viscosity relative to an obstacle and can be approximated
by performing a linear expansion of the interaction matrix. The new form of the Boltzmann transport equation is

26~ L0y, = ;z,(;j)i. ®)

The general solution takes on the form &(t) ~ £(0) ", where A is the eigenvalue and represents the rate at which the swarm
converges toward an equilibrium state and v; are the eigenvectors. For a hexagonal lattice the non-zero eigenvalues are [19]
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Zero eigenvalues represent macroscopic parameters associated with conservation laws and persist for long times, while non-
zero and negative eigenvalues indicate the presence of additional kinematic modes that decay toward at a rate dependent on
its magnitude. Also notable are any asymmetric interactions that can produce oscillatory transitions due their non-zero
imaginary term for the eigenvalue. Problems arise if these oscillations are not dampened (fast enough) or the internal
interaction rate within the swarm is not fast enough to allow it to reach an equilibrium distribution (instabilities in the form a
chaotic motion). Another consideration is the elimination of three-robot interactions that creates an additional {spurious)
conserved quantity with possibly undesirable effects (e.g., square lattice decouples x- and y-momentum conservation).
Simplifying the analysis by requiring all interactions to be symmetric keeps the eigenvalues real and provides an eigenvalue
range from -2 to 0, thus assuring stability [18].

A more traditional approach models the swarm as an ongoing computational problem, similar to finite-difference methods or
particle-in-cell calculations. By perturbing the density and velocity about an equilibrium flow and setting limits to the
(dimensionless) characteristic parameters set by the problem, stable behavior can be maintained. Two important parameters
are C, = T-uy / h (Courant-Friedrichs-Levy number) and C, = v-t /h® , where 7 is the travel-time between lattice sites (LGA
time step) and h is the distance between lattice sites. The former measures the velocity of the flow in lattice variables, the
latter measures their viscosity across the lattice variables. Reference [18] quotes the conservative limit C, > q - C,”, where q
depends on the specific model. Therefore, stability is achieved when the robots interact (communicate) at a rate faster than
their movements (flow). This allows the swarm to convergence when transiting between equilibrium states as it deforms.

To recapitulate, when the swarm adapts to environmental changes, it re-scales (renormalizes) its internal interaction
(communication) time-scale relative to the disturbance in order to maintain a transitional equilibrium states. Limiting the rate
at which the swarm can deform, defined by such parameters as viscosity and anisotropic flow, prevents instabilities. By
implementing the above equations, a swarm can evolve to maintain isotropic tensor interactions and to remormalize
interaction rates relative to environmental changes. Such a system can be highly adaptable while assuring stable behavior.




3. SIMULATIONS

The introduction mentions the motivation for deployment of a reconfigurable constellation of unmanned ground vehicles
(robots). Initial and ongoing work attempts to evolve a multi-robotic system that can track a moving target, such as a wind-
blown plume or effluent, while maneuvering past obstacles lying in its path. The modifiable parameters are the collision
rules. Two approaches are considered: electrodynamics, where potential fields or electromagnetic forces determine a robot’s
direction on the lattice, and neural processes (e.g., neuro-fuzzy network) that perform decision-making movements by fusing
neighboring robots’ sensor information.

3.1. “Pseudo” Force Method

3.1.1. LGA

A square lattice structure fills in the spatial domain for this simulation. The top left diagram of figure 3 displays the initial
position of the swarm, which consists of 25 robots (nRobots=25). A two-dimensional gaussian pulse propagates with

constant velocity near the swarm and past a wall, dissipating as it moves. The relative velocity of the plume with respect to a
robot’s speed is 0.55, about half. Each robot moves according to the angle and magnitude of its vector force [30,31]:
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F,*" and F,*®" are equal to its neighbor line-of-sight (LOS) distance, r, and inversely proportional to the square of this same
distance, r?, respectively, where r < 5 (interaction/communication range). This prevents the robots from communicating
through or over the barrier. F”**® introduces additional fictitious forces. For these tests, a source potential equal to the
sensor’s spatial derivative, ~As/r , where As is the difference between neighboring sensor measurements, provides the initial
steady-state flow of the swarm when tracking the plume. The coefficients o, B, v, ... amplify forces relative to one other and
are functions of the global LGA variables in position and time. Variables with capital letters indicate global quantities
relative to the simulation; variables with lower case letters are local quantities measured internal to the swarm. A robot steps
along a lattice edge according to the direction of the force when the magnitude of the force exceeds a predefined threshold.
To approximate the asynchronicity create by molecular chaos, during each time step a random sequence of robots calculates
its interaction force and moves.

3.1.2. Genetic algorithm

Genetic algorithms (GAs) [29] find globally optimal

Number of Robols Overcoming Obstacle
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solutions to multivariate problems by applying the rules I L T al men ke AR S BN

of evolution: selection, mating, and mutation. A e b Shabdanond o

searches for an optimal set of amplification constants 18.8
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the simulation. The variables (or genes) include the 2 415

upper and lower diagonal coordinates of the spatial g

regions and the amplification coefficients, o, B, v, ..., a2
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genes. A population of sixty swarms competes to find ool ) . L , . . ,

an optimal set of parameters that fulfills its mission: 0 200 <00 B0 B0 1000 10 140D
avoid the obstacle and maintain contact with the target.

After thg simulation has proceeded for 70 time steps, Figure 2. The average number of robots in a swarm of 25 that
the positions of robots are recorded and the fitness of maneuvers past an obstacle as a function of the genetic
the swarm is calculated according the number of robots algorithm’s generation.

maneuvering beyond the wall, x>12 and y>17.

Z (nRobots — nFollow,.)|”
fitness =40.1+ 25 (1)

nCases




Additional GA parameters include a 10 percent

. ) . Regio it Y mi
mutation rate, a 90 percent single-point crossover egion  (minYmin)  (XmaxYmax) o B Y

rate, linear fitness scaling, ten ellitists, and an 1 (18,5) (18,18) 948 631 58
amplification range from 0 to 102 4. 2 (-7,-3) (5,27) 57 57 827

. , 3 @2,-1) (12,8) 151 142 922
Two operathnal problems still haq to be resolved: the 4 (0,-5) (9,30) 623 861 89.1
long simulation times and the statistical nature of the 5 (-4.-4) (20.20) 104 824 873

simulations. First, development and implementation
of a master/slave parallel architecture allows the
master to distribute the population of swarms and | Table 2. GA results. The coordinates for each region and the

their LGA simulations among N (20 for these amplification constant for the attractive, repulsive, and spatial sensor
gradient forces (see equation 10).

simulations) processors called slaves. After a slave
completes its simulation implementing the genetics
associated with that particular swarm, it returns a
fitness value to the Master. The master performs selection, mating, and mutation operations on the population and
redistributes their offspring to the slaves where the next generation’s fitness values are calculated. MPI, message-passing-
interface, realizes the master/slave architecture. Execution time increases linearly with the number of slaves. Second, the
random motion of the robots within a swarm at each time-step even when the initial conditions are identical results in a
statistical distribution associated with the fitness, even when a swarm’s genetic make-up and initial conditions are identical.
Such a simulation is highly desirable but can convergence problems. If the standard deviation is large, crossover becomes
ineffective and convergence toward an optimum my not be possible. By running multiple simulations (nCases) for each
swarm in the population in succession, the statistical significance of its fitness (~1NnCases) and the effectiveness of the
mating (crossover) operation. An average of nine runs (nCases=9) provides a trade-off between execution time and
convergence.

3.1.3. Results

Initially, the wall was removed. Stability was surprisingly bad. Simulations revealed pairs of robots evaporating from the
swarm. This effect was exacerbated when the wall was reinserted. Assuming that the anisotropic behavior of stress tensor
for a square lattice might be the dominating effect (unproven), a robot’s range of motion was also allowed to maneuver
diagonally (octagon). Cohesiveness improved substantially. Without the wall, a single region and the coefficients associated
with it was enough information for the entire swarm track the plume. Reinsertion of the wall, but with the one region and its
coefficients, prevented all robots maneuvering past the wall. Next, the number of regions was increase to five. Figure 3 plots
the average number of robots, nFollow, maneuvering past the wall as a function of generation number. The results are listed
in table 2, and a simulation run is shown in figure 3.

3.2. Artificial Intelligence Method
Work in the area is in the development stage. A conceptual outline is given.

LGA is based on a simple set of microscopic logistic collision rules that reproduces global hydrodynamic behavior. Pseudo-
potential results indicate some level of artificial intelligence is required to recognize an obstacle and to move collectively to
avoid it. Instead of binary logistic rules, fuzzy logistic rules in combination with neural networks [26,27] can fuse local
information to provide intelligent collective motion that can readily adapt to changes in the environment. Each robot receives
information about its neighbor’s direction of motion, an obstacle it may have sensed, and the direction of the target.
Combined with its own information, the robot decides which direction to move, if any. The first layer of the network
contains membership functions for each data type (i.e., three universes of discourse), and the results are fed to a neural
network section (layers 2 and 3) which fuse sensor information and provide a decision. Each robot contains the same neuro-
fuzzy network [28], and the genetic programming techniques optimize its structure and parameters depending on the success
of its mission.
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Figure 3. Simulation of a swarm maneuvering past an obstacle while maintaining contact with a wind-blown plume implementing
the GA optimized design parameters listed in table 2. From top left to bottom right, on row at a time, the elapsed times are 0.0, 2.6,

5.2,20.4,31.2, 40.4, 50.0, 60.4, 69.9.




4. DISCUSSION

Even though twenty-five robots does not constitute a continuum, there are some general correlations that can be made. Both
LGA equations and simulation results indicate that a square lattice with four nearest-neighbor interactions is insufficient to
maintain cohesive robot flow. Increasing the swarm’s kinematic viscosity by expanding the swarm or reducing its density,
provides room for the swarm maneuver along and around the obstacle while maintaining interaction rates, effectively

rescaling the global LGA parameters (h and 7).

Letting the GA form five regions with differing interaction rules (amplification coefficients for the different forces) provides
practical information on the steps needed to avoid the obstacle. The simulation in figure 3 shows that as the swarm
approaches the wall its repulsive interactions increase, expanding toward the edge of the obstacle. Near the edge its density
dramatically decreases, allowing robots internal to the swarm to maneuver past the wall. The GA balances the interaction
potentials so that the shear forces do not cause the robots to evaporate beyond the swarm’s boundary. Ultimately, the results
from section 2 will be incorporated into the objective function of the GA to help improve performance. Additional
simulations testing the LGA hypothesis that rescaling the interaction rates would also improve stability can be accomplished
by changing the relative speed of the target to that of the robot’s speed or swarm’s average speed. Another interesting feature
is the number of stationary robots. Stationary particles increase interaction rates and improve convergence (stability) but at
the cost of kinematic viscosity. Increasing a robot’s force introduces stationary.

The largest deviations between simulation and the theory of LGA are the swarm’s boundary due to the finite number of
robots and the different forms of the interaction rules. If simulation and theory are to merge, swarms of tens to thousands of
robots need to appear like a continuum, Avagadro’s number. Current research studying the surface tension between two
immiscible fluids provides some insights but for our purposes remains incomplete. By endowing robots with appropriate
attributes, the ability to be aware of its position at a boundary of the swarm, it can be made fo react as though it is inside a
continuum of robots. The hydrodynamic equations in section 2 would provide both the training and the validation necessary.
This is not unlike finite-difference time-domain methods where a perfectly matched absorbing boundary layer of material
allows a finite scattering domain to appear infinite. Training (recurrent) neural networks implementing standard hexagonal
lattice gas automata techniques may resolve this problem.

LGA have shown that simple interaction rules combined with symmetry arguments reproduce hydrodynamics, like the
Navier-Stokes equation. It is a powerful framework. Evolutionary techniques have been shown effective at providing
optimal system design, by incorporating artificial intelligence into the structure of the robots, giving the swarm the ability to
accomplish complex tasks. By incorporating neural network and/or fuzzy logic equations into the robot interaction matrix of
equation 5 and 8, theoretical calculations can be developed, enhancing both the swarm’s phase-space to maneuver/adapt and
its stability.

By endowing the robots with additional attributes (neural topologies, pseudo-potential fields [30-33]) and leveraging this
same theoretical framework, intelligence can be studied to see if robotic overhead can be reduced and stability regions can be
expanded optimizing adaptability while maintaining surety.

5. CONCLUSIONS

LGA theory relates nearest-neighbor topological information to desirable and predictable swarm dynamics (kinematics). For
single-speed particles, a hexagonal distribution of movements and neighbors reproduces standard hydrodynamic behavior.
Microscopic robotic interactions are linked to important macroscopic flow parameters, such and density and viscosity. These
internal stresses allow the swarm to deform (i.e., change shape), allowing it to adapt to changing environmental conditions.
However, nearest-neighbor topology (robots degrees-of-freedom) and rate-of-deformation provide conditions in the form of
stability criteria. In general, eigenvalues of the linearized Boltzmann transport equation cannot become positive or imaginary.
The latter produces oscillatory transitions between equilibrium states, the former causes the robotic system to diverge from
equilibrium.

Simulations show qualitatively that nearest-neighbor topology is an important parameter in the design of multi-robotic
systems and that viscosity and rescaling are important when the swarm must maneuver past an obstacle. Deriving and
evolving various decision-making collision parameters, such as electrodynamics and hybrid neural topologies, within the
LGA framework and during the design stage should provide a high level of robustness (surety).
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