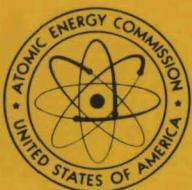


3
RECEIVED BY TIC JUL 15 1974

MLM-2123


MLM-2123

***Preparation of UO_2 and
 $^{238}PuO_2$ Fuel Pellets
for a Small Heat Source***

R. L. Deaton, C. J. Wiedenheft

and R. E. Zielinski

June 14, 1974

Monsanto

MOUND LABORATORY

Miamisburg, Ohio

operated by

MONSANTO RESEARCH CORPORATION

a subsidiary of Monsanto Company
for the

U. S. ATOMIC ENERGY COMMISSION

U. S. Government Contract No. AT-33-1-GEN-53

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Preparation of UO_2 and $^{238}PuO_2$ Fuel Pellets for a Small Heat Source

R. L. Deaton, C. J. Wiedenheft and R. E. Zielinski

Issued: June 14, 1974

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

PRINTED IN THE UNITED STATES OF AMERICA

Available from
National Technical Information Service
U S Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22151
Price Printed Copy \$4.00, Microfiche \$1.45

MONSANTO RESEARCH CORPORATION

A Subsidiary of Monsanto Company

MOUND LABORATORY

Miamisburg, Ohio 45342

operated for

UNITED STATES ATOMIC ENERGY COMMISSION

U S Government Contract No AT-33-1-GEN-53

MASTER

TABLE OF CONTENTS

	<u>Page</u>
ABSTRACT	3
INTRODUCTION	4
SIMULANT STUDY	4
UO ₂ Feed Material	4
Preliminary Fabrication Studies	6
Feed Material and Pellet Outgassing Analysis	8
Preparation of UO ₂ Simulant Pellets	9
PLUTONIUM-238 DIOXIDE STUDY	13
Feed Material Preparation	13
Preparation of ²³⁸ PuO ₂ Fuel Pellets	19
SUMMARY	22
ACKNOWLEDGMENT	23
REFERENCE	23

ABSTRACT

Pressed and sintered PuO_2 fuel pellets were developed as an alternate fuel form for a small radioisotopic heat source. In initial development UO_2 pellets were prepared prior to extending the study to $^{238}\text{PuO}_2$.

As a result of this study, ideal pellet dimensions, shape, and pressing parameters were determined; 27 UO_2 and 18 PuO_2 pellets were fabricated.

INTRODUCTION

In the development phase of the $^{238}\text{PuO}_2$ fuel for a small [6 W (th)] radioisotopic heat source for a thermoelectric generator, two fuel forms were considered: 1) a packed bed of PuO_2 shards (53-500 μm) and 2) a compacted pellet (small cylinder). Although shards were ultimately selected as the fuel form for this program, the pelletized fuel was developed as described in this report.

In addition to the PuO_2 fuel, this particular heat source capsule will contain sufficient yttrium metal to maintain a reduced partial pressure of oxygen. Lowered oxygen partial pressure is required to prevent embrittlement of the refractory metal capsule during the useful life of the generator. The heat source design using a PuO_2 pellet is shown in Figure 1.

Two of the major problems anticipated with the pelletized fuel form were:

1. Production of pellets with reproducible dimensions, wattage, and density to the tolerance required.
2. Production of pellets without sharp corners which could rupture the heat source capsule upon high velocity impacts.

In the development of the pelletized fuel form it was first necessary to develop methods for producing the pellets with the UO_2 simulant (nonradioactive) fuel. Secondly, the methods and techniques established in the UO_2 simulant study were to be used to develop a method for producing $^{238}\text{PuO}_2$ fuel pellets of specified dimension and wattage. In addition, it was necessary to produce pellets for testing the characteristics of the radioisotopic heat source.

SIMULANT STUDY

UO_2 FEED MATERIAL

The UO_2 feed material used in this study was commercially produced and had been in stock at Mound Laboratory for several years. (The method

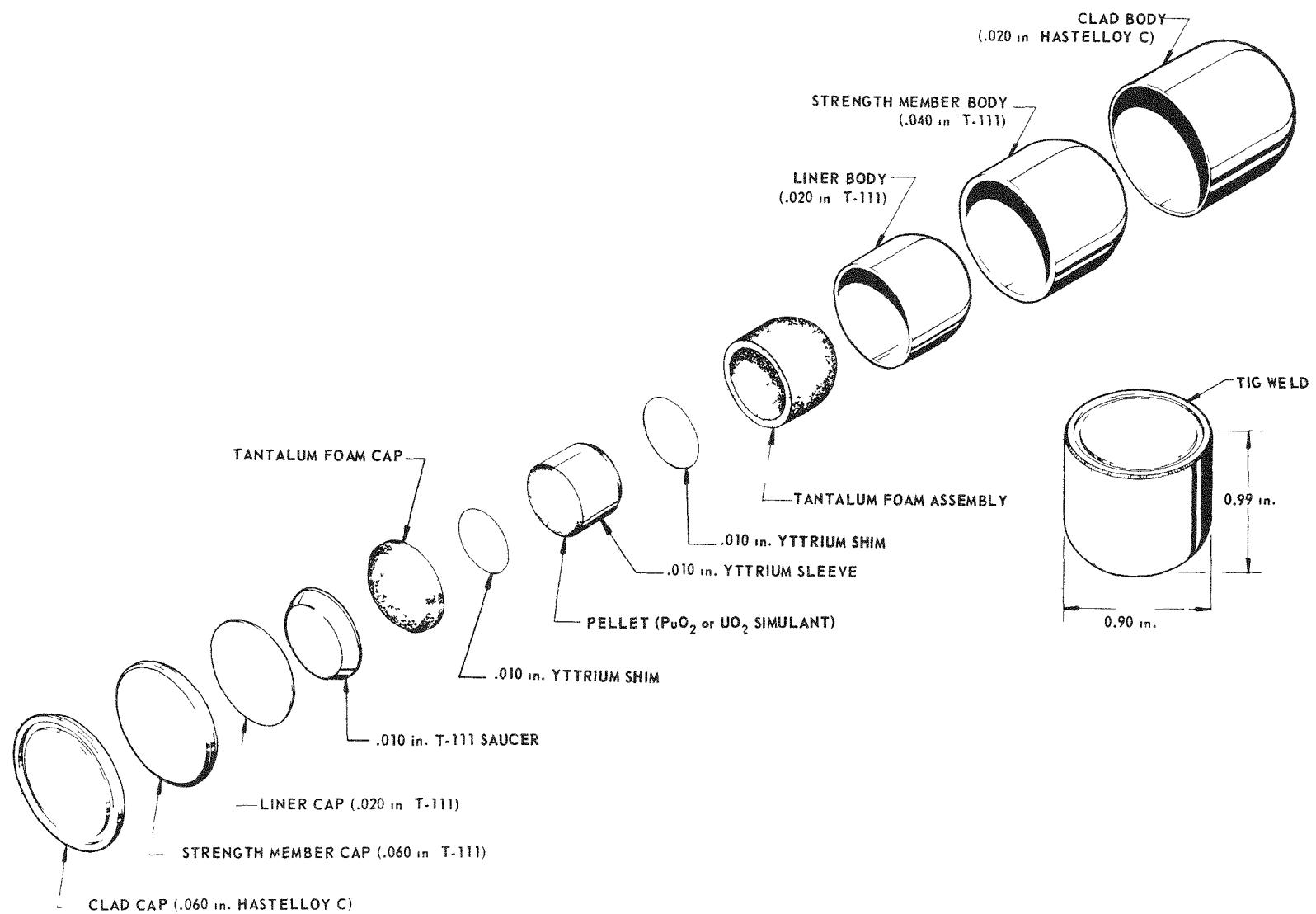


FIGURE 1 - Pellet fuel form capsule.

of preparation and thermal history of this material is unknown.) This UO_2 material consisted of very fine particles which had agglomerated into larger spheroidal particles as shown in Figure 2. The properties of this material are summarized in Tables 1 and 2.

PRELIMINARY FABRICATION STUDIES

Several right-circular-cylinder test pellets were prepared to evaluate the pressing and sintering characteristics of the feed material prior to final die design.

Several pellets were compacted at various pressures. It was found that at pressures as low as 12,000 psi, the UO_2 pellets had good green strength and apparent densities of about 57 to 58% of theoretical. Very little increase in green density or green strength occurred as the forming pressure was increased to 30,000 psi. As the forming pressure was increased above $\sim 40,000$ psi, the pellets tended to laminate and lose their green strength.

Colloidal graphite was used throughout this study as a die lubricant. Water and Carbowax were evaluated as binders. Both binders improved the green strength of the pellets, and did not seem to affect the green density.

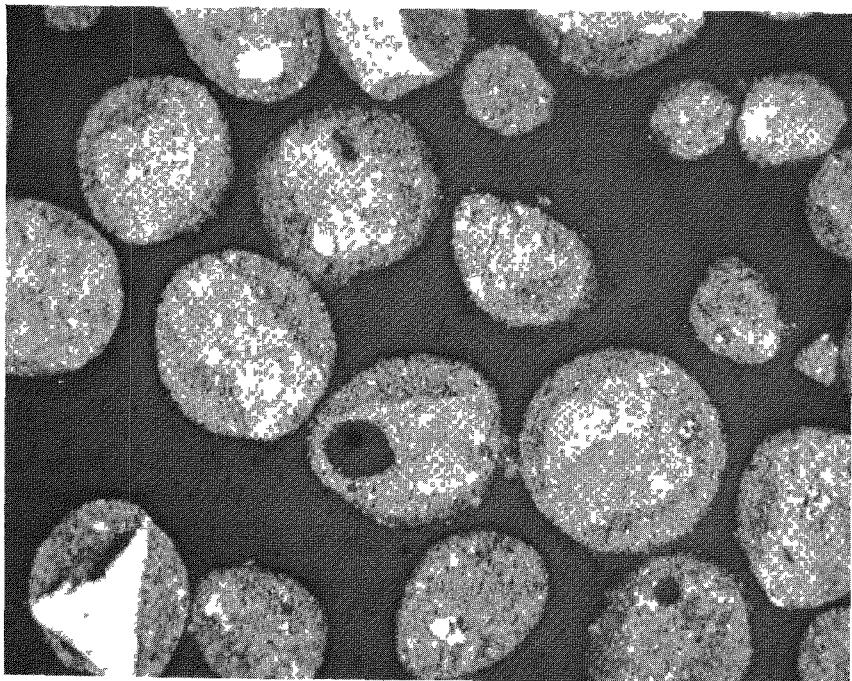


FIGURE 2 - UO_2 feed material (100X).

Table 1

PROPERTIES OF UO₂ FEED MATERIAL

Agglomerated Particle Size	50-150 μm
Apparent Density	5.8 g/cc (52.9% TD)
Tap Density	4.1 g/cc (37.4% TD)
Stoichiometry	UO _{2.02}

Table 2

IMPURITY AND ISOTOPIC ANALYSIS OF UO₂ FEED MATERIAL

<u>Element</u>	<u>Amount</u> ($\mu\text{g/g}$)	<u>Isotope</u>	<u>Amount</u> (at. %)
Fe	450	U-235	0.23
Si	100	U-236	0.003
Mn	12	U-238	99.8
B	<2		
Pb	<10		
Mg	10		
Cr	30		
Al	100		
Ca	<250		
Cu	20		
Co	25		
Ni	70		
C	28		

After being sintered at 1400°C under vacuum for 1 hr, the UO₂ pellets exhibited densities of 83 to 86% of theoretical. The pellets were sintered under vacuum to prevent oxidation. Sintering at temperatures higher than 1400°C or for longer than 1 hr, resulted in only slightly higher densities.

Pellet measurements before and after sintering indicated that the diameter of the pellet shrank slightly more than did the length.

Properties of the preliminary pellets prepared for this study are listed in Table 3.

Table 3

UO₂-CHAMFERED RIGHT CIRCULAR PELLETS

Pellet	Charge (g UO ₂)	Green Density (%)	Sintered Density (%)	Shrinkage (%)	Binder	Pressing Pressure (psi)
1	14.1	58.8	83.5	Diam. 11.7 Hgt. 10.5	Carbowax	18,000
2	14.1	57.6	83.3	Diam. 12.2 Hgt. 11.0	Carbowax	15,000
1A	14.0	57.8	85.6	Diam. 12.8	H ₂ O	15,000
2A	14.0	57.4	85.1	Diam. 12.8 Hgt. 11.9	H ₂ O	17,000

FEED MATERIAL AND PELLET OUTGASSING ANALYSIS

Because graphite was used as a die lubricant and water or Carbowax was used as a binder, the vacuum outgassing properties of the feed material and pellets were measured to ensure that outgassed species would not be in sufficient concentration to cause embrittlement of the capsule material. Untreated UO₂ feed material and compacted pellets containing both Carbowax and water binder were heated under vacuum, and the gasses evolved at various temperatures were analyzed with a Quadrupole Mass Spectrometer. During this analysis, the presence of CH₄, CO₂, CO, and H₂O were detected during heating. However, an insignificant amount of gas evolved from both feed material and compacted pellets after a 1-hr sintering at 1400°C. Any carbon in the feed material and compacted pellets after sintering was less than the detectable limit. These analyses indicate that there should not be any deleterious effects on the liner material from evolved gasses or carbon impurity after the 1400°C sintering.

PREPARATION OF UO₂ SIMULANT PELLETS

From the information obtained in the preliminary studies, a die-punch set was designed to prepare pellets with chamfered edges as shown in Figures 3 and 4. Chamfered pellet edges were designed to reduce the possibility that the fuel pellets would rupture the heat source capsule during high velocity impact. Pellet dimensions were established to permit the fuel pellet to be completely surrounded with a collapsible tantalum foam material. This foam holds the pellet immobile within the capsule and helps to absorb the shock that occurs during impact. The free volume within the foam permits the safe storage of helium generated by the alpha decay of ²³⁸PuO₂ during the lifetime of the heat source.

A few test pellets were prepared for destructive analysis using the fabrication parameters listed in Table 3. Two of these chamfered pellets are shown in Figure 5. A photomicrograph of a pellet cross section shown in Figure 6 indicates that the density is uniform throughout the pellet. Pellet impurities are listed in Table 4.

The 27 UO₂ simulant pellets shown in Figure 7 were prepared for use in the generator testing program. The properties of these pellets are listed in Table 5.



FIGURE 3 - Double chamfered die.

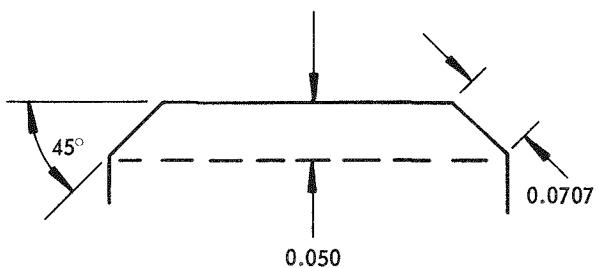


FIGURE 4 - Description of
chamfered top.

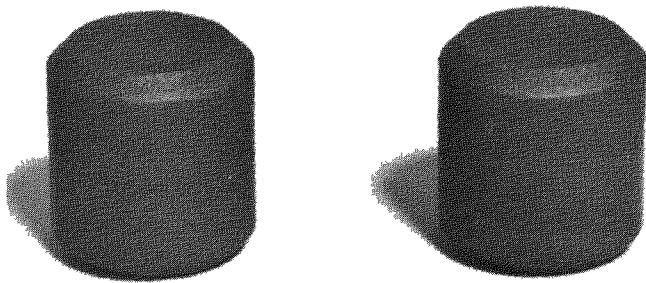


FIGURE 5 - Typical cold-
pressed and sintered UO₂
pellets (double chamfer con-
figuration).

Table 4

IMPURITY ANALYSIS OF SELECTED
UO₂ SIMULATED FUEL PELLET

Element	Amount (μg/g)	
	in Exterior	in Interior
C	26	32
Fe	450	450
Si	100	100
Mn	12	12
Pb	<10	<10
Mg	20	20
Cr	30	30
Al	150	150
Ca	200	200
Cu	10	10
CO	20	20
Ni	90	90

FIGURE 6 - Composite photomicrograph of sintered UO₂ pellet; 500X magnification (reduced to 85%).

Table 5

UO₂ PELLET DATA

Charge Weight (g)	Green Dimensions (in.)	Green Density (%)	Sintered Dimensions (in.)	Sintered Density (%)	Shrinkage (%)	Sintered Weight (g)	Weight Loss (%)
14.3784	diam. 0.558 height 0.597	56.7	diam. 0.491 height 0.533	81.6	diam. 12.0 height 10.8	14.1526	1.6
14.3870	diam. 0.558 height 0.599	56.6	diam. 0.491 height 0.535	81.5	diam. 12.0 height 10.7	14.1818	1.4
14.4547	diam. 0.558 height 0.592	57.6	diam. 0.495 height 0.531	81.9	diam. 11.3 height 10.3	14.3862	0.5
14.4732	diam. 0.558 height 0.591	57.8	diam. 0.495 height 0.532	81.9	diam. 11.3 height 10.0	14.4165	0.4
14.4659	diam. 0.558 height 0.5905	57.8	diam. 0.496 height 0.532	81.6	diam. 11.1 height 9.9	14.4146	0.4
14.4667	diam. 0.558 height 0.5885	58.0	diam. 0.4945 height 0.529	82.2	diam. 11.4 height 10.1	14.3403	0.9
14.4804	diam. 0.558 height 0.591	57.8	diam. 0.494 height 0.530	82.2	diam. 11.5 height 10.3	14.3405	1.0
14.4731	diam. 0.558 height 0.591	57.8	diam. 0.494 height 0.531	81.9	diam. 11.5 height 10.2	14.3248	1.1
14.4861	diam. 0.558 height 0.593	57.6	diam. 0.4915 height 0.529	83.6	diam. 11.9 height 10.8	14.4050	0.6
14.4863	diam. 0.558 height 0.592	57.7	diam. 0.492 height 0.530	83.3	diam. 11.8 height 10.5	14.4260	0.4
14.4849	diam. 0.558 height 0.591	57.8	diam. 0.491 height 0.528	83.9	diam. 12.0 height 10.7	14.4108	0.5
14.4865	diam. 0.558 height 0.593	57.6	diam. 0.4915 height 0.527	83.9	diam. 11.9 height 12.5	14.4016	0.6
14.4837	diam. 0.558 height 0.591	57.8	diam. 0.491 height 0.5275	83.2	diam. 12.0 height 10.7	14.2650	1.5
14.4887	diam. 0.558 height 0.593	57.6	diam. 0.490 height 0.5285	83.3	diam. 12.8 height 10.9	14.2591	1.6
14.4860	diam. 0.558 height 0.593	57.5	diam. 0.490 height 0.529	83.0	diam. 12.8 height 10.8	14.2150	1.9
14.4940	diam. 0.558 height 0.591	57.9	diam. 0.494 height 0.530	82.7	diam. 11.5 height 10.3	14.4352	0.4
14.4866	diam. 0.558 height 0.595	57.4	diam. 0.493 height 0.533	82.5	diam. 11.6 height 10.4	14.4281	0.4
14.4882	diam. 0.558 height 0.590	57.9	diam. 0.494 height 0.531	82.5	diam. 11.5 height 9.9	14.4311	0.4
14.4893	diam. 0.558 height 0.593	57.6	diam. 0.494 height 0.533	82.2	diam. 11.5 height 10.1	14.4326	0.4
14.4862	diam. 0.558 height 0.592	57.7	diam. 0.4935 height 0.531	82.2	diam. 11.6 height 10.3	14.3455	1.0
14.4886	diam. 0.558 height 0.592	57.7	diam. 0.493 height 0.531	82.4	diam. 11.6 height 10.3	14.3482	1.0
14.4996	diam. 0.558 height 0.593	57.7	diam. 0.4925 height 0.532	82.3	diam. 11.7 height 10.3	14.3480	1.0
14.4934	diam. 0.558 height 0.591	57.9	diam. 0.492 height 0.531	82.7	diam. 11.8 height 10.2	14.3489	1.0
14.4935	diam. 0.558 height 0.592	57.8	diam. 0.491 height 0.530	82.8	diam. 12.0 height 10.5	14.2798	1.5
14.4941	diam. 0.558 height 0.592	57.8	diam. 0.495 height 0.534	81.3	diam. 11.3 height 9.8	14.3696	0.9
14.4943	diam. 0.558 height 0.593	57.7	diam. 0.492 height 0.531	82.6	diam. 11.8 height 10.5	14.3350	1.1
14.4986	diam. 0.558 height 0.5785	59.2	diam. 0.498 height 0.523	82.6	diam. 10.8 height 9.6	14.4473	0.4

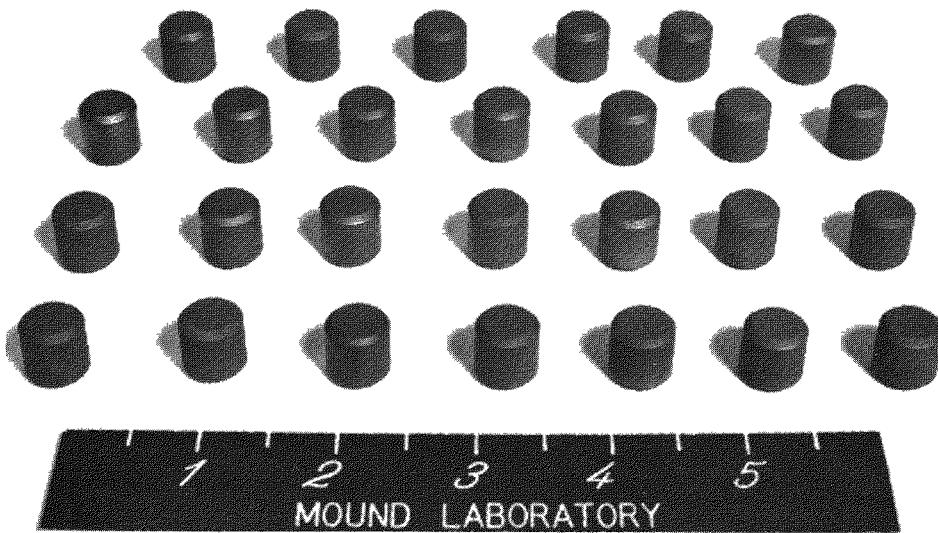


FIGURE 7 - Cold pressed and sintered UO_2 pellets for use as fuel simulant.

PLUTONIUM-238 DIOXIDE STUDY

FEED MATERIAL PREPARATION

Plutonia shards prepared by the hydroxide process (see Process Flow Sheet, Figure 8) and calcined at 650–700°C for 1 hr were used as feed material for the preparation of the $^{238}\text{PuO}_2$ pellets. This material consists of very small crystallites agglomerated into larger particles or shards. Figure 9 shows a typical size distribution of the $<297\text{ }\mu\text{m}$ shards used. These particles exhibit low densities (~67% TD) and are quite friable. Pressing characteristics of the PuO_2 feed material seem to depend critically on calcination parameters, age, and method of storage. Specifications for PuO_2 fuel pellets are given in Table 6.

Table 6

SPECIFICATIONS FOR PuO_2 FUEL PELLETS^a

Diameter	0.494 ± 0.005 in.
Height	0.525 ± 0.015 in.
Density	81 to 85% of theoretical
Wattage	6.0 ± 0.05 W

^aBoth ends chamfered.

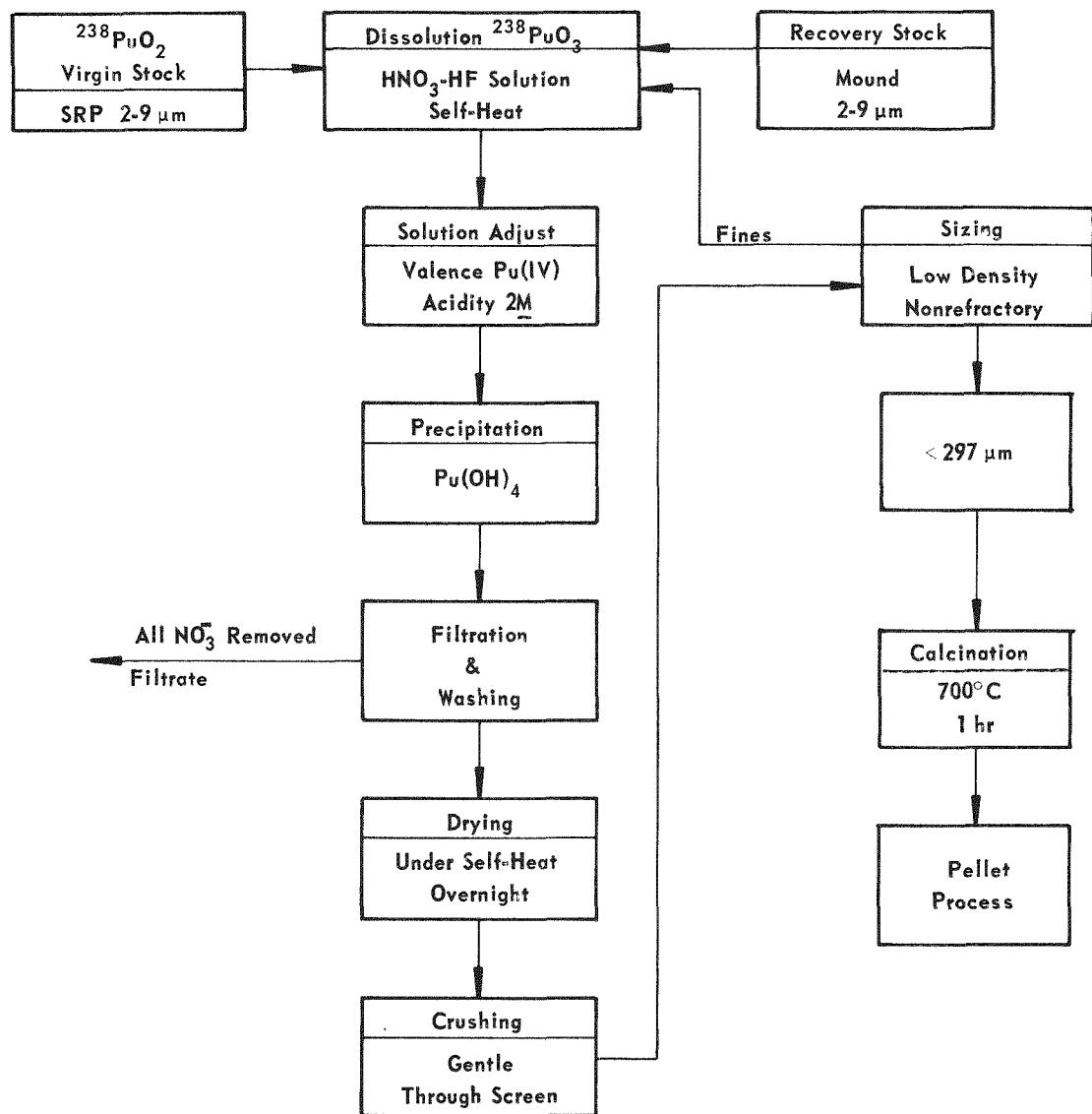


FIGURE 8 - Production process flowsheet for the "hydroxide" shard process.

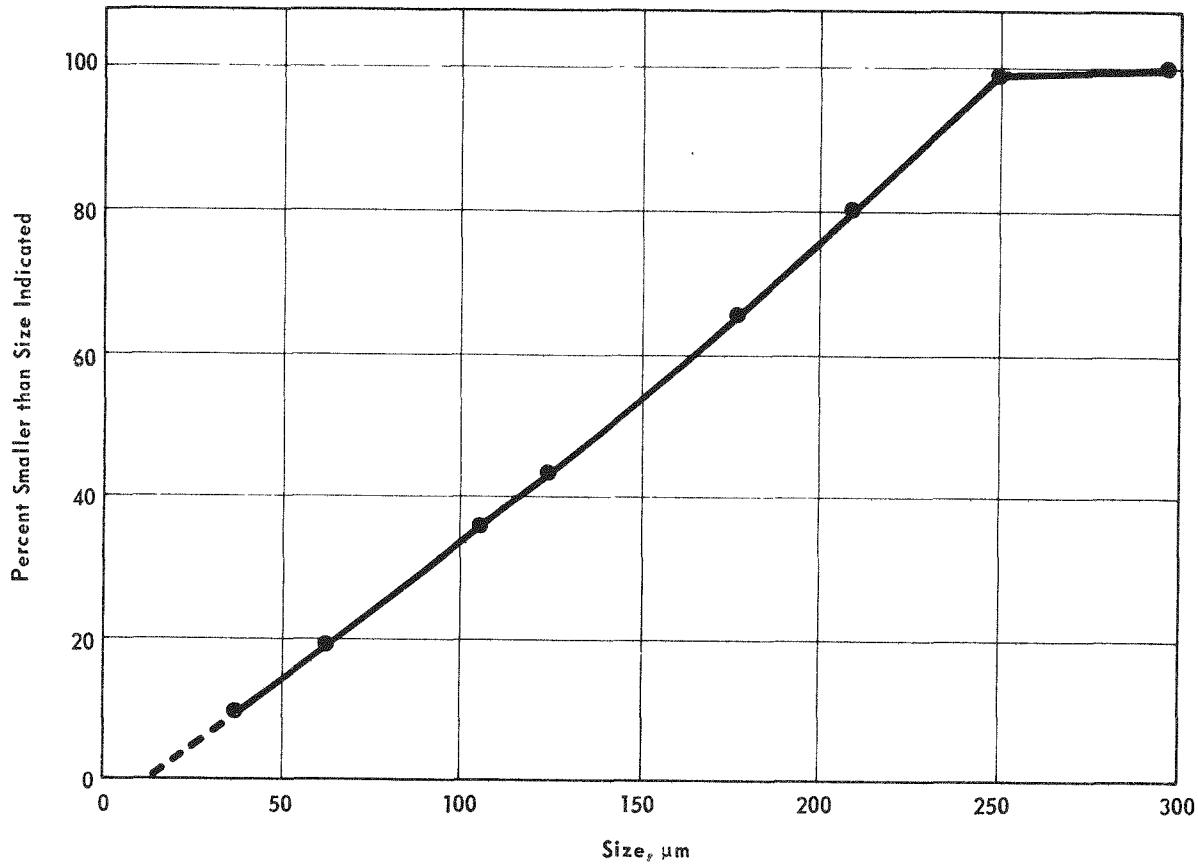


FIGURE 9 - Typical size distribution of $<297 \mu\text{m}$ $^{238}\text{Pu}^{16}\text{O}_2$ shards produced by the hydroxide process.

The effect of the calcination parameters was evaluated by calcining portions of a single batch of shards at various temperatures and times. Test pellets were prepared from each of these portions as shown in Tables 7 and 8; the green density of the pellets increased as the duration and temperature of calcination are increased. Green pellets prepared from material calcined at or below 700°C for 1 hr sintered to densities of 81 to 85% of theoretical. Calcination at 750°C for 1 hr, however, resulted in pellets with densities less than 80% of theoretical. In order to obtain reproducibility of pellet dimensions while holding the die dimension constant, both the green and sintered density had to be relatively constant from batch to batch.

From Tables 7 and 8, it can be seen that the green density of a cold-pressed pellet increases as the time and temperature of calcining the feed material are increased. In order to reduce the sensitivity of the calcination parameters, the highest temperature (700°C) and the longest time (1 hr) that yielded an acceptable final density (after sintering) were selected as the calcination parameters. It was found also that care must be taken to ensure that the feed material is calcined homogeneously (even from self-heat) or the pressing and sintering properties

Table 7

EFFECT OF FUEL CALCINATION
TIME ON GREEN DENSITY OF PELLET

Calcination Time at 700°C ^a (min)	Pellet Density (g/cc)
0	50.9
1	54.3
10	55.5
15	56.3
60	60.4

^a Previously calcined at 650°C for 1 hr.

Table 8

EFFECT OF FUEL CALCINATION
TEMPERATURE ON GREEN DENSITY OF PELLET

One-hour Calcination Temperature ^a (°C)	Pellet Density (g/cc)
650	50.9
675	57.4
700	57.9
750	61.4

^a Previously uncalcined.

vary widely. In addition, if the material is stored in large quantities for several days after calcination, its cold pressing properties will deteriorate, apparently caused by self-heat (self-sintering). For example, a batch of feed material calcined at 700°C for 15 min yielded

green pellets of 58% and sintered densities of 83.2% of theoretical density. After two weeks of storage, the material produced pellets which exhibited a green density of 61.1% and a sintered density of less than 80% TD. Subsequent measurement of the apparent density of the feed material indicated that the density had increased from 67% to 73% TD during the storage period. Table 9 summarizes the feed material properties.

The effect of compaction pressures was investigated by preparing several pellets at pressures from 33,000 to 50,000 psi. At pressures below 33,000 psi, the green strength of the pellet was too low for normal handling. At forming pressures from 33,000 to 41,000 psi, the pellet green strength was adequate and the green density varied from 57% to 59% TD. As the pressure was increased to about 50,000 psi and above, the pellets tended to laminate and fracture, especially at the chamfered edge. Table 10 summarizes some of the preliminary pellet properties.

Colloidal graphite was used throughout as a die lubricant, and the addition of two drops of water per charge was sufficient to increase the green strength of the pellets without significant change in the green or sintered densities.

Table 9

PROPERTIES OF PuO_2 SHARD FEED MATERIAL
PREPARED BY THE HYDROXIDE PROCESS AND
CALCINED AT 700°C FOR ONE HOUR

Particle Size Range	<297 μm
Particle Size Distribution	See Figure 9
Apparent Density	7.7 g/cc (67% TD)
Total Impurities	0.11%

<u>Element</u>	<u>Amount</u> ($\mu\text{g/g}$)
Al	54
Ca	<250
Co	96
Cu	73
Fe	212
Mg	20
Pb	137
Ni	73
Si	154

Pellet sintering temperatures from 1525 to 1750°C for periods up to 6 hr were investigated. It was found that sintering temperatures above 1550°C for periods greater than 2 hr did not significantly increase the pellet density. Higher temperatures for longer periods of time tended to increase the grain size.

Table 10

PRELIMINARY PuO_2 PELLETS

Pellet	Charge (g PuO_2)	Green Density (%)	Sintered Density (%)	Shrinkage (%)	Pressing Binder	Pressing Pressure (psi)	Power (W)	Comments
1G	15.20	60.8	78.6	diam 8.6 ht. 6.6	H_2O	50,000	5.96	Laminated and cracked at chamfered edge.
3A	15.16	58.3	83.2	diam 11.5 ht. 10.2	H_2O	41,000	6.00	
3B	15.19	57.2	81.8	diam 11.5 ht. 10.7	H_2O	33,000	6.01	
3C	15.16	57.6	82.5	diam 11.5 ht. 10.6	H_2O	41,000	5.98	
3D	15.15	57.7	82.6	diam 11.5 ht. 10.6	H_2O	41,000	5.98	
3E	15.08	59.4	84.5	diam 11.5 ht. 10.2	None	41,000	5.98	
3F	15.16	59.2	83.7	diam 11.5 ht. 9.7	H_2O	41,000	5.97	
4A	15.16	56.8	82.3	diam 11.8 ht. 10.8	H_2O	41,000	5.98	
4B	15.16	56.8	82.8	diam 12.0 ht. 11.1	H_2O	41,000	5.98	
4C	15.15	57.6	83.7	diam 12.0 ht. 10.8	H_2O	41,000	6.00	
4D	15.16	57.4	83.6	diam 12.0 ht. 11.1	H_2O	41,000	5.98	

PREPARATION OF $^{238}\text{PuO}_2$ FUEL PELLETS

Eighteen $^{238}\text{PuO}_2$ fuel pellets were prepared from freshly prepared and calcined (700°C for 1 hr) $^{238}\text{PuO}_2$ feed material using the fabrication parameters listed in Table 11.

The properties of the fuel pellets, thus produced, are summarized in Table 12. A photograph of several of these pellets is shown in Figure 10. Selected pellets were destructively analyzed for microstructure and chemical impurities. The cross section of the total specimen shown in Figure 11 indicates a reasonably uniform density distribution within the pellet. The cracks and chips shown in the photomicrograph of the total specimen occurred during mounting. Pellet impurities are listed in Table 13.

Table 11

$^{238}\text{PuO}_2$ PELLET FABRICATION PARAMETERS

Die Design	See Figure 3
Die Lubricant	Colloidal Graphite
Binder	Two drops of water/charge
Compacting Pressure	41,000 psi
Sintering Temperature	1550°C
Sintering Atmosphere	Oxygen-16
Time	2 hr

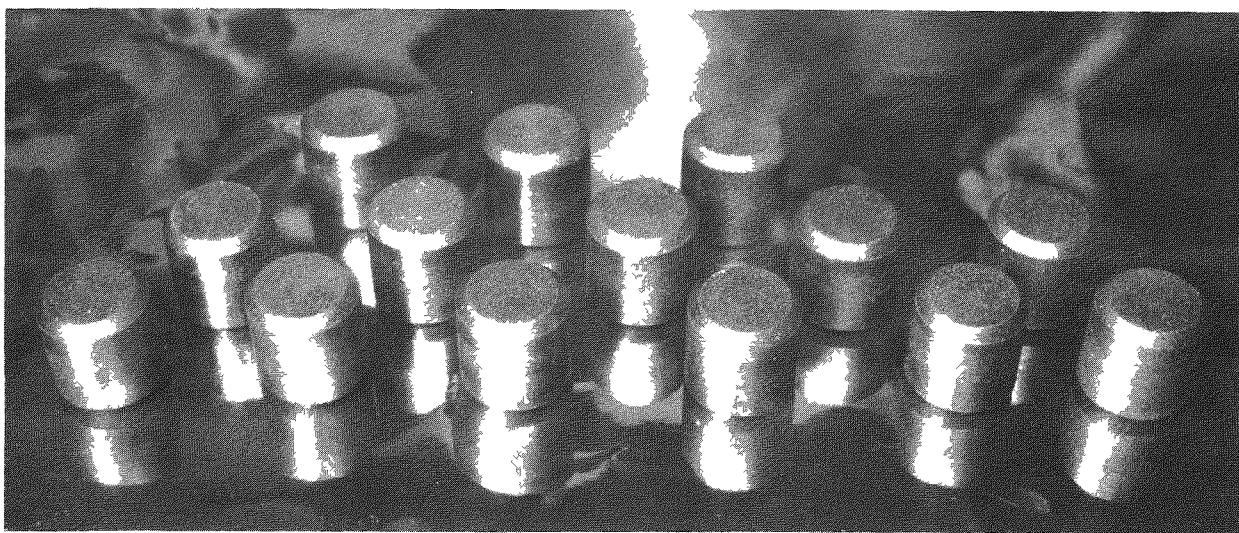


FIGURE 10 - Cold pressed and sintered PuO_2 pellets.

Table 12

PuO₂ PELLETS

Charge Weight (g)	Green Dimension (in.)	Green Density (%)	Sintered Weight (g)	Sintered Dimension (in.)	Sintered Density (%)	Shrinkage (%)	Weight Loss on Sintering (%)
15.279	diam 0.5585 ht. 0.587	58.6	15.1439	diam 0.499 ht. 0.529	81.4	10.7 9.9	0.9
15.263	diam 0.5585 ht. 0.591	58.2	15.2040	diam 0.496 ht. 0.529	82.8	11.2 10.5	0.4
15.265	diam 0.5585 ht. 0.594	57.9	15.2011	diam 0.495 ht. 0.531	82.8	11.4 10.6	0.4
15.271	diam 0.5585 ht. 0.595	57.8	15.1946	diam 0.494 ht. 0.529	83.4	11.5 11.1	0.5
15.270	diam 0.5585 ht. 0.596	57.7	15.2238	diam 0.497 ht. 0.537	81.3	11.0 9.9	0.3
15.270	diam 0.5585 ht. 0.598	57.5	15.2151	diam 0.493 ht. 0.529	83.9	11.7 11.5	0.4
15.274	diam 0.5585 ht. 0.594	57.9	15.2178	diam 0.496 ht. 0.536	81.7	11.2 9.8	0.4
15.272	diam 0.5585 ht. 0.603	57.0	15.2057	diam 0.492 ht. 0.537	82.9	11.9 10.9	0.4
15.252	diam 0.5585 ht. 0.577	59.6	15.1430	diam 0.5005 ht. 0.525	81.6	10.4 9.0	0.7
15.247	diam 0.5585 ht. 0.574	59.9	15.1388	diam 0.4995 ht. 0.520	82.7	10.4 9.4	0.7
15.250	diam 0.5585 ht. 0.572	60.1	15.1340	diam 0.4995 ht. 0.519	82.7	10.4 9.3	0.8
15.240	diam 0.5585 ht. 0.582	59.0	15.1820	diam 0.497 ht. 0.523	83.3	11.0 10.1	0.4
15.241	diam 0.5585 ht. 0.585	58.7	15.1845	diam 0.497 ht. 0.527	82.7	11.0 9.9	0.4
15.241	diam 0.5585 ht. 0.583	58.9	15.1751	diam 0.497 ht. 0.524	83.1	11.0 10.1	0.4
15.246	diam 0.5585 ht. 0.587	58.5	15.1414	diam 0.496 ht. 0.528	82.6	11.2 10.1	0.7
15.247	diam 0.5585 ht. 0.587	58.5	15.1339	diam 0.496 ht. 0.528	82.6	11.2 10.1	0.7
15.242	diam 0.5585 ht. 0.585	58.7	15.1260	diam 0.497 ht. 0.525	82.7	11.0 10.3	0.8
15.253	diam 0.5585 ht. 0.579	59.4	15.0985	diam 0.498 ht. 0.521	82.7	10.7 10.0	1.0

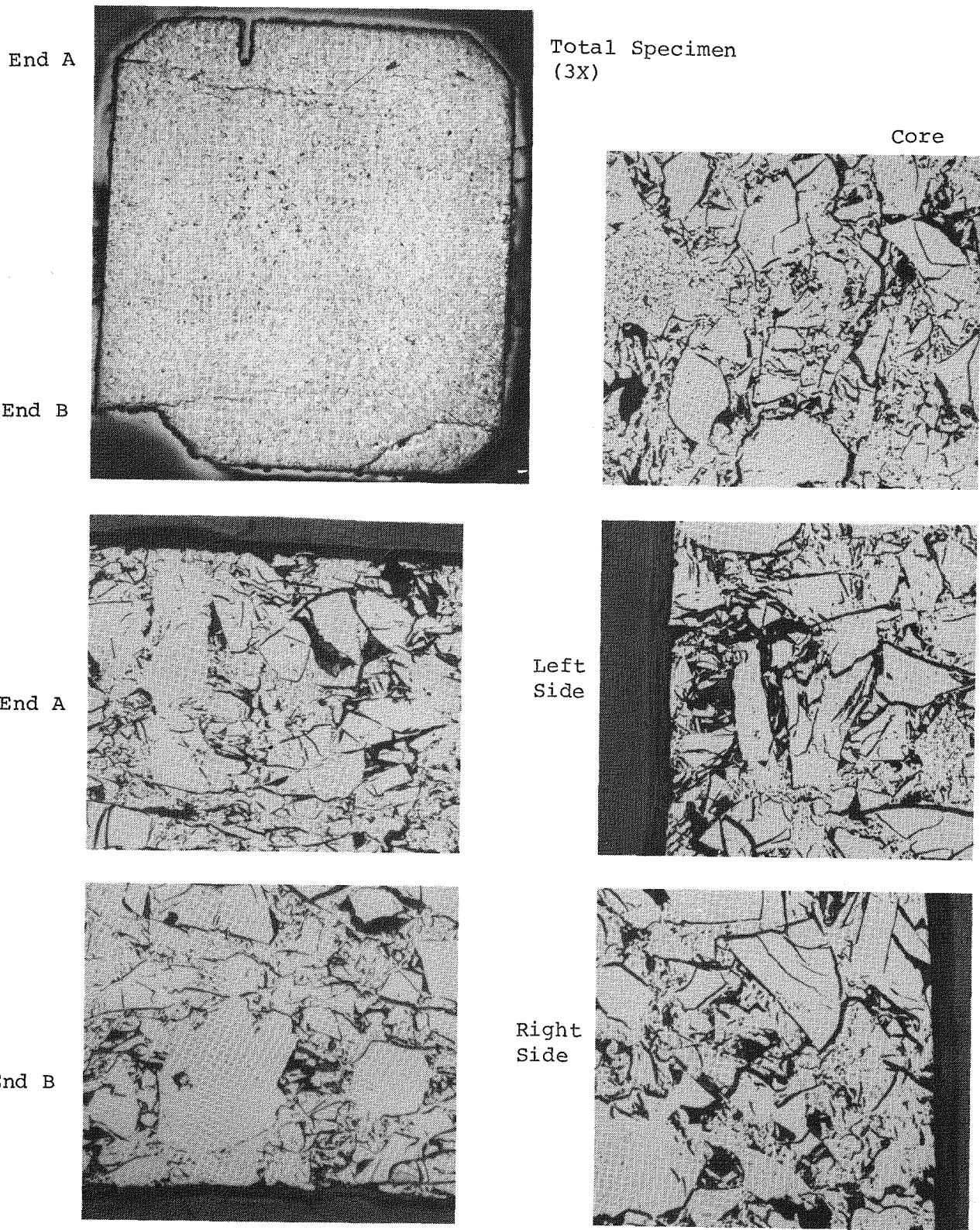


FIGURE 11 - Metallographic cross section of a PuO_2 cold pressed and sintered pellet. Total specimen 3X, all other magnifications 125X.

Table 13

IMPURITY ANALYSIS OF A SELECTED $^{238}\text{PuO}_2$ FUEL PELLET

<u>Element</u>	<u>Amount ($\mu\text{g/g}$)</u>	
	<u>Exterior</u>	<u>Interior</u>
C	22	34
Fe	450	500
Si	100	100
Mn	12	12
Pb	<10	<10
Mg	10	10
Cr	30	30
Al	100	100
Ca	<250	<250
Cu	20	<10
Co	25	25
Ni	70	70

SUMMARY

This study demonstrates the feasibility of preparing reproducible $^{238}\text{PuO}_2$ fuel pellets from low-fired hydroxide shards by a cold press and sinter technique. During the course of this study 18 PuO_2 and 27 UO_2 chamfered pellets were prepared to the following specifications: diameter - 0.494 \pm 0.005 in., height - 0.525 \pm 0.015 in., density - 81 to 85% TD and wattage (for PuO_2 pellets) - 6.0 \pm 0.05 W.

PuO_2 pellet preparation parameters were investigated. Properties of the pellets depend on the PuO_2 feed preparation parameters, compaction pressure, and the sintering conditions. Of these parameters, the thermal history of the feed shards is the most critical for control of the dimensional and density properties of the pellets.

The hydroxide-precipitated and dried feed shards must be calcined with careful control of temperature and time. It was also noted that aged feed shards exhibited rather different pressing and sintering behavior. The properties of aged shards appear to be similar to those of shards calcined at much higher temperatures. This aging effect is believed to be due to a reduction of the surface free energy resulting from the self-heat in PuO_2 (self-sintering). The kinetics and mechanism of this reaction require further investigation.

The microstructural features of the pellet also depend on the preparation parameters. The amount of porosity depends more on the nature of the feed material and the pressing parameters than on the sintering conditions beyond 1550°C. Under extreme sintering conditions the grain size increases without a significant increase in density.

ACKNOWLEDGMENT

The authors wish to acknowledge the efforts of Mr. M. D. Kelly who prepared the cross sections, Dr. S. T. Cohen who performed the residual gas analysis, and Dr. R. R. Jaeger for many helpful discussions.

REFERENCE

1. J. E. Selle and B. R. Kokenge, U. S. Patent No. 3,659,107, April 25, 1972.