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ABSTRACT

The self-diffusion of a gas in a capillary has been re-examined using a
density distribution which gives the same transport at the end and mid-
point of the tube. This density function is chosen to be linear through
the tube with effective discontinuities at the ends. Previous calcu-
lations in the limit of infinite mean free path have shown such a dis-
tribution to be reasonably reliable. The calculation reported here
determines the limiting slope of the diffusion transport with increasing
a/)~for right circular cylindrical capillaries of arbitrary length to
radius ratio. The results are similar to those obtained previously by
Pollard and Present, and Hiby and Pahl, but are believed to be more
reliable. Theoretical predictions are compared with experimental data
of Visner and seem to account satisfactorily for the observed decrease of
the self-diffusion coefficient with increasing pressure. It is apparent
that results from considerations of self-diffusion cannot be applied

directly to flow at finite pressure.
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ON GASEQUS SELF-DIFFUSION IN CAPILLARIES

INTRODUCTION

The problem of gaseous self-diffusion in capillary tubes has been examined
by Pollard and Present(l) and Hiby and Pahl(z). The approach in both of
these works is essentially identical except that Hiby and Pahl use a model
consisting of a "bent-line" and hope in this way to eliminate any confusion
resulting from the end effects apparent with short capillaries. Both of
these works treat the diffusion of a very low concentration of molecules

of a species A through a relatively much larger concentration of "fixed"
molecules of species B. No pressure gradient is permitted and hence no
bulk streaming of the gas need be considered; the principal function of

the gas B is to maintain a finite free path, A , for molecules of type A
independent of the position of these molecules in the system. In essence,
both approaches start from equations (24) and (25) of Pollard and Present
which determine the transport through a cross-section midway down the tube
and differ only in the interpretation of the numbers ny and 0, in equation
(25). 1In Pollard and Present's treatment these numbers refer to the number
density of molecules of type A in bulbs at the ends of the capillary, and it
is assumed that no density gradient exists in this region; in Hiby and Pahl's
treatment, these numbers refer to the number density of molecules of type A
required to give the correct emission from the walls terminating a short
capillary segment. The two treatments are formally identical; this point
is discussed in more detail in Appendix B of the report K-992 by W. H.
Eberhardt(3).

In order to make the calculation tractable, Hiby and Pahl expand the

exponentials in the integrals of equations (2L4) and (25) and keep only
terms of order a/}, where a is the tube radius*. 'They are then able to
express the transport in terms of tabulated complete elliptic integrals

and two integrals for which they give an approximate analytic function.

* Hiby and Pahl's equation (3) contains an error in that the factor 1/2
should not be present. If this factor is eliminated, the terms of
their equation (4) depending on a/A vanish. However, if the equation
used to obtain (3) is carried one step farther, their equation (4)
results. Hence, by a fortuitous cancellation of errors, their results

are still applicable.
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In both of these approaches, the number density of molecules of type A
is assumed to vary lineﬁilz géth distance down the tube, and the density
T where 2L is the length of the tube. It
is easy to show under conditions where gas-phase collisions may be neglected,

gradient is equated to

that such an assumption leads to a calculated transport midway down the
tube which is twice as great as that entering and leaving the tube(3).

In K-992 this difficulty was avoided by the introduction of an effective
density discontinuity, Sn, at each end of the tube, but the assumption of

a linear gradient

QE : nl - n2 - 2én

dx 2L

was maintained. The adjustable parameter, 5n, was evaluated by calculating
the transport at the ends of the tube and also at the center in terms of
this parameter, equating the two values, and solving for $n. The assump-
tion of a density distribution of this form is equivalent to that of the
"extrapolated-boundary technique', and a physical justification for it is
also provided in K-992. Furthermore, the more rigorous approaches of

(4) (5)
nearly linear and described by very nearly the same slope as determined

in K-992.

Clausing and DeMarcus lead to a collision density which is very

In this report the problem of self-diffusion is examined from the same
starting point as Pollard and Present except that the density function
is chosen to be linear with an effective discontinuity at both ends.
As in the problem of long free paths, the density discontinuity is
evaluated so that the transport calculated at the ends of the tube is
the same as that at the midpoint.

DETATLS OF THE CALCULATION

The coordinate system of Pollard and Present is taken over direetly to

this problem:
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The tube is taken to be of a radius a and length 2L. The density of
molecules of type A is represented by the following sketch:

WLT o

Sn

Ye=a

The calculation is first carried through for the element dS situated
in the cross-section at the midpoint of the tube, i.e., x = L. The
net number of molecules (of type A) crossing this cross-section per

second from left to right is calculated as follows:
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From the walls of the tube:
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From the gas entering the ends of the tube:

: Vo -7y
el V- ~ . Acos ¥
B e (nl n2) as sinVeosYe av.

o}

In these expressions, the integration over ¢ has already been carried
out and the symmetry of the problem introduces only the gradient of the
density function. The total transport is obtained by adding these three
terms and is most conveniently expressed in terms of the dimensionless
parameter

W .

1l - 2°
(nl - n2) Ta

In evaluating the integrals the exponentials are expanded to a sufficiently
high power in a/k , and only the terms to the first order in this para-

meter are retained. Thus, the transport is written as W = W_ + % wl, and
Ef—%gﬁ— and 1 = a/a is introduced. Alzo

following the notation of Hiby and Pahl,; the geometrical parameter B = ETY

o
for convenience the notation & =

is used¥*.

The following results are obtained:

e 5 ‘EE ol (1 + B2) V1 + B°

W =41 +
o 3B 3B 3B
B4R (1 +BR) W1 + B2 +§Bg-u5\/1+132}
3B 3B 3
Ha 28 1 .
¥ In K-992, a parameter b = oty e M is used. In that report the

length, L, stands for the entire tube length; in this report and
those of Hiby and Pahl, and Pollard and Present, L stands for the
half-length.
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8B 16B 8
wl={- 2B+§1?I3+—-§1T—Iu+§[—§(15—l6)}

16B 648> 16
+Eﬁ{-)+B-3—4r-I3+—3'ﬁ'—I)+ (I —16)}

The integrals I, to I6 are defined by Hiby and Pahl; 13 and Ih are ex-

3

pressed in terms of complete elliptic integrals, and an approximate ana-

lytic expression is given for I. and 16 valid over the range 1 € B £ 10.

p)

In terms of these functions wl may be written as

Wy = 2{B+g—%2\/l+B (K - E) + & \/1+32E+§%3-(I5-I6)}
+h§{B+52 2\/1+B (K - \/1+B E—3#B(IS-I6)}

1 o 1 1 o1 _0.03
where 37 (I5 I6) £ 155 IE”ann gufh 2 ﬂgg and K and E are
complete elliptic integrals of the parameter k= = 2 5 and are tabulated
1 +B

in Jahnke and Emde.

A similar calculation is carried through for x = 0. Here the absence
of symmetry introduces the entire density function but aside from changes
in the limits of integration, the formulation of the problem is identical

with that above. The results are as follows:

O_{1+§-]]3:+—32--3-%(1+l+32)\/1+h]32}
-&{——2--%}32+§%(2}32 - 1) \/1+l+132}

3B

w'

e & 32 . 224 2 L I
W _{ LLB—31TBI3 3ﬂ.B Iu+311_13 -16)}

256 _2

! 8 1 1
i 1 BI3 S8 Iu-%(15-16)}
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or in terms of the elliptic integrals,

, Lo 2 / 2 (o , L R ! ' .
wl=h{-B+qB 1 + 4B® (K -E)+§ﬂ-1+l+}3 E +§1'I§(I5"I6)}

+ 8&{%% BZ V1 + 482 (x' - E') - §%\/1 + 4% B - §%§ (1'5 - 1'6{}

7 SN i 3 0.03
Where?f(IB—16)_192-E£n3_f6£n2_hm2'

In the above formulas a prime has been attached to integrals for which
the parameter k2 = —1—2- , i.e., B is replaced by 2B. This change re-

sults from a changeliﬁ %Re limits of integration.

The expression for the transport through the center, W = WO + Y]wl PR
now equated to that through the end, W' = W'o + Y]W'l and the resultant

equation used to eliminate E.: —-——nT from the transport. This ex-

pression for the transport is tﬁ%n di?ferentiated with respect to ¥ = a/?\
and evaluated at r] = O; this process gives the limiting slope at zero
pressure. The zero pressure transport probability is determined with

Y’ = 0 and is identical with that given in K-992 and is very close to the

more rigorous values given in references 4 and 5.

TABLE I

EFFECTIVE DENSITY DISCONTINUITY AND LIMITING SLOPE AS A FUNCTION
OF THE GEOMETRICAL PARAMETER, B = L/2a

Density Discontinuity, ;1—5-——

- R
B Limiting Slope, a/A = 0 a/A = 0 a/al= o.i
0 0 0. 5000 0. 5000
0.25 -0.220 Q37 0.3463
0.50 -0.325 0.2L05 0.2262
1 -0.453 0.3570 0.3177
2 -0.611 0.1064 0.0975
3 -0.723 0.0798 0.0716
6 -0.939 0.0463 0.0397
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In presenting the results for the limiting slope, the transport may be
written as

2a
W= (1 -K 5

to allow comparison with the results of Hiby and Pahl. The integrals
I, - Iz vere evaluated numerically for B = 1/4, 1/2, and 1, and the
formula given by Hiby and Pahl was used for B> 1. The dependence of
Kon B is shown in figure 1. This figure also contains points calcu-
lated by Hiby and Pahl for comparison. It is apparent that the refine-
ments introduced here do not change the results obtained by Hiby and
Pahl significantly as far as K is concerned although the low pressure

permeability itself is affected strongly.

Table I contains the limiting slopes upon which figure 1 is constructed
n
— at
n, -n
a/Ax = 0 and 0.1. As might be anticipated, E, decreases as a/a incr8ases.

and also values of the fractional density discontinuity a =

AN ASYMPTOTIC EXPANSION FOr K

Although the complicated nature of the expression for K does not allow
a simple algebraic expression, it is possible to develop such as ex-
pression for large values of B. Expansions of the elliptic integrals
are given in Jahnke and Emde and lead to the following expression for

K to second order in 1/B:

5 (3fn2-%+%£n}3)+%(l+fn2)—i-é(l+§1n2_9:%ﬂ+%8_§£n3)

44 2
Ll-(l+-2-@-)+—B—2-)

(0.2387 + %frﬂs) +% (0.4233) - g% (0.4561 - 3_29_1n3)

it o0
2LB -

This expression is also plotted in figure 1.
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COMPARISON WITH EXPERIMENT

The only data which are suitable for comparison with the results derived

here are those obtained by Visner for the self-diffusion of xenon through

(6)

of 66, 9.8, and 2.8. His results for the lowest pressures are shown in

glass capillaries Visner studied three sets of capillaries with L/a
figure 2 in which solid lines are drawn as calculated a priori from the
theory given here and Visner's experimental data are indicated. The
ordinate is D/Ga which is equal to WB. The agreement between theory and
experiment seems adequate in the region for which the theory is appli-
cable, particularly for the shorter capillaries. The scatter of experi-
mental points for the long capillary makes comparison difficult although
the theoretical curve seems to describe the low pressure measurements
with reasonable success. Inspection of figure 2 shows that the first
order expansion in terms of a/k extends to larger values of a/h for the
short than for the long capillaries; this result might also have been

anticipated intuitively.

DISCUSSION

Although the calculation described here provides a necessary refinement
to the previous approaches to the problem, it does not attempt to include
some of the more difficult aspects required to give a complete solution.

In particular two large assumptions are implied:

1) the gas molecules leave a collision isotropically, i.e., there is
> J

no persistence of direction on collision, and

(2) the gas in the bulbs outside the capillary is not affected by the

presence of the capillary.

Hiby and Pahl have made some estimates of these effects, which, although
far from rigorous, suggest the value of k’should be increased by a value
4+0.45 to +0.60. Thus, the calculation reported here presents the hindering
of diffusion by foreign gas and does not take into account any possible

enhancement which might result from persistence of direction on collision.
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The case of the orifice leads to particularly distressing results since

in this problem all effects must be outside the flow system and the value

of K calculated here must vanish. However, Hiby and Pahl estimate K= 0.33
for isotropic scattering and -0.12 for persistence of direction on scatter-
ing. These values of k result from a consideration of the change in angular
distribution of the molecules near the orifice; such a change is not con-

sidered in the treatment reported here.

It is difficult to reconcile the results of Hiby and Pahl on velocity
persistence with the self-diffusion measurements of Visner. From the
agreement of the results derived here and Visner's experimental data,
it appears that isotropic scattering is sufficient to account for the
phenomena. at low pressures and nonisotropic scattering should be only

a second-order effect.

Furthermore, the experimental fact that self-diffusion coefficients
decrease as a/A increases, whereas specific flow coefficients increase
implies that the treatment of the self-diffusion problem cannot be taken
over directly to the interpretation of specific flow measurements, but

that a more correct approach must be used at the outset.
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