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This paper presents an approach for treating uncertainty in
the performance assessment process to efficiently address
regulatory performance objectives for radioactive waste
disposal and discusses the application of the approach at
the Greater Confinement Disposal site. In this approach,

the performanceassessmentmethodologyusesprobabilistic
risk assessment concepts to guide effective decisions about
site characterization activities and provides a path toward
reasonable assurance regarding regulatory compliance
decisions. Although the approach is particularly amenable
to requirements that are probabilistic in nature, the
approach is also applicable to deterministic standards such
as the dose-based and concentration-based requirements.

I. INTRODUCTION

In this paper, we focus on an approach for treating
uncertainty in the performance assessment process to
confidently address regulatory requirements for radioactive
waste disposal. In tids approach, the performance
assessment methodology uses probabilistic risk assessment
to guide effective decisions about site characterization
activities and provides the necessary reasonable assurance
regarding regulatory compliance decisions.

For geologic waste disposrd, we are typically interested in
the performance of a system for hundreds or thousands of
years and over large spatial scales of meters to kilometers.
In general, we are uncertain about what might actually
occur at our site in the future, how these events will

manifest themselves, and what the magnitude of their
impact will be. We are uncertain because we cannot know
everything there is to know about the system, nor can we
predict with complete certainty what the system will look
like in the future. This uncertainty notwithstanding, we are
still required to make decisions about disposrd site safety
and decisions about how to manage resources to ensure

safety with some level of confidence.

In general, we describe ‘treatment of uncertainty” as the -
process by which we analyze our state of knowledge about
a given system for a given purpose, describe that state of
knowledge and uncertainty in a way that is useful for
decision making, and then decide where it is of value to

gatherinformationto increaseourknowledgeandreduce
our uncertainty. The purpose of this process is to make a
specific decision about which action to pursue given a set
of alternatives with a certain objective in mind. In
performance assessment this is systematically handled
through the identification of sources of uncertainty,
description and quantification of the uncertainty,
propagation of the uncertainty through the execution of
process models, and reduction of uncertainty where and
when necessary. The goal of this process is not to perfectly
understand the real system, but to understand it well
enough to make a confident decision. In waste disposal
performance assessment our decisions are generally of two
types: (1) can a site be licensed or certified as acceptable
for its intended purpose and (2) what information should be
collected or what actions should be taken to support the
decision under (l). We propose the following process for
enabling efficient and defensible answers to these
questions.

II. FRAMEWORK FOR MANAGING
UNCERTAINTYAND DECISION MAKING

The framework for managing uncertainty and facilitating
decision making is shown as a generalized flowchart in
Figure 1. Initially, the site’s performance is evaluated
based only on existing and available data and information.
This information provides the foundation for representing
the current state of knowledge, or conversely, state of
uncertainty. Therefore, uncertainty would be greatest at
this initial step and should only decrease as the process
proceeds (e.g., models assumptions refuted, parameter
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Figure 1- Framework for managing uncertainty and dec~lon making

distributions narrowed). If acceptable performance (i.e.,
compliance) can be defensibly demonstrated based on this

initial set of information, then there is no need to proceed
further, and the site can be certified. If acceptable
performance cannot be demonstrated with this initial set of
information and analyses, then the optimal strategy for the
site is identified by looking at options for alternative
actions, including uncertainty reduction through data
collection, and proceeding with the best alternative. The
framework provides a logical, integrated approach for
assessing and demonstrating compliance, providing
documentation, and involving concerned parties. Following
is a description of each of the Ihmework components and
how they integrate to define a process for progressing
through the framework to treat uncertainty and define a
compliance strategy.

To begin the process, the performance measures (e.g.,
cumulative release, dose), performance objectives (a
threshold value that defines compliance), and decision
criteria (acceptable percent of results that must be less than
the performance objeetive or acceptable level of
confidence in results) need to be defined (Step 1). Then,
existing information on the site is gathered and assimilated
in the context of Step 1 to understand the general nature of
disposed source and the physical systems and processes

that the site represents
(Step 2). A key point
of this framework is
that any new site data

collection does not
take place until Step
10. New data
collection is deferred
until the data that
would make a
difference in decision
making and are cost
effective to collect can
be defined through
sensitivity analysis and
data-worth activities.
Otherwise, money may
be spent on collection
of superfluous data.
Nex4 the analyst must
determine all the
significant and
reasonably foreseeable
events and processes
that affect the system
(i.e., scenarios) over
the regulatory time
period, including
progression of the

system under its current conditions (Step 3). These
generally include natural and human induced stresses on

the system. Models are developed to describe and
qurmti~, under uncertainty, the system’s response to these
stresses (Step 4) and provide the needed information to
compare to the performance objectives, allowing a
teehnical foundation for decision making. Generally,
qualitative and descriptive conceptual models are
developed, and then translated into mathematical models
and implemented in (and solved by) corresponding
analytical or numerical models and computer codes. This
quantitative analysis is referred to as consequence analysis
(Step 5) and provides the foundation for evaluating the
viability of the facility/system. The objective of these
analyses is to qualitatively compare the modeled system’s
response to the regulatory performance objectives and to
assess whether the site complies with those requirements
(Step 6) with some level of confidence. If it can be
defensibly demonstrated that the site complies with the
regulatory performance objectives, the site operator or
other responsible party would then proceed to submitting a
certification of license application, upon whose approval,
the site would be accepted for disposal. If under Step 6, it
cannot be demonstrated with confidence that the regulatory
performance objectives can be met then alternative
actions for demonstrating compliance with an acceptable



level of certainty (Steps 7 and 8) would be identified and
evaluated. These options may include the collection of
additional information to reduce uncertainty in the current
analysis and hence defend lower calculated releases,
remediation of the site, redesign of the site, or any
combination of these. Potential data collection activities
are identified through sensitivity analyses (Step 7) and their
relative worth is evaluated against alternative actions (Step
8). Based on this analysis, the preferred option is selected
(Step 9) and carried out (Step 10 or Remediate). Based on
the resulting modification to the site or the new information
about the site, the analysis is refined accordingly and the
site is reassessed. If the data collected support compliance,
then effectively, the technical analysis is complete.

The framework is designed such that the level of
complexity and rigor of analysis conducted for a given site
should be commensurate with the level of risk that the site
poses. Implicitly, this would include both the level of
uncertainty at a particular site and the magnitude of the
expected health risks that the site poses. Both of these are
critical components in determining how robust a site is. In
other words, the level of effort that it would take to step
through the framework for a simple site where few
processes exist to transport contamination should be much
less than that required for a complex site where many
possible processes exist. In thk contex~ simple and
complex refer to the level of uncertainty about the
compliance decision and not the level of uncertainty about
how the real system operates.

A. Risk-Based Approach to Decision Making

The approach that we advocate in this framework integrates
risk into the decision making process by evaluating:l
9 what can happen (e.g., radionuclides move

through soil to ground water to a person)
● what is the likelihood/probability of occurrence

(e.g., what is the uncertainty in the processes that
lead to contaminant migration and exposure)

● what are the resulting consequences (e.g., cancer)

Each of these is a critical consideration in that we must
explicitly evaluate our uncertainty to make effective
decisions. The decision making process or decision
analysis takes this information and integrates into a logical
process for deciding what is the best alternative action that
should be taken to maximize the likelihood of meeting our
end objective.

A decision represents the commitment of resources that is
revocable only at some cost.2 We make decisions based on
the value of a given performance measure as compared to a
specified performance objective that we are trying to meet.
These “values” in our case could be the quantified system

performance in terms of contaminant release, cost of
alternative actions, combinations of these, or some other
measure.

Decisions are generally made based on both existing
knowledge and the possible outcomes of future events for
which we do not have perfect knowledge or information
about. That is, for a waste disposal system for example, we
understand certain constraints about the specific system
and in many cases can define boundaries for behaviofi
however, we do not know and will never know everythhg
about critical processes in time and space. Nevertheless,
we are still required to make decisions in absence of this
perfect knowledge. Consequently, we look at the possible
outcomes following a decision, and the likelihood of those
outcomes, and we make our decision based on this. To do
this requires an expression of the uncertainty in such a way
that we can evaluate when the uncertainty does make a
difference in our decision, and when it does not make a
difference in our decision. Furthermore, if the uncertainty
does make a difference in our decision, we need to express
it in a way that will allow us to identify and reduce the
critical uncertainties to maximize the probability of a good
decision. As a consequence, decision making is not
defensible within a deterministic framework, unless the
deterministic quantities have been determined through
explicit consideration of uncertainty.

In thk particular waste disposal decision problem, we are
trying to attain specified performance objectives.
Specifically, the analysis is attempting to define and select
alternative actions that would minimize releases from the
site and also minimize the cost and time needed to
implement the necessary actions. In addition, for the
technical regulatory performance objectives, we have
defined threshold values below which there is no value in
reducing uncertainty.

B. Types and Sources of Uncertainty

Because we are dealing with the performance of a natural
system over hundreds or thousands of years and over
several kilometers, we expect to have much uncertainty
about how the system will behave and respond to specific
disturbances. At the highest level, the uncertainties that
must be dealt with include the nature and magnitude of the
physical behavior of the site now and in the future, and the
nature and impact of future human activities at the site. It
is important to recognize that although these uncertainties
about how the “real” system will evolve may be great, they
are only of consequence in this process if they make a
difference in the decision regarding compliance. At
another level, we have uncertainty in the efficacy of
particulw actions that could be taken to either collect
additional information about the system or to control



certain aspects of the system. For example, we may have
several alternatives for site data collection or facility
design/alteration; however, we do not know with complete
certainty a priori what the outcome of these actions will be.

As a matter of convenience for thk discussion and to
facilitate management of uncertainty, we have separated the
types of uncertainty associated with assessing the system’s
performance into three general categories?’4 (1)

uncertainty in the likelihood of occurrence of future events
(2) uncertainty in the models that describe those events,
and (3) uncertainty in the parameter values that quanti~ the
description and output of the models.

1. Uncertainty in the Likelihood of Occurrence of
Future Events

Although there will be only one progression of events and
processes, we do not know what exactly that progression
will be. Therefore, plausible future states of the disposal
system (often called scenarios) are considered in a
performance assessment. These scenarios can represent
possible natural evolution of a site, fitnre land use by
humans, or a combination of these. Uncertainty in the
future state of the system is typically handled one of the
following ways:
● specification of the future state of the system as

one of many combinations of a suite of possible
future events and evaluation of the system’s
response to each of these fiture states;

● specification of a finite set of future human
activities and behaviors at the site (often defined
by regulatory guidance) and evaluation of the site
under each of these sets of conditions; and,

● evaluation of the site’s evolution through models
of large-scale stresses on the system over time
(e.g., long-term, large-scale climate modeling).

In practice, these are usually combined in some way.
Scenarios are not predictions of the future, but rather
provide a tool for managing the uncertainty at a high level
by defining a limited number of discrete possible future
states. Therefore, they should be developed such that they
can guide decision making. Depending on the risk
preference of the decision maker, the scenarios may
attempt to bound future evolution of the site, they may
attempt to provide a representation of the most likely
conditions at the site in the fitnre, or they may attempt to
do both, Of course, there is no way to guarantee that a set
of scenarios bound future conditions at the site or that they
accurately represent future conditions at the site.

Under certain regulations, the scenarios are assigned
probabilities of occurrence and the results combined into a
single set of output upon which the final compliance

decision is based. For example, this is the approach taken
under EPA’s regulation for disposal of high-level waste,
transnranic waste, and spent fuel? Under other regulatory
approaches, pre-defined scenarios are treated
independently and separately, are not assigned a
probability of occurrence, and the conditional outcome
from each and all scenarios is used as the basis for decision
making. That is, the results horn each scenario would not
be weighted by a probability and the outcome from all

scenarios would have to meet the performance criteria for
the site to be in compliance. This is the approach typically
taken for low-level waste disposal in the United States.

When dealing with uncertainty in the occurrence of a
random future evenb there really is no such thing as a
correct probability. That is, probability is used to represent
an individual’s or group’s degree of belief that something
will or will not occur. When dealing with the frequency of
an event that occurs once or many times over some
specified period of time, then there exists a statistical
likelihood (i.e., frequency) for that event over some
specified time period. Given enough trials, a “correct”
statistical frequency could be reasonably well defined and
known (e.g., coin flip). For natural events (e.g.,
earthquakes, floods), we often use the term “probability”.to
describe the statistical likelihood or frequency that the
event will occur over some time period, and its value is
generally founded in natural historical evidence or
technically-based theory. For example, estimates of the
probability of an earthquake that will send Los Angeles
sliding into the ocean are generally based on the frequency
of past tectonic activity in that area and technical
understanding and theory of how that fault system will
continue to evolve into the future. There could of course,
be uncertainty in the value of the frequency estimate
because of a lack of perfect information about a given
system. Human-induced or human-controlled events (e.g.,
changes in the stock m~ke~ well drilling for mineral
exploration) are fundamentally different tlom geologic
processes, and in these cases we often discuss “probability”
as a combination of statistical frequency and trends based
on past behavior, and uncertainty in future behavior
(humans are odd creatures that are difficult to predict).

In the approach described here, we can accommodate both
these definitions of probability. If there are conflicting
values for the probability of a disruptive event, we would
begin the process with the highest value for the probability.
For example, two experts may be given the same
information about the system and based on alternative
interpretations of that information, provide alternative
values for the probability of say, meteorite impact at the
site. If under the higher value of probability, the scenario
proves to be of no concern, then there is no further need to
reconcile the differences in the probability estimates. In



this case, there would be no value in collecting additional
data or spending energy to resolve the conflicting opinions.
If on the other hand, the two probability estimates lead to
different decisions about how to proceed, then there is
likely value in collecting information to reconcile the
differences. In the second case, the additional data
collection would be directed at reducing uncertainty such
that a more informed decision could be made. This would

only work if the difference in opinion is due to a data
uncertainty or ambiguity, or modeling limitation (i.e., it is
possibIe that there are no activities that would resolve the
conflicting opinions).

In the case where scenarios are treated separately and are
not assigned probabilities, under the decision approach in
this paper resources would be directed toward refuting
specific scenarios or exposure pathways of concern within
scenarios. This is possible in the case where the initial set
of scenarios are defined generically and are thought to be
conservative, and where site specific information would
lead to a less conservative representation of the scenario.

2. Uncertainty in Conceptual and Analytical
Models That Describe Events and Processes

Models are developed to simulate and describe the possible
responses of the disposal system to certain stresses brought
on by the occurrence of the events discussed above. A
model is a simplification of the existing and future system.
In making this simplification, assumptions can be justified
as long as:
● the assumption is reasonable in that it is close to

actual conditions and can be defended as such
with site-specific information

● the assumption is conservative in that a more
realistic representation based on site-specific
conditions would not yield higher output (e.g.,
dose).

The output of these models is the “vaIue” around which the
decision maker will make their decision regarding
compliance with the technical criteria. Models are
necessary because (1) direct testing of the system response
over the time and space scales of interest to give us the
information we need is neither practical nor possible, and
(2) we still need to make decisions in light of the absence
of this information. For our purposes, the conceptual
model describes how the contaminants move from the
source to the accessible environment. The mathematical
models, and the numerical links between those models, are
the equations that implement the conceptual model.
Treatment of model uncertainty includes the development
and analysis of ahemative conceptual models, the
propagation of the uncertainty through the consequence
analysis using mathematical and numerical models, and the

reduction of uncertainty through focused data collection.

When dealing with geologic systems where we do not
know all spatial characteristics, and because we cannot
perfectly know the future over any time flame, a realistic
concepturd model is not attainable. Consequently,
uncertainty in the conceptual model is expected to exist. In
other words, more than one possible interpretation of the

system can be justified based on the existing information.

We propose that this uncertainty should be addressed by
developing multiple alternative models of the system and
proceeding forward through the framework with all the
conceptual models that are consistent with available data
(i.e., models that are not refutable) and also result in
releases that exceed the performance criteria. The reasons
why the models that result in noncompliance are of most
interest are: (1) any one of the suite of models that is
consistent with the data is equally likely to be
representative of the site and so the decision to accept the
site should be made based on the models that result in
failure to comply; (2) if compliance can be demonstrated
with all plausible models, then confidence in the decision
to accept the site is achieved; and, (3) as we step through
the process, it is much more likely that we can define
activities that refute certain assumptions versus activities
that will unequivocally support certain assumptions. Note
that the conceptual models that result in unacceptable
releases will be determined through quantitative
consequence analyses (Section 2.3).

This process for model development and modification
forces the analyst to develop models that focus on resource
allocation and regulatory decision making. That is, the
results of the analysis based on these models are by no
means a prediction of how the system will respond.
Rather, they provide the basis for simulations of plausible
outcomes for this system given a particular level of
knowledge, provide information for and focus on situations
that would be a cause for concern, and therefore provide a
foundation for decision making. Any models that result in
acceptable performance are of less concern and therefore,
energy and resources should be directed toward resolving
those models that cause problems; therefore, this facilitates
resource allocation decision making. Because we would
like to minimize the probabili~ of making an incorrect
decision (accepting a poor site or ruling out a good site),
we are more concerned with possible ways to refute the
models that result in noncompliance. Consequently, this
process for treatment of model uncertainty facilitates
regulatory decision making.

3. Uncertainty in Parameter Values

In this step, the analyst defines the model parameter values
and quantifies the uncertainty and variability in each of the



parameter values. Assignment of quantitative parameter
values is necessary because it provides the mechanism for
quanti~ing the information that comes out of the models.

Treatment of parameter uncertainty includes the
development of quantitative descriptions of possible
parameter values, the propagation of uncertainty by
exercising the models with a variety of possible parameter
values, and the reduction of uncertainty through focused
data collection. Quantification of parameter uncertainty is
generally handled by developing quantitative parameter
distributions that act as a representation of the distribution
of possible values that could be realized for a given
parameter and provide information about the likelihood
that particular values will exist versus other values.
Typically, these parameter distributions incorporate
information on both uncertainty and variability in the
parameter value. The development of parameter
distributions is closely related to model uncertainty in that
the parameter distribution in and of itself represents an
assumption about the system, and because the parameter
values used to define the distribution are rdrnost always
derived through interpretation of data measurements using
modeling assumptions.

Parameter uncertainty is a function of the amount and
variability in data used to support the parameter values, the
uncertainty in the interpretation of those data, as well as
uncertainty in the data values themselves. For example,
there may be several equally defensible methods for
converting spatially and temporally variable data into
effective model parameters, and each of those methods may
produce a different effective value. In other words,
parameter uncertainty is a description of the level of
knowledge about a given parameter’s values and it is
typically represented by a probability distribution. In
general, the probability distribution provides a quantitative

description of the possible range in parameter values given
our state of knowledge and the likelihood of experiencing
specific parameter values. For example, if we assigned a
uniform distribution to a parameter with a range of zero to
ten, we would be saying tha~ given our state of knowledge,
the parameter could be any value between zero and ten, and
furthermore, it is equally likely to fall in any of the
intervals between zero and ten. Other types of distributions
would imply that the parameter value is more likely to fall
in some intervals than others, but it could fall anywhere in
the range of the distribution.

Parameter variability, on the other hand, is a description of
the diversity of actual values that occur for a parameter that
is heterogeneous, and is typically described by a frequency
distribution. For example, if we had enough money, we
could sample body weights of all individuals in the United
States and develop a distribution of those body weights.

‘Ilk distribution would describe the variety or range of
body weight across the U.S. and the distribution of people
across specified intervals. In this case we would have very
little uncertainty in this distribution because (1) we have
sampled all individuals in the population, and (2) there was
almost no interpretation required to go from the data values
to the parameter of concern (i.e., with a good scale, body
weight could be measured almost directly). If we only
sampled a subset of the population, or if we used a model
to infer weight from samples of height for example, then
we would have some uncertainty in our description of the
variability.

In modeling, we often develop and use effective values of
parameters that represent the equivzdent parameter value
over some spatial or temporal scale. For example, we may
model our system using an effective value of hydraulic
conductivity over the total scale of interest although we
know that at smaller scales, a variety of values of hydraulic
conductivity will likely exist. We do this because (1) for
our purposes there may be no value in resolving the
parameter at the smaller scales, or (2) it may not be
possible or practical to measure the parameter at aII scales
and an approximation is required. If a single effective
value represents the parameter value in our model, then
given enough information, we could define what that single
effective value is. Consequently, the distribution that
represents this parameter incorporates only uncertainty in
the parameter value and not variability. It is important to
note that the definition and distribution of the effective
value should be consistent with the overall approach in
that if data were collected to resolve the parameter values
at all scales, the resulting effective value derived horn
these small scale values would not fall outside of the
original distribution for the effective value.

In summary, there can be uncertainty in what a single value
for a parameter is for a given member of the population or
at a given point in time and space, as well as, uncertainty in
the variability of a given parameter over space, time, and
population.

In this approach, we advocate that parameter uncertainty be
presented as a representative, unbiased distribution that
reflects our current state of knowledge for a given
parameter. For fixed value parameters (i.e., one value
exists, but we do not know exactly what that value is), this
implies that the parameter distribution covers the entire
possible range over which that parameter might exist. For
variable parameters (i.e., many values exis~ but we do not
know exactly what the description of the variability is), this
implies that the parameter distribution should cover the
entire range over which the actual distribution could
possibly exist.



Definition of the parameter distributions in this way is
required to conduct meaningful sensitivity and data worth
analyses. This is because in the sensitivity and data worth
analyses, we are evaluating where reduction of uncertainty
in the output is possible and where reducing uncertainty in
input parameters is of value. In the extreme, if
deterministic, biased values for particular parameters are
used, then there is no meaningful basis for a sensitivity

analyses using these parameters; consequently, the value of
certain data collection activities (data worth) ends up being
predisposed toward those parameters where unbiased
distributions were initially specified.

C, Propagation of Uncertainty

Propagation of uncertainty involves the agglomeration of
the different sources of uncertainty after they have been
quantified and the implementation of the system models to
produce an output distribution of values of our
performance measures. This output distribution represents
the range of possible outcomes that are plausible given the
models of the system, and given our current state of
knowledge.

Propagation of model and parameter uncertainty in the
performance assessment analyses is relatively
straightforward. For this approach, Monte Carlo
simulation is advocated to propagate parameter uncertainty
through models to results of analyses. To derive the output
distribution for the performance measure using Monte
Carlo sampling, we initially draw a random sample from
each of the input parameter value distributions. For
example, if we had a parameter that ranged from zero to
ten, we may draw a value of 6.4. We do this for all the
parameters to provide an input data set to run the
mathematicalhumerical models of the system. Once these
models are run with this single set of input values, we
produce one possible value of the model output. This
procedure is repeated multiple times (100’s or 1000’s), each
time producing one possible value of the performance
measure. This process results in multiple possible values
of the performance measure, from which we can define our
output distribution. As a result of the random sampling
procedure, each value of the performance measure that is
produced by the model is as likely as any other value.

More comprehensive discussions for propagating
uncertainty in data and parameters have been presented
elsewhere!’71*’9’10The Latin Hypercube Sampling (LHS)
techniquell has been proposed to obtain samples for the
Monte Carlo simulations because using LHS reduces both
the number of samples that are needed to span and
represent the range of uncertainty in parameters and the
number of samples that are needed to honor correlations
between parameters.

To propagate and address uncertainty in conceptual
models, we should evaluate each of the models that leads
us to have concern. Often, we do not know if a model
causes concern (i.e., results in output that exceeds the
performance objective) until after we conduct a
quantitative consequence analysis. Other times, we can
make heuristic arguments why a particular model will

consistently produce higher releases or doses than another,
and we would move forward and analyze the one that
produces worst (higher release) results. If both models
result in output that exceed the,performance objective, then
eventually both models would have to be refuted for the
site to be deemed acceptable. Consequently, the most
robust approach to follow would be to conduct the Monte
Carlo analysis described above for each of the alternative
models of concern. In some cases, it may be possible to
conduct deterministic or limited probabilistic screening
analyses to rule out particular models from further
consideration.

For most waste disposal regulatory performance objectives,
the output distribution represents only our uncertainty in
the output and does not include variability in the output.
That is, for a given disposal site, there will only be one
actual value of total integrated release over the regulatory
time period, or one actual value of the maximum dose to an
individual, or one actual value of tie dose to the average
member of a pre-defined group, or one actual value of the
maximum concentration in groundwater, etc. Given our
state of knowledge, we do not know exactly what the value
of that performance measure will be. This implies that
given perfect information (perfect knowledge in both space
and time), we could define what the performance measure
at the site would be.

D. Compliance Evaluation and Assessment Under
Uncertainty

This step is critical in defining closure to this process, and
if closure is not possible given the current state of
knowledge, identifying and prioritizing additional analyses,
data collection, or other actions. This evaluation
corresponds to Step 6 in the fiarnework (Figure 1).

With tie information available to this point, the results of
the consequence analysis are evaluated to determine if the
site meets the technical regulatory criteria for certification.
A defensible decision about certification at this point is

possible if the approach used to define scenarios, models,
and parameters discussed above has been followed. That
is, the analysis should be based on existing information
only and should totally account for uncertainty. The
approach provides confidence that if additional information
were collected, the range of results should narrow or



completely shift toward lower values, and the maximum of
the distribution should not increase.

If the output from one or more of the models exceeds the
performance objective, this does not imply that the site is
unacceptable, but rather, given our current state of

knowledge we cannot defend certification of the site at this
point. Because we have totally accounted for uncertainty
coming into thk step, there may be value in reducing
uncertainty through data collection, such that site
acceptance is defensible. This is possible because, once
again, if additional information were collected, the range of
results should only narrow or completely shift toward lower
values, and the maximum of the distribution should not
increase. This is a critical point as the decision to rule out
a potentially good site based on the information and level
of knowledge at this point would be a mistake. On the
other hand, if we get to this point and further reduction in
uncertainty is not possible or cost-effective, then the site
should not be accepted (thk will be discussed under
Section 2,5).

In summary, the possible outcomes and decisions that exist
at this point are
● the simulated performance for all models is less

than the regulatory criteria and the site can be
certified (the process is concluded); or

● the simulated performance for one or more models
exceeds the regulatory criteria and possible
follow-on actions need to be defined and
evaluated (move onto define alternative actions).

E. Reduction of Uncertainty

Data and information collection serves the primary function
of reduction of uncertainty. For this process, we evaluate
which data could be collected and what value there would
be in collecting those data, decide which data to collecc
and then actually collect the data we choose (Steps 7
through 10 of the framework). In principle, data collection
should never be thought to increase uncertainty, nor can it
have any impact on the variability of a population;
however, data collection can reduce uncertainty in what the
actual distribution of a population is.

To evaluate whereto attempt to reduce uncertainty, criteria
need to be set to define which parameters or model
assumptions are considered important or critical to the
compliance decision. Under this framework, for an input
parameter or model assumption to be considered importan~
they must meet the following criteria
9 the uncertainty in the input parameter or model

assumption has a significant impact on the
uncertainty in the output values (traditional
definition of sensitive or important

parameter/assumption); and,
● a reduction in the uncertainty would change the

decision from fail to pass.

For input parameters, the analyst should also be careful to
recognize when the input parameter distribution does
include uncertainty (and not simply variability) and data
collection activities could actually reduce the range in the
distribution.

Figure 2 demonstrates how this process would be
implemented for a hypothetical dose requirement where
compliance is defined by the mean or the median
(whichever is larger) of the output distribution being less
than 25 mrem. The entire distribution for Model 1 is below
the performance objective. This obviously implies that the
mean and the median are also below the performance
objective also. Consequently, for Model 1, there is no
value in collecting any additional data as the decision of
acceptance has already been made and additional data
collection under thk fkunework would not change that
decision. Therefore, no parameter that is input into Model
1 would be considered important if Model 1 were the only
model that remained viable. For Model 3, there is no value
in collecting additional data to reduce parameter
uncertainty because no amount of reduction in parameter
uncertainty would change the decision to refise the site
given Model 3. Again, there are no parameters that are
considered to be important in Model 3. However, if data
collection could refute certain assumptions (e.g., refute
one-dimensional transport and support two-dimensional
transport) in Model 3 and shift the entire distribution to the
Iefi then this assumption would be considered important
and there may be value in collecting that data.

Hypothetical Output Dlstrlbutlona
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Figure 2- Dose assessment under uncertainty

Model 2 then becomes the interesting case. If we assume
that these output distributions are plotted on a linear scale,
then both the mean and the median for Model 2 are initially
above the performance objective threshold value.



However, we could demonstrate that if we hypothetically
cokct data on a particular parameter or set of parameters,
that the range in the distribution would decrease and the
mean of the distribution would shift to the leftj as shown by
the broken line. If actual data collection activities
supported the hypothesized values, then based on the new
model output, the site would be in compliance. The
complication for Model 2 comes in when someone else
hypothesizes and demonstrates that under a different set of
data collection, the range in the distribution decreases, but
the mean either remains the same or shifts to the right.
Furthermore, if the regulatory requirement is such that the
dose objective is for a single member of the population, in
the extreme of perfect information, the final output would
be a single value somewhere within the current distribution
(with the caveat that the Model 2 is “correct”). ‘Ilk creates
an obvious conundrum where closure and confidence in the
decision are difficult to achieve. A possible solution to this
is to make the decision of compliance based on the 0.95
quantile or maximum value of the distribution rather than
the mean or median because in any of these cases under
this framework, the maximum could only stay the same or
decrease.

Note that actual reduction of uncertainty would not be
realized until the completion of Step 10 in the fhmework.
Therefore, the exercise that has been conducted to tlis
point is defining what would be required for success under
the given data collection activity, evaluating the chances of
that activity being successful, and evaluating the cost of
that activity relative to other options at the site. If the
likelihood of success for a given data collection activity is
very 10W,or if the cost is relatively high, then remediation
or some other option maybe the best alternative.

F, Termination of process

Termination and closure of this process under tlis
framework is defined in one of two ways:
● the results from all models are less than the

performance objective threshold values (i.e., with
confidence, we can say that the site is acceptable),
or

● the results from one or more of the models exceed
the performance objective threshold values, and
either reduction in uncertainty would not result ih
compliance or it is relatively too costly to conduct
the activities necessary to get to compliance (i.e.,
with confidence we can say that the site is not
acceptable or we do not have enough money to
confidently demonstrate acceptability).

III. APPLICATION OF THE PROCESS AT THE
GREATER CONFINEMENT DISPOSAL SITE

The U.S. Department of Energy is responsible for the
disposal of a variety of radioactive wastes. Some of these
wastes are prohibited from shallow land burial and also do
not meet the waste acceptance criteria for proposed waste
repositories at the Waste Isolation Pilot Plant (WIPP) and
Yucca Mountain. As a result, these wastes require an
alternative disposal method. From 1984 to 1989, the
Department of Energy disposed of a small quantity of such
transuranic wastes at the Greater Confinement Disposal
(GCD) site at the Nevada Test Site. For the GCD waste to
remain emplaced and be considered permanently disposed
of, performance assessment results must show compliance
with the Environmental Protection Agency standards for
disposal of transuranic waste, high-level waste, and spent
fuel (40 CFR 191)?

A. Regulatory Environment and Requirement for
Treating Uncertainty

In terms of the regulatory environment the performance of
the GCD facility is compared against the EPA regulation
for disposal of spent fuel, transuranic waste, and high-level
waste, 40 CFR 191.5 The overall objective of the
performance assessment analysis is, simply stated, to
provide the DOE with the technical basis to make a
decision regarding regulatory compliance in the most
efficient way possible. As a result, an implicit objective of
the process is to use the regulatory performance measures
to focus model development and data collection and to
define when tier data collection has no value.

The regulation (40 CFR 191) contains three quantitative
requirements: containmen~ individual protection, and
groundwater protection. The containment requirements are

probabilistic in nature. That is, they limit the probability of
certain levels of cumulative or integrated releases, in terms
of curies, of radionuclides to the accessible environment
over a period of 10,000 years. The accessible environment
is defined to include the ground surface and any point in
the subsurface that is laterally beyond five kilometers from
the disposal site. The allowable cumulative release for
each radionuclide is based on the initial inventory for that
radionuclide. The normalization or scaling factors are the

release limits listed in 40 CFR Part 191 and define the
number of curies of a given radionuclide that can be
released per curies of initial inventory of that radionuclide.
The “EPA Sum” is calculated by first computing the ratio

of the simulated release estimates for each radionuclide to
the allowable release estimate and then summing these
ratios. The containment requirements state that the EPA
Sum must have a likelihood of less than one chance in 10
of exceeding one and a likelihood of less than one chance
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in 1000 of exceeding 10. In other words, the 0.9 quantile
of the output distribution of EPA Sum cannot exceed one,
and the 0.999 quantile of the output distribution cannot
exceed ten. By this definition, the regulation implies that
explicit treatment of uncertainty and/or variability is
required. Furthermore, the treatment of uncertainty is
necessarily probabilisti~ that is, a deterministic analysis
would not provide the information needed to estimate the
0.9 and 0.999 quantiles of the output distribution and
therefore would not provide a basis for decision making.

As a result of these requirements, the final quantitative
output of the performance assessment calculations is a
distribution of possible outcomes. This output distribution
represents the range in the magnitude of possible outcomes
and the probability of each of those outcomes. For 40 CFR
191, the performance measure for the containment
requirements is typically displayed as complementary
cumulative distribution function (CCDF), which is a
stepwise, monotonically decreasing 13mction (i.e., a
function where f(x) never increases as x increases) that is
plotted with probability of exceeding various levels of the
performance measure on the vertical axis and the
performance measure (EPA Sum) on the horizontal axis.
The CCDF is the complement of the integrated sum of
output values. Bonano and Wahi12 provide a more
comprehensive discussion on the construction and
interpretation of a CCDF. Hypothetical CCDF curves can
be found in Figure 3. When the output distribution is
plotted in this way, a CCDF that passes through the shaded
region in Figure 3 indicates a violation of the EPA’s
containment requirements while one that does not pass
through the shaded region indicates compliance with the
requirements. For the individual protection and
groundwater, the output from a probabilistic analysis may
be presented as a histogram of possible results, a
cumulative distribution fimction, or as a CCDF.

EPA Sum (R)

Figure 3- Hypothetical 40CFR 191 CCDFS

All three of the quantitative requirements in 40 CFR 191
(containment individual protection, and groundwater
protection) require that the system design and the analyses
pro vide a “reasonable expectation” that the performance
objectives will be met. EPA5 states that “this phrase
reflects the fact that unequivocal numerical proof of
compliance is neither necessary nor likely to be obtained.”
Our interpretation of reasonable expectation is that, given
the uncertainty in the analyses, the likelihood of making an
incorrect regulatory decision should be very low, but
guaranteeing that the site will not exceed the performance

objectives is impossible.

B. Specific considerations for the GCD site

There exist some considerations that are specific to the
GCD site that place constraints on the alternative actions
that might be taken at this site. These include:
● the waste at GCD has already been placed in the

ground and the disposal units have been
backfilled;

● the inventory of waste is fixed, for all practical
purposes;

0 because the waste has already been disposed of,
there are fewer disposal facility and packaging
design options that exist than if the waste was
above ground today;

● the top of the waste in the GCD boreholes is
approximately 70 ft. from the land surface and the
bottom is several hundred feet above the water
table, perhaps making surficial processes
relatively more important than processes that
move contaminants downward;

● there are other waste types physically located
immediately adjacent to and above the GCD TRU
wastes.

In general, these considerations do not have an impact on
how we would treat uncertainty for this system. Rather,

they place certain constraints on the possible alternative
actions that might be taken at this site. For instance, there
no longer exists the opportunity to alter the magnitude of
the source inventory, waste chemistry, disposal depth, or
site location. Additionally, if the assessment indicates the
site will not meet the performance objectives, then the
alternative actions are remediation by moving the waste to
a different site or configuration, or pursuit of an alternative
compliance strategy.

C. Applying the approach to the individual and
groundwater protection requirements

The containment requirements, by their definition, require
evaluation within a probabilistic framework. The
individual protection and groundwater protection
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requirements, are not defined probabilistically, but rather
define deterministic threshold values that must be met.
Despite deterministic performance objectives, a
probabilistic approach is still applicable as long as the level
of confidence or acceptable probability of failure is
specified a priori. For the individual and groundwater
protection requirements in 40 CFR 1915, the EPA “assumes
that compliance can be determined based upon ‘best
estimate’ predictions (e.g., the mean or median of the
appropriate distribution, whichever is higher).” For the
individual protection requirements for example, if the
median of the distribution were used for compliance
assessment this would be the equivalent of stating that the
dose must have a likelihood of less than one chance in two
of exceeding 25 mrem. The recommendation that the mean
or median of the output distribution be used for compliance
determination implies that quantitative probabilistic
statements will be necessary to address these regulatory
requirements.

D. Treatment of Uncertainty for GCD

EPA’s 40 CFR 191 requires that all sources of uncertainty
be included in a performance assessment. Under thk
regulation, we are dealing with the performance of a
natural system over 10,000 years for the containment
requirements and 1,000 years for the individual protection
and groundwater protection requirements. We are also
evaluating the performance over several kilometers.
Consequently, we expect to have much uncertainty about
how the system will behave and respond to specific
disturbances.

1. Uncertainty in the Likelihood of Occurrence of
Future Events

EPA’s 40 CFR Part 191 also requires analysis of “all
significant processes and events that may affect the
disposal system”.s Therefore, all plausible future states of
the disposal system, called scenarios, will be considered in
a performance assessment for GCD. For our methodology,
each scenario represents one of the possible combinations
of plausible events and processes at the given site over
10,000 years. Methods for developing and screening
scenarios that each describe a plausible future state of the
disposal system in a way that satisfies the requirements
under 40 CFR 191 have been addressed by Cranwell et
al.’3 The definition of pkzusible in this case means that an
event or a scenario has a probability of greater than one
chance in 10,000 of occurring in 10,000 years (i.e., annual
probability of greater than 10-8)?

Basically, scenarios are developed by defining all the
possible combinations of events that could have impact on
the site’s performance. The probability of an event

represents the likelihood that the specified event will occur
at the site over the regulatory time period of 10,000 years.
The probability of a scenario represents the likelihood that
all the events within that scenario will occur over 10,000
years. The probability is calculated as the product of the
probabilities of each of the events and/or non-events that
comprise the scenario. A probability of occuence is
estimated for each scenario so that the consequence of
every scenario can be folded into a single CCDF.

2. Uncertainty in Models That Describe Events
and Processes

Conceptual model uncertainty has been represented in the
GCD performance assessment using multiple models.
These uncertainties include whether advection or diffusion
is the dominant transport mechanism under the current
conditions, and whether or not climate change will occur
during the regulatory period and the consequences if it
does. Preliminary anrdyses indicated that the significant
conceptual model uncertainties (those that might cause
violation of the containment requirements) were the
direction of contaminant transport (to the ground surface
with steady diffision or to the water table with steady
recharge) and the potential recharge rate due to changes in
climatic conditions.

These results led to site characterization activities that
indicated there is no recharge under the existing climate
conditions and that a climate change greater than the last
glacial maximum is necessary to cause aerially distributed
recharge. Models are currently being developed to provide
more detailed simulations of the upward movement of
contaminants.

3. Uncertainty in Parameter Values

Physical limits, the results of laboratory and field studies,
site characterization activities and models have been used
to bound the uncertainty and various pdfs have been used
to represent in the GCD performance assessment model
parameter values. The initird parameter vrdues and pdfs
were based on the existing site information and information
from anrdogous situations. The parameter values are being
updated for the new transport models and revised based on
site characterization data.

4. Propagation of Uncertainty

For the GCD performance assessment analyses, Monte
Carlo simulation has been used to propagate parameter
uncertainty through models to results of analyses. As
stated above, this results in a suite of possible outcomes.
That is, if we have 100 samples, then each value of the
performance measure is heated as if it has a probability of



occurrence of 0.01. For the containment requirements,
these are then conditioned on the probability of the
scenario that they represent. Therefore, the probability of a
given outcome becomes the probability of the random
sample multiplied times the probability of the scenario.
For the individual and groundwater protection
requirements, probabili~ of scenarios does not come into

play,as disruptiveevents beyond existing conditions are
not considered(as specifiedby the regulation).

To propagate and address uncertainty in conceptual
models, multiple alternative conceptual models have been
developed and evaluated. All of the models that result in
output that exceeds the performance objectives were
carried forward in the analysis.

For the regulatory performance objective of total integrated
release, the output distribution represents only our
uncertainty in the output and does not include variability in
the output. That is, for the GCD site, there will only be one
actual value of total integrated release over the next 10,000
years. Given our state of knowledge, we do not know
exactly what the value of that release will be. It turns out
that this is true for dose and concentration performance
measures also. Again, there will only be one maximum
dose at a given site over the next 1,000 years and again, we
do not know exactly what that dose will be. This implies
that given perfect information (perfect knowledge in both
space and time), we could define what the total integrated
release at the site would be. Given perfect information we
could also determine what the variability in doses would be
across the affected population; however, because we are
interested in the dose to any
would rule on the maximum
whichis a singlevalue.

member of the public, we
value of that distribution,
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Figure 4- CCDFS and reduction of uncertainty

5. Compliance Evaluation and Assessment Under
Uncertainty

Whh the information available to this point, the results of
the consequence analysis are evaluated to determine if the
site meets the criteria for release. Under 40 CFR 191, this
would mean that the CCDF does not pass through the

shadedregion in Figure4, In Figure4, hypotheticalModel
1 shows compliance with the containment requirements,
whereas Model 2 initially does not show compliance. The
broken line in Figure 4 illustrates how the CCDF for Model
2 could change if there were a reduction in parameter
uncertainty given this model. If the results tlom both
models were to the left of the shaded region, and no other
models could be defended that would produce higher
results, then technically the site would be in compliance
with the containment requirements and no additional work
should be required to defend the results.

6. Reduction of uncertainty

To date, the results of the preliminary analyses have been
used to identi@ and justi@ additional data collection and
model development. Site characterization data have
reduced the conceptual model uncertainty and the
uncertainty in several key parameter values (recharge rate,
plutonium volubility and distribution coefficient, and
tortuosity). Additional models have been developed and
the complexity of the model of transport of contaminants
from the waste to the ground surface have been developed.
Depending on the simulation results with these updated
models and parameter values, ihture activities could be
identified to further reduce the uncertainties or increase the
complexity of the modeling
simplifying assumptions).
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