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AN EXACT SOLUTION TO PURE BINARY REACTION PROBLEMS

by

Clarence E. Lee

ABSTRACT

Binary reaction problems occur in various circumstances in
chemicfl kinetics, reaction plasma, stellar evolution, and
nucleosynthesis.

These processes are governed by equations of the type
n' • B n n . (1)

Assuming that the tensor B is symmetric and constant in sorae
time interval At, we show that the solution to Eq. (1) is

n(t) - U - A (tg) At]"
1 n(tQ) , (2)

where n(tg) are the given initial densities and the matrix
A(t) is given by A(t) • B n(t).

Evaluation of the norm conditions for known approximate
solutions to Eq. (1) indicates that the proposed solution method
will always be as fast as, or faster than, the first-order methods.

I. INTRODUCTION

Binary or quadratic reaction problems occur in

a variety of circumstances including chemical cora-

ls

3,4

1 2
bustion processes, reacting plasmas, the analysis
of the major burning stages in stellar evolution

and nucleosynthesis.

The usual analyses are limited to solutions of

the equilibrium equations n'(3n/3t » 0) or to dynamic

(or transient) solutions involving only small changes

from the initial conditions.

In this report, we exhibit a solution method

that is applicable over a wider time region, being

restricted only by the assumption that the reaction

rate may be adequately approximated as constant in

time.

II. BINARY REACTION EQUATIONS.

The binary reaction equations can be written in

the for»1"5(dn1/dt - nj)

dn (t)

" Bi for (1)

sum-

where the densities at time t, n.(t) , are to be

solved in terms of the initial conditions of the

components (1 • 1,2,...,N), n.(t-). The indices

i,J,k range over the number of reactants. The

reaction rate tensor, B* , is assumed to be sym-

metric in the upper indices, Bj » B ^ . The

mation convention on repeated indices is understood.
'k

For this study, we assume that B- is constant

in time over the interval [tn, t,J. Variations in
Ik

B-i owing to density, temperature, or energy depend-
1-5

ence are assumed to be representable by suitably

averaged quantities in the interval [tQ,t.].

III. SOLUTION REPRESENTATION

The Taylor series representation of Eq. (1) at

time t + At may be written as

At)

At]'

(2)

In principle, we need only evaluate all the deriva-

tives of Eq. (1) . If we terminate Eq. (2) at 8. - 1

we obtain the first-order approximation given by



«»!<* + At) - n^t) + n^t) At n W ( t ) - tl n(t) . (11)

- ni(t) + B
3
t* (t)nj(t) n^t) At . (3)

This approximation, or its variants, has been used in

the past as a suitable solution representation of

Eq. (1). For sufficiently small At, Eq. (3) is a

valid solution representation.

In obtaining a general solution to Eq. (1), we

begin by defining a tine-dependent matrix A(t),

having elements given by

Ak (t) = B^k nt(t) . ?4)

Then, In vector notation, (n(t) = n£(t)]t Eq. (1) Is

n'(t) - A(t) n(t) , (5)

where, of course, A(t) depends explicitly on ii(t)

and implicitly upon t.

To determine the coefficients In the Taylor

series of Eq. (2), we differentiate Eq. (S) to obtain

^"(t) - A'<t) n(t) + A<t) ji'(t) (6)

On the other hand, differentiating Eq. (1) end using

the symmetry of B-[k (- Bk;J), we have

n'-(t) - B f Oj ». + B f Bj- ̂

(7)

Applying the Eq. (4) definition of A(t) to Eq. (7)

yields

nV(t) - 2 B?k n, B*" n n.

or, in vector notation,

n"(t) - 2A n .

(8)

(9)

Comparison of Eqa. (9) and (6) yields the operator

result

A1 (t) - A2ft) . (10)

Performing successive differentiations, we

obtain

For I - 1 and 2, Eq. (11) is true; see Eqs.(1) and

(9). Assume that Eq. (11) la true for I. Differ-

entiating Eq. (11) and using Eqs. (7) and (10), we

find

n<*+1)(t) - 4

- 4

. (4 + 1) I A

) A1

) A2

(t)n(t) H

(t)n(t)

t) n(t) .

V A(t) n

+ A i+1(l

' ( t ) ]

:) n(t))

(12)

Hence, if Eq. (11) is true for I it is also true

for £ -I- 1. By transfinlte induction. It is there-

fore true for all I.

Substituting Eq. (11) Into the Taylor series

of Eq. (2), we find

jn(t + At) - A*(t) (13a)

£-0

- [1 - A(t) At]" 1 n(t) , (13b)

provided that the norm II A(t)At 11 < 1, which is a

necessary and nufflclent condition for the aeries

to converge. Thus, If Eq. (13a) converges, It

converges to the Inverse g<ven by Eq. (13b).

By very similar manipulations, ve can find the

Taylor series expansion of A(t), because

(At/

(At)*

41

t-0

- [I - A(t) At]" 1 A(t) ,

where we have used the operator result

which is proven analogously to Eq. (11).
Ik

Thus, for the reaction rate tensor, BJ , not

an explicit function of t, the solution to Eq. (1)

is given by

(14)

(15)

A(t.) - B n(t0) (16)

n(t) - [I - A(t0) (t - tQ) I"
1 n (t0) . (17)



The verification that Eqs. (16) and (17) aolve

Eq. (1) la straightforward. Multiplying Eq. (17) by

[I - A(tQ) (t - tQ) (t - tQ)] and differentiating,

we obtain

[1 - A(tQ) (t - to)]n'(t) - A(t0) n (t) . (18)

Multiplying Eq. (13) by [I - A(tQ) (t - tg)]"
1 and

using Eq. (14) yields

n'(t) - [I - A(tQ) (t -

- A(t) n(t) .

A(tQ) £

(19)

- (I - M ) " 1 (I - M*4"1) n (tQ) . (25)

If we wish to adjust At and, hence, M eo that the

K approximate differs from the "exact" solution

n(t) by less than e, we must require that

I - I |M| I K+X - (aAt) K + 1 < e (26)

Using Eq. (26), we can calculate the number (K)

of terms in the approximate solution Eq. (21) re-

quired to represent the exact solution to order e;

K + 1 - [in(e)/tn («At) ] , (27)

Thus for binary reaction problem we may use

either Eqa. (16) and (17) or the Taylor aeries

representation given by Eq. (13a). In all Instances,

however, we must guarantee that the norm of M(t,t ) ,

||M(t,to)|| - ||A(t0) (t - t o)|| (20)

Is satisfied for the convergence of the ceries to

the solution.

IV. C0tt?ARISION OF EXACT AHD APPROXIMATE S01UTI0HS

Comparison of the K approximate to the "exact"

solution can be made as follows. The K approximate

Is given by

K

JfcU) 2 £ ] H4 n (t0) . (21)
I. 0

The "exact" solution Is given by

n(t) - ^2 M*t>(t0) - C - M ) " 1 ^
£-0

Define the norm of A(tQ) as

'22)

» - II A( t o ) | | .

Then, using Eq. (20) with At - t - tQ gives

||H(t. tQ) A(t0) At ||- a At < 1

(23)

(24)

KEquation (21) for the K approximate can be rewritten
ac

where, in this instance, the brackets [ ] indicate

the greatest Integer. This result is summarized in

Table I for representative e and aAt values.

TABLE I

K+l TERMS FOR e ACCURACY OF APPROXIMATE SOLUTION

aAt\e

10

10,-3

10

10
-1

10

2

2

3

5

10

1

2

2

4

10-3 10f2

MM

1

1

1

2

Slailarily, we may compare the relative com-

putational effort Involved in the various order

approximations compered to £}>< K approximate.

A standard technique used for some first-order

solutions Is to adjust At to maintain a certain

fractional density change, or

n(t) - n(tQ) < E n(tQ) . (28)

Equation (28) is equivalent to requiring that

«At0 - e , (29)

where a la defined by Eq. (23) and At. denotes the
time step for this technique.

Using Che norm given in Eq. (26) for K • 1, on
the other hand, we find that for first-order methods
we should require

(30)



and for K order approximate f -

and

(31)

Therefore, the relative time steps are given by

At

At i ^
_ 1 . £ 2 K + 1

(32)

(33)

The number of terms K required to make the K

approximate agree with the exact solution tt e • 10

is determined from Eq. (27), given aAt. For the

same a, we display the relative tine step ratio of

AtQ or Atj to the K approximate, At, in Tables II

and III.

1 + 2 (K-l) (N+l)
2

(34)

N
will be approximate speed reduction factor of the

computation of the K approximate compared to the

l8t. The factor f is displayed in Table IV for

representative values of K and N*

TABLE IV

SPEED REDUCTION FACTOR f FOR VARIOUS K AND N

K/n 2 8

1

0.4

0.2S

0.18

0.14

1

0.6Z

0.46

0.35

0.29

1

0.72

0.56

0.46

0.39

1

0.78

0.64

0.54

0.47

1

0.9

0.69

0.60

0.53

TABLE II

RELATIVE TIME STEPS Ato/At (EQ. 32) FOR e - 10"" AND

K/n

K DETERMINED FROM EQ. (27)

2 3 4

.1 0.316 10,-1 3.16xl0~2 10"2 5.16x10 "*

2 0.215 4.6x10'-2 10'-2 2.15X10"3 4.64xlO"4

1.78al0, - < •3 0.178 3.1xlO~2 5.62xlO"3 10"3

4 0.158 2.5xlO"2 3.97xlO"3

5 0.147 2.15xlO"2 3.16xlO"3 4.64x10"* 6.81xlO"5

TABLE III

RELATIVE TIME STEPS A ̂ / A t (EQ. 33) FOR e - 10"° AND

K DETERMINED BY EQ. (27) .

K/S.

1

2

3

4

S

1

0.A81

0.562

0.501

0.464

1

0.464

0.316

0.251

0.215

1

0.316

0.178

0.126

0.1

1

0.215

0.1

0.063

0.046

1

0.147

0.0S6

0.032

0.02?-

Finally we estlaate the ratio, f, of the number

of operations Involved In forming the 1 and K

order solutions with N components. The Initial

formation of A(tQ) will Involve ayll opeiations

In both inaCances. In addition, each of the K ap-

proximates beyond the flrat will involve an addition-

al N 2 + N - N(N+1) operations. Thus,

Defining X, • "7 'TTL and comparing Tables II and

IV, we note that X, < 1 for all N > 2 and all K > 1.
1 At, ~

Further, defining A, - T — 1 - and comparing Tables III

and IV, w-i conclude that \2 < 1 for N > 2 and all n,

and A2 < 1 for n > 2 and all N > 2. This implies

that, except for a small number of components and

high inaccuracy, the proposed K approximate method

is more efficient and faster in overall execution than

first-order schemes. This is dramatically empha-

sized if e 4 10~ and N % 4 to 6 components for which

we see that the K approximate method is approxi-

mately 30 to 120 times faster than the fractional

change method Eq. (29) and approximately 1 to 30

times faster than the first-order method.

V. CONCLUSIONS

We have derived an exact solution to the pure

binary reaction problem for a time Interval in which

the reaction rate Is independent of time.

This solution is compared to various approx-

imate techniques. It is shown to be as fast or

faster than the lower order approximations for the

same accuracy, even though more computation is

involved. This is due primarily to the dynamic

determination of the approximation order from the

required accuracy and normed reaction matrix. In

comparison, the lower order or fractional change

methods fix the approximation and lower the time

step to satisfy the accuracy conditions.



This new solution method automatically reduces

to the lowest K order approximation (including

first order) commensurate with the accuracy specified.
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