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INTRODUCTION
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the United States nor the United States Atomic Energy
Cominission, nor any of their employees, nor any of
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makes any warranty, express or implied, or assumes any
legal liability or responsibility for the y, com-
pleteness or usefulness of any information, appasatus,
product of process disclosed, or represencs that its use
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AN EXACT SOLUTION TO PURE BINARY REACTION PROBLFMS

by

Clarence E. Lee

ABSTRACT

Binary rraction problems occur in various circumstances in
chemicel kinetics, reaction plasma, stellar evolution, and
nucleosynthesis.

These processes are governed by equations of the type
2'=Bnn. (n
Assuming that the tensor B is symmetric and constant in some
time interval At, we show that the solution to Eq. (1) ie

) = (1 - A (¢ Al lncey , &)
where 2(‘0) are the given gnitial dengities and the matrix
A(t) is given by A(t) = B n(t).

Evaluation of the norm conditions for known approximate
solutions to Eq. (1) indicates that the proposed solution method
will always be as fast as, or faster than, the first-order methods.

where the densities at time t, ni(t). are to be

Binary or quadratic reaction problems occur in
a variety of circumstances including chemical com-
the analysis

bustion proceases,1 reacting plasmas.z

of the major burning stages in stellar evolution,3'
and nucleoaynthesia.5'6

The ugsual analyses are limited to solutions of
the equilibrium equationsn{3n/3t = 0) or to dynamic
(or transient) solutione involving only small changes
from the initial conditions.

In this report, we exhibit a solution method
that is applicable over a wider time region, being
restricted only by the assumption that the reaction
rate may be adequately approximated as constant in

time.

II. BINARY REACTION EQUATIONS.
The binary reaction equations can be written in

1-5
the form (d“i/dt - “i)

dn, (t)

dt - Bik nJ(t) nk(:) for tg <t <, (1)

solved in terms of the initial conditions of the
components ({1 = 1,2,...,N), ni(to). The indices
1,3,k range over the number of reactants. The
reaction rate tensor, Bik, is assumed to be sym-
metric in the upper indices, Bik - B:J. The sum=-
mation convention on repeated indices is understood.
For this gtudy, we assume that Bik is constant
in time over the interval [to, tll. Variations in
Bik ;w;ng to density, temperature, or energy depend-
ence are assumed to be representable by suitably
averaged quantities in the interval [to.tll.
III. SOLUTION REPRESENTATION
The Taylor series representation of Eq. (1) at
time t + At may be written as

[n,(0) A}
o (t +At) = (2)
1 = 21
In principle, we need only evaluate all the deriva-
tives of Eq. (1).
we obtain the first-order approximation given by

If we terminate Eq. (2) at & = 1



0, (t + 3t) = n,(t) + n;(t) at

=00 + 8% (On ) nw e . @

This approximation, or its variants, has been used in
the past a8 a suitable solution representation of
Eq. (1). PFor sufficiently small At, Eq. (3) is a
valid solution reprasentation.

In obtaining a general solution to Eq. (1), we
begin by defining a time-dependent matrix A(t),
having elemeats given by

NECIES el RO (O]

Then, in vector notation, [n(t) = ni(t)]. Eq. (1) is
2(t) = A(t) n(t) , (5)

where, of course, A(t) depends explicitly on n(t)
and implicitly upon t,

To determine the coefficients in the Taylor
series of Bq. (2), we differentiate Eq. (5) to obtain

o"(t) = A'() n(e) + A(D) n'(e) . (6)

On the other hand, differentiating Eq. (1) and using
the symmetry of Bik (= B:j).ve have

Ik
+ Bi

" - pik '
ni(t) B1 n.1 ni nj n

- Jk _Am
2 Bi Bj nk n, n‘ . (7)

Applying the Eq. (4) definition of A(t) to Eq. (7)
yields

n;(t) -2 Bik o, Bg‘ LY
-2 ad L
2 45(0) Ay o , (8)
or, in vector notation,
o'e) = 24% 0 . (9

Comparison of Eqa. (9) and (6) yields the operator

result

&) - Ak . (10)

Performing successive differentiations, we
obtaln

2P = 1 Ao no . an

For £ = 1 and 2, Eq. (11) is true; see Eqs.(l) and
(9). Assume that Eq. (11) 15 true for 2. Differ-
entiating Eq. (11) and using Eqs. (7) and (10), we
find

g(P-+1)(:) - E![EAE-I(t) A' (t)a(t) + A(t) n'(t)]

= 11 (A" ey a%e) n(e) + A0 n(e))

- @+ D1 A" aw . (12

Hence, i1f Eq. (11) 1s true for & it is also true
for £ + 1.
fore true for all 2.

Substitucing Eq. (11) into the Taylor series
of Bq. (2}, we find

By tranefinite induction, it ig there-

o(e + 4t) = Z A"(c) (AJ’ a(t) (13a)
2=0

- I - A e ace) , (13b)

provided that the norm |] A(t)At |] < 1, which 1a a
necessary and sufficient condition for the series
te converge-’ Thus, 1f Eq. (13a) converges, it
converges to the inverse given by Bq. (13b).

By very similar manipulations, we can find the

Taylor series expansion of A(t), because

im t

L) (%)
ACt + 8t) = z: -%-L‘) @At
2=0

- ¥ A oot
Lt=0

-1 - A 8e)7 Y aco) (14)
vhere we have used the operstor result
AP =01 At (s

which is proven snalogously to Eq. (11).

Thus, for the reaction rate tensor, Bik, not
an explicit function of t, the solution ta Eq. (1)
is given by

Atg) = 8 n(ty) (16)

8e) = (1 - ACe (e - e1 ™ n (e - (D)



The verification that Eqs. (16) and (17) solve
Eq. (1) 1s straightforward. Multiplying Eq. (17) by
(I - ACty) (e - ) (€ - ty)] and differentiating,

we obtain
[1 - Afep) (e - ty) Jn'(e) = At n (1) . (18)

Multiplying Eq. (13) by (I - A(to) (t - to)]_1 and
using Eq. (14) yields

(e = (1 - ACe) (& - t)]7 Aley) n(e)

= A(t) n(t) . (19)
Thus for binary reaction problems we may use
either Eqa. (16) and (17) or the Taylor series
representation given by Eq. (13a). 1In all ims%ances,
however, we must guarantee that the norm of H(t,ﬁo) »
e, e [T = HACey (e - el <1, (20)
ie satisfied for the convergence of the geries to

the solution.

IV, COMMARISION OF EXACT AMD APPROXIMATE SOLUTIONS

b approximate to the "exact”

The Kth

Comparison of tne K*

solution can be made as follows. approximate

is given by

(21)

K
INCEID M Y A
[

The "exact” solution 1s given by

-
a(e) = Z #iagep) =@ - Incey . 22
=0
Define the nora of A(to) as

a=]l atepll. (23
Then, using Eq. (20) with 4t = ¢t -~ ts givas
(24)

Gz, ep) || = ] ACeg) b2 jl=ade<t.

Equation (21) for the th approximate can be revritten

B = -7 - ep . (25)

If we wish to adjust At and, hence, M go that the
Kth approximate differs from the "exact" solution
n(t) by less than €, we must require that
+

[E*2 ) = 1] B e ae®* < (26)
Using Bq. (26), we can calculate the number (K)

of terms in the approximate solution Eq. (21) re-

quired to represent the exact solution to order €;
K+ 1= [fn(e)/2n (adt)] , 27

vhere, in this instance, the brackets { ] indicate
the greatest intege>z. This result is summarized in

Table 1 for representative € and at values.

TABLE 1
K+l TERMS FOR ¢ ACCURACY OF APPROXIMATE SOLUTION
ae\e 107 107 107 107
1074 2 1 1 1
1073 2 2 1 1
1072 3 2 2 1
w0t 5 4 3 2

Sinilarily, we may compare the relative com-
putational effort involved in the various order
spproximations compared to the Kth approximste.

A standard technique used for some first-order
sclutions fs to adjnat At to maintain a cartain
fractional density change, or

n(t) - nley) < n(ty) . (28)

Equation (26) is equivalent to requiring that

at, =€, (29)
where a 1s defined by Eq. (23) and At, denotes the
time atep for this technique.

Using the nore given in Eq. (26) for K = 1, on
the other hand, we find that for first-order methoda
wve should require

(aep?-c, (30)



and for Kth order approximate
(aa)¥*l o ¢ | (31)
Therefore, the relative time steps are given by
K
At e
-0 . € K+1 32)
t
and
1 K-l
At = ===
1,..2 KH
it "€ (33)

The number of terms K required to make the Kth

approximate agree with the exact solution t. € = 0™
ie determined from Eq. (27), given aAt. For the
same a, we display the relative time step ratio of
At or Atl to the Kkth approximate, At, in Tables II

0
and III.

TABLE II
RELATIVE TIME STEPS Atg/At (EQ. 32) FOR € = 107" AND
K DETERMINED FROM EQ. (27)
K/n _1 2 3 4 5
1 0.316 1071 3.16x10"2 1072 3.16x107"
2 0.215 4.6x10"2 1072 2.15x1072  4.64x107%
3 0.178 3.1x10"2  s5.62x107 1073 1.78z10™%
4 0.158 2.5x1072  3,97x10> 6.31x10™% 12074
5 0.147 2.15x10"2 3.16x102 4.64x10™% 6.81x107°
TABLE III
RELATIVE TIME STEPSAt /At (EQ. 33) FORe = 10" anp
¥ DETERMINED BY EQ. (27).
K/n 1 2 3 4 5
11 1 1 1 1
2 0.681  0.464  0.316  0.215  0.147
3 0.562  0.316  0.178 0.1 0.056
4 0,51  0.251  0.126 0.063  0.032
5 0.464  0.215 0.1 0.046  0.022

Finally we estimate the ratio, f, of the number
of operations iovolved in forming the 1%t and Kth
order solutions with N components. The initial
formation of A(to) will involve z-% N3 operations
in both instances. In addition, each of the K asp~-
proximates beyond the first will involve an addition-

al Nz + N = N(N+l1) operations. Thus,

£ (34)

T IED
N2

will be approximate speed reduction factor of the

computation of the Kth approximate compared to the

18%, The factor f is displayed in Table 1V for

representative values of K and N-

TABLE 1V
SPEED REDUCTION FACEOR £ FOR VARIOUS K AND N
Km 2 A S S o
11 1 1 1 1
2 0.4 0.62 0.72 0.78 0.9
3 0.25 0.46 0.56 0.64 0.69
4 0.18 0.35 0.46 0.54 0.60
5 0.4 0.29 0.39 0.47 0.53
Aty

Defining Al - %'K?— and cowparing Tables IX and
1V, we note that Al < i ggr all N > 2 and all K > 1.
Further, defining ),2 = ?EL and comparing Tables ITI
and IV, w: conclude that Az <1 for N> 2 and all u,
This implies

ts and

and Ay < 1 forn> 2 and all N > 2.

ber of comp

that, except for a small n
high inaccuracy, the proposed Kth approximate method

i8 more efficient and faster in overall execution tha
This is
and N = 4 to 6 components for which

first-order schemes. dvamatically empha-
sized 1f € £ 1073
we gee that the Kth approximate method is approxi-
mately 30 to 120 times faster than the fractional
change method Eq. (29) and approximately 1 to 30

times faster than the first-order method.

V. CONCLUSIONS

We have derived an exact sclution to the pure
binary reaction problem for a time interval in which
the reaction rate is independent of time.

This solution is compared to various approx-
imate techniques. It is shown to be as fast or
faster than the lower order approximations for the
same accuracy, even though more cumputation is
involved. This 18 due primarily to the dynamic
determination of the approximation order from the
required accuracy and normed reaction matrix. In
comparison, the lower order or fractional change
methods fix the approximation and lower the time

step to satisfy the accuracy conditions.



This new solution method automatically reduces
to the lowest Kth order approximation (including

first order) commensurate with the accuracy specified.
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