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INTRODUCTION

This volume contains some lectures on theoretical physics, mostly
in the field of elementary particles and field theory, delivered during the
summer of 1958 by visitors at the Argonne National Laboratory. The lectures
are essentially summaries or reviews of published material.

We have attempted to preserve the ''live" form of the verbal delivery,
with interspersed questions and answers, wherever it did not conflict with
the clarity of presentation or with the lecturer’s wishes, A certain amount

of colloquialism and lack of polish will perhaps be excusable,

H. Ekstein
Physics Division
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Collision Theory for Composite Particles
Rudolf Haag

Argonne National Laboratory, Lemont, Illinois

I was asked to translate the contents of the paper to which Hans Ekstein
referred1 into understandable language. That paper is concerned with the
collision processes between composite particles in quantum field theory. Its
purpose was to unify and to generalize some previous work which had been done
on this subject by various authors, 25 The best way to make the contents
generally understandable is to begin by reformulating the results for the
simpler case of a wave-mechanical problem and leave the case of field theory
to a later part of these lectures. In particular, let us consider the system

of 2 neutrons plus 1 proton, The Hamiltonian is then

A2
H:—Z__I\Z (AL +A+ D)+ V, , +V +V, (1)
where Vik is the potential energy of the nuclear forces between the particles
i and k.

The notion of '"a state  of the system' will always be understood in
the sense of the Heisenberg picture. This is convenient (in fact almost impera-
tive)if one wants to extend the formalism later to relativistic quantum field
theory. It means that any particular state a bears reference only to the
experimental arrangement ""a'' which establishes it and no reference, for in-

stance, to the time at which one chooses to make a subsequent observation on it,
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Of course, the description of the establishing measurement "a'' itself (the
label of the state) may, and in fact must, contain some mentioning of a time,
In our system we can distinguish three classes of states, those which

before the collision are composed of

A) 3 isolated nucleons,
B) 1 deuteron and 1 neutron
C) a triton,
Alternatively we could also classify the states according to their status of

decomposition after the collision (classes A', B', C')., Of course C' =C

since the triton will be considered as a stable particle in our model. Instead
of 'classes of states'" we shall use the customary expression '"channels!',
Our first aim is to define a complete basis system of states in each
channel., Now at a sufficiently large time before or after the collision the
fragments will be with overwhelming probability separated far beyond the
range of their interaction, Therefore it should be possible to describe the
motion of each individual fragment at such a time separately., To formulate
this expectation more precisely is just a little tedious, but please be patient
for a few minutes. We consider for each of the four types of particles
(neutron, proton, deuteron, triton) an arbitrary complete, orthonormal
basis system of single-particle states, Let us use indices a,a'., for the
neutron basis states, and B,p'..., p,p'c.., A\ ,\'... for proton, deuteron

and triton states respectively,
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Remarks: In actual calculations it is convenient to use the basis of
momentum eigenstates, Then the indices a,B.. just specify the mo-
mentum of the particle in question. For the development of the concepts
and for a concise general formalism it is, however, necessary to limit

the choice of a, etc., to normalizable states (wave packets) since for

infinitely extended beams one can not speak of the time 'before' or

"after' the collision. Still, the identification of a with the momentum

can be made in our formulae if proper care is taken and in practical

applications this is almost invariably done,

As discussed before, we expect that it makes sense to speak, for in-
stance, about a state which before collision is composed of a neutron moving
according to the single-particle state a and a deuteron which moves according

to p. This state of the total system will be called lap >(-). Our first result

will be to verify this expectation by giving an explicit construction for |a p >(..).
Remarks: We single out the states of channel B for this illustration,

Of course, the procedure is almost completely analogous for the other
channels. E.g., the basis states of channel A will be denoted by

'aa’ [3>(-).

Because of the Pauli principle we should put in that case
aarp>") —ofarap >, (2)
Similarly, |a P >(+) and |ada' [3>(+) denote states with a prescribed

final decomposition (channels B' and A'), Sometimes we will call an

array of single-particle states like aa'P or a p a configuration

and abbreviate it by a single Latin index such as k.
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Thus lk>(m) is the Heisenberg state corresponding to the initial ‘

configuration k, ' k>(+)

the Heisenberg state with the final configura-
tion k, The collision matrix is defined in this notation as

S = < >\ (3)
Warning: In many papers the superscripts (+) and (-) are used with the
exactly opposite meaning from the one defined here. In these papers
¢(+) denotes an eigenstate of the Hamiltonian with a wave function con-
sisting of a plane wave plus an outgoing spherical wave, This same
state would be called ' >(_) in our notation (if we allow momentum eigen-
states as a basis for the single-particle states; see remark 1). The

(+)

point is that if one forms a wave packet from these states and
studies its motion in time, then the outgoing spherical-wave part of
the wave function will disappear at t —- and only the plane-wave
part will survive., This means that these states have a simple de-
composition at t —~co.
Let us now construct the wave functions for the states |ap >(n)! We
need the following parts: f: (x) and fi (x) shall be the Schrodinger wave
functions for the motion of a single neutron or of the center of mass of a

single deuteron, respectively, I.e., they are solutions of

12 2
8 @ _ _ A AfY ;D P _ A

P
ot M ot - 4M ALT. (4)
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Further, X (1, 2) means the deuteron wave function (describing the relative

motion of the two nucleons in the deuteron), EB is the binding.energy. Then consider

. x+x
I A E AN ( )X(zs. —1s2).
(5)

The second term in the bracket (interchange of coordinates 1 and 2) is, of course,
added so that the total wave function be antisymmetric in the neutron coordinates.
We now assert that this expression (5) approaches a limit as t -~ in the sense

that there is a well defined state { such that
| v _¢t|’_.o as t—-cw. (6)
Here |I ¢H means the length of the vector ¢. For (6) we also write
b — ¥ . (6a)

In other words, the sequence of vectors ¢ has a '"'strong limit'' (converges

strongly) as t — —=w. Obviously the limit state { must be interpreted as the

state [ap >(n) introduced earlier,

Sketch of proof for Eqs. (5), (6a).
v

Take

using the form (1) for the Hamiltonian, together with the
definition of fa, £P , and 7( . This gives, apart from trivial factors

—-582— b~ o it {(V12+Vls)(f§ (=) fP(X %4 )X (2,3) e B - 162)).

Since e tisa unitary operator we need only prove that the norm of the bracket { }
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decreases as it[ ~ o0 and in fact it should decrease stronger than 1/t so that we .
. N a ql [ . . . . . .
can integrate || —8—5—7/ up to infinite times. Using the asymptotic form of the solu-

tions of the free Schrodinger equations (4) for large times, one finds that

3 3
S . -2
t if V(rik) - 0 stronger than T for Ti ™ © s

-~ 0asr. -n;n<3/2.

if V(rik) ik

(7)

A more rigorous method of proof has been devised by J. Cook and M. Hack, 6

They use the fact that for a dense set of wave functions f (Gauss packets) the

solution of Eq, (4) is explicitly known,

)

The construction of the other states } k >(i is obvious by analogy. So,

for example

1 (-k) . iHt 1 A, - A , - ﬁ -
joarp> s T e (§ @) ) g (xa)—16->2>-

Formal collision theory,

The objective here is to extract the essential concepts which are used
in the construction of the | k >(+) and to eliminate all those features which can-
not be carried over to more general types of collision problems, say those of
quantum field theory. One well known '"formalization'' works with the concept
of the '"unperturbed Hamiltonian" Ho' In our example for channels A or A',
we would have to put

A2

H o= - S (A + A+ A,). (9)




-7-

Then, instead of Eq. (8) we could write

. . / ,
jaa p>" o gm M eTHE L ‘(f:(l) ' (2) foﬁ(S) B z) :
0

|

(8a)
The treatment of the collision problem is then reduced to a calculation of the
iHt e—lHot

matrix elements Otf lim e

i between eigenstates of Ho' Unfortunately
—too

this formulation is severaly limited in scope. For every channel a different

Ho must be chosen so that Ho incorporates that part of the interaction which is
responsible for the binding of each fragment but leaves out the interaction be-
tween the different fragments. In channel B of our example this is possible
only by forgetting the Pauli principle during the calculation, and in a general
field-theoretical case it will be quite impossible to find a suitable operator Ho.
We shall therefore not adopt this method but start from the following obvious
remark.

Collision theory depends on the fact that, given any two states ¢, and ¢,
which at some time t have their localization volumes far separated from each
other, then there is also a composite state or ''product state'’

(t)
¢ =9, A ¢, (10)
which describes the physical situation in which at time t there are to prac-
tically isolated subsystems respectively in the states ¢,and ¢,. Once we

have defined how this product combination is obtained in terms of the customary

mathematical symbols of the theory, the construction of the states k>(i) is



obvious, For example .
‘ap>(_) = 1 ,a> (R ’p>
ter=00 !
,aa'ﬁ>(+) = lim  |a> (]S) |a™> (]&) | B> (11)
t—>+oo *
sk

where a and p, etc., are the chosen single particle states.

In talking simultaneously about these single particle states and the states
on the left-hand side of Eq. (11), we must, of course, drop in our mind the
restriction to a fixed nucleon number.

In wave mechanics there is an obvious definition of the product operation
f\t). It is the one which has been used in Eqs. (5) and (8), namely in the x-
representation at the time t (the time to which the product symbol refers) the
wave function of the product state shall be just the product of the wave functions .

of the factor states (antisymmetrized if necessary)., If we refer everything to

the time t = 0, then -
(t) iHt i -iHt (o)  _iHt
drho, = J e A (T ) L, (12)

i\

which clearly gives the expressiéns (5) and (8). For a more detailed discus-
sion of formal collision theory, see references 7 and 8.
Remarks: Since only the product between far separated states has an
ambiguous physical meaning and is ultimately needed, we would be free
to introduce any modification of the above definition for(f\ at small

.distances. Thereby one may obtain other equivalent formulae for the

[ k>(i) which are sometimes useful. We will, however, not discuss

this here.
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)

under the invariance group;

Transformation of the states Jk>(:t
conservation laws, o

To say ''the theory is invariant under a certain transformation'' means

a) to every state § there is assigned a transformed state {'. If we write

Aok
¢' =R y, then R shall be either a unitary or an antiunitary operator.

ek
A thorough discussion of the assumptions which go into the derivation of

this alternative is given in reference 9.

b) Obviously not every unitary operator can be associated with an invariance
property. We only speak about invariance if the transformation of the states

is such that isolated subsystems are transformed independently, i.e.,

(t) (t)
Ry, A ) Ry, ARY, (13)

whenever |, and y, have far separated localization regions at time t. From

Egs. (13) and (11) it follows then that

s et (14)

R | k> ,
where the configuration k' is obtained from k by transforming separately all

the single particle states entering into k. Equation (14) in turn implies the in-

variance of the collision matrix

Sk k. * Skz'kl' ; (15)

or alternatively, if one introduces the operator S by

|k>(‘) - s ‘k>(+), (16)
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it means that R commutes with S (conservation law for R).

Time inversion and detailed balancing,

If the theory is invariant under time inversion then for the time in-

version operator T we have instead of Eq. (13)

(t) (-t)

T(g, A 4 ) = Ty, AT, (17)
Therefore, in the same notation as above,
T
T > et (18)
Also, T will be antiunitary. ? This gives then for the collision matrix
Sk, " Sk, K, Detailed balanci 1
s kg L kg (Detailed balancing) (19)

(£)

Orthogonality of the states ' k> and unitarity of S.

Two states belonging to different initial channels (or different final
channels) are orthogonal even though the corresponding product combinations
[ right-hand side of Eq. (11)] at a finite time are not orthogonal, More gen-
erally, for two configurations k and k' which are composed of single-particle
states belonging to some fixed orthogonal system, one has

R R N A (20)

(=) v (<) _
<k'P k> =6 !

Kk'
How this orthogonality arises may be seen from Eq. (11) in the following
qualitative way. Imagine a division of space into cells of large but finite
volume V, If o > is a single particle state and Vohax the maximal velocity

which has an appreciable probability in the state ¢ then the number of cells



-11-
in which one has a chance to find the particle at a large time t will be roughly

(vmaxt)a / V. Conversely, the probability per cell decreases in proportion to

-3 (t)
t . For a product state ’ o> A I o> the probability of finding both part-

icles in a particular cell will go like 1;_e and the probability of finding the two
particles anywhere together in one cell will decrease like t“3 . We can there-
fore neglect in the limit that part of the product state for which both particles
are in the same cell, On the other hand, for a product state between far sep-

arated components one has

(6 Moy, b' Ady") = (0,0 )by, ¢,') £ 0y, 05" (45, ¢, "),
(21)
(The second term on the right arises from the symmetrization, and the
sign refers to Bose or Fermi statistics, respectively.,) Therefore, one

obtains from Eq. (11), for instance
(') <a [P (') — i 1 -
plap'> —<a{a><p,p>—6uq|6ppl,
(22)

which is a typical example of the relations (20).

The fact that the orthogonality relations are the same for the states

(+)

as for the states | k>(-) implies that the collision operator S [ see

| k>

Eq. (16)] is isometric. If we also know that the set of states [ aa' B>(_)’
| ap (=)

and '\ > forms a complete basis for all the states of a system

comprising 2 neutron + 1 proton system (and that the same is true for the

(+)

states | k > ', then we can conclude that S must be unitary,.
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Let me make a remark about this last link in the proof of the unitarity .
of the S-matrix. Unfortunately it is still a missing link, I mean this in the |
following sense., We have seen that the existence of the asymptotic product
states and their properties (14), (20) follow easily if we know that the inter-
action between two subsystems vanishes sufficiently rapidly with the distance
[ see, for instance, Eq. (7)] . It would be nice to have a similarly general
criterion for the completeness of these asymptotic product states. The
question is what conditions must be satisfied by the mathematical frame so
that we can be sure there will be no states in the system which can not be
described in terms of asymptotic particle configurations, Is there, for instance,

a simple criterion which can tell whether some given mathematical model in
quantum field theory will necessarily have a complete particle interpretation ?
I do not know such a criterion at the moment,

The '""Weak-Convergence Method'" for constructing |k>(i).

If in Eq, (5) we insert instead of the correct deuteron wave function
"X (2, 3) any other function X 0(2, 3) which is not orthogonal on X, then the
limit of th for t — — oo will still in some sense exist and may be used to con-

(-) Clrfy> as e

struct ,ap > In particular, consider the scalar products
tends towards —o and k runs through the set of basic configurations. Using
the same reasoning which led to Eq. (22) we see that these scalar products

vanish in the limit except for k = ap. The latter quantity approaches

im e af $.> = (A, K-

t>= 00
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Therefore, for an arbitrary state ¢ = z Cu [k>(_) we have
- _ (-)
m <¢ [y >=<d|ap> (X X). (23)
t—»-oo t / <

In other words, for any approximate deuteron wave function Z , the
o

sequence
1 1 iHt 1 R "
— Y, = e —— (£ (&) P [T e (2,3) — 12
(T E) Ve T(X %) 7 (h &) X

(24)
)

which means that if one wants the scalar

(-)

converges weakly towards | ap>(_

product of lap>(-) with any fixed state ¢ , one can replace (ap) by

L’Jt and go to the limit t — - 0.

X X,)
In quantum field theory all the standard methods for calculating the
S-matrix have been based on this construction. Except in a few particularly
simple cases the strong convergence method has not been applied there at all
because the expressions for the single-particle states (corresponding to the
deuteron wave function X ) which would be needed, can not so easily be ob-
tained or handled. In wave mechanics, on the other hand, the weak con-
vergence method is not very familiar although there are some problems to
which it could be applied with advantage. Recently W. Brenig (preprint 1958)
has made use of this method in nuclear reactions, taking shell-model wave
functions rather than the exact wave functions of the target nucleus. The price
for this simplification is just that the relations are then not strongly but only

weakly convergent, which for the practical handling of most of the formulae
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does not make any difference,
Remarkt. If there were another stable bound state of the neutron-
proton system besides the deuteron (call it D'), then Eq. (23) would
be more complicated, namely
<op9> = <elap> T 71+ <fap > XL X ) FDED)
(25)

It is interesting to note that the survival of the oscillatory
second term is only due to the fact that in a non-relativistic theory a
difference in binding energy does not imply a difference in mass. If
one takes the mass change required by relativity theory into account,

then he comes back to the simple formula (23).

The case of field theory.

We consider for simplicity a model in which we have a single scalar

field A(x) satisfying the local commutation relations
[ A(x) A(y)] = 0 for space-like distances x-y. (26)

Let us assume there are two distinct stable particles of spin zero predicted
in this model. The masses of these particles shall be m and M, respectively;
| a> shall be a state of a single m-particle, and | p > one of a single M-particle,

Consider now a space-time region /é Associated with it is a set of
operatorsﬁff_ , namely all the polynomials in the field with coefficient functions

differing from zero only in _§ . In other words, a general operator from 0?,6—
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is of the form
q=c+ fc(l)(x) A dx+ [P e, %) Al ) A, ) dx, dx, + .
(27)
(n) xn) = 0 if any Xy lies outside of {’. Furthermore, there

where ¢ (x

1000
is a subspace ;'///é of states associated with/é‘, namely the set of all those
states which are obtained by applying the operators belonging to ﬁ/é_ on the
vacuum state 0>, We call the states of g/'(, "localized states in _£'', A
better term would perhaps be '"local disturbances in the vacuum!',

The reason for introducing fj?/; and?,’é is that we want to define in
field theory the notion of a product between far separated states (our previous

t)
symbol A). Now, of course, any state ¢ may be written as
y= X |0> (28)

where \/( is some polynomial of the field A. In defining the product between
two states, the most obvious idea is to make use of the product between two
operators which create these states from the vacuum. There is, however, the

following difficulty. The relation between X and § in Eq. (28) is not unique;

there are many operators 7( which produce the same state {y. If we wrote

b Ay = Xy X 0>, (29)

where

by = Xy [o> 4‘2:)(2 o>

the result would vary with the choice for Xl . A sensible and unambiguous
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definition of the product state is given by Eq. (29), however, under the follow- .
ing restrictions. If {; belongs to ?/., and y, to ?// (where the regions /5'7

and /1'/: are situated totally space-like with respect to each other) and if the

—

choice of X , and /\(2 is limited to the operators from /Jj’//‘_,/ and /;(/‘z_ s
respectively, then the assumed local commutativity (26) of the field guarantees
that the remaining arbitrariness in choice of the operators X 15 >{2 will not

change the result of )/ 1 )/2 /0>.

)

If we apply these ideas then to the construction of the states jap > e

are led to consider ''almost local operators B(x). By this we mean polynomials

(n)

"in the field A [ see Eq. (27)] with coefficient functions ¢ which decrease suf-

ficiently rapidly as any point of the points X, moves away from x. To be specific
let us allow only a finite time interval in which the functions are different from
zero and require that they decrease faster than any power with the spatial

separation |>_{1 —3?; . The counterpart of Eq. (5) is then

-

(m) — (M)

(xl,t)q 0>

|ap>('):1_i°ron f ic:()?l,t) ftp(:?z)q (x,,t)d® x, d° x,

(30)

(M)

- m — —
ifq  (x,t) and q (x,t) are any almost local creation operators for a state of

a single m-particle (or M-particle) which is localized in the sense of Newton

(m) g oM

and Wigner at time t at the position x. To find such operators q
means to solve the one-particle problem, just as in the wave-mechanical

example we need to know the deuteron wave function X in order to apply Eq. (5).
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One last remark: - these considerations depend on the assumption that
the effective interaction vanishes sufficiently fast with the distance. In wave
mechanics this means that the potential shall drop faster than 1/r [ see Eq.
(7) and the preceding discussion] . In field theory let us call the counterpart
of this assumption ''the asymptotic condition in space', It can be explicitly
formulated as a condition for the behavior of vacuum expectation values of

products of field operators for large space-like distances,.



1
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These lectures on the quantum theory of fields were delivered by
Professor Suraj N, Gupta at the Argonne National L.aboratory, Lemont,

Illinois, during the summer of 1958,
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. Quantum Theory of Fields
Suraj N. Gupta

Wayne State University, Detroit, Michigan

It is a great pleasure for me to visit the Argonne National Laboratory
this summer. I understand that Argonne has big plans for the future in the
field of high-energy physics, which no doubt will be of tremendous importance
to all the physicists throughout the midwest, I am therefore particularly glad
to acquaint myself with the physicists here.

In these lectures on the Quantum Theory of Fields, I shall cover the
following topics:

I. Quantum electrodynamics

II. Quantum Theory of Gravitation

III. w Meson Theory

IV, Strange Particles

V. General Principles of Quantum Field Theory

VI. Future Outlook

I. .QUANTUM ELECTRODYNAMICS
As you know, until about 10 years ago quantum electrodynamics was
in bad shape. For instance, it was pointed out by various people that the usual
method of quantization of the photon field, which was developed by Heisenberg,

Pauli and Fermi around 1930, was inconsistent. This, I think, can be seen very
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easily in the following way. We know that the commutation relations for the

photon field can be expressed as

[ApL (x), A (x"] = i% c 6uv D (x-x') . (I. 1)

We differentiate each side and take the expectation value,

8 A (x)
" . _ ) 9 D(x-x')
< <% XH s Av (x )1> = ifc 6&“’ 5w Xp . (1. 2)

If we now make use of the older supplementary condition

9 A
5—;{—“——— U =0, (I. 3)
I

we see that one side of Eq. (I.2) vanishes while the other side is non-vanish-
ing. There are other complications, but I do not want to go into details, I
just want to point out that the older formalism of quantum electrodynamics
was known to be inconsistent,

Then I gave a theory of the quantization of the photon field which is now
well known, 1 It differed from the old formulation in two ways. Firstly, I
made use of an indefinite metric and secondly the supplementary condition

(I. 3) was replaced by a weaker supplementary condition which can be expres-

sed as

E 1 w=o0. (1. 4)
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After this paper was published it was generally agreed that this work should
replace the older work which was done, as I said before, around 1930,

I do not wish to discuss the mathematical details of the quantization of
the photon field here, but I would like to mention that recently I have received a
reprint from Sunakawa, 2 in which he claims that my treatment of the quantiza-
tion of the photon field is not Lorentz covariant, Now this problem of Lorentz
covariance has been discussed in my own paper as well as by several people.

I might particularly mention a paper by Belinfante, 3 in which he has discussed
the covariance of my formalism in very great detail, and I have received a
letter from him and some other people pointing out the error in this paper of
Sunakawa.

The point is that in the formalism of indefinite metric two sets of
quantities are introduced, which are called the Hermitian conjugate and the
adjoint, and unless a person is very familiar with the formalism he is liable
to make a mistake by confusing the two. ButI think it is all now not of much
interest, because I have published a paper in the Canadian Journal of Physics
which contains a much simpler formulation of quantum mechanics with an in-
definite metric, In this formulation only one set of quantities is introduced,
and thus the treatment of indefinite metric becomes as simple as a theory with
a positive definite metric.

Further, in quantum electrodynamics one of the major problems, as

you know, has been the problem of divergencies. This problem can be split
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into two different problems, and these two problems are:

1. how to remove the divergencies, and

2, how to handle the divergent quantities.

Of course, if there were no divergencies the second problem would not
arise at all, but we know the results are divergent and then these are the two
problems which arise. As we all know, these divergencies can be removed by
renormalization. This is well known, People may differ very slightly in their
interpretation of what renormalization means. My own interpretation, which is
of course provisional because at the moment we cannot say what we shall find
ultimately, is to look upon renormalization purely as a subtraction procedure.

That is, in the usual theory we introduce an interaction term

1
L = - i .
me <o A3, (L. 5)

while renormalization simply means, at least to me, that we replace the above
interaction by the new interaction

ﬁeAJ_

o AL, (1. 6)

1
int © ¢ M ‘]p. 6 :

as suggested by Schwinger. The quantities 6 m and 6e are just some constants
which one could regard as mass and charge renormalizations. I myself sug-

gested a slightly different interaction >

L =X a j, +om 2Ty
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and many physicists have found that for mathematical purposes Eq. (I.7) is
more convenient. So renormalization in some way or other as a philosophy
can be adjusted according to one's taste, and by renormalization we can re-
move or subtract the divergencies out of the present formalism of quantum

electrodynamics.

But then this second problem, which is essentially related to the first,
is also a very serious problem. In fact, some people, who do not know re-
normalization very well, say almost jokingly that one just subtracts infinities
out of infinities and one does not know what all this means., From a mathe-~
matical viewpoint when one is dealing with infinities the equations are not
entirely meaningful, This is a problem on which a great deal of work has been
done. I have myself done work on this problem 6 and I definitely feel that at
the moment this is the best thing we have, What I have done is essentially
to introduce auxiliary fields in quantum electrodynamics. Physicists have
been talking of introducing additional fields to remove divergencies for a long
time. In fact I myself do not know who published the first paper on introducing
a neutral vector meson field in quantum electrodynamics., There are quite a
few very old papers and many physicists have worked on this problem. But the
difficulty always has been that if there is an additional field then why don't we
observe that field. In my paper for the first time, by using an argument which
has never been used before (at least I am not aware of anyone using the argument)

3

I have shown that it is possible to introduce auxiliary fields in quantum electro-



-24-

dynamics in such a way that these fields remain completely unobservable. In
this case also it is necessary to use an indefinite metric.

So by introducing auxiliary fields in such a way that they cannot be ob-
served, it is possible to remove all divergencies in a purely formal way. But
in order to insure that these auxiliary fields are unobservable, one has to im-
pose a restriction; and the restriction is that the masses of the auxiliary
fields should be greater than the total energy of the physical system under con-
sideration in that frame of reference in which the physical system has minimum
energy. This condition, of course, can be satisfied in any physical problem,
because in any problem we deal with a system containing a finite amount of
energy and we can always choose the masses in such a way that they are larger
than the energy of the system under consideration, With this condition one can
work out anything., We can carry out renormalization and obtain any result of
physical interest, Then ultimately, because it would be very artificial tp im-
pose an upper limit to energy, at least at the moment, the best thing would be
to let these auxiliary masses tend to infinity. Thus, throughout the entire
calculations in any physical problem it is possible to proceed in such a way
that there are no infinities anywhere., Then in the final finite result we can make
the auxiliary masses tend to infinity, and everything is unambiguous and finite.
Thus, by using the formalism of auxiliary fields the self-mass and self-charge,
6m and 6 e, for all practical purposes can be treated as finite, Since in all

manipulations we can treat § m and 6 e as finite quantities, many objections
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which are raised against quantum electrodynamics disappear in this way. I think
from a purely mathematical point of view one can say that quantum electrodynamics
is in a form where it is entirely self-consistent and one can remove all the di-
vergencies and there is no real problem left,

One can also show that practically all the low-energy phenomena can be
explained up to a fantastic accuracy by using quantum electrodynamics. Of course,
I mean only those phenomena which lie wholly within the domain of quantum electro-
dynamics. But if one does not like the present formalism of quantum electro-
dynamics one could raise two objections: Firstly, one could say that the whole
idea of renormalization is mathematically very inelegant and crude and, be-
cause there is a belief which we all share that the ultimate laws of nature are very
beautiful and simple, one might say that renormalization cannot be the final
solution, There it becomes a matter of philosophy and personal feeling, and
it is very difficult to be dogmatic in these things, but I will personally say that
I share the belief that renormalization is only a provisional solution and ulti-
mately we shall have to find something else. The second objection, which is
more serious, is that it has been claimed that quantum electrodynamics as it
exists now becomes inconsistent at high energies. Now there are many proofs
of this — there are proofs of divergence of the perturbation series and all kinds
of things., They are not very clear and I don't think there is a single paper which
is free from all objections and which shows that quantum electrodynamics

definitely breaks down at high energies, though some arguments do create a
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feeling that quantum electrodynamics might break down, But at high energies .
even if we ignore this unclear work which is purely theoretical, there is some- »
thing more tangible which has also been found. This is experimental work, and
I do not consider myself competent enough to give a definite opinion, but there
is some evidence which seems to show that the present quantum electrodynamics
is unable to explain phenomena taking place at high energies. One examp}e which
you probably all know is the photon shower discovered by Schein, 7 He has ob-
served a photon shower which shows that the proba.bilit‘:y for multiple photon
production at high energies (energies of the order of 1014 ev) is far greater
than what can be accounted for by using quantum electrodynamics.

I have investigated this problem ‘of multiple photon production in quantum
electrodynamics 8 in great detail. The net result is that within the framework .
of quantum electrodynamics it is absolutely impossible to think of any process
in which one could produce a photon shower of the type observed by Schein. I .
might say that very few examples of this type of shower have been observed so
far. Some have been observed in Italy, but then the number is so small that one
cannot say with certainty that here one has found something to show that quantum
electrodynamics really breaks down, Still it is much more tangible than purely
theoretical arguments which are not very clear, Of course, some people have
also argued that it may not mean multiple photon production, but I think that
was in the beginning, Ultimately I think the majority of physicists agreed that
it must be multiple photon production, because when we consider the half-angle

-

of the cone in which the shower is contained and the photon energies, we can show ‘
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that these photons could not be produced by the decay of #® mesons,

Then there are some other experiments. I do not have their references
here, but you can easily find them in the Physical Review. They are about
electron tridents., When an electron is scattered by a nucleus, then we all know
it can emit a photon, Instead of this we can have a process in which the photon
appears only in a virtual state and then it forms an electron pair. This is the
process which has been studied by many physicists., Again they seem to differ,
but I think several physicists have claimed that the cross section for electron
tridents at high energies is considerably higher than that predicted by theory.
So there seems to be a strong indication that at high energies electromagnetic
interactions become much stronger than what is predicted by the usual quantum
electrodynamics, and at the moment we do not know how to explain this,

One way would be to do more theoretical work as people are doing.

But to me it seems that the difficulties which they point out are so formal

that they talk like pure mathematicians, and the objections that they raise do
not seem to have anything to do with physics. I personally do not like the type
of work, purely mathematical work, which is being done to establish the fact
that quantum electrodynamics really breaks down at high energies, But of
course it is a very important problem. If a person expects to find something
sensible he should certainly devote himself to this problem. In fact, this is

the only clear problem left in quantum electrodynamics, At low energies we
know everything., So what happens at very high energies? This is the only
problem in quantum electrodynamics which is worth investigation at the present

time.
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I think the more promising approach to this would be purely experimental.
When we have more high-energy machines and if we are able to study electro-
magnetic interactions at high energies under controlled conditions, then I think
it will greatly add to our understanding of quantum electrodynamics, It is in-
deed very essential that some more quantitative experiments should be carried
out with very high-energy machines on problems which lie wholly within the do-
main of quantum electrodynamics., Of course, one might say that at high energies
other fields will also produce important effects in virtual states, All these things
are very complicated and one could speculate as much as one would like, but I
think it is quite obvious that more experimental information is needed in this
field, Now I think I have said whatever I wanted to say about quantum electro-
dynamics,

Tanaka: In regard to this question of evidence that quantum electro-
dynamics may break down at high energy, do you have any opinion as to
whether or not it may break down in nucleon structure?

Gupta: I think it will be better if we discuss this either when I
come to m meson theory or general principles of quantum field theory,

All I can say at the moment is that when we talk of mesons then there is
no need to go to high energies, If one has no theory even at low energies,
one cannot say the theory breaks down at high energies.

Rosenzweig: Can you conceive of an experiment at high energy

that would be a real test of quantum electrodynamics and not involve just
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the other things that you have mentioned — mesons and other particles
that can be created at such energies?

Gupta: There are experiments according to which some physicists
claim that at high energies the cross section for electron tridents becomes
about twice the theoretical cross section and one could no doubt think of
other similar experiments. But I have seen very little of how these ex-
periments are done,

Peshkin: Is it quite certain that a more accurate investigation of
the Lamb shift will not show that quantum electrodynamics may break
down at low energies ?

Gupta: Well, perhaps I should put it like this, There are many
problems to which a person can devote his attention and certainly there
is some possibility that even by devoting oneself to low-energy proces-
ses one might come up with some discrepancy. In fact, in the discus-
sion of the Lamb shift (not for hydrogen but for atoms containing several
electrons) some physicists feel that there is a discrepancy. But these
are extremely tedious calculations, and I try to keep away from such
calculations. There are some very laborious calculations carried out
by several people at Cornell, in Canada, and in Sweden. The discrep-
ancies between the various calculations are far greater than those with
the experimental results. I think Kinoshita and Salpeter have been doing

some work of this kind at Cornell,
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Peshkin: Is the calculation of the logarithmic term for the Lamb
shift entirely satisfactory ?

Gupta: There are certain phenomena which are very clean, like
the magnetic moment. They are very clean from a theoretical point of
view, and there are other problems in which a person has to make some
crude calculations, This is purely a matter of calculations, and it is not
a difficulty of principle, When it comes to bound states and problems of
that kind, it is impossible to carry out very clean calculations. So I
don't think it has anything to do with the principle, but as I have said
before, some people have claimed that in the case of the Lamb shift
for atoms containing more than one electron, the theory does not agree
with experiments, Yet their results are so different from each other
that I wouldn't care to make any comment. It is true that there are only
a limited number of experiments for which the theoretical results can
be obtained in a well defined way, but in most cases one has to make
many crude assumptions and approximations which are often justified
but still are not very pleasant for a theoretical physicist, So when I
have nothing else to do and no fundamental problem to think about, then
I might start doing that kind of calculation, At the moment there are

many fundamental problems which have to be investigated.
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II. QUANTUM THEORY OF GRAVITATION

The theory of gravitation is a subject about which most physicists, I
am sorry to say, know very little; and therefore I think I shall first discuss
the background very briefly before I actually discuss the quantum theory of
gravitation, We know that at the beginning of this century there were two field
theories which were well known. One was Maxwell's theory of electromagnetism
and the other was Newton's theory of gravitation, Then Einstein proposed his
special theory of relativity, and the special theory of relativity was able to
express Maxwell's theory in a very beautiful form. But at the same time it
gave a fatal blow to Newton's theory. That is, as soon as the special theory
of relativity was accepted it became clear that Newton's theory cannot be an
exact theory of gravitation, because it is not Lorentz covariant., Then the
question arose, "What is the exact theory of gravitation?'" What I want to
emphasize at the moment is that whether we believe in Einstein's theory of
gravitation or not, there is no competition between Newton's theory and
Einstein's theory, because we know for certain that the special theory of rela-
tivity is correct and therefore we know for certain that Newton's theory of
gravitation cannot be an exact theory of gravitation, At first many attempts
were made, and various theories of gravitation were proposed. But then Einstein
himself gave his theory and it was universally accepted, and at the moment most
physicists are not even aware of what those other theories were which people sug-

gested at first.
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Let us look upon this problem in a more modernistic way and let us ask ‘
ourselves the question, '"If Newton's theory of gravitation is not an exact theory .
then what are the requirements which an acceptable theory of gravitation must
satisfy?' From a purely scientific point of view one could lay down three condi-
tions:

1. It should be Lorentz covariant, because after all if a theory is not

even Lorentz covariant it can hardly be accepted as an exact theory,

2, It should reduce to Newton's theory as a very good approximation.

3. It should also explain the three crucial tests.

Now in the usual textbooks on relativity one finds a lot of philosophy of
general covariance, principle of equivalence, etc, But from a purely scientific
point of view if a theory satisfies the above three requirements the theory is
good enough. This problem of constructing various theories of gravitation with
the above requirements is one I have discussed in a paper in the Reviews of
Modern Physics, ?

The way I have approached this problem is that every classical field
must correspond, on quantization, to particles of integral spin. So the gravi-
tational field could have spin 0, 1, 2 or something more, Let us proceed using
the usual principles of the field theory, and let us start with spin 0. If we con-
struct a theory of spin 0 then it corresponds to a theory which was actually pro-
posed before Einstein gave his theory of gravitation. It was proposed by

¢ 10 . . -
Nordstrom, One finds that this theory, of course, is Lorentz covariant and
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it reduces to Newton's theory as a very good approximation, but for the advance
of the perihelion of Mercury it gives a value which is one-sixth of Einstein's
value in magnitude and opposite in sign, Thus this theory certainly cannot ex-
plain the advance of the perihelion of Mercury, and it fails in this respect. Now
if we come to spin 1, we can show by using simple arguments that a theory of
spin 1 would be absolutely identical with the electromagnetic field. The only
difference could be that the gravitational charge of a particle might be different
from the electric charge. One certainly cannot use a field of the electromagnetic
type to describe the gravitational field because of many reasons, One obvious
reason is that according to the electromagnetic theory the force between two

like particles has to be repulsive, and there is no way in which one could modify
the Maxwell-Lorentz equations such that the force between two electrons becomes
attractive, But in gravitation we know that the force not only between like but
between all particles is always attractive. Thus, the Maxwell theory cannot

be used to describe the gravitational field, and spin 1 can also be left out.

When we go to particles of spin higher than 1, the theory becomes more
complicated. In fact, as we go to higher spins the theory becomes more and
more involved, and I think it will be enough not to go beyond 2. If we consider
the case of spin 2, then this is a case which has also been discussed before by
several physicists., I think the most important of them is Birkhoff, 1 He gave
a theory of gravitation, which is essentially a theory of a field of spin 2, His

theory is Lorentz covariant, and it reduces to Newton's theory as a very good
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approximation, It also explains the three crucial tests, However, this theory
is mathematically very clumsy, and when he did this work there was a controversy
between Birkhoff and Einstein and his followers, This took place around 1945,
largely between Birkhoff and Weyl, and they were both pure mathematicians.
If anybody thinks that only physicists lose their tempers, they should read the
papers of Birkhoff and Weyl, Weyl first published some papers in the Pro-
ceedings of the National Academy of Science, Then he published a paper in the
American Journal of Mathematics, 12 If one were to look into these papers, one
would find that what Birkhoff essentially did was to point to the facts which can
be experimentally observed, and Weyl appealed largely to emotions and all he
could say was that Birkhoff's theory was very clumsy, Einstein put it this way —
that he does not want to go backwards, but his arguments were hardly scientific.

Now because I became very much interested in this thing, I read the
various papers very thoroughly and thought about all these problems, Then by
studying Birkhoff's theory more seriously, I could actually show that his theory
is incorrect and that it contains a very serious difficulty.

This difficulty does not arise in classical theory but in quantum theory.
The difficultyis that in Birkhoff's theory the energy of the gravitational field is
not positive definite. This means that if we quantize Birkhoff's field, it cor-
responds to gravitons of negative as well as positive energies. Particles of

negative energy are strictly forbidden in quantum field theory because of the
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following reason: We know that according to the perturbation theory, virtual
particles can be created in vacuum but they remain virtual because the perturba-
tion theory contains the law of conservation of energy within it, However, if
there are particles of negative energy then, without violating the law of con-
servation of energy and momentum, one can have creation of real particles of
positive and negative energies even in vacuum., Thus, if we allow particles of
negative energy, the state of the vacuum becomes unstable, which is absolutely
fantastic. When we think of Birkhoff's theory in terms of quantum theory, we can
see that this theory is unacceptable. But what about Einstein's theory? Is it
possible to quantize Einstein's theory of gravitation?

Before we discuss the quantization of Einstein's gravitational field, let
us look at this difficulty of negative energy in Birkhoff's theory a little more

closely. In Birkhoff's theory the field equation for the gravitational field is
2
Ouv - K 1 | (II. 1)

where AL 1is the gravitational coupling constant, and T is the energy-
VRY

momentum tensor of the matter field, By matter we mean everything except
the gravitational field. The reason why the energy of this field is not positive

definite is that to make the energy positive definite one has to impose the sup-

plementary condition

9)
2 Y = 0. (11. 2)
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This condition will be compatible with (II. 1) only if

anv = 0.

ax
1

But Tp is the energy-momentum tensor of the matter field alone, and therefore
v

anv/axp cannot be equal to zero, because only the divergence of the total

energy-momentum tensor, which must include the gravitational field also, can

vanish. If we want to remove this difficulty of negative energy, then (IL. 1)

must be replaced by

2
U = T II. 3
0 KoAT,, +t,). (IL. 3)

(VR Y v

where t v is the energy-momentum tensor of the gravitational field. It is then
possible to impose the supplementary condition (II. 2) which removes the dif-
ficulty of negative energy.

Since the energy-momentum tensor of the gravitational field must be

at least a quadratic function of the U's, we can see that Eq. (II. 3) has become

2

i . .13
non-linear. Moreover, as I have discussed in a paper in the Physical Review

it can be shown that if we derive an equation of the type (II. 3) from a Lagrangian
density, then the Lagrangian density must contain an infinite number of terms,

that is, the Lagrangian density is of the form

L=Ly+kL, +k2L_+kS L, +°°° . (IL. 4)

But there is no simple way in which one could directly find the various terms in
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Eq. (II.4). One could easily find one or two, but in general it will be so dif-
ficult to obtain Ln that this approach does not seem very worthwhile, So, we
see that if we want to remove the difficulty of negative energy, the field equation
has to be non-linear and the Lagrangian density has to contain an infinite number
of terms in various powers of the gravitational coupling constant,

Now let us look at this situation from Einstein's point of view, First of
all, as everyone knows, Einstein's theory of gravitation is very beautiful from
a mathematical point of view., Secondly, from Einstein's theory one can obtain
a reasonable explanation of the three crucial tests without fiddling with any
coupling constants or other manipulations as people often do in meson theory.
Thirdly, after attempts for about half a century, nobody could find a reason-
able alternative to Einstein's theory. Considering all these things, Einstein
was firmly convinced that his theory of gravitation is certainly correct. But
then he was faced with two problems: Firstly, due to the use of the Riemannian
space, Einstein's theory of gravitation is strikingly different from other field
theories; and secondly, it does not seem possible to quantize this field. In
his later years Einstein was particularly obsessed with these two things., Because
his theory is different from other field theories, he tried to construct unified
field theories, and because he could not see how his theory in Riemannian
space could possibly be quantized, he attacked quantum mechanics.

Many people have found it very curious that Einstein, who himself played

a pioneering role in the development of quantum physics, should so persistently
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criticize quantum mechanics, There has been a great deal of controversy and
the majority of physicists do not agree with Einstein in his criticism of quantum
mechanics, and I am prepared to say that I do not find anything illogical in the
basic formalism of quantum mechanics., Of course, it is possible that ultimately
one may have to find something new, and of course there are difficulties in
quantum mechanics, but the basic formalism seems to me perfectly logical.
Because relativity and quantum mechanics provide the basic foundations
of modern theoretical physics, it certainly seems very surprising that there
should be a conflict between general relativity and quantum mechanics. In fact,
it will not be an exaggeration to say that from an intellectual point of view this
has been the most outstanding problem facing the theoretical physicists for half
a century. I have shown that this situation can be cleared up by quantizing the
gravitational field, and what I am going to say is based on my two papers,
First of all it is obvious that to carry out the quantization of the gravi-
tational field, one may have to depart from Einstein's ideas in some ways. My
treatment, in fact, is based on a new approach to Einstein's theory of gravita-
tion., I have shown that by a certain mathematical expansion it is possible to
reduce Riemannian space to flat space in such a way that the theory remains
Lorentz covariant, When this expansion is carried out and the theory becomes
a theory of gravitation in flat space, then something exceedingly interesting
happens. One can show that in flat space Einstein's field equations for the gravi-
tational field can be reduced to the form (II. 3) with the supplementary condition

(II. 2) . In Eq. (II. 3), tp,v consists of an infinite series, and therefore, although



-39-

the field equation contains an infinite number of terms, still it can be written

in a very neat and simple form, The term tp.v in (II. 3) is also very satisfactory
from a purely philosophical point of view, because in Einstein's theory the energy-
momentum tensor is the source function and there is no reason why we should
leave out the energy-momentum tensor of the gravitational field itself. In fact,
this theory, as you can see, has a very striking correspondence with Maxwell's

theory, which is based on the field equations
(s 1
a =-- (11 5)
" c
8A /8x = 0, (11, 6)
(PR

One can also see why Maxwell's field equations are linear while Einstein's
field equations are non-linear, This difference of non-linearity is produced
because the photon field does not contribute to the current four-vector while the
gravitational field contributes to the energy-momentum tensor,

After the Lagrangian density for Einstein's gravitational field is expanded
as an infinite series, we can regard the first term as the unperturbed Lagrangian
density for the gravitational field, while the remaining terms can be regarded
as a direct interaction between the gravitons. Then by following the same pro-
cedure as I have used for the photon field, that is by using an indefinite metric,
it is possible to quantize the gravitational field., We can develop the theory in

such a form that we can calculate any quantity which is of experimental interest,
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On quantization one can show that gravitons are particles of spin 2. .
They have two states of polarization, and of course besides two real gravitons
there are virtual gravitons which produce the static force., In this way we
are not only able to quantize the gravitational field, but the theory is in a form .
where, just as in quantum electrodynamics, one can calculate anything. One
might ask what one could possibly calculate with the quantum theory of gravita-
tion, I must say that because the gravitational coupling constant is exceedingly
small, the quantum theory of gravitation certainly can never become as im-
portant as, let us say, quantum electrodynamics, But still, until the gravita-
tional field was quantized, one always wondered whether Einstein's theory was
really the correct theory of gravitation,

There is one very interesting application which has been carried out,
not by me but by Corinaldesi, 15 by using my treatment of quantization of the
gravitational field. He also reported his work in Switzerland at the Inter-
national Conference on Relativity. Using the quantum theory of gravitation, he
considered the mutual scattering of two particles of spin 0. He only considered
the lowest-order diagram in which just one graviton is exchanged between two
particles of spin 0, and thus he obtained the effective potential between these
two particles. Then he worked out the two-body equation of motion using the
two-body potential. It is very interesting to see that although his procedure is
so different from any which has been used before, he was able to obtain exactly
the same two-body equation of motion as obtained by Einstein, Infeld and

16
Hoffmann, This well-known paper of Einstein et al, is extremely difficult
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to read and it contains very laborious calculations. But by using mathematical
techniques, which are entirely different from what they used, one finds that what
they obtained is nothing but the effect of the exchange of one graviton between
two particles of spin 0. There are other problems which one can investigate,
One can show that the gravitational interaction between particles depends on their
spin, and there are some other interesting things. But from a purely experi-
mental point of view, one cannot do much in this line,

This quantum theory of gravitation is not just something which one would
look at only out of curiosity. In fact, it is possible to obtain some extremely im-
portant information out of it, One very interesting point, which I have investi-
gated, is whether it is possible to remove the divergence difficulties in the
quantum theory of gravitation by renormalization, and the answer is that it is
not possible. So, in the interaction of the gravitational field with electrons and
photons it is not possible to remove the divergencies by renormalization, and
this I believe is another strong point against the renormalization theory, It
seems to be only a provisional approach., Further, let us consider the inter-
action of two electrons. Then we know that the gravitational force between two
electrons is very small compared with the electromagnetic force., But it is
easy to show that at exceedingly high energies, which are certainly not of ex-
perimental interest, the gravitational interaction exceeds the electromagnetic
interaction. One could either show this from the quantum theory of gravitation

or one could even see without any calculations, because at very high energies
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the masses of electrons become very large while the electron charge remains .
the same., So it is obvious that in the ultimate solution of the divergence dif- .
ficulties the gravitational field is bound to play an important role. That is,
when ultimately our knowledge becomes clearer about the structure of elementary -
particles and what happens at high energies, the gravitational field certainly can
not be ignored.
But the most interesting thing, at least the thing that seemed to me more
interesting than anything else, is the implications of this work in cosmology.
Cosmology is a branch of knowledge which is so speculative that perhaps many
people will not be interested in it, But still if one would look into the work which
has been done in this line, I think one would find that it is not all that absurd.
One thing which is widely known is that using Einstein's theory of gravitation
it is possible to construct various cosmological models, There is a variety
of these models, and there is a great difference of opinion as to which model is
correct, But if we believe in this quantum theory of gravitation, then two things
come out of it, Firstly, in Einstein's gravitational field one sometimes intro-
duces a cosmological term., Now I have carried out this quantization without
the cosmological term. But if we introduce this term, it becomes meaningless
in the quantum theory of gravitation, At leastI don't know how to handle this
term in the quantum theory of gravitation. It is therefore reasonable to conclude
that the cosmological term must vanish, Secondly, the whole basis of this work
is that space is flat., Therefore, if we accept this quantum theory of gravitation,

then we must also accept the fact that space is flat, It is not curved either with
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negative or positive curvature — it is flat. When we accept the above two facts,

the cosmological model becomes more or less fixed. There are still a few

things which are rather doubtful, for instance the density of matter in the uni-

verse about which various speculations differ widely. But still these two facts

eliminate most of the cosmological models, This is all I wanted to say about

the quantum theory of gravitation, and before I come to the next topic, the

meson theory, I shall be very glad to answer any questions,

Havas: I would like to make a few remarks, No doubt the mathe-
matics of what you have done is quite correct, but the question of the
interpretation of what you have done is something else again., I am
especially talking about the equations of motion of particles in a gravita-
tional field. When you look at the gravitational radiation of particles,
for example, you do not get a sensible answer if you treat the gravita-
tional field as an independent quantity. I think that in the way you pro-
ceed you necessarily treat the gravitational field as an independent
quantity and therefore you do not get the results which are physically
correct. The other thing which I would like to comment on is the inter-
pretation you put on writing things in terms of the flat-space metric.

It is quite true that you can write the Einstein equations in terms of the
flat-space metric, but this does not mean that one has reduced the
Riemannian space to flat space, It is mathematically equivalent, but

says nothing about what the actual metric of that space is.
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Gupta: I shall answer the second question first, When we reduce
the theory to flat space, it is quite true that there is no apparent basis
for deciding whether the space is flat or curved. Now my outlook is that
if we regard the space as flat then we can quantize the field., If we re-
gard the space as curved we cannot quantize it, Therefore, I believe
that the space is flat, If somebody could show me how he can quantize
the gravitational field in the Riemannian space, then I shall say that we
do not know whether the space is flat or curved., ButI think it is now
fairly clear that it is impossible to quantize the gravitational field in
the Riemannian space. It can be quantized only in flat space, and that
is why I say that the space is flat. Coming back to the first thing, there
is a great deal of controversy, and there is a very large number of
papers, Einstein himself has discussed this problem of gravitational
radiation., This is discussed in the book of Landau and Lifschitz, and
several other physicist maintain that there is gravitational radiation.
Rosen at first, at the International Conference in Switzerland, claimed
that this conception of gravitational radiation is incorrect. But a few
months ago he published a letter in the Physical Review in which he has
realized his mistake, and now he claims that he believes in gravitational
radiation, I certainly very much believe in gravitational radiation, and I
have no doubt that slowly everyone will accept that gravitational radiation

can exist just like electromagnetic radiation,
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Havas: I think you misunderstood my objection, I did not say
that there was no gravitational radiation. As a matter of fact, I did
calculate the equations of motion with the radiation reaction in a recent
paper. The point is that, because of the vanishing of the gravitational
dipole radiation, it is impossible to treat the gravitational field as an
independent external field in calculating the emission of gravitational
radiation by a particle,

Gupta: I have looked into your paper, and I very much doubt

that what you have done is correct.

1. J[ MESON THEORY

The next thing I want to discuss is the m meson theory, As everyone
knows, m mesons are pseudoscalar particles and they play a major role in
nuclear forces. However, although physicists have been working for more than
20 years on meson theory, still it is not possible to explain things in a quanti-
tative way. So the first question which a person would ask is that if after 20
years we cannot obtain anything which can be checked quantitatively by experi-
ment, what is the point of working on this nonsense. The answer is that if the
meson theory were something which was not of any practical interest and which
did not have much to do with experiments, by this time people would have grown
tired of it and left it alone, But we know that the problem of nuclear forces and

other associated problems are such that they cannot be put aside. However bad
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the theory may be and even if it takes a hundred years, I am sure that the various .
governments will be prepared to finance research in this line and people will go

on working, Meson theory is one of the most important topics in physics,

and therefore a lot of work is being done on this subject. On the other hand,

mo st of the work which is being done is, I might say, second-rate contribution

to increasing our real knowledge. Therefore, there are only a few things which

I want to discuss, because I really do not know what else to do at present. There

are many difficulties and I could enumerate the difficulties as most people do,

but everyone knows them and so I shall discuss just a few things.

I am sure everyone has heard a great deal about the fixed extended-
source meson theory of Chew and Low, They have concentrated their attention
particularly on pion-nucleon scattering. In their papers they develop a non-
relativistic pseudoscalar meson theory and they neglect the nucleon recoil, and
then by introducing a high~energy cut-off they are able to explain the major
features of the pion-nucleon scattering. Now this theory is very crude, and
they do not claim that even at low energies can they explain the finer features.
The importance of this work lies in the fact that there must be some truth in
the calculations, because they do seem to agree reasonably well with the ob-
servations, But what is the real pseudoscalar meson theory?

First of all, it is obvious that the theory must be relativistic, because
if a person starts with a basic theory which is non-relativistic, then he certainly

is living in the nineteenth century. The one problem, which is extremely
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interesting and on which many papers are written but is still unsolved, is
whether from the relativistic pseudoscalar meson theory it is possible to
derive this '"'static model' by some plausible arguments., I think it is generally
agreed that at the moment it is not possible to do so, There is at the moment
no rigorous derivation of the static model from the relativistic pseudoscalar
meson theory, and I think it is a very important problem if somebody could do
it,

I have confined myself so far to a few basic problems, which I would
like to describe here. One of these problems is the problem of the nuclear
potential, that is we have two nucleons and we want to calculate the nuclear
potential between these two nucleons by using the pseudoscalar meson theory,

I have a great distaste for anything that is not relativistic, unless one could
justify the non-relativistic treatment by using the relativistic equations. This
is a problem on which I must say I have spent a great deal of time, and what I
have done is as follows;

If we use the relativistic pseudoscalar meson theory, then, as one
knows, it is very doubtful that one could apply the perturbation theory to
mesonic interactions, But, what could one do instead of using the perturbation
theory? There are various things which have been suggested, but to me they
seem very unclean and I am not greatly impressed by them. From a purely
logical point of view, I do not find the intermediate coupling or the strong coupling

very appealing. Therefore, one might ask whether by using the relativistic
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pseudoscalar theory and the perturbation theory, one could obtain some kind .
of information about the nuclear potential. In this connection a very interesting
argument was given by Taketani _eia;l_;17 This argument, which is, of course,
not a rigorous one, is that since the nuclear forces are short-range forces, one s
could probably apply the perturbation theory to obtain the nuclear potential ex-
cept in the immediate neighborhood of the nucleons, Then one could introduce

a phenomenological potential for short distances; and the distance which they
have suggested is about one-half of the Compton wavelength of the pion, Up to
this distance one could introduce a phenomenoclogical potential, and beyond this
one could perhaps apply the perturbation theory, According to the above argu-
ment, which might or might not be correct, it is tempting to use the perturba-
tion theory to calculate the nuclear potential between two nucleons at distances
that are larger than a certain distance. Now there are a very large number of
papers on this topic, as you know. Probably the papers of Levy and Klein in

the Physical Review describe the best work that has been done so far. In these
papers, however, they have neglected the recoil of the nucleons, and this neglect
of the recoil is something which is very strange. The situation really is that

if one calculates this problem seriously, thén the integrals that one obtains are
exceedingly complicated., They involve p /M, where u and M are the rest
masses of the meson and the nucleon, respectively, What people essentially

do is to simplify the integrals by putting p/M equal to zero, But|, putting /M
equal to zero amounts to assuming that the mass of the nucleon is infinitely

large in comparison with the mass of the pion, which physically means that
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we are neglecting the recoil of the nucleon., Thus, this phrase ''neglecting the
recoil of the nucleon' has been invented just to justify putting /M equal to
zero in integrals, where there is no mathematical justification for putting it
equal to zero, What I have been doing is that by using relativistic pseudoscalar
meson theory, I have calculated the two-nucleon potential up to the fourth order
as rigorously as is possible without neglecting recoil or anything else. Of course,
this is very tedious work, and it obviously cannot be done without numerical
integrations, The results I have obtained are considerably different from what
Klein has obtained. Moreover, in Klein's paper the fourth-order nuclear
potential does not involve the isotopic spin operators, but my result for the
fourth-order potential does involve the isotopic spin operators. I shall submit
this work for publication in the near future,

I have also carried out another calculation, and I might briefly describe
it. It is well known that in low-energy processes we can take into account the
effect of the anomalous magnetic moment of nucleons by adding to the Lagrangian

density the interaction term

Loge = ~1eleg /4K F L Uy v, ¢, (IIL. 1)

where p is equal to the static value of the anomalous magnetic moment. This
is true, strictly speaking, only in the limit of photon energy tending to zero,
But there are many processes in which the photons have quite appreciable

energy. Then what happens in this case, and how far is it justified to introduce
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a phenomenological term like (III. 1)? Of course, one thing which we can at

once see is that this term cannot be used for photons of arbitrary energy, be-
cause it is well known that this type of interaction cannot be renormalized, In
fact, if we use this term without any discrimination, we can show that at high
energies, which are available in cosmic rays, the interaction between a photon
and nucleon becomes extremely large. So at one time when I was looking into
everything to see whether one could somehow explain the multiple photon pro-
duction to account for the photon shower observed by Schein, I also looked into
this problem. After carrying out some unpleasant calculations, I found that

the anomalous magnetic moment of nucleons begins to decrease so rapidly with
increasing photon energy that at high energies in cosmic rays the effect of the
meson field on nucleon-photon interaction becomes absolutely negligible. In

this way one can see that no photons associated with the additional interaction
produced by the virtual meson field will be emitted by a proton or neutron in
high~ energy nuclear collisions. Of course, it will emit some photons sometimes
because of the same interaction as in quantum electrodynamics. I have described

this work in a paper in the Physical Review.

IV. STRANGE PARTICLES
The work of Gell-Mann and Nishijima on strange particles is very well

known, and their scheme involves the relation

Q =1, + sn+ 5— S5, (Iv.1)
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where Q is the charge of the system in units of e, I, is the third component of
the isotopic spin, n is the number of baryons minus the number of anti-baryons,
and S is the strangeness number, After Gell-Mann and Nishijima, I believe that

the most important work has been done by D'Espagnat and Prentki. They have

published a number of papers, the most important of which is in Nuclear Physics.

This paper contains the mathernatical formulation of the field theory of strange
particles., It is really very beautiful, and I must say that it greatly increased
my respect for the French.

They have given the field theory of the strong interaction of strange
particles, and of course, this theory involves the same difficulty as the w
meson theory, that is, the difficulty of large coupling constants. Otherwise
it is as reasonable as the theory of pion interactions, They have written down
the interaction Liagrangian density, and I don't want to write that down here,

But I will only mention that the interaction of pions and baryons contains four
coupling constants, and the interaction terms for K mesons and baryons contain
four more coupling constants, So the most general form of the strong inter-
action of strange particles contains eight arbitrary coupling constants. I do not
wish to say anything about the speculations on the various possible relations
between these eight coupling constants, At present we don't know whether

they are all equal, or some of them are equal, or what, But, there are several
papers by Schwinger, Gell-Mann and Pais which contain speculations on the pos-
sible connections between these eight coupling constants.

D!Espagnet and Prentki have also suggested that instead of Eq. (IV.1)

19
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it is perhaps a little better to take as the basic relation

Y. (IV. 2)

Of course, Eq. (IV.2) is the same thing as Eq. (IV.1) because Y = n + S. This
quantity Y has been given the name '"hypercharge' by Schwinger. Now in recent
years quite a few particles have been discovered. In fact, people who do not
work in this line think that every day somebody or other comes up with some new
particle and there are all kinds of mesons and hyperons. Then one begins to
feel as if nature has gone crazy and everything has become completely messy.
So why do we have all these particles? Of course, it may take some time be-
fore this mystery is completely cleared up, but there is one extremely interest-
ing fact which I think one ought to know. If we assume thatI, Q and Y in the

relation (IV. 2) can take only the simple values

1
I = 0: E: 1:
Q = 0, #l,
Y = 0, +1, (IV. 3)

Then we obtain the following distinct mathematical possibilities for baryons

and mesons:

Baryons
I =0 Y = 0 A
I-l Y =1 P, n,
T2 Y = -1 R R
+ O -
I =1 Y = 0 5,2, =
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Mesons
I=0 Y =0 ?
o)
1 Y =1 KD, K
T2 Y = -1 K , K
o} -
I=1 Y=0 ‘n‘+,‘n',‘n'

In the above scheme, all the known baryons exactly correspond to all
the distinct mathematical possibilities, Similarly, in the case of mesons,. to
each mathematical possibility there exists a meson, except that no meson
has been observed which corresponds tol =0, Y = 0 and Q = 0, Of course,
you know that the muon is no longer regarded as a meson — it is now called
a lepton, In the interaction of mesons and baryons, there are still several
things which we don't know., First of all, we don't know the relation between
the eight coupling constants, Then we do not know the spins of all of these
particles, although I think there is a general feeling that unless there is some
powerful experimental evidence to the contrary we should just assume that

while all the mesons have spin 0. Another thing

all the baryons have spin —;— ,

which we don't know is the parity of all these particles with respect to each
other. At present one problem which is particularly being investigated is
whether these K mesons behave as scalar or pseudoscalar particles in strong
interactions,

However, the thing which seems to me most intriguing is this missing

meson withI =0, Y = 0and Q = 0. Ihave spent considerable time on this
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missing particle because I think it is certainly a very attractive idea that there .
exists another meson corresponding toI = 0, Y = 0 and Q = 0, which has not
been observed so far. When I looked into various experimental papers and car-
ried out some calculations, it seemed to me that the experimental work does not
rule out the possibility of the existence of this particle. In fact, there is some
evidence that this particle does exist., Of course, because this particle has not
been observed, it is quite obvious that it is highly unstable, But the more I
looked into this problem the more I was surprised to find that as far as we know
the experimental evidence seems to favor the existence of this additional highly
unstable particle rather than to rule out its existence.

One problem which I have investigated in particular is the problem of
pion production in high-energy processes, This work is in the course of pub-
lication in the Physical Review, and in this I have examined the experimental
papers on pion production in high-energy processes to see if they rule out or
favor the existence of this missing particle. We know that this missing particle,
which I have called the p©® meson, is highly unstable, and it is neutral and
identical with its anti-particle, There are also some arguments to show that
it is scalar, Further, we can assume that its mass is greater than twice the
pion mass, so that the pO meson rapidly disintegrates into pions. Now if such
a particle does exist, then what can it do in these high-energy processes? It
is quite obvious that what it can do are the following things: First of all, it will

increase the apparent multiplicity of pions because in addition to m mesons often
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this pO meson will be produced and it will decay into pions. This lifetome of the
pO meson is so short that the whole thing will look like multiple pion production,
Another thing the pO meson will lead to is that it will change the ratio of differ-

ent modes of multiple meson production, because the p©® meson can decay as

- o
pO —~ 1r+ + 7 or 2m |,
but it cannot decay into

1'r++1r°or1r-+1ro.
Further, the pO meson will lead to some angular correlation between pion pairs,
which are produced during apparent multiple pion production,

There are, in fact, a very large number of papers on pion production,
Practically all this work has been carried out at Brookhaven or at the Radiation
Laboratory in California, and a lot of data has been collected., I think the most
important experimental work on this topic is by Shutt et al, I don't think I shall
write down these various references because there is, for instance, a reference
from California which contains 18 names. This is really becoming rather
ridiculous, but these papers are very well known. In all these papers everybody
has pointed out that in all observed processes the multiplicity of pions has been
unexpectedly large. Thus, the pO meson will help in obtaining better agree-
ment between the theoretical and the observed multiplicities.

Now let us consider the processes:

n+p-.n+p+1r++1r- (IV.6)
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and ‘

n+p-.p+p+1ra+1ro. (IV.7)

These are two processes which have been investigated by Shutt et al. Accord-
ing to Fermi's statistical theory, the cross sections for the above processes
should have the ratio 3.3:1, There are, of course, also other theories of pion
production such as the isobar models. By using some of these models the above
ratio can be made a little larger but not too large., What do Shutt and collabor-
ators find experimentally? They have described their work in a rather long
paper, 20 and there are a number of tables in this paper, There is one table,
Table 3, which gives the following information about '"certain'' and 'probable"

events of the type (IV. 6) and (IV.7):

+_- -_0
npw w ppw =«
certain events 86 5
probable events 12 22

You can see for yourself that because they knew that Fermi's statistical theory
gives the ratio 3, 3:1 for the processes (IV. 6) and (IV.7), they have been tempted
to interpret most of the probable events as belonging to the category (IV. 7). This
is like some theoretical physicists who try to adjust the theory to get the experi-
mental results, Anyway, it is quite obvious that the ratio of the events of the
type (IV. 6) and (IV. 7) is much larger than 3, 3:1, If we have this pO meson then

it will contribute fo (IV. 6) but it won't affect the mode of production (IV. 7).
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Thus the p® meson will increase the theoretical ratio of the above processes.
Shutt and his co-workers also find some angular correlation between the pion
pairs in the process (IV, 6), which they are unable to explain by postulating a
meson-meson interaction or some such thing, The p® meson will help in ex-
plaining the angular correlation between some of the pion pairs.

Of course, there are a large number of papers, but I have mentioned
only one because it is more detailed than any other paper. There are many sub-
sequent papers, and there is also the work of the California group on proton-
antiproton annihilation where again they find that the multiplicity is very high.
One can also investigate other consequences of the pO meson, I have investi-
gated its effect on anomalous magnetic moments of the nucleons, and this
particle does help in shifting the theoretical result toward the observed values,
This work is also in the course of publication in the Physical Review,

Another problem which one of my graduate students is investigating is
the effect of the strange particles and the p© meson on electron-neutron inter-
action, In fact, I might say a few words about this problem because consider-
able experimental work on electron-neutron interaction has been done here at
Argonne, If we use the pion theory to calculate the interaction between electron
and neutron, then we can show in general that what the pion field does is to
produce an effective charge around the neutron and it also changes the magnetic
moment of the neutron, Now it has been pointed out by Foldy that if we just

consider the effect on electron-neutron interaction due to the static anomalous



-58-

magnetic moment of the neutron, which we know with very great accuracy, ‘
then the effective potential between the electron and the neutron is quite close

to the experimentally observed electron-neutron potential at low energies. This
me ans that the extended charge of the neutron is negligible, at least for low-
energy electron-neutron scattering, But from the theory one finds that the ex-
tended charge of the neutron is quite large — far larger than any experimental
error. So this is a problem which one does not know what to do about. There
is also some uncertainty in the experimental work on this problem. At least

I hope that at Argonne they will determine the experimental electron-neutron
potential more accurately, I think from an experimental point of view this is

a very important result, and if someone could determine it with very great
accuracy I am sure it would become a standard result in nuclear physics., In
this experiment the lower the energy of the neutron the better, and thus here
one does not need high energies. Of course, you know that high-energy experi-
ments of this type have been done at Stanford and they also find the same thing -
that is, the extended charge of the neutron is unexpectedly small, We have been
looking into this to see whether the pO meson and the strange particles might
reduce the theoretical result for the extended charge of the neutron. But, so
far whatever preliminary work has been done is certainly not very encouraging.
I do not think I shall say any more about these strange particles. But, if there
are any questions I shall be glad to answer them.

Hamermesh: Would you say something about the mechanism by

which the p0 meson and the strange particles might reduce the extended




-59 -

charge of the neutron?

Gupta: The diagrams are quite similar to those for v mesons,
and I calculated it very crudely and it didn't reduce the extended charge.
I suppose it's a nice exercise to work out the thing in complete detail.
But I have very little hope that it will work, So this is a problem for
theoreticians as well as for experimental physicists because one should
know at least the sign of what little extended charge the neutron has,
whether it is positive or negative. I have been completely confused by
the various values given in the experimental papers. I think more work

should be done on this problem.

V. GENERAL PRINCIPLES OF QUANTUM FIELD THEORY

Now I shall say a few words about the general field theory. There is
a problem in the formulation of quantum field theory on which I have been work-
ing for three or four years. In fact, I have never been satisfied with what is
usually done in textbooks, and I have always been very worried about this
problem concerning the basic Lagrangian formulation of quantum field theory,
What is usually done is to follow the work of Heisenberg and Pauli. In their
treatment, which was given around 1930, the Lagrangian density was treated
as a classical quantity., Then they carried out various variations and obtained
various results, and at a later stage they passed over from c-number quantities

to g-number quantities. First of all, it is obvious that this is a very artificial
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procedure in which first one treats something as a classical quantity and later .
on one says that it is an operator. So the really rigorous formulation of field
theory should be based on a Lagrangian density which is a function of operators,
that is, the field quantities should be treated as operators from the very begin-
ning., The Heisenberg-Pauli treatment is not only artificial but when we pass
over from the c-number quantities to the q-number quantities the question arises,
"In which order should we arrange those quantities ?'" Since 1930, of course,
many papers have been written on this subject, and probably you are familiar
with the series of papers by Schwinger — there are about half a dozen of them,
He starts with a Lagrangian density which is a function of operators, and es-
sentially what he does is to manipulate various things, arrange various orders
of operators and work out the variations, and then the whole treatment becomes
extremely complicated. I have been working on this problem for several years,
In fact, since I am writing a book on the quantum theory of fields, this problem
was really a headache for me because unless this thing is cleared up one can-
not write a systematic account of field theory. I have published a paper in the
Physical Review 21 on this subject in which I believe that I have solved this
problem, The resulting formalism is not very difficult, and there are a number
of things which come out of it, In fact, there are a number of things which are
so beautiful that I definitely feel I am on the right track. I won't describe the

ma thematical details but I shall just mention what I have done,
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I started from a Lagrangian density which is an ordered product, that is,

2

:L:=:L(u(r) Bu(r)/axu):. (v.1)

If there were no interaction it would be easy to define an ordered product as
Wick has done. But we are starting from a general Lagrangian density which
contains interaction, and there one cannot split in a Lorentz covariant way all
the field operators into positive and negative frequency parts. Therefore, there
is no simple way in which one could define the ordered product in (V. 1) because
one does not even know the commutation relations in the very beginning of the
formalism, The way I avoided this difficulty is described in the paper. What

I did was that first I postulated a number of properties of the ordered product
and with the help of those properties it is possible to work out the whole formal-
ism. Then one passes over from the Heisenberg representation to the inter-
action representation, and in the interaction representation one identifies

these ordered products with those defined by Wick, When one has done all

this, the resulting formalism is completely free from any ambiguity, and one
never uses any c-numbers anywhere. Moreover, in this formalism the zero-
point energy of the fields automatically vanishes, and the zero-point charge
also vanishes, Thus, in this formalism everything becomes simpler, and
there is no need to introduce the charge-conjugate operators because charge
conjugation is ensured automatically in a more compact form. In fact, in the

usual charge conjugation procedure the zero-point charge of the original field
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is destroyed by the zero-point charge of the charge-conjugate field. But this .
does not change the zero-point energy because even when we reverse the roles
of electrons and positrons the zero-point energy remains the same, Therefore,
charge conjugation can remove only the zero-point charge, but the present for- .
malism removes the zero-point charge and also the zero-point energy. Another
thing which comes out is that in this formalism all the interaction terms are
ordered products, and it follows from a theorem due to Wick that we must always
ignore all those diagrams in which lines from the same vertex are joined to each
other. Some people call them 'tadpole''-type diagrams. This treatment shows
that whatever the field may be, we must ignore the tadpole-type diagrams, This
information is particularly useful for non-linear interactions. I must say I am
very proud of this work because I think this thing was never done properly before.
Another topic about which I might make some comments are particles
of spin higher than 1, One question which has often been asked is, '"Can particles
of spin higher than 1 exist in nature?' As you probably know, there are various
theories of these particles of higher spins. In some the rest mass has more
than one value, and some contain particles of both negative and positive energies,
But, I think the most sensible work on this subject is due to Fierz and Pauli,
When I was looking into these theories of particles of large spin, I was told that
Fierz believed that these fields of large spin probably could not be quantized
in a physically meaningful way. In fact, Fierz and Pauli have given the
Lagrangian formalism and they have given the field equations, but they did not

quantize the field. Therefore, partly because there has been so much talk that
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some of these strange particles in cosmic rays might have large spins, and
partly because of mathematical curiosity I spent some time on the quantization
of a field of spin 3/2 according to the Fierz-Pauli work, In this paper, which I
published in the Physical Review, a2 what I find is this: If we develop the theory
of spin 3/2, we can do everything starting with the Lagrangian formalism., We
can quantize the field, obtain the commutation relations, and write down the con-
tributions of various diagrams. The only difference is that the matrices in-
volved are very complicated compared with the Dirac matrices., They are

16 X 16 matrices for spin 3/2, but there is no difficulty of negative energy, and
it is not necessary to use any supplementary conditions, The theory is, of
course, tougher than that for particles of spin 1/2, but that does not mean that
such particles should not exist, On the other hand, I investigated whether the
electromagnetic interaction of particles of spin 3/2 can be renormalized, and

I found that the divergencies are very, very bad in this case, So, as one goes
to higher spins the divergencies become worse and worse, and if one very
strongly believes in the renormalization theory then one could rule out these
particles, But then we know that according to Einstein's theory of gravitation
the gravitons have spin 2, Therefore, what I would say finally is that one can-
not give any clear argument to show whether these particles should or should
not exist in nature. But one thing is certain — if somebody discovers a particle
of spin 3/2, then it will be a most unpleasant task to carry out calculations for

such a particle. I shall certainly feel very unhappy because these matrices which
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appear in the theory of spin 3/2 are extremely difficult to handle, Maybe then ‘
people will have to write theoretical papers in which there will be 18 names or

so just as they do in experimental papers from California,

V. FUTURE OUTLOOK

Finally I want to say a few things about the future outlook, It is very
difficult to say, of course, what we can expect in the future in this field, butI
think there are a few things which seem fairly clear.

Some people have compared the' present situation to the situation which
existed when quantum mechanics was being developed. I do not think it is a
fair comparison because at the momeht we do understand most things in a
qualitative way, But when quantum mechanics was being formulated one just
could not explain even in a qualitative way how, for instance, one could have a
stable hydrogen atom within the framework of classical mechanics, At present
I don't think there are many mysteries which are completely obscure and where
one does not even know what is happening. I think we have a reasonable idea
of what is happening in various processes, but it is the quantitative treatment
that is still lacking. This trouble is largely caused by strong interactions,
and I have very little hope that anybody can really give some method of cal-
culation which can be applied reasonably well to strong interactions., To me it
seems that one can expect some more real progress in quantum electrodynamics
or weak interactions. But in strong interactions I have the feeling that people

will resort more and more to various models, which is, of course, not very
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. satisfying from an intellectual point of view,.

One trouble these days is that there are various laboratories which have
very expensive apparatus and have to carry out some observations, and in fact
one can learn. about unknown things only in this way. Then they want theoreticians
to do something on what they are doing. So the situation seems to be that many

experimental people who have tremendous amounts of money at their disposal
expect the theoretical people to give some theory whether it makes any sense or
not from a logical point of view, They want something to compare their results
with — statistical model, isobar model, static model, or some other model.
This tendency is bound to increase more and more, and fewer and fewer physicists
will work on the fundamental problems. The universities and research insti-
tutes will become like industrial establishments in which more and more papers
will describe the joint works of a large number of authors, Another thing which
is definitely happening in the United States is that there is a growing feeling in
the minds of the general public that they must try their best to maintain their
supremacy in the scientific field., So I suppose people will be prepared to spend
more and more money for scientific research, and I have no doubt that the
salaries of scientists are bound to increase all over the United States, There-
fore, perhaps one can say that in the future the life of a physicist will be very
comfortable and very boring.

Hamermesh: I would like to thank Professor Gupta for a very

interesting series of lectures,
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Naive Inquiries into Field Theory

M. Dresden, Northwestern University, Evanston, Illinois

Lecture 1,

Since the most successful field theory is undoubtedly quantum electro-
dynamics, it seems sensible to study the successes and failures of that theory
before attempting any wholesale extrapolation of the theory into a different do-
main, The procedure in quantum electrodynamics is well known and only a very
brief sketch will be given, just enough to phrase some questions which might be
pertinent.

a) INTRODUCTION

One always starts out from field equations derived from a Lagrangian
or Hamiltonian. One may separate L. = L, + L, + Lint,, , where L, and L, are
free (non-interacting fields), and Lint is the interaction term. Objectionable
as this procedure may be from a mathematical standpoint, it should be stressed
that nonetheless the existence and form of the coupling term is definitely de-
manded by experiment; for instance, (j * A).

The free fields are described in terms of field operators. These opera-
tors satisfy certain field equations, the Dirac and Maxwell equations. Since
these field operators are operators, they are to act on certain objects. The state

of the system also must be expressed in a certain manner. In nonrelativistic

quantum theory, the states correspond to vectors in a Hilbert space., This
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Hilbert space has a (countable) base {cbk}. Any physical state can be expres- .
sed as a combination of ¢ 's by the equation .
[v>= ), e | o>,
k
where | > is an element of A .

Now when dealing with a field theory, one deals with a system with an
infinite number of degrees of freedom, e.g., a free radiation field may be
thought of as a collection of an infinite set of harmonic oscillators. In quantum
theory, the states of each one of these oscillators would be described in a
Hilbert space. Take the direct product of all these Hilbert spaces. This again
is a Hilbert space. The state of the system is now determined by a vector in
that Hilbert space, called D. Physically D is very reasonable; the basic states
indicate the number of particles in state 1, state s, ... . Hence a state is des-
cribed in terms of an infinite sequence {0, 1, ... 0, s ... }. The number of
such infinite sequences is non-denumerable (it would include all real numbers,
for instance) — this is a non-separable Hilbert space, many frequently used
mathematical theorems are not true. It is possible for the case of non-
interacting fields to describe the state in a separable Hilbert space F, the
Fock space. Let 7‘/ as before be a Hilbert space., Now consider a state
P (x) in }/ . Now construct & ® W , the tensor product of & and y 7
This is a space whose elements are two-particle states, the operators acting

in 3/(2) are H, +H,. In this manner construct a space z/ (n) = ﬁx/@ 791@“.@;/.
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If {6, } are a base inﬁ/ , then the sequences {¢, }, {6, , ¢, }, - {d, "¢, }
k kl kj_ kz k1 kn

(finite n) are a base in Y. (n)‘

Now form the sum space (€ symbol, not the symbol & that is used for

a product) by

r-ANe #E) B ..our@...

The spaces in the direct sum are orthogonal to one another, an element in
7&/ (2) . . . (n) .
has nothing to do with an element in & '/, An element of F consists of
1 2
a collection; an element inﬁ ( >, one in W( ), *** , etc,, or written

symbolically an element of F is

The basis vectors would be

0
0 b (x)
. . 0
. g%, %, X )
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The Fock space F has a countable basis, Unfortunately, there appears to be .
no simple way to utilize the description of the Fock space to describe interact-
ing systems. For point interactions one can not maintain a description in the
Fock spaces. Specifically as shown by Cook 1 if the free fields are represented
by elements in Hilbert space F, and F, respectively, the interaction operator

Hint is an operator on F;, & F,. One now proves that if the equation

H, = ffA(xl x.) H(x,,x,) dx, dx,
-1
(where f is a form factor and A indicates the range of the non-local inter-
action) has a limit, say H , then there is in fact no interaction so H =10,
0 00
The proof indicates 1) either the space F, X} F, is too small for the descrip-
tion of interacting fields (it is included in D), or 2) the limit H does not exist,
0
or 3) one should not take the limit in the first place. (This type of result also .
2
has been obtained by Landau et al. ) In spite of this questionable start, let us

now consider formal quantum electrodynamics, and later return to the prob-

lematic aspects of the subject.

b) FORMAL THEORY3

One starts from an interaction Hamiltonian (le' AH) = H. The temporal
development of a system of electrons and photons is described by an operator
S which describes the behavior from T = - to T = +w. Actually the precise
mathematical theory of the S operator is also not known. It must be defined

in a limiting sense, because a transition operator U(r,, 7,) for finite times
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may not exist; this adds to the difficulties, U satisfies the equation of motion

. dU
i 37 =H(ry 75) Ulr, 75) (1)
or
T
U (7, 'TO):l—ide'H('rl'To)U(Tl'To) (1a)
To
Put Tg = -0, then U(1) = U(T, -o0) so
. T
U= LUn; U_=-i fH(’T')Un_ (r"ydr:'.
= Q0
Define S = lim U(r) so
T —=+=-00
0
s= ) 5™ (2)
n=0
where
n +o0
s L e [ ar ceear P {H(r ) H(r))
’ =0
H=ieJ y" ¢ A (x) (3)

The time-ordered product P can now be expressed in terms of Wick normal
products and commutators. The commutators always depend on (in fact are)
We will need the Fourier

the Green's functions of the free-~field equations,

transforms of these functions (usually called propagators):
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. 1
Photon field: D(k) = T (4a) .
. ) _ i -m M
Electron field: S(p) = mg /# - p}.l. Y . (4b)

The diagrams below represent the iteration series in a graphical form. [ Recall
one integrates over an internal line fd4 k or fd‘?r p; and each such line con-
tributes an integrand D(k) or S(p). ] The point is now that in the iteration solution
one has several kinds of divergencies. Some can be seen by inspection. As an

example, consider the vacuum fluctuation diagram shown in Fig. 1.

Fig. 1. Vacuum fluctuation.

For this situation,

~ 4 4 4 = 8 k2
Jatp [asp' [aek5(p)S(p) D(K) = [dp [dp' [dk (pp)2 kS —s .
This expression diverges; such disconnected diagrams are always left out,
There are other divergencies in the iteration solution. One of these is
represented graphically by the ''closed loop diagrams', An appeal to invariance
considerations (gauge invariance, for example) allows one to omit these graphs.

Another type divergence is the infrared divergence. If an electron is scattered
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' in an outside field (see Fig. 2), the same process but with a photon emitted

(Fig. 3) diverges as w - 0,

P ettt
\
Fig. 2. Electron scattered Fig, 3. Same as in Fig. 2
in an outside field. except that a photon is emit-

ted,

This type of divergence, analyzed in great detail by Jauch & Rohrlich, 3 and
also by Brown & Feynman4 will be discussed a little later.

None of these omissions appear to have observable consequences. How-
ever there are experimental consequences resulting from other divergent dia-

grams, namely the electron self energy, the vacuum polarization, and the

vertex parts (Fig. 4).

5 /
(a) (b) (c)

Fig. 4. (a) The electron self energy. (b) The vacuum polarization.
(¢} The vertex parts.

The way in which one treats these divergencies is also well known. One

first formally calculates the effect of a self-energy insertion in an internal line,
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This replaces S(p) by S'(p), where ‘
S'(p) = S(p) + S(p) =(p) S(p) (5a)
Z(p) =(—zi;eiT [ a* ey f%gﬁ— v . (5b)
+

/
Fig. 5. OI?Zrator S'is the sum
of two terms represented by
diagrams,

2
The S-operator is altered by S( ) = -i fcb (p) Z(p) ¢ (p) d*p. The insertions in

external lines may be computed similarly., Now the point is simply that Z(p)
[ given by Eq, (5b)] is divergent, Divergent integrals also occur when one in-

serts a vacuum polarization term in a photon line, In the latter case

D'(k) = D(k) + D(k) J] (k) D(k).

Fig, 6. Vacuum polarization term
inserted in a photon line.

These integrals always diverge as k, p - » (sometimes also at k — 0).
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Now we formally manipulate these expressions to obtain them in the form
Z(p)=A+(ip+m)B + (ip'+ m)2 Zf (6)
I/ (k2) = k2 (-C + k2 77'f (k2). (7

Here A and B and C are divergent entities of the form

3a M 1
a 1 dx 11 M
B:ZF—(D-4I?+7) D~2log = ~1.
0

An infrared divergence appears here but ¥, and TTf' are finite,

f
The remarkable feature is now that these divergent constants always

occur in such a manner as to combine with the mass m, the charge e, or the

normalization constant of the wave functions. '"They know their proper place

)

2
in the formalism.," One sees from Eq. (6) for example that S( has (for free

particles) the form

sV 2 LA [F(p) o (p) dtp = -iA [Tix) g(x) @t x .

Since A is of order a, this is exactly the correction to S (in first order) of
adding a term 6 m f Y(x) Y(x) to the Hamiltonian, Hence the diagram of
Fig, 4(a) only alters the mass of a free electron. The infinite constant is
combined with m in the form m + A = mexp’ the experimental mass (which is
finite), The symbol m as used before was thus meaningless, giving the whole

development a somewhat ethereal character, although the final answer contains
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the experimental mass and charge only and no arbitrary constants., The con- .

sistency of the whole procedure — it works in all orders, it maintains the
unitary character of S, it retains the invariance properties of S — all have been
formally checked.
Suppose one has a diagram with n corners, Ei internal electron lines,
P, internal photon lines, E electron lines, and P photon lines, Then in
1 ext ext
the integration one has n § -functions giving (n-1) relations between the inte-

gration variables. The number p of independent 4-vectors is
p=E +P -N+1. (8)

There are thus 4p integrations to be performed. A primitively divergent

graph is one which is divergent but becomes convergent if one integration over
a 4-vector is omitted (or it is convergent if one 4-vector is kept fixed).

By counting the number of integrations, using the explicit form of S
and D, one can easily decide whether an integral diverges or converges. De-
fine the degree of divergence by

k = Ei+2Pi—4n+4. (9)

Ifk=0, 1, 2, -°+, one has a logarithmic, etc., divergence. If k is negative,

3 2 >

one has a convergent integral. The crucial point is now that k is independent

of n, because
k=4 2 (E +P) (10)
- 2 e e’

Thus, since k is to be positive for a divergent graph, the number of divergent




-77-

graphs is finite, This means the theory is renormalizable., One must properly
separate out all infinite terms, identify e + B and m + A with the observed mass

and charge; then the remaining finite terms should be observable,

c) COMPARISON WITH EXPERIMENTS

It is clear from the graphs that there should be corrections of order a

and also a2, etc., to the magnetic moment of the electron. After initially not

quite accurate experiments --- and (fortunately) equally inaccurate calculations -

the theory and experiment now appear to check to order a2.

1. Contribution to the anomalous magnetic moment of the electron, —

Mo a a2

!
Fig. 7. The first three contributions to the magnetic moment,

2
. (1+2—‘;- - 2.973 %5 Jwg =  1.0011454 p Karpus & Kroll
" = (1.001146 £ 0. 0000 12)
exp Koenig-Prodall
& Kusch
b exp = (1.001167 + 0.000005) Harvard
M = (1.0011596) Summerfield
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observed

The diagrams are of 2 kinds.
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2 2

Pie = S

1/2

level separation in H and D. -

The electrons are now of course bound electrons,

Fig, 8.

(a)

Lamb shift,

/

(b)

(a) Fluctuation,

proton line

{

|

il

(b) Vacuum polarization

3

l Fig. 9.

Energy level diagram for the Lamb shift.

\

\

“S1/e

L 1039=51+1015-27 vacuum polariza-

N PPy g

~

tion term

magnetic moment

+ 4

AEth =

AE =
exp

1052.14 + 0.08

1057.19 + 0.2

1057.77 + 0.1

(Mc/sec)
(Mc/sec)

(Mc/sec)

(a)

a2

The actual calculation of the Lamb shift is quite nasty, there are several

delicate computational questions to be analyzed, such as the kind of intermediate

states to be used in the perturbation calculation.

Still the best calculation differs
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from the experimental value by only 0.5 of a megacycle. This difference has not

yet been explained.

3. Radiative correction to the hyperfine structure separation . — One

finds radiative corrections to the energy levels of the electron in the field of

nuclear spin, The expression is

4 m?2 a 32za2 5 3
——— . ) - ! - 2 (= 1 2 —
6 E 3 pe(p.p S) — (Za) [l+2_rr — Za (‘2 og )][1+ZZ]
proton moment magnetic moment correction

(11)
One actually uses Eq. (11) to calculate a. One also may calculate the

ratio Rexp of these corrections for 2s and 1ls levels. One finds

—

. SE(@2s) [ 1.000 034 6+ 0.000 000 3] for H
exp 6 E(ls) ~

8
g[ 1.000 034 2 +0.000 000 3] for D

Within experimental error, the values are the same for H and D. On the other
hand

(%(1.000 033 3) to a2

_ )
Rth A

%(1.000 035 4) to a3

This question is not yet settled. Again there is a small unexplained difference

between theory and experiment.

. . 5 ..
4, Positronium. — Here one wants to calculate the radiative effects on

the 25-1S5 level splitting; so one needs the radiative corrections which affect the
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exchange
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(lifetime) ¢
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and vacuum polarization.
Fig. 10, Processes contributing to the 3S - 1S level splitting, The net effect is
2.0 44 x 105 Mc/sec a4t

AW =

th 2,0 337 x 105 Mc/sec as
AW =(2.0 335 £ 0.0 003) x 105 Mc/sec




-81-
1S state differently from the 8S state. The diagrams in Fig. 10 all give such
contributions. The energy differences are what is written down. (One should
remember that a factor a2 comes from the Rydberg constant in the energy ex-
pression,) The agreement between theory (including many terms, all of com-
parable magnitude) and experiment, is certainly impressive.

5. The p-p scattering., — The scattering cross section ¢ (6 ) for p-p

scattering has been measured with accuracy up to 0, 2% in a range from 0.8 to

2 Mev, These data have been compared with theoretical calculations. Using
6

a) nuclear s wave scattering, b) the Coulomb phase shifts (all), and c) the

vacuum -polarization potential given by Vp in the expression

e 00 1/2

e
V(r) = —— [1+-§-:- [ ag e T (14 ((gz’”)]zv

T i zgz) £2 Vo

coulomb+ )

Y

P
S

P | e Vc:oulomb

e T

Fig. 11. The Coulomb potential and vacuum -
polarization potential,

The potential Vp produces effects of 0.7 — 0.5% in ¢(6). This now fits the data
within 0, 2%, without this correction there are definite, angle-dependent devia-
tions between the theory and experiment. Thus the use of Vp from the vacuum
polarization certainly improves the fit. This again argues strongly for the reality

of radiative effects.



-82-

Lecture 2,

d) QUESTIONS ABQUT QUANTUM ELECTRODYNAMICS

Today I would like to formulate some questions and perhaps suggest
some possible courses of action which one might take in connection with problems
of field theory., I reviewed last time some of the features of quantum electro-
dynamics and I will not do that again, except to remind you of the remarkable
agreement which exists between theory and experiment. Once one has somehow
gotten used to the fact that in the theory certain infinite entities appear which
have to be treated in a particular way, they no longer cause trouble.

Let me now state a few questions. They are not in any particular order,
but are more or less in the order in which I thought of them. I should perhaps
say this, that I have attempted to collect all the questions which are of mathe-
matical character, so they will be coming in a little while., Also I would like
to point out that if you have any questions, naive or not, not only I but Hans
and everybody would be pleased to have these incorporated so that we get here
a representative cross section of what at least some naive people think of

quantum electrodynamics.

The first question, a naive one, is the
/(/ following: If you look at integrals which
diverge in quantum electrodynamics, you

will find universally that what we call the

Fig. 12. Scattering of an

. : . the ''serious diverpgencies!' always occur
electron in an outside field. g ¥

for large values of the integration variable.
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Let me remind you that these integrations always occur because one performs
integrations over the momentum variables of the internal lines. So if I have a
particular kind of a diagram (say a scattering) of an electron in an outside field,
and I put a radiative reaction in there, I have to integrate over the momentum of
this photon, and it is this integration which diverges at the upper end of the
limits of integration. This is fairly universally the case, There are divergencies
which occur at zero. (I will say something about them later.) Now, you might
in fact say: Well look, if these divergencies occur for large values of the
integration variable (for large momenta which is the same as large energies),
why do we not just say that quantum electrodynamics does not apply when deal-
ing with high energies? After all it is in principle possible to create electro-
magnetically a mu-meson if I have an energetic enough photon, Near a nucleus,
the law of conservation energy allows the creation of a meson pair., This
clearly cannot be a consequence of the theory so far developed. Consequently,
what's all the fuss about? Why don't I just cut off at a value which corresponds
to an energy which is the rest energy of the mu-meson, and call it a day? So
let me just say ''cut-off",

I would like to hear some discussion about this, You can, of course,
make such a cut-off in a relativistically invariant way. You have your choice
of form factors so that integrals look nice and invariant. The renormalization
scheme is then only necessary because quantum electrodynamics is not a closed
theory. Other particles have electrical charge, they will be created, and that

is outside quantum electrodynamics., All the divergent integrals will be finite
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and all you have to worry about are certain integrals which diverge at the zero '
value of the integration variables, but these are always typically different in
character and can normally be removed. Then you accept that quantum electro-
dynamics takes into account part of the electrodynamic phenomena, but not all.
The mesons are outside of it and we have to do as well as we can with meson
theory starting from scratch. I wonder if any of you have any objections in
principle or in practice on this general matter.
Moldauer: Is it so difficult to do electrodynamics with mu-mesons —
a theory with two types of particles? Asymptotically you only have electrons ?
Dresden: No, I believe not. But the point is that I do not get it
out of the original postulate of the theory. IfI write down quantum electro-
dynamics the way we have done it, the existence of the mu-meson does
not follow,
Sunakawa: I think that if one puts in a cut-off the result is
not gauge invariant, This was demonstrated by us to fourth order using
a perturbation calculation,
Dresden: I can certainly introduce quantum electrodynamics
with a finite mass for the photon, in which case it is not gauge invariant
anyhow — I can make a cut-off here. Now I will define the limiting
procedure, in which I have two limits to take. I have to let the photon
mass go to zero, I have to let the cut-off go to infinity, and I can do it

in such a way that I end up with what we normally have.
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May I add one of my objections? I want to point out that even
with a cut-off it must be remembered that one still must renormalize
because the renormalization tells you something about the fact that
masses with which you deal are not the masses which you originally
thought you had. What a cut-off will do is not to remove renormaliza-
tion, but only to remove an infinite renormalization. And this particular
feature of quantum electrodynamics (which to me is one of the ugliest)
is that the entities initially occurring in your equations, say in the free-
particle equation, are not the same entities which occur once you have
coupled this equation, This I think is a very crucial feature, that in
any theory in which you have fields interacting with other fields one has
to renormalize. To give you a very simple example, if I have an electron
which interacts not with electromagnetic waves but with lattice waves,

I have to renormalize the electron mass in that case also. That happens
to be a finite renormalization rather than an infinite one. So I would
say that the cut-off theory, although not manifestly terrible, is still

not satisfactory, Suppose I want to construct a field theory, not of
electrons and photons but a field theory of m mesons. We pattern that
after the field theory we have of electrons or photons, Now if a cut-off
is an essential feature of that theory then we would have to cut the w
meson theory off somewhere also, say at the mass of the K meson., I
think that is a very unsatisfactory situation — that each theory would

have to be cut off in this particular manner. I want to stress this point
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particularly — that even though field theory, so to say, has been born .
by imitating electrodynamics, this may very well have been a completely
misdirected guess. I don't think it is likely, but it can be. It is not at
all evident a priori that other field theories must be formally or physical-
ly similar to electrodynamics,

Ekstein: I believe the most obvious objection against this as a
physical theory is that it is not deductive. If one wants to make up a
number of recipes as far as they are successful, there are no objections
against the recipe with or without infinite cut-off. When you write down
a cut-off are you talking about a deductive procedure or a set of recipes?

Dresden: Quantum electrodynamics does not predict the existence
of mu-mesons — there the theory is false or incomplete. So this is my
argument for saying that one might cut off at the mu-meson mass,

Sunakawa: If we calculate the S matrix with cut-off in 4th order,
one can not keep both an invariant form factor and gauge invariance,

Dresden: This is a different point although related to something
I will discuss later, namely one can not construct a non-local theory
satisfying these requirements: a) relativistic invariance, b) gauge
invariance, c) causality. I think this is what you are saying — you
have verified this impossibility for this fourth order calculation.

Ekstein: Is not a general answer to this and all following

questions that any recipe is good if it leads to the desired result?
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Dresden: No, Not all recipes are possible, In fact the pre-
scriptions in quantum electrodynamics are quite unique. So it is cer-
atinly sensible to investigate reformulations and modifications to see
whether one may arrive at a deeper understanding of these rules., Itis
surprising how small a freedom one has in altering the set of rules,
while keeping agreement with experiment, This is the reason, I believe,
for having some faith that these arbitrary rules have some sense —
certainly much beyond their derivation,

Kaplan: Why are you worried about this cut-off? You are not
worried about this for quantum electrodynamics, are you? I mean, when
one works with quantum electrodynamics and calculates all the things
you have listed, one has at the end stage these cut-off terms which some-
how completely disappear, is this true in all calculations?

Dresden: Yes, The cut-off terms are perfectly apparent,

Kaplan: Is there not some logarithmic term ?

Dresden: The logarithm you talk about is, I believe, an infra
red divergence.

Peshkin: It is a perfectly finite term and one which is pre-
sumably small, It depends on the square of the electron mass divided
by the square of the cut-off,

Kaplan: I was under the impression that in the Lamb shift there
is a term which is cut-off dependent and which does not go to zero in the

limit as the cut-off goes to infinity.
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Dresden: No, There are two terms you must think of, I know
now where the confusion comes from, If you do the Lamb shift non-
relativistically there is a cut-off at the lower limit. That is because there
you do not take into account the fact that the electron is bound. If you do
it relativistically this term does not occur; but if you do it relativistically
there is still a cut-off dependent term which is, however, of the type m/k
where m is the electron mass and k is the cut-off., If k goes to infinity
that term gives no trouble, So the one which I originally thought you
mentioned is this non-relativistic term which comes from the fact that
we have not taken the fact of the binding into account properly.

Let me talk about the infra red divergence. Once in a while you get
divergencies which stem from the fact that the lower limit of the integration is
zero, These terms arise in a very curious fashion., Suppose I have an electron

which is scattered in an outside field (Fig. 13). You can calculate process (a).

_/
1 .
///
MW»< P v o
\. ~
r’ .
(b) (c

(2) )

Fig., 13. Electron scattered in an outside field. (a) or (c) without radiation;
(b) with emission of a soft photon,

Suppose now that I calculate a process (b), one in which also a soft photon is

emitted. Now of course these two are physically different processes, I can ask
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for the cross section of this particular process (for the scattering of an electron
in an outside field with the emission of a photon), IfI calculate this matrix
element the result is divergent — it is logarithmically divergent, Integrals

of the type fd(.o /w occur, and at 0 frequency they diverge. These divergencies
are normally classed as ''not serious' for a very amusing reason., The order of
process (a) is a. The radiative reaction (c) is always added to it. By the way,
if I calculate this particular process the contribution due to the photon line also
diverges, Therefore, (b) diverges as does (c). Now it has actually been shown
by numerous people, first by Brown and Feynman and then in a bit more official
way by Jauch and Rohrlich, that the divergence of order a4 in the cross section
given by the square of the absolute value of the sum of the contributions from
diagrams (a) and (c) of Fig. 13 cancels the a4 terms in the cross section from
(b). This cancellation occurs in all orders, I am quoting here what everybody
else says; everybody demonstrates this for the second order and says it clearly
goes the same in all orders. I have not checked it so I want it understood that
this is only a quotation.

Now the reason I think this is an amusing point lies in the fact that here
you have an example of a divergence caused by the iteration procedure. The
total result if I take the whole series into account is not divergent at all, The
divergence arises from the very clumsy and unphysical way in which I separated
off the physical processes and the radiative effects.

I cannot really talk about the single process — I must talk about all of

them. Doing that I get a perfectly finite result, So the moral I want to draw is
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essentially '"down with the iteration solution', It's a bad way of describing a .
physical process, but I want to contrast this statement imme diately with what I

talked to you about last time, namely vacuum polarization, The vacuum polar-

ization as you know was suggested by the form of the iteration solutions; it is .
in fact a consequence of it., Now vacuum polarization is a perfectly possible
effect; and as I pointed out to you before, it contributes a certain amount to the
Lamb shift, it is perhaps directly observable in proton-proton scattering, and
it is an effect of significance in positron annihilation. The problem which I now
raise is really this: It appears to me thatl am to draw two different morals,
The one is that the processes obtained from the iteration solution appear to have
a certain amount of objective validity, vacuum polarization, for example. On
the other hand, if I make the separation in terms of radiative effects I appear

to arrive at very unphysical and unrealistic divergencies as in the infrared
problem. You might say, '"So what?' Part of the discussion is right and the
other part is not very good. I just want to mention it because it personally
gives me an uncomfortable feeling that the same argument which I like, the
diagramatic analysis which yields the classification of processes, works so
well and gives me such a good physical understanding in one situation and in
another it messes up the works in giving you a divergence, I have nothing more
to say about this except that I know that traditionally whenever I mention infra-
red divergencies — Murray wants to say something, so go ahead and say it,

Murray.




-91-

Peshkin: Well, I am somewhat embarrassed because I agree
with what you said. Maybe I should be the devil's disciple anyway and
say that the thing which you have referred to here, perhaps is not so
much the fault of the iteration solution as of the way in which one inter-
prets the time-dependent perturbation theory. Here you have two phen-
omena which are in a certain sense physically distinguishable from each
other., On the other hand, you can really only distinguish them in principle
by an experiment in which you wait a real long time, Somehow in the
perturbation theory you always have to assume that you don't wait too
long a time.

Dresden: Yes, this is quite correct. Let me add a third point.
This particular scheme — this set of rules — has a restricted validity.
It works in quantum electrodynamics, It works also in certain meson
theories, It does not work in others and this is really the basis of my
question: Is there any deep significance in the circumstance that re-
normalization works for pseudo-scalar meson theory, and for quantum
electrodynamics, but does not work for vector coupling, for derivative
coupling, and (perhaps most interesting) it does not work at all for any
coupling when one deals with particles of higher spin? Whether one
takes this seriously or not depends very much, it seems to me, on the
kind of validity one asscribes to these arbitrary rules we just described.

There is a very well known book by Schweber and Hoffman where this
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is stated explicitly — it is fortunate that most theories are not renor- .
malizable because that means you can throw them away. There the
principle of renormalizability is taken as a major principle in the des-
cription of nature.

Let me now talk about a few mathematical matters, The first question
which, I think, is an important one, is this: Is there any compelling reason to
demand that the states of the system can be put in one-to-one correspondence
with the vectors of a Hilbert space? This condition, to my knowledge, is never
relaxed,

Ekstein: Is this supposed to be a one-to-one correspondence ?

Each vector in Hilbert space corresponds to a single state ?

Dresden: Presumably so, this is a much discussed question

(of Einstein, Podolsky, Rosen). I would just like to mention that all

the mathematical discussions say that the underlying space in which

the physical state is to be represented is a Hilbert space.

There is some relation between the vectors of the Hilbert space and
the states of the system. This, of course, is always done in non-relativistic
quantum mechanics, It is also always done, to the best of my knowledge, in
field theory. Why this is done I am not so sure. Asking the question is, of
course, very cheap because immediately you can say that if you do not assume
that then you must make some kind of assumption about the manifold of physical
states. You must say something about it and if it is not Hilbert space then what

is it?
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It is possible to give a distribution theoretic formulation of certain
aspects of quantum electrodynamics, In this formulation the basic entities
are operator valued distributions., A distribution is a continuous linear functional
on a space D of test functions ¢; or, stated in less fancy form, a distribution
associates in some manner a number with each function ¢, The test functions

¢ are infinitely differentiable, they vanish outside a compact set., As an example,

T (d) = £(x) ¢ (x) dx

is a distribution.

Derivatives of distributions, defined by Tf' = = Tf (%i;) always exist,

It is not possible in general to multiply distributions. (This corresponds to the
fact that the product of two integrable functions is not necessarily integrable).
By using distributions, one may give a more precise formulation of field theory.
The statement that a field operator (¢ ) is an ''operator valued distribution"
means that (¥, ¢(¢ ) ¥) is a distribution where ¥ is a vector in the underlying
Hilbert space. The fact that products of distributions are not necessarily dis-
tributions, can be seen from the fact that (¥, jp. (¢ )jv {(¢) ¥, ) for scalar fields

[ (jH (¢)) is the current operator jp (d) = fd3 xjp (x) ¢ (x)] still diverges., At one
time I thought that the test functions were related to the non-relativistic wave
functions of the measuring instruments, The measurement, so to say, produces
a non-locality in the fields., Even though this is a beautiful formalism, I could
never make any progress with the distribution formulation of interacting fields

if I insisted on the usual formal structure where one can use Hamiltonians,
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coupling terms, etc. .

Ekstein: May I ask what is the trouble? As I understand it in
the modern attempts, one just assumes that the products of such dis-
tributions are proper operators.

Dresden: I have not seen any discussion of interacting fields., 1
have seen a lot of discussions of non-interacting fields. In Wightman
and also in Bauman and Schmitt, they always talk about non-interacting
fields,

Ekstein: Perhaps we can localize the point of this disagreement.
Whether one can formulate a consistent relativistic theory of interacting
fields is an open question. This I admit, However, as I understand it
everybody nowadays believes that the starting point of it will be the
assumption that products of the distribution valued operators are proper
operators — not necessarily bounded, but proper.

Dresden: In fact they are necessarily not bounded, When I
looked at this I could not get any understanding of what was meant by
the product of distribution to make sure this was a sufficiently regular
structure to allow the use of this particular kind of formalism.

Ekstein: What do you mean by '"making sure''? As I understand
it this is just assumed,

Dresden: Recall the definition of a field operator; this is that

(¥, ¢(p) ¥) is a distribution. When dealing with interacting fields, one




-95-

deals in the customary formulation with coupling terms of the type

Y (x) A(x) y(x). In order to transcribe this to distribution theory one
needs a product j(¢) A(¢) which generally is not defined. A definable
direct product j(¢) X A(¢') does not yield any interaction, (This is
reminiscent of the result of Cook, stated in Liecture 1). Consequently

if one wants to retain the usual expressions, it appears that the distribu-
tion formalism is not suitable for interacting fields.

Sunakawa: One must be careful to insure that the test functions
are relativistically invariant.

Dresden: That is correct., The original attempts were made
where one integrated over three-dimensional regions; there you are in
trouble with relativistic considerations, If you integrate over four-
dimensional regions, the light cone must be excluded and the test
functions are not defined in a compact set,

Peshkin: You can't get away with the usual business of space-
like surfaces?

Dresden: I don't believe so.

There is another comment which I consider more interesting. Assume
that states correspond to vectors in a Hilbert space, and in addition assume that

the operators possess local commutativity, that is

[ Y(x), y(y)] =0 (x -y2)>0 .
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Finally assume invariance under L.orentz transformations. On the basis of '
these three assumptions you may prove (as was first proven by Wightman)

that the operators § are necessarily unbounded. Now I don't know whether you

care much — this is the kind of statement which traditionally physicists care

little about. By the way, there is nothing strange about unbounded operators,

We always work with unbounded operators, the p's and x's in ordinary quantum

theory are also unbounded. By the way, ''unbounded! means that if I have an

element f in the Hilbert space and I apply the operator ¢ to it, I no longer know

if this has a bound. To state it more precisely I cannot just apply the operator

to any element in the Hilbert space. Now the {'s are unbounded, and this means

that an operator in such a space is really not specified if I give you only the

operator, but I must also give you the domain in which it can actually operate. .
It can no longer act on every state vector. So the operators only act on a sub-

set of vectors and that sub-set is somehow characteristic of the operator. If ¢

is unbounded the question.of the domain of the operator is quite impoOrtant,

. I would like to suggest that perhaps the domain of an operator has some
kind of physical significance. I don't have the vaguest notion what it is, We
identify the observables with characteristics of the operator. It is conceivable,
although admittedly far-fetched, that the domainas a characteristic of an operator
has some physical couterpart,

Ekstein: What makes you think that § is an observable ?

Dresden: I would say that I can certainly insist that I can observe




-97-
such entities as the vacuum expectation value of § because this is the
way in which the physical content is always introduced into the theory,

Ekstein: That is not so., Not by Wightman, Haag, Schmidt and
Bauman,

Dresden: Schmidt and Bauman, to the best of my knowledge, do
not introduce any physical content into the theory. How else does one
introduce physical content into the theory?

Ekstein: Of course you are perfectly entitled to formulate your
own axiomatics. I only wish to point out that in the so-called modern
axiomatic work the only physical interpretation is introduced through
the asymptotic quantities which are not at all identical to the quantities
p(x).

Dresden: I quite agree; but then you have already gone a long
way toward a restriction within your theoretical framework, AsI
understand it, at least from reading Wightman, he is perfectly willing
to talk about entities like (¥, §(x)¥). He talks about expectation values
and certainly the inference is very strong that these are observable. May
I just say this — if you do not think there is something observable about
J(x) why do you insist on local commutativity? There doesn't appear to
me to be a bit of reason for it, The reason I think it is there is that if
two points in space-time are separated by a space-like interval, a measure-
ment of one cannot interfere with a measurement of the other, and con-

sequently by the general principles of quantum theory these entities are
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to commute. But if you say that these y(x) and {(y) have nothing to do .
with any observability, then I have no earthly reason to believe this, If

these y(x) and y(y) are unrelated to observations, why write down local
commutativity ?

Ekstein: There are various views on that, Wightman nowhere
says, and I don't think he believes, that {(x) is an observable at all.
Haag believes that it is, in a very loose manner, connected with ob-
servables. He has set up this idea of quasi-local observables, They are,
in a somewhat shadowy manner, connected with it; but the strongest
reason (which I believe is mostly given by Lehman, Symanzik and
Zimmerman) for writing down this equation is indirect. In order to ob-
tain statements on observables which are asymptotic quantities and to
make sure that those statements have the so-called macro-causal
nature, one can start out with these non-physical quantities ¢ and
impose the condition of local commutativity., Then one has fairly good
plausibility arguments for believing that asymptotic and observable
quantities will indeed have this macro-causal character.

Dresden: What you're telling me is that there exists a partic-
ular way, starting from this local commutativity, in which I may in
an arbitrary way arrive at a system of equations which itself may have
no content, It is a completely open question whether the equations of
Lehman and Zimmerman (in fact I hope to tell you something about that

tomorrow) have any content whatsoever, I find it very hard to believe
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that one can do away with any physical significance of {y. If you want to
say that the | are just symbols you choose to utilize to obtain calculable
results, that, of course, is legitimate,

I know you and Haag and Wightman all start out with certain
asymptotic conditions., In my estimation, I would say that one does that
because one does not know what else to do, I don't know what else to do
either, but I think the fact you don't know what to do is different from
stating a law of nature,

Tanaka: I would like to make one comment, Starting from that
commutator relation, one could use equations of motion and derive a
similar commutator for the current. The current is observable.

Dresden: Are you talking about electrodynamics now?

Tanaka: I am talking about electrodynamics as well as any field
theory. When you give me an equation of motion for ¢, I could relate
that to the commutator between two currents. This is a physical state-
ment,

Ekstein: Are you sure that what you are talking about is a total
current — not really a part of it? That quantity which is constructed
bilinearly from these bare fields is only a part of the current, I believe.

Tanaka: That is the total current.

Dresden: I'm not sure that that is right. Suppose I have a lot
of particles (v mesons and K mesons) in interaction; I don'’t know what

current you have in that case any more,
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Tanaka: If you are going to include K particles and others, then
I would not say it is a total current of the universe,

Ekstein: May I ask you to write down the current density at a
point in pseudo-scalar meson-nucleon theory?

Tanaka: I don't think I remember all the terms.

Ekstein: Well, I think you will agree that there is a contribution
from the mesons and the nucleons, Therefore, your expression will not
be equal to the current density at a point,

Dresden: I think this is right. In general the current will have
contributions from all parts of the field.

There are a few final comments I should like to make.

1) I want to remind you of a .result of Haag's that for quantized fields
interacting with one another, one needs the equivalent representations of the
canonical commutation rules. With other words one has always a "myriotic
case;

2) The largest progress has been made in the discussion of asymptotic
mechanics (Ekstein), the use of specific asymptotic conditions (Lehman,
Symanzik and Zimmerman), and the general discussion of asymptotic condi-
tions (Nishijima, Haag, Wightman), Even though here one has advanced
furthest in the precise mathematical formulation, it should be emphasized
that the connection with physics has become much less clear, This is not true

in scattering theory, where probably these general formalisms can lead to
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results of direct observational significance. However, in the bound state problems

(where after all quantum electrodynamics is very well verified) the rigorous
formulations have not as yet been applied — and it is not clear that the "asymptotic
viewpoint" will allow such applications, (One should stress that in quantum electro-
dynamics the success of the Lamb shift, say, depends precisely on the procedure
of the separation of the Hamiltonian — which from the 'abstract" viewpoint is
mo st objectionable. In this separated form one uses all the information about
Coulomb, spin and magnetic-moment interactions, really in a one-particle theory
form, then adds the radiative terms in perturbation approximation, )

3) It still seems very worth while to study the use of asymptotic conditions,
but rather with the view of constructing a scheme which is such that other physical

information may be fitted into it,

Lecture 3.
e) PROPOSED "PRINCIPLE OF UNDECIDABILITY"

I would like to start out by suggesting that every person who has a
question should ask it with vigor and persistence. I feel that Hans thinks I
will try to put something over on you, but that is not my intention, So if I say
anything either in the way of physics, mathematics, methodology, or for that
matter anything else, be sure to tell me,.

An attempt was made a number of years ago, (it always impressed me
very much) connected with divergence and divergence difficulties which nobody

has done very much with, The attempt I am talking about was originally under-
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taken by Wheeler and Feynman ! although the problem involved is much older. .
They actually demonstrated that it was in principle possible to write down clas-
sical electrodynamics, not as a field theory but as a theory having only direct
particle interactions, Therefore, it was an action-at-a-distance theory rather
than a field theory. That was always a result which impressed me because in it
one retains what one wants from the field, (one has a finite radiation reaction),
and one eliminates essentially all the divergencies. In classical electrodynamics
one has an example where there exist two independent and equally valid prescript-
ions; one prescription uses the Maxwell equations and the field notions, and the
other employs only the direct particle interaction, I can now ask myself a silly
question: Which one of these formulations is right, the Wheeler -Feynman
formulation of the formulation a la Maxwell? Now everybody would immediately
say that this is a silly question because you cannot decide. They are both
prescriptions and they are both in harmony with one another and the observed
facts as far as classical electrodynamics goes., Therefore, the question just
doesn't come up. Of course, you could perhaps discuss this question in another
framework where the two theories would no longer be equivalent, say in the
quantum realm. It is clear that from an a priori viewpoint there is no way of
deciding whether the action-at-a-distance theory is better or worse than field
theory, Maybe one ought to impose this as a general condition of invariance,
and the condition of invariance which I would like to suggest very tentatively is
to demand that as physical theories we accept only those which can equally well

be formulated in terms of direct particle interactions (in terms of action-at-a-

distance) as in terms of field description. So essentially you might say that this .
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is the principle of undecidability of whether one has an action-at-a-distance
theory or field theory, This principle somehow appeals to me and I can give
no further justification of it other than that it appeals to me. I can only tell you

that it is not true that every field theory can necessarily be written as a direct

particle theory or conversely that the direct interaction can be written as a field
theory. So it is a principle which may be wrong, but it is not vacuous — it
will reject certain theories and allow others, Now whether or not this is right
only further discussion can decide, and I have not been able to make very much
progress with it, especially if one makes the additional demands of quantum theory
or relativity, I just thoughtI would mention it to you,
Havas: If you insist they are the same then you would have to
reject all meson theory.
Dresden: Somehow this doesn't break my heart.
Havas: Yes, but what would be worse is if you would have to
reject all theories which correspond to a field where the rest mass of
the field is zero so that won't leave you very much,
Dresden: I am not sure just how serious this is, IfI think of
masses exclusively as self energies, then I am quite willing to start
out with a basic theory which has zero rest mass, The mass is then
a derived entity which is a manifestation of a self-energy.
Havas: I won't argue about this — I just wanted to make a statement,
Dresden: This, if nothing else, lends support to the statement

that the principle is maybe nonsense but it is not empty, and it does
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restrict the possible theories severely.

Havas: What I wanted to say is that I feel that the Wheeler-
Feynman theory as such has nothing to say about action-at-a-distance vs
field. It can be formulated from both points of view because you can get
the same equations of motion as you get from field theory.

Dresden: Yes, I agree with that, except that there are theories
which do not have this characteristic. There are theories where you will
get different results from an action-at-a-distance than you do from a
field-theory approach. I think one might consider a principle which

would reject such theories.

f) THE ASYMPTOTIC APPROACH

The next point which I want to make, and the last one before I come to
a more formal discussion, concerns the modern trend as exemplified by the work
of Haag, Wightman, Ekstein and Lehman. You know Hans has talked about this
a year or so ago, He gave a series of lectures which were properly entitled
"Asymptotic Mechanics', There were no longer discussions about the details
of the interactions but rather one attempts to learn what one can from the change
from initial to final states, One hopes to find operators which somehow connect
the initial and final states. Other characteristics of the system must then be
expressed in terms of these operators. The S-matrix theory in its original
form was this kind of theory. Most of the progress which has been made in the

last 3 or 4 years has been made in this direction. To the best of my knowledge,
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however, nobody has made any progress in studying the region of strong interaction

in the same mathematical detail. It is of course an open question whether such
a detailed description is either desirable or possible. It is not known whether
the S matrix contains all the physical information. These more precise formula-
tions have not helped, and in fact have at this point not yet achieved the power of
the set of recipes or rules which I have given you previously in quantum electro-
dynamics. Specifically, it is a somewhat embarrassing point that the confirm-
ations of quantum electrodynamics lie in part in a discussion of bound state
problem, The Lamb shift is a bound state problem, and so is positronium;
the magnetic-moment correction, of course, is not., Unfortunately the more
precise mathematical discussions are quite incapable of treating these problems
at this point, This is a thing to be kept in mind, and this is in part a justification
of what I want to talk to you about later., What I consider to be a very significant
question is to see whether in any way one can fit information about the bound
states into these more general schemes. Itis, I believe, correct that within
the framework of the axiomatic approach, one does not have the computational
power to deal with the problems which have been handled using the renormalization
technique., This suggests this question: Is it possible, starting from a more
precise mathematical viewpoint to imitate or, in any sense, obtain procedures
which would justify what has been done previously (in a haphazard fashion).?
As I understand it, there is no hint of that within the axiomatic formalism,
Ekstein: No, that is not quite so., This more precise method

cannot deal with the question of the metastable state because we don't
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understand what a metastable state means. However, the so-called meta- '
stable state of the hydrogen atom, that is an excited state, is really not
necessary if you ask the question, "What is the scattering amplitude of a
photon on a hydrogen atom ?'" and there is in principle a perfectly precise .
answer to that, What we cannot answer is: Given at some initial state an
excited hydrogen atom, what will happen later ?"
Dresden: Yes, but it seems to me that a perfectly definite
question is: '“What is the energy spectrum of a hydrogen atom in vacuum ?'"
In terms of the conventional physical picture you have an interaction with
the vacuum fluctuations, This gives rise to an observable level separation

between the 291/2 and the 2S states, I know of nothing within the

1/2
abstract formalism which would allow me in principle to calculate this.
Ekstein: You can ask very simply the question, "What is the
spectral density of the total Hamiltonian ?'" and then at least in principle
you would obtain certain peaks of the spectral density which to be sure
are continuous functions and not delta-functions, and those will correspond
to the so-called stationary spectrum of the hydrogen,
Dresden: May I ask, where do you get the total Hamiltonian ?
Ekstein: The total Hamiltonian is presumably the one that you
always write down,

Dresden: With point interactions ?

Ekstein: Yes.
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Dresden: With what commutation rules?

Ekstein: With the canonical commutation rules,

Dresden: Why am I not in trouble? This formalism gives all
the divergencies!

Ekstein: Oh, you are in trouble, I did not want to say that the
more precise methods are able to actually deal with the present local
field theories,

Dresden: In principle then how do I get answers? I don't care
if you give me wrong answers, but what I want to know is if I start out
with the formulation a la Wightman how then can I calculate the hydrogen
spectrum ?

Ekstein: Perhaps I can explain that this more precise approach
is still very far removed from those Hamiltonians which have any plausi-
bility of describing actual nature. In fact, we are pretty certain that
none of those Hamiltonians actually fit into the axiomatic scheme as
either of us has formulated it. This is a general critique of the state
of the art, so to speak, but it is not a specific critique of the ability of
this art to deal with these questions such as the spectrum of the hydrogen.

Dresden: Maybe I ought to make one final point in this same
connection. The reason the renormalization works so well is precisely
the same feature which makes it mathematically so objectionable,
namely you can split up the Hamiltonian into an unperturbed part with
corrections added to that unperturbed part. The perturbation calcula-

tions used in the Lamb shift are all performed by separating a
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Hamiltonian, It is well known that in the more precise formulation such ‘

a splitting of a Hamiltonian cannot be done, It is ambiguous and gives '

rise to nothing but difficulty, Nonetheless, it seems to me that it is a

curious feature of the present situation that mathematically the most

objectionable feature turns out to be just the one which makes the cal-
culation possible,

Let me tell you a little bit about some of the attempts of Gordon Feldman
and myself, in connection with these questions. There exists an abstract formu-
lation of field theory which is due to Lehman, Symanzik and Zimmerman, and
it, among all the abstract field theories, is the least abstract. Let me tell you
a little about it and also how we attempted to introduce into this theory a certain
number of observable notions,

Let me make the physical assumptions clear, First of al], one deals
with a field operator A(x), an ordinary field operator. One also makes the
assumption that the state vectors are elements of a Hilbert space. You make
the assumption of local commutativity, [ A(x), A(y)] =0 for (x-y)2 > 0. You
also assume Lorentz invariance and this I believe is all, except for one new
condition, the so-called asymptotic condition, I want to say something about
it later. Now let me make this comment immediately. They do not assume
equations of motion for the A field, nor commutation relations for the A field.
The reason for that is that the assumption of either commutation relations or

equations of motion will immediately lead back to a divergent theory. The
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theory they contemplate is already renormalized and no infinities ought to
occur in it whatsoever. This presumably one can arrange, at the expense of
making the theory so broad that the real question will be whether the theory
indeed has any content whatsoever,

Define two fields, described by operators Ain and Aout satisfying
—m?2 = —m?2 = 2
(O -m ) A, (x) =0 (O -m )Aout(x) 0. (12)

I will also need functions fa’ ordinary c-number functions. They will be

normalized and they will be solutions of the Gordon-Klein equations,

(0-m2){ (x)=0

1 (i) - ik
£ - SR A Y (13)
[} Zko(zﬂ- )3
This is a set of solutions of the Gordon-Klein equation, all belonging to posi-
tive energies, I will only use positive energies, and the functions fu satisfy

orthogonality condition of the type

Bf; . 0f
-i [d° —_— —_— ) = ) 4
if x (£ 5 f‘3 R ) 5(15 (14)

The completeness relation is

Z £, (x) f: (x') = i at (x-x') . (15)
a
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The A+ is one of the usual singular functions, Introduce the operators A®
defined by .
9 fs3 ’
a . a * 9 A
= 3 — - .
AT (t) =i fd x Ctx (x) =5 % £ () - Xo>

(You can formulate this in a number of ways, You could use distribution theory.)
This is integrated at a constant time and over all space. (If one uses space-

like surfaces, nothing is changed.) No more is known about the A% than about
the A. If the operators A exist the A% are somewhat more regular; in fact,
that's really all they are — they are smoothed out operators. The f‘1 really

play the role of invariant form factors.

The following asymptotic condition is imposed. I take a state ¥ of the
system, and also a state &, and suppose I calculate the matrix element of the
operator A% Quite clearly this matrix element (&, Aa\If) will depend on the
time and now you would like to say something about the limiting behavior of

this matrix element as t —~ + @ and t — - ¢, namely

lim (&, AY¥) = (&, A‘i‘n ¥) . (17)

t -~

Now A(;'n is an operator about which one does know something, namely it
satisfies the Gordon-Klein equation, This condition therefore states more
precisely that a very long time ago the particles behaved essentially as free
particles which satisfy the Gordon-Klein equation, You will not be surprised

that in the limit as t - + oo, A% becomes Aoc') ¢
u
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I will assume that a vacuum state exists which corresponds to the low-
est energy. These are all the physical assumptions made in the theory. This
is a very general framework and one sees that there is no Hamiltonian in it,
There is no question of a splitting into a perturbed and an unperturbed Hamiltonian
because you don't have either. So the question which now comes up is: Can one
do anything with a theory of this kind? Precisely what can be done with a
theory of this kind is still an open question, but certain formal results can be
obtained. The states with which one deals are the following ones: First one has
a vacuum state which is assumed; call it 2. The next state which you can
have is a state A:’n 2. An Aiz is an operator about which I know a good deal
because that is an operator which satisfies the Gordon-Klein equation. That
means it may be expanded using functions fa in terms of creation and annihila-

. + . . .
tion operators aa, a.(1 operators which destroy or create a particle with wave

function fa' So Ai: 2 is a state which contains asymptotically a single meson
of wave function fa' You can then also introduce a state

a a
A. 1A 2Q,
in in

In general I will write such a state as

8% _ A% oA % g, (18)
in in in

You can of course do exactly the same thing for the out-field and there the

0] (a) is described by é(a) =AM ... A¥M 2 . These are the basic
out out in out out

states with which the theory operates. One now defines (and this is a perfectly

general and reasonable definition) a matrix element of the S-matrix as the overlap
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between an incoming and outgoing state, i.e.,

(@)
Sayd ~ (Pout

el (19)
This is the (a, B) matrix element of the S-matrix. The (a) and (B) run over all
numbers of incoming and outgoing particles, This S-matrix is defined in terms
of A;ln and A:ut . Now one hasn't learned anything. There are two results
which are somewhat surprising and which I would like to state for you. I don't
think I will prove them for you although the proof is not very hard,

I want to give one more definition: Define T -functions (sometimes

called Wightman functions) as the vacuum expectation value of time-ordered

T-products

T(x, ttex )= (2, T{A(x;) """ Alx )} ). (20)

(For many considerations the R-products, retarded products, are much more
suitable. )

I might point our parenthetically that one of Wightman's major contri-
butions to this whole type of endeavor is the proof that the theory is essentially
uniquely characterized by these Wightman functions, or T -functions. Now the
contribution of Lehman, Szymanzik and Zimmerman consists of two main
results, First, the S-matrix can be expressed in terms of the T -functions.
This in a sense is a special case of the general result of Wightman that the
physical content is completely determined by the 7 -functions, Since the

S-matrix is presumably one of the physical results, it must be expressible
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in terms of these 7 -functions., In a sense this is a systematic advance, but I
still have not learned anything inasmuch as these 7 -products are vacuum ex-
pectation values of operators about which one knows nothing. One only knows the
asymptotic condition. So this is in the nature of an organizational advance, but
nothing more,

The second statement is perhaps more surprising, it is more meaningful
but also much more difficult to discuss: There exists a set of equations for the
7 -functions alone. What I mean by alone is that there is a set of equations in
which only the T ~-functions and known entities occur, These known entities are
all expressible in terms of the fa’ but they no longer contain any reference to
the operators A, It is not known whether this sytem of equations determines the
7 -functions, If that were so, one would be in business., If you know that the
system of equations determines the T ~functions and if then in turn all the physical
content is contained in these functions, then I'm through. If in addition every -
thing would come out finite, then we could all take a holiday.

I can prove one thing about this system of equations, namely it is not
vacuous — it has some content. How much I don’t know, There are only two
physical ideas which go into the derivation of this: The first idea is that the
S-matrix is unitary. The second idea, the second physical idea which goes in

which I have written down, These

there, is the completeness of the set <I>(;lrz

are the two physical ideas which, of course, are both assumed. One assumes

to completeness — in this formalism one can prove the unitarity of S quite easily.
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Tanaka: It appears that there are enough of these equations so that .
there is at least a hope that they may be solved. .
Dresden: Correct. This is also all there is — hope. There is
not yet despair. You have a large number of these equations and in A
fact G. Feldman and I have tried to say something about this system of
equations,
Let me indicate to you how one obtains these results because the deriva-
tions are really extraordinarily simple and quite pretty. What one does is the

following. First prove the result that

(@ Ty oorx) 89 ) = —i fa v Ko7y cox ) £ (), -

where

K:D - me , '

y Yy

The next thing you obtain is an expression for (2, T(x, -~ -x ) &3 %) .

This is the transition matrix element between Q@ and an arbitrary state and,
using the unitarity, you throw it around and eventually you get the expression
for the S-matrix which I will write down in a moment., Let me just sketch part

of it, Make the observation that

(2, T(1 -+ n) q:i‘;) - (T*Q,A; Q). (22)

At this point one applies the asymptotic condition in a very cute way. Since

T*Q is a state vector, Q is also a state vector, so one has

(@, T(l-+*n) % ) = lim (T*a, A"q). (23a)
in t--oo
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What I have done, as a matter of fact, is just to run the asymptotic condition
backwards, So this is a straightforward application, and now you just play

around, One of the things one does is to make use of another observation, namely

11rn ff dayl——f d4y——yO~1+%uﬁooff as yI. (23b)
The final thing which is amusing is that you know how to handle this T-product.
The T-product, as you know, is time-ordered; but in the limit when t goes to
+ w, you know precisely where to put the particular operator A(t) since it is
necessarily last in time and as such has to be put way to the left. One ends up
in fact with this four-dimensional integral which I wrote down here. The reason
you keep a four-dimensional integral even though you have a derivative here is
because you make a partial integration on the f-functions and then you make use
of the equation which they satisfy, Then you end up with an expression for the

S-matrix which is

k+e

”
= (-1) f"’fd4 £, - d4 n, KEJ_ ..,.Knl T (£ e 1, )fal (£, )...fﬁi (nﬁ ).

S
(a)(B)
(24)
Next consider the question of the system of equations for the 7 -functions.

The derivation of that is also quite trivial, Let me show you how one does it,

Suppose I write down the T-product

T{A(Xl)A(x }*6(x x)T{A l)}A ) + 0 (x, X)T{A(x )} Ax

(25a)
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where .

0(x)=1 x>0
x <0

it
o

The T here, of course, one doesn't need, because there is only one A-operator,
I am only writing that down for two operators but you can do it for any number,

Let me write down in general

T {A(x)) =+ Alx )} = ), 0 (x,-x ) =+ O(x  _, -x ) T{l n-1} Ax ).
P

(25b)
Now from here on the derivation between the relations of the 7 -functions is
quite simple because if I take the vacuum expectation value of the left side, I
will just get a 7 -function which now will be expressed in terms of what? Well,
if you take the vacuum expectation value of the right side, you see the kind of

entity I get will be the matrix element
(2, T(1 **- n-1) A(xn)ﬂ) .
This is not yet a 7 -function, Now you make the observation that you may write

this, using the completeness relation, as

@, T n-1) &%) (2% A 2) .

By the way, summation over a is really over all a's, i.e., over singles,

doubles, triples, etc.
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Sunakawa: There is an assumption that there is no bound state ?
Dresden: Yes, that is right, that is assumed.
Now at this point I will no longer pursue the derivation but I want to
point out that now you can see for yourself that this indeed can be expressed in

terms of T -functions because

(@, T(1n-1) 83 ) and  (2'%, Apx)a)

may be so expressed. If you put it all in, then you end up with an expression

for one T -function in terms of all others. And that expression I will write down
for you because it is very miserable,.

eesq(1°°°n) = ; kz 9(1-n) (2-n)+++9(n-1 -n) ikf“‘fd4§,;"‘d4§kd4ﬂl ...d4nk Y

where

R +
Y = Kgl ngT (X ° .xn_l’ gl gk) Kn;"KnkT *(Xn) 111 * .nkA (gl "Tll)

SRV (26)

By the way, this relation contains what I said it would — the functions,
some combinatorial factors, integrations, operations on the 7, etc. I can now
phrase the major question very simply, namely: Does this system have any
content whatsoever, or is it a pure tautology ? All this is contained in the first
paper by Lehman, Szymanzik and Zimmerman, Let me make the following

observation as a side remark, This system of equations has nothing to do with
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invariance properties, in fact it only depends on the unitarity of the S-matrix
®

and on the completeness, If you make assumptions about symmetry or about
invariance, you have special restrictions on these T -functions. That means then
that this is a general result for an already renormalized theory., This is a very
complicated non-linear system, and one might despair at obtaining any results
at all. This is the kind of question Gordon Feldman and I investigated. We
started by seeing whether everything automatically satisfies these equations,
That is not true, Let me mention one result which I consider the most interest-
ing one., The advantage of this particular formulation is that it should be
directly applicable to anything; nothing has been assumed about invariance,
about point sources, about interaction — it is perfectly general. This means
that this system of equations as it stands should be directly applicable to such
models as the Lee model, One can in fact calculate what these 7 -functions
are for the Lee model and you can just verify the validity of this system of
equations, You find something quite amusing; you find that indeed they do
satisfy the Lehman relations. But, as you all know, in the Lee model there
is a certain critical coupling constant; if the coupling gets larger than a certain
amount, then the Lee model is not renormalizable in the ordinary sense of the
word., Now the thing which is interesting about this is how this information is
indeed contained in the system of equations which I have written down here.

Tanaka: How can you verify this? What exactly was done?

Dresden: I took the 7 -functions from the Lee model.

Tanaka: How many are there? Can you write a general form for

this ? .
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Dresden: You can calculate the 7 -functions for the Lee model;
actually all the integrals separate in a very simple form., Essentially
you can write this as a product of integrals. Putting this into momentum
space simplifies matters, Then what you get are folding type integrals.
But therefore I can make the following statement: If the coupling constant
comes out to be less than the critical value, then the Lee 7T -function
satisfies the Liehman relations., If it is larger than the critical value,
then they are not satisfied. The result I think is interesting because it
settles for me one question which I had not known before — whether this
system of equations has any content, For a long time I thought that all
functions satisfy these results, This is clearly not true because I can
at least give you one example, namely the T -functions of the Lee model
whenever the coupling constant is larger than the critical coupling
constant, for which they are not satisfied.

A much harder question is the following: Is it possible (and this happens
to be the problem I am looking at at this particular moment) to look at this
system of equations again, and knowing now that the Liee model satisfies it,
invert the problem. I can ask for necessary and sufficient restrictions on
the 7 -function so that the L.ee model will result, One question which always
haunts me in all these considerations is where in these formalisms is the
coupling constant; where is the interaction? In some sense both the magnitude

and the form of the coupling must be contained in the expressions for 7. The
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reason for studying these models is precisely so that one may obtain relations ‘
between characteristics of the 7 -functions and the structure of the coupling
terms. One finds relations between the poles and zero's of the 7 -functions
and the nature of the potential in simple cases. In this way one may learn to
transcribe physical information directly into the T -functions, which usually are
quite unintuitive structures, Perhaps one may hope that one may learn to put
physical information, previously put in the Hamiltonian, directly into the 7 -
or R-functions. It is interesting to observe that in the Lee model the 7
functions just have a single pole and a single zero, Any function of a complex
variable defines a transformation; these functions in particular define a simple
class of transformations. It is interesting to observe that the Hamiltonian of
the Lee model is in fact invariant under a transformation of a very similar form,
So one might perhaps conjecture, that there is a relationship between the group
of transformations which express a certain symmetry character of the Hamil-
tonian, and the structure of the 7 -functions, In the models it appears as if
the 7 -functions are like the generating functions of the transformations which
leave the Hamiltonian invariant, This is all conjecture. However, I would
like to mention that this seems like a possible way of feeding physical informa-
tion into this scheme,.

There are a number of other questions which one can ask: Suppose I
do the same formulation for a vector field and for a spinor field. Then of course

I get very similar equations. Suppose I now impose the conditions of relativistic
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invariance and gauge invariance (which is, by the way, not so trivial to do},
The asymptotic conditions are quite nasty to deal with when you deal with gauge
invariance. I can now ask the question: Is the theory which I obtain isomorphic
with renormalized quantum electrodynamics? IfI have a theory which is gauge
invariant and relativistically invariant, and which couples a spinor field and
vector field, is that renormalized electrodynamics? I don't know the answer
to the question; I cannot handle the gauge invariance with a great deal of dis-
patch, I would like to know the answer, We have looked at that some with not
very exciting results,

This is essentially all I have to say in this connection, I am sorry that
I don't have more definite answers.

Peshkin: May I ask a question? What is a ghost state ?

Dresden: The ghost states were first noticed by Pauli in the
Lee model, There, after renormalization, one still has trouble because
then other requirements of the theory, such as the unitarity of the S-
matrix, are no longer satisfied.

Miyazawa: You say that the equations plus gauge invariance and
Lorentz invariance gives all of electrodynamics ?

Dresden: That's the question, Do these equations plus Lorentz
invariance plus gauge invariance give renormalized electrodynamics ?
Nishijima has a paper which I have not understood, unfortunately, in
which he claims that if you do certain things you obtain something equiv-

alent to the perturbation expansion in quantum electrodynamics already
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renormalized. That I think would be somewhat of a feat if it were right

because then it would mean that, at least on the basis of more or less
well-defined mathematics and well-defined assumptions, one obtains
this series development. But I have not understood the paper so I am
not sure that it is right.

Miyazawa: My statement is that if you want to use invariance
(Lorentz invariance, gauge invariance, causality) one obtains renormal-
ized electrodynamics.,

Dresden: But nobody has yet shown that; is that right?

Miyazawa: Yes,

Ekstein: I want to thank you very much for these three lectures,
You were certainly inspiring,

Dresden: Thanks to your discussions., You are a gentleman,
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Classical Relativistic Theory of Elementary Particles
Peter Havas, lehigh University, Bethlehem, Pennsylvania
Lecture 1,

I. INTRODUCTION

There is a twofold interest in the part of the classical theory of ele- .
mentary particles which I am planning to discuss here: First, an intrinsic
interest as a part of the scheme of classical physics; and second, its pos-
sible relevance for the quantum theory of elementary particles., I shall first
discuss the scope of the classical problem.

Within the conceptual framework of Newtonian mechanics there is a
sharp division between equations of motion and force laws, The equations of
motion (F = ma) are supposed to be the same for all matter, while tﬁe force
laws (like Newton's law of gravitation or Coulomb's law, etc.) are different
for different types of particles; thus, they alone are the object of experimental
investigation.

This apparent independence of the equations of motion and the force laws
was maintained at first, also after it was realized that the laws of physics take
a simpler form if one does not consider force laws, but rather field laws. The
prototype of this approach is, of course, Maxwell's electrodynamics. The in-
dependence of the two sets of laws seemed to be firmly established when it
was slowly realized that it was not possible to find a mechanical model for
Maxwell's equations, and when it was found that there was one phenomenon,
namely electromagnetic radiation, which allowed a simple description in terms
of the field equations alone,

On the other hand, if radiation was to carry away energy, it was clear

that the equations of motion had to be modified if one would want to maintain
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conservation of energy for the entire system. The main contribution at this
point is due to Lorentz, who approached the problem in two different ways.
First, he simply modified the equations of motion to maintain conservation of
energy on the average for almost periodic motions. Second, he tried to cal-
culate the change in the equations of motion, if an electric charge was con-
sidered to be of finite extension, the retarded effects of the different parts

of the charge on each other were taken into account and an additional condi-
tion was imposed, namely that the total force on the particle should vanish,

As you all know, Lorentz's calculations led to a dimemma. If the
charge was taken to be of finite extension, a term proportional to the second
derivative of position appeared. It seemed to offer possibilities of an electro-
magnetic theory of mass, On the other hand, the equation of motion obtained
was of infinite order and all the terms beyond the third derivative of position
were structure-dependent, If the charge was to be taken as a mathematical
point, all the structure-dependent terms disappeared, the term in the third
derivative (correctly describing radiation damping) was unchanged, but un-
fortunately the term proportional to the acceleration became infinite,

I shall not pursue the line of research which tried to get a consistent
field theory of mass., On the whole, I believe it did not bear fruit. However,
Lorentz's realization that the imposition of certain conditions in addition to the
field equations could lead to, or at least modify, the equation of motion did

indeed lead to important results which we shall discuss later. Most of this
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work is based on a paper by Dirac written twenty years ago, which presented .
a new derivation of Lorentz's equations of motion, based on the requirement N
of conservation of energy and momentum,

The entire problem appeared in a new light in the general theory of
relativity. Initially, Einstein had thought that again the equations of motion had
to be postulated independently of the field equations; for a test particle he took
the motion to be determined by a geodesic. However, it was soon realized that
actually the field equations do not allow solutions for arbitrary motions and that
the equations of motion are implicitly contained in the field equations. Basically,
this is due to the fact that the field equations are so constructed that the con-
servation of the total energy is already implied. The equations of motion ob-
tained from the general theory in the approximation of the special theory of
relativity are the same as one can obtain directly by special relativistic methods
on the additional assumption of conservation laws, the line of approach proposed
by Dirac.

In this sense, a complete unification of the laws of motion and of the
laws of force has been obtained. There is, however, another approach which
also leads to complete unification. This is the approach from the point of view
of action at a distance, There, fields are not considered to be basic independent
variables. This approach was, of course, taken by Newton, but it was abandoned
in the second half of the 19th century when it was realized that physical effects
are not transmitted instantaneously. Nevertheless it was realized, even then,

for example by Gauss, that such a description should be possible, and a formula-

tion of such effects in terms of particle variables alone was first given in the case
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of electrodynamics by Schwarzschild and Fokker, and it has since been ex-
tended to other fields, Their theory can be summarized in a single variational
principle in terms of particle variables alone, from which one can not only
obtain the equations of motion, but one can also define ''fields'' in terms of the
particle variables and then show that the new quantities so defined satisfy the
appropriate field equations.

In this approach the main difficulty is in the description of radiation
and this is why the field approach was pursued almost exclusively for a long
time. However, it had been suggested already half a century ago by Einstein
that possibly radiation was a statistical effect. The first attempt to give a
quantitative description following this idea is due to Wheeler and Feynman who,
with certain assumptions, showed the equivalence of this formulation and that
of the usual theory in electrodynamics. Their considerations can be extended
to mesodynamics as well., However, there are some significant differences
between the two formulations there. It can also -- at least for the linearized
theory -- be extended to gravitation,

This is roughly the scope of the topics I want to discuss in the classical
theory, I believe that this is also of interest for the quantum theory of inter-
acting elementary particles, mainly because the quantum theory has been
plagued by infinities and mathematical inconsistencies. A considerable part
of these difficulties seems to be due to the fact that the usual theory is built

up by first constructing a theory of free fields, and then attempting to couple
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these. The classical theory has had similar difficulties with infinities,

but it has been able to overcome them in two different ways. In field theory

no concept of ""bare' particle is necessary. The particle is introduced as a
singularity of the fields and mass renormalization can be accomplished exactly
for all fields and all types of singularities in one step. In action-at-a-distance
theory no infinities appear at all as the field is not an independent quantity,
and again no ''bare ' particles need to be considered. The existence of these
alternative classical formulations suggests the possibility of alternative ap-
proaches to quantization,

Furthermore, there exist classical restrictions on the types of particles
and fields allowed. The most stringent one concerns fields of spin two or
greater. Although it is possible to develop a theory of pure fields of this type, -
it can be shown that (at least within the framework of linear theory) it is not
possible to have singularities interacting by means of these fields at all, Also
there exists a very general equivalence theorem for different couplings, All
of these results suggest similar restrictions in quantum theory. Considering
the present state of the theory I believe that some alternative approaches are
badly needed, and that some of the recent advances of the classical theory may

provide some fruitful new ways of looking at old problems.
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II. NEUTRAL FIELDS OF INTEGRAL SPIN WITHOUT SOURCES
Today I will mostly go through some mathematical preliminaries, and

first of all notations. In general I shall use a metric

n :0: M *v: ﬂc,o:'ﬂll:'ngg: "'133:1

and a four-space x0, x1, x2, x2 (= t, x, v, 2z). The velocity of light is taken

e

b

as unity., We shall denote the coordinates of a particle by z° , and its proper

time by 7 where d72 = dzp‘ dz . The four-velocity is

1
v
po_ dzm . p
v T = b
and therefore
v ¥ = 1, v =0
] (]
Furthermore
_ _9 - ~ ol
BH=8XpL ’8a[3 ._<'90'8‘3 ,[1=9 Bp'

The notation I use is essentially the one which has been used in a series of
papers by Bhabha and Harish-Chandra.

Now I shall outline the theory of fields of integral spin. This has first
been given by Dirac 1 and then was taken up by Fierz; 2 the energy-momentum
tensors I am going to discuss later have, according to Fierz' paper, first been
given by Jauch. The fields by both Dirac and Fierz were given without inter-
action, the interactions were introduced later, mainly by Harish-Chandra.

Fierz considered charged fields and described them by complex tensors., 1
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shall write first the equations for neutral fields and then generalize directly to
charge-symmetric fields. This requires essentially no extra work, and then

one can always fall back to charged fields alone by just taking two components

of the charge-symmetric field, (I will discuss what I mean by charge-symmetric
fields later.) Therefore, I will describe fields by a real symmetric tensor U

of rank f, which obeys the following equations.

(O + X )yu...=o, (1)
8% U .. =0, (2)
U: = 0. (3)

Here X is a constant of dimensions of reciprocal length which after quantiza-
tion corresponds to quanta of mass m = ECZ— . The reason for Egs. (2) and
(3) is that you want to get a theory which is irreducible and which after quanti-
zation describes quanta of spin fh without also describing quanta of smaller
spin. The conditions are just enough to allow only (2f + 1) linearly independent
plane wave solutions if X £ 0. If X = 0, then the number of independent
components is two just as in electrodynamics, independent of f.

Hamermesh: For spin one there is no condition except on the diver-

gence (Eq. 2)°?
Havas: Yes. For spin one this is just the usual electrodynamics with
the Lorentz condition,

Equations (1) to (3) correspond to the description of electrodynamics
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with the use of potentials alone, but one can also describe it instead by fields
and potentials. One needs both if one has I # 0, and one can use just the
fields if 7 = 0, as in electrodynamics.
One can introduce
U(l) ... = 80, ... -8, U ... . (4)
[aB]... a B... B a...
The square bracket implies that the tensor is now antisymmetric in the bracketed

indices. Then from Eqgs. (1), (2) and (4) one gets
a (1) 2
. = 0. 5
3 U[aﬁ]“+X U, (5)

From these equations we also have

(1)p _
U[a.ﬁ]... =0,
(+) (1) (1) _
U[“p]\(.. +U[ya]£3...+U[By]a.... =9,
@) (1) (1) )
i U[ Py]... +3YU[aﬁ].,. ¥ aﬁU[ya]... = 0

5 Y gl

[aBly... =

One can take this set as basic and then can regain the others because, for example,
you can contract Eq. (5) and regain the Lorentz condition (2) provided Ko, If({’: 0
you have to postulate it separately just as in electrodynamics, where the Lorentz

condition does not follow from the field equations,



-132-

Following Fierz, we can also define quantities

(a-1) _, yla-D)

(q)
u B... P a...

[aB] ... (6) )

=8 U
a

for all q £, which again satisfy the wave equation, and then have

)
Ufcf)[pap] L0 (8)

U(.q.)[ap] v 7 U.(fl)[ya.] g T Ufcf)[ Byla.. = (9)

aaU(.q.L)[ﬁy].. t o, Uf?)[aﬁ].. t 9 q(.q[)ya].. =0, (10) -

2" U(.q.)[ap] vo. =% (i)

(0 +X* vt = o. (12)

[aB]..

Equations (7), (10) and (12) are analogous to those of electrodynamics. The
others don't have a counterpart in electrodynamics bgcause one does not have
that many indices.

Actually all these descriptions for different q's are fully equivalent in
two respects, First, if one defines energy-momentum tensors for the differ-

ent q's, then the total energy is the same for all descriptions, although the
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energy density is not the same, Similarly for complex fields, the total charge
is the same, the charge density is not. They are also equivalent in another
sense, as I am going to show later, namely that they all lead to the same
equations of motion as was proved by Harish-Chandra. I mentioned, however,
that actually for these equations of motion it is not possible to satisfy the con-
ditions which are implied in all this for f = 2,

I define the energy-momentum tensor following Jauch and Fierz for
q = 1, and therefore f = 1. I shall come back to spin zero later; the energy-

momentum tensor for this is not a special case of the tensor for higher spin,

We have
(
(av _ 2,(1-q) _ {9 (@)..[ov]..
4m T]J. = (21 Z [{.[o'ph]..U
+ i_ sV U(CI) U(Q)

+X2(U.(1-1) gla-1..v _ % 5; gla-1) U(q—l)‘,”)

(13)
where contraction of the indices is implied by dots in the corresponding co-
and contravariant positions. You will recognize that for f = 1 and /"‘/ = 0 this
is just the Maxwell tensor,
Now I take the divergence and go through this in detail once, because we
shall take divergences many times later, and the procedure is always the same,

For the purposes of seeing what is required if I want to introduce interactions,
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I will first take the divergence without making use of the field equations, but o
only using the definition (6) and the relations (10) following from the definition.

We then have

4n P (Vv _ Loyn e | 4@ b [ov]..
ot T 2" Uy, U .
_av (@ gl@eilov] L Lgl@ v gla..

colop] 2 ..

2 - - ~? 7 (q- -
; x N U.,(flp,l) gla-b..v \U(.q.pl) o gla=b.. v _

_gle-b v la-). \3

Ekstein: Why does the q stand there (in Eq, 13)?

Havas: Because I have different energy-momentum tensors,
depending on what field I am using. IfI have a field with sufficiently
many indices, I can describe this by different U(q)

Ekstein: This is just a matter of definition?

Havas: An energy-momentum tensor is something which is a
quadratic function of field quantities, and the divergence of which

vanishes,

Hamermesh: Do you have a choice for the electromagnetic

field ?
Havas: No, For the electromagnetic field you have no choice,.

2
q is 1, there is only one ™Y - you can't construct ™ (2) because

there are not enough indices,
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Teng: What does this mean physically?
Ekstein: This is really the question;according to Wentzel T“v

are the only abservables,

Havas: What I said was that for all these the integrated Too(q)

is the same.
Ekstein: I still don't understand. Let us take one g, say q = 3,

2
Then it pleases you to rewrite the ™ (3) in terms of U( ). This would

be identical, but presumably this is not what you are doing.

(3) (3) (2)

2
Havas: No, the ke and U ') and the ™V (2)

(2)

(formed with U
(formed with U and U(l) are not identical,

Ekstein: But could you not, by means of the definitions, express

the U(3) and U(Z) in terms of U(Z) and U(l)?
(3) 5, ™Y (3)

Havas: That I could, But ifI get rid of U , lgeta
2
tensor different from T" ( ), so I would have two different energy-

momentum tensors,

Teng: So in this case you have another quantity which satisfies
all the conditions?

Havas: Yes., Now you might ask, physically should not the
energy density be unique ? But for example in general relativity, which
is certainly a legitimate field theory, the energy densities don't mean a
thing. It is only the integrated energy density which means something,
So this is not unique in field theory, that there are fields which allow

density distributions which are different.



-136-

Ekstein: How about symmetry? .
Havas: They are all symmetric
Ekstein: So there are infinitely many?
Havas: No, not infinitely many. The q goes only as high as you .
can go without running out of indices. So, for example, in the case of
spin 1, there is only one. In case of spin 2 there are two.
Ekstein: So you would say that in the case of vector mesons innid
is not an observable ?
Havas: In the case of vector mesons there is only one Tp'v, 50
there is no difficulty,

Hamermesh: For spin f, you have f different energy-momentum

tensors ?
Havas: Yes,

Hamermesh: Except, of course, for spin 07?

Havas: Yes. For spin 0 you have one,

Ekstein: Is there any uniqueness statement implied in what you
said? For instance, for vector mesons, do you say that it is impossible
to construct any other tensor which is symmetric and whose divergence
vanishes ?

Havas: No, that is certainly not true, because you can always
construct new energy-momentum tensors from a Lagrangian when you
add a divergence to the Lagrangian. In that sense an energy-momentum

tensor is never unique,
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Ekstein: There is this matter of symmetrization. Wentzel
discusses the possibility of adding something to the Lagrangian in order
to symmetrize.

Havas: Yes, but even then you can still add a quantity with zero

divergence.

Hack: You said that only the integral Too is unique, but this
is a tensor., If you integrate Tio’ should this not be the same?
Havas: Yes, it should.

Hack: So the total momentum is also the same?

Havas: Yes.

Concerning the ambiguities, I said before that all these energy-momentum
tensors lead to the same equations of motion and the ambiguity disappears there.
But as I said, it turns out that in the end you can't get any singularity introduced
consistently at all, I think this impossibility of having point sources of fields
of higher spin is one of the interesting results one can draw out of the classical
theory.

But to go back to the divergence, the procedure is just as in the case of
electrodynamics. By antisymmetrizing the first term with respect to ¢ and p

we can write for the first and third term

5V @ lon o la)

* o],

%(—8“ U(q)..[crv].._‘_ 5" U(q),,[p.v].,
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which vanishes because of Eq. (10). Making use of Eq. (6) we can write the

last term

7(2 (U(q—l) U(q)..[o-v].. _ U(q-l) ao- U(q—l)..v..,.
o F oo oo T oo

and the second term

Ayl yadov] _ gy yl@ o e fov]
N S o e lan

Therefore, we finally have

pon(Q)vy 2,1-q  -(a-1) 2 .(q-1)
SR ACE SR = IR Gt

. e

~

o o T B g ) et

(14)

Clearly this is zero because of the Lorentz condition (11) and the wave equation
(12).

I just want to make another remark about the energy-momentum tensor
when the rest mass is zero. With the rest mass zero you would expect dif-
ficulties because of the factor (2 7(2)1—q in Eq. (13). Actually then only Til)v

exists, However, then you have another non-uniqueness due to the gauge trans-

formations; one can add a tensor of the form
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with

DC_” -0, 9%C =0, C = 0, C symmetric,

to the potential without changing the field or the energy of the field.
For spin zero the energy-momentum tensor is not of the general form

(13). In this case we have the wave equation

(o +X*1u = o (15)

we can define

9 U=1U
M P

and then can write Eq. (15) as

a}l U|~L +X2U:0.

Then the energy-momentum tensor is

v 1 v o 2 -
4m T = U U -3 6 u U - u ), 16
o= U U - st (U 1o (16)
and for its divergence we get
v
3 17
4_«3“1'“ - (Wu+) mu”, (17)

which again is zero if the wave equation is satisfied.

III. NEUTRAL FIELDS WITH SOURCES
I want to talk about spin 0 first because in this case it is quite easy to

see what you should do if you want to introduce interactions; as usual you want
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the divergence of the energy-momentum tensor to become an expression which .
is bilinear in the source density p and the field U. For this you just have to take .
(O+X*) U = 4np. (18)

Then Eq, (17) becomes

aM THV -p U (19)

This seems to be the only way in which one can sensibly introduce an inter-
action in the scalar case. In the other cases, the situation is a little bit more
complicated. We have before us some equations such as (9) and (10) which only

depend on the definition of (6) of U(q)

and therefore can not be changed. For
our present purposes the easiest thing to do is to introduce the source density

in Eq. (7). We define in analogy to Eq. (6) for all q < {

(q) _ (q-1) (q-1)
p..[aﬁ]..—aap..ﬁ.. —-aﬁp..a.. (20)
and replace Eq. (7) by
a _(q) V/Fo(a-1) (q-1)
U = . 21
9 ..,[aﬁ]..+/< Ui p. =4 P 5. (21)
Contracting this equation with 8 B Iget
V2B yla-l)  _ 4 B (a-1) 22
o U .. S (22)

This expression is zero outside the singularities and so the Lorentz condition,

which you need so that you have only quanta of definite spin in the field, is
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maintained outside the singularities. We also need a similar relation for the
traces.
However, I want to make two remarks: First of all, if X = 0, you

get from Eq. (20)
-1

5P F)(q ) 0, (23)
which means that for zero rest mass of the field you must have a conservation
law for the source density. Then, it looks here as if you don't need Eq. (23)
for 7( # 0. I can't show the details 3 because it would take too long, but it
turns out that actually you have to assume Eq, (23) for f = 2, at least for point
sources. But for spin 1 you definitely can leave Eq. (22) unchanged and, as

I shall discuss later (in Sec. VII), this does not impose any restriction. So

B
P .B..

equals 0, and for spin 1 it does not. I shall write the same formulas all the

actually instead of distinguishing in the equations that for spin = 2, 8

time and just imply that if you have more than one index Eq. (23) must hold.

From Eqs. (21) and (22) we get

(EeX O] e G g e

and then the divergence of the energy-momentum tensor (14) becomes

ap‘ TH(q)v - (ZXZ)]‘_q p(g_l) U(q)--[lf V]

st el glashy

25
NPV (23)
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IV. CHARGE-SYMMETRIC FIELDS

The only other topic I want to discuss today is the question of charge-
symmetric fields, As you know, charge-symmetric fields have been introduced
first in quantum theory by Kemmer, 4 An analogous classical theory was in-
vestigated later by LeCouteur. > One considers a ''charge space'' and takes
all quantities as three-component vectors in this charge space. The third
component is supposed to represent neutral fields, and the first and second
together the charged field, We can regain the neutral theory by only consider-
ing the third component of all our equations, or we can regain the charged
theory by setting the third component equal to zero. Fierz wrote the charged
fields in terms of complex quantities, which amounts to the same thing.
Actually I have nothing to rewrite in what I did here. All I have to do is to put
little arrows under all field quantities and under all the source densities to
imply that I have a three-component vector in charge space. Every time I
have a product I replace it by a scalar product in charge space.

The new feature, of course, comes in because you can define a new
quantity which is conserved.

Ekstein: Two new quantities which are conserved,

Havas: Namely?

Ekstein: The isotopic spin and the charge.

Havas: We have no particles as yet -- just the pure field.
Ekstein: Even then, in any charge theory, charge-symmetric or

not, you must have current conservation, In addition, if you have charge
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symmetry you must have isotopic spin invariance.
Havas: This is implied because I really get a conservation law

which is too wide. The strictly charge-conserving equation would be a

statement on the third component in charge space of the charge-current

density vector, but what one gets in this approximation is a statement

on all three components; so you are right.

Now let us consider spin zero first and just write down the appropriate
definitions, You can define the ''charge-current density" which is a four-vector
in four space, and also a three-vector in charge space. We take

47 i = e UA U’ (26)

— - -

(and just the third component of this in charged theory), Here A\ means vector
product in charge space, and e is a constant., For the divergence we get,

using Eq. (18)

8 j = -e p AU . (27)

One can define analogous vectors for spin £ > 0 by

g 3@ e(zzz)l-qu(qd) A l@--lov].

- - o0 oo

(28)

(q)

where, as remarked before, all different j give the same total charge.
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Then

s # . e(27(2)1-@1 p(q~1)./\ H(Q-l)..cr... (29)

V - - .0

Teng: Does physics specify which g to take?

Havas: At this stage, no. In the end physics will tell us,

Kaplan: What is the point then?

Havas: People have been inventing all kinds of theories of
elementary particles. They found out after a while that the conditions
they applied in either classical or quantum theory are not stringent
enough, You can build up theories of all kinds of spin. I am going
through it because here is a case where one can get rid of them again,
In most other cases one is just building up and then does not seem to
have any selection and then one doesn't know why one does not find a
particle of spin 260,

Teng: I was thinking of the electromagnetic case.

Havas: In the electromagnétic case, there is just one case any-
how, q = 1.

Teng: What do you call the potentials in that case?

Havas: The potentials are the thing with one index, From the
potentials you define U(l), which is the electromagnetic field. Then you
can't do anything anymore because there are no free indices.

Teng: The interactions can never be through the potentials ?

They always have to be through the fields?




~145-

Havas: You mean in the electromagnetic case?

Teng: In any case.

Havas: It is really through both, I introduced it through Eq,
(21), which involves both of them. Actually, except for fields of rest
mass zero, the potentials and the fields enter more or less symmetric-
ally, as Kemmer has stated already in his original article on meson
theory, It is just a matter of prejudice from electrodynamics that
you think of the fields as more fundamental, because once you have
rest mass non-zero, the fields and the potentials are related sym-
metrically, if you want to write the theory as first-order differential
equations, The field is related to the first derivative of the potential
through Eq. (4), and the potential is related to the first derivative

of the field through Eq. (5).
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Lecture 2.

V. PROPERTIES OF THE SOLUTIONS OF THE GENERALIZED WAVE EQUATION

The essential result obtained last time was that we had to deal in the
end with some generalized inhomogeneous wave equations. Now the next
thing to do before we can obtain equations of motion is to discuss the general
properties of solutions of this equation, The important feature is that one can
make statements on which particular solutions (including their derivatives) are
finite and which are not. 6 One needs this later for the equations of motion,

Let us consider the equation

(D +}/2‘)0'.'...—.4‘n’ P, : . (30)

As you all know the Green's functions for this from quantum theory of wave
fields, I won't spend any time on deriving them, There are several different .
possible ways of choosing Green's functions, and the ones I shall need are the

retarded one, the advanced one, and the symmetric one. The retarded one is

2_1“_5(112)__L Jl(X u) u >u

4w o s
A = 0 ju | <u
r o s
0 u < -u
o S
The advanced one is (31)
0 uo > us
Aa, = o ,uo)< u

1 Z
Zr 0 (B - g Jl()(u) u0<us

(32)
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The symmetric one is

1
=35 (A +D). (33)

In the limit of X - 0 these functions reduce to the ordinary Green's functions

D, Da and D of quantum electrodynamics. In the above
T
u =x =-x ', u=(u u )
TR o
Kk
= k = 2 .
u_ = (wu) (k=1, 2, 3)

In the inhomogeneous equations, the inhomogeneities consist in general of a
sum of terms, but for our present purposes we assume that there is just a

single inhomogeneity of the form

0

p...(x) = ] S...(T) 6(s0) 6(sY) 6(s2) 6(s2)d.T
-0
with
s* =Mt 2t (), (34)

where 7 is the proper time as we defined it last time, S is a tensor which
is again symmetric just as the field tensor was, and the delta is the Dirac
delta function. From now on I shall denote this four-fold delta function as

64 (s). Then we can obtain immediately the '"fundamental retarded solution"

Tr

o,  =4m | A_(x, x") p (x') d* x', (35)

o w0

where d4 x' is the four- dimensional volume element for the x' system,
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This we can immediately reduce to a simpler form, First of all there is a
delta function inp (x'), which on integration changes Ar(x,x') to A (x, z).
r

Therefore the first term in Eq. (35) reduced to

1 [r
Ef §(s2) S, ., (t)dr . (36)
~c0

For the second term in Eq. (33) we can again integrate over the delta function

and get

S

T
Tr
Y s B e
- 00

where

and the retarded point 7 - and the advanced point 1 g 2T€ defined by
s = 0, s >0 ors <O, (37)
o o

respectively, Now Eq. (36) can be reduced further by a trick due to Dirac.
Everything would be simple here if the variable of integration would be the
same as the variable in the delta function, so we will just make the switch to
that; we want to replace d7 by ds2, so we have to multiply and divide by

ds2 /dT. Now s2 as a function of 7 is as shown in the figure,

s2
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. so the derivative in the region of interest is negative., Therefore, if I want to

keep the lower limit,corresponding to the smaller valye of the variable, I have to

introduce a minus sign, Then I have

1 6 (s2)S,.. (1)
-7 J ds2/dr ds= .

The denominator depends on 7 through z, the position of the particle, and

therefore
ds? dz" 1
—_— =-2 = =2
dar sp dr sp. v
We define
(o
= s Vv
K 3]

and write expression (36) as

[oalsR)str) g
K 2

which equals

S

to be evaluated at s2 = 0, Since I used the retarded delta function (31), the

zero corresponding to the retarded time has to be picked. Therefore, we get
T S ) 7 }1‘ (X s)
®) (%) = ——== -/ S (tr) J dr
o s . e e 1
K T - 00 s

for the fundamental retarded solution.

(38)
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In the same way we could work out the advanced potential; the dif-
ference here, first of all, is that you get a minus sign, that is -S/k
evaluated at the advanced point, minus the integral going from the advanced

time to plus infinity, i.e.,

0% (x) = -(S;--> _X/ ? S (1) Iy (Ye) g
K Ta S

This is the "fundamental advanced solution''.

(39)

In the case of electrodynamics you would only get the first term in
Egs. (38) and (39) and this then is just the usual retarded potential and ad-
vanced potential in four-dimensional notation.

I just considered the fundamental solutions, but in general we can have
some more complicated expressions since we started out from a linear equation.
Obviously when I differentiate on both sides I still get solutions of the inhomo-
geneous wave equation; I can contract over indices and still get solutions, and
I can add solutions. So I‘ll denote the differential operator which does all

that by £Yand we have

T

u., =400 ,ul, =% (40)

for the general retarded and advanced potentials of a point particle.
For these differentiations I'll note a few relations for future use., For
differentiation within an integral, 7 is just a variable of integration. In that

case we get from the definitions

S
9 s (1) =n .8 s(T) = S_V . (41)
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Outside an integral you have to worry about dealing with a retarded point or an

advanced point. Let's do it first for the retarded point. We have then

av sp‘ ('rr) = np -—vp (‘Tr) av T, >

14

M

and I have to evaluate the last term. Contracting with s" , I get

Ll s (r) =8 ~-K 98 7
v BT v v T

On the other hand, for the retarded point I have

and if I differentiate this I get just the left-hand side of the previous equation,

Therefore

2 T = v (42)

and I get finally

3 s (1) = -v ¥ , (43
vp(r) M.y — )

all of which has to be evaluated at the retarded time. In the same way I get

, PR -
o, Kr) = v, -(-K )K_v , (44)

where

KlES \'/H.
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For any function of 7 alone, I get from Eq. (42)
8 f(r) =15 7 =1f %v | (45)

Now it is important to note for what is coming later that in the differentiation

I never made use of the fact that I was dealing with a retarded point, as I never
had to worry about the sign of s Therefore if I would do the same for the
advanced point I would end up with final answers of the same form as Eqs, (42)-
(45), except that they would have to be evaluated at the advanced point.

The essential point for the theory is that one can make quite general
statements on the behavior of the solutions as one approaches the world line
and tries to evaluate them on the world line. This I can't go through in detail;
it involves some not very difficult, but sometimes lengthy, calculations. One

can prove the following statements: If I define the ''fundamental radiation solution''

by

rad 1 T a 1/s 1 {5

0 = = (0" -0 ):——{—-—=—=>+—-(___-)

2 .. 2K /r 2 \ "k a
T 0w 1

1 r : Jl(z_fS)

2 [ -J  s.. o d7 , (46)
- -,a_]

then it can be shown that this quantity and also all its derivatives are finite
as we approach the world line. Later I will give explicit formulas for the first

few expressions., I also want to point out, to avoid confusion, that what I call
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. the radiation solution is half of what Dirac and Bhabha call the radiation solution,
v but actually it is the quantity (46) which enters the equations of motion as a
radiation damping term.

- Ekstein: How can one make a general statement about finite-
ness without specifying what S is?

Havas: It has nothing whatsoever to do with S, except that S
as a function of 7 and all its derivatives should be finite. It is not the
S in (46) which causes the trouble, but the A because it vanishes as
one approaches the world line. So one has to go through some expansion
powers of K and show that everything stays finite. Actually, this goes
for the separate parts too. The part involving the integrals stays finite
and the other part, by itself, also stays finite,

Tanaka: Does S, become infinite on the world line?

Havas: S _, is only defined on the world line to begin with --
it is a function of the proper time.

Ekstein: How can you make statements about the differentiability
of an integral without knowing what is in the integral?

Havas: The argument really goes the other way around. S __ as
a function of 7 should be determined once one has equations of motion,
I could only say something about how S |, , will behave at 7 = +o 0Or -
if I had the equations of motion solved, So at this point I can make all

the assumptions I want about reasonable behavior and if I then came up
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with a set of equations of motion which lead to unreasonable behavior I
would be in trouble, Therefore this is really a question which can not
be answered here,

Now if instead of the difference I take the sum of the potentials, I

get what is called the '"fundamental symmetric solution'

- 7T ©
__ZK Lfﬁf]s,,, Jl‘SX”dT. (47)
w7 s

T

This is singular on the world line.

The integral

°f° S J_l(ls_) dTr (48)
- s

by itself is a solution of the homogeneous equation because

('D+X2) fw S. .. Jl(,’ffS)dT _ fs...(g_{_X;—)Jl(xs) dr |
- s “oo s

and this is 0 since the term involving the Bessel function just satisfies the
required differential equation. But as the integral (48) by itself is a solution
of the homogeneous equation, I can add or subtract it from any solution of the

inhomogeneous equation without changing the character of this solution.
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I shall now define two new quantities: The ''modified radiation solution

T T
__7(__ fr+ fa s XS ar (49)

X [P BB o, (50)

T S

Of course, the sum of Eqs. (49) and (50) is the same as the sum of Eqs, (46)
and (47); ' namely the retarded potential, Now the reason for these
definitions is the following: Eq. (49) is symmetric in r and a, and Eq. (50)
is antisymmetric in r and a, while Eqs. (46) and (47) have no such simple
properties. One can prove the statement about the energy-momentum tensor
which I am going to make later, just on the basis of this symmetry.

As I said before, the radiation solution is finite on the world line; I
shall not go through the evaluation af it, There are essentjally two, ways in which
one can do it. One is due to Harish-Chandra 7 who developed the method originated

by Dirac. 8 He uses an expansion in powers of {{_and then goes to the limit
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K - 0. Itis a rather long calculation if one wants to go beyond the first
derivative., The other is the method of Riesz, ? developed first for electro-
dynamics. He treats the differential equations one really wants to consider by
analytic continuation from a different set, which behaves decently, Either way,
you get the same answers, at least as far as investigated. One can't say much
in general about the integrals in Eqs. (46) or (49), but for the other part you

get the following results,

(I

T
B
S

\
1/, (_S_\ ca (S _
L —
2 PR/ PAK o
~
1 " . . . s
-¢ = S(v =v v v )+ 2v S 4+ 2v S . (51)
3 p p o P p o
S

One can continue for higher derivatives, but the process gets extremely
cumbersome, Also, one may have to evaluate derivatives of the integrals,

which involve derivatives of the limits. One also needs expressions like

”

/ * . Y -
: ] SSm' +9 ,/Ssu_\ ={-n_ _S+v v S+4v v S+2v v _S .
2 pl—— pk | po p o c P p o
K /¢ K /a o °

(52)

All these expressions are needed because the equations of motion involve the

modified radiation solution evaluated at the position of the particle.
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VI. DIRAC'S METHOD FOR OBTAINING EQUATIONS OF MOTION

The next question is how to get equations of motion. It might be thought
that it is sufficient to equate mass times acceleration to certain finite inter-
action terms. Although this works in some cases, it does not in general.
This is the procedure used by Riesz9 in electrodynamics, where it happens to
be right. He didn't do the case of a scalar field where it would lead to incon-
sistencies. Thus he didn't do anything wrong, but this isn't a general method --
just something that happens to work in this simple form in some cases,

Dirac, 8 on the other hand, started from the law of conservation of

energy and momentum, which is

when there are no singularities present, and wanted to maintain such a con-
servation law for the entire system, even in the presence of singularities,

I shall first describe Dirac's method and then return to some criti-
cisms. Dirac's idea is to take the world line of the particle and surround it
by a thin tube, the radius of which one ultimately makes to tend to zero, and
then one calculates the flow of energy and momentum into the tube from the
outside, which can be done just by using the Tpv for the field alone. Then one
finds the equations of motion from the requirement of conservation, which

implies that the integral of the flow into the tube between two times 7, and 7,

1l

should be expressible as a difference of two terms at the beginning and at the
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end. This integral equals

T
1
[ ™s |
v
To
because you start out with the divergence of T integrated over some volume
element, and this you can transform into a surface integral.
Now Dirac stipulates that the limit of the flow into the four -dimensional

region should just be the difference of two quantities AP (7'2) AP (T, ). Another

way of saying this is that

;
%T— lim [ T ds_ = AY (53)
T
1

i.e., a certain quantity should be a perfect differential,

Dirac himself applied that to the energy-momentum tensor alone. The
mathematics is exactly the same for any tensor, just as long as there is a
conservation law, The method was extended to conservation of angular mo-

11 . 12 .
mentum by Bhabha, and then Bhabha and Harish-Chandra generalized the
argument mathematically to all tensors for which one has conservation laws.
The results obtained also follow from a mathematically different way of pro-
ceeding, which is also based on the existence of a conservation law, which
. . 10 . .

id due to Mathisson; the methods are entirely equivalent.

It is quite easy to see that the information you get, just as long as you

finally let the radius go to zero, does not depend on what tubes you started out

with, so that the difference of the expressions you calculated by having two
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different tubes, can at most be a perfect differential. Thus, you get unique
information out of this method, This information by itself, of course, does

not help you because the trouble is not in getting equations of motion, the trouble
is in getting finite equations of motion; if you calculate (53) explicitly, of course,
you will find that the derivative of this limit is infinite. To get finite equations
of motion one has to show that whatever becomes singular as you go to the limit
is by itself also a perfect differential. Once you have established that, then you
can say that you didn't know what A" should be in the first place, and so what-
ever singular perfect differential you have on the left in (53) can be compensated
by an appropriate choice of AP , so that the difference is finite, It can be shown
in general that whatever terms you get in (53) which depend on the radius of the
tube and become singular as you go to zero with the radius of the tube, are
identically perfect differentials;12 therefore one does not have to consider them
anymore. The procedure may be thought of as a'renormalization’of A" although
the "unrenormalized'’ A" need never be considered.

The next question is, "What is left over ?'"" The answer depends on the
form of the energy-momentum tensor. First of all, when I wrote down the
energy-momentum tensors (13) and (16) I wrote them as functions of the field
but didn't say what the field was. There is a choice there because there are
several Green's functions for the wave equations, What you should put in is
the total field, but you can either take it as the retarded field plus an external

field, or as the symmetric field plus the external field, or you could take any



»160-

combination of retarded and advanced fields for which the coefficients add up to

one, since it would still be a solution of the inhomogeneous equation. I shall

2

just consider the first two cases. The calculation is the same for the different
fields, but the final equations of motion depend on what you assumed the total
field to consist of in the beginning,

In the retarded case I can write identically

total _ ret ext sym rad ext

9] U + U = U + U + U

from the definitions, and this I can also write as

total

U - U'sym rad ext (54)

+Ur T+ U

because of the way the modified fields are defined, In the symmetric case I

can write, using Eq. (50),

Utotal _usym Uext I The A f- . Uext' (55)

Now you see that both expressions contain U™ Which is singular., The

¥

other quantities on the right-hand side of Eqs. (54) and (55) are all solutions
of the homogeneous equation., So in both cases I put

total

U _ gSym | ymean

>

(56)

where I define the '""modified mean field" by

rad ext
ut + U x in the retarded case
U,mean

-

f. »o UeXt in the symmetric case,
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I shall just talk about Ut~ %

" from now on and won't have to distinguish the
two cases,

The argument we shall use depends on the fact that all the energy-
momentum tensors TPW’ which we considered are homogeneous quadratic
functions of potentials and field strengths U, I shal!l now introduce the nota-

B
tion T (U , U ) to denote an expression obtained from T v by replacing one
pv
) A B .. .
U in each term by U and the other by U and then symmetrizing. So instead

of having an expression which is quadratic in the U's, I get an expression which

2

A B
is bilinear in U and U and symmetric in UA and UB., With this notation I
could write my original THV as

total total,
§ oo

T (U U

nv

2
This is just an awkward way of writing the usual energy-momentum tensor,

but now I can substitute Eq, (56} and obtain

i1’1’](—33.3’1

3

sym

T =T (U7 Piu o

'mean

8] ).

(57)

What I have to do according to the Dirac method is to find the flow of
energy and momentum in Eq, (53) by using these tensors and then to go to the
limit of shrinking the radius %o zero and taking the derivative, The surface

integral in {53) came, of course, from the divergence, but as the last term in
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Eq. (57) is just made up of solutions of the homogeneous equations, its divergence .

m

S
is zero and thus it won't contribute. The first term T (USY , o ym
v

) is v
singular -- very much so -- but it can be shown to give a flow which is ident-
6

ically a perfect differential, This can be shown simply from the fact that

sym . . . ..
U? , as I discussed before, is antisymmetric in the retarded and advanced
points, That is all which enters into the proof, but it is just a little too long to
write out, Being a perfect differential it can be taken care of in A" as dis-

cussed before, Therefore only Tp.v (U'Sym, Uumean) is left. If one calculates

its divergence, and takes into account that U satisfies the homogeneous
equations, one finally gets an expression of the form of an inhomogeneity
multiplied by some function of the modified mean field. But from what I said
in Sec. V, the modified mean field is finite and all its derivatives are finite. .
This is as far as one can get in general, and now one has to consider the
specific forms of the energy-momentum tensors which we had in Sec. II.

When I start out from the energy-momentum tensor in Eq. (53) it
will give me the translational equations of motion, When I do the corresponding
calculations with the angular momentum tensor, I get the rotational equations
of motion., The question which arises is, Which other tensors should be con-
sidered ?" Here I think the Dirac method is ambiguous. The Dirac method,
as generalized by Bhabha and Harish-Chandra, 12 starts out as if it were a
mathematical prescription. It says, '""Take whatever conservation laws you

have for the free fields and then require them to persist in the presence of

singularities." This, however, is too much, because often there are more




-163-

conservation laws for free fields than you are able to satisfy when you have
singularities present, and also more than you would physically expect to mean
something, 13 Therefore one has to make a selection somewhere on what one
really wants to consider; so this turns out not to be just a mathematical recipe
to get equations of motion, but one must pick out what one considers to be
physically significant in the laws for the free fields and then proceed from these
to get equations of motion,

Of course, it would be preferable to have a method in which one does not
have to impose arbitrarily what one wants to keep and what one does not want
to keep. Actually this kind of selection is automatic _if  instead of proceeding
Dirac's way, one proceeds from the linear ized equations of general relativity. 14
Essentially this selection is due to the fact that in the general theory or rela-
tivity the over-all conservation of energy-momentum and the conservation of
angular momentum are built in, So you can take the basic equations and ob-
tain from them the equations of motion without any ambiguity and without any
arbitrary imposition of conditions, One can show in general that one gets
the same equations of motion this way as from the Dirac method, provided
that one restricts oneself in the latter to conservation of energy-momentum

of angular momentum, and of charge.
I shall now indicate very briefly, following Harish-Chandra 7 (compare

also reference 3), the calculations leading to the equations of motion for the

specific form (13) of the energy-momentum tensors. I'm just going to consider
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the first term in the divergence (14) for lack of time. There is another term

which involves the divergence of the source density, but for the fields of spin
two or higher that doesn't enter anyhow, as I discussed before, so I am not
going to evaluate it. For spin one it does matter, but there I shall just give
you the final answer., The important feature I do want to show is that you can
work your way through back from the q you started out from, down to 1 and
end up with the same equations of motion, regardless of q. From what I said
before, in the end the only field which matters is the U' o in Eq. (56);
this being understood, I shall just write U again,

To evaluate Eq. (53) we take our tube surrounding the world line to
be bounded by a mantle Q and by two space-like surfaces A and B, with A
later than B. Then, if I take the outward normal for Q and the future normals

for A and B, the flow into our region is given by

[ a T“"d4x=_fT“‘"dsv +£

v My
- T .
VY b T ds f s

B
(58)

I won't have to worry about the integrals over A and B because in the limit
when you shrink the tube down to zero, these surface integrals all reduce to
expressions which only depend on the time 7 at the points where A and B inter-
sect the world line and thus correspond to perfect differentials, Therefore

we can forget about them and only have to evaluate the negative of the integral

over Q. IfI just substitute into it the first term from Eq. (14) I get from
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Eq. (58)
Z1- -1 e
v o
Now the general idea is the following: p (q-1) and U(q) are defined in terms of

lower order fields by certain derivatives. I can substitute these definitions

and integrate by parts until I am at q = 1, For the integrated terms, the

limits are the surfaces Q, A or B. At Q one is outside the singularity and
therefore whatever has been integrated out won't contribute, because the source
density vanishes on Q. Whatever one gets at A and B are integrals like those

in Eq. (58) which we just discussed and which again can be discarded, So I

can forget about the integrated terms. I won't go through the remaining details,
but if you put in the definitions (6) and (20) and make use of the generalized wave

-1
equation (12) it turns out that at each step you go simultaneously from p (a-1)

(q-2)

to p , and also from U(q) to U(q—l)

2

and also get a factor of 2 Xﬁ . Con-

tinuing like this you end up with

R AAR LD RPN (60)

Therefore, whatever q you start out from, you end up with the same
translational equations of motion., The same thing happens when you consider
the angular momentum tensor -- you define the angular momentum tensor

M::i)x in terms of the T::i) and go through the same procedure, reduce it
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down all the way to M(l) and end up with the same rotational equations of .

VRN

motion, v

Now we assume for the source densities the form

| af... .
ppva.. - I%‘ 9 baﬂ... TR (61)

2 2

which is equivalent to a multipole expansion, and then, since 8aﬁ. "7 is sym-

metric, I can take - to be symmetric in aB... by themselves; it

“aP, pv...

also has to be symmetric in pv ... separately from the symmetry character
of the tensor fields, but between the two sets of indices there is no connection,.

The < is taken to be of the form
o0

Gaﬁ...,pzv... :_i saﬁ...,p.v...

6% (s)dT . (62)

We substitute Eq, (61) with (62) into (60) and then we again go through
integrations by parts, getting rid of the n derivatives in (61) and transferring

(1)

them over to the U Then, using (53), we finally get

e (‘1)n+1 Sap“_ o aaﬁ...U(l).. [cru]. (63)

If I had carried along all the terms of Eq. (14) I would have obtained

an additional term

- gt (64)

which is of importance only for f = 1. A" is the momentum of the particle.
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This was for neutral fields, and for charge-symmetric fields we would
just have scalar products of the corresponding vectors in charge space in these
expressions., This is the translational equation of motion; for the rotational
equations of motion you get some complicated expression equal to a certain
perfect differential@ v which is antisymmetric inpand v, One can simplify
the expression by subtracting out the rate of charge of the orbital angular mo-

mentum, i,e., by introducing

. - d
B’ = - A - A ).
WV 6 MV dr (Zp, v “y p)
Bp.v can be interpreted as the intrinsic angular momentum of the singularity.
Then we have
M n+1l ceG.. B... (D) 0. Bl (1)
B = (-1 n (S 3] u -5 0 U
Y (-1) ( (pﬁ..., ceoloV] .. TVB.., .o ]
..0..  B.. . 0. _B..
—n(sp.ﬁ.., ? U'U.,v_svﬁ.o, 9 O'U...I-L)
R+ 15 .o s. .aP..
- -S
(Saﬁ.., ) 9 U..v,,. aB.., v 2 q,p..)]
-(v A ~v A ), (65)

BV LA
where again the terms involving U should be omitted except for f = 1, and
scalar products should be substituted in the charge~symmetric theory,
In the charge-symmetric theory we also get another equation from the

requirement of conservation of electric charge.

)
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Lecture 3,

VII. THE CONDITIONS OF THE SINGULARITIES AND

THE FORM OF THE MULTIPOLE MOMENTS

Last time we found the general form of the equations of motion for
spin 1 or greater. I didn't go through the same calculation for spin 0. It is
completely analogous and I shall just write down the results later. I also did
not obtain the other conditions you get from conservation of charge; I shall
not talk about the charged theory or charge-symmetric theory from now on
because there isn't enough time, The calculations are completely analogous
and nothing startlingly different is obtained.

The next question is what these equations really mean, because in the
form in which we left them we had, first of all, all kinds of multipole moments
introduced without any further statements about them; and second, we had
introduced the quantities A" and BH»V , one of which was supposed to have some
connection with the momentum, and the other one with the intrinsic angular
momentum., The question is what further can one say, or what further con-
ditions should one impose so that one should be able to say something specific
and get theories which are physically meaningful,

First let us see what we can say in general about the conditions which
the equations impose on the quantities characteristic of the singularity. Now
we obviously did take care of the wave equation because we got all the fields
from integrals of the wave equation, But then we also had conditions on the

divergence of the source density and on its trace. So let's look first at the
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’ divergence condition (23). For spin 2 or greater it can be shown that you have
to take the divergence to be 0, but not for spin 1. The solution of the wave

equation for spin 1 is
= 4 t 1y d4 1
Ua. wa(x,x)pa(x) x'

where A is any one of the Green's functions we introduced, and it was re-

quired by Eq. (22) that
Xza“ U = 4r 8% P
a a
This does not impose any restrictions providedl # 0 since

a

8 U_ = 4r fo%a(x,x"] pa(x')+7l—2_8('l oPp

p(x')] d4x!

=—d4r [ A[-r]dtx' = 4m At [-o0] atx!
= =5 fA(D'+7(‘3)8'apa(x')d4x'

= — f(ﬂ+]2) A 8'0’pu.(x‘)d4 x!' = ;—2—[64 (x-x") 9'® pa(x') d¢ x!

4 a

= -3z 9 pa(x).

If 2/: 0, one has to require explicitly that the divergence of p should
vanish, however. Similarly it should vanish for fields of higher spin, This
implies conditions which one can investigate by a method which is a general-

ization of the method of Lubanski. 15 He introduced it when he was dealing with
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the linearized. equations of general relativity, Lubanski did not make use of
6 -functions, but what his method amounts to is the following: Consider the

expression
v

Js, o, T ee (x' - a(r))dr = 0. (66)

We want to know what conclusions one can draw from this about S, We multiply

Eq. (66) by 6(u2)d4 x' and integrate over all space. Then we get

oszsa._.v’.“ 314 Y 54 (x' -z) 6 (u2) drT d¢ x'

a... Vv

(07 [[s, ., 0t -z e 6 (u2) dr d* x'

=gV ffsa.“ | 6%(x' -z) & (u?) dr dx*

:8 . e . LI ,0-0. (67)

The last step follows as in the calculations leading to Eq. (38). Here
we can carry out the differentiations, using Eqs. (43-45). Now Lubanski's
argument is that as one approaches the singularity different terms will become
singular with different powers of k . Therefore, if you want expression (67)
to vanish, the coefficient of each separate power of K has to vanish separately,
which furnishes a number of conditions. I'll just go through the simplest

case (in which you know the answer), namely the electromagnetic field;
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there, as you know, the charge density is proportional to the four-velocity.
One usually takes this for granted, but I shall prove it to show how Lubanski's
method works, In this case we have spin 1, and therefore the charge-current
density involves a four-vector Sv . We split this up in a component parallel

to the four-velocity and one component perpendicular to the four-velocity:

S =gv +B , B v =0, (68)
14 v v v

In general, if we have several indices we just split the multipole moments
appropriately in components parallel and perpendicular to the four-velocity;
this simplifies the calculation,

We must now evaluate 8° (Sv /K ). From Eq. (68) and the formulas

for differentiation (44) and (45) we get

s . v
. - o v v (1-K "}s 1
(gvv + gvv +Bv) —-(gvv +Bv)[v - ———-——]

K K. <
v ]
g Bvs +st 1- K
kP TRE YK

. . 1 . . v
The most singular term diverges as I The coefficient is Bv s /K.
This must vanish for arbitrary s’ since you can approach the singularity

from any direction, Therefore we must have

but then all you have left is

g/K =0.
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Therefore we must have g = 0, and so the electromagnetic current must be ‘

of the form g v, with constant g, One can generalize this procedure and
get a lot of information out of this; it can be used to derive the equations of
motion of general relativity.

For spin 2, where I won't go through the calculations, the divergence

will equal 0 only if SHV is of the form
S = gv v . (69)

This will satisfy the divergence condition, but you also have the condition

on the trace

But Eq. (69) has a non-vanishing trace except if g = 0; this implies that one
can't have a simple pole in a field of spin 2. Similarly one can show that
the conditions which one has to impose on particles in fields of spin 2 or
higher are just too much. One can't satisfy all of them . Although in
Section VI it looked as if one had solved the general form of the problem
of the equations of motion by obtaining Eqs. (63) and (65)) there still
are further conditions to be satisfied and things don't work out right,

Now again before I go to the specific equations, I want to show some-
thing else about multipole moments in general, which amounts to a very

general equivalence theorem about different couplings. 3 What I want to show
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is that one can assume
(70)

for the first n indices. If Eq. (70) does not hold, i.e., if the Zn-pole moment

has components which are parallel to - it is not actually a pure Zn—pole, but

it is equivalent to a Zn_l-pole.

Let us assume that Eq. (70) is not satisfied for a part of the Zn-pole

moment which I write

\A Tﬁ v (71)
From Eq. (38) the retarded potential is
el V4 T
b fv T N r
of =aaﬁ. v /T a 5...v,..,}—)/f v T 5,0L) dJ.
- N K /r -0 a B...v, s

(72)

I shall show that it is actually not the potential of a Zn-pole but that of a

-1
" When the a-differentiation is carried out we get, using Eqs. (44)

2 -pole.

and (45)

- . . a u'
v T +v T ] vv T
oF zaﬁ...Z(a Boowv, oo  “aBv,...” Yo Tp..v,...
Q

K K2
vo.F'[‘ﬁ...v,...S ) 1 ;{/ T I (X®) s*
+ P (1-s v ) - VaTlp. . v, S K /.
T
Y [T e I (X% 4]
a B...v, s J
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Now
a J (X5 _ 4 I (x5)
aa _‘/‘—s""—"—_—d'r zs .

Therefore we can make an integration by parts in the integral. The integrated

part equals
T I, 4S5 )
B...v,... s

and if you then simplify, you obtain

- /o _ )
of _gP-ev [(ﬁv _ frT 3, () d'r].
K B...v,... s

r -0

(73)
This is of exactly the same form as Eq. (72), but with one differentiation less
and one index less, or just the retarded potential of a Zn-l-pole. The advanced
potential works out the same way.

The first realization of any such equivalence was again by Lubanski1
who found that if in a gravitational dipole you have a component parallel to
Vi this is equivalent to a monopole. Then a similar equivalence was found
by Harish-Chandra for the scalar dipole;7 but actually this is quite general,
the proof is essentially the same in all cases. Therefore, from now on we
can assume Eq. (70) outright for any multipole. This is no restriction at all.

The next question is how much more must you require about the

singularities. Let me first do something where one doesn't have to require
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anything. Suppose I just want to get the results for a simple pole. In the case
of spin 1 fields, of course, if I assume zero rest mass I should just get the
ordinary Lorentz-Dirac equation. If you don't have rest mass 0 there will be
more even for spin 1 because, as I showed you, then you have no condition on
the divergence, and then you have, even for a simple pole, two kinds of current,
one parallel to the four-velocity and one perpendicular to it, That complicates
the calculations a little, but you can then carry through without essential dif-
ficulty.

Thus, we do first spin 1 and for the moment stick to the condition that

8p‘pp' = 0. Then Eqs. (63) and (65) reduce to

A =-ev® gt (74)
v [ov]
B,, =~(v, A, -v A, (75)

For simplicity let us assume that we have no intrinsic angular momentum.

Then Eq. (75) must be 0, which is satisfied provided that

A =Av . (76)
o U

We can substitute this in Eq. (74) and get

Av +AV = —ev’ U(l)
v v lov]
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This I can evaluate immediately. I contract with v and get .
A =0, (77) *
and so A has to be equal to a constant -- let me call it m. I shall come back

to this little '"change in notation'' in a minute. Then Eq. (74) becomes

mv =e vo- U(l) . (78)
v [ve ]

In the case of X = 0, these are just the Lorentz equations as I shall show you,
and if you have %;G 0, you have a little bit more. I just want to note_that

one of the big defects of the Dirac method is quite obvious here. The mass
comes in as a constant of integration. It has no connection with any physics;
you just run through certain calculations and at one point you get a constant
of integration that you call the mass. So there is no physical significance in
this, and certainly there is nothing in this, for example, which would stop

me from taking it as negative.

The field in Eq. (78) is the modified mean field (56) which is different,
depending on whether I use a retarded field or a half-retarded, half-advanced
field. To evaluate Urad on the world line we must use the formulas (51)
and (52). If you take the retarded Green's function, then you finally get

m v =—g2(\'r' -v v \'/"0-)+
v 3 v v o

T § V-8 V
vV 0 o Vv o'U(l)ext

+g211v0'f 5 Jo (P )d7 +gv Vo] ° (79—)

- o0




-177-

‘ as first shown by Bhabha. If you use a symmetric Green's function, you get
1 s o [o) Sv v -5 VvV
- _ 1 o o Vv
mv = g Xv f - J2(7(5)d7
-0
l)ext
+ gv® ylllex (80)

[ve ]
If you have X = 0, obviously the two integrals would be absent. Then these
are just the usual electromagnetic equations. In the symmetric case you then
just have interaction with the external field; in the retarded case you have
radiation damping terms. As far as the integrals (for)( ,! 0) are concerned,
the simple physical interpretation is that these are self-action terms which
come from the fact that the meson field travels with a velocity less than the
velocity of light. Therefore the particle can catch up with its own field, which
is impossible in electrodynamics. This produces a finite self-action even for
the symmetric case, contrary to electrodynamics.

If one does not impose the condition ot pp. = 0, we must have SH in

the form (68). Then the translational equation (63) can be reduced to
A =53 U . (81)

In the same way I can write Eq. (65) as

B =S5 U -S U +v A -v A . (82)
TRY VIR ¥ VR vV oL VIR ¥

Here we can no longer get away with assuming that B = 0. I won't prove this
v
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but it can't be done. To obtain an expression for A we split it into components .
v

parallel and perpendicular to the four-velocity:

A =Av +A , A v’ =-o0. (83)
v v v v

From this we have

A =ZAv +Av +A (84)
v v v
Substituting Eqs. (68) and (84) into (81) we get, after contraction with v
’ A s’ s,
A+ A vv:ngB U v’ +B% 5 va:gVUU +B° U
v v o v o o o
d o o T . T ‘T
= — - U - -B U . 85
o (g v U0_+B Uo') gv s "BV U(r . (85)

Now one can get some more information out of the rotational equation (82)

which I have not used so far, It clearly involves only A. Thus I can calculate

Av by contracting with v, We have

v (86)
TRY

and therefore

(87)
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I can substitute Eq. (87) back in (85) and get

A:c-l‘—}r—(gv“utr + B U)-§U v (B +B° v VU, B Vv
(88)
This is as far as I can go without any further assumptions; I have used
up all the information available from the equations of motion, and I just didn't
get through; I got an expression for A which is not yet integrable. One can get
more information by imposing conditions which appear physically sensible.

First of all, we assume that
B v = 0. (89)

This must be required if you want to interpret Bp.v as an angular momentum,

because what it means is that in the rest system
(90)

pr should only have spatial components. Incidentally, in general rela.‘civity1
Eq. (89) follows from the positive mass density without further assumptions.
From Eq. (89) the last term of (88) vanishes. The next requirement is
not as obvious, but again is one which one would demand in a sensible theory,
namely, one would expect that the magnitude of the intrinsic angular momentum

should be constant, or

B B™ = o. (91)
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If this is imposed, Eq. (88) and similar equations in other cases become

integrable. If you contract Eq. (82) with B"Y and use (68), you get

B B :o0-28"YB U . (92)
RV BV

But U is essentially arbitrary, since it contains an external field. Therefore
v

we must have

B" B = o. (93)

Now conditions (68), (89) and (93) together are enough to determine the form
of B . The simplest way to work it out is to consider a ''standard rest system''.

v

In this system, in addition to Eq. (90), we have also

B,, =-B,_, #0, all other B}Lv = 0. (94)

By considering our three conditions in the standard rest system, it can easily

be shown that they require

v vKX p
=1 5
B € B/{)\vp, (95)

where ¢’ hp is the Levi-Civita tensor density.

The only thing we don't know at this stage is whether g and f are constants

or not. Now we contract Eq. (82) with B BY and get

B*8*"B --B B (U B*-v B u v)+B' v B BV’
v M 0 o wopv

-BY v ]’3H l;> vP . (96)
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The left-hand side is zero by (93), since an integration by parts yields an
expression contracted over two indices in which one factor is symmetric and
the other antisymmetric. Similarly the last two terms vanish, Since BVBV 0,

we must have

o

v ’
u B -v BYu +v%-o0. (97)
. g o
If you substitute this in Eq. (88) the only term left which is not a perfect

differential is - g Uv v' and therefore we must take § = 0. Then we can

integrate and get

A=m+gvP U +B° U . (98)
(s a

Hamermesh: The A gives you the coefficient of v’ so

essentially the momentum ?

Havas: Yes, this plus AY is the momentum.

Hamermesh: This is the momentum of the field plus *** ?

Havas: No, this is just the momentum of the singularity. The
U's are all evaluated at the position of the singularity.
It can be shown that to have

Bv Bv = const, (99)

it is only necessary to require f = 0; everything else works out already from

the equations of motion,
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Finally we obtain for the translational equation of motion

d

1
—[(m+B°U_ )v -B U v" +B x?“]:gv“u( ) vB%5 U .
dr o v v o v o

v [ve]
(100)

I won't evaluate the radiation damping terms for this equation because
of the length of the calculation, Before discussing higher poles of spin orie
fields, for which the situation is very much more confused, I will talk about
the scalar field because there one can work out the entire problem completely.
I'1l just sketch it because the proofs always run the same way. One first as-
sumes Eq. (70) which is a very strong restriction on the form of the multipole
moments., Substituting this into the rotational equation and requiring (91), one
obtains an equation such as (92) which implies some condition on the multipole
moment., Then one splits up AY parallel and perpendicular to the four-velocity
and arrives at an expression for A by making use of the rotational equations
to get rid of A”. This should be a perfect differential, and one may have
enough information from the rotational equations and the conditions on the
multipole moment to show this, I shall just indicate it for one particular case,

If you do the scalar field with the methods of Sec. VI you end up with the equations

A = (1)t g U (101)
j af...vp
and
° n+l B...wv B...v
B = n{(-1 S 9 U -5 o] u
B p (-1) (p pB...v p BB, .. )
(v A -v A . (102)
P Pk

-
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The reason the scalar case causes very much less trouble than any others is

that there are no conditions whatever on the S's from the field equations, The
Lorentz condition and the condition of the traces all come in just for spin 1 or
more, S must only be symmetric and satisfy Eq. (70). But for a scalar field
Eq. (70) implies that S is a symmetric tensor perpendicular to v in all its in-
dices. From this one can obtain all possible forms of the multipole moments

which are compatible with Eqs. (89) and (91). One such form is

saﬁ...v - ,:/ BT (103)

for any n, as I shall show now,

We shall also impose

S g%V _ . (104)

It can be shown that this only requires that fn = 0, and that this together with

Eq. (91) implies (99).

Now we split up Av again by use of Eq. (83). Proceeding as before we

get
A = o—n(-1)*lg Pev g u-B P (105)
B P Boouv mp
and
. +1_d - ap.
A=(-1)" [ & (5@P-+wv ® oy U _3oP...v ®ap...v U]
+n(_1)n+1 v, 'SaB...v 8;3 ) U, (106)
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We must show now that the last two terms vanish, Now from Eq. (103)

- [ A
_saB..v 5 ‘ U+nv Saﬁ...v 5 U -
af... a Besov
B a 7] T ~a -7 o 7
nb oc=B...v B 8tz.ﬁ...v U+n VaB o=B...v B 8[3. WV U. (107)
But from Eqs, (102), (99) and (105) we have
0-=B*B?B = n(-1)®' [ -B*BPs Py U
mp p hpB..v
+B* v BP B P g U], (108)
M P B...v

which implies the vanishing of (107). Thus we get from (106)

Acm+ (_1)n+1 Su.ﬁ...v 8(1‘3 ) U (109)

and from this and (106)

A =[m+ (-1)?FL g@Bev 4 U]v -B <°
M ap...v B mp
n+l B...v «
-1 (-1 S 5 U. 110
n(-1) b Beueev ( )

Hamermesh: What was the assumption you made on B v ?
1)

Havas: Equation (91) means that the magnitude of the intrinsic

angular momentum is constant., Equation (89) means really that it is a

decent. angular momentum,
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Hamermesh: And Eq. (70)?

Havas: This is not an assumption., You also want the multipole
moment to have constant magnitude and you want the intrinsic angular
momentum to have constant magnitude, Physically this is sensible and
also this seems to be the only way to get a well-defined problem,

Hamermesh: Why shouldn't the intrinsic angular momentum

change and pass things over to the field?

Havas: It can change in orientation — that is how we got the
rotational equations. You can have exchange of angular momentum
between the intrinsic angular momentum and the field momentum,

Hamermesh: But it doesn't change its magnitude?

Ekstein: This is perhaps the definition of an elementary particle.
Havas: Yes, I don't say you can't have it; that's what you
usually want to have if you want to talk of a well-defined particle.
There is no mathematical necessity to introduce it. The trouble is
that at this stage it is not a well-defined problem if you don't accept
certain conditions because then you are left with a general form of
equations, Eqs. (63) and (65), and there is no further way in which you
can connect the quantities. In this sense, there is a theory possible for
spin 2, for example., What it says is that there is a momentum of the
particle and an intrinsic angular momentum and multipole moments which
are essentially unrelated except through these equations, You just can't

say any more,
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Peshkin: Can one make other requirements to relate them ? .
Havas: There might be others, but these are the natural ones to

make. I don't see how one can get along without Eq. (89) because if you

drop this, it amounts to not having any equations of motion when you »

have no fields, The particles can do anything; you have no restriction

on the motion., So you don't seem to be able to get away from (89). You

might conceivably drop (91), and as I said, it then is not a well-defined

problem any more,

It can be shown that the most general form of the multipole moments you

can have for a spin 0 field is an arbitrary linear combination of moments of the

form

a...v Z Bu.)\ B)\ﬁByp Bpé BTr—ln gn™ 0.:174/.:;”1, BY .
(111)
The sum goes over all permutations of a...v, so that this expression becomes
symmetric as it has to be, and p < n, with p even, Therefore for scalar fields
the answer can be given completely,
Now return to the vector fields and pseudovector fields for spin 1. Here
the answer has not yet been given completely, It turns out that you certainly
can have multipole moments of all orders as long as you don't require Cl pp' =0.
The question is whether you can have multipole moments of all orders if you

do require this condition, which is necessary in the case of the electromagnetic

field, At this stage I don't know the answer, *

" Note added in proof: I have since proved that this is possible. A detailed ‘
account is in preparation,
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For spin 2 or more one can not satisfy all the conditions for the charge-

symmetric field; the answers are essentially the same., The additional require-

ment of conservation of electric charge in the charge-symmetric field doesn't

add anything to the difficulties. On the contrary, it seems to allow more pos-

sibilities, at least for the linear fields which we have considered, where we did

not explicitly introduce an interaction with the electromagnetic field.

Hamermesh: What was the basic assumption?

Havas: It was conservation of energy-momentum and of angular
momentum,

Hamermesh: Total ?

Havas: Yes, and that leads to a translational equation for A
—_— v

and a rotational equation for B . Then condition (89) is more or less
1Y
imposed on you if Bp.v is to be interpreted as intrinsic angular momentum,

Equation (91) is not necessary, but it looks like a natural requirement,

Hamermesh: This has no analogue in quantum theory?

Havas: In quantum theory you imply it when you write down an
equation for a particle with a definite spin; you then have the equivalent
of (91).

Equation (70) is really no restriction. It follows if you want pure
multipole moments without lower order multipoles mixed in,

Hamermesh: Do you really have that, though? You have a particle

and a field — isn't that the picture you have ?
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Havas: Yes,

Hamermesh: Then the thing that bothers me is that you have many

particles possible. I start with one, but it can suck onto itself things
from the field.
Havas: Now you are thinking of excited states?

Hamermesh: Yes — isobars,

Havas: That is not excluded — you can have them here, too.

Hamermesh: But that would violate that condition ?

Havas: When you have isobars you would not just consider the
magnitude of the intrinsic angular momentum, but you would take that
plus the field and integrate over the field.

Hamermesh: OQh, I sece,

Havas: That has been worked out. 17

Tanaka: Can we have isobars with more than one mass?

Havas: I can't say anything about mass directly, as the cal-
culations for excited states assume the particles to be at rest, One would
have to calculate the mass or energy in the field for this case.

Peshkin: In the classical theory of fields the singularities play
the role of the particles., When I quantize it, it would appear that I am
faced with particles of two kinds — there are the singularities and then
there are the ordinary particles that I get by quantizing the field., I

understand why, for instance, the second kind of particles have spin 2
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in a tensor field, but I don't understand how the spins of the singularities
are determined by the theory, I understand why, with particles of the
second kind I can't have high multipole moments, but I don't understand
about the particles of the first kind,

Hamermesh: No, but what you should do in the quantum theory

is to take two types of fields, The first field is the one of which you
just take the singularities., These interact with the second field.

Peshkin: How is it possible to have arbitrary multipole moments
here while in quantum theory the moments are limited?

Havas: Well, I can answer it in part — in quantum mechanics
you certainly can not do it if you want to describe the moments for a
Dirac particle in the usual way of introducing interactions. But as you
know, you can also introduce extra terms of the Pauli type except that
I have been told that Schwinger has proved that this can not be done
consistently. This excepted, you can, of course, add additional properties
but that is what you usually want to avoid. Otherwise you are limited by
the algebra of the matrices you have,

Ekstein: In Peshkin's question, what symmetry statement is
directly involved ?

Peshkin: It is basically that for a spin 1 particle, for instance,
you have only three quantum states, while to describe, say, a quadru-

pole moment, you need five,
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Havas: I can only give a mathematical answer which, of course,
is not what you want. Here the multipole moments are determined in a
way from the intrinsic angular momentum. In anything I wrote down,
the prls entered explicitly, You have here also a connection between
the multipole moment and the angular momentum. If you had no angular
momentum you could not have any moments,

Peshkin: In a scalar field I can still have multipole moments.
Would you say that that is in some sense because I have sucked some
orbital angular momentum from the field into the particle?

Ekstein: Are we talking about the sources of fields? These
can have high multipole moments and can have angular momentum whose
numerical value is not restricted.

Havas: Here the particle is described by B v and I haven't said
anything about its magnitude. In quantum theory you have theories of
particles of spin 1/2, 3/2, etc., which are distinct theories, Here
everything is lumped together. The mechanical properties of the particle
are specified by its mass and the B " So this BHV covers the theories
of all spins.

Hamermesh: I don't think it would be any different if you as signed

a value to the spins of the singularities, then these terms will start to
contract when you write out these multipoles,
Havas: What you mean is that if you write out products of

matrices you can reduce that by the algebra of the matrices,
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Hamermesh: Even if I don't write it out explicitly, I know that it

satisfies an equation of finite degree. Clearly I can't write down terms

greater than that degree.

Ekstein: The elementary particle is not something that has a
simple symmetry. But the point is that it maintains whatever asymmetry
it has no matter how it is buffeted around by the field.

Havas: Yes,
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Lecture 4. ‘
Last time we used the Dirac method, which is essentially a requirement
of conservation of energy-momentum and of angular momentum to derive two
equations; one is a translational equation of motion which tells you that a certain
expression in terms of the fields should be equal to the derivative of a four-vector
Ap and a rotational equation which gives you a pr in terms of the field, the
interpretation being that B v is the intrinsic angular momentum of the particle.
This is as far as one can get without imposing additional conditions, It
seems necessary for a physical interpretation of Bp,v as an angular momentum
to impose Eq. (89), Bp.v v’ = 0. On the other hand, for the multipole moment

the equivalent Eq. (70) vaS = 0, does not have to be imposed — it simply

specifies what is meant by a pure moment of a certain order. Without this con-
dition the different orders would be mixed up. If in addition one requires (91)
and (104), i.e., that the magnitude of the angular momentum and of the multipole
moment should be constant, there are enough conditions to find explicitly the
form of all the multipole moments which are described by these equations, For
a scalar or a vector field, one can have multipole moments of all orders, For
fields of spin 2 or greater one can't satisfy these conditions and so no poles of
any order are possible.

Ekstein: What quantities in this theory would you dignify with

the adjective '"observable'' ?

Havas: There is a number of constants in here, the mass, the

magnitude of the angular momentum, and the coupling constants involving
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all the multipole moments; certainly at least these,

Ekstein; Coupling to what — either the fields or their derivatives
you consider as observables ?

Havas: I do, but actually that question doesn't enter here because
I have here equations of motion of particles. I could say, just look at the
particles and observe their motion and what can I find then?

Eksteinz Just z. In order to confront this theory with experiment
you must have a definite problem — fields and the z as an observable.
That certainly is an observable,

Havas: Yes, but you can make other deductions; e,g., when
you put an electric charge in the field you can determine the electric
charge,

Ekstein: Yes, because the electric field is observable, but if
you don't consider the field as observable I don't know what this means,

Havas: No, I could, without talking about a field, take two
electric charges and observe their motion and from this deduce that
there is some interaction between them which is characterized by a
con stant e,

Ekstein: Eliminating the field?

Havas: Yes, I could in principle avoid talking about the field;
this is really what I am going to discuss today.

Hamermesh: Is the statement that if you have a field of spin

greater than 1, then something goes haywire?
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Havas: Yes, if you want to have interactions. Nothing goes .
wrong with the free fields, but ... -

Peshkin: If you want to have interactions with particles having
definite spin?
Havas: You mean you want me to put a condition on pr— I mean
just to fix the magnitude ?
Peshkin: No, I wanted to know exactly what would go haywire,
If you don't fix the magnitude of pr then things don't go haywire ?
Havas: If I let condition (91) go then I have to stop at (63) and
(65); I would simply say that Av is the momentum and I don't know what
that stands for except that that's the thing which varies with time accord-
ing to Eq. (63). I have no way of expressing it in terms of mass or
velocity or anything — it's just another undetermined property. This
is certainly not the usual way in which one talks about particles, that .
one is unable to define the momentum in any way except explicitly
through the way it varies with time in a given field, If you want to
take BH v as an intrinsic property and get Av out explicitly in terms of
other things, then if you don't assume Eq. (91) you can't go on. Of
course, you might stop here and say this is it, but this is not the usual
way one considers equations of motion,

Hamermesh: Is there any way of imitating the results for a field

of spin greater than 1 in the quantum theory?
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Havas: I hope so, but I have no results yet. Of course, one of
the points I was after was to see if one can't classically get some general
statements, because obviously it is very difficult to get general statements
out of the quantum theory of interacting fields, while here it is possible,

Peshkin: From the physical point of view, isn't it so that all
these properties of the particles are simply reflections of those condi-
tions which you put on the field? Actually nothing else has been done
except these few assumptions that you wrote down.

Havas: Yes, I have really not assumed anything about the particle
except that it is a singularity. The only gap is that the mass comes in
as a constant of integration. This would be gone too if you do it from
the point of view of general relativity, where everything would follow
from the assumption of a mass singularity.

Hamermesh: If you take a field of spin 2 then this says that you

can't get interactions ?
Havas: Yes.

Hamermesh: I know a field of spin 2.

Havas: Namely?

Hamermesh: The gravitational field.

Havas: Pauli and Fierz unfortunately made the statement that their
theory of spin 2 has something to do with gravitation, It has absolutely

nothing to do with gravitation, The reason is quite obvious, actually,
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‘s . — a
because the conditions for the field must be ./ Uaﬁgéhr P ap’ ) Uﬂ-ﬁz 0, .
and U: = 0. But in the gravitational case you could only have trace zero
if the field had no sources, If you put sources in it is impossible — you
just can!t do it; and so whatever the linearized theory of gravitation

means, it is no longer equivalent to the Fierz spin-2 theory.

Hamermesh: It must be a mixture?

Havas: Yes.

Hamermesh: The trace condition eliminates the mixture?

Havas: Yes. That is one of the conditions you need to eliminate
the mixing. This is absolutely impossible to maintain once there is a
source in it, essentially because then the trace is essentially the mass;
so you can't satisfy this condition, For pure fields it's all right, the
equations are formally equivalent, but the question here is precisely

what happens with interactions.

VIII. RELATIVISTIC DYNAMICS IN TERMS

OF DIRECT INTERPARTICLE ACTION

So far we always considered the external field as something arbitrary.
On the other hand everybody agrees that the only fields which are physically
acceptable are those which can be related to sources, even if it usually is not
convenient or necessary to do this, I want to remind you very briefly that electro-
dynamics started out from Coulomb's law; attempts were made to modify it for

moving charges (e.g., Weber's law), but soon it was realized that the correct
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formulation of such a law was not easy. It is rather remarkable that Gauss
understood the problem in 1845, He wrote to Weber that what is needed is

'"a derivation of additional forces — to be added to the interaction of electrical
charges at rest, when they are both in motion — from an action which is
propagated not instantaneously but in time, as is the case with light'.

Maxwell solved the problem indirectly through a study of the field
equations instead of the force laws. Afterwards physicists got used to talking
in terms of fields exclusively, in particular because emission of radiation from
an accelerated charge was a phenomenon which could be described very simply
in terms of an emitted field, but seemed to be incapable of description in terms
of particles alone. So one stuck to the field concept in spite of all the difficulties
resulting from the self-energy of point charges. All we did in these lectures
so far was to try to get around these difficulties with self-energy.

Nevertheless, even if one considers the field to be a basic quantity
and would not want to accept action at a distance, one can still expect that all
the fields are due to sources, and one can still attempt to formulate the theory
in terms of the sources alone; but then, as I shall indicate very briefly, it is

1
impossible to distinguish the two points of view in classical electrodynamics. K

2
You are probably all familiar with Fokker's variational principle. 0

All of electrodynamics can be derived from a variational principle
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where

J = Zmi fvi d'Ti +_;k ei 2 ffviv vkv () (siZk) d'ri d'rk,
! (112)

with

First define '"field quantities' in terms of the particle variables. We

define the potential

Uk" (x) = e [ (ske)vk" dry s 52 = (x, ~7,) =" _zk”), (113)

and then the field as usual is

F =95 U -8 U . (114)

Now we can get the equations of motion from (112) by variation with respect

to the particle coordinates. Considering, say, the ath particle, we get

m_ {’a,v: e, Vav kza Fo (=) . (115)
The quantity (114) is the symmetric field, because Eq. (113) contains
the half-retarded, half-advanced Green's function, as all the integrals go from
-0 to +0. I don't have the time to discuss the physical problem of advanced vs
retarded potentials at this stage. But to have a theory in terms of particle

variables which is derivable from a variational principle, one must use the
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. symmetric Green's function,
Peshkin: You may answer this question by yes or no, You have
a choice of using either the symmetric or the anti-symmetric one. Must
you use half-advanced plus half-retarded?
Havas: You must use plus.
Equation (112) also contains Maxwell's equations, as I'll show again

very briefly., The 6(s2) satisfies

[J6(s2) = 4ws4(s). (116)
We define

. _ 4

iy ey f v, 6% (s)dT . (117)
We then multiply Eq. (116) on both sides by ex Vv d'rk and integrate,
We obtain

) U, = 47, - (118)
Now from Eq. (113) it follows that

8” u_ = o. (119)

Then, taking 8v of Eq. (119) and subtracting this from (118) we get,
using (114)

o
- ' 2
9 Fko'v 4w Iy (120)

i.e., Maxwell's equations, 21

Peshkin: Do you automatically also get that the particle doesn't

. act on itself?
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Havas: Yes, because in (112) there is a summation which does
not go over i = k, so you have no self-action term included and this leads

to k # a also in Eq. (115).

We have started from (112) because physicists like to have a theory which
starts from a variational principle. But electrodynamics has been considered
from the point of view of action at a distance before without going to this formu-
lation — in particular by Frenkel a2 and Synge 23, who simply postulated that you
should take equations of motion with retarded interactions, but with no radiation
damping, and show that this still allows a consistent theory., I don't want to
discuss this any further except to note that almost everything which we are going
to discuss here one could also do with those equations. The one thing one can't
do properly in the Frenkel-Synge formalism is to describe radiation,

It looks as if we had lost something as compared to field theory, namely

detailed conservation of energy momentum, Detailed conservation requires that

14
+ 4 —

in the neighborhood of particle a, and that the integral in Eq. (121) should
vanish if the region of integration does not include a particle, If we take for

TIJ.V the expression analogous to the one introduced by Frenkel,

sym sym
T = T F. F , 122
o i;k Ly (Fy ) (122)
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then this, plus the equations of motion, guarantees Eq, (121), Therefore we

have detailed conservation of energy and momentum by simply defining a suitablc
quantity. Of course, from the present point of view this has no meaning physically,
but mathematically it is all right.

Incidentally, after Dirac did his original work discussed in Sec., VI, it
was realized by Pryce 24 that one could modify the usual energy-momentum
tensor of electrodynamics so that the infinities would not appear. Then Harish-
Chandra showed that this can be done in general, 25 I really don't understand
the idea behind this. According to field theory the physical state at a point is
determined by the field without regard to its sources. But the modified energy-
momentum tensors of Pryce and Harish-Chandra can only be formed with a
knowledge of the sources; so this is no longer field theory.

Equation (121) holds with the particular energy-momentum tensor (122)
and similarly with one due to Wheeler and Feynman which they call the canonical

tensor, It differs from the tensor (122) by the additional term

; T ) (Firad’ Fkrad) ’
ifk M

formed from the radiation fields, which obviously has a vanishing divergence.

Then we get

T = ) T (F.7%t g 29y (123)
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If one attaches any physical significance to the densities of energy and momentum,
then this canonical tensor of Wheeler and Feynman has some advantages for
certain purposes. Conservation of angular momentum follows from either

(122) or (123) as usual.

Now we turn to the problem of radiation, The equations of motion (115)
involve time-symmetric interactions, and the question arises right away if this
can ever describe radiation; the usual idea is that one needs retarded fields
precisely to obtain radiation loss. This question was discussed, for example,
by Einstein and Ritz 26 fifty years ago; Ritz thought that the use of retarded
fields was something essential for the second law of thermodynamics, while
Einstein felt that the basic laws of physics were time-symmetric and that radia-
tion was a statistical phenomenon,

The first attempt to give such a statistical description consistently is
due to Wheeler and Feynman, 21 Their essential assumption in addition to
Eqgs. (115) is that sufficiently many particles are present to absorb completely
the radiation given off by the source. They go through three different, rather
special and complicated non-relativistic derivations which I won't discuss, and
then they give a general, relativistic, derivation. Before discussing this
derivation I wish to stress that this statistical description has no bearing on
the problem of action-at-a-distance vs field theory. 19 The argument of Wheeler
and Feynman is based on the use of the equations of motion (115} (with time-

symmetric fields)., Now, of course, Eq. (115) can be obtained in two different
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ways, either (as we just did) from Fokker's variational principle, without talk-
ing about fields at all, or by the Dirac method (as we did in Sec. VI). Thus one
can get the time-symmetric equations of motion in a consistent manner from
both points of view; any subsequent derivations are not relevant for the equations
of fields vs action-at-a-distance.

Wheeler and Feynman in their general derivation start from the state-
ment that complete absorption implies that a test charge placed anywhere out-
side the absorbing medium will experience no disturbance, i.e.,

F = 0 (outside the absorber). (124)
all k

Now the symmetric field is half the sum of the retarded and the advanced field.
But retarded fields correspond to outgoing waves and advanced fields to incom-
ing waves, Then they conclude that since an outgoing wave can never cancel
an incoming wave, the retarded and advanced fields have to vanish separately
outside the absorber, and therefore also

> (stym —Fkad") - 0. (125)
all k

But this is a solution of the homogeneous equation and thus if it vanishes in a
region outside the absorber, it has to vanish everywhere else. So (125) must
actually hold everywhere,.

Then they take the summetric field which enters into the equations of
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motion and rewrite it as

1
- = (F -~ F ).
2 a;l L ok k (126)

The first term is what you expect if the fields of all particles are retarded.

The second term is the field which determines the radiation reactions in the
equations of motion (where the fields have to be evaluated on the world line),
and the third term, from what we just said about (125), is zero. Thus it looks
like what you got from the symmetric case is what we need in the retarded case,

namely,
m v :ev“iZFret+Frad]. (127)
a ay a a kve ave :
k#a
L
We note first that one could have seen this without any calculations.
If you take the condition of complete absorption [ in the form (125)] then you

get the same results no matter what combination you use, because (125)

implies that

Z Fkret _ Z Fka,dv _ Z % (Fkret + Fka,dv). (128)
all k all k all k

These are the total fields due to all particles, and in field theory it is the total

field which must be used in the energy-momentum tensor to obtain the equations
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of motion. Thus one obtains the same equations in the time-symmetric case
and the retarded case. Things have been fixed up so that there is no distinction
between these cases initially, the total field being the same in all cases, Again
it had already been suggested by Einstein, 28 that there might exist a condition
such as Eq. (128).

At this stage we made the symmetric equations of motion look as if they
were the same as the retarded ones; but this by itself does not assure us that
we have radiation because we could have done just the opposite — we could have
gone to the advanced field and we would have apparently obtained radiation gain
instead of radiation loss. This is where the statistical considerations come in.
Wheeler and Feynman conclude that the 'irreversibility of the emission processes
is a phenomenon of statistical mechanics connected with the asymmetry of the
initial conditions with respect to time!'', or to put it another way, for statistical
reasons it so happens that the sum of the retarded fields which enters in the
equations of motion is essentially independent of the particle, while this is not
so for the sum of the advanced fields. This appears reasonable, but on the
other hand it is an argument which is based on an analogy with classical
statistical mechanics which still has to be justified, because all the results of
classical statistical mechanics are derived on the basis of instantaneous inter-
action. But here we don't have instantaneous interactions and nobody knows any-
thing about statistical mechanics with non-instantaneous interactions,

The main difficulty is in accepting Eq. (124) because it is based on a
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division of the world into something inside and outside, and on a consideration

of the effects of all particles on a test particle outside, which is a concept one
should not use if one wants to talk in terms of particles alone. One should not
have to bring in another particle in addition to all particles and talk about what
happens to it, But if one does accept Eq. (124) and the plausible statistical
statements, then one can calculate radiation effects as usual, using the canonical
energy-momentum tensor (123) which furnishes a flow of energy outward, One
does not have to think of this in terms of a flow of energy in the ''field' — one
could say that ''radiation'' means that the effect of all other particles on a particle
is given by what looks like a wave to that particle.

One should really have to solve the equations of motion (127) keeping in
mind conditions (145), namely that the total retarded minus the total advanced
field should be the same. This, it turns out, can not be done in any sensible
way. 29 One has again to take recourse to a statistical interpretation which will
not allow a rigorous statement on the total retarded and advanced fields in
solving a problem.

As mentioned before, the conclusions and arguments have nothing to do
with field vs action-at-a-distance. The equations obtained starting from (115)
are identical; the only distinction one could make would be between a Wheeler-
Feynman type argument which in the end uses statistical considerations and a
field theory with retarded interactions which would say that Eq. (127) does not
involve statistical considerations., But clearly it is hopeless to decide experi-

mentally whether a classical charge in a classical field obeys (127) as interpreted

statistically or taken as exact. Since such a distinction between the Wheeler-

Feynman type theory and a retarded
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. interaction theory is not possible, there is no verifiable distinction between
field theory and action-at-a-distance theory in electrodynamics,

Now here, I believe, meson theory could be helpful. One can describe
meson theory in terms of particles alone just as well as electrodynamics, It
can be done for both neutral fields 30 and charged fields. 31 I won't discuss
charged fields; in neutral vector meson theory I shall only consider the form
of the theory with conservation of mesic charge which means that the mesic
current is still proportional to vp. . If you use the mesic equation of motion
(80) for the vector case and the analogous equations for the scalar case, but
now explicitly introduce time-symmetric interactions, then for the vector case

we have

. _ o (1) sym O s v -s_ v
m_ v, =g, v, k;a Uk[vo-] + 5 g X \A f av ac ac av X

X Jy{xs)dr (129)
and for the scalar case
. ~ sym d sym
MaVay T8y ; 8v Uk + €, ar Z Uk Vay
kfa a k#a
0 o0
2 2 s 1l .y 4 ( 1 ’
1 ga X f -av J, (X sa,)dT 2 84 X dr Vay f Sa T (Xsa)d’r).

2 - 00 Sa2 a -0

(130)
Notice that even in the time-symmetric case you have self-action terms,
namely the integrals over the entire motion of the particle. Even from the point

of view of field theory this means trouble; mathematically it is all right, but
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conceptually it certainly is not. What one means by a field to begin with is

something which is defined in terms of its action on a test particle. There is
no difficulty connected with this in electrodynamics, but there certainly is one
here because what-happens to a particle of a given position and momentum depends
on its entire motion, One can not, as in electrodynamics, bring a test charge
to some point in space and thereby investigate the field there. The result would
depend on how you brought the test charge in there,

From the point of view of action at a distance, Eqgs. (129) and (130)
are not acceptable because from this point of view the equations of motion should
only involve actions of other particles on a particle and no self-actions, Now
the question is, ""Can one get a consistent theory by omitting all the self-action
terms?'" The answer is yes, one can do it and it is consistent in the sense in
which electrodynamics was consistent, namely, I can write down a variational
principle from which I can get the equations of motion, from which I can get
the field equations for quantities defined in terms of the particles, and from
which I can get detailed conservation of energy and momentum if I wish,

I shall first write down the variational principle. For the following
it is somewhat more convenient to use instead of Green's function A defined
by (33) the function sG =47 Z . Then the variational principle for the vector

meson case is

v

T=) my fvidr, o+ ) g8 J/ O 52 vy, Vi 47 ATy
i ik

= extremum, (131)
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which differs from Fokker's principle only in the use of SG instead of 6. For

the scalar case we have

J = IZ mi fvi d'ri - i;k gi 81 fst(SﬂZ()vi Vi d'ri d'Tk

= extremum , (132)

We can again define field quantities by introducing

U, (x = gkfsc;(skz) Vi, 47, (133)

and

U (x) = g fc;(skz)vdek (134)

K ¢

for the vector and scalar case, respectively, Carrying out the variation with
respect to the particle coordinates, we then obtain the equations of motion with-

out self-action terms

m v = g Vv v U (*)
a av a a k;a k [ve ] (135)
and . /
m Y, T g, k;a 2, Ukt g dr_ (k;a Uk Yav |. (136)
From the equation satisfied by SG
(U+xz) (G (s2) = 4w &% (s) (137)

we can get the inhomogeneous wave equation for the potentials as before. This

is all we need in the scalar case; in the vector case this can be shown to imply
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the Lorentz condition, and thus we have regained the field equations of meson
theory which we had in Sec. III. Thus again the variational principle in each
case contains both the equations of motion and the field equations.

We can obtain detailed conservation laws by defining energy-momentum
tensors just as in electrodynamics, using either the Frenkel tensor (122) or the
canonical one (123), The Aav of Eq, (121) must be taken as m, v in the

vector case and as (m_~-g Z U v in the scalar case.
a a Kia k' av

Concerning the question of radiation, nothing new has to be added, be-
cause in the argument presented before nothing implied that one was talking
about electric fields., One can proceed from Eq. (124) as before, Thus for
the vector case, if one starts out from the time-symmetric field-theoretical
Eq. (129), one would end up with the retarded equations of field theory (79).
If one starts with the equations (135), obviously one gets something different.
Whereas in the field-theoretical case (79) one has an integral from -4 to Ta

in the action-at-a-distance case these integrals are replaced by

T 00
1 a
s 5=
_m Ta
i.e., we get

2
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s
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/ T
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(139)

Thus in both cases the entire difference is in the integrals, but it is a
difference which in principle at least, provides a way to distinguish between
the two points of view. In electrodynamics there was none, Here you get two
different descriptions of radiation, depending on which time-symmetric equations
of motion you start out with, which can be used to calculate all kinds of pro-
cesses, 32,11 Unfortunately, whatever differences have been calculated so far
are just a little too small to reach any experimental decision, but at least in

principle one has a method for experimental decision available which one does

not have in electrodynamics.
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Similar results can be obtained with higher poles and with charge-
symmetric fields; the theory can always be formulated consistently in terms

of interparticle interaction,

IX. EQUATIONS OF MOTION IN GENERAL RELATIVITY
AND GRAVITATIONAL RADIATION

I want to spend just a few minutes on general relativity because I made
several references to it before, and because, somewhat surprisingly, it gives
some support to the idea that one should think of radiation in terms of direct
particle interactions although, of course, it is a field theory par excellence,
When I started looking into the problem of gravitational radiation I did not
expect any connection with the ideas just discussed; but the connection was
implicit in what had been known before — I just had not known enough to

realize it,

In general relativity it is possible to derive equations of motion from

3,34

k4

the field equations, T discussed the Lubanski method in Sec. VII; the
essential feature was that when you start out from a certain equation you get
from it information by multiplying it by a 6 -function and integrating. The

equation we can use for this purpose in general relativity is the equation for

conservation of energy-momentum

o 1 po
V - e ’._ ! . = 4
80’ (Tu g) z V78 T aa gptr 0. (140)
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Here gpo’ is the metric and g is the determinant of the metric, and Tp.v is the
energy-momentum tensor of matter and non-gravitational fields. From this

one can get the equations of motion exactly, but at the expense of having in them
the unknown metric. To be able to apply the equations one has to go back and
try to get an expansion for the metric, as the metric is determined by non-linear
partial differential equations. I shall just state the result for the equations of
motion in second order for the retarded case with no other fields present.

(In this order the results with other fields present are the same as obtained

by the Dirac method.) We get

m d (1 1 po 1 o ) v, Ve

a d’ra 2 X Vap Vag 4 Xy Va X Vag
1 vV peo 1 v o 11 5V v “wo
= zm, 3 X Va.p Vae T 27, ) X¢ ~ 3 G m (v -v Voo Va )

(141)
Here G is the gravitational constant and Xpo‘ is a first order approximation to
a particular combination of the components of the metric tensor. It is again a
solution of an inhomogeneous wave equation and is given by

. P, C
x*7 ==2a ) [ MxVk Vk
K

kfa

(142)

Equation (141) is Lorentz-invariant and is essentially of the same type as the
equations of special relativity we considered before. In Eqs. (141) and (142)
the indices are understood to be raised and lowered by means of the Minkowski

metric nuv rather than gp.v as in Eq, (140).
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Now suppose one wants to calculate a radiation problem, using the
radiation reaction term in (141). How should one go about it? As you all know
from electrodynamics, relativistic two-body problems are terribly difficult,
Everybody solves one-body problems instead, approximating the electromagnetic
field of one particle by a fixed external field acting on the other particle, and
then using the Lorentz equation of motion to calculate the radiation, But a similar
attempt to approximate Xpo’ by an external field leads to nonsensical answers,
The nonsense is of the same nature as in the following example: Suppose I drop
a piece of chalk, I have conservation of momentum for the system of chalk and
earth when it drops. However, if I want to consider as an approximation that
the earth is fixed, it does not make sense to talk about conservation of mo-
mentum of the piece of chalk falling in an external field; I lost this particular
feature because of the way I approximated,

Gravitational radiation calculations are of the same type because of
the absence of dipole radiation. The gravitational dipole moment is identically
zero. This comes from the fact that the ratio of gravitational mass to jnertial
mass is the same for all particles. These questions are discussed extensively
in Landau and Lifshitz 35; I am not saying any more than Landau and Lifshitz
did except that I explicitly consider equations of motion, The question now is
how to approximaté these. The fact that the dipole moment is identically zero
means that if you do not use a one-body approximation but take the retardation
into account by making an expansion of the gravitational potentials in v/c, then

the first retardation term you get from the other particles will just cancel out .
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with the radiation reaction term in Eq. (141). The next term you'll get is
quadrupole radiation. But if you use a one-body approximation to (141) then it
appears that the radiation term gives you the radiation loss directly, while from
the above discussion it follows that by itself the term is meaningless.

In short, then, the situation is that in electrodynamics, very fortunately
or very unfortunately, it so happens that a one-body approximation is a physically
excellent approximation to radiation problems, In gravitational theory a one-
body approximation to the radiation problem is nonsense., You can't calculate
radiation problems in gravitation except by explicitly considering the entire
system of interacting masses.

I want to finish up by saying that for the problems we were considering
in these lectures, general relativity is relevant in two ways. First of all it
gives you a complete derivation of special relativistic equations of motion (if
you stay within the linear theory) without having to assume conservation laws
as Dirac does, I mentioned before that in the Dirac method there is an ambiguity
because there are more conservation laws for some free fields than can be
maintained in the presence of particles., General relativity selects the right
conservation laws for you without ambiguity. In that respect it gives a full
justification for the special relativistic equations we considered. Second, it
also tells you that, although Einstein started to derive the fundamental equations
from field theoretical concepts, it turns out that for radiation problems one can
not get sensible answers if one wants to idealize a situation as one particle

in an external field; one has to consider radiation in terms of a system of
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particles and their effect on each other.

Peshkin: You say that in electrodynamics I know that I'm not
making such a mistake because it is, after all, a linear theory?

Havas: No, I didn't say that — what I said was that it so happens
that in electrodynamics you get a very good approximation because there
the dipole moment is not zero in general, But it could be zero and you
could rig up problems so that you get the wrong answer there too. If
you would take a system consisting only of electrons, and then look at
only one electron and idealize the effect of the others by an external
field, you would get the same wrong answer because the dipole moment
of the whole system is zero., IfI calculate dipole radiation I get the wrong
answer., But in electrodynamics you have to rig it up to get such a .
situation, In gravitation you get it necessarily.

Peshkin: So then in electrodynamics I am still making an error,
Is it only that the effect I am calculating is much larger than the error?

Havas: Ordinarily, yes,

Peshkin: You say there is no way in which I could automatically
correct for recoil terms?

Havas: No,

Peshkin: Essentially by making recoil corrections on all the
operators or all the dynamical variables of the theory?

Havas: No, none that I am aware of anyhow, If you want to get

Lorentz-invariant equations — which is the least you should hope for —
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you are essentially stuck with Eq., (141). The original derivation of the
general relativistic equations of motion by Einstein -Infeld-Hoffmann
assumed slow motion, which is a heck of a way of doing relativistic
equations of motion, and which is an impossible way to get information
about radiation. To obtain radiation terms you have to go to fantastically
high orders of approximation and you get into such a mathematical mess
that essentially you can't conclude anything about radiation with certainty.
Now here you can get Lorentz-invariant equations and presumably what
one knows about radiation from other such equations ought to be helpful.
As I said, however, Eq. (141) as it stands misleads you if you want to
make the usual one-body approximation to get around the mathematical

difficulties of relativistic many-body problems,
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Bound States of Many-Particle Systems

F. Coester, State University of Iowa, Iowa City, Iowa

LECTURE 1.

Ekstein: This is the first of two talks by Dr., Coester about bound states
of many-particle systems. We have talked about the approach of the common
man to problems of science so much and we have always exemplified the com-
mon man by the Iowa farmer, so today we are going to hear a genuine repre-
sentative of the Iowa farmers, Professor Fritz Coester,

Coester: (Perhaps I should apologize to those readers whose hopes for
an earthy treatment of the subject have been unduly raised by this kind intro-

%K

duction.)

I would like to review some aspects of the perturbation theory of bound
states. Specifically let's keep in mind a reasonably heavy nucleus, as an
example., Much or most of what I have to say today will be more general.

On the other hand certain things which are typical features of field theory will
be ruled out. It is a peculiar feature of quantum mechanics that you can solve
both time -dependent problems and time-independent problems with either time-
dependent or time-independent theories, Scattering is a time-dependent problem.
Nevertheless, there is a time-independent scattering theory and a time-de-

pendent scattering theory. On the other hand, bound state problems are

&
Note added in proof,



-222-

essentially time-independent., Nevertheless there are time-dependent and time - .

independent methods for finding bound states and energy eigenvalues. It is
a curious phenomenon that time-dependent theories are most popular with
authors writing on bound state problems and time-independent theories seem
to be more popular with authors writing on scattering theory. I will not attempt
to explain this phenomenon. But I intend to review the formal relationship
between various forms of perturbation theory.

Before I give an outline as to what I want to do today and why, let
me introduce some notations and definitions so that I can state my problem
more easily. I have a Hamiltonian H which I assume can be split into a

zero order Hamiltonian H_ and a perturbation V., Perturbation theory usually

0
has a double connotation. On one hand it means that we relate a zero order
state such as a shell model state, to the true eigenstate of the full Hamiltonian
of the system. That is the weaker part of what one implies in perturbation
theory and beyond this it also means that the zero order state is in some sense
already an approximation to the true state and that we can get at the true state
by expanding in powers of a small parameter, I would like to keep these two
aspects separate as much as possible, The first one will always be present --
we have this relation of two states or groups of states, but instead of power
series expansion, we shall use rigorous equations from which the perturbation
series can be generated by iteration.

The standard procedure in quantum mechanical perturbation theory is

to talk first about non-degenerate states and then generalize to the degenerate
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case, I shall skip the non-degenerate part and treat the general perturbation
theory in the first instance. So we have a set of g eigenstates of the Hamiltonian

H0 which belong to the same eigenvalue é 0

Hod =& g9, v=1...g (1)

The ¢ span a g-dimensional vector space which can be specified by a pro-
v
jection operator A which, like all projection operators is hermitian and

idempotent,

AY - A, Az - A (2)

In this particular case it also has the property that

AH) = H/A = AH A (3)

and
AH A =g0A. (3a)

The Hamiltonian H has a correspondent setof g eigenstates that do not all
belong to the same eigenvalue. Let P be the projection operator which pro-

jects into this space.

P2 = P P*:P, PH = HP (4)

and you can write

g
P = ) P ; (5)
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the projections Pn are orthogonal: ‘

We may write

PH= ), E P (7)
n
where E are the eigenvalues of H, y  are the normalized eigenfunctions
n

of H.

Ekstein: Everything is discrete?

Coester: Everything I have talked about so far is discrete, 1
have not talked about all eigenstates of HO’ some of which may be in
the contimum. I have not talked about eigenstates of H other than those
under consideration. The spectrum of H may be partly continuous --
that does not matter.

So far we have introduced the Hamiltonian H0 and H and the projection

operators A and P. I need one more symbol
Z=APA. (8)

I call it Z because it reminds me of an old friend: In the non-degenerate case
where the sub-spaces are one-dimensional, the only non-vanishing eigenvalue
of Z would be equal to the probability of finding the unperturbed state in the un-

perturbed state.




-225-

Peshkin: Does A commute with P?

Coester: A does not commute with P, If you want to have a
geometrical picture take three-dimensional space as a model for the
whole Hilbert space and take two planes which have an angle between
them as the model for the sub-spaces. P and A are respectively the
projection operators into these planes,

Moldauer: I don't understand the definition of P. Is that meant
to be a unique definition?

Coester: Yes., This perhaps becomes more apparent if one

writes P in the familiar form

P = ) qanJn*.
n

Moldauer: But what isn ?
Coester: n labels eigenstates of the Hamiltonian. Your question
is, if I understand it correctly, whether the correspondence with the

eigenstates ¢v of H , which I have postulated here, is unique. The

0’
correspondence is unique if the perturbation expansion in powers of V
converges. If the expansion does not converge but V is bounded, then
the modified problem with the interaction nV (0< n<1) has a converging
perturbation expansion for sufficiently small ny. If solutions of the
modified problem can be found for all n(0<m < 1) and if these solutions

depend continuously on m then this continuity establishes a unique cor-

respondence. We should remember that the choice of HO is largely
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arbitrary. The requirement that there should be a unique correspondence

between the relevant eigenstates of H0 and H restricts the acceptable
choices for HO.
The matrix ZHV = (q;p s Zq)v) defined by Eq. (8) has an inverse if there

is no vector in the space P, which is orthogonal to every vector in the space A.

There is then an operator Y which by definition has the following properties

ZY=YZ=A (9)

and

YA=AY

Y. (10)

The matrix va is the inverse of the matrix ZH\; Y and P satisfy the identity
PYP = P (11)

which can be easily proven by introducing a set of basis vectors in the spaces
P and A respectively.

Our problem is to find eigenvalues En and eigenfunctions L{Jn of the
Hamiltonian H. Different perturbation theories yield perturbation series for
different quantities. For instance, non-degenerate Rayleigh-Schrodinger per-
turbation theory yields directly a series for an eigenfunction Q@ of H which is
normalized according to (¢ , 2) = 1 where ¢ is the unperturbed state. A series
for the normalized eigenfunction ¥ may be obtained indirectly from the equation

¥ = —————~(QQQ ) (12)
;

E
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On the other hand, Kato's perturbation theory yields directly a series for P,
The purpose of my talk today is to review these different perturbation schemes
in an operator form which automatically allows for degeneracies and to dis-
cuss the relationships between them.

In order to formulate the Rayleigh~Schrodinger perturbation theory in

this manner we need an operator F with the following properties:

FA=F (13)

AF = A (14)
and

HF = FAHF . (15)
This operator F plays in the general case the part of the wave function Q
mentioned earlier, We see immediately that F = PY satisfies Egs. (13)
and (14); we proceed to prove that it also satisfies Eq. (15). We have

HF =HPY = PHY . (16)
From Eq. (11) follows

PHY=PYPHY =PYHPY. (17)
Hence we obtain from Eqs., (16) and (17)

HF =FHF = FAHF. (18)

Equation (15) has thus been verified,
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In order to obtain a perturbation solution of Eq. (15) we write it in

the form
~(Hy-&£ )F=VF-FG (19)

where é o is defined by (1) and G is by definition

G:AHF—éOA (20)

or

G=AVF. (202)
Because of Eq. (14), Eq. (19) may be written in the form

F:A+(1-A)(é0-H)_l (VF -FG) . (21)

0

This is a non-linear integral equation because G also depends on F, One can
iterate by successive substitution and arrive at a perturbation series for F
in this manner. In the non-degenerate case this gives directly the Rayleigh-
Schrodinger series for the wave function and for G which would then be the
energy shift, In a non-degenerate problem 0 + G is the eigenvalue of H,
and Eq. (15) is the stationary state Schrodinger equation. In the degenerate
case we are not through yet; we must determine the eigenvalues.

Let cl)v (v =1.,.. g) be a set of basis vectors in the space A. We obtain

then the eigenfunction b of H in the form

by = vil F ¢v Tvn n=1, (22)
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where the coefficients T , 2Te yvet to be determined. From
Hy =E §_, (23)
Eqgs. (22) and (15) follow
'RY vn

Z(Gw -(E_ -3, 8 )T =0. (24)
v

(Gp.v) is in general not a hermitian matrix and (Tvn) is not a unitary matrix,

%*
The '"good' zero order states Z ¢v Tvn need not be orthogonal, Since

v
- 2
(G, b )=6__ (25)
by definition there follows
= ) = . 2
(b o b )= ), T Yoo Tom”™ ®mn (26)

TRY

Y can be computed from F according to
FITF-YPY=-Y. (27)

Our formalism lends itself to certain easy generalizations. It is not
necessary that all states in A belong to the same eigenvalues of HO' Let us

retain Eq. (3) but abandon (3a). The energy £ 0 in Eqs. (19), (20) and (21) is

&
This was recently emphasized by C. Bloch (ref. 2).
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now no longer an eigenvalue of HO but a parameter chosen for convenience,

Equation (20a) is no longer valid . In this manner we obtain a very flexible

perturbation scheme., If we enlarge the space A we improve the convergence

of the perturbation solution of (21). At the same time, the complexity of the .
finite eigenvalue problem (24) increases. In the non-degenerate case we may

choose the numbers é 0 and G in any convenient manner consistent with the

relation g 0 + G = E. As a special case we get from (21) with éO = E and

G=0

-1

F=A+(1-A)(E-H) VF. (21a)

0

Iteration of (2la) yields the Wigner-Brillouin perturbation series.
A perturbation theory which yields directly a perturbation series for P

is due to Kato, It uses the following integral representation for P

1 dE
e $ Eom o (28)

The contour C encloses all the eigenvalues En. The perturbation theory is

based on the identity

(29)

-1
By iterating (29) one obtains a perturbation series for (E — H) and hence

° 1

1 n 1
P=)l 7oy $ (mm Y wom (30)
n=0 0 0
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In order to compare this result to the Rayleigh-Schrodinger series we must
compute Z by (8) and F by F = PY,., An expansion of P rather than F may be
advantageous if one wants to compute the expectation values of quantities other
than the energy.
I finally come to the time dependent method.

Ekstein: What are the references on this, or is this yours?

Coester: The substance of my talk is general knowledge. There
of course, a lot of literature on the subject. I'd like to mention a

is

>

series of papers by Bloch 2 and a UCRL report by De Witt, 3 The per-

turbation expansion of the resolvent (E — H)—l has recently been ex-

tensively investigated by Van Hove and Hugenholtz, 4

A popular method of solving bound state problems is to switch on the
interaction V adiabatically, I would like to show how the energy eigenvalues
and eigenfunctions are obtained by this procedure and discuss its relation to

the perturbation schemes we have discussed so far.

Let
H =H +e¢ V, t<0 a>0, (31)

and

= elHOt v e-lHOt eat . (32)

v (©)
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The Schrodinger equation in the interaction picture is

i T = Vu(t) Uu(t, - ). (33)

The corresponding integral equation is
t
- - i 1 H 1 . 34
U_(t, ~) =1 =i [ at V_(t) U_(t', - ) (34)
- ©
If one solves (34) by iteration and carries out all the time integrations, one

finds with (3a)

\
1 1 1
U (0, ~w) A =A+) — v . V... ——|nA. .
a 21 éO -H0+1na éO -H0+1(n-1)a éO-H0+17
(35)

Formally, Uu(o’ -w), a-0 is analogous to the M¢gller operator in scattering
theory. In fact the Md@ller operator may be calculated in exactly the manner
outlined above., The exact form of the imaginary parts of the energy denom-
inators does nqt matter in simple scattering problems. It is well known that
for simple scattering problems one may replace n -a, (n-1) a=-a... in (35)

in the limit o,-;O. In our case the situation is quite different. lo,lfb (UQ(O, -0)
does in general not exist, and for those quantities which have a limit the exact
form of the denominators is important. We have defined a modified time de-

pendent Hamiltonian, we have solved the time dependent Schrodinger equation
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in terms of an integral equation and in terms of a series. So far we know

nothing of what this has to do with the bound state problem. The connection

is established by the ''adiabatic Theorem!',

im U (0, -« AU_(0, o)t = P (36)

A formal proof which assumes the convergence of the perturbation series can

easily be obtained from (35) as follows:

i - R
Lim U (0, -) A U, (0, -c0)
[Fe] n
. N 1 1 1 1
=NA+1 - - —_— ... -
a0 ngl m%lo &y -Hy tima v Eo -Hy tia VAV &o ~Hy -ia v &g -Hy -(n-m)ia
o0 n-1
. 1 1 1
= 1
A s z al-.r8 2w i ¢ E-H +ia(n-m) v E-H d E.
n=1 m=0 0 0

(37)

In the last expression we can go to the limit a - 0 and obtain

2 0]
. + 1 1 n 1 _
i Uy (0, -w) A U0, -0} = Z 27 i (E-H \? gom dE=P.
n=0 0 0
(38)

Haag: I would like to object to the name ''bound state'' problem

because the part of the spectrum of H which you do use is the same as
that of Hy,. What one usually means by bound-state problem is the

problem of finding eigenstates of H which you didn't have before in H,
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I just mention it because this morning we talked about the Bethe-Salpeter
equation, Now this thing here is a completely different problem, With the ,
Bethe-Salpeter equation you determine a state which has no counterpart
among the eigenstates of H0°
Coester: What one usually means by bound-state problems de-
pends somewhat on whether one is a field theorist. The problem of
finding the binding energy and ground state wave function of Pb208
would usually be called a bound state problem by people interested in
such problems. The methods discussed here are certainly relevant to
this problem. Quite generally the bound state problem is the problem
of finding normalizable eigenstates of H and the corresponding eigen-
values. The method of guessing a suitable space of trial states A,

constructing H  and improving these trial solutions systematically,

0
seems to be a legitimate approach to the general problem among others,
H0 and A are not God-given quantities which then ''usually'' have the
wrong properties, but guesses involving considerable freedom. In
order that these methods be applicable one must have some informa-
tion about the topological structure of the spectrum of H. Such quali-
tative information is available for nuclei, On the other hand it is, of
course, not difficult to write down Hamiltonians for coupled fields for
which that is not the case,

Haag: Then what you are doing is just perturbation theory in

the discrete spectrum in an operator form?
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Coester: Yes,

Haag: For practical purposes is it necessary to multiply out two
expansions as you do in Eq, (36)?

Coester: Equation (36) is the simplest relation I know which
establishes a connection between Ua(O, -0) and the time independent
formalism, Ua. itself does not have a limit a-0. I shall soon come to
discuss formulae which are more useful than (36) for practical com-
putations, They are all easily derived from (36).

Ekstein: There are two questions on the equation, Would you
please write it down for the case where P is one-dimensional operator
for the benefit of part of the audience, including me? The second
question is, "In what sense has this theorem been proved?"

Coester: The theorem has been proved by comparing the per-
turbation expansion for P term by term with the perturbation expansion
of the left-hand side of Eq. (36).

Tanaka: What does this prove?

Coester: It proves Eq. (36) if the expansions converge; if
they don't converge it does not prove anything,

Now your other question: Write (36) down for the case where P
is one dimensional, A is then also one dimensional, Let | and ¢ be

the corresponding vectors. We may then write (36) in the form

lm o U e U e = pyt. (362)
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Haag: Could you put this in the form

i Uge <0 ?
Coester: No, because this limit does not exist,
Haag: Can you explain how this can happen? After all, the pro-
jection into a single vector and the vector itself are almost the same
thing. I mean, how is it that the projection exists and the vector does not?
Coester: I should have been more careful in discussing the

(n)

limits involved. Let U‘1 A be a partial sum of the expansion (35)

n
(n) 1
U A=A+ P - V... A,
a nZ/:l ¢ o -H0+1n'a

It is easy to verify that l‘ilm Ua(n)q) does not exist in general. Therefore,

0

.,.
: (n) (n)
o Yo AV

also does not exist., On the other hand we have proven that

+

n-m) . (m)

n

. (

Lmy ), U, AU,
m=0

does exist. In fact we have proven

n + n

. (n-m) (n)" 1 1 n' 1

Ly ), U, AT, = Z, e S sV FmE-
m=0 n'=0 0 o

(38a)

The existence of the limit n—e is merely assumed. I referred to this limit
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when I assumed earlier ''the convergence of the perturbation expansions'',
From (36) follows

B s t 1
Z—APA_&EB Za%a _al-l—r6’ Za

(39)
and
-— 9 ‘t 4
—&% Uazu. (40)
where by definition
z =AU A (41)
a a
and
Z =2z z T . (42)
a a a
There follows further
= = 11 4
F=PY=lim Uy_, (43)

where Y, is related to z in the same manner in which Y is related to Z. [(see

o

Eqs. (9) and (10)] . Equation (43) takes a familiar form " if A is one dimen-

sional (non-degenerate case)

=F¢ = lim b > U o . (44)

a

If we replace V by nV in the expansion (35), we can easily verify that

AV U _10,A( \> (45)

See, for instance, M, Gell-Mann and F. Low, ref. 6.

ke
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There follows from (43) and (45)

ou
a

= = lim i - . 4
G=AVF = lig iah (—5= n—Iyq (46)

In non-degenerate case (46) reduces to the following well-known formula

for the energy shift

94 n <Ua>
G = él_.l;B ia | —————— . (47)

& n=1
So far we have discussed bound state perturbation theory without utilizing
the particle structure of the system. In my next lecture I intend to discuss

those features of the theory which occur specifically in many-particle problems,
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LECTURE II,

All the perturbation schemes which I discussed last time have been
applied to many-particle systems. Today only the time-independent formu-
lation will be used. In order to keep the formulas reasonably simple, I as-
sume that the zero order state is non-degenerate., Concrete results are avail-
able only for that case. It is easy, however, to formulate the basis equation
also for the degenerate case. I shall outline later on how this is done,
Let me quickly review those results of the first lecture which we need
today. Let ¢ be the normalized zero order state and A the projection operator onto

¢ . The corresponding eigenstate 2 of H is normalized by the condition

(2, ¢)=1. (1)

The operator ¥ which transforms ¢ into Q (2 = F¢ ) has by definition the

properties
FA=F (2)
AF=A (3)
HF=FAHF (4)
AHF=EA (5)

where E is the desired eigenvalue of H, In the following, ¢ is always re-
presented by a Slater determinant formed from suitable single particle wave

functions uv(x). In an occupation number representation ¢ is represented
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d= 1 a e (6)

where the product //:/J . is taken over all occupied single particle states, and
¢0 is the vacuum state, a, ¥ creates a particle in the state v. The operator F

can then be represented in the form

A
F=A+ EkA (7)
k=1
where by definition
jk: Z Z kllz a+...aT a .a Fk(pl...pk,vl. vk).
PPy Vi SV (k!) Py Pr Y1 L

(8)

The indices p and v vary respectively over the empty states and the occupied
states, The entire system of single particle states is by assumption complete
and orthonormal,

ot

Yow )+ ) u e ) = 6k ) (9)
v p

Flp;...p k> V1o vk) is the relative probability amplitude for finding in the
state 2 the configuration with k excited particles in the states p, — . P and

k holes in the states v, — . Vo The relation between 2 and ¢ is very similar
to the relation between the physical vacuum and the bare vacuum in field theory.

The choice of particular single particle states u (x) is so far quite arbitrary.
v
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The functions Fk change in a very complicated manner if the single particle

basis is altered.

If the Hamiltonian H is of the form

H=- [dxa'(x) Z?nf a(x) + % fax [ax'a¥(x) a’(x") V(x-x') a(x')a(x)
(9)

a(x) = ) 2 u (x)+ ), a u (x) (10)
v 5 oeop

it is easy to see that only F, and F_, contribute to the expression for the energy
E=(p, HF¢) = (¢, H(1+F, +E,)b) . (11)

A good approximation tO the energy but not tothe wave function can therefore

always be obtained by construction a good approximation to ¥, and ¥ only.

Pst|

The vector equation
HE¢ = EE$ (12)

is equivalent to the system

¢, H(1+F, +F )¢ = E (13)
4, a, Ta(x) H(1+EF, +F, +F,)0) =Ed (x) (14)

/ + o+
c2, 8, aleg alx) H(L4E, + E, + Fy +£4)4>_E . vz(xlxz)
(15)
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k+2
+ +

(4,8, ...a " albg)...aGg ) H(L+ ) FO)=E¢  (x...x)

k q:l 1 k
(16)

where the wave functions on the right hand side are defined by

)= (6., ..oa " alx)...alx ) ). (17)

qul...vk(xl“'xk_(¢’avl'”- v X dee 1)Ee).

The problem is to replace this system by an approximate set of equations
which determine ¥, and F,. The simplest and crudest way of doing this

is the Hartree-Fock approximation. It consists of putting Q = (1 +¥F,)¢ and
retaining only eqs. (13) and (14). These equations determine F, and E in
this approximation. The equations take on a more familiar form if one re-
quires the u, (x) to be selfconsistent single particle functions defined by the
condition u (x) = va (x) or F, = 0. Equation (14) is then the usual Hartree-
Fock equation for the self-consistent single particle wave functions.

Broadly speaking,the Brueckner approximation is an improvement of
the Hartree-Fock approximation: El a,ndr]?:w2 are determined from approxi-
mations to Eqs. (14) and (15). Originally the approximation was developed
only for nuclear matter, that is for an unlimited medium., Homogeneity of
the medium fixes the u (x) to be plane waves and F, =0. The approximate
equation for ¥, was at first obtained by heuristic considerations rather than a

systematic approximation from the exact Schrodinger equation. Later Goldstone

derived the equation for ¥, by summation of selected terms in the Rayleigh-
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Schrodinger perturbation expansion, This expansion can be obtained by iter-

ating the equation

1-A

EO-HO

(W -G) F (18)

where H = H0+W and E = E0+G. In every order of the expansion one obtains
a large number of terms for F and G due to the complexity of the many particle
structure, One can best keep track of these many terms with the aid of dia-
grams similar to the Feynmann diagrams of field theory, Matrix elements
which are products of independent matrix elements are represented by dis-
connected diagrams., Essential for Goldstone's derivation was the proof that
all disconnected diagrams in the expansion of G cancel. The perturbation series
of G is obtained entirely in terms of connected diagrams,
Kaplan: What is the undesirable feature of terms described by
disconnected diagrams and what is their physical significance ?
Coester: For nuclear matter, diagrams without external lines
are proportional to the volume. Since the total energy is volume pro-
portional products of disconnected diagrams must cancel in the ex-
pansion for G.
It is possible to generate the perturbation series in such a manner that

only linked diagrams arise and the procedure of collecting and cancelling terms

8
is avoided. For that purpose we define an operator S by the equation

F-e2p (19)
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where S is of the form

P,

A
S= 2

+ + 1
Sy = E Z a  ..a 2, % G003 B (pyeepy iy )

(20)

Haag: What is the justification for writing F as an exponential ?
Coester: Equation (19) with (20) is not an assumption about F,

but a definition of 5. It is a compact form of the system

1721
S ! S. 2
Fo=55 T3 LRy (
1
Fq =85 t8:° 5> 3T S8, (21)

which can always be solved for the’ék in terms of the F's. The exponential
series breaks off with the power A because of the exclusion principle. The
purpose in the definition (19) is to obtain operators Sk which have only linked
diagrams in their perturbation expansion. I could write a power series with
arbitrary coefficients for (19) and then later determine the coefficients from the
requirement thatékcontain only linked diagrams.
Haag: The "Ek only have a physical meaning if you apply them
to this one state ¢ . What fixes them uniquely, I mean what is so special

when you can take many F's which would do the same thing?
it
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Coester: The}:k contain by definition only creation operators
for the empty states and annihilation operators for the filled states.
The "S~k have the same property. Hence they all commute with each other,
Any other operators which have the same effect on ¢ differ by terms
containing annihilation operators ap of empty states and creation opera-

+ .
tors a, of filled states.

With the definition (19) we may write instead of (12)

e 2 H e~s~¢ =E¢ . (22)

The expansion
e—’§He*s“':H+[H,S] +Zl,— [[H,’g] §___} + ...

breaks off with the fourth order term if H is given by (9). A perturbation

series for S can be generated as follows. LetH = HO + W, H0 ¢ = Eocb .

If we multiply (22) by (1-A) we have

—~—

-y
1
[Hg,§] & + (1-A) (W + [W, 8] + 5 [[W,5},8]+..) 0 =0
(23)
Upon expansion of S in powers of W
S
S$=), S8 (24)
n=1

Eq. (23) gives us | HO’ _S_(n)] and therefore_S_(n) in terms of lower order

S—(n'); n' < n.
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Ekstein: Do you mean to say that the commutator of an unknown
operator with H0 determines this operator ?

Coester: Not in general, but in this case it does because of the
structure which S has by its definition, Eq. (20). Specifically we have

[Ho’_s_k] = Z Z a ,..a a ..a (E_)z

p p
PreeePy  VieeeVy 1 k 1 k

X{w +w +.+0 -0 -w e @ ) Sk(pl.,.. Prs V1 ..,vk)

Pa P2 P Y1 VYo k (25)

where wp and w are the single particle energies of the levels p and v respec-
tively. Since wp > w, for all p and v the energy difference can be divided out.
By definition S, does not have any diagonal matrix elements with respect to the

2k

eigenstates of H The perturbation series for S obtained from (23) in this

0
manner contains only matrix elements represented by linked diagrams. The
S's occur everywhere in multiple commutator expressions which guarantee
that every factor is ''linked'* to every other factor.

The physical ideas involved in the Brueckner approximation have been
discussed at length by Gomez, Walecka and Weisskopf. 9 One must assume
that the exact wave function is well approximated by a Slater determinant in
that region of configuration space where the distance between any two nucleons

is larger than a certain "healing distance' d. The single particle wave functions

which make up this Slater determinant are the ""self consistent'' single particle
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wave functions, If they are used to construct a complete single particle basis
we have EF, =0. Systematic approximations to Eqgs. (13), (14), (15), based
on these ideas have been discussed by Breniglo and Kﬁmmelll. One can obtain
in this manner a set of simultaneous equations which determine the functions

u (x) and q;vl Vz(xl, x,). These equations are similar to the equations on which
Brueckner, Gammel and Weitzner base their ""Theory of Finite Nuclei”.12 They
differ, however, in significant aspects. Nothing is known at this time about the
numerical importance of these differences,

Ekstein: Could you say a few words about the effective two-

body interaction which replaces the singular two-body potentials in this

theory?

Coester: One defines a matrix (=%, / Kl v, v,) by

K = - 2
(szll , vy vo) =V (% -xy) valvz(Xl o). (26)

The total energy of the system is then

2

E=-) dxu *(x) —Luv(x)+ 1 ),
v 1

v Zm 2 (V2v1 /K/vl v2)

2
(27)
where

St
*

Kf v, vpo) = fdx, [dx, uv:(xz) w, (o) (x,%, |K[v, vy)

(vo v,y

(28)
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definition of an operator which has the matrix elements (28) is quite ambiguous. \ )

The matrix (26) is uniquely defined and it arises naturally in the theory. The

Some of the differences which I mentioned earlier are due to this ambiguity.

Haag: What remains in this scheme of the original idea that
one could get away from a nucleon-nucleon potential and get results in
terms of experimental nucleon-nucleon phase shifts?

Coester: Nothing, I believe. In the case of an infinite medium
the matrix (k', k' ‘K) k, k) satisfies an equation similar to a scat-
tering equation. It is not an acceptable approximation to mutilate this
equation to the point where it becomes identical with a scattering equa-
tion for free nucleons,

So far our scheme is applicable only if all single particle levels are ‘
either completely filled or completely empty. If some levels are partly filled
the zero order energy is degenerate. The formalism can then be generalized
along the lines described in the first lecture. The operator F has still the
form given in Eqs. (7) and (8) but the number of single particle states u, is
larger than the particle number A, The subspace A is spanned by all Slater
determinants formed with A of the u 's, Let ¢a s ¢ﬁ ,+... be basis vectors in
this subspace. The energy is now obtained by diagonalizing the finite matrix

(bg HFG ) .

u (x) and F_ (x) must be obtained by methods similar to those used before.
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In conclusion I might summarize the present situation as follows: It
is quite plausible that the energies of finite nuclei can be calculated to a good
approximation by the general methods we have discussed. The development
of practical approximation procedures along these lines is still in a prelimin-
ary stage, There is no reason why these methods should lead to good approxi-
mations for nuclear moments, the density distribution and transition matrix

elements.
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