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INTRODUCTION 

This volume contains some l ec tu re s on theoret ica l phys ics , most ly 

in the field of e lementary pa r t i c l e s and field theory, del ivered during the 

summer of 1958 by v i s i to r s at the Argonne National Labora tory . The lec tures 

a r e essent ia l ly s u m m a r i e s or reviews of published m a t e r i a l . 

We have at tempted to p r e s e r v e the " l ive" form of the verbal del ivery, 

with i n t e r s p e r s e d questions and a n s w e r s , wherever it did not conflict with 

the c la r i ty of presenta t ion or with the l e c t u r e r ' s wishes . A cer ta in amount 

of colloquialism and lack of polish will perhaps be excusable . 

H. Ekstein 
Physics Division 
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Collision Theory for Composite P a r t i c l e s 

Rudolf Haag 

Argonne National Labora to ry , Lemont, Illinois 

I was asked to t r ans l a t e the contents of the paper to which Hans Ekstein 

r e f e r r e d into unders tandable language. That paper is concerned with the 

coll is ion p r o c e s s e s between composi te pa r t i c l e s in quant\im field theory. Its 

purpose was to unify and to genera l ize some previous work which had been done 

2-5 
on this subject by var ious au tho r s . ' The bes t way to make the contents 

genera l ly unders tandable is to begin by reformulat ing the r e su l t s for the 

s impler case of a wave-mechanica l problem and leave the case of field theory 

to a l a t e r p a r t of these l e c t u r e s . In pa r t i cu l a r , let us consider the system 

of 2 neut rons plus 1 proton. The Hamiltonian is then 

^ = - S ( ^ l + ^ 2 + ^ 3 ) + V , 3 + V ^ + V ^ 3 (1) 

where V is the potential energy of the nuclear forces between the pa r t i c l e s 

i and k. 

The notion of "a s ta te \\) of the sys t em" will always be understood in 

the sense of the Heisenberg p i c tu r e . This is convenient (in fact almiost i m p e r a ­

tive) if one wants to extend the formal i sm la ter to re la t iv i s t ic quantum field 

theory . It means that any pa r t i cu la r s tate ijj b e a r s re fe rence only to the 

exper imenta l a r r a n g e m e n t "a" which es tab l i shes it and no r e fe rence , for in­

s tance , to the t ime at which one chooses to make a subsequent observat ion on it . 
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Of cou r se , the descr ip t ion of the establ ishing m e a s u r e m e n t "a" i tself (the 

label of the state) rnay, and in fact m u s t , contain some mentioning of a t ime . 

In our system we can dis t inguish th ree c l a s se s of s t a t e s , those which 

before the coll ision a r e composed of 

A) 3 isolated nuc leons , 

B) 1 deuteron and 1 neutron 

C) a t r i ton . 

Al ternat ively we could a l so classify the s t a tes according to the i r s tatus of 

decomposit ion after the coll is ion ( c l a s ses A ' , B ' , C ) . Of course C = C 

since the t r i ton will be cons idered as a stable par t i c le in our model . Instead 

of " c l a s se s of s t a t e s " we shall use the cus tomary express ion "channe l s" . 

Our f i r s t a im is to define a complete ba s i s sys tem of s ta tes in each 

channel. Now at a sufficiently l a rge t ime before or after the coll is ion the 

fraginents will be with overwhelming probabi l i ty separa ted far beyond the 

range of thei r in te rac t ion . There fore it should be poss ib le to desc r ibe the 

motion of each individual f ragment at such a t ime sepa ra te ly . To formulate 

this expectation m o r e p r e c i s e l y is jus t a l i t t le ted ious , but p l ease be pat ient 

for a few m i n u t e s . We cons ider for each of the four types of p a r t i c l e s 

(neutron, pro ton , deu te ron , t r i ton) an a r b i t r a r y comple te , o r thonormal 

bas i s sys tem of s ing le -pa r t i c l e s t a t e s . Let us use indices a, a ' . . for the 

neutron bas i s s t a t e s , and p, p ' . . . , p , p ' . . . , \ , \ ' . . . for proton, deuteron 

and t r i ton s ta tes r e spec t ive ly . 



R e m a r k s : In actual calculat ions it is convenient to use the bas i s of 

momentum e igens ta tes . Then the indices a, p. . just specify the m o ­

mentum of the pa r t i c l e in question. For the development of the concepts 

and for a concise general formal ism it i s , however, neces sa ry to l imit 

the choice of a, e tc . , to normal izable s tates (wave packets) since for 

infinitely extended beams one can not speak of the time "before" or 

"af ter" the coll ision. Stil l , the identification of a with the momentum 

can be made in our formulae if proper care is taken and in prac t ica l 

applications this is a lmos t invariably done. 

As d i scussed before , we expect that it makes sense to speak, for in­

s tance , about a s tate which before collision is composed of a neutron moving 

according to the s ing le -par t i c le s tate a and a deuteron which moves according 

to p . This s ta te of the total sys tem will be called lap > . Our f i rs t resu l t 

will be to verify this expectation by giving an explicit construct ion for ja p > 

R e m a r k s : We single out the s ta tes of channel B for this i l lus t ra t ion. 

Of cou r se , the p rocedure is a lmos t completely analogous for the other 

channels . E . g. , the ba s i s s ta tes of channel A will be denoted by 

I a a' p > . Because of the Paul i principle we should put in that case 

| a a ' p > ^ ' ^ = - | a ' a p > ^ " ^ (2) 

S imi la r ly , | a P > and | a a ' P > denote s ta tes with a p r e sc r ibed 

finaJ decomposit ion (channels B ' and A ' ) . Sometimes we will call an 

a r r a y of s ing le -par t i c le s ta tes l ike a a ' p or a p a configuration 

and abbrevia te it by a single Latin index such as k. 
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Thus | k > is the Heisenberg state corresponding to the init ial 

configuration k, | k > the Heisenberg state with the final configura­

tion k. The collision m a t r i x is defined in this notation as 

\ - k = ^"^^<k' |k>^"^ . (3) 

Warning: In many papers the supe r sc r ip t s (+) and (-) a r e used with the 

exactly opposite meaning from the one defined h e r e . In these papers 

i\) denotes an e igenstate of the Hamiltonian with a wave function con­

sist ing of a plane wave plus an outgoing spher ica l wave . This same 

state would be cal led I > in our notation (if we allow momentum eigen 

s ta tes as a bas i s for the s ing le -par t i c le s t a t e s ; see r e m a r k 1). The 

point i s that if one forms a wave packet from these s ta tes ijj and 

studies i ts motion in t i m e , then the outgoing spher ica l -wave p a r t of 

the wave function will d isappear at t —-oo and only the plane-wave 

p a r t will su rv ive . This m e a n s that these s ta tes have a s imple d e ­

composit ion at t -•—00. 

Let us now cons t ruc t the wave functions for the s ta tes a p > ^ " ^ We 

need the following p a r t s : f (x) and f (x) shall be the Schrodinger wave 

functions for the motion of a single neutron or of the cen te r of m a s s of a 

single deuteron, r espec t ive ly . I. e. , they a r e solutions of 

. 9 , a ' f is n . 8 . p 'fis p 
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F u r t h e r , /C (1,2) means the deuteron wave function (describing the relat ive 

motion of the two nucleons in the deuteron) . E is the binding .energy. Then consider 

4̂  , = e^^* ,-'/. 0: (=H) 't' C ^ ) ^ <̂ . >̂ =''''̂ ' - '«^) • 
[5) 

The second t e r m in the b racke t ( interchange of coordinates 1 and 2) i s , of cour se , 

added so that the total wave function be an t i symmet r i c in the neutron coordinates . 

We now a s s e r t that this express ion (5) approaches a l imi t a s t-»-oo in the sense 

that the re is a well defined state iji such that 

i|j - i|j — 0 a s t — - 0 0 . ( 6 ) 

Here ji " l̂l rneans the length of the vector cj) . For (6) we also wri te 

i|j^ -* i|j . ( 6 a ) 

In other w^ords, the sequence of vec to r s ijj has a "strong l imi t " (converges 

strongly) a s t —— oo. Obviously the l imi t s ta te ^ mus t be in te rpre ted as the 

state / a p > introduced e a r l i e r . 

Sketch of proof for E q s . (5), (6a). 

Take ——— using the form (1) for the Hamiltonian, together with the 
9 t 

definition of f , f , and ^ . This g ives , apa r t from tr ivia l factors 

_ | _ ^ ^ ^ e^^* {(V,3 + V^3)(f^ (x7) f^P(iifS_)X(2,3)e-^^B^-l<^2)}. 

iHt 
Since e i s a uni tary opera tor we need only prove that the norm of the b racke t { } 



dec reases as 1 11 -* oo and in fact it should dec rea se s t ronger than 1/t so that we 

can integrate/] .J' li up to infinite t i m e s . Using the asymptotic form of the solu 
" 9 t " 

t ions of the free Schrodinger equations (4) for l a r g e t i m e s , one finds that 

if V(r ) — 0 s t ronger than r for r -• oo 
ik' ^- - - ^-^ ^-^ 

' ' 9 t " i -n 
11 V^r.^j -* u a s r . ^ ; n ^ ^ / ^ . 

(7) 

t " " if V ( r . J -*0 as r . "' '; n < 3 /2 . 
i k i k 

6 
A m o r e r igorous method of proof has been devised by J . Cook and M. Hack. 

They use the fact that for a dense set of wave functions f (Gauss packets) the 

solution of Eq. (4) is explicitly known. 

The construct ion of the other s ta tes j k > is obvious by analogy. So, 

for example 

I "«• p>^' %i?i"„ ^'"^/r- (C <̂ '̂ ̂ t° '^.' 'f <̂3 > - ' « 0 

(8) 

F o r m a l coll is ion theory . 

The objective he re is to ex t rac t the essen t ia l concepts which a r e used 

in the construct ion of the j k > and to e l iminate all those fea tures which can­

not be c a r r i e d over to m o r e genera l types of coll ision p r o b l e m s , say those of 

quantum field theory . One well known "formal iza t ion" works with the concept 

of the "unper turbed Hamil tonian" H . In our example for channels A or A ' , 
o 

ŵ e would have to put 

H - - —— (A + A + A ). (9) 
o 2M ^ 1 2 ^ " 3 ' ° ^^' 



T h e n , i n s t e a d of Eq . (8) we could w r i t e 

a a ' p > ' ' = l i m e e o _ _ f i f 2 f^ 3) - 1 -f-^ 2 / . 
' t—+ 00 yz I o o o ^ J 

(8a) 

The t r e a t m e n t of the c o l l i s i o n p r o b l e m i s then r e d u c e d to a c a l c u l a t i o n of the 

iHt - i H t 
m a t r i x e lennents of l im e e ° b e t w e e n e i g e n s t a t e s of H . Unfor tuna te ly 

t-»±oo o 

t h i s f o r m u l a t i o n i s s e v e r a l y l i m i t e d in s c o p e . F o r e v e r y channe l a d i f fe ren t 

H m u s t be c h o s e n so t h a t H i n c o r p o r a t e s t ha t p a r t of the i n t e r a c t i o n which i s 
o o 

r e s p o n s i b l e for the b ind ing of e a c h f r a g m e n t bu t l e a v e s out the i n t e r a c t i o n b e ­

t w e e n the d i f f e r en t f r a g m e n t s . In c h a n n e l B of our e x a m p l e t h i s i s p o s s i b l e 

only by f o r g e t t i n g the P a u l i p r i n c i p l e d u r i n g the c a l c u l a t i o n , and in a g e n e r a l 

f i e l d - t h e o r e t i c a l c a s e i t w i l l b e qu i t e i m p o s s i b l e to find a su i t ab l e o p e r a t o r H . 

We s h a l l t h e r e f o r e not adop t t h i s m e t h o d but s t a r t f rom the fol lowing obvious 

r e m a r k . 

C o l l i s i o n t h e o r y d e p e n d s on the fac t t h a t , g iven any t w o s t a t e s cj) and cj) 

w h i c h a t s o m e t i m e t have t h e i r l o c a l i z a t i o n v o l u m e s far s e p a r a t e d f rom e a c h 

o t h e r , t hen t h e r e i s a l s o a c o m p o s i t e s t a t e o r " p r o d u c t s t a t e " 

(t) 

cj) - cj)̂  A cj)̂  (10) 

wh ich d e s c r i b e s the p h y s i c a l s i t u a t i o n in wh ich a t t i m e t t h e r e a r e to p r a c ­

t i c a l l y i s o l a t e d s u b s y s t e m s r e s p e c t i v e l y in the s t a t e s cj) and cj) . Once we 

h a v e def ined how t h i s p r o d u c t c o m b i n a t i o n i s ob ta ined in t e r m s of the c u s t o m a r y 

m a t h e m a t i c a l s y m b o l s of the t h e o r y , the c o n s t r u c t i o n of the s t a t e s k > i s 



obvious. Fo r example 

lap>^'^ = lim | a > ^8 | p > 
t-»-oo 

| a a ' P > ^ ^ ^ = lim | a > Â̂  / a ' > ^S / p > (11) 

where a and p , e t c . , a r e the chosen single par t ic le s t a t e s . 

In talking s imultaneously about these single par t ic le s ta tes and the s ta tes 
on the left-hand side of Eq . (11), we mus t , of cour se , drop in our mind the 
r e s t r i c t i on to a fixed nucleon number . 

In wave mechanics the re is an obvious definition of the product operat ion 

A . It is the one which has been used in E q s . (5) and (8), namely in the x -

represen ta t ion at the t ime t (the t ime to which the product symbol re fe rs ) the 

wave function of the product state shall be jus t the product of the wave functions 

of the factor s ta tes (an t i symmetr ized if n e c e s s a r y ) . If we re fe r everything to 

the t ime t = 0, then 

^ (t) ^ iHt I, - iHt^ .(o) , - i H t , , ) , , , , 
< t ' i A c j ) 2 - e j(e cj)^) A (e <I>2)C, (12) 

which c lear ly gives the express ions (5) and (8). For a m o r e detai led d i s c u s ­

sion of formal coll ision theory, see r e fe rences 7 and 8. 

R e m a r k s : Since only the product between far separa ted s ta tes has an 

ambiguous physical meaning and is ul t imately needed, we would be free 

(t) 
to introduce any modification of the above definition for A at smal l 

. d i s t a n c e s . Thereby one may obtain other equivalent formulae for the 

I k > which a r e somet imes useful. We will , however , not d i scuss 

this h e r e . 



Transformat ion of the s ta tes | k > under the invariance group; 
conservat ion laws . 

To say "the theory is invar iant under a cer ta in t ransformat ion" means 

a) to every s t a t e ijj there is ass igned a t ransformed state ijj'. If we wri te 

41 ' = R i[(, then R shall be ei ther a uni tary or an antiunitary opera tor . 

A thorough discuss ion of the assumpt ions which go into the derivation of 
this a l te rnat ive is given in re fe rence 9. 

b) Obviously not every uni tary opera tor can be associa ted with an invariance 

p rope r ty . We only speak about invar iance if the t ransformat ion of the s ta tes 

i s such that isolated subsys tems a r e t r ans formed independently, i . e . , 

(t) (t) 
R (i\>^ A ijjg) a^^RijJ^ AR4J2 (13) 

whenever ijj and \\t have far separa ted localizat ion regions at t ime t. F rom 

E q s . (13) and (11) it follows then that 

R |k><^) = lk'>^^^ (14) 

where the configuration k' is obtained from k by t ransforming separa te ly all 

the single par t ic le s ta tes enter ing into k. Equation (14) in turn impl ies the in­

va r i ance of the coll ision m a t r i x 

or a l te rna t ive ly , if one in t roduces the opera tor S by 

|k><"^ = S |k>^"*'^ , (16) 
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it means that R commutes with S (conservat ion law for R) . 

Time invers ion and detailed balancing. 

If the theory is invar iant under tinne invers ion then for the t ime in­

vers ion opera tor T we have instead of Eq. (13) 

(t) (-t) 
T(L|J^ A 1̂ 2) ^ T Ljĵ  A T ^2 • (1" )̂ 

Therefore , in the same notation as above, 

T |k>^^^ = fk'>^'^^ . (18) 

9 
Also, T will be ant iuni tary . This gives then for the coll ision m a t r i x 

^k^k^"" k^' kg' (Detailed balancing) (19) 

Orthogonali ty of the s ta tes *' k > and uni tar i ty of S. 

Two s ta tes belonging to different init ial channels (or different final 

channels) a r e orthogonal even though the corresponding product combinations 

[ r ight-hand side of Eq. (11)] at a finite t ime a r e not orthogonal . More gen­

era l ly , for two configurations k and k' which a r e composed of s ing le -par t i c le 

s ta tes belonging to some fixed orthogonal sys t em, one has 

< - ) < k . i k > ( - ) = 6^^, ; ^ + ) < k . | k><+) = 6^^, . (20) 

How this orthogonality a r i s e s may be seen from Eq. (11) in the following 

qualitative w^ay. Imagine a division of space into cel ls of l a rge but finite 

volume V. If 1 cr > is a single par t i c le s ta te and v the maximal veloci ty 
° ^ max 

which has an apprec iable probabil i ty in the state cr then the number of cel ls 
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in which one has a chance to find the par t ic le at a l a rge t ime t will be roughly 

(v t)3 / v . Converse ly , the probabil i ty per cell dec reases in proport ion to 

.T^"" , (*), 
t . Fo r a product s tate I ^ i^ -^ / ""p^ *̂ ® probabili ty of finding both p a r t -

_s 
ic les in a pa r t i cu la r cell will go like t and the probabili ty of finding the two 

_3 

pa r t i c l e s anywhere together in one cell will dec rease like t . We can t h e r e ­

fore neglect in the l imi t that pa r t of the product state for w^hich both pa r t i c l e s 

a r e in the same cel l . On the other hand, for a product state between far sep­

a ra t ed components one has 

(cj)^ A c j , ^ , cj)^' A c j ) ^ ' ) = (ct.^,cj)^')(cj)2, cj)̂  •) ± (<|>̂  , c j )2 ' ) (c j .2 ,4 ' i ' ) . 

(21) 

(The second t e rm on the r ight a r i s e s from the symmetr iza t ion , and the ± 

sign r e f e r s to Bose or F e r m i s t a t i s t i c s , respec t ive ly . ) Therefore , one 

obtains from Eq. (11), for instance 

< a p | a ' p ' > ^ " ) = < a / a ' X p j p ' > = 6 6 ,, 
I ' aa ' p p ' 

' I ' ^ 1 ' ^ a a ' p p ' 

(22) 

which is a typical example of the re la t ions (20). 

The fact that the orthogonality re la t ions a r e the same for the s ta tes 

I k > as for the s ta tes / k > impl ies that the collision opera tor S [ see 

Eq. (16)] is i s o m e t r i c . If we also know that the set of s ta tes | aa ' p > 

/ ap > and ' \ > forms a complete b a s i s for all the s ta tes of a system 

compr is ing 2 neutron + 1 proton system (and that the same is t rue for the 

s ta tes I k > , then we can conclude that S mus t be uni tary . 
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Let me make a r e m a r k about this l a s t link in the proof of the uni tar i ty 

of the S-mat r ix . Unfortunately it is sti l l a miss ing link. I mean this in the 

following sense . We have seen that the exis tence of the asymptotic product 

s ta tes and thei r p rope r t i e s (14), (20) follow easi ly if we know that the in te r ­

action between two subsys tems vanishes sufficiently rapidly with the distance 

[ see , for ins tance , Eq. (7)] , It would be nice to have a s imi la r ly genera l 

c r i t e r ion for the completeness of these asymptot ic product s t a t e s . The 

question is what conditions mus t be satisfied by the mathennatical f rame so 

that we can be sure the re will be no s ta tes in the system which can not be 

descr ibed in t e r m s of asymptot ic par t i c le configurations. Is t he r e , for ins tance , 

a simple c r i t e r ion which can tel l whether some given mathemat ica l nnodel in 

quantum field theory will n e c e s s a r i l y have a complete par t i c le in te rp re ta t ion? 

I do not kno-w such a c r i t e r ion at the moment . 

The "Weak-Convergence Method" for construct ing | k > 

If in Eq. (5) we i n s e r t ins tead of the c o r r e c t deuteron wave function 

/C (2, 3) any other function "V (2, 3) which is not orthogonal on "^C. , then the 

l imi t of i|j for t -• — oo will st i l l in some sense exist and may be used to con­

s t ruct | a p > . In pa r t i cu l a r , consider the sca la r products < k j i j ; > as t 

tends towards -oo and k runs through the se t of bas ic configurat ions. Using 

the same reasoning which led to Eq. (22) we see that these sca l a r products 

vanish in the l imi t except for k = a p . The la t t e r quantity approaches 
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Therefore , for an a r b i t r a r y state cj) = 2, C | k > we have 

l im <ci,|i^ > = <cj)(ap>^"^ {X Z)- (23) 
t—-00 t ' / o 

In other words , for any approximate deuteron wave function /C , the 

sequence 

(24) 

converges weakly towards j a p> which means that if one wants the sca la r 

product of | a p > with any fixed state cj) , one can replace (ap) by 

..y y • ^ and go to the l imi t t —-oo. 

In quantum field theory all the s tandard methods for calculating the 

S-mat r ix have been based on this construct ion. Except in a few par t i cu la r ly 

s imple cases the s trong convergence method has not been applied there at all 

because the express ions for the s ing le -par t ic le s ta tes (corresponding to the 

deuteron wave function ^ ) which w^ould be needed, can not so easi ly be ob­

tained or handled. In wave mechan ic s , on the other hand, the weak con­

vergence method is not ve ry famil iar although there a r e some problems to 

which it could be applied with advantage. Recently W. Brenig (prepr in t 1958) 

has made use of this method in nuclear r eac t ions , taking shel l -model wave 

functions r a the r than the exact wave functions of the t a rge t nucleus . The pr ice 

for this simplification is jus t that the re la t ions a r e then not strongly but only 

weakly convergent , which for the p rac t ica l handling of mos t of the formulae 
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does not make any difference. 

Remark! . If there were another stable bound state of the neut ron-

proton system bes ides the deuteron (call it D') , then Eq. (23) would 

be m o r e connplicated, namely 

< 4 > i ^ > - ^ <cj,|ap>^-\7 J ) + <<^iap >^-\rJ )e^^^D'-^D^^, 
' t - 00 ' 1 0 -LJ ^ 0 

(25) 

It is in teres t ing to note that the survival of the osc i l la tory 

second t e rm is only due to the fact that in a non- re la t iv i s t i c theory a 

difference in binding energy does not imply a difference in m a s s . If 

one takes the m a s s change requ i red by re la t iv i ty theory into account, 

then he comes back to the s imple formula (23). 

The case of field theory. 

We consider for s implici ty a model in which we have a single sca la r 

field A(x) satisfying the local commutat ion re la t ions 

[ A(x) A(y)] = 0 for space- l ike d is tances x -y . (26) 

Let us a s sume the re a r e two dis t inct stable pa r t i c l e s of spin zero predic ted 

in this model . The m a s s e s of these pa r t i c l e s shall be m and M, respect ive ly ; 

I a ^ shall be a s ta te of a single m - p a r t i c l e , and | p > one of a single M-pa r t i c l e . 

Consider now a space - t ime region •<?". Associa ted with it is a set of 

ope ra to r s£^ - , namely all the polynomials in the field with coefficient functions 

differing from zero only in ^^ , In other words , a genera l opera tor from ^ v p 
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is of the form 

q = c + J c ^ ^ ^ x ) A(x)dx + J c ^ ^ ' ( x ^ , x^) A ( x ^ ) A ( x 2 ) d x ^ d x 2 + . . . 

(27) 

where c (x, , . . . , x ) = 0 if any x . l i es outside of •̂ "'. F u r t h e r m o r e , there 
1 n 1 

is a subspace ^ y o^ s ta tes assoc ia ted with^<5', namely the set of all those 

s ta tes which a r e obtained by applying the opera to rs belonging to ^ J. on the 

vacuum state / 0 > . We call the s ta tes of <̂  z, "localized s tates i n ^ ^ " . A 

be t te r t e rm would perhaps be "local d is turbances in the vacuum". 

The r eason for introducing J^ / and ^ /^ is that we want to define in 

field theory the notion of a product between far separa ted s ta tes (our previous 

, (t) 
symbol A ) . Now, of cou r se , any state ijj m a y b e wri t ten as 

^ = X | 0 > (28) 

where '^^ is some polynomial of the field A. In defining the product between 

two s t a t e s , the most obvious idea is to make use of the product between two 

o p e r a t o r s which c rea te these s ta tes from the vacuum. There i s , however, the 

following difficulty. The re la t ion between jC. and ijj in Eq. (28) is not unique; 

there a r e many ope ra to r s /C which produce the same state ijj. If we wrote 

i>^ A^^^ X 1 X 2 /°">' (^9) 

where 

the r e su l t would va ry with the choice for V' . A sensible and unambiguous 
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definition of the product state is given by Eq. (29), however , under the follow­

ing r e s t r i c t i o n s . If ijĵ  belongs to (!yl/„ and ijjg toQ-/ (where the regions ^p-^ 

and/< a r e si tuated totally space-like with r e spec t to each other) and if the 

choice of /[ and ^ is l imi ted to the ope ra to r s from 6 ^ /_ and 'J(^ j , 

respec t ive ly , then the a s sumed local commutativi ty (26) of the field guarantees 

that the remaining a r b i t r a r i n e s s in choice of the ope ra to r s A n , / p will not 

change the r e su l t of Y ^ , ^ ^ i 0 > , 

If we apply these ideas then to the construct ion of the s ta tes | a p > we 

a r e led to consider "a lmost local ope ra to r s B(x). By this we mean polynomials 

in the field A [ see Eq. (27)] with coefficient functions c which dec rea se suf­

ficiently rapidly as any point of the points x. moves away from x. To be specific 

let us allow only a finite t ime in terval in which the fiinctions a r e different from 

zero and requ i re that they dec rea se faster than any power with the spatial 

separat ion j x". -x" { . The counterpar t of Eq. (5) is then 

l a p ^ " ^ = l i ^ / f ( x ^ , t ) f ^ P ( x J q ^ ' " ' ( x ^ , t ) q ^ ' ^ M x 2 , t ) d 3 x ^ d3 x^ 0 > 

(30) 

if q (x, t) and q (JT, t) a r e any a lmos t local c rea t ion ope ra to r s for a s tate of 

a single m - p a r t i c l e (or M-par t ic le ) which is local ized in the sense of Newton 

and Wigner at t ime t at the posit ion jT. To find such o p e r a t o r s q and q 

means to solve the one -pa r t i c l e p rob lem, jus t a s in the wave-mechan ica l 

example we need to know the deuteron wave function X in o rde r to apply Eq. (5). 
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One las t r e m a r k : — these considerat ions depend on the assumption that 

the effective in teract ion vanishes sufficiently fast with the dis tance. In wave 

mechanics this nneans that the potential shall drop faster than 1/r [ see Eq. 

(7) and the preceding d iscuss ion] , In field theory le t us call the counterpar t 

of this assumpt ion "the asymptot ic condition in space" . It can be explicitly 

formulated as a condition for the behavior of vacuum expectation values of 

products of field ope ra to r s for l a rge space- l ike d is tances . 
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Quantum Theory of Fields 

Suraj N. Gupta 

Wayne State Univers i ty , Detroi t , Michigan 

It is a g rea t p leasure for me to vis i t the Argonne National Labora tory 

this s u m m e r . I unders tand that Argonne has big plans for the future in the 

field of h igh-energy phys ics , which no doubt will be of t remendous importance 

to all the physic is ts throughout the midwest . I am therefore par t icu la r ly glad 

to acquaint myself with the phys ic is t s h e r e . 

In these l ec tu re s on the Quantum Theory of F ie lds , I shall cover the 

following topics: 

I. Quantum elec t rodynamics 

II. Quantum Theory of Gravitat ion 

III. IT Meson Theory 

IV. Strange Pa r t i c l e s 

V. Genera l P r inc ip les of Quantum Field Theory 

VI. Fu ture Outlook 

I. .QUANTUM ELECTRODYNAMICS 

As you know, until about 10 y e a r s ago quantum elect rodynamics was 

in bad shape. For ins tance, it was pointed out by var ious people that the usual 

method of quantization of the photon field, which was developed by Heisenberg , 

Paul i and F e r m i around 1930, was inconsis tent . This , I think, can be seen very 
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easi ly in the following way. We know that the commutation re la t ions for the 

photon field can be expressed a s 

[A (x), A (x')] = i ' f ic 6 D(x-x ' ) . 
|J. V •• |JLV 

We differentiate each side and take the expectation va lue . 

< 

a A (x) 

8 X 
fJ-

, A^(x ' ) i'ii c 5 
Ĵ,v 

9 D(x-x') 
9 x 

If we now make use of the older supplementary condition 

(I. 1) 

(1 .2) 

8 A 

9 X 
^ = 0, 

H' 

(1.3) 

we see that one side of Eq. (I. 2) vanishes while the other side is non-vanish­

ing. There a r e other compl ica t ions , but I do not want to go into de ta i l s . I 

just want to point out that the older formal i sm of quantum e lec t rodynamics 

was known to be inconsis tent . 

Then I gave a theory of the quantization of the photon field which is now 

well known. It differed from the old formulation in two ways . F i r s t l y , I 

made use of an indefinite m e t r i c and secondly the supplementary condition 

(I. 3) was rep laced by a weaker supplementary condition which can be e x p r e s ­

sed as 

9 A 
! 

9 X 

- l - ^ 

\^ ^ = 0. (1.4) 
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After this paper was published it was general ly agreed that this work should 

rep lace the older work which was done, as I said before , around 1930. 

I do not wish to d iscuss the mathemat ica l details of the quantization of 

the photon field h e r e , but I would like to mention that recent ly I have received a 

2 

r ep r in t from Sunakawa, in which he claims that nny t r ea tment of the quantiza­

tion of the photon field is not Lorentz covar iant . Now this problem of Lorentz 

covar iance has been d iscussed in my own paper as well as by severa l people. 
3 

I might par t ic i i lar ly mention a paper by Belinfante, in which he has d iscussed 

the covar iance of my formal ism in very grea t detai l , and I have received a 

l e t t e r from him and some other people pointing out the e r r o r in this paper of 

Sunakawa. 

The point is that in the formal ism of indefinite me t r i c two sets of 

quanti t ies a r e introduced, which a r e called the Hernnitian conjugate and the 

adjoint, and unless a person is ve ry famil iar with the formal ism he is l iable 

to make a mis take by confusing the two. But I think it is al l now not of much 

4 
i n t e r e s t , because I have published a paper in the Canadian Journal of Phys ics 

which contains a much s impler formulation of quantum mechanics with an in­

definite m e t r i c . In this formulation only one set of quantit ies is introduced, 

and thus the t r ea tmen t of indefinite m e t r i c becomes as simple as a theory with 

a posi t ive definite m e t r i c . 

F u r t h e r , in quantum e lec t rodynamics one of the major p rob lems , as 

you know, has been the problem of d ivergenc ies . This problem can be split 
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into two different p rob l ems , and these two problems a r e : 

1. how to remove the d ivergenc ies , and 

2. how to handle the divergent quant i t ies . 

Of course , if there were no d ivergencies the second problem would not 

a r i s e at a l l , but we know the r e su l t s a r e divergent and then these a r e the two 

problems which a r i s e . As we all know, these d ivergencies can be removed by 

renormal iza t ion . This is well known. People nnay differ ve ry slightly in their 

in te rpre ta t ion of what renormal iza t ion m e a n s . My own in te rpre ta t ion , which is 

of course provis ional because at the moment we cannot say what we shall find 

ul t imately , is to look upon renormal iza t ion pure ly as a subtract ion p rocedu re . 

That i s , in the usual theory we introduce an interact ion te rm 

L. ^ = - A j , (1.5) 
m t c jj, [J. 

while renormal iza t ion simply m e a n s , at l e a s t to m e , that we rep lace the above 

interact ion by the new interact ion 

1 6 e 
L. ^ = - A j + 8m c^W di - A j , (I. 6) 

m t c |J, "̂ [jL ^ ^ ce (i, [ i 

as suggested by Schwinger. The quanti t ies 6 m and 6e a r e jus t some constants 

which one cotild r e g a r d as m a s s and charge r eno rma l i za t ions . I myself sug-

5 
gested a slightly different in teract ion 

L ' . ^ = - A j + 6m c217ib + -̂  6 f F 2 (1.7) 
m t c Ji jJ, -r ~r ^ |j,V 
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and many physic is t s have found that for mathemat ica l purposes Eq. (I. 7) i s 

m o r e convenient. So renormal iza t ion in some way or other as a philosophy 

can be adjusted according to one 's t a s t e , and by renormal iza t ion we can r e ­

move or subt rac t the d ivergencies out of the p resen t formal ism of quantum 

e lec t rodynamics . 

But then this second prob lem, which is essent ia l ly re la ted to the f i rs t , 

is also a ve ry se r ious p rob lem. In fact, some people, who do not know r e ­

normal iza t ion ve ry well , say a lmos t jokingly that one jus t subtracts infinities 

out of infinities and one does not know what al l this m e a n s . F rom a ma the ­

mat ica l viewpoint when one is dealing with infinities the equations a r e not 

ent i re ly meaningful. This i s a problem on which a grea t deal of work has been 

done. I have myself done work on this problem and I definitely feel that at 

the nmoment this i s the bes t thing we have. What I have done is essential ly 

to introduce auxi l iary fields in quantvim e lec t rodynamics . Phys ic i s t s have 

been talking of introducing additional fields to remove divergencies for a long 

t i m e . In fact I myself do not know who published the f i r s t paper on introducing 

a neut ra l vector meson field in quantum e lec t rodynamics . There a r e quite a 

few ve ry old papers and many physic is ts have worked on this problem. But the 

difficulty always has been that if t he re is an additional field then why don't we 

observe that field. In my paper for the f i r s t t ime, by using an argument which 

has never been used before (at l eas t I am not aware of anyone using the argumen 

I have shown that it is poss ib le to introduce auxi l iary fields in quantum e lec t ro -
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dynamics in such a way that these fields r emain completely unobservable . In 

this case also it is n e c e s s a r y to use an indefinite m e t r i c . 

So by introducing auxi l iary fields in such a way that they cannot be ob­

served, it is possible to remove al l d ivergencies in a purely formal way. But 

in o rder to insure that these auxi l iary fields a r e unobservable , one has to i m ­

pose a r e s t r i c t ion ; and the r e s t r i c t i on is that the m a s s e s of the auxi l iary 

fields should be g rea t e r than the total energy of the physical system under con­

siderat ion in that frame of re fe rence in which the physical system has minimum 

energy. This condition, of c o u r s e , can be satisfied in any physical problem, 

because in any problem we deal with a system containing a finite amount of 

energy and we can always choose the m a s s e s in such a way that they a r e l a r g e r 

than the energy of the sys tem under considera t ion. With this condition one can 

work out anything. We can c a r r y out renormal iza t ion and obtain any resu l t of 

physical i n t e r e s t . Then ul t imately , because it would be ve ry ar t i f ic ia l tp i m ­

pose an upper l imi t to energy, at l ea s t a t the moment , the bes t thing would be 

to le t these auxi l iary m a s s e s tend to infinity. Thus , throughout the ent i re 

calculat ions in any physical problem it is possible to proceed in such a way 

that the re a r e no infinities anywhere . Then in the final finite r e su l t we can nnake 

the auxi l iary m a s s e s tend to infinity, and everything i s unambiguous and finite. 

Thus, by using the formal i sm of auxi l iary fields the s e l f -mass and se l f - cha rge , 

6 m and 6 e, for all p rac t i ca l purposes can be t rea ted as finite. Since in al l 

manipulations we can t r e a t 6 m and 6 e as finite quant i t ies , many objections 
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which a r e r a i sed against quantum elec t rodynamics disappear in this way. I think 

from a purely mathemat ica l point of view one can say that quantum electrodynamics 

is in a form where it is ent i re ly se l f -consis tent and one can remove all the d i ­

vergenc ies and the re is no r e a l problem left. 

One can also show that p rac t ica l ly all the low-energy phenomena can be 

explained up to a fantastic accuracy by using quantum e lec t rodynamics . Of course , 

I mean only those phenomena which l ie w^holly within the domain of quantum e l ec t ro ­

dynamics . But if one does not like the p re sen t formal ism of quantum e lec t ro ­

dynamics one could r a i s e two objections: F i r s t l y , one could say that the whole 

idea of r enormal iza t ion is mathemat ica l ly ve ry inelegant and crude and, b e ­

cause the re is a belief which we all sha re that the ul t imate laws of nature a r e very 

beautifxil and s i inple , one might say that renornnalization cannot be the final 

solution. There it becomes a nnatter of philosophy and personal feeling, and 

it i s very difficult to be dogmatic in these things, but I will personal ly say that 

I sha re the belief that r enormal iza t ion is only a provisional solution and ul t i ­

mate ly we shall have to find something e l se . The second objection, which is 

m o r e s e r i o u s , is that it has been cla imed that quantum elec t rodynamics as it 

ex is ts now becomes inconsis tent at high ene rg ies . Now there a r e many proofs 

of this — there a r e proofs of divergence of the per turbat ion s e r i e s and all kinds 

of th ings . They a r e not v e r y c lear and I don't think the re is a single paper which 

is free from all objections and which shows that quantum elect rodynamics 

definitely b r eaks down at high ene rg i e s , though some arguments do c rea te a 



- 26 -

f eeling that quantum e lec t rodynamics might b r eak down. But at high energies 

even if we ignore this vmclear work which is pure ly theore t ica l , t he re is s o m e ­

thing m o r e tangible which has also been found. This i s exper imenta l work, and 

I do not consider myself conapetent enough to give a definite opinion, but the re 

is some evidence which seems to show that the p re sen t quantum elec t rodynamics 

is unable to explain phenomena taking place at high ene rg i e s . One example which 

7 

you probably all know is the photon shower d iscovered by Schein. He has ob­

served a photon shower which shows that the probabil i ty for mult iple photon 

production at high energ ies (energies of the o rde r of 10^* ev) is far g rea t e r 

than what can be accounted for by using quantum e lec t rodynamics . 

I have investigated this problem of multiple photon production in quantum 

8 

e lec t rodynamics in g rea t detai l . The net r e su l t is that within the f ramework 

of quantum e lec t rodynamics it is absolutely imposs ib le to think of any p r o c e s s 

in which one could produce a photon shower of the type observed by Schein. I 

might say that ve ry few examples of this type of shower have been observed so 

far . Some have been observed in Italy, but then the number is so smal l that one 

cannot say with cer ta in ty that he re one has found something to show that quantum 

elec t rodynamics rea l ly b reaks down. Still it is much m o r e tangible than purely 

theore t ica l a rguments which a r e not ve ry c l ea r . Of cou r se , some people have 

also argued that it may not mean mult iple photon product ion, but I think that 

was in the beginning. Ult imately I think the nnajority of phys ic i s t s agreed that 

i t mus t be mult iple photon product ion, because when we consider the half-angle 

of the cone in which the shower is contained and the photon ene rg ie s , we can show 
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that these photons could not be produced by the decay of irO mesons . 

Then the re a r e some other exper iments . I do not have their r e fe rences 

h e r e , but you can easi ly find them in the Physical Review^. They a re about 

e lec t ron t r i den t s . When an e lect ron is sca t te red by a nucleus , then we all know 

it can emit a photon. Instead of this we can have a p roces s in which the photon 

appears only in a v i r tua l state and then it forms an electron pa i r . This is the 

p r o c e s s which has been studied by many phys ic i s t s . Again they seem to differ, 

but I think severa l phys ic is t s have c la imed that the c ro s s section for electron 

t r idents at high energies is considerably higher than that predicted by theory. 

So the re s eems to be a strong indication that at high energies e lectromagnet ic 

in terac t ions become much s t ronger than what is predicted by the usual quantum 

e lec t rodynamics , and at the moment we do not know how to explain th i s . 

One way would be to do m o r e theore t ica l work as people a r e doing. 

But to me it s eems that the difficulties which they point out a r e so formal 

that they talk like pure ma themat i c i ans , and the objections that they r a i s e do 

not seem to have anything to do with phys ics . I personal ly do not like the type 

of work, purely mathemat ica l work, which is being done to es tabl ish the fact 

that quantum elec t rodynamics rea l ly b r e a k s down at high ene rg ies . But of 

course it is a ve ry impor tant p rob lem. If a person expects to find something 

sensible he should cer ta in ly devote himself to this problem. In fact, this is 

the only c lea r problem left in quantum e lec t rodynamics . At low^ energies we 

know everything. So what happens at ve ry high ene rg ie s? This is the only 

problem in quantum elec t rodynamics which is worth investigation at the p re sen t 

timie. 
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I think the more promis ing approach to this would be purely exper imenta l . 

When we have m o r e h igh-energy machines and if we a r e able to study e l ec t ro ­

magnetic in terac t ions at high energ ies under controlled condit ions, then I think 

it will great ly add to our understanding of quantum e lec t rodynamics . It is in­

deed very essen t ia l that some m o r e quantitat ive exper iments should be c a r r i e d 

out with ve ry h igh-energy machines on problems which l ie wholly within the do­

main of quantum e lec t rodynamics . Of c o u r s e , one might say that at high energies 

other fields will a lso produce impor tan t effects in v i r tua l s t a t e s . All these things 

a r e very complicated and one could speculate as much as one would l ike , but I 

think it is quite obvious that m o r e exper imenta l information is needed in this 

field. Now I think I have said whatever I wanted to say about quantum e l ec t ro -

dynam ic s. 

Tanaka: In r ega rd to this question of evidence that quantum elect ro 

dynamics may b reak down at high energy, do you have any opinion as to 

whether or not i t may b r e a k down in nucleon s t r u c t u r e ? 

Gupta: I think it will be be t te r if we d i scuss this e i ther when I 

come to TT meson theory or genera l pr inc ip les of quantum field theory . 

All I can say at the nnoment is that when we talk of mesons then the re is 

no need to go to high ene rg i e s . If one has no theory even at low ene rg ie s , 

one cannot say the theory b r e a k s down at high ene rg i e s . 

Rosenzweig: Can you conceive of an exper iment at high energy 

that would be a r e a l t e s t of quantum e lec t rodynamics and not involve jus t 
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the other things that you have mentioned — mesons and other pa r t i c l e s 

that can be c rea ted at such ene rg ies? 

Gupta: There a r e exper iments according to which some physic is ts 

claim that a t high energ ies the c r o s s section for e lectron t r idents becomes 

about twice the theore t ica l c r o s s section and one could no doubt think of 

other s imi la r expe r imen t s . But I have seen ve ry l i t t le of how these ex­

pe r imen t s a r e done. 

Peshkin: Is it quite ce r t a in that a more accura te investigation of 

the Lamb shift w^ill not show that quantum elect rodynamics may break 

down at low energies ? 

Gupta: Well, pe rhaps I should put it like th i s . There a r e many 

problems to which a pe r son can devote his attention and cer ta inly the re 

is some possibi l i ty that even by devoting oneself to low-energy p r o c e s ­

ses one might come up with some discrepancy. In fact, in the d i s cus ­

sion of the Lamb shift (not for hydrogen but for atoms containing severa l 

e lec t rons) some physic is t s feel that there is a d iscrepancy. But these 

a r e ex t remely tedious ca lcula t ions , and I t ry to keep away from such 

ca lcula t ions . There a r e some ve ry laborious calculations c a r r i e d out 

by severa l people at Cornel l , in Canada, and in Sweden. The d i s c r e p -

aJicies between the var ious calculat ions a re far g rea te r than those with 

the exper imenta l r e s u l t s . I think Kinoshita and Salpeter have been doing 

some work of this kind at Cornel l , 
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Peshkin: Is the calculation of the logar i thmic t e rm for the Lamb 

shift ent i re ly sa t i s fac tory? 

Gupta: There a r e cer ta in phenomena which a r e ve ry clean, like 

the magnet ic moment . They a r e ve ry clean from a theore t ica l point of 

view, and the re a r e other p roblems in which a pe r son has to make some 

crude calcula t ions . This is pure ly a ma t t e r of calcula t ions , and it is not 

a difficulty of p r inc ip le . When it comes to bound s ta tes and prob lems of 

that kind, i t is imposs ib le to c a r r y out ve ry clean ca lcula t ions . So I 

don' t think it has anything to do with the pr inc ip le , but as I have said 

before , some people have c la imed that in the case of the Lamb shift 

for a toms containing m o r e than one e lec t ron , the theory does not ag ree 

with expe r imen t s . Yet thei r r e s u l t s a r e so different from each other 

that I wouldn't c a r e to make any comment . It is t rue that the re a r e only 

a l imited number of exper iments for which the theore t ica l r e su l t s can 

be obtained in a well defined way, but in mos t ca ses one has to make 

many crude assumpt ions and approximations which a r e often justified 

but st i l l a r e not v e r y p leasant for a theore t ica l phys ic is t . So when I 

have nothing e lse to do and no fundannental problem to think about, then 

I might s t a r t doing that kind of calculat ion. At the moment the re a r e 

many fundamental p rob lems which have to be invest igated. 
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II. QUANTUM THEORY OF GRAVITATION 

The theory of gravitat ion is a subject about which mos t phys ic i s t s , I 

am s o r r y to say, know ve ry l i t t le ; and therefore I think I shall f i rs t d iscuss 

the background very briefly before I actually d iscuss the quantum theory of 

gravi ta t ion. We know that at the beginning of this century there were two field 

theor ies w^hich were well known. One w^as Maxwell 's theory of e lec t romagnet ism 

and the other was Newton's theory of gravi ta t ion. Then Einstein proposed his 

special theory of re la t iv i ty , and the special theory of relat ivi ty was able to 

exp re s s Maxwell ' s theory in a v e r y beautiful form. But at the same time it 

gave a fatal blow to Newton's theory . That i s , as soon as the special theory 

of re la t iv i ty w^as accepted it became c lear that Newton's theory cannot be an 

exact theory of gravi ta t ion, because it is not Lorentz covar iant . Then the 

question a r o s e , "What is the exact theory of g rav i t a t ion?" What I want to 

emphas ize at the moment is that -whether we believe in Eins te in ' s theory of 

gravi ta t ion or not, there is no competit ion between Newton's theory and 

E ins t e in ' s theory , because we know for cer ta in that the special theory of r e l a ­

tivity is c o r r e c t and therefore we know for cer ta in that Newton's theory of 

gravi ta t ion cannot be an exact theory of gravi tat ion. At f i rs t many at tempts 

were m a d e , and var ious theor ies of gravitat ion were proposed. But then Einstein 

himself gave his theory and it was universa l ly accepted, and at the moment mos t 

phys ic i s t s a r e not even aw^are of what those other theor ies were which people sug­

gested at f i r s t . 
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Let us look upon this problem in a m o r e modern is t ic way and let us ask 

ourse lves the question, "If Newton's theory of gravi tat ion is not an exact theory 

then what a r e the r equ i r emen t s which an acceptable theory of gravi tat ion mus t 

sa t i s fy?" F rom a purely scientific point of view one could lay down th ree condi­

t ions: 

1. It should be Loren tz covar iant , because after all if a theory is not 

even Loren tz covar iant it can hardly be accepted as an exact theory . 

2. It should reduce to Newton's theory as a v e r y good approximat ion. 

3. It should also explain the th ree c ruc ia l t e s t s . 

Now in the usual textbooks on re la t iv i ty one finds a lot of philosophy of 

genera l covar iance , pr inciple of equivalence, e tc . But from a pure ly scientific 

point of view if a theory sa t is f ies the above th ree r equ i remen t s the theory is 

good enough. This problem of construct ing var ious theor ies of gravi tat ion with 

the above r equ i r emen t s i s one I have d i scussed in a paper in the Reviews of 

9 
Modern P h y s i c s . 

The way I have approached this problem is that every c l a s s i ca l field 

mus t cor respond , on quantization, to pa r t i c l e s of in tegra l spin. So the g r av i ­

tational field could have spin 0, 1, 2 or something m o r e . Let us proceed using 

the usual pr inc ip les of the field theory , and le t us s t a r t with spin 0. If we con­

s t ruc t a theory of spin 0 then it co r r e sponds to a theory which was actually p r o ­

posed before Einste in gave his theory of gravi ta t ion. It was proposed by 

Nords t rom. One finds that this theory , of cou r se , is Loren tz covar iant and 
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it reduces to Newton's theory as a very good approximation, but for the advance 

of the per ihel ion of Mercu ry it gives a value which is one-sixth of Eins te in ' s 

value in magnitude and opposite in sign. Thus this theory cer tainly cannot ex­

plain the advance of the per ihel ion of Mercury , and it fails in this r e spec t . Now 

if we come to spin 1, we can show by using simple a rguments that a theory of 

spin 1 would be absolutely identical with the e lectromagnet ic field. The only 

difference could be that the gravi ta t ional charge of a par t ic le might be different 

from the e lec t r i c cha rge . One cer ta in ly cannot use a field of the e lectromagnet ic 

type to descr ibe the gravi tat ional field because of many r e a s o n s . One obvious 

r eason is that according to the e lec t romagnet ic theory the force between two 

like pa r t i c l e s has to be repuls ive , and there is no way in which one co\ild modify 

the Maxwel l -Lorentz equations such that the force between two e lec t rons becomes 

a t t r ac t i ve . But in gravitat ion we know that the force not only between like but 

between al l pa r t i c l e s is always a t t r ac t ive . Thus , the Maxwell theory cannot 

be used to desc r ibe the gravi ta t ional field, and spin 1 can also be left out. 

When we go to pa r t i c l e s of spin higher than 1, the theory becomes more 

complicated. In fact, as we go to higher spins the theory becomes m o r e and 

m o r e involved, and I think i t will be enough not to go beyond 2. If we consider 

the case of spin 2, then this is a case w^hich has also been discussed before by 

seve ra l phys ic i s t s , I think the m o s t impor tant of them is Birkhoff. He gave 

a theory of gravi ta t ion, which is essent ia l ly a theory of a field of spin 2, His 

theory is Lorentz covar iant , and it reduces to Newton's theory as a very good 
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approximat ion. It also explains the th ree cruc ia l t e s t s . However, this theory 

is mathemat ica l ly very c lumsy, and when he did this v/ork the re was a cont roversy 

between Birkhoff and Einstein and his fo l lowers . This took place around 1945, 

large^ly between Birkhoff and Weyl, and they were both pure mathemat ic ians . 

If anybody thinks that only phys ic is t s lose thei r t e m p e r s , they should read the 

pape r s of Birkhoff and Weyl. Weyl f i r s t published some papers in the P r o ­

ceedings of the National Academy of Science. Then he published a paper in the 

12 

Amer ican Journa l of Mathemiatics. If one were to look into these p a p e r s , one 

would find that w^hat Birkhoff essent ia l ly did was to point to the facts which can 

be exper imenta l ly observed, and Weyl appealed la rgely to emotions and al l he 

could say was that Birkhoff 's theory was ve ry c lumsy. Eins te in put it this way — 

that he does not want to go backwards , but his a rgument s were hardly scientif ic. 

Now because I became ve ry much in te res ted in this thing, I r ead the 

var ious papers ve ry thoroughly and thought about all these p r o b l e m s . Then by 

studying Birkhoff 's theory m o r e ser ious ly , I could actual ly show that his theory 

is i n c o r r e c t and that i t contains a v e r y se r ious difficulty. 

This difficulty does not a r i s e in c l a s s i ca l theory but in quantum theory . 

The difficultyis that in Birkhoff 's theory the energy of the gravi ta t ional field is 

not posi t ive definite. This means that if we quantize Birkhoff 's field, it co r ­

responds to gravi tons of negative as well as posit ive ene rg i e s . P a r t i c l e s of 

negative energy a r e s t r ic t ly forbidden in quantum field theory because of the 
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following reason: We know that according to the per turbat ion theory, v i r tual 

pa r t i c l e s can be c rea ted in vacuum but they remain vi r tual because the pe r tu rba ­

tion theory contains the law of conservat ion of energy within it . However, if 

the re a r e pa r t i c l e s of negative energy then, without violating the law of con­

servat ion of energy and momentum, one can have creat ion of r ea l par t ic les of 

posit ive and negative energ ies even in vacuum. Thus, if we allow par t ic les of 

negative energy, the s ta te of the vacuum becomes unstable , which is absolutely 

fantas t ic . When we think of Birkhoff 's theory in t e r m s of quantum theory, we can 

see that this theory is unacceptable . But what about Eins te in ' s theory? Is it 

poss ible to quantize E ins te in ' s theory of gravi ta t ion? 

Before we d i scuss the quantization of Eins te in ' s gravitat ional field, le t 

us look at this difficulty of negative energy in Birkhoff 's theory a l i t t le more 

c losely . In Birkhoff 's theory the field equation for the gravitat ional field is 

D^ U = K. T , (II. 1) 
|JLV |JLV 

w h e r e /tl i s the g r a v i t a t i o n a l coupl ing c o n s t a n t , and T i s the e n e r g y -

m o m e n t u m t e n s o r of the m a t t e r f ie ld . By m a t t e r we m e a n e v e r y t h i n g excep t 

t h e g r a v i t a t i o n a l f ie ld . The r e a s o n why the e n e r g y of t h i s f ie ld i s not p o s i t i v e 

def in i te i s t h a t to m a k e t h e e n e r g y p o s i t i v e def in i te one h a s to i m p o s e the s u p ­

p l e m e n t a r y cond i t ion 

9 U 

HIV = 0 . (II. 2) 
9 X 
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This condition will be compatible with (II. 1) only if 

9 T 
[iv = 0 . 

9 X 

But T is the energy-momentum) tensor of the ma t t e r field alone, and therefore 
|JLV 

9T / 9 x cannot be equal to z e r o , because only the divergence of the total 

energy-momentum t enso r , which mus t include the gravi tat ional field a l so , can 

vanish. If we want to remove this difficulty of negative energy, then (II. 1) 

must be rep laced by 

O^U - K (T + t ) , (II. 3) 
|JIV ^ .V [JLV 

where t is the energy-momentum tensor of the gravi tat ional field. It is then 
(JLV 

possible to impose the supplementary condition (II. 2) which r emoves the dif­

ficulty of negative energy. 

Since the energy-momentum tensor of the gravi tat ional field mus t be 

at l eas t a quadrat ic function of the U ' s , we can see that Eq. (II. 3) has become 

13 
non- l inear . Moreover , as I have d i scussed in a paper in the Physica l Review 

it can be shown that if we der ive an equation of the type (II. 3) from a Lagrangian 

density, then the Lagrangian density must contain an infinite number of t e r m s , 

that i s , the Lagrangian density is of the form 

L = L^ + k L^ + k2 L^ + k3 L^ + • • • . (II. 4) 

But there is no simple way in which one could d i rec t ly find the va r ious t e r m s in 
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Eq. (II. 4). One could easi ly find one or two, but in general it will be so dif­

ficult to obtain L that this approach does not seenn very worthwhile. So, we 

see that if we want to remove the difficulty of negative energy, the field equation 

has to be non- l inear and the Lagrangian density has to contain an infinite number 

of t e r m s in var ious powers of the gravi tat ional coupling constant. 

Now le t us look at this situation from Eins te in ' s point of view. F i r s t of 

a l l , as everyone knows, Eins te in ' s theory of gravitat ion is very beautiful from 

a ma themat i ca l point of view. Secondly, from Eins te in ' s theory one can obtain 

a reasonable explanation of the three crucial t es t s without fiddling with any 

coupling constants or other manipulat ions as people often do in meson theory. 

Third ly , after a t tempts for about half a century, nobody could find a r ea son ­

able a l te rna t ive to Eins te in ' s theory . Considering al l these things, Einstein 

was f i rmly convinced that his theory of gravitat ion is cer ta inly c o r r e c t . But 

then he was faced with two p rob l ems : F i r s t l y , due to the use of the Riemannian 

space , E ins t e in ' s theory of gravi ta t ion is str ikingly different from other field 

t heo r i e s ; and secondly, it does not seem possible to quantize this field. In 

his l a t e r y e a r s Einste in was pa r t i cu la r ly obsessed with these two things. Because 

his theory is different from other field theo r i e s , he t r ied to cons t ruc t unified 

field t h e o r i e s , and because he could not see how his theory in Riemannian 

space could possibly be quantized, he at tacked quantum mechan ics . 

Many people have found it ve ry curious that Einste in , who himself played 

a pioneering role in the development of quantum phys ics , should so pers i s t en t ly 
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cr i t ic ize quantum mechan ics . There has been a grea t deal of cont roversy and 

the major i ty of phys ic is t s do not ag ree with Einstein in his c r i t i c i sm of quantum 

mechan ics , and I am p repa red to say that I do not find ajiything illogical in the 

bas ic formal ism of quantum mechan ics . Of cou r se , it is possible that ul t imately 

one may have to find something new, and of course the re a r e difficulties in 

quantum mechan ic s , but the bas ic formal ism seems to me perfect ly logical . 

Because re la t iv i ty and quantum mechanics provide the bas ic foundations 

of modern theore t ica l phys ics , it cer ta in ly s e e m s very surpr i s ing that there 

should be a conflict between genera l re la t iv i ty and quantum mechan ic s . In fact, 

it will not be an exaggerat ion to say that from an intel lectual point of view this 

has been the mos t outstanding problem facing the theore t ica l phys ic is t s for half 

a century . I have shown that this si tuation can be c lea red up by quantizing the 

14 
gravi ta t ional field, and what I am going to say is based on my two p a p e r s . 

F i r s t of all it is obvious that to c a r r y out the quantization of the g rav i ­

tational field, one nnay have to depar t from Eins te in ' s ideas in some ways . My 

t r ea tmen t , in fact, is based on a new approach to E ins te in ' s theory of g rav i t a ­

tion. I have shown that by a cer ta in mathemat ica l expansion it is poss ib le to 

reduce Riemannian space to flat space in such a way that the theory r ema ins 

Lorentz covar iant . When this expansion is c a r r i e d out and the theory becomes 

a theory of gravi ta t ion in flat space , then something exceedingly in te res t ing 

happens . One can show that in flat space E ins te in ' s field equations for the g rav i ­

tational field can be reduced to the form (II. 3) with the supplementary condition 

(II. 2) . In Eq. (II, 3), t cons is t s of an infinite s e r i e s , and the re fo re , although 
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the field eqiiation contains an infinite number of t e r m s , st i l l it can be wri t ten 

in a ve ry neat and simple form. The t e rm t in (II. 3) is also very sat isfactory 
(XV 

from a purely philosophical point of view, because in Eins te in ' s theory the energy-

momentum tensor is the source function and there is no reason why we should 

leave out the energy-momentum tensor of the gravitat ional field itself. In fact, 

this theory, as you can see , has a very striking correspondence with Maxwell 's 

theory , which is based on the field equations 

P A = - 7 j (II.5) 
\^ e n 

9 A / 9 x = 0 . (II. 6) 
( i (J. 

One can also see why Maxwell ' s field equations a r e l inear while Eins te in ' s 

field equations a r e non- l inea r . This difference of non- l inear i ty is produced 

because the photon field does not contribute to the cu r r en t four-vector while the 

gravi ta t ional field contr ibutes to the energy-momentum tensor . 

After the Lagrangian density for Eins te in ' s gravitat ional field is expanded 

as an infinite s e r i e s , we can r e g a r d the f i rs t t e rm as the unper turbed Lagrangian 

density for the gravi tat ional field, while the remaining t e r m s can be regarded 

as a d i rec t in teract ion between the gravi tons . Then by following the same p r o ­

cedure as I have used for the photon field, that is by using an indefinite m e t r i c , 

it is poss ible to quantize the gravi tat ional field. We can develop the theory in 

such a form that we can calculate any quantity which is of exper imental in t e res t . 



- 4 0 -

On quantization one can show that gravi tons a r e pa r t i c l e s of spin 2, 

They have two s ta tes of polar iza t ion, and of course bes ides two r ea l gravitons 

the re a r e v i r tua l gravitons which produce the stat ic force . In this way we 

a r e not only able to quantize the gravi ta t ional field, but the theory is in a form 

where , jus t as in quantum e lec t rodynamics , one can calculate anything. One 

might ask what one could possibly calculate with the quantum theory of g rav i ta ­

tion. I mus t say that because the gravi tat ional coupling constant is exceedingly 

smal l , the quantum theory of gravi ta t ion cer ta in ly can never become as im­

por tant a s , let us say, quantum e lec t rodynamics . But s t i l l , vmtil the grav i ta ­

tional field was quantized, one always wondered whether E ins te in ' s theory was 

rea l ly the c o r r e c t theory of gravi ta t ion. 

There is one v e r y in te res t ing application which has been c a r r i e d out, 

15 
not by me but by Cor ina ldes i , by using my t r ea tmen t of quantization of the 

gravi tat ional field. He also r epor t ed his work in Switzerland at the In te r ­

national Conference on Relat ivi ty . Using the quantum theory of gravi ta t ion, he 

considered the mutual sca t te r ing of two pa r t i c l e s of spin 0. He only cons idered 

the lowes t -o rde r d iagram in which jus t one graviton is exchanged between two 

pa r t i c l e s of spin 0, and thus he obtained the effective potential between these 

two p a r t i c l e s . Then he worked out the two-body equation of motion using the 

two-body potent ial . It is ve ry in teres t ing to see that although his p rocedure is 

so different from any which has been used before, he was able to obtain exactly 

the same two-body equation of motion as obtained by Eins te in , Infeld and 

Hoffmann. This well-known paper of Einste in et a l . is ex t remely difficult 
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to read and it contains ve ry labor ious calculat ions . But by using mathemat ical 

techniques, which a r e ent i re ly different from what they used, one finds that what 

they obtained is nothing but the effect of the exchange of one graviton between 

two pa r t i c l e s of spin 0. There a r e other problems which one can invest igate . 

One can show that the gravi tat ional interact ion between par t i c les depends on their 

spin, and the re a r e some other in teres t ing things. But from a purely exper i ­

menta l point of view, one cannot do much in this l ine. 

This quantum theory of gravitat ion is not jus t something which one would 

look at only out of cur ios i ty . In fact, it is possible to obtain some extremely i m ­

por tant information out of i t . One ve ry in teres t ing point, which I have inves t i ­

gated, is whether it is possible to remove the divergence difficulties in the 

quantum theory of gravi tat ion by renormal iza t ion , and the answer is that it is 

not poss ib le . So, in the in teract ion of the gravitat ional field with e lectrons and 

photons it is not possible to remove the divergencies by renormal iza t ion , and 

this I bel ieve is another strong point against the renormal iza t ion theory. It 

seems to be only a provis ional approach. F u r t h e r , let us consider the in te r ­

action of two e l ec t rons . Then we know that the gravitat ional force between two 

e lec t rons is ve ry smal l compared with the e lectromagnet ic force. But it is 

easy to show that a t exceedingly high ene rg ie s , which a r e cer ta inly not of ex­

pe r imen ta l i n t e r e s t , the gravi tat ional interact ion exceeds the e lectromagnet ic 

in te rac t ion . One could e i ther show this from the quantum theory of gravitation 

or one could even see without any calculat ions , because at very high energies 
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the m a s s e s of e lec t rons become ve ry l a rge while the e lec t ron charge remains 

the s a m e . So it is obvious that in the ul t imate solution of the divergence dif­

ficulties the gravi tat ional field is bound to play an impor tant ro le . That i s , 

when ul t imately our knowledge becomes c l e a r e r about the s t ruc tu re of e lementary 

par t i c les and what happens at high ene rg i e s , the gravitat ional field cer ta in ly can 

not be ignored. 

But the mos t in te res t ing thing, a t l eas t the thing that seemed to me m o r e 

in te res t ing than anything e l se , is the impl icat ions of this work in cosmology. 

Cosmology is a branch of knowledge which is so speculative that perhaps many 

people will not be in te res ted in i t . But s t i l l if one would look into the work which 

has been done in this l ine , I think one would find that it is not a l l that absurd . 

One thing which is widely known is that using Eins te in ' s theory of gravi ta t ion 

it is poss ible to cons t ruc t var ious cosmological mode l s . There is a var ie ty 

of these mode l s , and the re is a g rea t difference of opinion as to which model is 

c o r r e c t . But if we bel ieve in this quantum theory of gravi ta t ion, then two things 

come out of i t . F i r s t l y , in E ins te in ' s gravi ta t ional field one somet imes i n t r o ­

duces a cosmological t e r m . Now I have c a r r i e d out this quantization without 

the cosnaological t e r m . But if we introduce this t e r m , i t becomes meaning less 

in the quantum theory of gravi ta t ion. At l ea s t I don't know how to handle this 

t e rm in the quantum theory of gravi ta t ion. It is therefore reasonable to conclude 

that the cosmological term: m u s t vanish . Secondly, the whole bas i s of this work 

is that space is flat. The re fo re , if we accept this quantum theory of gravi ta t ion, 

then we mus t a lso accept the fact that space is flat. It is not curved ei ther with 
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negative or posit ive curva ture — it is flat. When we accept the above two facts , 

the cosmological model becomes m o r e or l e s s fixed. There a r e sti l l a few 

things which a r e r a the r doubtful, for instance the density of ma t t e r in the uni­

v e r s e about which var ious speculations differ widely. But sti l l these two facts 

e l iminate mos t of the cosraiblogical mode l s . This is all I wanted to say about 

the quantum theory of gravi ta t ion, and before I come to the next topic, the IT-

meson theory, I shall be ve ry glad to answer any quest ions . 

Havas: I woxild like to make a few r e m a r k s . No doubt the ma the ­

mat i c s of what you have done is quite c o r r e c t , but the question of the 

in terpre ta t ion of what you have done is something else again. I am 

especial ly talking about the equations of nnotion of pa r t i c l e s in a gravi ta­

tional field. When you look at the gravitat ional radiation of pa r t i c l e s , 

for example , you do not get a sensible answer if you t r ea t the gravi ta ­

tional field as an independent quantity. I think that in the way you p r o ­

ceed you n e c e s s a r i l y t r e a t the gravi tat ional field as an independent 

quantity and there fore you do not get the r e su l t s which a r e physically 

c o r r e c t . The other thing which I would like to conament on is the in t e r ­

pre ta t ion you put on wri t ing things in t e r m s of the f la t -space m e t r i c . 

It is quite t rue that you can wr i te the Einstein equations in t e r m s of the 

f la t -space m e t r i c , but this does not mean that one has reduced the 

Riemannian space to flat space . It is mathemat ica l ly equivalent, but 

says nothing about what the actual me t r i c of that space i s . 
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Gupta: I shall answer the second question f i rs t . When we reduce 

the theory to flat space, it is quite t rue that there is no apparent bas i s 

for deciding whether the space is flat or curved. Now my outlook is that 

if we r e g a r d the space as flat then we can quantize the field. If we r e ­

gard the space a s curved we cannot quantize i t . There fore , I believe 

that the space is flat. If somebody could show me how he can quantize 

the gravi ta t ional field in the Riemannian space , then I shall say that we 

do not know whether the space is flat or curved. But I think it is now 

fairly c lear that it is imposs ib le to quantize the gravi tat ional field in 

the Riemannian space . It can be quantized only in flat space, and that 

is -why I say that the space is flat. Coming back to the f i r s t thing, the re 

is a g rea t deal of con t roversy , and there is a ve ry l a rge number of 

p a p e r s . Eins te in himself has d i scussed this problem of-gravitational 

radia t ion. This is d i scussed in the book of Landau and Lifschi tz , and 

seve ra l other phys ic is t maintain that there is gravitat ional radia t ion. 

Rosen at f i r s t , a t the Internat ional Conference in Switzerland, c la imed 

that this conception of gravi tat ional radiat ion is i nco r r ec t . But a few 

months ago he published a l e t t e r in the Phys ica l Review in which he has 

rea l i zed his m i s t a k e , and now he c la ims that he be l ieves in gravi ta t ional 

radia t ion. I cer ta in ly ve ry much believe in gravi ta t ional radia t ion, and I 

have no doubt that slowly everyone will accept that gravi tat ional radiat ion 

can exist jus t l ike e lec t romagnet ic radia t ion. 
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Havas: I think you misunders tood my objection. I did not say 

that the re was no gravi tat ional radia t ion. As a ma t te r of fact, I did 

calculate the equations of motion with the radiat ion react ion in a r ecen t 

pape r . The point is that , because of the vanishing of the gravitat ional 

dipole radiat ion, it is imposs ib le to t r e a t the gravitat ional field as an 

independent external field in calculating the emiss ion of gravitational 

radiat ion by a pa r t i c l e . 

Gupta: I have looked into your paper , and I ve ry much doubt 

that what you have done is c o r r e c t . 

III. I f MESON THEORY 

The next thing I want to d i scuss is the IT meson theory. As everyone 

knows, IT nnesons a r e pseudosca la r pa r t i c l e s and they play a major role in 

nuclear fo r ce s . However, although physic is t s have been working for m o r e than 

20 y e a r s on meson theory, s t i l l it is not possible to explain things in a qucuiti-

tat ive way. So the f i r s t question which a person would ask is that if after 20 

y e a r s -we cannot obtain anything which casi be checked qucintitatively by exper i ­

ment , what is the point of working on this nonsense . The answer is that if the 

meson theory were something which was not of any prac t ica l in te res t and which 

did not have much to do w^ith expe r imen t s , by this t ime people would have grown 

t i r ed of it and left it a lone. But we know that the problem of nuclear forces and 

other a s soc ia ted p rob lems a r e such that they cannot be put as ide . However bad 
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the theory may be and even if it takes a hundred y e a r s , I am su re that the va r ious 

governments will be p repa red to finance r e s e a r c h in this line and people will go 

on working. Meson theory is one of the mos t impor tant topics in phys ics , 

and therefore a lot of work is being done on this subject. On the other hand, 

mos t of the work which is being done i s , I might say, second- ra te contribution 

to increas ing our r e a l knowledge. There fore , the re a r e only a few things which 

I want to d i s c u s s , because I r ea l ly do not know what else to do at p r e sen t . There 

a r e many difficulties and I could enumera te the difficulties as mos t people do, 

but everyone knows them and so I shall d i scuss jus t a few^ things, 

I am sure everyone has heard a g rea t deal about the fixed extended-

source meson theory of Chew and Low. They have concentra ted thei r attention 

par t i cu la r ly on pion-nucleon sca t t e r ing . In their papers they develop a non-

re la t iv is t ic pseudosca la r meson theory and they neglect the nucleon r eco i l , and 

then by introducing a h igh-energy cut-off they a r e able to explain the major 

features of the pion-nucleon sca t t e r ing . Now this theory is ve ry c rude , and 

they do not claimi that even at low energ ies can they explain the finer f ea tu res . 

The impor tance of this work l i es in the fact that there mus t be some t ru th in 

the ca lcula t ions , because they do seem to ag ree reasonably well with the ob­

se rva t ions . But what is the r e a l pseudosca la r meson theo ry? 

F i r s t of a l l , it is obvious that the theory mus t be r e l a t iv i s t i c , because 

if a pe r son s t a r t s with a bas ic theory which is non- re l a t iv i s t i c , then he cer ta in ly 

is living in the nineteenth century. The one problem, which is ex t remely 
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in teres t ing and on which many papers a r e wri t ten but is sti l l unsolved, is 

whether from the re la t iv i s t ic pseudosca la r meson theory i t is possible to 

der ive this "s tat ic mode l" by some plausible a rguments , I think it is general ly 

ag reed that a t the moment it is not poss ible to do so. There is a t the moment 

no r igorous derivat ion of the stat ic nnodel from the re la t iv is t ic pseudoscalar 

meson theory, and I think it is a very impor tant problem if somebody could do 

i t . 

I have confined myself so far to a few basic p rob lems , which I would 

like to desc r ibe h e r e . One of these problems is the problem of the nuclear 

potential , that is we have two nucleons and we want to calculate the nuclear 

potential between these two nucleons by using the pseudoscalar meson theory. 

I have a g rea t d is tas te for anything that i s not re la t iv i s t i c , unless one could 

justify the non- re la t iv i s t i c t r e a tmen t by using the re la t iv is t ic equations. This 

i s a problem on which I mus t say I have spent a g rea t deal of t ime , and what I 

have done is as follows; 

If we use the re la t iv is t ic pseudosca la r nneson theory, then, as one 

knows, it is ve ry doubtful that one could apply the per turbat ion theory to 

mesonic in te rac t ions . But, what could one do instead of using the per turbat ion 

theo ry? There a r e var ious things which have been suggested, but to me they 

seem ve ry unclean and I am not grea t ly impre s sed by them. F rom a purely 

logical point of view^, I do not find the in termedia te coupling or the strong coupli 

ve ry appealing. There fo re , one might a s k whether by using the re la t iv is t ic 
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pseudosca la r theory and the per turba t ion theory , one could obtain some kind 

of information about the nuclear potential . In th is connection a very in teres t ing 

17 
a rgument was given by Taketani et a l . This a rgument , which i s , of cou r se , 

not a r igorous one, is that since the nuclear forces a r e sho r t - r ange fo rces , one 

could probably apply the per turba t ion theory to obtain the nuclear potential ex­

cept in the immedia te neighborhood of the nucleons . Then one could introduce 

a phenomenological potential for shor t d i s tances ; and the dis tance which they 

have suggested is about one-half of the Compton wavelength of the pion. Up to 

this distance one could introduce a phenomenological potential , and beyond this 

one could perhaps apply the per turba t ion theory . According to the above a rgu ­

ment , which might or might not be c o r r e c t , it is tempting to use the p e r t u r b a ­

tion theory to calculate the nuclear potential between two nucleons at d is tances 

that a r e l a r g e r than a cer ta in d i s t ance . Now there a r e a ve ry l a rge number of 

pape r s on this topic, as you know. Probably the p a p e r s of Levy and Klein in 

the Phys ica l Review desc r ibe the bes t work that has been done so far . In these 

p a p e r s , however , they have neglected the reco i l of the nucleons , and this neglect 

of the reco i l is something which is ve ry s t r ange . The situation rea l ly is that 

if one ca lcula tes this problem se r ious ly , then the in tegra l s that one obtains a r e 

exceedingly complicated. They involve |JL/M, where jo, and M a r e the r e s t 

m a s s e s of the meson and the nucleon, r espec t ive ly . What people essen t ia l ly 

do is to simplify the in tegra l s by putting |j./M equal to z e r o . But', putting |JL/M 

equal to ze ro amounts to assuming that the m a s s of the nucleon is infinitely 

l a rge in compar i son with the m a s s of the pion, which physical ly means that 
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we a r e neglecting the recoi l of the nucleon. Thus , this phrase "neglecting the 

reco i l of the nucleon" has been invented jus t to justify putting p./M equal to 

zero in in tegra l s , where there is no mathemat ica l justification for putting it 

equal to z e r o . What I have been doing is that by using re la t iv is t ic pseudoscalar 

mieson theory , I have calculated the two-nucleon potential up to the fourth o rde r 

a s r igorous ly as i s poss ible without neglecting recoi l or anything e l s e . Of cou r se , 

this is v e r y tedious work, and it obviously cannot be done without numer ica l 

in tegra t ions . The r e su l t s I have obtained a r e considerably different from what 

Klein has obtained. Moreover , in Klein 's paper the four th-order nuclear 

potential does not involve the isotopic spin o p e r a t o r s , but my re su l t for the 

four th-order potential does involve the isotopic spin o p e r a t o r s . I shall submit 

this work for publication in the near future. 

I have also c a r r i e d out another calculat ion, and I might brief ly desc r ibe 

i t . It is well known that in low-energy p r o c e s s e s we can take into account the 

effect of the anomalous magnetic mioment of nucleons by adding to the Lagrangian 

densi ty the in terac t ion t e rm 

^ f f = - ^ ^ < t ^ o / 4 K . ) F ^ ^ - V ^ V , ^ , ( I I I . l ) 

w^here JJL is equal to the stat ic value of the anomalous magnet ic moment . This 

i s t r u e , s t r ic t ly speaking, only in the l imi t of photon energy tending to z e r o . 

But the re a r e many p r o c e s s e s in v/hich the photons have quite appreciable 

energy. Then what happens in this c a se , and how far is it justified to introduce 
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a phenomenological t e rm like (III. 1)? Of cou r se , one thing which we can at 

once see is that this t e rm cannot be used for photons of a r b i t r a r y energy, b e ­

cause it is well known that this type of in teract ion cannot be renornnalized. In 

fact, if we use this t e r m without any d isc r imina t ion , we can show that a t high 

ene rg ie s , which a r e available in cosmic r a y s , the interact ion between a photon 

and nucleon becomes ex t remely l a rge . So at one t ime when I was looking into 

everything to see whether one could somehow explain the mult iple photon p r o ­

duction to account for the photon shower observed by Schein, I a lso looked into 

this p rob lem. After car ry ing out some unpleasant ca lcula t ions , I found that 

the anomalous magnet ic mioment of nucleons begins to d e c r e a s e so rapidly with 

increas ing photon energy that a t high ene rg ies in cosnnic rays the effect of the 

meson field on nucleon-photon in teract ion becomes absolutely negligible. In 

this way one can see that no photons assoc ia ted with the additional in teract ion 

produced by the v i r tua l meson field will be emit ted by a proton or neutron in 

h igh -ene rgy nuclear col l i s ions . Of cou r se , it will emit some photons somet imes 

because of the same in teract ion as in quantum e lec t rodynamics . I have descr ibed 

18 
this work in a paper in the Phys ica l Review. 

IV. STRANGE PARTICLES 

The work of Gell-Mann and Nishij ima on s t range pa r t i c l e s is very well 

known, and their scheme involves the re la t ion 

Q = l3 + - i n + ^ S , (IV. 1) 
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where Q is the charge of the system in iinits of e, I^ is the third component of 

the isotopic spin, n is the number of baryons minus the number of an t i -ba ryons , 

and S is the s t rangeness number . After Gell-Mann and Nishij ima, I believe that 

the mos t important work has been done by D'Espagnat and P ren tk i . They have 

published a number of p a p e r s , the mos t important of which is in Nuclear Phys i c s . 

This paper contains the matherhat ical formulation of the field theory of s t range 

p a r t i c l e s . It is rea l ly ve ry beautiful, and I mus t say that it great ly inc reased 

my r e spec t for the F rench . 

They have given the field theory of the strong interact ion of s t range 

p a r t i c l e s , and of cou r se , this theory involves the same difficulty as the TT 

meson theory , that i s , the difficulty of l a rge coupling constants . Otherwise 

it is as reasonable as the theory of pion in te rac t ions . They have wri t ten down 

the in teract ion Lagrangian densi ty , and I don't want to wri te that down h e r e . 

But I will only mention that the in teract ion of pions and baryons contains four 

coupling cons tants , and the in teract ion ternns for K mesons and baryons contain 

four m o r e coupling cons tan ts . So the m o s t genera l form of the strong in te r ­

action of s t range pa r t i c l e s contains eight a r b i t r a r y coupling cons tants . I do not 

wish to say anything about the speculat ions on the var ious poss ible re la t ions 

between these eight coupling cons tan ts . At p resen t we don't know whether 

they a r e al l equal, or some of them a r e equal, or what. But, there a r e severa l 

pape r s by-Schwinger, Gell-Mann and Pa i s which contain speculations on the pos ­

sible connections between these eight coupling constants . 

D 'Espagnet and P ren tk i have a lso suggested that instead of Eq. (IV. 1) 
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it is pe rhaps a l i t t le be t te r to take as the bas ic relat ion 

Q = I3 + ^ Y . (IV. 2) 

Of cou r se , Eq. (IV. 2) i s the same thing as Eq. (IV. 1) because Y = n + S, This 

quantity Y has been given the name "hypercharge" by Schwinger. Now in recen t 

y e a r s qmte a few pa r t i c l e s have been d iscovered . In fact, people who do not 

work in this line think that every day somebody or other comes up with some new 

par t ic le and there a r e a l l kinds of mesons and hyperons . Then one begins to 

feel as if na ture has gone c razy and everything has become completely m e s s y . 

So why do we have all these p a r t i c l e s ? Of course , it may take some t ime be ­

fore this m y s t e r y is completely c l ea red up, but the re i s one ex t remely i n t e r e s t ­

ing fact which I think one ought to know. If we asstime that I, Q and Y in the 

relat ion (IV, 2) can take only the simple values 

I - 0, ^ , 1, 

Q = 0, ±1 , 

Y 3 0, ± 1 , (IV, 3) 

Then we obtain the following dis t inct mathemat ica l poss ib i l i t ies for baryons 

and mesons : „ 
Baryons 

1 = 0 Y = 0 A 

J. [ Y = 1 P. n. 
2 / Y = -1 

+ o _ 
1 = 1 Y = 0 s , r , s 

(IV. 4) 
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Mesons 

1 = 0 Y = 0 ? 

1 - 1 ( Y = 1 Ko^ K_ 
2 (̂ Y = -1 K , K 

+ o 
1 = 1 Y = 0 1 T , T T , T r 

In the above scheme , all the known baryons exactly correspond to all 

the dist inct ma themat ica l poss ib i l i t i e s . Similar ly , in the case of m e s o n s , to 

each m a t h e m a t i c a l possibi l i ty the re exis ts a meson , except that no meson 

has been observed which cor responds to I = 0, Y = 0 and Q = 0. Of cou r se , 

you know that the muon is no longer regarded as a meson — it is now called 

a lepton. In the in teract ion of mesons and ba ryons , the re a r e sti l l severa l 

things which we don' t kno-w. F i r s t of a l l , we don't know the re la t ion between 

the eight coupling cons tan ts . Then we do not know the spins of all of these 

p a r t i c l e s , although I think the re is a genera l feeling that unless the re is some 

pow^erful exper imenta l evidence to the con t ra ry we should jus t assunne that 

al l the baryons have spin -r: , while all the mesons have spin 0. Another thing 

which we don ' t know is the par i ty of a l l these pa r t i c l e s with r e spec t to each 

o ther . At p re sen t one problem which i s pa r t i cu la r ly being investigated is 

whether these K mesons behave as sca la r or pseudosca lar pa r t i c l e s in strong 

in t e rac t ions . 

However, the thing which seems to me mos t intriguing is this nmissing 

mieson with 1 = 0, Y = 0 and Q = 0. I have spent considerable t ime on this 
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miss ing par t i c le because I think it is cer ta in ly a ve ry a t t rac t ive idea that the re 

exis ts another meson corresponding to I = 0, Y = 0 and Q = 0, which has not 

been observed so far . When I looked into var ious exper imenta l papers and c a r ­

r ied out some ca lcula t ions , it seemed to me that the exper imenta l work does not 

rule out the possibi l i ty of the exis tence of this pa r t i c l e . In fact, there is some 

evidence that this pa r t i c le does exis t . Of cou r se , because this par t ic le has not 

been observed , it is quite obvious that it is highly uns table . But the more I 

looked into this problem the m o r e I was su rp r i sed to find that a s far as we know 

the exper imenta l evidence seems to favor the exis tence of this additional highly 

unstable par t ic le r a the r than to rule out i ts ex is tence . 

One problem which I have investigated in pa r t i cu la r is the problem of 

pion production in h igh-energy p r o c e s s e s . This work is in the course of pub­

l icat ion in the Phys ica l Review, and in th is I have examined the exper imenta l 

papers on pion production in high-energy p r o c e s s e s to see if they ru le out or 

favor the exis tence of this miss ing p a r t i c l e . We know that this miss ing pa r t i c l e , 

•wiiich I have called the pO meson , is highly uns tab le , and it is neu t ra l and 

identical with i ts an t i -pa r t i c l e . There a r e a lso some a rgument s to show that 

it is s c a l a r . F u r t h e r , we can a s s u m e that i ts m a s s is g rea t e r than twice the 

pion m a s s , so that the pO meson rapidly d i s in tegra tes into p ions . Now if such 

a par t ic le does exis t , then what can it do in these h igh-energy p r o c e s s e s ? It 

is quite obvious that what it can do a r e the following things: F i r s t of a l l , it will 

i nc r ea se the apparent mult ipl ici ty of pions because in addition to tr mesons often 
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this po meson will be produced and it will decay into pions. This lifetome of the 

pO meson is so shor t that the whole thing will look like multiple pion production. 

Another thing the po meson will lead to is that it will change the rat io of differ­

ent modes of multiple meson product ion, because the po meson can decay as 

+ - -. o 

pO _ Ti- + IT o r 2Tr , 

but it cannot decay into 

+ , 0 - , 0 
TT + TT"^ o r TT + TT . 

F u r t h e r , the pO meson will lead to some angular cor re la t ion between pion p a i r s , 

which a r e produced during apparent multiple pion production. 

There a r e , in fact, a ve ry l a rge number of papers on pion production. 

P rac t i ca l ly all this work has been c a r r i e d out at Brookhaven or at the Radiation 

Labora tory in California, and a lot of data has been collected. I think the miost 

impor tant exper imenta l work on this topic is by Shutt et a l . I don't think I shall 

wr i te down these var ious r e fe rences because there i s , for ins tance , a reference 

from California which contains 18 n a m e s . This is rea l ly becoming ra the r 

r id icu lous , but these pape r s a r e ve ry well known. In al l these pape r s everybody 

has pointed out that in al l observed p r o c e s s e s the mult ipl ici ty of pions has been 

unexpectedly l a r g e . Thus , the pO meson will help in obtaining be t te r a g r e e ­

ment between the theore t ica l and the observed mul t ip l ic i t ies . 

Now let us consider the p r o c e s s e s : 

n + p — n + p + ir +TT~ (IV. 6) 
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and 

n + p — p + p + iT~ + ir . (IV. 7) 

These a r e two p r o c e s s e s which have been investigated by Shutt et a l . Accord­

ing to F e r m i ' s s ta t i s t ica l theory , the c r o s s sect ions for the above p r o c e s s e s 

should have the ra t io 3. 3:1. There a r e , of cour se , a lso other theor ies of pion 

production such as the i sobar m o d e l s . By using some of these models the above 

ra t io can be made a l i t t le l a r g e r but not too l a r g e . What do Shutt and col labor­

a to r s find exper imenta l ly? They have descr ibed thei r work in a r a t h e r long 

paper , and there a r e a number of tables in this pape r . There is one table . 

Table 3, which gives the following information about "ce r t a in" and "probable" 

events of the type (IV. 6) and (IV. 7); 

___ _ _ 
n p i r i T pp-rriT 

cer ta in events 86 5 

probable events 12 22 

You can see for yourself that because they knew that F e r m i ' s s ta t i s t ica l theory 

gives the ra t io 3, 3:1 for the p r o c e s s e s (IV. 6) and (IV. 7), they have been tempted 

to in t e rp re t mos t of the probable events as belonging to the category (IV. 7). This 

i s like some theore t ica l phys ic is t s who t r y to adjust the theory to get the exper i ­

menta l r e s u l t s . Anyway, it is quite obvious that the ra t io of the events of the 

type (IV. 6) and (IV. 7) is much l a r g e r than 3. 3:1. If we have this pO meson then 

it will contribute fo (IV, 6) but it won' t affect the mode of production (IV. 7). 
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Thus the pO meson will i nc rease the theore t ica l ra t io of the above p r o c e s s e s . 

Shutt and his co -worke r s also find some angular cor re la t ion between the pion 

p a i r s in the p r o c e s s (IV, 6), which they a r e unable to explain by postulating a 

m e s o n - m e s o n in teract ion or some such thing. The po meson will help in ex­

plaining the angular cor re la t ion between some of the pion p a i r s . 

Of c o u r s e , t he re a r e a l a rge number of p a p e r s , but I have mentioned 

only one because it is m o r e detailed than any other paper . There a r e many sub­

sequent p a p e r s , and the re is a lso the work of the California group on proton-

antiproton annihilation where again they find that the multiplici ty is very high. 

One can a lso invest igate other consequences of the pO meson . I have inves t i ­

gated i ts effect on anomalous magnet ic moments of the nucleons, and this 

pa r t i c le does help in shifting the theore t ica l r e su l t toward the observed va lues . 

This work is also in the course of publication in the Phys ica l Review. 

Another problem which one of my graduate students is investigating is 

the effect of the s t range pa r t i c l e s and the p o meson on e lec t ron-neut ron in t e r ­

act ion. In fact, I might say a few words about this problem because cons ide r ­

able exper imenta l work on e lec t ron-neu t ron interact ion has been done here at 

Argonne. If ŵ e use the pion theory to calculate the interact ion between e lect ron 

and neut ron, then we can show in genera l that what the pion field does i s to 

produce an effective charge around the neutron and it also changes the magnetic 

moment of the neut ron. Now it has been pointed out by Foldy that if we jus t 

consider the effect on e lec t ron-neu t ron in teract ion due to the stat ic anomalous 
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magnetic moment of the neutron, which we know with very grea t accuracy , 

then the effective potential between the e lec t ron and the neutron is quite close 

to the exper imental ly observed e lec t ron-neut ron potential at low ene rg ie s . This 

mieans that the extended charge of the neutron is negligible, a t l eas t for low-

energy e lec t ron-neut ron sca t t e r ing . But from the theory one finds that the ex­

tended charge of the neutron is quite l a rge — far l a r g e r than any exper imenta l 

e r r o r . So this is a problem which one does not know w^hat to do about. There 

is also some uncer ta inty in the exper imenta l work on this p rob lem. At l eas t 

I hope that a t Argonne they will de te rmine the exper imenta l e lec t ron-neut ron 

potential m o r e accura te ly . I think from an exper imenta l point of view^ this is 

a very impor tant res\ i l t , and if someone could de te rmine it with ve ry grea t 

accuracy I am sure it would become a s tandard res^llt in nuclear phys ic s . In 

this exper iment the lower the energy of the neutron the be t t e r , and thus he re 

one does not need high ene rg i e s . Of c o u r s e , you know that h igh-energy expe r i ­

ments of this type have been done at Stanford and they also find the same thing — 

that i s , the extended charge of the neutron is unexpectedly sma l l . We have been 

looking into this to see whether the po meson and the s t range pa r t i c l e s might 

reduce the theore t ica l r e s u l t for the extended charge of the neut ron. But, so 

far whatever p re l imina ry work has been done is cer ta in ly not ve ry encouraging. 

I do not think I shall say any m o r e about these s t range p a r t i c l e s . But, if t he re 

a r e any questions I shall be glad to answer them. 

H a m e r m e s h : Would you say something about the mechanism by 

which the pO meson and the s t range pa r t i c l e s might reduce the extended 
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charge of the neut ron? 

Gupta: The d iag rams a r e quite s imi la r to those for IT m e s o n s , 

and I calculated it ve ry crudely and it didn't reduce the extended charge . 

I suppose i t ' s a nice exe rc i se to work out the thing in complete detai l . 

But I have ve ry l i t t le hope that i t will work. So this is a problem for 

theore t ic ians as well as for exper imenta l physic is ts because one should 

know a t l e a s t the sign of what l i t t le extended charge the neutron h a s , 

whether it is posi t ive or negat ive . I have been completely confused by 

the va r ious values given in the exper imental p a p e r s . I think m o r e work 

should be done on this p rob lem. 

V. GENERAL PRINCIPLES OF QUANTUM FIELD THEORY 

Now I shall say a few words about the general field theory. There is 

a problem in the formulation of quantum field theory on which I have been work­

ing for th ree or four y e a r s . In fact, I have never been satisfied with what is 

usual ly done in textbooks, and I have always been very wor r ied about this 

problem concerning the bas i c Lagrangian formiulation of quantum field theory . 

What i s usual ly done is to follow the work of Heisenberg and Pau l i . In their 

t r e a t m e n t , which was given around 1930, the Lagrangian density was t rea ted 

a s a c l a s s i ca l quanti ty. Then they c a r r i e d out var ious var ia t ions and obtained 

va r ious r e s u l t s , and a t a l a t e r stage they passed over from c-number quanti t ies 

to q -number quant i t ies . F i r s t of a l l , it is obvious that this is a very ar t i f ic ia l 
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procedure in which f i r s t one t r e a t s something a s a c lass ica l quantity and l a te r 

on one says that it is an opera to r . So the rea l ly r igorous formulation of field 

theory should be based on a Lagrangian density which is a function of o p e r a t o r s , 

that i s , the field quanti t ies should be t r ea ted as opera to r s from the ve ry begin­

ning. The He i senberg -Pau l i t r e a tmen t i s not only ar t i f ic ia l but when we pas s 

over from the c-number quanti t ies to the q-number quantit ies the question a r i s e s 

"In which o rde r should we a r r a n g e those q u a n t i t i e s ? " Since 1930, of cou r se , 

many pape r s have been wr i t ten on this subject, and probably you a r e famil iar 

with the s e r i e s of p a p e r s by Schwinger ~= the re a r e about half a dozen of them. 

He s t a r t s with a Lagrangian density which is a function of o p e r a t o r s , and e s ­

sentially what he does is to manipulate var ious things, a r r a n g e var ious o r d e r s 

of ope ra to r s and work out the va r i a t ions , and then the whole t r ea tmen t becomes 

ext remely complicated. I have been working on this problem for severa l y e a r s . 

In fact, since I am writ ing a book on the quantum theory of f ields, this problem 

was rea l ly a headache for me because unless this thing i s c lea red up one can­

not wr i te a sys temat ic account of field theory . I have published a paper in the 

21 

Physical Review on this subject in which I bel ieve that I have solved this 

problem. The resul t ing formal ism is not ve ry difficult, and the re a r e a number 

of things which come out of i t . In fact, the re a r e a number of things which a r e 

so beautiful that I definitely feel I am on the r ight t r ack . I won't desc r ibe the 

mathemat ica l detai ls but I shall jus t mention what I have done. 
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I s ta r ted from a Lagrangian density which is an o rde red product , that i s , 

: L : = : L(u^''^, e U^'^VB x ) : . (V. 1) 

If t he re were no in teract ion it would be easy to define an o rdered product as 

Wick has done. But we a r e s tar t ing from a general Lagrangian density which 

contains in terac t ion , and the re one cannot split in a Lorentz covariant way al l 

the field ope ra to r s into posit ive and negative frequency p a r t s . There fore , the re 

is no simple way in which one could define the o rde red product in (V. 1) because 

one does not even know the commutat ion re la t ions in the ve ry beginning of the 

fo rma l i sm . The way I avoided this difficulty is descr ibed in the pape r . What 

I did was that f i rs t I postulated a number of p rope r t i e s of the o rde red product 

and with the help of those p rope r t i e s it is possible to work out the whole fo rma l ­

i s m . Then one p a s s e s over from the Heisenberg represen ta t ion to the in t e r ­

act ion r ep re sen ta t ion , and in the in terac t ion represen ta t ion one identifies 

these o rde red products with those defined by Wick. When one has done al l 

t h i s , the resul t ing formal ism is completely free from any ambiguity, and one 

never uses any c -numbers anywhere . Moreover , in this formal ism the z e r o -

point energy of the fields automat ical ly van i shes , and the zero-poin t charge 

a l so van i shes . Thus , in this fo rmal i sm everything becomes s imp le r , and 

the re is no need to introduce the charge-conjugate ope ra to r s because charge 

conjugation is ensured automat ical ly in a m o r e compact fo rm. In fact, in the 

usua l charge conjugation p rocedure the zero-poin t charge of the or iginal field 
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is des t royed by the zero-poin t charge of the charge-conjugate field. But this 

does not change the zero-poin t energy because even when we r e v e r s e the ro le s 

of e lec t rons and pos i t rons the zero-poin t energy remains the samie. Therefore , 

charge conjugation can remove only the ze ro-po in t charge , but the p re sen t for ­

mal i sm removes the zero-poin t charge and also the zero-point energy. Another 

thing which connes out is that in this formal ism al l the interact ion t e r m s a r e 

o rde red p roduc t s , and i t follows from a theorem due to Wick that we mus t always 

ignore all those d iagrams in which l ines from the same ve r t ex a r e joined to each 

other . Some people cal l them "tadpole"-type d i a g r a m s . This t r ea tmen t shows 

that whatever the field may b e , we mus t ignore the tadpole-type d i a g r a m s . This 

information is pa r t i cu la r ly useful for non- l inear in te rac t ions . I mus t say I am 

very proud of this work because I think this thing was never done p roper ly before . 

Another topic about which I might make some comments a r e pa r t i c l e s 

of spin higher than 1. One question which has often been asked i s , "Can pa r t i c l e s 

of spin higher than 1 exist in n a t u r e ? " As you probably know, the re a r e var ious 

theor ies of these pa r t i c l e s of higher sp ins . In somie the r e s t m a s s has m o r e 

than one va lue , and some contain p a r t i c l e s of both negative and posi t ive e n e r g i e s . 

But, I think the mos t sensible work on this subject is due to F i e r z and Paxili. 

When I was looking into these theor ies of pa r t i c l e s of l a rge spin, I was told that 

F i e r z bel ieved that these fields of l a r g e spin probably cotild not be quantized 

in a physical ly meaningful way. In fact, F i e r z and Paul i have given the 

Lagrangian formal i sm and they have given the field equat ions , but they did not 

quantize the field. There fo re , par t ly because the re has been so much talk that 
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some of these s t range pa r t i c l e s in cosmic rays might have l a rge spins, and 

par t ly because of ma themat ica l cur ios i ty I spent some t ime on the quantization 

of a field of spin 3/2 according to the F i e r z - P a u l i work. In this paper , which I 

22 
published in the Physica l Review, what I find is th is : If we develop the theory 

of spin 3/2 , we can do everything s tar t ing with the Lagrangian fo rma l i sm. We 

can quantize the field, obtain the commutation re la t ions , and wr i te down the con­

t r ibut ions of va r ious d i a g r a m s . The only difference is that the m a t r i c e s in ­

volved a r e v e r y complicated compared with the Dirac nnat r ices . They a r e 

16 X 16 m a t r i c e s for spin 3/2 , but t he re is no difficulty of negative energy, and 

it i s not n e c e s s a r y to use any supplementary conditions. The theory i s , of 

c o u r s e , tougher than that for p a r t i c l e s of spin 1/2, but that does not mean that 

such p a r t i c l e s shovild not exis t . On the other hand, I invest igated whether the 

e lec t romagnet ic in terac t ion of p a r t i c l e s of spin 3/2 can be r eno rma l i zed , and 

I found that the d ivergencies a r e v e r y , ve ry bad in this c a s e . So, as one goes 

to higher spins the d ivergencies become worse and w o r s e , and if one ve ry 

s t rongly be l ieves in the r enormal iza t ion theory then one could rule out these 

p a r t i c l e s . But then we know that according to E ins te in ' s theory of gravi tat ion 

the gravi tons have spin 2. The re fo re , what I would say finally is that one can­

not give any c l ea r a rgument to show -whether these pa r t i c l e s should or should 

not exis t in n a t u r e . But one thing is ce r t a in ~ if somebody d i scovers a par t ic le 

of spin 3 /2 . then it will be a m o s t unpleasant t ask to c a r r y out calculat ions for 

such a p a r t i c l e . I shall ce r ta in ly feel v e r y unhappy because these m a t r i c e s w^hich 
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appear in the theory of spin 3/2 a r e ex t remely difficult to handle. Maybe then 

people will have to wr i te theore t ica l pape r s in which the re will be 18 names or 

so jus t as they do in exper imenta l pape r s from California, 

VI, FUTURE OUTLOOK 

Final ly I want to say a few things about the future outlook. It is ve ry 

difficult to say, of cou r se , what we can expect in the future in this field, but I 

think the re a r e a few things which seem fair ly c l ea r . 

Some people have compared the' p r e sen t situation to the situation which 

existed when quantunn mechanics was being developed. I do not think it is a 

fair compar ison because at the nnomeht we do unders tand mos t things in a 

qualitative way. But when quantum mechan ics was being formulated one jus t 

could not explain even in a quali tat ive way how, for ins tance , one could have a 

stable hydrogen atom within the f ramework of c l a s s i ca l mechan i c s . At p r e sen t 

I don't think the re a r e many m y s t e r i e s which a r e completely obscure and where 

one does not even know what is happening. I think we have a reasonable idea 

of what i s happening in va r ious p r o c e s s e s , but i t i s the quanti tat ive t r ea tmen t 

that is s t i l l lacking. This t rouble is l a rge ly caused by s t rong in t e rac t ions , 

and I have v e r y l i t t le hope that anybody can rea l ly give some method of c a l ­

culation which can be applied reasonably well to strong in t e rac t ions . To me it 

s e e m s that one can expect some m o r e r e a l p r o g r e s s in quantum e lec t rodynamics 

or weak in t e r ac t ions . But in strong in te rac t ions I have the feeling that people 

will r e s o r t m o r e and m o r e to var ious mode l s , which i s , of c o u r s e , not ve ry 
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satisfying from an intel lectual point of view. 

One trouble these days is that the re a r e var ious l abora to r i es which have 

ve ry expensive appara tus and have to c a r r y out some observa t ions , and in fact 

one cajn l ea rn , about unknown things only in this way. Then they want theore t ic ians 

to do something on what they a r e doing. So the situation seems to be that many 

exper imenta l people who have t remendous amounts of money at their disposal 

expect the theore t ica l people to give some theory whether it makes any sense or 

not from a logical point of view. They want something to compare their r e su l t s 

with — s ta t i s t ica l model , i sobar model , s tat ic model , or some other model . 

This tendency is bovind to i n c r e a s e m o r e and m o r e , and fewer and fewer physic is ts 

will work on the fundamental problenns. The un ivers i t i e s and r e s e a r c h ins t i ­

tu tes will become like indus t r ia l es tab l i shments in which m o r e and m o r e pape r s 

will de sc r ibe the joint w^orks of a l a rge number of au tho r s . Another thing which 

i s definitely happening in the United Sta tes is that t h e r e i s a growing feeling in 

the minds of the genera l public that they mus t t ry thei r be s t to maintain their 

svipremacy in the scientific field. So I suppose people will be p repa red to spend 

m o r e and m o r e money for scientific research^ and I have no doubt that the 

s a l a r i e s of sc ien t i s t s a r e bound to i n c r e a s e al l over the United Sta tes . T h e r e ­

fo re , pe rhaps one can say that in the future the life of a phys ic is t will be very 

comfortable and ve ry bor ing . 

H a m e r m e s h : I would l ike to thank P ro fe s so r Gupta for a ve ry 

in te res t ing s e r i e s of l e c t u r e s . 
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Naive Inquir ies into Field Theory 

M. Dresden , Nor thwes tern Universi ty, Evanston, Illinois 

Lec tu re 1. 

Since the mos t successful field theory is undoubtedly quantum e l ec t ro ­

dynamics , it s eems sensible to study the successes and fai lures of that theory 

before at tempting any wholesale extrapolat ion of the theory into a different do­

main . The p rocedure in quantum elec t rodynamics is well known and only a ve ry 

b r i e f sketch will be given, jus t enough to phrase sonne questions which might be 

per t inen t . 

a) INTRODUCTION 

One always s t a r t s out from field equations der ived from a Lagrangian 

or Hamil tonian. One may separa te L = L, + L„ + L. , where L, and L„ a r e 
' ^ 1 2 m t . 1 2 

free (non- interact ing f ields) , and L. is the in teract ion t e r m . Objectionable 
mt 

as this p rocedure may be from a ma themat i ca l standpoint, it should be s t r e s s e d 

that nonetheless the exis tence and fornn of the coupling t e rm is definitely de -

nnanded by exper iment ; for ins tance , (X' ^ ) ' 

The free fields a r e desc r ibed in t e r m s of field o p e r a t o r s . These ope ra ­

t o r s satisfy ce r ta in field equat ions , the Dirac and Maxwell equations. Since 

these field o p e r a t o r s a r e o p e r a t o r s , they a r e to act on cer ta in objects . The state 

of the sys tem also mus t be exp res sed in a cer ta in manne r . In nonrela t iv is t ic 

quantum theory , the s ta tes co r respond to vec to rs in a Hi lber t space . This 
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Hilbert space has a (countable) base {(|» } . Any physical state can be expres-

sed as a combination of (j) 's by the equation 

k 

where / ij;> is an element of /r . 

Now when dealing with a field theory, one deals with a system with an 

infinite number of degrees of freedom, e. g. , a free radiation field may be 

thought of as a collection of an infinite set of harmonic oscillators. In quantum 

theory, the states of each one of these oscillators would be described in a 

Hilbert space. Take the direct product of all these Hilbert spaces. This again 

is a Hilbert space. The state of the system is now determined by a vector in 

that Hilbert space, called D. Physically D is very reasonable; the basic states 

indicate the number of particles in state 1, state s, . . . . Hence a state is des­

cribed in terms of an infinite sequence { 0, 1, . . . 0, s . . . } . The number of 

such infinite sequences is non-denunnerable (it would include all real numbers, 

for instance) — this is a non-separable Hilbert space, many frequently used 

mathematical theorems are not true. It is possible for the case of non-

interacting fields to describe the state in a separable Hilbert space F, the 

Fock space. Let fl as before be a Hilbert space. Now consider a state 

i|j(x) in /4 . Now construct "7^ (^ ^ , the tensor product of ^ and Â  

This is a space whose elements are two-particle states, the operators acting 

in /^ ' a re H^ + H^ . In this manner construct a spaced = ^ ^ /^(^ ,. ,iBP^» 
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If {^ •,} a r e a base in /v , then the sequences {c{> }, (cf) * 4> î  } > * ' ' (4* î  ' * ''^ !<• ^ 
1 1 2 I n 

(finite n) a r e a base in /¥ 

Now form the sum space (-^ symbol, not the symbol ® that is used for 

a product) by 

The spaces in the d i rec t sum a r e orthogonal to one another , an element in 

/y has nothing to do with an e lement in/i , An element of F consis ts of 

a collection; an e lement in 

symbolical ly an e lement of F is 

(M 
one m rr , ' • , e t c . , or wri t ten 

4;(x^) 4>(x^) 

The bas i s vec to rs would be 

^ n ^ " " ! ' "^2 n 
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The Fock space F has a countable b a s i s . Unfortionately, the re appears to be 

no simple way to uti l ize the descr ip t ion of the Fock space to desc r ibe in te rac t ­

ing s y s t e m s . For point in terac t ions one can not maintain a descr ip t ion in the 

Fock spaces . Specifically as shown by Cook if the free fields a r e r ep resen ted 

by e lements in Hilber t space F and F respec t ive ly , the in teract ion opera tor 

H. is an opera tor on F, Q) F „ . One now proves that if the equation mt 1 »* 2 

^ A " /^A^'^i ""2) ^ (x^ .x^ ) dx^ d x ^ 

» i 

(where f is a form factor and A indicates the range of the non- local in t e r ­

action) has a l imi t , say H , then the re is in fact no in terac t ion so H = 0 . 
00 00 

The proof indicates 1) ei ther the space F . (gj F is too smal l for the d e s c r i p ­

tion of in teract ing fields (it i s included in D), or 2) the l imi t H does not exis t , 

00 

or 3) one should not take the l imi t in the f i r s t p lace . (This type of r e s u l t a lso 

2 
has been obtained by Landau et a l . ) In spite of this questionable s t a r t , let us 

now consider formal quantum e lec t rodynamics , and l a t e r r e tu rn to the p r o b ­

lemat ic a spec t s of the subject . 

b) FORMAL THEORY^ 

One s t a r t s from an in terac t ion Hamiltonian (j A ) = H. The tempora l 

development of a system of e lec t rons and photons is desc r ibed by an opera tor 

S which desc r ibes the behavior from T = -00 to T = +00. Actually the p r e c i s e 

mathemat ica l theory of the S opera tor is a lso not known. It mus t be defined 

in a l imit ing s e n s e , because a t rans i t ion opera to r U(T , T ) for finite t imes 
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m a y no t e x i s t ; t h i s adds to the d i f f i c u l t i e s . U s a t i s f i e s the equa t ion of m o t i o n 

i ^ = ^ ( ^ 1 ^ o ) U ( T , T ^ ) (1) 

o r 

U(Ti TQ ) = 1-i / dT • H(Ti 'To ) U(T^ 'T^ ) ( l a ) 

•̂ o 

P u t TQ = -00, t hen U ( T ) = U ( T ^ -CO) S o 

U = J'U ; U = - i f H ( T ') U (T •) d' 
^ m. n -̂  n -

- 0 0 

Define S = l i m U (T ) so 
T - • - O O 

•where 

S = I S^") (2) 
n=0 

Ŝ "̂ ^ = ^" ' {••• f d r • • • d T , P {H(T ) • • • H ( T )} 
n I -̂  -̂  n 1 n i 

- 00 

H = i e ^ y^ dj A (x) , (3) 

The t i m e - o r d e r e d p r o d u c t P can now be e x p r e s s e d in t e r m s of Wick n o r m a l 

p r o d u c t s and c o m m u t a t o r s . T h e c o m m u t a t o r s a l w a y s d e p e n d on (in fact a r e ) 

the G r e e n ' s func t ions of the f r e e - f i e l d e q u a t i o n s . We wi l l n e e d the F o u r i e r 

t r a n s f o r m s of t h e s e func t ions ( u s u a l l y c a l l e d p r o p a g a t o r s ) : 
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P h o t o n f ie ld: 

E l e c t r o n f ie ld: 

D(k) = 1^ 
k2 

3<p) = ^ ^ . X P Y 
V-

(4a) 

(4b) 

The d i a g r a m s be low r e p r e s e n t the i t e r a t i o n s e r i e s in a g r a p h i c a l f o r m . [ R e c a l l 

one i n t e g r a t e s o v e r an i n t e r n a l l i ne f d'* k o r \ A^ p ; and e a c h such l ine c o n ­

t r i b u t e s an i n t e g r a n d D(k) o r S(p) . ] The po in t i s now tha t in the i t e r a t i o n so lu t ion 

one h a s s e v e r a l k inds of d i v e r g e n c i e s . Some can be s e e n by i n s p e c t i o n . A s an 

e x a m p l e , c o n s i d e r the v a c u u m f luc tua t ion d i a g r a m shown in F i g . 1. 

F o r t h i s s i t u a t i o n . 

J d 4 p J d 4 p ' J'd4kS(p)S(p') D(k) = J d p J d p ' J d k (pp')3ka — 
p p ' k 2 

Th i s e x p r e s s i o n d i v e r g e s ; s u c h d i s c o n n e c t e d d i a g r a m s a r e a l w a y s lef t ou t . 

T h e r e a r e o t h e r d i v e r g e n c i e s in the i t e r a t i o n s o l u t i o n . One of t h e s e i s 

r e p r e s e n t e d g r a p h i c a l l y by the " c l o s e d l o o p d i a g r a m s " . An a p p e a l to i n v a r i a n c e 

c o n s i d e r a t i o n s (gauge i n v a r i a n c e , for e x a m p l e ) a l l o w s one to o m i t t h e s e g r a p h s . 

A n o t h e r type d i v e r g e n c e i s the i n f r a r e d d i v e r g e n c e . If an e l e c t r o n i s s c a t t e r e d 
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in an outside field (see Fig . 2), the same p roces s but with a photon emitted 

(Fig. 3) d iverges as co — 0. 

F ig . 2. E lec t ron sca t te red 
in an outside field. 

Fig . 3. Same as in Fig . 2 
except that a photon is emit­
ted. 

This type of d ivergence , analyzed in grea t detail by Jauch & Rohrl ich, and 

4 
a lso by Brown & Feynman will be d iscussed a l i t t le l a t e r . 

None of these omiss ions appear to have observable consequences . How­

ever the re a r e exper imenta l consequences resul t ing from other divergent dia­

g r a m s , namely the e lect ron self energy, the vacuum polar izat ion, and the 

ve r t ex p a r t s (Fig . 4). 

/s 

9 
(a) / ( b ) ' (c) 

F ig . 4. (a) The e lec t ron self energy, (b) The vacuum polar izat ion, 
(c) The ve r t ex p a r t s . 

The w^ay in which one t r e a t s these d ivergencies is also well known. One 

f i r s t formal ly calc\i lates the effect of a se l f -energy inser t ion in an in ternal l ine. 
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This rep laces S(p) by S'(p), where 

S'(p) := S(p) + S(p) S(p) S(p) 

S(p) = 1 e' 
(2lT)^ 

/ d^k^ S(p-k) V 
V k 2 

(5a) 

(5b) 

F ig . 5. Operator S' is the sum 
of two t e r m s r ep resen ted by 
d i a g r a m s . 

( 2 ) . 

The S-opera tor is a l t e red by S = - i j cj) (p) 2^(p) cj) (p) d-^p. The inse r t ions in 

external l ines may be computed s imi l a r ly . Now the point is s imply that S(p) 

[ given by Eq. (5b)] is d ivergent . Divergent in tegra ls also occur when one in­

s e r t s a vacuum polar iza t ion t e rm in a photon l ine . In the l a t t e r case 

D'(k) = D(k) +D(k)77^(k) D(k). 

Fig . 6. Vacuum polar izat ion t e r m 
inse r t ed in a photon l ine . 

These in tegra l s always diverge as k, p — oo ( somet imes also at k — 0). 
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Now we formally manipulate these express ions to obtain them in the form 

S (p) = A + (i^+ m) B + ( i ^ + m)2 V (6) 

-77 ' (k2) = k 2 ( - C + k 2 - ^ ^ ( k 2 ) . (7) 

Here A and B and C a r e divergent ent i t ies of the form 

3a „ M 1 
^ ^ T T "'<^°S — + 4) M -.00 

B = - ^ ( D - 4 f ^ + i l ) D ~ 2 1 o g i i - 1 . 
477 ^ J X 2 ' " m 

0 

An inf rared divergence appears he re but Z . and TTT a r e finite. 

The r e m a r k a b l e feature i s now that these divergent constants always 

occur in such a manner as to combine with the m a s s m , the charge e, or the 

normcLlization constant of the wave functions. "They know their p roper place 
( 2 ) 

in the fo rma l i sm . " One sees from Eq. (6) for example that S has (for free 

pa r t i c l es ) the form 

-iA J "^(p) ct)(p) d4p = - i A Ji)j (x) 4i(x) d* x . 

Since A is of o rde r a, this is exactly the cor rec t ion to S (in f i rs t o rder ) of 

adding a t e r m 6 m j i|j(x) ^{x) to the Hamiltonian. Hence the diagram of 

F ig . 4(a) only a l t e r s the nnass of a free e lec t ron . The infinite constant is 

combined with m in the form m + A = m , the exper imenta l m a s s (which is 
exp 

finite). The symbol m as used before was thus mean ing less , giving the whole 

development a somewhat e the rea l c h a r a c t e r , although the final answer contains 
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the exper imental m a s s and charge only and no a r b i t r a r y cons tants . The con­

sistency of the whole procedure — it works in a l l o r d e r s , it mainta ins the 

uni tary charac te r of S, it re ta ins the invar iance p rope r t i e s of S — all have been 

formally checked. 

Suppose one has a diagram with n c o r n e r s , E. in terna l e lect ron l ines , 

P . in ternal photon l ines , E e lec t ron l ines , and P ^ photon l i nes . Then in 
1 ^ ext ext ^ 

the integrat ion one has n 6 -functions giving (n-1) re la t ions between the in te­

gration va r i ab l e s . The number p of independent 4 -vec to r s is 

p = E. + P . - N + 1 . (8) 
1 1 

There a r e thus 4p integrat ions to be pe r fo rmed . A pr imi t ive ly divergent 

graph is one which is divergent but becomes convergent if one integrat ion over 

a 4-vector is omitted (or it is convergent if one 4-vector i s kept fixed). 

By counting the number of in tegra t ions , using the explicit form of S 

and D, one can easi ly decide -whether an in tegra l d iverges or converges . De­

fine the degree of divergence by 

k = E. + 2 P . - 4n + 4 . (9) 

1 1 

If k = 0, 1, 2, • • • , one has a logar i thmic , e tc . , d ivergence . If k is negat ive, 

one has a convergent in tegra l . The c ruc ia l point is now that k is independent 

of n, because 
k = 4 - | ( E + P ) . (10) 

c. e e 

Thus , since k is to be posit ive for a divergent graph, the number of divergent 
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graphs is finite. This means the theory is r enormal izab le . One mus t p roper ly 

separa te out all infinite t e r m s , identify e -H B and m + A with the observed m a s s 

and charge ; then the remaining finite t e r m s should be observable . 

c) COMPARISON WITH EXPERIMENTS 

It is c lear from the graphs that there should be cor rec t ions of o rde r a 

and a lso a2 , e tc . , to the magnetic moment of the e lec t ron. After initially not 

quite accura te exper iments and (fortunately) equally inaccura te calculations 

the theory and exper iment now appear to check to o rder a^ . 

1. Contribution to the anomalous magnetic moment of the e lec t ron . — 

H-0 a a2 

Fig . 7. The f i r s t th ree contributions to the magnetic moment . 

M-th ( l + ^ T - - 2.973 ^ ) f x 2Tr •n' 
1.0011454 (JL Karpus & Kroll 

exp 

H-

P-

exp 

th 

= (1.001146 ± 0.0000 12) 
Koenig-Prodal l 
& Kusch 

:= (1.001167 ± 0.000005) Harvard 

= (1.0011596) Summerfield 
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2. Lamb shift; observed ^1 /2 ~ ^1/2 level separat ion in H and D. 

The d iagrams a r e of 2 kinds. The e lec t rons a r e now of course bound e lec t rons . 

/h 

•-^C^D^ 

proton line 

(a) (b) ,1 

F ig . 8. Lamb shift, (a) F luc tua t ion , (b) Vacuum polar izat ior 

F ig . 9. 

=s./. 1 
/I039=51-f 1015-27 vacuum po la r i za -

y r \ ^^tion t e rm 

^ maan<^ f i r ^ m n m p n t . 1 

\ ^^1/2 - 1 7 + 4 

Energy level d iagram for the Lamb shift. 

A E = 1052.14 ± 0.08 ( M c / s e c ) (a) 

= 1057.19 ± 0 . 2 (Mc/sec) a2 

A E = 1 0 5 7 . 7 7 ± 0 , 1 (Mc/sec) 
exp 

The actual calculat ion of the Lamb shift is quite nas ty , t he re a r e seve ra l 

del icate computational quest ions to be analyzed, such as the kind of in te rmedia te 

s ta tes to be used in the per turba t ion calculat ion. Still the bes t calculation differs 
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from the exper imenta l value by only 0. 5 of a megacycle . This difference has not 

yet been explained. 

3. Radiative cor rec t ion to the hyperfine s t ruc ture separat ion . — One 

finds radia t ive co r rec t ions to the energy levels of the electron in the field of 

nuclear spin. The express ion is 

' ^ - | ^^e(^^p' S ) ^ ( Z a ) 3 [ l + ^ _ 3 i ^ _ Z ^ 2 ( | _ i o g 2 ) ] [ l + | z 

proton moment magnetic moment cor rec t ion 

(11) 

One actually uses Eq. (11) to calculate a. One also may calculate the 

ra t io R of these co r r ec t ions for 2s and Is l eve ls . One finds 
exp 

. r . ,o X I i [ 1.000 034 6 ± 0.000 000 3] for H 
R :, ^ E (2s ) ^ 7 8 •• J 

exp 6 E ( l s ) j 
/ • ^ [ 1.000 034 2 ± 0.000 000 3] for D 

Within exper imenta l e r r o r , the values a r e the same for H and D. On the other 

hand 

a.. , _ , . . 0 0 0 033 3) to a2 

/ ^ (1.000 035 4) to a3 

This question is not yet se t t led . Again there is a smal l unexplained difference 

between theory and exper iment . 

5 
4. Pos i t r on ium. — Here one wants to calculate the radiat ive effects on 

the 3 S - 1 S level split t ing; so one needs the radiat ive co r rec t ions which affect the 
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TT 
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( l i f e t i m e ) 

I 
00 

AW = '^^'^''^ l - l o g 2 + ' - i ^ 

(g) Tw^o - q u a n t u m a n n i h i l a t i o n . 

F i g . 1 0 . P r o c e s s e s c o n t r i b u t i n g t o t h e 3S - i S l e v e l s p l i t t i n g . T h e n e t e f f e c t i s 

2 , 0 4 4 X 1 0 5 M c / s e c a ^ 

AW t h 2 . 0 337 X 105 M c / s e c aS 

AW = ( 2 . 0 335 + 0 . 0 0 0 3 ) X 105 M c / s e c 
e x p 
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I S s t a t e d i f f e r en t ly f rom the ^ S s t a t e . The d i a g r a m s in F i g . 10 a l l g ive s u c h 

c o n t r i b u t i o n s . The e n e r g y d i f f e r e n c e s a r e wha t i s w r i t t e n down, (One shou ld 

r e m e m b e r t h a t a f a c t o r a2 c o m e s f rom the R y d b e r g c o n s t a n t in the e n e r g y e x ­

p r e s s i o n . ) T h e a g r e e m e n t b e t w e e n t h e o r y ( inc luding m a n y t e r m s , a l l of c o m ­

p a r a b l e m a g n i t u d e ) and e x p e r i m e n t , i s c e r t a i n l y i m p r e s s i v e . 

5 , The p - p s c a t t e r i n g . — The s c a t t e r i n g c r o s s s e c t i o n cr(0) for p - p 

s c a t t e r i n g h a s b e e n m e a s u r e d wi th a c c u r a c y up to 0, 2% in a r a n g e f rom 0 . 8 to 

2 M e v , T h e s e da t a h a v e b e e n c o m p a r e d wi th t h e o r e t i c a l c a l c u l a t i o n s . Us ing 

a) n u c l e a r s w a v e s c a t t e r i n g , b) the C o u l o m b p h a s e shi f t s ( a l l ) , and c) the 

v a c u u m - p o l a r i z a t i o n p o t e n t i a l g iven by V in the e x p r e s s i o n 

r L 3Tr -̂  2 | 2 ' » ^2 ' i c o u l o m b p 

^c.>-

\ 

V 
^^^,^--' p 

.,.^—''''•™' c o u l o m b 

F i g . 1 1 , The C o u l o m b p o t e n t i a l and v a c u u m -
p o l a r i z a t i o n p o t e n t i a l . 

The p o t e n t i a l V p r o d u c e s e f fec t s of 0. 7 — 0 , 5 % in <r {0 ). T h i s now fi ts the d a t a 

w i th in 0. 2%, w i thou t t h i s c o r r e c t i o n t h e r e a r e d e f i n i t e , a n g l e - d e p e n d e n t d e v i a ­

t i o n s b e t w e e n the t h e o r y and e x p e r i m e n t . Thus the u s e of V f rom the v a c u u m 

P 

p o l a r i z a t i o n c e r t a i n l y i m p r o v e s the f i t . T h i s a g a i n a r g u e s s t r o n g l y for the r e a l i t y 

of r a d i a t i v e e f f e c t s . 
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Lecture 2. 

d) QUESTIONS ABOUT QUANTUM ELECTRODYNAMICS 

Today I would like to formulate some questions and perhaps suggest 

some possible cour ses of action which one might take in connection with problems 

of field theory , I reviewed l a s t t ime some of the features of quantum e l ec t ro ­

dynamics and I will not do that again, except to remind you of the r emarkab le 

ag reemen t which exis ts between theory and exper iment . Once one has somehow 

gotten used to the fact that in the theory cer ta in infinite ent i t ies appear which 

have to be t r ea t ed in a pa r t i cu la r way, they no longer cause t rouble . 

Let me now state a few ques t ions . They a r e not in any pa r t i cu la r o r d e r , 

but a r e m o r e or l e s s in the o rde r in which I thought of them, I should perhaps 

say th i s , that I have a t tempted to col lect all the quest ions which a r e of m a t h e ­

mat ica l c h a r a c t e r , so they will be coming in a l i t t le whi le . Also I would like 

to point out that if you have any ques t ions , naive or not, not only I but Hans 

and everybody would be p leased to have these incorpora ted so that we get he re 

a r ep resen ta t ive c r o s s section of what at l eas t some naive people think of 

quantum e lec t rodynamics . 

The f i r s t quest ion, a naive one, is the 

following: If you look at in tegra l s which 

diverge in quantum e lec t rodynamics , you 

will find un iversa l ly that what we call the 

the " se r ious d ive rgenc i e s " always occur 

for l a rge values of the integrat ion va r i ab l e . 

F ig . 12. Scat ter ing of an 
e lect ron in an outside field. 
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Let me remind you that these integrat ions always occur because one per forms 

integrat ions over the momentum var iab les of the internal l ines . So if I have a 

pa r t i cu la r kind of a d iagram (say a scat ter ing) of an electron in an outside field, 

and I put a radiat ive react ion in t h e r e , I have to integrate over the momentum of 

this photon, and it is this integrat ion which diverges at the upper end of the 

l imi t s of integrat ion. This is fairly universa l ly the ca se . There a r e divergencies 

which occur at z e r o . (I will say something about them l a t e r . ) Now, you might 

in fact say: Well look, if these d ivergencies occur for la rge values of the 

integrat ion var iab le (for l a rge momenta which is the same as l a rge energ ies ) , 

why do we not jus t say that quantum elec t rodynamics does not apply when dea l ­

ing with high e n e r g i e s ? After al l it is in principle possible to c rea te e l ec t ro -

magnet ical ly a m u - m e s o n if I have an energet ic enough photon. Near a nucleus , 

the law of conser-vation energy allows the crea t ion of a meson pa i r . This 

c lear ly cannot be a consequence of the theory so far developed. Consequently, 

what ' s a l l the fuss about? Why don' t I just cut off at a value which cor responds 

to an energy which is the r e s t energy of the m u - m e s o n , and call it a day? So 

let me jus t say "cut-off", 

I would like to hear some discuss ion about th i s . You caJi, of cou r se , 

make such a cut-off in a re la t iv i s t ica l ly invar iant way. You have your choice 

of form factors so that in tegra l s look n i c e and invar iant . The renormal iza t ion 

scheme is then only n e c e s s a r y because quantum elec t rodynamics is not a closed 

theory . Other pa r t i c l e s have e l ec t r i ca l charge , they will be c rea ted , and that 

is outside quantum e lec t rodynamics . All the divergent in tegra ls will be finite 
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and all you have to wor ry about a r e cer ta in in tegra ls which diverge at the zero 

value of the integrat ion va r i ab l e s , but these a r e always t-ypically different in 

cha rac te r and can normal ly be removed . Then you accept that quantum e l ec t ro ­

dynamics takes into account pa r t of the e lect rodynamic phenomena, but not a l l . 

The mesons a r e outside of it and we have to do as well as we can with meson 

theory s tar t ing from sc ra tch , I wonder if any of you have any objections in 

principle or in p rac t i ce on this genera l m a t t e r . 

Moldauer: Is it so difficult to do e lec t rodynamics with m u - m e s o n s — 

a theory with two types of pa r t i c l e s ? Asymptot ical ly you only have e lec t rons ? 

Dresden: No, I bel ieve not. But the point is that I do not get it 

out of the or iginal postulate of the theory . If I wr i te down quantum e l ec t ro ­

dynamics the way we have done it, the exis tence of the m u - m e s o n does 

not follow, 

Sunakawa: I think that if one puts in a cut-off the r e su l t is 

not gauge invar iant . This was demons t ra ted by us to fourth o rde r using 

a per turba t ion calculat ion, 

Dresden: I can cer ta in ly introduce quantum e lec t rodynamics 

with a finite m a s s for the photon, in which case it is not gauge invar iant 

anyhow — I can make a cut-off h e r e . Now I will define the l imit ing 

p r o c e d u r e , in which I have two l imi t s to take, I have to le t the photon 

m a s s go to z e r o , I have to le t the cut-off go to infinity, and I can do i t 

in such a way that I end up with what we nornnally have . 
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May I add one of my objections? I want to point out that even 

with a cut-off it mus t be r e m e m b e r e d that one still must r enormal ize 

because the renormal iza t ion te l l s you something about the fact that 

m a s s e s with which you deal a r e not the m a s s e s which you originally 

thought you had. What a cut-off will do is not to remove r eno rma l i za ­

tion, but only to remove an infinite renOrmalizat ion. And this par t icu la r 

feature of quantum e lec t rodynamics (which to me is one of the ugliest) 

is that the enti t ies init ially occur r ing in your equations, say in the f r ee -

pa r t i c l e equation, a r e not the same enti t ies which occur once you have 

coupled this equation. This I think is a ve ry crucia l feature , that in 

any theory in which you have fields interact ing with other fields one has 

to r e n o r m a l i z e . To give you a very simple example, if I have an e lec t ron 

which in te rac t s not with e lec t romagnet ic waves but with lat t ice waves , 

I have to r eno rma l i ze the e lec t ron m a s s in that case a l so . That happens 

to be a finite r enormal iza t ion r a the r than an infinite one. So I would 

say that the cut-off theory , although not manifest ly t e r r i b l e , is st i l l 

not sa t i s fac tory . Suppose I want to cons t ruc t a field theory, not of 

e lec t rons and photons but a field theory of TT m e s o n s . We pat tern that 

after the field theory we have of e lec t rons or photons. Now if a cut-off 

is an essen t ia l feature of that theory then we would have to cut the TT 

meson theory off somewhere a l so , say at the m a s s of the K meson , I 

think that is a ve ry unsa t i s fac tory situation — that each theory would 

have to be cut off in this pa r t i cu la r manner , I want to s t r e s s this point 
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par t i cu la r ly — that even though field theory, so to say, has been born 

by imitating e lec t rodynamics , this may very well have been a completely 

misd i r ec t ed guess . I don't think i t is l ikely, but it can be . It is not at 

all evident a p r i o r i that other field theor ies mus t be formally or phys ica l ­

ly s imi la r to e lec t rodynamics , 

Ekste in: I bel ieve the mos t obvious objection against this as a 

physical theory is that it is not deductive. If one wants to make up a 

number of rec ipes as far as they a r e successful , the re a r e no objections 

against the rec ipe with or without infinite cut-off. When you wri te down 

a cut-off a r e you talking about a deductive procedure or a set of r e c i p e s ? 

Dresden: Quantum e lec t rodynamics does not p red ic t the existence 

of m u - m e s o n s — there the theory is false or incomple te . So this i s my 

argument for saying that one might cut off at the m u - m e s o n m a s s . 

Sunakawa: If we calculate the S m a t r i x with cut-off in 4th o r d e r , 

one can not keep both an invar iant form factor and gauge invar iance . 

Dresden: This is a different point although re la ted to something 

I will d i scuss l a t e r , namely one can not cons t ruc t a non- local theory 

satisfying these requirennents : a) re la t iv i s t ic invar iance , b) gauge 

invar iance , c) causal i ty . I think this is what you a r e saying — you 

have verif ied this imposs ib i l i ty for this fourth o rde r calculat ion, 

Ekstein: Is not a genera l answer to this and a l l following 

quest ions that any rec ipe is good if it leads to the d e s i r e d r e s u l t ? 
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Dresden: No. Not all r ec ipes a r e poss ib le . In fact the p r e ­

scr ip t ions in quantum elec t rodynamics a r e quite unique. So it is c e r -

atinly sensible to invest igate reformulat ions and modifications to see 

whether one may a r r i v e a t a deeper understanding of these r u l e s . It i s 

su rp r i s ing how smal l a freedom one has in a l ter ing the set of r u l e s , 

while keeping ag reemen t with exper iment . This is the r eason , I bel ieve , 

for having some faith that these a r b i t r a r y ru les have some sense — 

cer ta in ly much beyond the i r der ivat ion. 

Kaplan: Why a r e you wor r ied about this cut-off? You a r e not 

wor r i ed about this for quantum e lec t rodynamics , a r e you? I mean, when 

one works with quantum e lec t rodynamics and calcula tes all the things 

you have l i s ted , one has at the end stage these cut-off t e r m s which some­

how completely d i sappear , is this t rue in all calcxilations ? 

Dresden : Yes . The cut-off t e r m s a r e perfect ly apparent . 

Kaplan: Is the re not some logar i thmic t e rm ? 

Dresden: The logar i thm you talk about i s , I be l ieve , an infra 

r ed d ive rgence . 

Peshkin: It is a perfect ly finite t e rm and one which is p r e ­

sumably sma l l . It depends on the square of the e lect ron m a s s divided 

by the square of the cut-off, 

Kaplan: I was under the impress ion that in the Lamb shift the re 

is a t e rm which is cut-off dependent and which does not go to zero in the 

l imi t as the cut-off goes to infinity. 
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Dresden: No. There a r e two t e r m s you mus t think of. I know 

now where the confusion comes from. If you do the Lamb shift non-

re la t iv is t ica l ly the re is a cut-off at the lower l imi t . That is because there 

you do not take into account the fact that the e lectron is bound. If you do 

it re la t iv i s t ica l ly this t e rm does not occur ; but if you do it re la t iv is t ica l ly 

the re is sti l l a cut-off dependent t e rm which i s , however , of the type m / k 

where m is the e lec t ron m a s s and k is the cut-off. If k goes to infinity 

that t e rm gives no t rouble . So the one which I original ly thought you 

mentioned is this non- re la t iv i s t i c t e rm which comes from the fact that 

we have not taken the fact of the binding into account p rope r ly . 

Let me talk about the infra r ed d ivergence . Once in a -while you get 

d ivergencies which stem from the fact that the lower l imi t of the integrat ion is 

ze ro . These t e r m s a r i s e in a ve ry cur ious fashion. Suppose I have an e lec t ron 

which is sca t t e red in an outside field (Fig. 13). You can calculate p r o c e s s (a). 

/ 

/ 

\ 

(a) 

, / 

r 
( c ) 

Fig , 13. E lec t ron sca t t e red in an outside field, (a) or (c) without radiat ion; 
(b) with emiss ion of a soft photon. 

Suppose now that I calculate a p r o c e s s (b), one in which also a soft photon is 

emit ted. Now of course these two a r e physical ly different p r o c e s s e s , I can ask 
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for the c r o s s section of this pa r t i cu la r p r o c e s s (for the scat ter ing of an electron 

in an outside field with the emiss ion of a photon). If I calculate this ma t r ix 

e lement the r e su l t is divergent — it is logar i thmical ly divergent . Integrals 

of the type j d w / w occur , and at 0 frequency they diverge . These divergencies 

a r e normal ly c lassed as "not s e r i o u s " for a very amusing reason . The order of 

p r o c e s s (a) is a. The radia t ive reac t ion (c) i s always added to i t . By the way, 

if I calculate this pa r t i cu la r p r o c e s s the contribution due to the photon line also 

d ive rges . There fo re , (b) d iverges as does (c). Now it has actually been shown 

by numerous people, f i r s t by Bro-wn and Feynman and then in a bit more official 

way by Jauch and Rohr l ich , that the divergence of o rder a* in the c r o s s section 

given by the square of the absolute value of the s-um of the contributions from 

d i a g r a m s (a) and (c) of F ig , 13 cajicels the a"* t e r m s in the c ro s s section from 

(b). This cancellat ion occurs in al l o r d e r s , I am quoting he re what everybody 

e lse says ; everybody demons t r a t e s this for the second order and says it c lea r ly 

goes the same in al l o r d e r s . I have not checked it so I want it understood that 

this is only a quotation. 

Now the r eason I think this is an amusing point l i es in the fact that he re 

you have an example of a d ivergence caused by the i tera t ion p rocedu re . The 

total r e s u l t if I take the whole s e r i e s into account i s not d ivergent at a l l . The 

d ivergence a r i s e s from the v e r y c lumsy and unphysical way in which I separa ted 

off the physical p r o c e s s e s and the radia t ive effects. 

I cannot rea l ly talk about the single p roces s — I mus t talk about all of 

them. Doing that I get a perfect ly finite r e su l t . So the m o r a l I want to draw is 
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essent ia l ly "down with the i te ra t ion solution". I t ' s a bad way of descr ibing a 

physical p r o c e s s , but I want to con t ras t this statemient imme diately with what I 

talked to you about l as t t ime , namely vacuum polar iza t ion. The vacuum po la r ­

ization as you know was suggested by the form of the i te ra t ion solutions; it is 

in fact a consequence of i t . Now vacuum polar izat ion is a perfect ly possible 

effect; and as I pointed out to you before , it contr ibutes a ce r ta in amount to the 

Lamb shift, it is pe rhaps d i rec t ly observable in pro ton-pro ton sca t te r ing , and 

it is an effect of significance in pos i t ron annihilation. The problem which I now 

ra i se is rea l ly th is : It appears to mie that I am to draw two different m o r a l s . 

The one is that the p r o c e s s e s obtained from the i tera t ion solution appear to have 

a cer ta in amount of objective validi ty, vacuum po la r i za t ion , for example . On 

the other hand, if I make the separat ion in t e r m s of radia t ive effects I appear 

to a r r i v e at ve ry -unphysical and unrea l i s t i c d ivergencies as in the infrared 

problem. You might say, "So w h a t ? " P a r t of the d iscuss ion is r ight and the 

other pa r t is not v e r y good. I jus t want to mention it because it personal ly 

gives me an uncomfortable feeling that the same a rgument which I l ike , the 

d iagramat ic analys is which yields the classif icat ion of p r o c e s s e s , works so 

well and gives me such a good physical understanding in one situation and in 

another it m e s s e s up the works in giving you a d ivergence , I have nothing m o r e 

to say about this except that I know that t radi t ional ly whenever I mention infra­

red divergencies — Mur ray wants to say something, so go ahead and say i t , 

Mur ray , 
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Peshkin: Well, I am somewhat e m b a r r a s s e d because I agree 

with ^vhat you said. Maybe I should be the devi l ' s disciple anyway and 

say that the thing which you have r e f e r r ed to h e r e , perhaps is not so 

much the faTilt of the i tera t ion solution as of the way in which one in t e r ­

p r e t s the t ime-dependent per turba t ion theory. Here you have two phen­

omena which a r e in a cer ta in sense physically dist inguishable from each 

o ther . On the other hand, you can rea l ly only distingTiish them in pr inciple 

by an exper iment in which you w^ait a r e a l long t ime . Somehow in the 

per tu rba t ion theory you always have to a s sume that you don't wait too 

long a t i m e . 

Dresden : Yes , this is qToite c o r r e c t . Let me add a third point. 

This pa r t i cu la r scheme — this set of ru les — has a r e s t r i c t e d validity. 

It works in qTxantum e lec t rodynamics . It works a lso in cer ta in meson 

t h e o r i e s . It does not work in o thers and this is rea l ly the bas i s of my 

question: Is the re any deep significance in the c i rcumstance that r e -

normal iza t ion works for p seudo- sca l a r meson theory, and for quantum 

e lec t rodynamics , but does not work for vector coupling, for der ivat ive 

coupling, and (perhaps mos t in teres t ing) it does not work at all for any 

coupling when one deals with pa r t i c l e s of higher spin? Whether one 

takes this se r ious ly or not depends ve ry much, it s eems to m e , on the 

kind of validity one a:scribes to these a r b i t r a r y ru les we just descr ibed . 

There is a ve ry well known book by Schweber and Hoffman where this 
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is stated explicitly — it is fortTinate that most theor ies a r e not r e n o r -

mal izable because that means you can throw them away. There the 

pr inciple of renormal izab i l i ty i s taken as a major pr inciple in the d e s ­

cript ion of na tu re . 

Let me now talk about a few mathemat ica l m a t t e r s . The f i r s t question 

which, I think, is an impor tant one, is th is : Is there any compelling reason to 

demand that the s ta tes of the system can be put in one- to-one correspondence 

with the vec to r s of a Hi lber t space? This condition, to my knowledge, is never 

re laxed. 

Ekstein: Is this supposed to be a one- to-one co r respondence? 

Each vector in Hilbert space cor responds to a single s ta te? 

Dresden: P r e sumab ly so, this is a much d iscussed question 

(of Eins te in , Podolsky, Rosen) . I would jus t like to mention that all 

the mathemat ica l d iscuss ions say that the underlying space in which 

the physical state is to be r ep re sen t ed is a Hilbert space . 

There is some re la t ion between the vec to rs of the Hilber t space and 

the s ta tes of the sys t em. This , of cou r se , is always done in non- re la t iv i s t i c 

quantum mechan ic s . It is also always done, to the bes t of my knowledge, in 

field theory . Why this is done I ann not so s u r e . Asking the question i s , of 

cour se , ve ry cheap because immedia te ly you can say that if you do not a s sume 

that then you mus t make some kind of assumpt ion about the manifold of physical 

s t a t e s . You mus t say something about it and if it is not Hi lber t space then what 

is i t ? 
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It is possible to give a dis tr ibut ion theoret ic formTilation of cer ta in 

a spec t s of quantum e lec t rodynamics . In this formTilation the bas ic enti t ies 

a r e opera tor valued d i s t r ibu t ions . A distr ibution is a continuous l inear functional 

on a space D of t e s t functions cj) ; o r , s tated in l e s s fancy form, a distr ibution 

a s soc i a t e s in some manner a number with each fTinction cJ5 . The tes t functions 

cj) a r e infinitely differentiable, they vanish outside a compact se t . As an example, 

T^(ct>) = f(x)ct> (x) d x 

is a dis t r ibut ion. 

Der ivat ives of d i s t r ibu t ions , defined by T ' = - T^ {-r—) always exist . 

' ' f f ^ ax ' 

It is not poss ible in genera l to mTiltiply d is t r ibut ions . (This cor responds to the 

fact that the product of two in tegrable functions is not necessa r i ly in tegrable) . 

By using d is t r ibu t ions , one may give a m o r e p rec i s e formulation of field theory. 

The s ta tement that a field opera tor ^(^) is an "operator valued dis t r ibut ion" 

means that ( ^ , i|j(cj) )'<ir) is a d is t r ibut ion where ^ is a vector in the underlying 

Hi lber t space . The fact that products of dis tr ibut ions a r e not neces sa r i l y d i s ­

t r ibu t ions , can be seen from: the fact that {-^ , j (4) ) j (4>)'^o ) foi" sca la r fields 
[J, V 

[ (j (cj))) is the c u r r e n t opera to r j (<j)) = fd^ x j (x) c|>(x)] st i l l d ive rges . At one 

t ime I thought that the tes t functions were re la ted to the non- re la t iv i s t i c wave 

functions of the measu r ing i n s t r u m e n t s . The measTirement, so to say, produces 

a non- local i ty in the f ie lds . Even though this is a beautiful fo rmal i sm, I could 

never make any p r o g r e s s with the dis t r ibut ion formTilation of interact ing fields 

if I ins i s ted on the usual formal s t ruc tu re where one can use Hamil tonians , 
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coupling t e r m s , e tc . 

Ekstein: May I ask what is the t rouble? As I unders tand it in 

the modern a t t empt s , one jus t a s s u m e s that the products of such d i s ­

t r ibut ions a r e p roper o p e r a t o r s . 

Dresden: I have not seen any discuss ion of in teract ing fields. I 

have seen a lot of d iscuss ions of non- interact ing fields. In Wightman 

and also in Bauman and Schmit t , they always talk about non- interact ing 

f ields, 

Ekstein: P e r h a p s we can local ize the point of this d i s a g r e e m e n t . 

Whether one can formulate a consis tent re la t iv i s t ic theory of interact ing 

fields is an open quest ion. This I admi t . However, as I unders tand it 

everybody now^adays bel ieves that the s tar t ing point of it will be the 

assumpt ion that products of the dis tr ibut ion valued ope ra to r s a r e p roper 

ope ra to r s — not n e c e s s a r i l y bounded, but p r o p e r . 

Dresden: In fact they a r e n e c e s s a r i l y not bounded. When I 

looked at this I coTild not get any understanding of what w^as mean t by 

the product of dis t r ibut ion to make sure this was a sufficiently regula r 

s t ruc tu re to allow the use of this pa r t i cu l a r kind of fo rma l i sm. 

Ekstein: What do you nriean by "making s u r e " ? As I unders tand 

it this is jus t a s sumed . 

Dresden : Recal l the definition of a field opera to r ; this i s that 

(^ , 4j(<|>)iif) is a d is t r ibut ion. When dealing with in terac t ing f ields, one 
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deals in the cus tomary formulation with coupling t e r m s of the type 

4i(x) A(x) ijj(x). In o rde r to t r a n s c r i b e this to distr ibution theory one 

needs a product j(4)) A((j)) which general ly is not defined. A definable 

d i rec t product j((j)) X A(<j)') does not yield any interact ion. (This is 

r emin i scen t of the resu l t of Cook, stated in Lec ture 1). Consequently 

if one wants to re ta in the usual exp re s s ions , it appears that the d is t r ibu­

tion formal ism is not STiitable for interact ing f ields. 

Sunakawa: One mus t be careful to insure that the tes t functions 

a r e re la t iv i s t ica l ly invar iant . 

Dresden: That is c o r r e c t . The original a t tempts were made 

where one in tegrated over th ree -d imens iona l regions; there you a r e in 

t rouble with re la t iv i s t ic cons idera t ions . If you in tegra te over four-

dimensional r eg ions , the l ight cone mus t be excluded and the t e s t 

functions a r e not defined in a compact se t . 

Peshkin: You can ' t get away with the usTial bus iness of space­

l ike sur faces ? 

Dresden: I don' t bel ieve so . 

There is another comment v/hich I consider m o r e in te res t ing . Assume 

that s ta tes cor respond to vec to r s in a Hi lber t space , and in addition a s sume that 

the ope ra to r s p o s s e s s locaJ. commutat ivi ty , that is 

[ ^ ( x ) , Ll;(y)] = 0 (x - y2 ) > 0 . 
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Final ly a s sume invar iance under Lorentz t r ans fo rma t ions . On the bas i s of 

these three assumpt ions you may prove (as was f i rs t proven by Wightman) 

that the ope ra to r s ijj a r e n e c e s s a r i l y Tinbounded, Now I don't know whether you 

ca re much — this is the kind of s ta tement which t radi t ional ly phys ic i s t s ca re 

l i t t le about. By the way, the re is nothing s t range about unbounded o p e r a t o r s . 

We always work with unbounded o p e r a t o r s , the p ' s and x ' s in o rd inary quantum 

theory a r e also unbounded. By the way, "unbounded" means that if I have an 

e lement f in the Hilber t space and I apply the opera tor ijj to i t , I no longer know 

if this has a boTind. To state it m o r e p rec i se ly I cannot jus t apply the opera tor 

to any element in the Hilbert space . Now the \\i's a r e unbounded, and this means 

that an opera tor in such a space is rea l ly not specified if I give you only the 

opera tor , but I mus t also give you the domain in which it can actual ly ope ra t e . 

It can no longer ac t on every s tate vec tor . So the ope ra to r s only act on a sub­

set of vec to r s and that sub - se t is somehow cha rac t e r i s t i c of the ope ra to r . If ijj 

is unbounded the question.of the domain of the,x)perator, is quite impor tant , 

, I wOTild like to suggest that pe rhaps the domain of an opera tor has some 

kind of physical s ignificance. I don' t have the vaguest notion what it i s . We 

identify the observables with c h a r a c t e r i s t i c s of the ope ra to r . It is conceivable, 

although admit tedly far- fe tched, that the domain as a c h a r a c t e r i s t i c of an opera tor 

has some physical cou te rpa r t . 

Ekstein: What makes you think that \\j is an obse rvab le? 

Dresden: I would say that I can cer ta in ly ins i s t that I can observe 
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such enti t ies as the vacuum expectation value of i|j because this is the 

way in which the physical content is always introduced into the theory. 

Ekstein: That is not so. Not by Wightman, Haag, Schmidt and 

Bauman. 

Dresden: Schmidt and Bauman, to the bes t of my knowledge, do 

not introduce any physical content into the theory. How else does one 

introduce physical content into the theory? 

Ekstein: Of course you a r e perfectly entit led to formulate your 

ow n̂ ax iomat ics , I only wish to point out that in the so-cal led modern 

axiomatic work the only physical in terpre ta t ion is introduced through 

the asymptot ic quanti t ies which a r e not at all identical to the quantit ies 

q j ( x ) . 

Dresden: I quite ag ree ; but then you have a l ready gone a long 

way toward a r e s t r i c t i on within your theore t ica l f ramework. As I 

Tinderstand it, at l e a s t from reading Wightman, he is perfect ly willing 

to talk about ent i t ies l ike (•^, L|J(X)I$^). He talks about expectation values 

and cer ta in ly the inference is ve ry strong that these a r e observable . May 

I jus t say this — if you do not think the re is something observable about 

ijj(x) why do you ins i s t on local commutat ivi ty? There doesn ' t appear to 

me to be a bi t of r e a s o n for i t . The r eason I think it is t he re is that if 

two points in s p a c e - t i m e a r e separa ted by a space- l ike in te rva l , a m e a s u r e ­

ment of one cannot in te r fe re with a m e a s u r e m e n t of the o ther , and con­

sequently by the genera l p r inc ip les of quantum theory these enti t ies a r e 
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to commute . But if you say that these 4'(x) and i)j(y) have nothing to do 

with any observabi l i ty , then I have no ear thly reason to believe th is . If 

these i|i(x) and ^(y) a r e Tinrelated to observa t ions , why wri te down local 

commutativi ty ? 

Ekstein: The re a r e var ious views on that . Wightman nowhere 

says , and I don' t think he be l i eves , that ijj(x) is an observable at a l l . 

Haag bel ieves that it i s , in a ve ry loose m a n n e r , connected with ob­

se rvab l e s . He has set up this idea of quas i - loca l obse rvab les . They a r e , 

in a somewhat shadowy manne r , connected with it; but the s t ronges t 

r eason (which I bel ieve is most ly given by Lehman, Symanzik and 

Z immerman) for writing down this equation is ind i rec t . In o rder to ob­

tain s ta tements on observables which a r e asymptot ic quanti t ies and to 

make sure that those s ta tements have the so-ca l led m a c r o - c a u s a l 

na tu re , one can s t a r t out with these non-physical quanti t ies ijj and 

impose the condition of local commutat ivi ty . Then one has fairly good 

plausibil i ty a rguments for believing that asymptot ic and observable 

quanti t ies will indeed have this m a c r o - c a u s a l c h a r a c t e r . 

Dresden: What you ' r e tell ing m e is that t he re ex is t s a p a r t i c -

Tilar way, s ta r t ing from this local commutat ivi ty , in which I may in 

an a r b i t r a r y way a r r i v e at a system of equations which i tself may have 

no content. It is a completely open question whether the equations of 

Lehman and Z i m m e r m a n (in fact I hope to tell you something about that 

tomorrow) have any content wha tsoever . I find it ve ry hard to bel ieve 



-99-

that one can do B.\ffa.Y with any physical significance of LJJ , If you want to 

say that the LJJ a r e jus t symbols you choose to utilize to obtain calcTilable 

r e s u l t s , that, of cour se , is leg i t imate . 

I know you and Haag and Wightman al l s t a r t out with cer ta in 

asymptot ic condit ions. In my es t imat ion, I would say that one does that 

because one does not know what else to do. I don't know what else to do 

e i the r , but I think the fact you don ' t know what to do is different from 

stating a law of na tu re , 

Tanaka: I would like to make one comment . Starting from that 

commuta tor re la t ion , one could use equations of motion and der ive a 

s imi l a r commuta tor for the c u r r e n t . The cu r r en t is observable . 

Dresden: A r e you talking about e lec t rodynamics now? 

Tanaka: I am talking about e lec t rodynamics as well as any field 

theory . When you give mie an equation of motion for ijj, I could re la te 

that to the commuta tor between two c u r r e n t s . This is a physical s t a t e ­

men t . 

Eks te in : Are you su re that what you a r e talking about is a total 

c u r r e n t — not rea l ly a p a r t of i t ? That quantity which is constructed 

b i l inear ly from these ba re fields is only a pa r t of the c u r r e n t , I be l ieve . 

Tanaka: That is the total c u r r e n t . 

Dresden : I 'm not su re that that i s r ight . Suppose I have a lot 

of p a r t i c l e s (ir mesons and K mesons) in in teract ion; I don' t know what 

c u r r e n t you have in that case any m o r e . 
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Tanaka: If you a r e going to include K par t i c les and o the r s , then 

I would not say it is a total c u r r e n t of the un ive r se . 

Ekstein: May I a sk you to wr i te down the cu r r en t density at a 

point in pseudo-sca la r meson-nucleon theory? 

Tanaka: I don't think I r e m e m b e r all the t e r m s . 

Ekstein: Well, I think you will ag ree that the re is a contribution 

from the mesons and the nucleons . There fo re , your express ion will not 

be equal to the cu r r en t density at a point. 

Dresden: I think this is r ight . In genera l the cu r r en t will have 

contributions from all p a r t s of the field. 

There a r e a few final comments I should like to make . 

1) I want to rennind you of a . resul t of Haag 's that for quantized fields 

interact ing with one another , one needs the equivalent r ep resen ta t ions of the 

canonical commutat ion r u l e s . With other words one has always a "myr io t ic 

case ; 

2) The l a r g e s t p r o g r e s s h a s b e e n m a d e in the d i s c u s s i o n of a s y m p t o t i c 

m e c h a n i c s ( E k s t e i n ) , the u s e of spec i f i c a s y m p t o t i c c o n d i t i o n s ( L e h m a n , 

Symaj iz ik a n d Z i m m e r m a n ) , and t h e g e n e r a l d i s c u s s i o n of a s y m p t o t i c c o n d i ­

t i ons ( N i s h i j i m a , H a a g , W i g h t m a n ) . E v e n though h e r e one h a s a d v a n c e d 

f u r t h e s t in the p r e c i s e m a t h e m a t i c a l f o r m u l a t i o n , i t shou ld b e e m p h a s i z e d 

t h a t t h e c o n n e c t i o n wi th p h y s i c s h a s b e c o m e m u c h l e s s c l e a r . T h i s i s not t r u e 

in s c a t t e r i n g t h e o r y , w h e r e p r o b a b l y t h e s e g e n e r a l f o r m a l i s m s can l e a d to 
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r e su l t s of d i rec t observat ional significance. However, in the bound state p roblems 

(where after all quantum e lec t rodynamics is very well verified) the r igorous 

formTilations have not as yet been applied — and it is not c lear that the "asymptotic 

viewpoint" will allow such appl icat ions . (One should s t r e s s that in quantum e lec t ro ­

dynamics the success of the Lamb shift, say, depends prec ise ly on the procedure 

of the separa t ion of the Hamiltonian — which from the " abs t r ac t " viewpoint is 

mos t objectionable. In this separa ted form one uses all the information about 

CoTilomb, spin and magne t i c -moment in te rac t ions , rea l ly in a one-par t i c le theory 

form, then adds the radia t ive t e r m s in per turbat ion approximation. ) 

3) It still seems very worth while to study the use of asymptotic conditions, 

but r a the r with the view of constructing a scheme which is such that other physical 

information may be fitted into it . 

Lec tu re 3. 

e) PROPOSED "PRINCIPLE OF UNDECIDABILITY" 

I woTild like to s t a r t out by suggesting that every person who has a 

question should ask it with vigor and p e r s i s t e n c e . I feel that Hans thinks I 

will t ry to put something over on you, but that is not my intention. So if I say 

anything e i ther in the way of phys ics , miathematics, methodology, or for that 

m a t t e r ajiything e l s e , be sure to tell m e . 

An a t tempt was made a number of ye a r s ago, (it always impre s sed me 

v e r y much) connected with divergence and divergence difficulties which nobody 

has done ve ry much with. The a t tempt I am talking about was originally Tinder-
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7 
taken by Wheeler and Feynman although the problem involved is much older . 

They actually demonst ra ted that it was in pr inciple possible to wri te down c l a s ­

sical e lec t rodynamics , not as a field theory but as a theory having only d i rec t 

par t ic le in te rac t ions . There fo re , it was an ac t ion -a t - a -d i s t ance theory ra the r 

than a field theory . That was always a r e su l t which i m p r e s s e d me because in it 

one re ta ins what one wants from the field, (one has a finite radiat ion react ion) , 

and one e l iminates essent ia l ly all the d ivergenc ies . In c lass ica l e lec t rodynamics 

one has an example -where the re exis t two independent and equally valid p r e s c r i p t 

ions; one p resc r ip t ion uses the Maxwell equations and the field notions, and the 

other employs only the d i r ec t pa r t i c le in terac t ion . I can now ask myself a sil ly 

question: Which one of these formulat ions is r ight , the Whee le r -Feynman 

formulation of the formulation a la Maxwell? Now everybody would immedia te ly 

say that this is a silly question because you cannot decide. They a r e both 

p resc r ip t ions and they a r e both in harmony with one another and the observed 

facts as far as c lass ica l e lec t rodynamics goes . There fo re , the question jus t 

doesn ' t come up. Of cou r se , you could perhaps d i scuss this question in another 

f ramework where the two theor ies would no longer be equivalent, say in the 

quantum r e a l m . It is c lear that from an a p r i o r i viewpoint t he re is no way of 

deciding whether the ac t i on -a t - a -d i s t ance theory is be t te r or worse than field 

theory. Maybe one ought to impose this as a genera l condition of invar iance , 

and the condition of invar iance which I would like to suggest v e r y tentat ively is 

to demand that as physical theor ies we accept only those which can equally well 

be formulated in t e r m s of d i rec t pa r t i c l e in terac t ions (in t e r m s of a c t i o n - a t - a -

distance) a s in t e r m s of field descr ip t ion . So essent ia l ly you might say that this 
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is the pr inciple of Tindecidability of -whether one has an ac t ion-a t -a -d i s t ance 

theory or field theory. This pr inciple somehow appeals to me and I can give 

no further justification of it other than that it appeals to m e . I can only tell you 

that it is not t rue that every field theory can necessa r i ly be wri t ten as a d i rec t 

pa r t i c le theory or converse ly that the d i rec t interact ion can be wri t ten as a field 

theory . So it is a pr inciple which may be wrong, but it is not vacuous — it 

will r e jec t cer ta in theor ies and allow o t h e r s . Now whether or not this is r ight 

only further d iscuss ion can decide, and I have not been able to make very much 

p r o g r e s s with it , especia l ly if one makes the additional demands of quantum theory 

or re la t iv i ty . I jus t thought I would mention it to you. 

Havas: If you ins i s t they a r e the same then you would have to 

re jec t a l l meson theory . 

Dresden: Someho-w this doesn ' t b r e a k my hea r t . 

Havas: Yes , but what would be worse is if you would have to 

re jec t al l theor ies which cor respond to a field where the r e s t m a s s of 

the field is zero so that won' t leave you ve ry much. 

Dresden: I am not sure jus t how ser ious this i s . If I think of 

m a s s e s exclusively as self ene rg i e s , then I am quite willing to s t a r t 

out with a bas ic theory which has zero r e s t miass. The m a s s is then 

a der ived entity which is a manifestat ion of a se l f -energy. 

Havas: I won't a rgue about this — I jus t wanted to make a s ta tement . 

Dresden: Th i s , if nothing e l se , lends support to the s ta tement 

that the pr inciple is maybe nonsense but it is not empty, and it does 
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r e s t r i c t the poss ible theor ies severe ly . 

Havas: What I wanted to say is that I feel that the Wheeler -

Feynman theory a s such has nothing to say about ac t ion-a t -a-d is ta j ice vs 

field. It can be formulated from both points of view because you can get 

the same equations of motion as you get from field theory, 

Dresden: Yes , I ag ree -with that , except that the re a r e theor ies 

which do not have this c h a r a c t e r i s t i c . There a r e theor ies where you will 

get different r e su l t s from an ac t ion -a t - a -d i s t ance than you do from a 

f ie ld- theory approach . I think one might consider a pr inciple which 

would re jec t such t heo r i e s . 

f) THE ASYMPTOTIC APPROACH 

The next point which I w^ant to make , and the l a s t one before I come to 

a more formal d i scuss ion , concerns the modern t rend as exemplified by the work 

of Haag, Wightman, Ekstein and Lehman. You know Hans has talked about this 

a year or so ago. He gave a s e r i e s of l ec tu re s which were p roper ly entitled 

"Asymptotic Mechan ics" . There were no longer d i scuss ions about the deta i ls 

of the in terac t ions but r a the r one a t tempts to l ea rn what one can from the change 

from init ial to final s t a t e s . One hopes to find ope ra to r s which somehow connect 

the initial and final s t a t e s . Other c h a r a c t e r i s t i c s of the system mus t then be 

exp res sed in t e r m s of these o p e r a t o r s . The S-mat r ix theory in i t s or ig inal 

form was this kind of theory . Most of the p r o g r e s s which has been made in the 

l a s t 3 or 4 y e a r s has been made in this d i rec t ion . To the bes t of my knowledge. 
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however, nobody has made any p r o g r e s s in studying the region of strong interact ion 

in the same mathennatical deta i l . It is of course an open question whether such 

a detailed descr ip t ion is e i ther des i rab le or poss ib le . It is not known whether 

the S ma t r i x contains all the physical information. These m o r e p rec i se formula­

tions have not helped, and in fact have at this point not yet achieved the power of 

the set of r ec ipes or ru les -which I have given you previously in quantum e lec t ro ­

dynamics . Specifically, it is a somewhat emba r r a s s ing point that the confirm­

ations of quantum e lec t rodynamics l ie in pa r t in a d iscuss ion of bound state 

p rob lem. The Lamb shift is a bound state p rob lem, and so is posi t ronium; 

the magne t i c -moment co r rec t ion , of cou r se , is not. Unfortunately the m o r e 

p r e c i s e mathemat ica l d i scuss ions a r e quite incapable of t rea t ing these p rob lems 

at this point. This is a thing to be kept in mind, and this is in p a r t a justification 

of what I want to talk to you about l a t e r . What I consider to be a ve ry significant 

question is to see whether in any way one can fit information about the bound 

s ta tes into these m o r e genera l s c h e m e s . It i s , I be l ieve , c o r r e c t that within 

the framew^ork of the axiomatic approach, one does not have the computational 

po-wer to deal -with the p rob lems which have been handled using the renormal iza t ion 

technique. This suggests this question: Is it poss ib le , s tar t ing from a m o r e 

p r e c i s e ma themat i ca l viewpoint to imi ta te o r , in any sense , obtain p rocedures 

which would justify what has been done previously (in a haphazard fashion).? 

As I unders tand it , t he re is no hint of that within the axiomatic fo rma l i sm. 

Ekstein: No, that is not quite so. This more p r e c i s e method 

cannot deal with the question of the metas tab le state because we don't 
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tmderstand what a metas tab le state m e a n s . However, the so-cal led me ta ­

stable state of the hydrogen a tom, that is an excited s t a te , is rea l ly not 

n e c e s s a r y if you ask the question, "What is the scat ter ing amplitude of a 

photon on a hydrogen atonn ?" and the re is in pr inciple a perfect ly p rec i se 

answer to that . What we cannot answer i s : Given at some initial s tate an 

excited hydrogen a tom, what will happen la te r ?" 

Dresden: Yes , but it s e e m s to me that a perfect ly definite 

question i s : "What is the energy spec t rum of a hydrogen atonn in v a c u u m ? ' 

In t e r m s of the conventional physical p ic ture you have an interact ion with 

the vacuTim fluctuations. This gives r i s e to an observable level separat ion 

between the 2 p and the ^S^ .^ s t a t e s . I know of nothing -within the 

abs t r ac t formal i sm which would allow m e in pr inciple to calculate th i s , 

Ekstein: You can ask v e r y simply the quest ion, "What is the 

spec t ra l density of the total Hami l ton ian?" and then at l ea s t in pr inciple 

you would obtain ce r t a in peaks of the spec t ra l densi ty which to be sure 

a r e continuous functions and not del ta-funct ions, and those will cor respond 

to the so-ca l led s ta t ionary spect rum of the hydrogen. 

Dresden: May I a sk , -where do you get the total Hamil tonian? 

Ekstein: The total Hamiltonian is p resumably the one that you 

always wr i te down. 

Dresden: With point in t e rac t ions? 

Ekste in : Yes . 
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Dresden: With what commutation r u l e s ? 

Ekstein: With the canonical commutation r u l e s . 

Dresden: Why am I not in t r o u b l e ? This formalism gives all 

the d ivergencies] 

Ekstein: Oh, you a r e in t rouble . I did not want to say that the 

nnore p r e c i s e methods a r e able to actually deal with the p resen t local 

field t h e o r i e s . 

Dresden: In pr inciple then how do I get answers ? I don't ca re 

if you give me wrong a n s w e r s , but what I want to know is if I s t a r t out 

-wdth the formulation a la Wightman how then can I calculate the hydrogen 

spect rum ? 

Ekstein: P e r h a p s I can explain that this m o r e p rec i s e approach 

is s t i l l v e r y far removed from those Hamiltonians which have any p laus i ­

bil i ty of descr ib ing actual na tu re . In fact, we a r e pre t ty cer ta in that 

none of those Hamil tonians actually fit into the axiomatic scheme as 

e i ther of us has formulated it . This is a general cr i t ique of the state 

of the a r t , so to speak, but it is not a specific cri t ique of the ability of 

th is a r t to deal with these quest ions such as the spect rum of the hydrogen. 

Dresden: Maybe I ought to make one final point in this same 

connection. The r ea son the renormal iza t ion works so well is p rec i se ly 

the same feature which makes it mathemat ica l ly so objectionable, 

namely you can split up the Hamiltonian into an unper turbed p a r t with 

co r r ec t i ons added to that unper turbed pa r t . The per turbat ion calcula­

tions used in the Lamb shift a r e all per formed by separat ing a 
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Hamiltonian. It is well known that in the m o r e p rec i s e formulation such 

a splitting of a Hamiltonian cannot be done. It is ambiguous and gives 

r i s e to nothing but difficulty. Nonetheless , it s eems to me that it is a 

cur ious feature of the p r e sen t situation that mathemat ica l ly the mos t 

objectionable feature tu rns out to be jus t the one which makes the ca l ­

culation poss ib le . 

Let me tell you a l i t t le bit about some of the a t tempts of Gordon Feldman 

and myself, in connection with these ques t ions . There exis ts an abs t r ac t formu-

8 

lation of field theory which is due to Lehman, Symanzik and Z i m m e r m a n , and 

it , among all the abs t r ac t field t h e o r i e s , is the l eas t a b s t r a c t . Let me te l l you 

a li t t le about it and also how we at tempted to introduce into this theory a cer ta in 

number of observable notions. 

Let me make the physical assumpt ions c l ea r . F i r s t of a l l , one deals 

with a field opera tor A(x), an o rd inary field ope ra to r . One also makes the 

assumpt ion that the state vec to rs a r e e lements of a Hilber t space . You make 

the assumpt ion of local commutat ivi ty , [ A(x), A(y)] = 0 for (x -y )^ > 0. You 

also a s sume Lorentz invar iance and this I bel ieve is a l l , except for one new 

condition, the so-ca l led asymptot ic condition. I Avant to say something about 

it l a t e r . Now^ let me make this comment immedia te ly . They do not a s sume 

equations of motion for the A field, nor commutation re la t ions for the A field. 

The reason for that is that the assumpt ion of ei ther commutat ion re la t ions or 

equations of motion will immedia te ly lead back to a divergent theory . The 
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theory they contemplate is a l ready renormal ized and no infinities ought to 

occur in it wha tsoever . This p resumably one can a r r a n g e , at the expense of 

making the theory so broad that the rea l question will be whether the theory 

indeed has any content whatsoever . 

Define two fields, descr ibed by opera to rs A, and A satisfying 
' •' ^ m out * 

( D - m 2 ) A . (x) = 0 ( Z 3 - m 2 ) A <x) = 0 . (12) 
in out 

I will also need functions f , o rd inary c = number functions. They will be 
a 

normal ized and they will be solutions of the Gordon-Klein equations. 

( 0 - m 2 ) f (x) = 0 
a 

i ( 

"" / 2 k ^ ( 2 u ) 3 
f ^ - - e ' ^ ^ " ) - ^ ^ o ^ k ^ > 0 . (13) 

This is a se t of solutions of the Gordon-Klein equation, all belonging to pos i ­

tive ene rg i e s , I will only use posi t ive ene rg ie s , and the functions f satisfy 

orthogonali ty condition of the type 

- i f d s X (f - — 2 — -= f„ , ) = 6 - . (14) 

The comple teness re la t ion is 

2 f^(x)f^* (x') = i A^(x=x ' ) . (15) 
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The A is one of the usual singTilar functions. Introduce the opera to r s A 

defined by 

9 f3 
A"" (t) . i / d 3 X ^A (x) - ^ f j (x) 9 A 

9 x„ 

(You can formTilate this in a number of ways . You coTild use distr ibution theor 

This is in tegrated at a constant t ime and over al l space . (If one uses space­

like sur faces , nothing is changed.) No m o r e is known about the A than about 

the A. If the ope ra to r s A exist the A a r e some-what m o r e regTilar; in fact, 

tha t ' s rea l ly all they a r e — they a r e smoothed out o p e r a t o r s . The f rea l ly 

play the ro le of invar iant form fac to r s . 

The following asymptot ic condition is imposed. I take a state <^ of the 

sys tem, and also a s tate $ , and suppose I calculate the m a t r i x element of the 

opera tor A . Quite c lear ly this m a t r i x e lement ( $ , A ^) will depend on the 

time and now you would like to say something about the l imit ing behavior of 

this m a t r i x e lement as t — + oo a-nd t — - oo, namely 

lim ( * , A***) = ( $ , A^ ^ ) . (17) 
t - - 00 1 " 

Now A . is an opera tor about which one does know something, namely it 

sat isf ies the Gordon-Klein equation. This condition therefore s ta tes m o r e 

p rec i se ly that a v e r y long t ime ago the pa r t i c l e s behaved essent ia l ly as free 

pa r t i c l e s which satisfy the Gordon-Klein equation. You will not be su rp r i s ed 

that in the linnit as t -• + oo. -A- becomes A 
out 
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I will a s sume that a vacuum state exists which cor responds to the lo-w-

est energy. These a r e a l l the physical assumptions made in the theory. This 

i s a ve ry genera l f ramework and one sees that there is no Hamiltonian in i t . 

There is no question of a splitting into a per turbed and an unperturbed Hamiltonian 

because you don't have e i the r . So the question which now comes up i s : Can one 

do anything with a theory of this kind? P r e c i s e l y what can be done with a 

theory of this kind is st i l l an open quest ion, but cer ta in formal r e su l t s can be 

obtained. The s ta tes with which one deals a r e the following ones: F i r s t one has 

a vacuum state which is a s sumed; call it ^ . The next s tate which you can 

01 a. 
have is a s ta te A . CI. An A. i s an opera tor about which I know a good deal 

m m '̂  

because that is an opera tor which sat isf ies the Gordon-Klein equation. That 

means i t may be expanded using functions f in t e r m s of c rea t ion and annihi la-

a 

tion ope ra to r s a , a , ope ra to r s which des t roy or c rea te a par t ic le with wave 

a 
function f . So A. ^ i s a state which contains asymptot ical ly a single meson 
of wave function f . You can then also introduce a s tate 

a 

A . 1 A . 2 ^ . 
m m 

In genera l I -will wr i te such a s ta te as 

^.^'^^ = A. '^i • • • A. ""k !̂  . (18) 

m m m 

You can of course do exactly the same thing for the out-f ie ld and the re the 

$ ^ is desc r ibed by $ = A . l ••• A -̂  Q . These a r e the bas ic 
out out m out out 

s ta tes -with which the theory o p e r a t e s . One now defines (and this is a perfectly 

genera l and reasonable definition) a m a t r i x element of the S-mat r ix as the overlap 
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between an incoming and outgoing s ta te , i . e. , 

(a)(p) out m 

This i s the (a, P) m a t r i x e lement of the S-mat r ix . The (a) and (P) run over a l l 

numbers of incoming and outgoing p a r t i c l e s . This S-mat r ix is defined in t e r m s 

of A. and A . Now one hasn ' t l ea rned anything. There a r e two r e su l t s 
m out ° 

which a r e somewhat surpr i s ing and which I would like to state for you. I don't 

think I will prove them for you although the proof is not ve ry ha rd . 

I want to give one m o r e definition; Define T -functions (sometinnes 

called Wightman functions) as the vacuum expectation value of t i m e - o r d e r e d 

T-products 

T (X •••X ) = ( i^ , T{ A(x ) ••• A(x ) } n ) . (20) 
•'• n •'• n 

(For many considera t ions the R-p roduc t s , r e t a rded p roduc t s , a r e much m o r e 

sui table . ) 

I might point our parenthet ica l ly that one of Wightman's major con t r i ­

butions to this whole type of endeavor is the proof that the theory is essent ia l ly 

uniquely cha rac t e r i zed by these Wightmaji functions, or T -functions. Now the 

contribution of Lehman, Szymanzik and Zimmern ian cons is t s of two main 

r e s u l t s . F i r s t , the S-mat r ix can be expressed in t e r m s of the T -functions. 

This in a sense is a special case of the genera l r e s u l t of Wightman. that the 

physical content is completely de termined by the T -functions. Since the 

S-mat r ix is p resumably one of the physical r e s u l t s , it mus t be express ib le 
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in t e r m s of these T -functions. In a sense this i s a sys temat ic advance, but I 

st i l l have not l ea rned anything inasmuch as these T -products a r e vacuum ex­

pectat ion values of ope ra to r s about which one knows nothing. One only knows the 

asymptot ic condition. So this is in the na ture of an organizational advance, but 

nothing m o r e . 

The second s ta tement is perhaps m o r e surpr i s ing , it is more meaningful 

but a lso much m o r e difficTilt to d i scuss : There exis ts a set of equations for the 

T -functions a lone. What I mean by alone is that the re is a set of equations in 

which only the T -functions and known enti t ies occur . These known enti t ies a r e 

all express ib le in t e r m s of the f ^ but they no longer contain any reference to 

the ope ra to r s A. It i s not known whether th is s-ytem of equations de te rmines the 

T -functions. If that w e r e so , one would be in b u s i n e s s . If you know that the 

system of eqTiations de t e rmines the T -functions and if then in turn al l the physical 

content is contained in these functions, then I'm through. If in addition e v e r y ­

thing would come out finite, then we could al l take a holiday. 

I can prove one thing about this system of equations, namely it is not 

vacuous — it has some content. How much I don't know. There a r e only two 

physical ideas which go into the der ivat ion of th is : The f i r s t idea is that the 

S-mat r ix is un i ta ry . The second idea, the second physical idea which goes in 

t h e r e , is the comple teness of the se t $ , which I have wri t ten down. These 
m 

a r e the two physical ideas which, of cou r se , a r e both a s sumed . One a s s u m e s 

to comple teness — in this formal ism one can prove the uni tar i ty of S quite eas i ly . 
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Tanaka: It appears that there are enough of these equations so that 

there is at least a hope that they may be solved. 

Dresden: Correct. This is also all there is — hope. There is 

not yet despair. You have a large number of these equations and in 

fact G. Feldman and I have tried to say something about this system of 

equations. 

Let me indicate to you how one obtains these results because the deriva­

tions are really extraordinarily simple and quite pretty. What one does is the 

folio-wing. First prove the result that 

(S2, T ( x • • • x ) ^^°:^ ) = - i rd4 y K. T (x^ . . . X , y ) f (y), 
••• n m -J y n a i ?i\ 

where 

K = D - m2 . 
y y 

CI . . . Q-k 

The next thing you obtain is an expression for ( Q, T(x • • -x ) $. i ) . 

This is the transition matrix element between ^ and an arbitrary state and, 

using the unitarity, you thro-w it around and eventually you get the expression 

for the S-matrix which I will write down in a moment. Let me just sketch part 

of it. Make the observation that 

(f2, T(l • • • n) #.*̂  ) = (T* n, A.*̂  S2 ). (22) 

in in 

At this point one applies the asymptotic condition in a very cute way. Since 

T*^ is a state vector, S2 is also a state vector, so one has 

{a, T{l"'n) ^°- ) ^ lim ( T * n , A " n ) . (23a) 
^^ t - - 00 
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What I have done, as a m a t t e r of fact, is just to run the asymptotic condition 

backwards . So this is a s t ra ightforward application, and now you jus t play 

around. One of the things one does is to make use of another observat ion, namely 

+ 00 -

y 11™ ^ JJJ^^ y^-- J ^' y -TV' + ^ ' ^ + 0 0 / / / ^ ' ^ ' • ^"^^ 
O -OQ 0 0 

The final thing which is amusing is that you know how to handle this T -p roduc t . 

The T-product , a s you know, is t i m e - o r d e r e d ; but in the linnit when t goes to 

+ 00, you know p rec i se ly where to put the par t icu la r opera tor A(t) since it is 

n e c e s s a r i l y l a s t in t ime and as such has to be put way to the left. One ends up 

in fact with this four-d imensional in tegra l which I wrote down h e r e . The reason 

you keep a four-dimensional in tegra l even though you have a derivat ive here is 

because you make a pa r t i a l integrat ion on the f-functions and then you make use 

of the equation which they satisfy. Then you end up with an express ion for the 

S -mat r ix which is 

(24) 

Next consider the quest ion of the system of equations for the T -functions. 

The der ivat ion of that is a lso quite t r i v i a l . Let me show you how one does i t . 

Suppose I wr i te down the T-produc t 

T { A ( x ^ ) A ( x 2 ) } = 0 (X3L-X3) T { A ( x J } A(x^) + 0(x2-x^)T{A(x2)} A(x^) 

(25a) 
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where 

9 (x) = 1 X > 0 

= 0 X < 0 . 

The T h e r e , of c o u r s e , one doesn ' t need, because there is only one A-opera to r , 

I am only wri t ing that down for two ope ra to r s but you can do it for any number . 

Let me wri te down in genera l 

T {A(x^) - A ( x J } = 2 0 K - x ^ ) - 0 (x^_ i - x j T { 1 - n - 1 } A{x^) . 
P 

(25b) 

Now from he re on the derivat ion between the re la t ions of the T -functions is 

quite simple because if I take the vacuum expectation vaJue of the left s ide , I 

will jus t get a T -fionction which now -will be expres sed in t e r m s of what? Well , 

if you take the vacuum expecta t ion value of the r ight s ide , you see the kind of 

entity I get will be the m a t r i x e lement 

(n, T(l ••• n-1) A(x )n) . 

n 

This is not yet a T -function. Now you make the observat ion that you may wr i te 

th i s , using the comple teness re la t ion , as 

(n, T( l"-n- l ) $̂ !*̂  ) i^^'^K A(x ) n) . 
m in n 

By the way, summation over a is rea l ly over all a ' s , i . e. , over s ingles , 

doubles , t r i p l e s , e t c . 
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Sunakawa: There is an assumption that there is no bound s ta te? 

Dresden: Yes , that is r ight , that is assunned. 

Now a t this point I will no longer pursue the derivat ion but I want to 

point out that now you can see for yourself that this indeed can be expressed in 

t e r m s of T -functions because 

(S2, T ( l - " - n - l ) $ "̂̂ ^ ) and {^^°:^ , A{x ) ^ ) 
* ' in m n 

may be so expres sed . If you put it all in, then you end up with an express ion 

for one T -function in t e r m s of a l l o t h e r s . And that express ion I will wri te down 

for you because it is ve ry m i s e r a b l e . 

• • •T( l - ' -n) = 2 2 Q(l-n) 9(2-n)---9(n- l -n) i^ J--. J d 4 | , . - - - d 4 | d^rj^ •••d^n Y 
P k 

where 

By the way, this re la t ion contains what I said it would — the functions, 

some combinator ia l f ac to r s , in tegra t ions , operat ions on the T , e tc . I can now 

phrase the major quest ion ve ry s imply, namely: Does this system have any 

content wha t soever , or is it a pure tautology? All this is contained in the f i rs t 

paper by Lehman, Szymanzik and Z i m m e r m a n , Let m e make the following 

observat ion as a side r e m a r k . This system of equations has nothing to do with 
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invar iance p r o p e r t i e s , in fact it only depends on the uni tar i ty of the S-mat r ix 

and on the comple teness . If you nnake assumpt ions about symmet ry or about 

invar iance , you have special r e s t r i c t i o n s on these T -fiinctions. That means then 

that this i s a genera l r e s u l t for an a l ready renormal ized theory . This is a very 

complicated non- l inear systenn, and one might despai r at obtaining any resi i l ts 

a t a l l . This is the kind of question Gordon Feldman and I invest igated. We 

s ta r ted by seeing whether everything automatical ly sat isf ies these equat ions. 

That is not t r u e . Let me naention one r e su l t which I consider the mos t i n t e r e s t ­

ing one. The advantage of this pa r t i cu la r formtdation is that it should be 

di rect ly applicable to anything^ nothing has been a s sumed about invar iance , 

about point s o u r c e s , about in terac t ion — it is perfect ly genera l . This means 

that this system of equations a s it s tands should be d i rec t ly applicable to such 

nnodels as the Lee model . One can in fact calculate what these T -functions 

a r e for the Lee model and you can jus t verify the validity of this system of 

equat ions. You find something quite amiusing; you find that indeed they do 

satisfy the Lehman re l a t ions . But, as you al l know, in the Lee model the re 

is a ce r ta in c r i t i ca l coupling constant; if the coupling gets l a r g e r than a cer ta in 

amount , then the Lee model is not r enormal i zab le in the o rd inary sense of the 

word. Now the thing which is in te res t ing about this i s how this information is 

indeed contained in the sys tem of equations which I have wri t ten down h e r e . 

Tanaka: How can you verify th i s? What exactly was done? 

Dresden; I took the T -functions from the Lee model . 

Tanaka: How many a r e t h e r e ? Caji you wr i t e a genera l form for 

t h i s ? 
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Dresden: You can calculate the T -ftinctions for the Lee model; 

actually all the in tegra ls separa te in a very simple form. Essent ia l ly 

you can wri te this as a product of in t eg ra l s . Putting this into monnentunn 

space simplifies m a t t e r s . Then what you get a r e folding type in t eg ra l s . 

But therefore I can nnake the following statennent: If the coupling constant 

comes out to be l e s s than the c r i t i ca l value, then the Lee T -function 

sat isf ies the Lehman re la t ions . If it is l a r g e r than the c r i t i ca l value, 

then they a r e not sat isf ied. The r e su l t I think is in teres t ing because it 

se t t les for me one question which I had not known before — whether this 

sys tem of equations has any content. Fo r a long t ime I thought that all 

functions satisfy these r e s u l t s . This is c lear ly not t rue because I can 

at l ea s t give you one example , namely the T -functions of the Lee model 

whenever the coupling constant is l a r g e r than the cr i t ica l coupling 

constant , for which they a r e not sat isf ied. 

A much h a r d e r question is the following: Is it possible (and this happens 

to be the problem I am looking at at this pa r t i cu la r moment) to look at this 

system of eqxiations again, and knowing now that the Lee model sat isf ies i t , 

inver t the p rob lem. I can ask for n e c e s s a r y and sufficient r e s t r i c t ions on 

the T -function so that the Lee model will resi i l t . One question which always 

haunts mie in al l these cons idera t ions is where in these formalisnns is the 

coupling constant; where is the in te rac t ion? In some sense both the magnitude 

and the form of the coupling m u s t be contained in the express ions for T . The 
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reason for studying these models is p rec i se ly so that one may obtain re la t ions 

between c h a r a c t e r i s t i c s of the T -functions cuid the s t ruc tu re of the coupling 

t e r m s . One finds re la t ions between the poles and ze ro ' s of the T -functions 

and the nature of the potential in s imple c a s e s . In this way one may l ea rn to 

t r ansc r ibe physical information d i rec t ly into the T -functions, which usually a r e 

quite unintuitive s t r u c t u r e s . P e r h a p s one may hope that one may l e a r n to put 

physical information, previously put in the Hamiltonian, d i rect ly into the T -

or R-functions. It is in teres t ing to observe that in the Lee model the T 

functions jus t have a single pole and a single z e r o . Any function of a complex 

var iab le defines a t ransformat ion; these functions in par t ic i i lar define a s imple 

c lass of t r ans fo rma t ions . It is in te res t ing to observe that the Hamiltonian of 

the Lee model is in fact invar iant under a t ransformat ion of a ve ry s imi la r form. 

So one might perhaps conjecture , that the re is a re la t ionship between the group 

of t r ans format ions which expres s a ce r ta in symmet ry cha rac t e r of the Hami l ­

tonian, and the s t ruc tu re of the T -functions. In the models it appea r s as if 

the T -functions a r e like the generat ing functions of the t rans format ions which 

leave the Hamiltonian invar iant . This is al l conjecture . However, I would 

like to mention that this seems like a possible way of feeding physical informa­

tion into this scheme . 

There a r e a number of other quest ions which one can ask: Suppose I 

do the same formulation for a vector field and for a spinor field. Then of course 

I get ve ry s imi la r equat ions. Suppose I now impose the conditions of r e la t iv i s t i c 
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invar iance and gauge invar iance (which i s , by the way, not so t r iv ia l to do). 

The asymptotic conditions a r e quite nasty to deal with when you deal with gauge 

invar iance . I can now ask the question: Is the theory which I obtain isomorphic 

with r enorma l i zed quantum e lec t rodynamics? If I have a theory which is gauge 

invar iant and re la t iv is t ica l ly invar iant , and which couples a spinor field and 

vector field, is that renormialized electrodynannics ? I don't know the answer 

to the question; I cannot handle the gauge invariance with a grea t deal of d i s ­

patch. I would like to know the answer . We have looked at that some with not 

ve ry exciting retsults. 

This is essent ia l ly al l I have to say in this connection. I am so r ry that 

I don't have m o r e definite a n s w e r s . 

Peshkin: May I a sk a quest ion? What is a ghost s t a t e? 

Dresden: The ghost s ta tes were f i rs t noticed by Pauli in the 

Lee model . The re , after renormal iza t ion , one sti l l has t rouble because 

then other r equ i r emen t s of the theory, such as the uni tar i ty of the S-

m a t r i x , a r e no longer sat isf ied. 

Miyazav/a; You say that the equations plus gauge invar iance and 

Lorentz invar iance gives al l of e lec t rodynamics? 

Dresden : Tha t ' s the question. Do these equations plus Lorentz 

invar iance plus gauge invariajice give renormal ized e lec t rodynamics ? 

Nishij ima has a paper which I have not understood, unfortxinately, in 

which he c l a ims that if you do cer ta in things you obtain something equiv­

alent to the per turba t ion expauision in quantum e lec t rodynamics a l ready 
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renorma l i zed . That I think wovdd be somewhat of a feat if it were r ight 

because then it would mean that , a t l e a s t on the b a s i s of m o r e or l e s s 

well-defined mathemat ics and well-defined assumpt ions , one obtains 

this s e r i e s development. But I have not understood the paper so I am 

not sure that it i s r ight . 

Miyazawa: My s ta tement is that if you want to use invar iance 

(Lorentz invar iance , gauge invar iance , causali ty) one obtains r e n o r m a l ­

ized e lec t rodynamics . 

Dresden: But nobody has yet shown that; i s that r ight? 

Miyazawa: Yes . 

Ekstein: I want to thank you very much for these th ree l e c t u r e s . 

You were cer ta in ly insp i r ing . 

Dresden: Thanks to your d i scuss ions . You a r e a gentleman. 
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Classical Eelativistic Theory of El^ientary Particles 

Peter Havas, Lehigh University, Bethlehem, Pennsylvania 

Lecture 1 . 

I, INTRODUCTION 

There is a twofold i n t e r e s t in the p a r t of the c lass ica l theory of e l e ­

men ta ry pa r t i c l e s which I am planning to d i scuss h e r e : F i r s t , an int r ins ic 

in t e re s t a s a p a r t of the scheme of c l a s s i ca l phys ics ; and second, its pos ­

sible re levance for the quantum theory of e l emen ta ry p a r t i c l e s . I shall f i r s t 

d i scuss the scope of the c l a s s i ca l p rob lem. 

Within the conceptual f ramework of Newtonian mechanics there is a 

sharp division between equations of motion and force l aws . The equations of 

motion (F = ma) a r e supposed to be the same for all m a t t e r , while the force 

laws (like Newton's law of gravi ta t ion or Coulomb's law, e tc . ) a r e different 

for different types of p a r t i c l e s ; thus,, they alone a r e the object of exper imenta l 

invest igat ion. 

This apparent independence of the equations of motion and the force laws 

was maintained at f i rs t , a lso after it was rea l ized that the laws of physics take 

a s impler form if one does not consider force l aws , but r a the r field l aws . The 

prototype of this approach i s , of c o u r s e . Maxwel l ' s e l ec t rodynamics . The in­

dependence of the two sets of laws seemed to be f irmly es tabl ished when it 

was slowly rea l ized that it was not poss ible to find a mechanical model for 

Maxwell ' s equat ions, and when it was found that there was one phenomenon, 

namely e lec t romagnet ic radiat ion, which allowed a sinnple descr ip t ion in t e r m s 

of the field equations alone. 

On the other hand, if radiat ion was to c a r r y away energy, it was c lear 

that the equations of nnotion had to be modified if one would want to mainta in 
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conservat ion of energy for the ent i re sys t em. The main contribution at this 

point i s due to Loren tz , who approached the problem in two different ways. 

F i r s t , he simply modified the equations of motion to maintain conservat ion of 

energy on the average for a lmos t per iodic mot ions . Second, he t r ied to ca l ­

culate the change in the equations of motion, if an e lec t r ic charge was con­

s idered to be of finite extension, the r e t a rded effects of the different pa r t s 

of the charge on each other were taken into account and an additional condi­

tion was imposed, namely that the total force on the par t ic le should vanish. 

As you al l know, Loren tz ' s calculat ions led to a d imemma. If the 

charge was taken to be of finite extension, a t e rm proport ional to the second 

der ivat ive of position appeared . It seemed to offer possibi l i t ies of an e l ec t ro ­

magnet ic theory of m a s s . On the other hand, the equation of motion obtained 

was of infinite o rder and all the t e r m s beyond the thi rd der ivat ive of position 

were s t ruc ture -dependent . If the charge was to be taken as a mathemat ica l 

point, al l the s t ruc ture-dependent t e r m s disappeared, the t e rm in the third 

der ivat ive (cor rec t ly descr ibing radia t ion damping) was unchanged, but un­

fortunately the t e rm proport ional to the acce lera t ion became infinite, 

I shall not pursue the line of r e s e a r c h which t r ied to get a consistent 

field theory of m a s s . On the whole, I bel ieve it did not bear fruit. However, 

L o r e n t z ' s rea l iza t ion that the imposi t ion of cer ta in conditions in addition to the 

field equations could lead to , or at l ea s t modify, the equation of motion did 

indeed lead to impor tant r e su l t s which we shcill d iscuss l a t e r . Most of this 
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work is based on a paper by Dirac wri t ten twenty y e a r s ago, which p resen ted 

a new derivat ion of Loren tz ' s equations of motion, based on the requ i rement 

of conservat ion of energy and momentum. 

The ent i re problem appeared in a new light in the genera l theory of 

re la t ivi ty . Init ial ly, Eins te in had thought that again the equations of motion had 

to be postxilated independently of the field equations; for a t es t par t ic le he took 

the motion to be de termined by a geodes ic . However, it was soon rea l ized that 

actually the field equations do not allow solutions for a r b i t r a r y motions and that 

the equations of motion a r e implici t ly contained in the field equat ions. Basical ly , 

this is due to the fact that the field equations a r e so const ructed that the con­

servat ion of the total energy is a l ready implied. The eqtiations of motion ob­

tained from the genera l theory in the approximation of the special theory of 

relat ivi ty a r e the same as one can obtain d i rec t ly by special re la t iv is t ic methods 

on the additional assunnption of conservat ion l aws , the line of approach proposed 

by D i r a c . 

In this s ense , a complete unification of the laws of motion and of the 

laws of force has been obtained. There i s , however , another approach which 

also leads to complete unification. This is the approach from the point of view 

of action at a d is tance . The re , fields a r e not cons idered to be bas ic independent 

v a r i a b l e s . This approach w a s , of c o u r s e , taken by Newton, but it was abandoned 

in the second half of the 19th century when it was rea l ized that physical effects 

a r e not t r ansmi t t ed ins tantaneously. Never the less it was rea l ized , even then, 

for example by Gauss , that such a descr ip t ion should be poss ib le , and a formiila-

tion of such effects in t e r m s of par t i c le va r i ab le s alone was f i r s t given in the case 
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of e lec t rodynamics by Schwarzschi ld and Fokker , and it has since been ex­

tended to other f ields. Their theory can be summar ized in a single var ia t ional 

pr inciple in ternns of par t ic le va r i ab les alone, from which one can not only 

obtain the equations of motion, but one can also define "fields" in t e r m s of the 

par t i c le var iab les and then show that the new quantities so defined satisfy the 

appropr ia te field equations. 

In this approach the main difficulty is in the descr ipt ion of radiat ion 

and this i s why the field approach was pursued a lmost exclusively for a long 

t i m e . However, it had been suggested a l ready half a century ago by Einstein 

that possibly radiat ion was a s ta t i s t ica l effect. The f i rs t a t tempt to give a 

quantitative descr ipt ion following this idea is due to Wheeler and Feynman who, 

with cer ta in assumpt ions , showed the equivalence of this formulation and that 

of the usual theory in e lec t rodynamics . Their considerat ions can be extended 

to mesodynamics as well . However, t he re a r e some significant differences 

between the two formulat ions t h e r e . It can also - - at l eas t for the l inear ized 

theory - - b e extended to gravi ta t ion. 

This is roughly the scope of the topics I want to d iscuss in the c lass ica l 

theory. I believe that this is also of in t e re s t for the quantum theory of in te r ­

acting e lementary p a r t i c l e s , mainly because the quantum theory has been 

plagued by infinities and mathemat ica l incons is tenc ies . A considerable pa r t 

of these difficulties seems to be due to the fact that the usual theory is built 

up by f i rs t constructing a theory of free fields, and then attempting to couple 
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these . The c lass ica l theory has had s imi la r difficulties with infinities, 

but it has been able to overcome them in two different ways . In field theory 

no concept of " b a r e " par t ic le i s n e c e s s a r y . The par t ic le is introduced as a 

singulari ty of the fields and nnass renormal iza t ion can be accomplished exactly 

for all fields and all types of s ingular i t ies in one s tep . In ac t ion-a t -a -d i s t ance 

theory no infinities appear at all as the field is not an independent quantity, 

and again no "bare ' pa r t i c l e s need to be considered. The existence of these 

a l ternat ive c lass ica l formulat ions suggests the possibi l i ty of a l ternat ive ap ­

proaches to quantization. 

F u r t h e r m o r e , the re exist c l a s s i ca l r e s t r i c t i ons on the types of par t ic les 

and fields allowed. The most s t r ingent one concerns fields of spin two or 

g r ea t e r . Although it is poss ible to develop a theory of pure fields of this type, 

it can be shown that (at l ea s t within the f ramework of l inear theory) it is not 

possible to have s ingular i t ies in teract ing by means of these fields at a l l . Also 

there exis ts a ve ry general equivalence theorem for different couplings. All 

of these r e su l t s suggest s imi la r r e s t r i c t i ons in quantum theory . Considering 

the p r e sen t state of the theory I bel ieve that some a l te rna t ive approaches a r e 

badly needed, and that some of the recen t advances of the c lass ica l theory may 

provide some fruitfxil new ways of looking at old p r o b l e m s . 



-129-

II. NEUTRAL FIELDS OF INTEGRAL SPIN WITHOUT SOURCES 

Today I will mostly go through some mathennatical preliminaries, and 

first of all notations. In general I shall use a metric 

"IjlV " °' ^ ^ " ^ ^00= -^11 " -^2 2= -^33= 1 

and a four-space xO, x^, x^ , x^ (= t, x, y, z). The velocity of light is taken 

as unity. We shall denote the coordinates of a particle by z , and its proper 

time by j where dr^ = dz dz . The four-velocity is 

u. 
u. dz . UL 

V = —; = Z 

dr 

and therefore 

V v*̂  = 1, V v^ = 0. 

Furthernnore 

9 = ;; , 8 „. . . = 9 9 Q . . . , L] £ 9 9 . 
| x 9 x ' a ( 3 o - P '—̂  |j. 

The notation I use is essentially the one which has been used in a series of 

papers by Bhabha and Harish-Chandra. 

Now I shall outline the theory of fields of integral spin. This has first 

1 2 

been given by Dirac and then was taken up by Fierz; the energy-momentum 

tensors I am going to discuss later have, according to Fierz' paper, first been 

given by Jauch. The fields by both Dirac and Fierz were given without inter­

action, the interactions were introduced later, mainly by Harish-Chandra, 

Fierz considered charged fields and described them by complex tensors. I 
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shall wr i te f i rs t the equations for neut ra l fields ajid then general ize di rect ly to 

c h a r g e - s y m m e t r i c f ields. This r equ i r e s essent ia l ly no ext ra work, and then 

one can always fall back to charged fields alone by just taking two components 

of the c h a r g e - s y m m e t r i c field. (I will d i scuss what I mean by c h a r g e - s y m m e t r i c 

fields l a t e r . ) There fore , I will desc r ibe fields by a r ea l symmet r i c tensor U 

of rank f, which obeys the following equat ions. 

( 0 + X ^ ) U . . . - 0, (1) 

f̂"" U •, . = 0 , (2) 
a . , . 

U'̂  . . = 0 . (3) 
a . . . 

Here ^ is a constant of dimensions of r ec ip roca l length which after quantiza-

tion cor responds to quanta of m a s s m = —-̂ r— . The reason for Eqs , (2) and 

(3) is that you want to get a theory which is i r r educ ib le and which after quanti­

zation desc r ibes quanta of spin f-̂  without also descr ib ing quanta of sma l l e r 

spin. The conditions a r e jus t enough to allow only (2f + 1) l inear ly independent 

plane wave solutions if /C 4- 0, If /(^ - 0, then the number of independent 

components i s two jus t as in e lec t rodynamics , independent of f. 

Hamiermesh: Fo r spin one the re is no condition except on the d iver ­

gence (Eq. 2)? 

Havas: Yes . Fo r spin one this is just the usual e lec t rodynamics with 

the Loren tz condition. 

Equations (1) to (3) co r respond to the descr ip t ion of e lec t rodynamics 
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with the use of potentials a lone, but one can also descr ibe it instead by fields 

and potent ia ls . One needs both if one has IT ^ 0, and one can use just the 

fields if ^ = 0, as in e lec t rodynamics . 

One can introduce 

U^,^^-, . . . = 9 U„ . . . -9„U . . . . (4) 

[ aP] . . . a P . . . | 3 a . . . 

The square b racke t impl ies that the tensor is now an t i symmetr ic in the bracketed 

indices . Then from Eqs . (1), (2) and (4) one gets 
a ( 1 ) 

9 u ; ' , . . + [ a p ] : ; ^̂  p 
^ " • U . = 0. (5) 

F r o m these equations we also have 

.(MP 
[aP]. 

ui'l^. - 0. 

(1 ) (1 ) (1 ) 

u; ' T + u; \ . + w _ \ = 0 
[ap] y. . . [ va j p. . . [Pv] a. . . 

( 1 ) ( 1 ) (1 ) 

9 uj ' +9 uv ' , + 9_ m ' = 0, 
a [ P \ . . . Y [ a p ] . . . P [ v « i ] . . . 

9^ u}^^-- = 0. 
[aP] V . . . 

One can take this set as bas ic and then can regain the o thers because , for example, 

you can contract Eq. (5) and regain the Lorentz condition (2) provided "X^ 0. I f ^= 0 

you have to postxilate it separa te ly jus t as in e lec t rodynamics , where the Lorentz 

condition does not follow from the field equations. 
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Following F i e r z , we can also define quantit ies 

[aP] . . . o p. . . P a . . . 

for all q f, which again satisfy the wave equation, and then have 

. . [ apj . . . . p. . (7) 

U^H^̂ T = 0 (8) 

"'.".'[aPI.^^.^ValP ' " ' . ' [ M . . . = "• ' " 

a . . [ P v ] . . y . . [ a P ] . . p . . [ y a ] . , ' 

• • [ a - P ] v - - "̂  

( D t X ' ^ U ^ i . . - 0. (12) 
Lap] •• 

Equations (7), (10) and (12) a r e analogous to those of e lec t rodynamics . The 

o thers don't have a counterpar t in e lec t rodynamics because one does not have 

that many ind ices . 

Actually al l these descr ip t ions for different q ' s a r e fully equivalent in 

two r e s p e c t s . F i r s t , if one defines energy-momentum t enso r s for the differ­

ent q ' s , then the total energy is the same for all desc r ip t ions , although the 
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energy density is not the s a m e . Similar ly for complex fields, the total charge 

is the s a m e , the charge density is not. They a r e also equivalent in another 

sense , as I am going to show l a t e r , namely that they all lead to the same 

equations of motion as was proved by Har i sh -Chandra . I mentioned, however, 

that actually for these equations of motion it is not possible to satisfy the con­

ditions which a r e implied in al l this for f > 2. 

I define the energy-momentum tensor following Jauch and F i e r z for 

q > 1, and therefore £ ^ 1. 1 shall come back to spin zero la te r ; the energy-

momentum tensor for this is not a special case of the tensor for higher spin. 

We have 

41T T<^)^ . ( 2 r V ^ " ' l ^ ( -U<^) , U ( q ) . . [ < r v ] . . 

4 fj. 

,^l,.M-l) , . ( q - l ) . . v 1 V ..(q-1) , J q - l ) . . . . . / ' 

+ X (U^^ U _ - 6^ U . . . U )J, 

(13) 

where contract ion of the indices is implied by dots in the corresponding co-

and cont ravar ian t pos i t ions . You will recognize that for f = 1 and •> = 0 this 

is jus t the Maxwell t enso r . 

Now I take the divergence auid go through this in detail once, because we 

shall take d ivergences many t imes l a t e r , and the p rocedure is always the sanne. 

For the purposes of seeing what is r equ i red if I want to introduce in te rac t ions . 
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I will f i rs t take the divergence without making use of the field equations, but 

only using the definition (6) and the re la t ions (10) following from the definition. 

We then have 

4 . 9̂ ^ T<^)^ = ( 2 / " ) ^ " ' ^ f - u i " ^ ^ 9^ u ( ' l ) - - [ - v ] 
^ [oTi]. . 

_9jx u(q) u (q) . . [<rv] ^ 1 ^(q) ^v ^{^). 
. . [crix] 2 . . 

+ X ' B^ U<^"'^ u^q-l)--^ +: ' U^^-l) 9̂ ^ u ^ ^ - l ) " ^ 
2 

U^^ 

_u(q-l) gV ^(q-l) . . \ i 

'J 
Ekstein: Why does the q stand the re (in Eq. 13)? 

Havas: Because I have different energy-momentum t e n s o r s , 

depending on what field I am using. If I have a field with sufficiently 

(q) 
many indices , I can desc r ibe this by different U 

Ekstein: This i s jus t a m a t t e r of definition? 

Havas: An energy-momentum tensor is something which is a 

quadra t ic function of field quant i t ies , and the divergence of which 

van i shes . 

H a m e r m e s h : Do you have a choice for the e lec t romagnet ic 

field ? 

Havas: No. For the e lec t romagnet ic field you have no choice, 

q is 1, t he re is only one T - you c a n ' t cons t ruc t T because 

t he re a r e not enough ind ices . 
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Teng: What does this mean physical ly? 

Ekstein: This is rea l ly the question;according to Wentzel T 

a r e the only obse rvab le s . 

(q) 
Havas: What I said was that for all these the integrated T 

oo 

is the s a m e . 

Ekstein: I st i l l don't unders tand. Let us take one q, say q = 3. 

Then it p leases you to r ewr i t e the T in t e r m s of U . This would 

be identical , but p resumably this is not what you a r e doing. 

Havas: No, the T*̂ ^ ^^^ (formed with U^^^ and U ') and the T^ ^ 

(formed with U and U a r e not identical . 

Ekstein: But could you not, by means of the definitions, express 

the U^^) and U^^^ in t e r m s of U^^^ and U^^^? 

Havas: That I could. But if I get r id of U ' in T^ ^ , 1 get a 

ULV ( 2 ) 
tensor different from T , so I would have two different energy-

momentum t e n s o r s . 

Teng: So in this case you have another quantity which sat isf ies 

all the conditions;? 

Havas: Yes. Now you might ask, physically should not the 

energy density be unique? But for example i n general re la t ivi ty , which 

is cer ta in ly a legi t imate field theory, the energy densi t ies don't mean a 

thing. It is only the in tegra ted energy density which means somiething. 

So this is not unique in field theory, that there a r e fields which allow 

density dis tr ibut ions which a r e different. 
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Ekstein: How about s y m m e t r y ? 

Havas: They a r e all symmet r i c 

Ekstein: So the re a r e infinitely many? 

Havas: No, not infinitely many. The q goes only as high as you 

can go without running out of indices . So, for example , in the case of 

spin 1, there is only one. In case of spin 2 the re a r e two. 

Ekstein: So you woiild say that in the case of vector mesons T 

is not an obse rvab le? 

UL V 

Havas: In the case of vector m e s o n s the re is only one T , so 

there is no difficulty. 

H a m e r m e s h : For spin f, you have f different energy-momentum 

t enso r s ? 

Havas: Yes . 

H a m e r m e s h : Except , of c o u r s e , for spin 0? 

Havas: Yes . For spin 0 you have one. 

Ekstein: Is t he re any uniqueness s ta tement implied in what you 

sa id? For ins tance , for vector m e s o n s , do you say that it is imposs ib le 

to cons t ruc t any other tensor which is s y m m e t r i c ajid whose divergence 

vanishes ? 

Havas: No, that is cer ta in ly not t r ue , because you can always 

cons t ruc t new energy-momentum t e n s o r s from a Lagrangian when you 

add a divergence to the Lagrangian . In that sense an energy-momentum 

tensor is never vinique. 
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Ekstein: There is this ma t t e r of symmetr iza t ion . Wentzel 

d i s cusses the possibi l i ty of adding sonnething to the Lagrangian in o rder 

to symmet r i z e . 

Havas: Yes, but even then you can still add a quantity with zero 

d ivergence . 

Hack: You said that only the in tegral T is unique, but this 

is a t en so r . If vou in tegra te T. , should this not be the s a m e ? 
' " l O 

Havas: Yes, it should. 

Hack: So the total momentum is also the s ame? 

Havas: Yes. 

Concerning the annbiguities, I said before that all these energy-momentum 

t enso r s lead to the same equations of motion and the ambiguity d isappears the re . 

But as I said, it tu rns out that in the end you can ' t get any singulari ty introduced 

consis tent ly at a l l . I think this innpossibility of having point sources of fields 

of higher spin is one of the in te res t ing r e su l t s one can draw out of the c lass ica l 

theory . 

But to go back to the d ivergence, the procedure is just as in the case of 

e lec t rodynamics . By an t i symmetr iz ing the f i r s t t e rm with r e spec t to <s and [i 

w ê can wri te for the f i r s t and th i rd t e r m 

1 ( _ 9 ^ ^ Xj(q)--[°'v]--+ f y (q) . . [ ixv] . . ^ gV y(q) . . [o - f i ] . . ^(q) 
2 . . [trix] . . , 
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which vanishes because of Eq. (10), Making use of Eq. (6) we can wri te the 

l a s t ternn 

- ^ 2 , u ( q - l ) y(q) . .[o-v ] . . _ y ( q - l ) 0̂" ^ ( q - 1 ) . . v . . . 
. JOT , 

and the second t e rm 

. . cr. . cr . . fx . . 

There fore , we finally have 

- ^ T x i q - i ) .̂^ T̂ (̂ )̂  =(2 r')^-"^ ({p^^"^'^^ +/^u< 4Tr 9 ' 
' • or 

- 9 ^ 9 U^^l-in u(^"l)-'t°'^U •̂̂ '9 '̂ Û l̂"̂ ) U<^"1)"V ' 
0- . , [X . . / I s . . |JL . . 

(14) 

Clear ly this i s ze ro because of the Loren tz condition (11) and the wave equation 

(12). 

I just want to make another r e m a r k about the energy-momentum tensor 

when the r e s t m a s s is z e r o . With the r e s t m a s s zero you would expect dif­

ficulties because of the factor ( 2 ^ ) in Eq. (13). Actually then only T 

ex i s t s . However, then you have another non-uniqueness due to the gauge t r a n s ­

format ions; one can add a tensor of the form 

N = 9 C - + 9 f t C + . . + 9 . C 
ap. . .Vg a p. . .Vg p a. .Vg 6 ap. , . y 
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with 

C? C _ = 0, 9** C = 0, C^ = 0, C symmet r i c , 

to the potential without changing the field or the energy of the field. 

Fo r spin zero the energy-momentum tensor is not of the general form 

(13). In this case we have the wave equation 

( P + / ^ ) U = 0; (15) 

we can define 

9 U = U 
[J- fi 

and then can wri te Eq, (15) as 

S^ U f / ' U ^ 0. 

Then the energy-momentum tensor is 

^̂  U U^ - i 6" (U -"^ V2./-
fi ^ f l (T 

4Tr T;^ = U U - " I 6_ (U_̂  U - / ^ U ' ) , (16) 

and for i ts divergence we get 
V 

4Tr 9^ T = ( U U + ^ U) U^ , ^ '̂̂ ^ 

which again is zero if the wave equation is satisfied. 

III. NEUTRAL FIELDS WITH SOURCES 

I want to talk about spin 0 f i r s t because in this case it is quite easy to 

see what you should do if you want to introduce in terac t ions ; as usual you want 
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the divergence of the energy-momentum tensor to become an express ion which 

is b i l inear in the source density p and the field U. For this you jus t have to take 

( H + X ^ ) U = 4Trp. (18) 

Then Eq. (17) becomes 

9^ T ^ = p uV (19) 

This s eems to be the only way in which one can sensibly introduce an in te r ­

action in the sca la r ca se . In the other c a s e s , the situation is a l i t t le bit more 

complicated. We have before us some equations such as (9) and (10) which only 

depend on the definition of (6) of U and therefore can not be changed. For 

our p r e sen t purposes the ea s i e s t thing to do is to introduce the source density 

in Eq. (7). We define in analogy to Eq. (6) for all q < f 

p ( ^ ) , = 9 p \ ' ^ - 9 « P ^ ^ " ' ^ (20) 
. . [ap ] . . a . . p. . p ^ . . a. . 

and rep lace Eq. (7) by 

^ " i . L a P ] . . -̂  ^ " . . p . . ^^^ P . . p . . • (21) 

Contracting this equation with 9 1 get 

Z ^ P U^V^ = 4. 9^ p\'^ . (22) 

This express ion is zero outside the s ingular i t ies and so the Loren tz condition, 

which you need so that you have only quanta of definite spin in the field, is 
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maintained outside the s ing\ i lar i t ies . We also need a s imi lar relat ion for the 

t r a c e s . 

However, I want to make two r e m a r k s : F i r s t of a l l , if ^ = 0 , you 

get from Eq. (20) 

a^ p' l - '> = 0, (23) 

which means that for ze ro r e s t m a s s of the field you mus t have a conservat ion 

law for the source densi ty. Then, it looks he re as if you don't need Eq. (23) 

for "X î  0« I can ' t show the detai ls because it would take too long, but it 

tu rns out that actually you have to a s sume Eq, (23) for f > 2, at l eas t for point 

sou rce s . But for spin 1 you definitely can leave Eq. (22) unchanged and, as 

I shall d i scuss l a te r (in Sec. VII), this does not impose any re s t r i c t ion . So 

6 
actually ins tead of distinguishing in the equations that for spin > 2, 3 p 

. . p. . 

equals 0, and for spin 1 it does not. I shall wri te the same formiolas all the 

t ime and just imply that if you have m o r e than one index Eq, (23) mus t hold. 

F rom Eqs . (21) and (22) we get 

(24) 

and then the divergence of the energy-momentum tensor (14) becomes 

8̂^ T <̂ )̂  = (2^^)^"'^ /'p(^-l)u(*l)--t"^^] 

+ 8^ p (^ -^ ) U ^ ^ l - l ) - - - ) . (25) 
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IV. CHARGE-SYMMETRIC FIELDS 

The only other topic I want to d i scuss today is the question of cha rge -

symmet r i c f ields. As you know^, c h a r g e - s y m m e t r i c fields have been introduced 

4 
f i rs t in quantum theory by K e m m e r . An analogous c lass ica l theory was in-

5 
vest igated l a t e r by LeCouteur . One cons iders a "charge space" ajid takes 

all quantit ies as th ree-component vec to r s in this charge space. The third 

component is supposed to r e p r e s e n t neut ra l f ields, and the f i r s t and second 

together the charged field. We can regain the neu t ra l theory by only cons ide r ­

ing the third component of all our equat ions, or we can regain the charged 

theory by setting the thi rd component equal to z e r o . F i e r z wrote the charged 

fields in t e r m s of complex quant i t ies , which amo\xnts to the same thing. 

Actually I have nothing to r ewr i t e in what I did h e r e . All I have to do is to put 

l i t t le a r r o w s under all field quanti t ies and under all the soiirce densi t ies to 

imply that I have a th ree-component vector in charge space. Every t ime I 

have a product I rep lace it by a sca la r product in charge space . 

The new feature , of cour se , comes in because you can define a new 

quantity which is conserved . 

Ekstein: Two new quanti t ies which a r e conserved . 

Havas: Namely? 

Ekstein: The isotopic spin and the charge . 

Havas: We have no pa r t i c l e s as yet - - jus t the pure field. 

Ekstein: Even then, in any charge theory , c h a r g e - s y m m e t r i c or 

not, you mus t have c u r r e n t conservat ion . In addition, if you have charge 
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symmet ry you mus t have isotopic spin invar iance , 

Havas: This i s implied because I rea l ly get a conservat ion law 

which is too wide. The s t r ic t ly charge-conserving equation would be a 

s ta tement on the third connponent in charge space of the cha rge -cu r r en t 

density vec to r , but what one gets in this approximation is a s ta tement 

on all th ree components; so you a r e r ight . 

Now let us consider spin zero f i r s t and just wr i te down the appropr ia te 

definit ions. You can define the " c h a r g e - c u r r e n t densi ty" which is a four-vector 

in four space , and also a t h ree -vec to r in charge space. We take 

4TT j ^ = e U A U^ (26) 

(and jus t the thi rd component of this in charged theory) . Here / \ means vector 

product in charge space , and e is a constant . Fo r the divergence we get, 

using Eq, (18) 

a j ' ' = - e p / \ U . (27) 

One can define analogous vec to r s for spin f > 0 by 

4 . j^^)^ = e(2^^)l"^ Ju^^"'> /^ u^'l^-'kv],,] 
••*• I •••• • • U • s —•• j 

(28) 

where , as r e m a r k e d before , al l different j give the same total charge . 
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Then 

8 I'l*" - .^ZT)'-" p"l-^' As U<^-'>--'--. (2,) 

Teng: Does physics specify which q to t ake? 

Havas: At this s tage , no. In the end physics will tell u s . 

Kaplan: What is the point then? 

Havas: People have been inventing all kinds of theor ies of 

e lementary p a r t i c l e s . They found out after a while that the conditions 

they applied in ei ther c l a s s i ca l or quantum theory a r e not s t r ingent 

enough. You can build up theor ies of al l kinds of spin. I am going 

through it because h e r e is a case where one can get r id of them again. 

In mos t other cases one is jus t building up and then does not seem to 

have any select ion and then one doesn ' t know why ^one does not find a 

par t ic le of spin 260. 

Teng: I was thinking of the e lec t romagnet ic c a se . 

Havas: In the e lec t romagnet ic ca se , the re is jus t one case any­

how, q = 1. 

Teng: What do you call the potentials in that c a s e ? 

Havas: The potent ials a r e the thing with one index. F rom the 

potentials you define U , which is the e lec t romagnet ic field. Then you 

can ' t do anything anymore because the re a r e no free indices . 

Teng: The in terac t ions can never be through the potent ials ? 

They always have to be through the fields ? 



= 145-

Havas: You mean in the e lectromagnet ic c a s e ? 

Teng: In amy c a s e . 

Havas: It is rea l ly through both. I introduced it through Eq. 

(21), which involves both of them. Actually, except for fields of r e s t 

m a s s ze ro , the potentials and the fields enter m o r e or l e s s s y m m e t r i c ­

al ly, as Kemmer has s tated a l ready in his or iginal a r t i c le on meson 

theory. It is jus t a ma t t e r of prejudice from elect rodynamics that 

you think of the fields a s m o r e fiindamental, because once you have 

r e s t m a s s non -ze ro , the fields and the potentials a r e re la ted symi-

me t r i ca l ly , if you want to wr i te the theory as f i r s t -o rde r differential 

equat ions. The field is re la ted to the f i r s t derivat ive of the potential 

through Eq, (4), and the potential is re la ted to the f i rs t derivat ive 

of the field through Eq. (5). 
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Lec tu re 2. 

V. PROPERTIES OF THE SOLUTIONS OF THE GENERALIZED WAVE EQUATION 

The essen t ia l r e su l t obtained l a s t t ime was that we had to deal in the 

end with some general ized inhomogeneous wave equations. Now the next 

thing to do before we can obtain equations of motion is to d i scuss the genera l 

p roper t i e s of solutions of this equation. The impor tan t feature is that one can 

make s ta tements on which pa r t i cu la r solutions (including their der ivat ives) a r e 

finite and which a r e not. One needs this l a t e r for the equations of nnotion. 

Let us consider the equation 

( P + 7 ^ ) 0 - = 4Tr p . . (30) 
' • • • • • • 

As you all know the Green ' s functions for this from quantum theory of wave 

fields, I won't spend any t ime on deriving them. There a r e severa l different 

possible ways of choosing G r e e n ' s functions, and the ones I shall need a r e the 

r e t a rded one, the advanced one, and the s y m m e t r i c one. The r e t a rded one is 

0 U < -U 
O S 

The advanced one is 
(31) 

0 

0 

u > u 
o s 

6 (u2 ) - - 4 — J . ( y u) u < u 
(32) 
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The symmetric one is 

S = I (A^ + AJ, (33) 

In the limit oi 1( -• 0 these functions reduce to the ordinary Green's functions 

D , D and D of quantum electrodynamics. In the above 

U = X -X ' , u = (u u ) 
|j. |ji n [J. 

û  = k^^^)"- ( k - 1, 2, 3) , 

In the inhomogeneous equations, the inhomogeneities consist in general of a 

sum of terms, but for our present purposes we assume that there is just a 

single inhomogeneity of the form 

00 

p , . , ( x ) = J S , . , ( T ) 6 ( s O ) 6(S1-) 6 ( S 2 ) 6 ( s 3 ) d . T 
-co 

wi th 

s^ = x"̂  -z*^ ( T ) , (34) 

where T is the proper time as we defined it last time, S is a tensor which 

is again symmetric just as the field tensor was, and the delta is the Dirac 

delta function. From now on I shall denote this four-fold delta function as 

6'*(s). Then we can obtain immediately the "fundamental retarded solution" 

Oy_ , = 4TT / A^ (x, x') p (X') d4 X' , (35) 

where d^x' is the four- dimensional volume element for the x' system. 
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This we can immedia te ly reduce to a s impler form. F i r s t of al l there is a 

delta function inp(x ' ) , which on integrat ion changes A (x,x ' ) to A (x, z). 
r r 

Therefore the f i r s t t e r m in Eq. (35) reduced to 

1 7r 
- J 6 ( s 2 ) S . . . ( T ) d T (36) 

- 0 0 

For the second t e rm in Eq. (33) we can again in tegra te over the delta function 

and get 

•7 / S...(T) 1 ^ ' ' d-

• 0 0 

where 

s = (s s'̂  ) 

and the r e t a rded point T and the advanced point T a r e defined by 
r 3. 

s = 0, s > 0 or s < 0, 
o o 

(37) 

respec t ive ly . Now Eq. (36) can be reduced further by a t r i ck due to D i r ac . 

Everything would be simple he re if the va r iab le of integrat ion would be the 

same as the var iab le in the delta fxinction, so we will jus t nnake the switch to 

that; we want to rep lace d r by d s^ ^ so we have to multiply and divide by 

ds2 / d r , Now s^ as a function of T is as shown in the f igure. 
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so the der ivat ive in the region of in te res t is negative. Therefore , if I want to 

keep the lower l imi t , cor respdnding to the smal le r value of the va r iab le , I have to 

introduce a minus sign. Then I have 

- i J Ms^)S (r) ^^, _ 
2 J d s 2 / d T 

The denominator depends on T through z, the position of the pa r t i c l e , and 

therefore 

ds2 dz T .a 
_ = -2 s —:; = - 2 s V . 
d r jj. d r \i. 

We define 

K = s . v^ 

and wri te express ion (36) as 

r M s 3 ) S . . . ( T ) ^ ^ , 

which equals 

K ' 

to be evaluated at s^ = O. Since I used the re ta rded delta function (31), the 

ze ro corresponding to the r e t a rded t ime has to be picked. Therefore , we get 

for the fundamental r e t a rded solution. 
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In the same way v/e could work out the advanced potential; the dif­

ference h e r e , f i rs t of a l l , is that you get a minus sign, that is —S/fe , 

evaluated at the advanced point, minus the integral going from the advanced 

time to plus infinity, i. e. , 

O^ •< '̂-frl-/î --̂ ^^* 
(39) 

This is the "fundamental advanced solution". 

In the case of e lec t rodynamics you woiild only get the f i r s t t e rm in 

Eqs . (38) and (39) and this then is jus t the usual r e t a rded potential and ad­

vanced potential in four-dimensional notation. 

I jus t cons idered the fundamental solut ions, but in general we can have 

some m o r e complicated express ions since we s ta r ted out from a l inear equation. 

Obviously when I differentiate on both s ides I sti l l get solutions of the inhomo­

geneous wave equation; I can contract over indices and sti l l get solutions, and 

I can add solut ions. So I ' l l denote the differential opera tor which does all 

that by .o^and we have 

Uf. =^{O^A . Uf . . = / - ( 0 ^ ) , (40) 

for the general r e t a rded and advanced potentials of a point pa r t i c l e . 

For these differentiations I ' l l note a few re la t ions for future u se . For 

differentiation within an in tegra l , T is jus t a var iab le of integrat ion. In that 

case we get from the definitions 
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Outside an in tegra l you have to w o r r y about dealing with a re ta rded point or an 

advanced point. L e t ' s do it f i r s t for the re ta rded point. We have then 

a s ( T ) = T I - V ( T ) 8 T 
V tJL r '[xv \i T V r 

a n d I have to e v a l u a t e the l a s t t e r m . C o n t r a c t i n g wi th s , I ge t 

s ^ a S ( T ) = S - K d r 
V p. r V V r 

On the other hand, for the r e t a rded point I have 

s^ s = 0 

and if I differentiate this I get jus t the left-hand side of the previous equation. 

Therefore 

5 T = ^^ (42) 
V r —TZ— 

and I get finally 

9 s (T ) = 11 - V ^ 1 _ , (43) 
V n r '\xv [x 1^ 

all of which has to be evaluated at the r e t a rded t ime . In the same way I get 

K K^-^J = ^. - ( 1 - ^ ' ) - ! ^ . (44) 

K 
where 

K U s v*̂  . 
^ fX 
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F o r any funct ion of T a l o n e , I ge t f rom E q . (42) 

8 f(T ) = f 8 T = f !2L . (45) 
V r V r | . 

Now i t i s i m p o r t a n t to no t e for w h a t i s com i ng l a t e r t ha t in the d i f f e r e n t i a t i o n 

I n e v e r m a d e u s e of the fac t t h a t I w a s dea l i ng w i t h a r e t a r d e d p o i n t , a s I n e v e r 

had to w o r r y abou t the s ign of s . T h e r e f o r e if I would do the s a m e for the 
' " o 

a d v a n c e d po in t I would end up w i th f inal a n s w e r s of the s a m e f o r m a s E q s . (42) -

(45) , e x c e p t t h a t t hey wou ld h a v e to b e e v a l u a t e d a t the a d v a n c e d p o i n t . 

The e s s e n t i a l po in t for the t h e o r y i s t h a t one can m a k e qui te g e n e r a l 

s t a t e m e n t s on the b e h a v i o r of the s o l u t i o n s a s one a p p r o a c h e s t h e w o r l d l i n e 

and t r i e s to e v a l u a t e t h e m on the w o r l d l i n e . T h i s I c a n ' t go t h r o u g h in d e t a i l ; 

i t i n v o l v e s s o m e not v e r y di f f icul t , bu t s o m e t i m e s l e n g t h y , c a l c u l a t i o n s . One 

can p r o v e the fol lowing s t a t e n n e n t s : If I def ine t h e " f u n d a m e n t a l r a d i a t i o n so lu t io 

by 

O ^ " ^ - \ (O^ - O ^ ) = i ' ^ s . . . 2 ^ • • • • • ° ' 2 (V). ^ h (V) 

U / - / ; s... ^ 4 2 £ ^ d . . ,,,, 
:» ''a J 

then it can be shown that this quantity and also al l i ts der iva t ives a r e finite 

as we approach the w^orld l ine . La te r I will give explicit formulas for the f i rs t 

few expres s ions . I a lso want to point out, to avoid confusion, that what I cal l 
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the radiat ion solution is half of what Dirac and Bhabha call the radiat ion solution, 

but actually it is the quantity (46) which en te rs the equations of motion as a 

radiat ion damping t e r m . 

Ekstein: How can one make a general s ta tement about finite-

ness without specifying what S i s ? 

Havas: It has nothing whatsoever to do with S^ ^ _ , except that S 

as a function of T and all i t s der iva t ives should be finite. It is not the 

S in (46) which causes the t rouble , but the A because it vanishes as 

one approaches the world l ine . So one has to go through some expansion 

powers of K and show that everything stays finite. Actually, this goes 

for the separa te pa r t s too. The pa r t involving the in tegrals stays finite 

and the other pa r t , by itself, a lso stays finite. 

Tanaka: Does S^ ^ ^ become infinite on the world l ine? 

Havas: ^, , , is only defined on the world line to begin with - -

it is a function of the p roper t ime . 

Ekstein: How can you make s ta tements about the differentiability 

of an in tegral without knowing what is in the in tegra l? 

Havas: The a rgument rea l ly goes the other way around. S as 

a function of T should be de termined once one has equations of motion. 

I could only say something about how S . . . will behave at T = +oo or -oo 

if I had the equations of motion solved. So at this point I can make all 

the assumpt ions I want about reasonable behavior and if I then came up 



-154-

with a set of equations of motion which lead to unreasonable behavior I 

woxild be in t rouble . Therefore this i s rea l ly a question which can not 

be answered h e r e . 

Now if instead of the difference I take the sum of the potent ia ls , I 

get what i s called the "fundamental symmet r i c solution" 

^ s y m 1 , ^ r ^ a , 1 / S ) 1 / S 
o.: . = 2 (o. . . + 0 . . . ) . ^ -^^y - 2 • <. r n K_ 

- i- \Y ^ fls...iil^dx. (47) 

This is singular on the world l ine. 

The in tegral 

? S ;^J^j/£) dr (48) 
J • • • 

- 0 0 

by itself is a solution of the homogeneous equation because 

(o . r ) f s... iiiiiia. = /s...,a.r)MXi>d., 
•̂  s s 

- 0 0 - 0 0 

and this i s 0 since the t e r m involving the Bes se l function jus t sat isf ies the 

requi red differential equation. But as the in tegral (48) by itself is a solution 

of the homogeneous equation, I can add or subtract it from any solution of the 

inhomogeneous equation without changing the cha rac t e r of this solution. 
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I shall now define two new quanti t ies: The "modified radiation solution" 

O 

•00 - 0 0 

and the "modified symmet r i c solution" 

,sym ^ Q s y m ^ i L f° = i f^-'-] - - fl: Q . s y m ^ ^ s y m ^ n r 
2 J" • 2 1 -jy-j 2 

- 0 0 
K4 nK, 

^ a 

+ X f" S '^^ts) p S -^1^ IS) d r . (50) 
T S 

r 

Of cou r se , the sum of Eqs . (49) and (50) is the same as the sum of Eqs . (46) 

and (47); namely the r e t a rded potenticuL. Now the reason for these 

definitions is the following: Eq. (49) is symmet r i c in r and a, and Eq. (50) 

is an t i symmet r i c in r and a, while Eqs . (46) and (47) have no such simple 

p r o p e r t i e s . One can prove the stateinent about the energy-momentum tensor 

which I am going to make l a t e r , just on the bas i s of this symmet ry . 

As I said before , the radiat ion solution is finite on the world l ine; I 

shall not go through the evaluation of it. There a r e essent ia l ly twoways in which 

7 
one can do it . One is due to Har i sh -Chandra who developed the method originated 

g 
by D i r ac . He uses an expansion in powers of J^ and then goes to the l imi t 
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K. -• 0, It is a ra ther long calculation if one wants to go beyond the f irs t 

9 

der iva t ive . The other is the method of R iesz , developed f i r s t for e l ec t ro ­

dynamics . He t r e a t s the differential equations one rea l ly wants to consider by 

analytic continuation from a different se t , which behaves decently. Ei ther way, 

you get the same a n s w e r s , at l ea s t as far as invest igated. One can ' t say much 

in general about the in tegra ls in Eqs . (46) or (49), but for the other pa r t you 

get the following r e s u l t s . 

- / ' i s ( v - v v v ° ' ) + 2 v S + 2 v S f . (51) 
^ S ' p p o " p p | o 

J 

One can continue for higher de r iva t ives , but the p r o c e s s gets ex t remely 

c u m b e r s o m e . Also , one may have to evaluate der iva t ives of the in t eg ra l s , 

which involve der ivat ives of the l i m i t s . One also needs express ions like 

ss \ ^ fs& \ r \ . . . -1 
>a- + 8 / cr 1 , . „ , _ , = J —T] S + v V S + v V S + 2v V S 

/ P {—jZ—/ I p t r p o - o - p p t r 

(52) 

All these express ions a r e needed because the equations of motion involve the 

modified radiat ion solution evaluated at the posit ion of the pa r t i c l e . 
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VI. DIRAC'S METHOD FOR OBTAINING EQUATIONS OF MOTION 

The next question is how^ to get equations of motion. It might be thought 

that it is sufficient to equate m a s s t imes accelera t ion to cer ta in finite in te r ­

action t e r m s . Although this works in some c a s e s , it does not in genera l . 

9 
This i s the p rocedure used by Riesz in e lec t rodynamics , where it happens to 

be r ight . He didn' t do the case of a sca la r field where it would lead to incon­

s i s t enc i e s . Thus he didn' t do anything wrong, but this i sn ' t a general method - -

jus t something that happens to work in this simple form in some c a s e s . 

Q 

Dirac , on the other hand, s ta r ted from the law of conservation of 

energy and momentum, which is 

8 T ^ = 0 
V n 

when the re a r e no s ingular i t ies p r e s e n t , and wanted to maintain such a con­

serva t ion law for the ent i re sys t em, even in the p resence of s ingular i t ies . 

I shall f i rs t desc r ibe D i r a c ' s method and then re tu rn to some c r i t i ­

c i s m s . D i r a c ' s idea is to take the world line of the par t i c le and surround it 

by a thin tube, the radius of which one ult imately makes to tend to ze ro , and 

then one calculates the flow of energy and momentum into the tube from the 

outs ide, which can be done jus t by using the T for the field alone. Then one 

finds the equations of motion fronn the requ i rement of conservat ion, which 

impl ies that the integral of the flow into the tube between two t imes T^ and T 

should be express ib le as a difference of two t e r m s at the beginning and at the 
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end. This in tegral equals 

,|JLV 
/ T^^ S , 

^ 2 

ULV 

because you s t a r t out with the divergence of T in tegrated over some volume 

element , and this you can t rans form into a surface in tegra l . 

Now Dirac s t ipulates that the l imi t of the flow into the four-dimensional 

region should jus t be the difference of two quanti t ies A ( T ^ ) - A (T^^ ). Another 

way of saying this is that 
T 

l im f T^^ d S = Â ^ ( T ) , (53) 
J V dT 

T 1 

i . e . , a ce r ta in quantity should be a perfec t differential . 

Di rac himself applied that to the energy-momentum tensor alone. The 

ma themat i c s is exactly the same for any t enso r , jus t as long as the re is a 

conservat ion law. The method was extended to conservat ion of angular m o ­
l l 12 

mentum by Bhabha, and then Bhabha and Har i sh -Chandra genera l ized the 

a rgument mathemat ica l ly to al l t e n s o r s for which one has conservat ion l aws . 

The r e s u l t s obtained also follow from a mathemat ica l ly different way of p r o ­

ceeding, which is a lso based on the exis tence of a conservat ion law^, which 

id due to Mathisson; the methods a r e en t i re ly equivalent. 

It is quite easy to see that the information you get, jus t as long as you 

finally le t the rad ius go to z e r o , does not depend on what tubes you s t a r t ed out 

with, so that the difference of the exp res s ions you calculated by having two 
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different tubes , can at mos t be a perfect differential. Thus, you get unique 

information out of this method. This information by itself, of course , does 

not help you because the t rouble is not in getting equations of motion, the trouble 

is in getting finite equations of motion; if you calculate (53) explicitly, of course , 

you will find that the der ivat ive of this l imit is infinite. To get finite equations 

of motion one has to show that whatever becomes singular as you go to the l imit 

is by i tself also a perfect differential . Once you have establ ished that, then you 

u, 

can say that you didn't know what A should be in the f irs t p lace , and so what­

ever singular perfect differential you have on the left in (5 3) can be compensated 

u, 

by an appropr ia te choice of A , so that the difference is finite. It can be shown 

in genera l that whatever t e r m s you get in (53) which depend on the radius of the 

tube and become singular as you go to zero with the radius of the tube, a re 
12 

identically perfect differentials; therefore one does not have to consider them 
anymore . The p rocedure may be thought of as a"renormalization"of A although 

u, 
the "unrenormal i zed" A need never be considered. 

The next question i s , "What is left o v e r ? " The answer depends on the 

form of the energy-momentum t enso r . F i r s t of al l , when I wrote down the 

energy-momentum t enso r s (13) and (16) I wrote them as functions of the field 

but didn't say what the field was . There is a choice there because the re a r e 

severa l G r e e n ' s functions for the wave equations. What you should put in is 

the total field, but you can e i ther take it as the r e t a rded field plus an external 

field, or as the symmet r i c field plus the external field, or you could take any 
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combination of r e t a rded and advanced fields for which the coefficients add up to 

one, since it would sti l l be a solution of the inhomogeneous equation. I shall 

just consider the f i r s t two c a s e s . The calculation is the same for the different 

fields, but the final equations of motion depend on what you a s sumed the total 

field to consis t of in the beginning. 

In the r e t a rded case I can wr i te identically 

y to ta l ^ ^ r e t ^ ^ e x t ^ ^ s y m ^ ^ r a d ^ ^ e x t 

from the definitions, and this I can also wr i te as 

y tota l ^ ^ . s y m ^ y . r a d ^ ^ e x t ^5^^ 

because of the way the modified fields a r e defined. In the symmet r i c case I 

can wri te , using Eq. (50), 

^ total ^^symi xr^xt ^^.sym r ^T^xt ,__. 
U = U ' + U = U ' ' + j . . . + U . (55) 

Now you see that both express ions contain U' , which is s ingular . The 

other quanti t ies on the r ight -hand side of Eqs . (54) and (55) a r e all solutions 

of the homogeneous equation. So in both cases I put 

y to ta l ^ ^ , s y m ^ ^ mean ^ ^^^^ 

where I define the "modified mean field" by 

rad ext 
U' + U in the r e t a rded case mean 

^ c ext 
j . , . + U in the symmet r i c c a s e . 
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I shall jus t talk about U' from now on and won't have to distinguish the 

two c a s e s . 

The a rgument we shall use depends on tb.e fact that all the energy-

momentum t enso r s T which we considered a r e homogeneous quadrat ic 
[XV 5 ^ 

functions of potentials and field s t rengths U. I shall now introduce the nota-

A B 
tion T (U , U ) to denote an express ion obtained from T by replacing one 

[LV |XV 

A B 
U in each t e r m by U and the other by U and then symmetr iz ing . So instead 

of having an express ion -w^hich is quadrat ic in the U ' s , I get an express ion which 

A -D A R 

is b i l inear in U and U and symmet r i c in U and U „ With this notation I 

could wr i te my original T as 

^ ,̂  total ^^total^ 
T U , U . 

[XV 

This is just an awkward way of wri t ing the usual energy-momentum tensor , 

but now I can substi tute Eq. (56) and obtain 

„ „ ,^^,sym ,mear! sym ^^,mean, 
T = T (U' ^ + U' ^ U' + U' ) = 

[XV [XV 

= T (U-^^"^, U-''^""') . 2T (U'^y"^, U'™«^") -. T (U'"^^^", U'™"^"). 
|XV |XV |XV 

(57) 

What I have to do according to the Dirac method is to find the flow of 

energy and momentum in Eq. (53) by using these t ensors and then to go to the 

l imi t of shrinking the rad ius to zero and taking the der ivat ive . The surface 

in tegra l in (53) came , of cou r se , from the divergence, but as the l a s t te rm in 



-162-

Eq. (57) is just made up of solutions of the homogeneous equations, i ts divergence 

, , . , ., „ , .̂ _ ,^^sym ^^.sym. . 
IS zero and thus it won't contr ibute . The f i rs t t e r m T (U , U' ) is 

[XV 

singTilar - - ve ry much so - - but it can be shown to give a flow which is ident­

ical ly a per fec t differential . This can be shown simply from the fact that 

U' , as I d i scussed before , i s an t i symmet r i c in the r e t a r d e d and advanced 

points . That is al l which en te r s into the proof, but it is just a l i t t le too long to 

wr i te out. Being a perfec t differential it can be taken c a r e of in A as d i s ­

cussed before . Therefore only T (U' , U' ) is left. If one calcula tes 
[XV 

i ts d ivergence , and takes into account that U' sat isf ies the homogeneous 

equat ions, one finally gets an express ion of the form of an inhomogeneity 

mult ipl ied by some function of the modified mean field. But from what I said 

in Sec, V, the modified mean f ie ld is finite and all i ts der iva t ives a r e finite. 

This is as far as one can get in genera l , and now one has to consider the 

specific forms of the energy-momentum t e n s o r s w^hich we had in Sec. II. 

When I s t a r t out from the energy-momentum tensor in Eq. (53) it 

will give me the t rans la t iona l equations of motion. When I do the cor responding 

calculat ions with the angular momentum t enso r , I get the rotat ional equations 

of motion. The question which a r i s e s i s . Which other t e n s o r s should be con­

s i d e r e d ? " H e r e I think the Di rac method is ambiguous . The Di rac method, 
12 

as genera l ized by Bhabha and H a r i s h - C h a n d r a , s t a r t s out as if it w e r e a 

mathemat ica l p r e s c r i p t i o n . It s a y s , "Take whatever conservat ion laws you 

have for the free fields and then r e q u i r e them to p e r s i s t in the p r e s e n c e of 

s ingu la r i t i e s . " Th i s , how^ever, i s too much, because often t h e r e a r e m o r e 
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conservat ion laws for free fields than you a re able to satisfy when you have 

s ingular i t ies p r e s e n t , and also m o r e than you would physically expect to mean 

13 

something. Therefore one has to make a select ion somewhere on what one 

rea l ly -wants to consider ; so this tu rns out not to be just a mathemat ica l rec ipe 

to get equations of motion, but one mus t pick out what one cons iders to be 

physical ly significant in the laws for the free fields and then proceed from these 

to get equations of motion. 

Of cou r se , it would be preferab le to have a method in which one does not 

have to impose a r b i t r a r i l y what one wants to keep and what one does not want 

to keep. Actually this kind of select ion is automatic . if, ins tead of proceeding 
1̂  

D i r a c ' s way, one proceeds from the l i n e a r i z e d equations of general re la t ivi ty . 

Essen t ia l ly this select ion is due to the fact that in the general theory or r e l a ­

tivity the ove r -a l l conservat ion of energy-momentum and the conservat ion of 

angular momentum a r e built in. So you can take the bas ic equations and ob­

tain from them the equations of motion w t h o u t any ambiguity and without any 

a r b i t r a r y imposi t ion of condit ions. One can show in general that one gets 

the same equations of motion this way as from the Dirac method, provided 

that one r e s t r i c t s oneself in the l a t t e r to conservat ion of energy-momentum 

of angular momentum, and of cha rge . 

7 
I shall now indicate ve ry br ief ly , following Har i sh -Chandra (compare 

also re fe rence 3), the calculat ions leading to the equations of motion for the 

specific form (13) of the energy-momentum t e n s o r s . I 'm just going to consider 
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the f i r s t t e rm in the divergence (14) for lack of t ime . There is another t e rm 

which involves the divergence of the source density, but for the fields of spin 

two or higher that doesn ' t enter cinyhow, as I d i scussed before , so I am not 

going to evaluate i t . For spin one it does m a t t e r , but the re I shall just give 

you the final answer . The impor tan t feature I do want to show is that you can 

work your way through back from the q you s ta r ted out f rom, do-wn to 1 and 

end up with the same equations of motion, r e g a r d l e s s of q. F r o m what I said 

mean , 

before , in the end the only field which m a t t e r s is the U' in Eq. (56); 

this being unders tood, I shall jus t wr i te U again. 

To evaluate Eq. (53) we take our tube surrounding the world line to 

be bounded by a mant le Q and by two space- l ike surfaces A and B, with A 

la te r than B . Then, if I take the outward normal for Q and the future no rma l s 

for A and B , the flow into our region is given by 

/ \ T''" d* X = - / T^" d s + f T^v ^3 r r^^ <is . 
V Q A V ^ V 

(58) 

I won't have to w^orry about the in tegra l s over A and B because in the linnit 

when you shr ink the tube dow^n to ze ro , these surface in tegra l s all reduce to 

express ions which only depend on the t ime T at the points, where A and B inter 

sect the world line and thus co r respond to perfec t dif ferent ia ls . Therefore 

we can forget about them and only have to evaluate the negative of the in tegra l 

over Q. If I jus t subst i tute into i t the f i r s t t e r m from Eq. (14) I get from 
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Eq. (58) 

- ( 2 ^ V " ^ / P̂ '̂ "̂ ^ U<^)--t '^f^U4x. (59) 

(q-1) (q) 

Now the genera l idea is the following: p and U a re defined in t e r m s of 

lower o rde r fields by cer ta in der iva t ives . I can substitute these definitions 

and in tegrate by p a r t s until I am at q = 1. For the integrated t e r m s , the 

l imi t s a r e the surfaces Q, A or B . At Q one is oiitside the singTilarity and 

therefore whatever has been in tegrated out won't contr ibute, because the source 

density vanishes on Q. Whatever one gets at A ajid B a r e in tegra ls like those 

in Eq. (58) which we just d i scussed and which again can be discarded. So I 

can forget about the integrated t e r m s . I won't go through the remaining deta i l s , 

but if you put in the definitions (6) and (20) and make use of the general ized wave 

equation (12) it tu rns out that at each step you go simultaneously from p 
(q-2) (q) (q-1) ^/^. 

to p , and also from U to U , and also get a factor of Z f\ . Con­
tinuing like this you end up with 

- / p . . . " < " • • • ' ' " ' ' d - - . (60) 

Therefore , whatever q you s t a r t out f rom, you end up with the same 

t rans la t iona l equations of motion. The same thing happens when you consider 

the angular momentum tensor - - you define the angular momentum tensor 

M ' in t e r m s of the T and go through the same procedure , reduce it 
(XV X [XV ° 



166-

down all the way to M and end up with the same rotat ional equations of 

motion. 

Now we a s s u m e for the source dens i t ies the form 

V v o . . " ^ ^^a§...,\iv, (61) 
9 

which is equivalent to a miiltipole expansion, and then, since 9 is synj-

m e t r i c , I can take -' _ to be symmet r i c in aS. . . by themse lves ; it 
a p , |JLv . . . 

also has to be symmet r i c in [JLV . . . separa te ly from the symmet ry cha rac te r 

of the tensor f ields, but between the two sets of indices the re is no connection 

The >̂  is taken to be of the form 
00 

6' „ = f S „ 64 (s )dT . (62) 
a p . . , ,fx-v . . . J a p . . . ,(JL V . . . - 00 

We substi tute Eq. (61) with (62) into (60) and then we again go through 

in tegra t ions by p a r t s , getting r id of the n der iva t ives in (61) and t r ans fe r r ing 

thenn over to the U . Then, using (53), we finally get 

» f. . ( . 1 ) ^ + 1 s , 9 a p . . . y ( l ) . . [ o - H , (63) 
a p . . . , . . (T. . 

If I had c a r r i e d along all the t e r m s of Eq. (14) I would have obtained 

an additional t e r m 

( - 1 ) " S _ ^ ^ ' ^ ^ P • - U ^ (64) 

which is of innportance only for f = 1. A is the momentum of the pa r t i c l e . 
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This was for neut ra l f ie lds , and for charge - symm etr ic fields we would 

jus t have sca la r products of the corresponding vec to rs in charge space in these 

exp res s ions . This is the t rans la t iona l eqiiation of motion; for the rotat ional 

equations of motion you get some complicated express ion equal to a cer ta in 

perfec t differential 0 which is an t i symmet r i c i n l a n d v . One can simplify 

the express ion by subtract ing out the r a t e of charge of the orbital angular m o ­

mentum, i . e . , by introducing 

B = ( g - 4 (2 A - z A ). 
[XV fxv d T |J- V V p. 

B c a n be i n t e r p r e t e d a s the i n t r i n s i c a n g u l a r m o m e n t u m of the s i n g u l a r i t y . 
|a.V 

T h e n we have 

B M - 1 ) ' ' ' ' ^ [ n ( S ^ . . c r . . 9 P . . . ^ ( 1 ) _g . .cr. .^ p. . ^ ( 1) 

-n (S „ • • ° ' - - 9 ^ - ' U - S , o.cr. . g P . . y 
fi. p . . , cr . . V V p . o , cr . . |Ji 

- ( S „ • • • • 8°"^' • U - S „ • • " • d"^^' • U )] 
a p , . , [i. . .V . . a p . . , V . . |JL . . •• 

- ( v A -V A ) , (65) 
|JL V V |a, 

w h e r e a g a i n the t e r n n s invo lv ing U should be o m i t t e d excep t for f = 1, and 

s c a l a r p r o d u c t s shou ld be s u b s t i t u t e d in the c h a r g e - s y m m e t r i c t h e o r y . 

In the c h a r g e - s y m m e t r i c t h e o r y we a l s o ge t a n o t h e r equa t ion f rom the 

r e q u i r e m e n t of c o n s e r v a t i o n of e l e c t r i c c h a r g e . 
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Lec tu re 3. 

VII. THE CONDITIONS OF THE SINGULARITIES AND 

THE FORM OF THE MULTIPOLE MOMENTS 

Las t t ime we found the general form of the equations of motion for 

spin 1 or g r e a t e r . I didn' t go through the same calculation for spin 0. It is 

connpletely analogous and I shall just wr i te down the r e su l t s l a t e r . I also did 

not obtain the other conditions you get from conservat ion of charge ; I shall 

not talk about the charged theory or cha rge - symm e t r ic theory from now on 

because t he re i sn ' t enough t ime . The calciolations a r e completely analogous 

and nothing s tar t l ingly different is obtained. 

The next question is what these equations rea l ly mean , because in the 

form in which we left them we had, f i rs t of a l l , all kinds of mult ipole moments 

introduced without any further s ta tements about them; and second, ŵ e had 

introduced the quanti t ies A and B , one of which was supposed to have some 

connection with the momen tum, and the other one with the in t r ins ic angiilar 

momentum. The quest ion is what further can one say, or what further con­

ditions should one impose so that one should be able to say something specific 

and get theor ies which a r e physical ly meaningful. 

F i r s t le t us see what we can say in genera l about the conditions which 

the equations impose on the quanti t ies c h a r a c t e r i s t i c of the s ingular i ty . Now 

we obviously did take c a r e of the wave equation because we got all the fields 

from in tegra l s of the wave equation. But then we also had conditions on the 

divergence of the source densi ty and on i ts t r a c e . So l e t ' s look f i r s t at the 
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divergence condition (23), For spin 2 or g rea te r it can be shown that you have 

to take the divergence to be 0, but not for spin 1, The solution of the wave 

equation for spin 1 is 

U = 4TT f A ( X , x') p (x') d* x' , 
a -' a 

where A is any one of the G r e e n ' s functions we introduced, and it was r e ­

quired by Eq. (22) that 

This does not impose any r e s t r i c t i ons provided//^ ^ 0 since 

a'^U = 4TT f a*̂  A ( X , X ' ) [ P (X ' ) + 4 Z 9 ' 9 ' ^ P J X ' ) ] d 4 x ' 

= -4Tr J S''^ A[ • • • ] d4 x ' = 4Tr J A 9'** [ •• • ] d4 x ' 

4'rr 
jj- / A ( P ' + Y ^ ) 9 ' p ^ ( x ' ) d 4 x ' 

= ^ / ( ^ + / ^ ) A 9 " ' p ^ ( x > ) d 4 x ' = JT i ^"^ (^-^') 9 ' ' ' P „ ( ^ ' ) d'* X' 

4iT ^ a , , 

If ^ = 0 , one has to r equ i re explicitly that the divergence of p should 

vanish, however . S imi lar ly it should vanish for fields of higher spin. This 

impl ies conditions which one can invest igate by a method which is a genera l -

15 
ization of the nnethod of Lubanski . He introduced it when he was dealing with 
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the lineariz^ed. equations of general relativity. Lubanski did not make use of 

6 -functions, but what his method amounts to is the following: Consider the 

expression 

fs 9'*^ ^ 64 (x' - Z(T) ) dT = 0, (66) 

We want to know what conclusions one can draw from this about S, We multiply 

Eq. (66) by 6 (u^ ) d* x' and integrate over all space. Then we get 

0 = f fs 9'* '̂ " ^ 64 (x' -z) 6 (u2) dr d* x' 

= (-1)^ f f s 64 (x' -z) B'°" " ^ 6 (u2) dr d4 x' 
"" -̂  a. . , V , , , . 

^°^°"^ JJ^ 64(x' -z) 6 (u2) dT dx4 

s 
a . . . V a . . . V , . (67) 

The last step follows as in the calculations leading to Eq. (38), Here 

we can carry out the differentiations, using Eqs, (43-45). Now Lubanski's 

argument is that as one approaches the singularity different terms will become 

singular with different powers of J\, . Therefore, if you want expression (67) 

to vanish, the coefficient of each separate power of ti. has to vanish separately 

which furnishes a number of conditions. I'll just go through the simplest 

case (in which you know the answer), nannely the electromagnetic field; 
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t h e r e , as you know, the charge density is proport ional to the four-velocity. 

One usually takes this for granted, but I shall prove it to show how Lubanski 's 

method works . In this case we have spin 1, and therefore the cha rge -cu r r en t 

density involves a four-vector S . We split this up in a component para l le l 

to the four-veloci ty and one component perpendicular to the four-velocity: 

S = g v + B , B v ^ = 0 , (68) 
V V V V 

In genera l , if we have seve ra l indices we just split the multipole moments 

appropr ia te ly in components pa ra l l e l and perpendicular to the four-velocity; 

this simplif ies the calculat ion. 

We mus t now evaluate 9 {S / K ) . F r o m Eq, (68) and the formulas 

for differentiation (44) and (45) we get 

(gv +iv +B ) ^ .(gv +B )rv^ .^IzpillL. 

B s ' ' . „ V 1- K ' 
g V + B s 

+ — ] 7 X ^ K^ 

The mos t singvilar t e rm diverges as — , The coefficient is B s //«j.. 

This mus t vanish for a r b i t r a r y s since you can approach the singularity 

from any direct ion. Therefore we mus t have 

B := 0 ; 
V 

but then all you have left is 

g / K = 0. 
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Therefore we mus t have g = 0, and so the e lec t romagnet ic cu r r en t mus t be 

of the form g v , with constant g. One can genera l ize this p rocedure and 

get a lot of information out of th is ; it can be used to der ive the equations of 

motion of general re la t iv i ty . 

For spin 2, where I won' t go through the calcula t ions , the divergence 

will equal 0 only if S is of the form 
(IV 

S = g v V . (69) 
fJ-V p. V 

This will satisfy the divergence condition, but you also have the condition 

on the t r ace 

S '̂  = 0. 

But Eq, (69) has a non-vanishing t r ace except if g = 0; this impl ies that one 

can ' t have a s imple pole in a field of spin 2, Sinnilarly one can show that 

the conditions which one has to impose on pa r t i c l e s in fields of spin 2 or 

higher a r e jus t too much. One can ' t satisfy all of them . Although in 

Section VI it looked as if one had solved the genera l form of the problem 

of the equations of motion by obtaining E q s . (63) and (65). t he re st i l l 

a r e further conditions to be satisfied and things don't work out r ight . 

Now again before I go to the specific eqxiations, I want to show s o m e ­

thing e lse about mult ipole momen t s in genera l , which amounts to a ve ry 

3 
general equivalence theorem about different couplings. What I want to show 
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i s t h a t one c a n a s s u m e 

v ' ^ S - = 0 (70) 
a p . . , V , , , , 

for the f i r s t n i n d i c e s . If E q . (70) d o e s no t ho ld , i . e , , if the 2 - p o l e m o m e n t 

h a s c o m p o n e n t s wh ich a r e p a r a l l e l to v , i t i s no t a c t u a l l y a p u r e 2 - p o l e , bu t 

i t i s e q u i v a l e n t to a 2 - p o l e . 

L e t us a s s u m e t h a t Eq , (70) i s not s a t i s f i e d for a p a r t of the 2 -po l e 

m o m e n t w h i c h I w r i t e 

V T - . (71) 
a p. . . V , , , . 

F r o m E q . (38) the r e t a r d e d p o t e n t i a l i s 

/ V T „ ,̂ ^ 

L v K / ^ -00 a p, , . v , s J 

(72) 

1 s h a l l show t h a t i t i s a c t u a l l y n o t the p o t e n t i a l of a 2 -po l e bu t t h a t of a 

2 - p o l e . When the a - d i f f e r e n t i a t i o n i s c a r r i e d out we ge t , u s i n g E q s . (44) 

and (45) 

« ; /' 'v T - + V T_ s " V v'^T^ 
_ r _ nP- • •I I a p . . .v , , , , a p. . . v , , . . a p. , . v , . , . 

K 
a 

K^ ^ ' A ^a p, , , v , . . , S K 

/ ' J a p , . . V , . . . s / 
- 0 0 



- 1 7 4 -

Now 

V 9' ' J/ </-^) - _ ± - J ( rg ) 
a s dT ^ 

T h e r e f o r e w e c a n m a k e an i n t e g r a t i o n by p a r t s in the i n t e g r a l . The i n t e g r a t e d 

p a r t e q u a l s 

X P. . . V , . . , 
J. (/-^ ) 

and if you then s imp l i fy , y o u o b t a i n 

O^ ^ gP. . . V If p. . , V , . . . 
J p. . ,V , . . . s J 

•CO 

(73) 

T h i s i s of e x a c t l y the s a m e fo rm a s E q . (72) , b u t w i th one d i f f e r e n t i a t i o n l e s s 

•n 1 

and one i n d e x l e s s , o r j u s t the r e t a r d e d p o t e n t i a l of a 2 - p o l e . The a d v a n c e d 

p o t e n t i a l w o r k s out the s a m e w^ay. 

.15 
The f i r s t r e a l i z a t i o n of any s u c h e q u i v a l e n c e w a s a g a i n by L u b a n s k i 

who found t h a t if in a g r a v i t a t i o n a l d ipo le you h a v e a c o m p o n e n t p a r a l l e l to 

V , t h i s i s e q u i v a l e n t to a m o n o p o l e . T h e n a s i m i l a r e q u i v a l e n c e w a s found 

7 
by H a r i s h - C h a n d r a for the s c a l a r d i p o l e ; b u t a c t u a l l y t h i s i s qu i t e g e n e r a l , 

the p r o o f i s e s s e n t i a l l y the s a m e in a l l c a s e s . T h e r e f o r e , f r o m now on we 

c a n a s s u m e E q . (70) o u t r i g h t for any m u l t i p o l e . T h i s i s no r e s t r i c t i o n a t a l l . 

The n e x t q u e s t i o n i s how m u c h m o r e m u s t y o u r e q u i r e a b o u t the 

s i n g u l a r i t i e s . L e t m e f i r s t do s o m e t h i n g w h e r e one d o e s n ' t h a v e to r e q u i r e 
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anything. Suppose I just want to get the resu l t s for a simple pole. In the case 

of spin 1 fields, of cour se , if I a s s u m e zero r e s t m a s s I should just get the 

o rd inary Loren tz -Di rac equation. If you don't have r e s t m a s s 0 the re will be 

m o r e even for spin 1 because , as I showed you, then you have no condition on 

the d ivergence , and then you have, even for a simple pole, two kinds of cu r ren t , 

one pa ra l l e l to the four-veloci ty and one perpendicular to i t . That complicates 

the calculat ions a l i t t le , but you can then c a r r y through without essent ia l dif­

ficulty. 

Thus , we do f i rs t spin 1 and for the naoment stick to the condition that 

9^p = 0 . Then E q s . (63) and (65) reduce to 

A = - e v " " u/^^ , . (74) 
V 1°"^ J 

B = - ( v A -V A ) . (75) 
[IV [JL V V [X 

For s implici ty le t us a s s u m e that we have no in t r ins ic angular momentum, 

Then Eq. (75) mus t be 0, which is sat isfied provided that 

A = A V . (76) 
|X (X 

We can substi tute this in Eq. (74) and get 

Av + A v = - e v " " U^^^ 
[o-v] 
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V 

This I can evaluate immedia te ly . I cont rac t with v and get 

A = 0 , (77) 

and so A has to be equal to a constant -= le t me call it m. I shall come back 

to this l i t t le "change in notation" in a minute . ThenEq , (74) becomes 

m V = e v"" u/^^ , . (78) 
V [^^ ] 

In the case of ^ = 0 , these a r e jus t the Lorentz equations a s I shall show you, 

and if you have A ^ 0, you have a l i t t le bit m o r e . I jus t want to note.„that 

one of the big defects of the Dirac method is quite obvious h e r e . The m a s s 

comes in as a constant of in tegrat ion. It has no connection with any phys ics ; 

you jus t run through ce r ta in calculat ions and at one point you get a constant 

of integrat ion that you call the m a s s . So the re is no physical significance in 

t h i s , and cer ta in ly the re is nothing in th i s , for example , which would stop 

me from taking it as negat ive . 

The field in Eq, (78) i s the modified mean field (56) which is different, 

depending on whether I use a r e t a r d e d field or a ha l f - r e t a rded , half-advanced 

field. To evaluate U on the world line we mus t use the formulas (51) 

and (52). If you take the r e t a rded G r e e n ' s function, then you finally get 

m v = ^ g 2 ( v -V V v ) + 
V 3 V V 0-

, g= t^' / °- ^ ° - ^^ J, (;̂  )d. . gv' u'i^Y . (79, 
- 0 0 
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a s f i r s t shown by B h a b h a , If you u s e a s y m m e t r i c G r e e n ' s funct ion, you ge t 

00 s V - s V 
l „ \ / s o - r v c r or V r I V^\ j 

m 
V ^ " /I 

- 0 0 

+ gv^ u(/)^f . (80) 
[vcr ] 

If you h a v e V = 0, obv ious ly t h e two i n t e g r a l s would be a b s e n t . Then t h e s e 

a r e j u s t the u s u a l e l e c t r o m a g n e t i c e q u a t i o n s . In the s y m m e t r i c c a s e you then 

j u s t h a v e i n t e r a c t i o n w i th the e x t e r n a l f ie ld ; in the r e t a r d e d c a s e you have 

r a d i a t i o n d a m p i n g t e r m s . A s far a s the i n t e g r a l s (for X^ ^ 0) a r e c o n c e r n e d , 

the s i m p l e p h y s i c a l i n t e r p r e t a t i o n i s t h a t t h e s e a r e s e l f - a c t i o n t e r m s which 

c o m e f r o m the fac t t h a t the m e s o n f ield t r a v e l s wi th a v e l o c i t y l e s s than the 

v e l o c i t y of l i g h t . T h e r e f o r e t h e p a r t i c l e can c a t c h up wi th i t s own f ie ld, w h i c h 

i s i m p o s s i b l e in e l e c t r o d y n a m i c s . T h i s p r o d u c e s a f in i te s e l f - a c t i o n even , fo r 

the s y m m e t r i c c a s e , c o n t r a r y to e l e c t r o d y n a m i c s . 

LL 
If one d o e s no t i m p o s e the cond i t i on 9 p = 0 , we m u s t have S m 

[X [X 

t h e f o r m (68) , T h e n the t r a n s l a t i o n a l equa t ion (63) can be r e d u c e d to 

A = S'^ a U , (81) 
V V cr 

In the s a m e way I c a n w r i t e E q , (65) a s 

B = S U - S U + v A - v A . (82) 
[XV P - V V [ X V [ X [ J - v 

H e r e we can no l o n g e r ge t a w a y w i th a s s u m i n g t h a t B = 0. I w o n ' t p r o v e t h i s 
[XV 
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b u t i t c a n ' t b e d o n e . T o o b t a i n a n e x p r e s s i o n f o r A w e s p l i t i t i n t o c o m p o n e n t s 
V 

p a r a l l e l a n d p e r p e n d i c u l a r t o t h e f o u r - v e l o c i t y : 

A = A v + A , A v ^ = 0 , (83) 
V V V V 

F r o m t h i s w e h a v e 

A = A v + A v + A . (84) 
V V V V 

V 
S u b s t i t u t i n g E q s , (68 ) a n d (84) i n t o (81) w e g e t , a f t e r c o n t r a c t i o n w i t h v 

' • ^ v rr v c r V c r ' c r ' 
A + A V = g V 9 U V + B 9 U v = g v U + B U 

V V cr V cr cr cr 

: ^ ( g v " " U + B ^ U ) - g v * ^ U - g v ' ' U - B " " U , ( 85 ) 
dT cr cr cr cr o" 

N o w o n e c a n g e t s o m e n n o r e i n f o r m a t i o n o u t of t h e r o t a t i o n a l e q u a t i o n ( 8 2 ) 

w h i c h I h a v e n o t u s e d s o f a r . I t c l e a r l y i n v o l v e s o n l y A . T h u s I c a n c a l c u l a t e 

A b y c o n t r a c t i n g w i t h v . W e h a v e 

V 

- A = ( g v + B ) U v l ^ - g U + B v*^ (86 ) 
V V V [ X V [XV 

a n d t h e r e f o r e 

T V r 'V -O ' V TT "• TT ' V ' ' V [X 
A V = - A V = B V U v - g U V + B v v 

V V V cr V [XV 

(87) 



-179-

I can substitute Eq. (87) back in (85) and get 

' d cr cr * v * v < r . v ' ^ v i x 
A = j — g v U + B U ) - g U V - (B + B V V ) U + B v v*^ 

dT cr a- ^ V o" v [xv 

(88) 

This is as far as I can go without any further assumptions; I have used 

up all the information available from the equations of motion, and I just didn't 

# 
get through; I got an expression for A which is not yet integrable. One can get 

more information by imposing conditions which appear physically sensible. 

First of all, we assume that 

B v^ = 0, (89) 
[XV 

This must be required if you want to interpret B as an angular momentum, 
[X V 

because what it means is that in the rest system 

VQ = 1, v^ = v^ - Vg - 0 , (90) 

15 
B should only have spatial components. Incidentally, in general relativity 

[XV 

Eq, (89) follows from the positive mass density without further assumptions. 

From Eq. (89) the last term of (88) vanishes. The next requirement is 

not as obvious, but again is one which one would demand in a sensible theory, 

namely, one would expect that the magnitude of the intrinsic angular monnentum 

should be constant, or 

B B^^ = 0. (91) 
[XV 
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If this is imposed, Eq, (88) and similar equations in other cases become 

integrable. If you contract Eq. (82) with B''̂  and use (68), you get 

B^" B ^ 0 = 2B^^ B U , (92) 
[XV H- V 

But U is essentially arbitrary, since it contains an external field. Therefore 

we must have 

B*̂ "" B = 0, (93) 

Now conditions (68), (89) and (93) together are enough to determine the form 

of B . The simplest way to work it out is to consider a "standard rest system". 

In this system, in addition to Eq. (90), we have also 

B . „ = - B ^ , 5^0, all other B =0. (94) 

By considering our three conditions in the standard rest system, it can easily 

be shown that they require 

B^ = f . ^ ' ^ ^ P B ^ ^ V , (95) 
a X p 

where c is the Levi-Civita tensor density. 

The only thing we don't know at this stage is whether g and f are constants 

• LL V 

or not. Now we contract Eq. (82) with B B and get 

B*̂  B^ B = - B B^ (U B̂ ^ -V B^ U v°") + B^ V B B " v^ 
[XV V |x [ x c r [ x p v 

- B ' ' V B^^ B V P . (96) 
V p(X 
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The left-hand side is zero by (93), since an integrat ion by pa r t s yields an 

express ion contracted over two indices in which one factor is symmet r ic and 

V 
the other a n t i s y m m e t r i c . S imilar ly the l a s t two t e r m s vanish. Since B B F 0, 

we m u s t have 

U B^ - V B^ U v"" = 0. (97) 
[X [X cr 

If you substitute this in Eq. (88) the only t e rm left which is not a perfect 

differential i s - g U v and therefore we mus t take g = 0. Then we can 

in tegra te and get 

A = m + g v ' ' u + B ° ' u . (98) 
cr cr 

Hamermesh : The A gives you the coefficient of v , so 

essent ia l ly the momentum ? 

— V 

Havas: Yes , this plus A is the momentum. 

Hamermesh : This is the momentum of the field plus • ' • ? 

Havas: No, this i s jus t the momentum of the singulari ty. The 

U's a r e all evaluated at the position of the singulari ty. 

It can be shown that to have 

B B^ = const , (99) 

it is only n e c e s s a r y to requ i re f = 0; everything else works out a l ready from 

the equations of motion. 
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F i n a l l y w ê ob t a in for the t r a n s l a t i o n a l equa t ion of m o t i o n 

[ ( m + B ' ^ U ) v - B U v"" + B v*̂  1 = g v°" u / ^ \ H-B*̂  9 U . 
"• c r v v o - i x v ^ Vcr v c r d T * - t r v v t r [iv •' L^ ^] v c r 

(100) 

I w^on't e v a l u a t e the r a d i a t i o n d a m p i n g t e r m s for t h i s equa t ion b e c a u s e 

of the l e n g t h of the c a l c t d a t i o n . B e f o r e d i s c u s s i n g h i g h e r p o l e s of sp in owe 

f i e l d s , for w h i c h the s i t u a t i o n i s v e r y m u c h m o r e confused , I w i l l t a l k abou t 

the s c a l a r f ie ld b e c a u s e t h e r e one c a n w o r k out the e n t i r e p r o b l e m c o m p l e t e l y , 

I ' l l j u s t s k e t c h i t b e c a u s e the p r o o f s a l w a y s r u n the s a m e w a y . One f i r s t a s ­

s u m e s Eq , (70) w h i c h i s a v e r y s t r o n g r e s t r i c t i o n on the fo rm of the mxilt ipole 

m o m e n t s . Sxib s t i t u t i ng t h i s in to the r o t a t i o n a l equa t i on and r e q u i r i n g (91) , one 

o b t a i n s an equa t i on s u c h a s (92) w h i c h i m p l i e s s o m e cond i t i on on the m u l t i p o l e 

monaen t . Then one s p l i t s up A p a r a l l e l and p e r p e n d i c u l a r to the f o u r - v e l o c i t y 

and a r r i v e s a t a n e x p r e s s i o n for A by m a k i n g u s e of the r o t a t i o n a l e q u a t i o n s 

to ge t r i d of A . T h i s shou ld b e a p e r f e c t d i f f e r e n t i a l , and one m a y have 

enough i n f o r m a t i o n f rom the r o t a t i o n a l e q u a t i o n s and the c o n d i t i o n s on the 

mxilt ipole m o m e n t to show t h i s . I s h a l l j u s t i n d i c a t e i t for one p a r t i c u l a r c a s e . 

If y o u do t h e s c a l a r f ie ld w i t h the m e t h o d s of S e c . VI you end up w i th the e q u a t i o n s 

k = ( - l ) ' " ' ^ S ^ ' ^ - - - ^ 9 , U (101) 
[X a p . . . v[x 

and 

B = n ( - l ) ' ' " ^ ^ (S ^ • • • ' ' 9 „ U - S ^'"^ 9 „ U ) 
[x p ' [X p p . , , V p [X p , . ,v 

(v A - V A . (102) 
[X p p |X 
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The reason the sca la r case causes ve ry much l e s s trouble than any others is 

that the re a r e no conditions whatever on the S's from the field equations. The 

Lorentz condition and the condition of the t r ace s al l come in jus t for spin 1 or 

m o r e . S mus t only be symmet r i c and satisfy Eq. (70). But for a sca lar field 

Eq. (70) impl ies that S is a symmet r i c tensor perpendicxilar to v in all its in­

d i ce s . F rom this one can obtain all possible forms of the multipole moments 

which a r e compatible with E q s . (89) and (91). One such form is 

gap , . . v ^ f TT B"" (103) 
n cr=a...v 

for any n, as I shall show now. 

We shall also impose 

S „ s ' "^"- ' ' = 0. (104) 
ap . . . V 

It can be shown that this only r equ i r e s that f = 0, and that this together with 

Eq. (91) impl ies (99). 

V 

Now we split up A again by use of Eq. (83). Proceeding as before we 

get 

A = - n ( - l ) ^ + ^ S '^•••^ 9„ U - B vP (105) 
[X [X p . , . v [xp and 

X . (.1)^+1 t / ( S - P - - 9 , U ) - S ' ^ P - " 9 , U] 
•̂  dT ap . . .v a p . . . V ^ 

+ n ( - l ) " - ^ ^ v S ' ^ ' ^ - ^ 9 , U . (106) 
a P...V 
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We must show now that the last two terms vanish. Now from Eq. (103) 

-S"^-"" 9 , . U + n v S'^P-^ 9 , U = 
ap...v a P.,,v 

-nh"" II B"^ 9 « U + n v B ' ' 'TT B"" 9 « U . (107) 
o-=p...v ap . . . v a o-=p,..v p . . .v 

But f rom E q s . (102) , (99) and (105) we h a v e 

c 
0 . B^' B P B . n ( - l ) ^ + ^ [ - B ^ ' B ^ S ^ ' " ^ 9 , U 

[xp p ixp. , .v 

+ B ^ V B P B ^-'^ 9 „ U ] , (108) 
[X p P . . .V ^ 

which implies the vanishing of (107). Thus we get from (106) 

A = m + (-1)^+1 S*"^-^ 9 , U (109) 
ap...v 

and from this and (106) 

A = [ m + C D ^ ' ^ ^ S ^ ^ - ^ 9 , U] V - B ^P 
[X *• a p . . . v •• [X (xp 

- n ( - l ) " ^ ^ S ^ - ^ 9 , U . (110) 
[X p,..v 

Hamermesh: What was the assumption you made on B ? 
^ ,J.V 

Havas: Equation (91) means that the magnitude of the intrinsic 

angular momentum is constant. Equation (89) means really that it is a 

decent, angular momentum. 
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H a m e r m e s h : And Eq. (70)? 

Havas: This is not an assumpt ion. You also want the multipole 

moment to have constant magnitude and you want the intr insic angular 

momentum to have constant magnitude. Physical ly this is sensible and 

also this seems to be the only way to get a well-defined problem. 

Hamermesh : Why shouldn't the in t r ins ic angular momentum 

change and pass things over to the field? 

Havas: It can change in orientat ion — that is how we got the 

rotat ional equat ions. You can have exchange of angular momentum 

between the in t r ins ic angular momentum and the field momentum. 

H a m e r m e s h : But i t doesn ' t change i ts magnitude? 

Ekstein: This is pe rhaps the definition of aji e lementary pa r t i c l e . 

Havas: Yes . I don' t say you can ' t have it; tha t ' s what you 

usual ly want to have if you want to talk of a well-defined pa r t i c l e . 

There is no mathemat ica l necess i ty to introduce i t . The trouble is 

that at this stage it is not a well-defined problem if you don't accept 

ce r ta in conditions because then you a r e left with a general form of 

equat ions, E q s . (63) and (65), and there is no further way in which you 

can connect the quant i t ies . In this s ense , the re is a theory possible for 

spin 2, for example . What it says is that the re is a momentum of the 

pa r t i c l e and an in t r ins ic cuig-ular momentum and mxiltipole moments which 

a r e essent ia l ly unre la ted except through these equations. You just can ' t 

say any m o r e . 
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Peshkin: Can one make other requirements to relate them ? 

Havas: There might be others, but these are the natural ones to 

make. I don't see how one can get along without Eq. (89) because if you 

drop this, it amounts to not having any equations of motion when you 

have no fields. The particles can do anything; you have no restriction 

on the motion. So you don't seem to be able to get away from (89), You 

might conceivably drop (91), and as I said, it then is not a well-defined 

problenn any more. 

It can be shown that the most general form of the multipole moments you 

can have for a spin 0 field is an arbitrary linear combination of moments of the 

form 

S ^ - ^ . g VB '^ , B^f^B^ B P ^ . . . B " - 1 B^'^ " ^ B ' ' . 
p °np ^ \ p T) cr ='n--f 1 . . . V 

(111) 

The sum goes over all permutations of a...v , so that this expression becomes 

symmetric as it has to be, and p < n, with p even. Therefore for scalar fields 

the answer can be given completely. 

Now return to the vector fields and pseudovector fields for spin 1. Here 

the answer has not yet been given completely. It turns out that you certainly 
[X 

can have multipole moments of all orders as long as you don't require 9 p = 0. 

The question is whether you can have multipole moments of all orders if you 

do require this condition, which is necessary in the case of the electromagnetic 

field. At this stage I don't know the answer. * 

Note added in proof: I have since proved that this is possible. A detailed 
accoxint is in preparation. 
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For spin 2 or nnore one can not satisfy al l the conditions for the cha rge -

symmietric field; the answer s a r e essent ia l ly the s a m e . The additional r e q u i r e ­

ment of conservat ion of e lec t r ic charge in the cha rge - symmet r i c field doesn ' t 

add anything to the difficxilties. On the con t ra ry , it seems to allow m o r e p o s ­

s ib i l i t i es , at l ea s t for the l inea r fields which we have considered, where we did 

not explicitly introduce an in terac t ion with the e lectromagnet ic field. 

H a m e r m e s h : What was the bas ic assumpt ion? 

Havas: It was conservat ion of energy-momentunn and of angular 

momentum. 

Hamermesh : Tota l? 

Havas: Yes , and that leads to a t rans la t ional equation for A 
V 

and a rotat ional equation for B . Then condition (89) is m o r e or l e s s 
[XV 

innposed on you if B is to be in te rpre ted as int r ins ic angular momentum. 
[XV 

Equation (91) is not n e c e s s a r y , but it looks like a na tura l requi rement , 

Hamermesh : This has no analogue in quantum theory? 

Havas: In quantum theory you imply it when you wri te down an 

equation for a par t i c le -with a definite spin; you then have the equivalent 

of (91). 

Equation (70) is r ea l ly no r e s t r i c t i on . It follows if you want pure 

multipole moments without lower o rde r mult ipoles mixed in. 

Hamermesh : Do you rea l ly have that, though? You have a par t ic le 

and a field — i sn ' t that the p ic ture you have ? 
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Havas: Yes . 

Hamermesh : Then the thing that bo thers me is that you have many 

pa r t i c l e s poss ib le . I s t a r t with one, but it can suck onto itself things 

from the field. 

Havas: Now you a r e thinking of excited s t a t es? 

Hamermesh : Yes — i s o b a r s . 

Havas: That is not excluded — you can have them h e r e , too. 

H a m e r m e s h : But that would violate that condition? 

Havas: When you have i soba r s you would not just consider the 

magnitude of the in t r ins ic angular momentum, but you would take that 

plus the field and in tegrate over the field. 

H a m e r m e s h : Oh, I s e e . 

17 
Havas: That has been worked out. 

Tanaka: Can we have i soba r s with m o r e than one m a s s ? 

Havas: I can ' t say anything about m a s s d i rec t ly , as the ca l ­

culations for excited s ta tes a s s u m e the pa r t i c l e s to be at r e s t . One woxild 

have to calculate the m a s s or energy in the field for this c a s e . 

Peshkin: In the c l a s s i ca l theory of fields the s ingular i t ies play 

the role of the p a r t i c l e s . When I quantize i t , it would appear that I am 

faced with pa r t i c l e s of two kinds — the re a r e the singxilarities and then 

the re a r e the ord inary pa r t i c l e s that I get by quantizing the field. I 

unders tand why, for ins tance , the second kind of pa r t i c l e s have spin 2 
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in a tensor field, but I don't unders tand how the spins of the s ingular i t ies 

a r e de te rmined by the theory. I understand why, with pa r t i c l e s of the 

second kind I can ' t have high multipole moment s , but I don't understand 

about the pa r t i c l e s of the f i r s t kind. 

Hamermesh : No, but what you should do in the quantum theory 

is to take two types of f ields. The f i rs t field is the one of which you 

jus t take the s ingular i t i es . These in te rac t with the second field, 

Peshkin: How is i t poss ib le to have a r b i t r a r y multipole moments 

he re while in quantum theory the moments a r e l imi ted? 

Havas: Well , I can answer it in pa r t — in quantum mechanics 

you cer ta in ly can not do it if you want to desc r ibe the moments for a 

Di rac par t i c le in the usual way of introducing in te rac t ions . But as you 

know, you can also introduce ext ra t e r m s of the Pauli type except that 

I have been told that Schwinger has proved that this can not be done 

consis tent ly . This excepted, you can, of cou r se , add additional p roper t i e s 

but that is what you usual ly want to avoid. Otherwise you a r e l imited by 

the a lgebra of the m a t r i c e s you have, 

Ekstein: In Peshk in ' s quest ion, what symmet ry s ta tement is 

d i rec t ly involved? 

Peshkin: It is bas ica l ly that for a spin 1 pa r t i c l e , for ins tance , 

you have only th ree quantum s t a t e s , while to d e s c r i b e , say, a quadru-

pole moment , you need five. 
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Havas: I can only give a mathemat ica l answer which, of cour se , 

is not what you want. Here the multipole nnoments a r e de te rmined in a 

way from the in t r ins ic angular monnentum. In anything I wrote down, 

the B 's entered explicit ly. You have he re a lso a connection between 
[XV 

the multipole moment and the angular momentum. If you had no angular 

momentum you could not have any momen t s , 

Peshkin: In a sca la r field I can st i l l have multipole mome n t s . 

Would you say that that is in some sense because I have sucked some 

orbi tal angular momentum from the field into the pa r t i c l e? 

Ekstein: Are we talking about the sources of f ields? These 

can have high multipole moments and can have angular momentum whose 

numer ica l value is not r e s t r i c t e d . 

Havas: Here the par t i c le is desc r ibed by B and I haven ' t said 
[XV 

anything about i ts magnitude. In quaxitum theory you have theor ies of 

pa r t i c l e s of spin 1/2, 3 /2 , e t c . , which a r e dis t inct t heo r i e s . Here 

everything is lumped together . The mechanica l p rope r t i e s of the pa r t i c l e 

a r e specified by i ts m a s s and the B . So this B covers the theor ies 
[XV [XV 

of al l sp ins . 

H a m e r m e s h : I don' t think it would be any different if you ass igned 

a value to the spins of the s ingu la r i t i e s , then these t e r m s will s t a r t to 

cont rac t when you wr i te out these mul t ipo les . 

Havas: What you mean is that if you wr i t e out products of 

m a t r i c e s you can reduce that by the a lgebra of the m a t r i c e s . 
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Hamermesh : Even if I don' t wri te it out explicitly, I know that it 

sat isf ies an equation of finite deg ree . Clear ly I can ' t wri te down t e r m s 

g r e a t e r than that deg ree . 

Ekstein: The e lementa ry par t i c le is not something that has a 

s imple symmet ry . But the point is that it maintains whatever asynnmetry 

it has no m a t t e r how it is buffeted around by the field. 

Havas: Yes , 
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Lecture 4. 

Las t t ime we used the Dirac method, which is essent ia l ly a r equ i remen t 

of conservat ion of energy-momentum and of angular momentum to der ive two 

equations; one is a t rans la t iona l equation of motion which tel ls you that a cer ta in 

express ion in t e r m s of the fields should be equal to the der ivat ive of a four-vector 

A and a rotat ional equation which gives you a B in t e r m s of the field, the 
P ^ ' 13.V 

in terpre ta t ion being that B is the in t r ins ic angular momentum of the pa r t i c l e . 
fJLV 

This is as far as one can get without imposing additional condit ions. It 

s eems n e c e s s a r y for a physical in te rpre ta t ion of B as an angiilar momentum 
[IV 

to impose Eq. (89), B v = 0. On the other hand, for the mult ipole moment 
[J.V 

a 

the equivalent Eq. (70) v S = 0 , does not have to be imposed — it simply 

specifies what is meant by a pure moment of a ce r ta in o r d e r . Without this con­

dition the different o r d e r s would be mixed up. If in addition one r equ i r e s (91) 

and (104), i. e. , that the magnitude of the angixlar momentum and of the multipole 

moment should be constant , t he re a r e enough conditions to find explicitly the 

form of al l the multipole moments which a r e descr ibed by these eqxiations. F o r 

a sca la r or a vector field, one can have multipole moments of all o r d e r s . For 

fields of spin 2 or g r e a t e r one can ' t satisfy these conditions and so no poles of 

any order a r e poss ib le . 

Ekstein: What quanti t ies in this theory would you dignify with 

the adjective "obse rvab le"? 

Havas: There is a number of constants in h e r e , the m a s s , the 

magnitude of the angular momentum, and the coupling constants involving 
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all the multipole moments ; cer ta in ly at l eas t these . 

Ekstein: Coupling to what — either the fields or their der ivat ives 

you consider as obse rvab le s? 

Havas: I do, but actually that question doesn ' t enter here because 

I have he re equations of motion of pa r t i c l e s . I could say, just look at the 

pa r t i c l e s and observe their motion and what can I find then? 

Ekstein:: Jus t z. In o rde r to confront this theory -with exper iment 

you mus t have a definite problem — fields and the z as an observable . 

That cer ta in ly is an obse rvab le . 

Havas: Yes , but you can make other deductions; e, g. , when 

you put an e lec t r i c charge in the field you can de termine the e lec t r ic 

cha rge . 

Ekstein: Yes , because the e lec t r ic field is observable , but if 

you don' t consider the field as observable I don't know what this m e a n s . 

Havas: No, I could, without talking about a field, take two 

e l ec t r i c charges and observe their motion and from this deduce that 

the re is some interact ion between them which is charac te r ized by a 

con stant e, 

Ekstein: El iminat ing the field? 

Havas: Yes , I could in pr inciple avoid talking about the field; 

this is rea l ly what I am going to d i scuss today. 

H a m e r m e s h : Is the s ta tement that if you have a field of spin 

g r e a t e r than 1, then something goes haywire? 
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Havas: Yes , if you want to have in te rac t ions . Nothing goes 

wrong with the free f ields, but . . . 

Peshkin: If you w^ant to have in terac t ions with pa r t i c l e s having 

definite spin? 

Havas: You mean you want me to put a condition on B — I mean 
^ (XV 

jus t to fix the magnitude ? 

Peshkin: No, I wanted to know exactly what would go haywire . 

If you don' t fix the magnitude of B then things don't go haywire ? 

Havas: If I le t condition (91) go then I have to stop at (63) and 

(65); I would simply say that A is the momentum and I don' t know what 

that stands for except that tha t ' s the thing which va r i e s with t ime accord­

ing to Eq. (63). I have no way of express ing it in t e r m s of m a s s or 

velocity or anything — i t ' s jus t another undetermined p roper ty . This 

is cer ta inly not the usual way in which one talks about p a r t i c l e s , that 

one is \anable to define the momentum in any way except explicitly 

through the way it v a r i e s with t ime in a given field. If you want to 

take B as an in t r ins ic p roper ty and get A out explicitly in ternns of 
[i, V V 

other things, then if you don't a s s u m e Eq. (91) you can ' t go on. Of 

course , you might stop he re and say this is it , but this is not the usual 

way one cons iders equations of motion. 

H a m e r m e s h : Is the re any w^ay of imitating the r e su l t s for a field 

of spin g rea t e r than 1 in the quantum theory? 

file:///anable
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Havas: I hope so, but I have no resu l t s yet. Of course , one of 

the points I was after was to see if one can ' t c lass ica l ly get somie general 

s tatements^ because obviously it is ve ry difficult to get general s ta tements 

out of the quantum theory of in teract ing fields, while here it is poss ible , 

Peshkin : F rom the physical point of view, i sn ' t it so that all 

these p rope r t i e s of the pa r t i c l e s a r e simply reflections of those condi­

tions which you put on the field? Actually nothing else has been done 

except these few assumpt ions that you wrote down. 

Havas: Yes , I have rea l ly not assunned anything about the par t ic le 

except that it is a s ingular i ty . The only gap is that the m a s s comes in 

as a constant of in tegra t ion. TMs would be gone too if you do it from 

the point of view^ of genera l re la t iv i ty , where everything would follow 

from the assumpt ion of a m a s s s ingular i ty . 

H a m e r m e s h : If you take a field of spin 2 then this says that you 

can ' t get in te rac t ions? 

Havas: Yes . 

H a m e r m e s h : I know a field of spin 2. 

Hava s: Nam ely ? 

H a m e r m e s h : The gravi ta t ional field. 

Havas: Paul i and F i e r z unfortunately made the s ta tement that thei r 

theory of spin 2 has something to do with gravi ta t ion. It has absolutely 

nothing to do with gravi ta t ion. The reason is quite obvious, actual ly. 
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because the conditions for the field mus t he U U ,js.4ir p „, 9 U „ = 0. 
ap ^ ap ' ap ' 

a 
and U = 0 . But in the gravi ta t ional case you could only have t r ace zero 

a 

if. the field had no sou rce s . If you put sources in i t is impossible — you 

jus t canft do it; and so whatever the l inear ized theory of gravitat ion 

m e a n s , it i s no longer equivalent to the F i e r z sp in-2 theory . 

Hamermesh : It m u s t be a m i x t u r e ? 

Havas: Yes . 

Hamermesh : The t r a c e condition e l iminates the mix tu re? 

Havas: Yes . That is one of the conditions you need to el iminate 

the mixing. This is absolutely imposs ib le to maintain once the re is a 

source in i t , essent ia l ly because then the t r a c e is essent ia l ly the nnass; 

so you can ' t satisfy this condition. For pure fields i t ' s all r ight , the 

equations a r e formally equivalent, but the question he re is p rec i se ly 

what happens with in te rac t ions . 

VIII. RELATIVISTIC DYNAMICS IN TERMS 

OF DIRECT INTERPARTICLE ACTION 

So far we always considered the external field as something a r b i t r a r y . 

On the other hand everybody ag ree s that the only fields which a r e physical ly 

acceptable a r e those which can be re la ted to s o u r c e s , even if i t usually is not 

convenient or n e c e s s a r y to do th i s . I want to remind you ve ry briefly that electro­

dynamics s ta r ted out from Coulomb's law; a t tempts were made to modify it for 

moving charges ( e . g . , Weber ' s law), but soon it was rea l ized that the c o r r e c t 
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formulation of such a law was not easy . It is r a the r r emarkab le that Gauss 

xinderstood the problem in 1845. He wrote to Weber that what is needed is 

"a der ivat ion of additional forces — to be added to the interact ion of e lec t r ica l 

charges at r e s t , when they a r e both in motion — from an action which is 

18 
propagated not instantaneously but in t ime , as i s the case with l ight" . 

Maxwell solved the problem indirect ly through a study of the field 

equations ins tead of the force l aws . Afterwards phys ic is t s got used to talking 

in t e r m s of fields exclusively, in particxilar because emiss ion of radiation from 

an acce le ra t ed charge was a phenomenon which could be descr ibed ve ry simply 

in t e r m s of an emit ted field, but seemed to be incapable of descr ipt ion in t e r m s 

of pa r t i c l e s a lone. So one stuck to the field concept in spite of all the difficultie 

resul t ing from the se l f -energy of point cha rges . All we did in these l ec tu res 

so far was to t ry to get around these difficulties with se l f -energy. 

Neve r the l e s s , even if one cons ide rs the field to be a bas ic quantity 

and would not want to accept action at a d is tance , one can still expect that all 

the fields a r e due to s o u r c e s , and one can sti l l a t tempt to formulate the theory 

in t e r m s of the sources alone; but then, as I shall indicate very briefly, it is 

19 
imposs ib le to dist inguish the two points of view in c l a s s i ca l e lec t rodynamics . 

20 
You a r e probably al l famil iar with Fokke r ' s var ia t ional pr inc ip le . 

All of e lec t rodynamics can be der ived from a var ia t ional pr inciple 

6 J = 0 , 
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where 

J = y m. fv . d r . + y e. e, ff v. v, 6 (s 2 ) d r . d r . , 
^ 1 "* 1 1 . ^ 1 k ^ J IV k i k 1 k ' 

^<^ (112) 

with 

1 ^ i p 1 i k iiJL kjj . ' ' 1 k 

F i r s t define "field quant i t i es" in t e r m s of the par t ic le v a r i a b l e s . We 

define the potential 

"k" w = =k / * <=k='-k" ''^k• =k" = % - V (''̂  - \ ' > - <"^' 

and then the field as usual is 

F = 9 U - 8 U . (114) 
|JLV [J. V V (J. 

Now we can get the equations of motion from (112) by var ia t ion with r e s p e c t 

to the par t i c le coord ina tes . Cons ider ing , say, the ath pa r t i c l e , we get 

m V - e V '̂  y F . (z ) , (115) 
a av a a ,M kvo- a 

ki^a 

The quantity (114) is the s y m m e t r i c field, because Eq. (113) contains 

the ha l f - r e t a rded , half-advanced G r e e n ' s function, as al l the in tegra l s go fronn 

-00 to +00. I don' t have the t ime to d i scuss the physical problem of advanced vs 

r e t a rded potent ials at this s tage . But to have a theory in t e r m s of pa r t i c l e 

va r i ab les which is der ivable from a var ia t iona l p r inc ip le , one mus t use the 
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s y m m e t r i c Green ' s function. 

Peshkin: You may answer this question by yes or no. You have 

a choice of using ei ther the symmet r i c or the an t i - symmet r i c one. Must 

you use half-advanced plus ha l f - r e t a rded? 

Havas: You mus t use p lus . 

Equation (112) also contains Maxwell 's equations, as I ' l l show again 

ve ry br ief ly . The 6 ( s 2 ) sat isf ies 

D 6 ( s 2 ) ^ 4 T T 6 4 ( S ) . (116) 

We define 

Jkv = ^k / - k v ^ ' ^ ^ ) ^ ^ k - (ll"^) 

We then multiply Eq. (116) on both sides by e v ^ T and in tegra te . 

We obtain 

^ " k v = ^ ^ \ v • (^^') 

Now from Eq. (113) i t follows that 

8°- U^^ - 0. (119) 

Then, taking 9 of Eq. (119) and subtracting this from (118) we get, 

using (114) 

9°" F , = 411 j , , (120) 
ko-v -"kv 

21 
i . e . . Maxwell ' s equat ions. 

Peshkin: Do you automatical ly also get that the par t ic le doesn ' t 

act on i t se l f? 



- 2 0 0 -

H a v a s : Y e s , b e c a u s e in (112) t h e r e i s a s u m m a t i o n w h i c h d o e s 

not go o v e r i = k , so you h a v e no s e l f - a c t i o n t e r m i n c l u d e d a n d th i s l e a d s 

to k ^ a a l s o in E q . (115) . 

We have s t a r t e d f rom (112) b e c a u s e p h y s i c i s t s l i ke to have a t h e o r y which 

s t a r t s f rom a v a r i a t i o n a l p r i n c i p l e . Bu t e l e c t r o d y n a m i c s h a s b e e n c o n s i d e r e d 

f rom the po in t of v i e w of a c t i o n a t a d i s t a n c e b e f o r e w i thou t going to t h i s f o r m u -

22 23 

l a t i on — in p a r t i c u l a r by F r e n k e l and Synge , who s i m p l y p o s t u l a t e d t h a t you 

shou ld t a k e e q u a t i o n s of m o t i o n w i th r e t a r d e d i n t e r a c t i o n s , b u t wi th no r a d i a t i o n 

d a m p i n g , and show^ tha t t h i s s t i l l allow^s a c o n s i s t e n t t h e o r y , I d o n ' t wan t to 

d i s c u s s t h i s any f u r t h e r e x c e p t to no te t h a t a l m o s t e v e r y t h i n g which we a r e going 

to d i s c u s s h e r e one cou ld a l s o do w i t h t h o s e e q u a t i o n s . The one th ing one c a n ' t 

do p r o p e r l y in the F r e n k e l - S y n g e f o r m a l i s m is to d e s c r i b e r a d i a t i o n . 

It l o o k s a s if we h a d l o s t s o m e t h i n g a s c o m p a r e d to f ie ld t h e o r y , n a m e l y 

d e t a i l e d c o n s e r v a t i o n of e n e r g y m o m e n t u m . D e t a i l e d c o n s e r v a t i o n r e q u i r e s t h a t 

d A 

d r d r J \i.v 
3. 3, 

^— f 9^ T d4 X = 0 (121) 
IT J \±v 

in the n e i g h b o r h o o d of p a r t i c l e a , and t h a t t he i n t e g r a l in E q . (121) shou ld 

Vcinish if the r e g i o n of i n t e g r a t i o n d o e s not i nc lude a p a r t i c l e . If we t a k e for 

22 
T the e x p r e s s i o n a n a l o g o u s to the one i n t r o d u c e d by F r e n k e l , 

[i.V 

T = 2 T ( F . ^ ^ , F ^ ^ y ™ ) , (122) 
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then th i s , plus the equations of motion, guarantees Eq. (121). Therefore we 

have detai led conservat ion of energy and momentum by simply defining a suitable 

quantity. Of c o u r s e , from the p r e sen t point of view this has no meaning physical ly, 

but mathemat ica l ly it is all r ight . 

Incidentally, after Di rac did his original work d iscussed in Sec. VI, it 

24 
was rea l ized by P r y c e that one could modify the usual energy-momentum 

tensor of e lec t rodynamics so that the infinities would not appear . Then Ha r i sh -

25 
Chandra showed that this can be done in genera l . I rea l ly don't understand 

the idea behind th i s . According to field theory the physical state at a point is 

de te rmined by the field without r e g a r d to i ts sou rces . But the modified energy-

momentum tensors of P r y c e and Har i sh -Chandra can only be formed with a 

knowledge of the sou rce s ; so this is no longer field theory . 

Equation (121) holds with the par t i cu la r energy-momentum tensor (122) 

and s imi la r ly with one due to Wheeler and Feynman which they call the canonical 

t en so r . It differs from the tensor (122) by the additional t e rm 

.^^ ixv 1 ' k ' 

formed from the radiat ion f ields, which obviously has a vanishing divergence. 

Then we get 

T = 2 T ( F / ^ ^ F / ^ " ) , (123) 
(JLV . ^ | X V l k ' 

i f k 
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If one a t taches any physical significance to the densi t ies of energy and momentum, 

then this canonical tensor of Wheeler and Feynman has some advantages for 

cer ta in pu rposes . Conservat ion of angular momentum follows from either 

(122) or (123) as usua l . 

Now we tu rn to the problem of radia t ion. The equations of miotion (115) 

involve t i m e - s y m m e t r i c in te rac t ions , and the question a r i s e s r ight away if this 

can ever desc r ibe radiat ion; the usual idea is that one needs r e t a rded fields 

p rec i se ly to obtain radiat ion l o s s . This question was d i scussed , for example, 

26 
by Einstein and Ritz fifty y e a r s ago; Ritz thought that the use of r e t a rded 

fields was something essen t ia l for the second law of thermodynannics, while 

Einstein felt that the bas ic laws of physics were t i m e - s y m m e t r i c and that r ad ia ­

tion was a s ta t i s t ica l phenomenon. 

The f i rs t a t tempt to give such a s ta t i s t ica l descr ipt ion consistent ly is 

27 
due to Wheeler and Feynman, Their essen t ia l assumpt ion in addition to 

Eqs . (115) is that sufficiently many pa r t i c l e s a r e p r e sen t to absorb completely 

the radiat ion given off by the source . They go through three different, r a the r 

special and complicated non- re la t iv i s t i c der ivat ions which I won't d i s c u s s , and 

then they give a genera l , r e l a t iv i s t i c , der ivat ion. Before d iscuss ing this 

derivat ion I wish to s t r e s s that this s ta t i s t ica l descr ip t ion has no bear ing on 

19 

the problem of ac t i on -a t - a -d i s t ance vs field theory . The a rgument of Wheeler 

and FeynmaJi is based on the use of the equations of motion (115) (with t i m e -

symmet r i c fields). Now, of c o u r s e , Eq . (115) can be obtained in two different 
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ways , ei ther (as we jus t did) from Fokke r ' s var ia t ional pr inciple , without ta lk­

ing about fields at a l l , or by the Dirac method (as we did in Sec. VI). Thus one 

can get the t i m e - s y m m e t r i c equations of motion in a consistent manner from 

both points of view; any subsequent der ivat ions a r e not re levant for the equations 

of fields vs a c t i on -a t - a -d i s t ance . 

Wheeler and Feynnnan in their general derivat ion s ta r t from the s t a t e -

nnent that complete absorpt ion impl ies that a tes t charge placed anywhere out­

side the absorbing medium will exper ience no d is turbance , i . e . , 

YJ F ^ ^ " ^ = 0 (outside the abso rbe r ) . (124) 
all k 

Now^ the symmet r i c field is half the sum of the re ta rded and the advanced field. 

But r e t a rded fields cor respond to outgoing waves and advanced fields to incom­

ing w^aves. Then they conclude that since an outgoing wave can never cancel 

an incoming wave, the r e t a rded and advanced fields have to vanish separa te ly 

outside the a b s o r b e r , and therefore a lso 

2 (Fj^^y™ - F j ^ ^ ^ ^ ) = 0 . (125) 
al l k 

But this is a solution of the homogeneous equation and thus if it vanishes in a 

region outside the a b s o r b e r , it has to vanish everywhere e l se . So (125) mus t 

actual ly hold everywhere . 

Then they take the s u m m e t r i c field which en te rs into the equations of 
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motion and rewr i t e it as 

1 , „ r e t ^ adv, v ^ r e t 1 , ^ r e t ^ adv. 

, , 2 <̂ k ^ ^k ) = J ^k + 2(^a - ^ ) 
k*a k i a 

_ 1 y (F ''̂ ^ - F '̂̂ '̂ ) 
2 ZJ , ^ k k '• a l l k •• - "^'•> 

The f i rs t t e rm is what you expect if the fields of all pa r t i c l e s a r e r e t a rded . 

The second t e rm is the field which de te rmines the radiat ion reac t ions in the 

equations of motion (where the fields have to be evcduated on the world l ine) , 

and the th i rd t e r m , from what we jus t said about (125), is z e r o . Thus it looks 

like what you got from the symmet r i c case is what we need in the r e t a rded case , 

namely . 

: f z ^ v ' ' ' + F ^ ^ ^ 7 . (127) 
. y,% k v ^ aver J 

m V = e V 
a av a a . 

We note f i rs t that one could have seen this without any calcula t ions . 

If you take the condition of complete absorpt ion [ in the form (125)] then you 

get the same r e su l t s no m a t t e r what combination you u s e , because (125) 

implies that 

k <"'- l.^'^- L ^̂ "̂'̂ "̂̂ '- <'̂=' 
all k al l k al l k 

These a r e the total fields due to all p a r t i c l e s , and in field theory it is the total 

field which mus t be used in the energy-momentum tensor to obtain the equations 
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of motion. Thus one obtains the same equations in the t i m e - s y m m e t r i c case 

and the r e t a rded c a s e . Things have been fixed up so that there is no distinction 

between these ca ses init ial ly, the total field being the same in all c a s e s . Again 

28 

it had a l ready been suggested by Eins te in , that there might exist a condition 

such as Eq. (128). 

At this s tage we made the symmet r i c equations of motion look as if they 

w e r e the same as the r e t a rded ones; but this by i tself does not a s s u r e us that 

we have radiat ion because we could have done just the opposite — we could have 

gone to the advanced field and we would have apparent ly obtained radiation gain 

instead of radiat ion l o s s . This is where the s ta t is t ical considerat ions come in. 

Wheeler and Feynman conclude that the " i r r eve r s ib i l i ty of the emiss ion p roces se 

is a phenomenon of s ta t i s t ica l mechanics connected with the a symmet ry of the 

init ial conditions with r e spec t to t i m e " , or to put it another way, for s ta t is t ical 

r e a s o n s it so happens that the sum of the r e t a rded fields v/hich en te r s in the 

equations of motion is essent ia l ly independent of the pa r t i c l e , while this is not 

so for the sum of the advanced fields. This appears reasonab le , but on the 

other hand it is an a rgumen t which is based on an analogy with c lass ica l 

s ta t i s t ica l mechanics which sti l l has to be justified, because all the resu l t s of 

c l a s s i ca l s ta t i s t ica l mechanics a r e der ived on the bas i s of instantaneous in t e r ­

act ion. But he re we don' t have instantaneous in terac t ions and nobody knows any­

thing about s ta t i s t i ca l mechan ics with non-instantaneous in te rac t ions . 

The main difficulty is in accepting Eq. (124) because it is based on a 
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division of the world into something inside and outside, and on a considerat ion 

of the effects of all pa r t i c l e s on a t es t par t ic le outs ide , which is a concept one 

should not use if one wants to talk in t e r m s of pa r t i c l e s a lone. One should not 

have to bring in another pa r t i c l e in addition to al l pa r t i c l e s and talk about what 

happens to i t . But if one does accept Eq, (124) and the plausible s ta t i s t ica l 

s t a tements , then one can calculate radiat ion effects a s usua l , using the canonical 

energy-momentum tensor (123) which furnishes a flow of energy outward. One 

does not have to think of this in t e r m s of a flow of energy in the "field" - one 

could say that " radia t ion" means that the effect of al l other pa r t i c l e s on a par t ic le 

is given by what looks like a wave to that pa r t i c l e . 

One should rea l ly have to solve the equations of motion (127) keeping in 

mind conditions (125), namely that the total r e t a r d e d nninus the total advanced 

field should be the s a m e . Th i s , it tu rns out, can not be done in any sensible 
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way. One has again to take r e c o u r s e to a s ta t i s t i ca l in te rpre ta t ion which will 

not allow a r igorous s ta tement on the total r e t a rded and advanced fields in 

solving a p rob lem. 

As mentioned before , the conclusions and a rgument s have nothing to do 

with field vs a c t i o n - a t - a - d i s t a n c e . The equations obtained s tar t ing from (115) 

a r e identical; the only dist inct ion one could make would be between a Wheeler -

Feynman type a rgument which in the end uses s ta t i s t ica l cons idera t ions and a 

field theory with r e t a r d e d in te rac t ions which wovdd say that Eq. (127) does not 

involve s ta t i s t i ca l cons ide ra t ions . But c l ea r ly it is hopeless to decide expe r i ­

mental ly whether a c l a s s i ca l charge in a c l a s s i ca l field obeys (127) a s in t e rp re ted 

s ta t i s t ica l ly or taken as exact . Since such a dist inct ion between the Whee le r -

Feynman type theory and a r e t a r d e d 
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i n t e r a c t i o n t h e o r y i s not p o s s i b l e , t h e r e i s no v e r i f i a b l e d i s t i n c t i o n b e t w e e n 

field t h e o r y a n d a c t i o n - a t - a - d i s t a n c e t h e o r y in e l e c t r o d y n a m i c s . 

Now h e r e , I b e l i e v e , m e s o n t h e o r y could be he lpfu l . One can d e s c r i b e 

m e s o n t h e o r y in t e r m s of p a r t i c l e s a lone j u s t a s we l l a s e l e c t r o d y n a m i c s . It 
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can be done for bo th n e u t r a l f i e lds and c h a r g e d f i e l d s . I w o n ' t d i s c u s s 

c h a r g e d f i e l d s ; in n e u t r a l v e c t o r m e s o n t h e o r y I s h a l l only c o n s i d e r the fo rm 

of the t h e o r y w i th c o n s e r v a t i o n of m e s i c c h a r g e wh ich m e a n s t h a t t he m e s i c 

c u r r e n t i s s t i l l p r o p o r t i o n a l to v . If you u s e the m e s i c equa t ion of mo t ion 

(80) for the v e c t o r c a s e and the a n a l o g o u s e q u a t i o n s for the s c a l a r c a s e , bu t 

now e x p l i c i t l y i n t r o d u c e t i m e - s y m m e t r i c i n t e r a c t i o n s , t hen for the v e c t o r c a s e 

we have 

• cr v̂  ..(^) sym 1 o ^ > o (T f s v - s cr V TTV-̂ J sym i o > ^ <T r s v - s v 
S a ^ a X V v a ] + 2 ^a^ X ^ a J ^^ ^^ ^^ ^^ ^ 

m V 
a av " a a , , „ , , „ , _ _ , . _ 

k ^ a "• -• -00 s 2 
a 

X J ^ (X s^) d r (129) 

and for the s c a l a r c a s e 

V̂  ~ TT s y m d / v> XT s y m 
m V =-g ) , 9 U. ^ + g —— / ) , U, -̂  V 

a av a , V v k a d r i , V k av 
ki^a a I k M 

00 1 H / "^ 1 

2 -00 s 2 a -00 
a 

(130) 

N o t i c e t h a t e v e n in the t i m e - s y m m e t r i c c a s e you have s e l f - a c t i o n t e r m s , 

n a m e l y t h e i n t e g r a l s o v e r the e n t i r e m o t i o n of the p a r t i c l e . E v e n f rom the p o i n t 

of v i e w of f ie ld t h e o r y t h i s m e a n s t r o u b l e ; m a t h e m a t i c a l l y i t i s a l l r i g h t , b u t 
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conceptually it cer ta inly is not. What one means by a field to begin with is 

something which is defined in t e r m s of its action on a t es t pa r t i c l e . There is 

no difficulty connected with this in e lec t rodynamics , but tnere cer ta in ly is one 

he re because what-happens to a par t ic le of a given position and momentum depends 

on its ent i re motion. One can not, a s in e l ec t rodynamics , br ing a t es t charge 

to some point in space and thereby invest igate the field t he r e . The resu l t would 

depend on how you brought the t e s t charge in t h e r e . 

F r o m the point of view of action at a d is tance , Eqs , (129) and (130) 

a r e not acceptable because from this point of view the equations of motion should 

only involve act ions of other pa r t i c l e s on a pa r t i c l e and no se l f -ac t ions . Now 

the question i s , "Can one get a consis tent theory by omitting al l the self-act ion 

t e r m s ? " The answer is y e s , one can do i t and it is consis tent in the sense in 

which e lec t rodynamics was cons is tent , namely , I can wr i te down a var ia t ional 

pr inciple from which I can get the equations of mot ion, from which I can get 

the field equations for quant i t ies defined in t e r m s of the p a r t i c l e s , and from 

which I can get detai led conservat ion of energy and momentum if I wish, 

I shall f i r s t wr i te down the va r ia t iona l p r inc ip le . For the following 

it is somewhat m o r e convenient to use ins tead of G r e e n ' s function A defined 

by (33) the fxinction G = 4 ir A . Then the var ia t iona l pr inc ip le for the vec tor 

meson case is 

J = y m. fv . d r . + y g. g, ff G (s . , 2 ) v. v / d r . d r , 
f-' 1 - ^ 1 1 . •y , ° i " k -̂  •>' s ^ i k ' IV k 1 k 
1 i < k 

- extremunn, (131) 
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which differs from F o k k e r ' s pr inciple only in the use of G instead of 6 . For 

the sca la r case we have 

J = 7! "^- fv- '̂ '̂ - - 7; g- §1 [[ G( s .2 ) V. V, d r . d r . 'H 1 - ^ 1 1 . ^ , ° i ° k J J s i k 1 k 1 k 1 i < k 

- ex t remum . (132) 

We can again define field quanti t ies by introducing 

V <-) = gkJs^<^k^)-kv ^-k (133) 

and 

U^(x) = g^ / G ( s ^ 2 ) v ^ d T j ^ (134) 

for the vector and sca l a r c a s e , r e spec t ive ly . Car ry ing out the var ia t ion with 

r e s p e c t to the pa r t i c l e coord ina tes , we then obtain the equations of motion with­

out se l f -act ion t e r m s 

™ V = g V > U ., / I OCX 

a av °a a y k [vtr ] (135) 

and 

n^ V = - g y 9 u, + ĝ  — — / y, U, V , 
a av 3- 1V V k ' 'k d r { w k av / , (136) 

F r o m the equation sat isf ied by G 

( O +^ 2) ^G(s2 ) = 4Tr 64 (s) (137) 

we can get the inhomogeneous wave equation for the potentials as before . This 

is al l we need in the sca la r case ; in the vector case this can be shown to imply 
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the Loren tz condition, and thus ŵ e have regained the field equations of meson 

theory which we had in Sec. I l l , Thus again the var ia t iona l pr inciple in each 

case contains both the equations of motion and the field equat ions. 

We can obtain detai led conservat ion laws by defining energy-momentum 

t enso r s jus t as in e lec t rodynamics , using eithetr the F renke l tensor (122) or the 

canonical one (123). The A of Eq. (121) mus t be taken as m v in the ^ ' av a av 

vector case and as (m — g ) , U, ) v in the sca la r ca se , 
a "a , ^ k av 

k^a 

Concerning the question of radia t ion, nothing new has to be added, be ­

cause in the a rgument p resen ted before nothing implied that one was talking 

about e lec t r i c f ie lds . One can proceed from Eq. (124) as before . Thus for 

the vector c a se , if one s t a r t s out from the t i m e - s y m m e t r i c f ie ld- theore t ica l 

Eq. (129), one would end up with the r e t a r d e d equations of field theory (79). 

If one s t a r t s with the equations (135), obviously one gets something different„ 

Whereas in the f ie ld- theore t ica l case (79) one has an in tegra l from -oo to T 

in the a c t i o n - a t - a - d i s t a n c e case these in tegra l s a r e rep laced by 

•r^ 00 

2 

i, e, , we get 

1 ^ o 00 

•oo T ^ 
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• 0- V TT( ) ^ e t 2 '* f V 
m v = g v ) U ' r i + T g ( v -v v v ) a av a a ^ k[v tr J 3 a ' av av ao- a 

S imi lar ly we get in the sca la r case 

• V ~ TT ^ e t d , Ŷ  ^̂  
m V = -g ) , 9 U^ + g -— ( >, U, V . 

a av *a , V v k ° a d r , V k av ) 
k^a a kjta 

+ ^ g ( v -V V V ) + r r g 2 y 2 v 
3 a av av ao" a 2 ° a av 

av J^ (x s ) dT 

a 

00 

r -I 
T 

a 

^ Ji (X s J d r j . . s a 

(139) 

Thus in both ca se s the ent i re difference is in the in t eg ra l s , but it is a 

difference which in pr inciple at l ea s t , provides a way to dist inguish between 

the two points of view. In e lec t rodynamics the re was none. Here you get two 

different descr ip t ions of rad ia t ion , depending on which t i m e - s y m m e t r i c equations 

of motion you s t a r t out with, which can be used to calculate all kinds of p r o -

32 17 
c e s s e s . ' Unfortunately, whatever differences have been calculated so far 

a r e jus t a l i t t le too smal l to r each any exper imenta l decis ion, but at l eas t in 

pr inciple one has a method for exper imenta l decision available which one does 

not have in e l ec t rodynamics . 
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Similar r e su l t s can be obtained with higher poles and with cha rge -

symmet r i c fields; the theory can always be formulated consistently in t e r m s 

of in te rpar t i c le in terac t ion . 

IX. EQUATIONS OF MOTION IN GENERAL RELATIVITY 

AND GRAVITATIONAL RADIATION 

I want to spend jus t a few minutes on genera l relati-vity because I made 

severa l r e f e rences to it before , and because , somewhat surpr i s ing ly , it gives 

somie support to the idea that one should think of radia t ion in t e r m s of d i rec t 

pa r t i c le in te rac t ions although, of course^ it is a field theory par excel lence. 

When I s t a r t ed looking into the problem of gravi ta t ional radiat ion I did not 

expect any connection with the ideas jus t d i scussed ; but the connection was 

impl ic i t in w^hat had been know^n before — I jus t had not known enough to 

r ea l i ze i t . 

In genera l re la t iv i ty it i s poss ib le to der ive equations of motion from 

33 34 
the field equat ions . ' I d i scussed the Lubanski method in Sec . VII; the 

e s sen t i a l feature was that when you s t a r t out from a ce r t a in equation you get 

from it information by multiplying it by a 6 -function and in tegra t ing . The 

equation we can use for this purpose in genera l re la t iv i ty is the equation for 

conservat ion of energy-momentum 

9 (T T ^ ) - I ^f=g TP*̂  9 g = 0 . (140) 
(T a ' c. ' a per 
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H e r e g i s t he m e t r i c and g i s the d e t e r m i n a n t of the m e t r i c , and T i s the 
per " |j,v 

e n e r g y - m o m e n t u m t e n s o r of m a t t e r and n o n - g r a v i t a t i o n a l f i e l d s . F r o m th i s 

one can ge t t he e q u a t i o n s of m o t i o n e x a c t l y , bu t a t t h e e x p e n s e of having in t hem 

t h e unknown m e t r i c . To b e a b l e to app ly the e q u a t i o n s one h a s to go b a c k and 

t r y to ge t an e x p a n s i o n for the m e t r i c , a s the m e t r i c i s d e t e r m i n e d by n o n - l i n e a r 

p a r t i a l d i f f e r e n t i a l e q u a t i o n s . I s h a l l j u s t s t a t e the r e s u l t for the equa t ions of 

m o t i o n in s e c o n d o r d e r for the r e t a r d e d c a s e wi th no o t h e r f ie lds p r e s e n t . 

(In t h i s o r d e r the r e s u l t s w i t h o t h e r f i e ld s p r e s e n t a r e the s a m e a s ob t a ined 

by the D i r a c m e t h o d . ) We ge t 

d f 1 po- 1 or v vcr 
"̂ a dT r^ ~^^ % ^aa - 4 ^^ ) ^a + ̂  âo-

1 v p o " 1 v o - l l „ o / » - V V , ,0 -
= —m 9 v"^ V V " - r m 9 Y - -^r- G m 2 (v -v v v ). 

2 a ^ ap aor 4 a cr 3 a a a atr a 

(141) 

H e r e G i s the g r a v i t a t i o n a l c o n s t a n t and x i s a f i r s t o r d e r a p p r o x i m a t i o n to 

a p a r t i c u l a r c o m b i n a t i o n of the c o m p o n e n t s of t h e m e t r i c t e n s o r . I t i s a g a i n a 

s o l u t i o n of an i n h o m o g e n e o u s w a v e e q u a t i o n and i s g iven by 
p (T \ 

X̂  = - 4 G 2J k k k 
Ha. K 

/ 

(142) 
T 

r 

E q u a t i o n (141) i s L o r e n t z - i n v a r i a n t and i s e s s e n t i a l l y of the s a m e type a s the 

e q u a t i o n s of s p e c i a l r e l a t i v i t y we c o n s i d e r e d b e f o r e . In E q s . (141) and (142) 

the i n d i c e s a r e u n d e r s t o o d to be r a i s e d a n d l o w e r e d b y m e a n s of the Minkowsk i 

m e t r i c -n r a t h e r t h a n g a s in E q , (140) , 
[JLV °[JLV 
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Now suppose one wants to calculate a radiat ion problem, using the 

radiat ion react ion t e rm in (141). How should one go about i t? As you al l know 

from e lec t rodynamics , re la t iv i s t ic two-body p rob lems a r e t e r r ib ly difficult. 

Everybody solves one-body p rob lems ins tead, approximating the e lec t romagnet ic 

field of one par t ic le by a fixed external field acting on the other pa r t i c l e , and 

then using the Lorentz equation of motion to calculate the radiat ion. But a s imi lar 

a t tempt to approximate x ^Y ^^ ex terna l field leads to nonsens ica l a n s w e r s . 

The nonsense is of the same na ture as in the following example: Suppose I drop 

a piece of chalk. I have conservat ion of nnomentum for the system of chalk and 

ear th when i t d rops . How^ever, if I want to consider a s an approximation that 

the ea r th is fixed, it does not make sense to talk about conservat ion of m o ­

mentum of the piece of chalk falling in an external field; I los t this pa r t i cu la r 

feature because of the way I approximated . 

Gravi ta t ional radiat ion calculat ions a r e of the same type because of 

the absence of dipole radia t ion. The gravi ta t ional dipole moment is identically 

z e r o . This comes from the fact that the ra t io of gravi ta t ional m a s s to i ne r t i a l 

m a s s is the same for a l l p a r t i c l e s . These quest ions a r e d i scussed extensively 

35 
in Landau and Lifshitz ; I am not saying any nnore than Landau and Lifshitz 

did except that I explicitly consider equations of motion. The question now is 

how to approximate t he se . The fact that the dipole moment is identically zero 

means that if you do not use a one-body approximat ion but take the re ta rda t ion 

into account by making an expansion of the gravi ta t ional potent ials in v / c , then 

the f i r s t r e t a rda t ion t e r m you get from the other pa r t i c l e s will jus t cancel out 
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with the radiat ion reac t ion t e rm in Eq. (141). The next t e rm you'l l get is 

quadrupole radia t ion. But if you use a one-body approximation to (141) then it 

appea r s that the radiat ion t e rm gives you the radiat ion loss d i rec t ly , while from 

the above d iscuss ion it follows that by i tself the t e rm is meaning less . 

In shor t , then, the situation is that in e lec t rodynamics , very fortunately 

or ve ry unfortunately, it so happens that a one-body approximation is a physically 

excel lent approximation to radiat ion p r o b l e m s . In gravi tat ional theory a one = 

body approximation to the radiat ion problem is nonsense . You can ' t calculate 

radia t ion problemis in gravitat ion except by explicitly considering the ent i re 

sys tem of in teract ing m a s s e s . 

I want to finish up by saying that for the problems we were considering 

in these l e c t u r e s , genera l re la t iv i ty is re levant in two ways . F i r s t of all it 

gives you a complete der ivat ion of special re la t iv is t ic equations of motion (if 

you stay within the l inear theory) without having to a s sume conservat ion laws 

as Di rac does . I mentioned before that in the Dirac method there is an ambiguity 

because the re a r e m o r e conservat ion laws for some free fields than can be 

mainta ined in the p r e s e n c e of p a r t i c l e s . Genera l re la t ivi ty selfects the r ight 

conservat ion laws for you without ambiguity. In that r e spec t it gives a full 

just if ication for the special r e la t iv i s t i c equations we cons idered . Second, it 

a lso te l l s you that, although Einste in s ta r ted to der ive the fundamental equations 

from field theore t ica l concepts , it tu rns out that for radiat ion p rob lems one can 

not get sensible answer s if one wants to ideal ize a situation as one par t ic le 

in an ex te rna l field; one has to consider radiat ion in t e r m s of a system of 
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par t ic les and their effect on each o ther . 

Peshkin: You say that in e lec t rodynamics I know that I 'm not 

making such a mis take because it i s , after a l l , a l inear theory? 

Havas: No, I didn ' t say that — what I said was that it so happens 

that in e lec t rodynamics you get a ve ry good approximation because the re 

the dipole moment is not zero in genera l . But it could be zero and you 

could r ig up p rob lems so that you get the wrong answer the re too. If 

you would take a system consist ing only of e l ec t rons , and then look at 

only one e lec t ron and ideal ize the effect of the o the rs by an external 

field, you would get the same wrong answer because the dipole moment 

of the whole system is z e r o . If I calculate dipole radiat ion I get the wrong 

answer . But in e lec t rodynamics you have to r ig it up to get such a 

si tuation. In gravi tat ion you get it n e c e s s a r i l y . 

Peshkin: So then in e lec t rodynamics I am st i l l making an e r r o r . 

Is it only that the effect I am calculating is much l a r g e r than the e r r o r ? 

Havas: Ord inar i ly , yes , 

Peshkin: You say the re is no way in which I could automatical ly 

c o r r e c t for reco i l te rnns? 

Havas: No. 

Peshkin: Essent ia l ly by making recoi l co r rec t ions on all the 

ope ra to r s or all the dynamical va r i ab les of the theory? 

Havas: No, none that I am aw^are of anyhow. If you want to get 

Loren tz - inva r i an t equations — which is the l ea s t you should hope for — 
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you a r e essent ia l ly stuck with Eq. (141). The original derivation of the 

33 
genera l re la t iv i s t ic equations of motion by Einstein -Infeld-Hoffmann 

assumed slow motion, which is a heck of a way of doing re la t iv is t ic 

equations of motion, and which is an impossible way to get information 

about radia t ion. To obtain radiat ion t e r m s you have to go to fantastically 

high o r d e r s of approximation and you get into such a mathemat ica l nness 

that essent ia l ly you can ' t conclude anything about radiat ion with cer ta in ty . 

Now here you can get Loren tz - inva r i an t eqixations and presumably what 

one knows about radiat ion from other such equations ought to be helpful. 

As I sa id , however , Eq. (141) as it s tands mis leads you if you want to 

make the usual one-body approximat ion to get around the mathemat ica l 

difficulties of re la t iv i s t i c many-body p r o b l e m s . 
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Boiind States of Many-Par t i c l e Systems 

F . Coes t e r , State Universi ty of Iowa, Iowa City, Iowa 

LECTURE I. 

Ekstein: This is the f i r s t of two talks by Dr . Coester about bound s ta tes 

of many-pa r t i c l e s y s t e m s . We have talked about the approach of the common 

man to problems of sc ience so much and we have al-ways exemplified the com­

mon man by the Iowa f a r m e r , so today we a r e going to hear a genuine r e p r e ­

sentative of the Iowa f a r m e r s . P r o f e s s o r F r i t z Coes te r , 

Coes te r : (Pe rhaps I shoiild apologize to those r e a d e r s whose hopes for 

an ear thy t r e a tmen t of the subject have been unduly r a i s ed by this kind in t ro -

duction. ) 

I w^ould like to review^ some aspec t s of the per turba t ion theory of bound 

s t a t e s . Specifically l e t ' s keep in mind a reasonably heavy nucleus , as an 

example . Much or mos t of what I have to say today will be m o r e genera l . 

On the other hand ce r ta in things which a r e typical fea tures of field theory will 

be ruled out. It is a pecul ia r fea ture of quantum mechanics that you can solve 

both t ime-dependent p roblems and t ime- independent p roblems with ei ther t i m e -

dependent or t ime- independent t h e o r i e s . Scat ter ing is a t ime-dependent p rob lem. 

Neve r the l e s s , the re is a t ime- independent sca t te r ing theory and a t i m e - d e ­

pendent sca t te r ing theory . On the other hand, bound state p roblems a r e 

Note added in proof. 
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essent ia l ly t ime-independent. Never the less the re a r e t ime-dependent and t i m e -

independent methods for finding bound s ta tes and energy eigenvalues . It is 

a curious phenomenon that t ime-dependent theor ies a r e m o s t popular with 

authors wri t ing on bound state p roblems and t ime-independent theor ies seem 

to be m o r e popular with authors writ ing on sca t te r ing theory. I will not a t tempt 

to explain this phenomenon. But I intend to review the formal re la t ionship 

between var ious forms of per turba t ion theory . 

Before I give an outline as to what I want to do today and why, let 

me introduce some notations and definitions so that I can state my problem 

m o r e easi ly , I have a Hamiltonian H which I a s s u m e can be split into a 

zero o rde r Hamiltonian H and a per tu rba t ion V, Pe r tu rba t ion theory usually 

has a double connotation. On one hand it means that we re la te a zero order 

s tate such as a shell model s ta te , to the t rue e igensta te of the full Hamiltonian 

of the sys t em. That is the weaker p a r t of what one impl ies in per turbat ion 

theory and beyond this it a lso means that the zero o rde r s tate is in some sense 

a l ready an approximat ion to the t rue state and that we can get at the t rue s ta te 

by expanding in pow^ers of a smal l p a r a m e t e r . I would l ike to keep these two 

aspec t s sepa ra t e a s much as poss ib le . The f i r s t one will always be p r e sen t - -

we have this re la t ion of two s ta tes or groups of s t a t e s , but ins tead of power 

s e r i e s expansion, we shall use r igorous equations from which the per turba t ion 

s e r i e s can be genera ted by i t e ra t ion . 

The s tandard p rocedu re in quantum mechanica l pe r tu rba t ion theory is 

to talk f i r s t about non-degenera te s ta tes and then genera l i ze to the degenera te 
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c a s e . I shall skip the non-degenera te p a r t and t r e a t the general per turbat ion 

theory in the f i r s t ins tance . So we have a set of g eigenstates of the Hamiltonian 

H which belong to the same eigenvalue ^ . 

The <j) span a g-dimensional vector space which can be specified by a p r o ­

jection opera tor A which, l ike al l project ion opera to r s is hermi t ian and 

idempotent , 

A"*" = A, A2 = A, (2) 

In this pa r t i cu la r case it a lso has the p roper ty that 

AHp = HpA = A H Q A (3) 

and 

A H p A = g o A , (3a) 

The Hamiltonian H has a cor respondent set of g e igenstates that do not all 

belong to the same eigenvalue. Let P be the project ion opera tor which p r o ­

jec t s into this space . 

p 2 = p P"*' = P , P H = H P (4) 

and you can wr i te 

P = 2 P ;̂ (5) 
n=l 
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the project ions P a r e orthogonal: 

P P = 6 P . (6) 
n m mn n 

We may wri te 

P H = y E P (7) ^ n n ^ ' n 

where E a r e the eigenvalues of H. \\i a r e the normal ized eigenfunctions 

of H. 

Ekstein: Everything is d i sc re t e? 

Coes te r : Everything I have talked about so far is d i s c re t e , I 

have not talked about a l l e igensta tes of H some of which may be in 

the continum. I have not talked about e igensta tes of H other than those 

under considera t ion. The spectrum of H may be par t ly continuous - -

that does not m a t t e r . 

So far we have introduced the Hamiltonian H and H and the project ion 
0 

ope ra to r s A and P . I need one m o r e synnbol 

Z = A P A , (8) 

I call it Z because it r eminds me of an old friend: In the non-degenera te case 

where the sub-spaces a r e one-dimensioncil , the only non-vanishing eigenvalue 

of Z wovdd be equal to the probabi l i ty of finding the unper turbed state in the un 

per turbed s ta te . 
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Peshkin: Does A commute with P ? 

Coes te r : A does not commute with P , If you want to have a 

geomet r ica l p ic ture take th ree-d imens iona l space as a model for the 

whole Hilber t space and take two planes which have am angle between 

them as the model for the s u b - s p a c e s , P and A a r e respect ively the 

project ion ope ra to r s into these p lanes , 

Moldauer: I don' t unders tand the definition of P , Is that meant 

to be a unique definition? 

Coes te r : Yes, This perhaps becomes more apparent if one 

wr i t e s P in the famil iar form 

P = y i|j ij; *. 
'-' n n 
n 

Moldauer: But what is n ? 

Coes te r : n labels e igensta tes of the Hamiltonian. Your question 

i s , if I unders tand it c o r r e c t l y , whether the correspondence with the 

e igens ta tes (j) of H , which I have postulated h e r e , is unique. The 

cor respondence is unique if the per turba t ion expansion in powers of V 

converges . If the expansion does not converge but V is bounded, then 

the modified problem with the in teract ion T|V ( 0 < ! T ^ l ) has a converging 

per tu rba t ion expansion for sufficiently smal l T| . If solutions of the 

modified problem can be found for all r\{0<ir\ < 1) and if these solutions 

depend continuously on r\ then this continxiity es tab l i shes a unique co r ­

respondence . We should r e m e m b e r that the choice of H is la rge ly 
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a r b i t r a r y . The r equ i remen t that there should be a unique correspondence 

between the re levant e igens ta tes of H and H r e s t r i c t s the acceptable 

choices for H , 

The m a t r i x Z = (<b , Zcb ) defined by Eq. (8) has an inverse if there 

is no vector in the space P , which is orthogonal to every vector in the space A, 

There is then an opera tor Y which by definition has the foUow^ing p rope r t i e s 

ZY = Y Z = A (9) 

and 

YA = AY = Y , (10) 

The ma t r i x Y is the inve r se of the m a t r i x Z , Y and P satisfy the identity 
\i.V \iv 

P Y P = P (11) 

which caji be easi ly proven by introducing a set of bas i s vec to r s in the spaces 

P and A respec t ive ly . 

Our problem is to find eigenvalues E and eigenfunctions dj of the 

Hamiltonian H, Different per turba t ion theor ies yield per turba t ion s e r i e s for 

different quant i t ies . For ins tance , non-degenera te Rayleigh-Schrodinger p e r ­

turbation theory yields d i rec t ly a s e r i e s for an eigenfunction ^ of H which is 

normal ized according to (<|) , n ) = 1 where cj) is the unper turbed s ta te , A s e r i e s 

for the normal ized eigenfxinction ^ may be obtained indirect ly from the equation 
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On the other hand, Kato 's per turbat ion theory yields direct ly a s e r i e s for P , 

The purpose of my talk today is to review these different per turbat ion schemes 

in an opera tor form which automatical ly allows for degeneracies and to d i s ­

cuss the re la t ionships between them. 

In o rde r to formulate the Rayleigh-Schrodinger per turbat ion theory in 

this manner we need an opera tor F with the following p roper t i e s : 

F A - F (13) 

A F = A (14) 

and 

H F = F A H F . (15) 

This opera tor F plays in the genera l case the pa r t of the wave function Q 

mentioned e a r l i e r . We see immedia te ly that F = P Y satisf ies Eqs , (13) 

and (14); we proceed to prove that it a lso satisfies Eq. (15). We have 

H F = H P Y = P H Y . (16) 

F rom Eq. (11) follows 

P H Y = P Y P H Y = P Y H P Y . (17) 

Hence we obtain from E q s . (16) and (17) 

H F - F H F = F A H F . (18) 

Equation (15) has thus been ver i f ied. 
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In o rde r to obtain a per turba t ion solution of Eq, (15) we wri te i t in 

the form 

- (^0 "<^0^ ^ " ^ ^ " ^ ^ ^^^^ 

where ^ ^ is defined by (1) and G is by definition 

G = A H F - ^ , Q A (20) 

o r 

G = A V F . (20a) 

Because of Eq. (14), Eq. (19) rnay be wri t ten in the form 

F = A + (1-A) (<£Q -^Q)'"' ( V ^ - F G J ) • (21) 

This is a non- l inear in tegra l equation because G also depends on F . One can 

i t e ra te by success ive substi tut ion and a r r i v e a t a per tu rba t ion s e r i e s for F 

in this manne r . In the non-degenera te case this gives d i rec t ly the Rayleigh-

Schrodinger s e r i e s for the wave function and for G which would then be the 

energy shift. In a non-degenera te problem (^ + G is the eigenvalue of H, 

and Eq, (15) is the s ta t ionary state Schrodinger equation. In the degenera te 

case we a r e not through yet; we m u s t de te rmine the e igenvalues . 

Let cj) Tv = 1 . , , g) be a se t of b a s i s vec to r s in the space A. We obtain 

then the eigenfxinction iLi of H in the form 
^n 

^ = y F <|) T , , , , , 
^ n ^ V vn n = 1 . . , (22) 

v= 1 
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where the coefficients T a r e yet to be de te rmined . F r o m 
v n 

H lb = E d; , (23) 
^n n n 

E q s . (22) and (15) follow 

y (G - ( E - ,<„) 6 ) T - 0 . (24) 
V 

(G ) is in genera l not a he rmi t i an m a t r i x and (T ) i s not a uni tary ma t r i x . 
\i.v vn 

v> * 
The "good" ze ro o rde r s ta tes ) ^ T need not be orthogonal. Since 

V 

{^ , ^ ) = 6 (25) 
^ n ' ^ m nm 

by def in i t ion t h e r e fo l lows 

(L|; , L|; ) = y T Y T =5 . (26) 
^ n ^ m ^ liv U.V v m m n 

|J.V "̂  '̂  

Y c a n b e c o m p u t e d f r o m F a c c o r d i n g to 

F ' * " F = Y P Y = Y . (27) 

O u r f o r m a l i s m l e n d s i t s e l f to c e r t a i n e a s y g e n e r a l i z a t i o n s . I t i s no t 

n e c e s s a r y t h a t a l l s t a t e s i n A b e l o n g to the s a m e e i g e n v a l u e s of H , L e t u s 

r e t a i n E q . (3) b u t a b a n d o n ( 3 a ) . The e n e r g y ^ in E q s . (19) , (20) and (21) i s 

T h i s w a s r e c e n t l y e m p h a s i z e d by C . B l o c h ( ref . 2). 
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now no longer an eigenvalue of H but a p a r a m e t e r chosen for convenience. 

Equation (20a) is no longer valid . In this manner we obtain a ve ry flexible 

per turbat ion scheme . If we enlarge the space A we improve the convergence 

of the per turba t ion solution of (21). At the same t ime , the complexity of the 

finite eigenvalue problem (24) i n c r e a s e s . In the non-degenera te case we may 

choose the numbers ^ and G in any convenient manner consis tent with the 

re la t ion ^ + G = E . As a specia l case we get from (21) with ^ - E and 

G = 0 

F = A + ( 1 - A ) ( E = H Q ) " V F . (21a) 

I tera t ion of (21a) yields the Wigner-Br i l louin per turba t ion s e r i e s . 

A per turba t ion theory which yields d i rec t ly a per turbat ion s e r i e s for P 

i s due to Kato. It uses the following in tegra l r epresen ta t ion for P 

hri ^.- <-) ^'- c 

The contour C encloses all the eigenvalues E . The per turba t ion theory is 

based on the identity 

1 1 1 1 
—t - 1— + 1— V =— (29) 
E - H E - H p ^ - ^ 0 - ^ " ^ ' 

_ i 
By i tera t ing (29) one obtains a per turba t ion s e r i e s for (E - H) and hence 

n=0 0 0 
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In o rde r to compare this r e s u l t to the Rayleigh-Schrodinger s e r i e s we mus t 

compute Z by (8) and F by F = P Y. An expansion of P ra the r than F may be 

advantageous if one wants to compute the expectation values of quantities other 

than the energy. 

I finally come to the t ime dependent method. 

Ekstein: What a r e the re fe rences on th is , or is this you r s? 

Coes te r : The substance of my talk is general knowledge. Ther 

i s , of cou r se , a lot of l i t e r a t u r e on the subject. I 'd like to mention a 

2 3 
s e r i e s of pape r s by Bloch and a UCRL repor t by De Witt. The p e r -

_ i 
turbat ion expansion of the reso lvent (E — H) has recent ly been ex-

4 
tensively invest igated by Van Hove and Hugenholtz. 

A popular method of solving bound state problems is to switch on the 

in terac t ion V adiabat ical ly . I would like to show how the energy eigenvalues 

and eigenfunctions a r e obtained by this p rocedure and d iscuss i ts re la t ion to 

the per tu rba t ion schemes we have d i scussed so far . 

Let 

H = H + e ' ^ ^ V , t < 0 a > 0 , (31) 
a 0 

and 

V ( t ) = e O V e O e . (32) 
a 
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The S c h r o d i n g e r e q u a t i o n in t h e i n t e r a c t i o n p i c t u r e i s 

d U ( t , ~oo) 
i TT - V (t) U ( t , - oo). (33) 

a t a a 

The c o r r e s p o n d i n g i n t e g r a l equa t i on i s 

t 
U (t , -oo) = l - i f d t ' V ( f ) U ( f , - co). (34) 

- 00 

If one solves (34) by i te ra t ion and c a r r i e s out al l the t ime in tegra t ions , one 

finds with (3a) 

U (0, -oo) A = A + /y r I ^- V r= r-i-T7 ^ V, . . . ^ ^ . I A. 
( n . l ^ O - ^ O - ^ ' ^ ^ ^ 0 - ^ 0 + ' ^ ^ - ^ ) ^ ^ 0 - ^ 0 - ^ 7 

(35) 

Forma l ly , U (0, -co), a-*0 is analogous to the M i l l e r opera tor in sca t te r ing 
a 

theory . In fact the M i l l e r opera tor may be calculated in exactly the manner 

outlined above. The exact form of the imaginary p a r t s of the energy denom­

inators does nqt m a t t e r in s imple sca t te r ing p r o b l e m s . It is well known that 

for simple sca t te r ing p rob lems one may rep lace n -•a, (n-1) a-»a. . . in (35) 
a 

in the l imi t a-»0. In our case the situation is quite different. Hrn (U (0, -oo) 
a-.-0 a 

does in genera l not exis t , and for those quanti t ies which have a l imi t the exact 

form of the denominators is impor tan t . We have defined a modified t ime d e ­

pendent Hamil tonian, we have solved the t ime dependent Schrodinger eqxiation 
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in t e r m s of a n i n t e g r a l equa t ion and in t e r m s of a s e r i e s . So far we know 

no th ing of w h a t t h i s h a s to do wi th t h e bound s t a t e p r o b l e m . The connec t ion 

5 
i s e s t a b l i s h e d by the " a d i a b a t i c T h e o r e m " . 

linri U (0 , -oo) A U (0 , -oo)^ = P . (36) 

a~*-V a. a 

A fornnal p roof wh ich a s s u m e s t h e c o n v e r g e n c e of the p e r t u r b a t i o n s e r i e s can 

e a s i l y b e o b t a i n e d f rom (35) a s fo l l ows : 

l i n i U (0 , -oo) A U (0 , -oo)"^ 
a-*-U a a 

l i m y y . V . . . ^ „ , . VAV r - . . . V -. r r -
""""^ n = l m = 0 ^0 "^0 +^™'^ ^ 0 - ^ 0 + ^ ' ^ ^ 0 - ^ 0 - ^ * ^ ^ o "^o - ( ^ - " ^ ) ^ ^ 

00 J /n-1 ^ \ ^ 

= ^ ^ l li^ 2 ^ #/ rr^ E-H,+ia(n-m) W E T H - ̂  ^-
n = l I m = 0 0 ^ ' / 0 

(37) 

In the l a s t e x p r e s s i o n we c a n go to t h e l i m i t a — 0 and ob ta in 

n=0 \ " / 

1 " \ n 1 , r. ^ 
d E = : P . E - H Q 

(38) 

H a a g : I would l i k e to o b j e c t to the n a m e "bound s t a t e " p r o b l e m 

b e c a u s e the p a r t of the s p e c t r u m of H wh ich you do u s e i s the s a m e a s 

t h a t of H_ . What one u s u a l l y m e a n s by b o u n d - s t a t e p r o b l e m i s the 

p r o b l e m of f inding e i g e n s t a t e s of H wh ich y o u d i d n ' t h a v e b e f o r e in H^ . 
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I jus t mention it because this morning ŵ e talked about the Bethe-Salpeter 

equation. Now this thing he re is a completely different p rob lem. With the 

Bethe-Salpe ter equation you de te rmine a state which has no counterpar t 

among the e igensta tes of H „ 

Coes te r : What one usual ly means by bound-s ta te p rob lems de ­

pends somewhat on whether one is a field theor i s t . The problem of 

finding the binding energy and ground state wave function of Pb^os 

would usually be called a bound state problem by people in te res ted in 

such p r o b l e m s . The methods d i scussed he re a r e cer ta in ly re levant to 

t h i s p rob lem. Quite genera l ly the bound s tate problem is the problem 

of finding normal izab le e igens ta tes of H and the corresponding eigen­

va lues . The method of guessing a suitable space of t r i a l s ta tes A, 

construct ing H and improving these t r i a l solutions sys temat ica l ly , 

s e e m s to be a leg i t imate approach to the genera l problem among o the r s . 

H and A a r e not God-given quant i t ies which then "usual ly" have the 

wrong p r o p e r t i e s , but guesses involving cons iderable f reedom. In 

o rde r that these methods be applicable one m u s t have some informa­

tion about the topological s t ruc tu re of the spec t rum of H. Such qual i ­

tat ive information is avai lable for nuclei . On the other hand it i s , of 

c o u r s e , not difficult to wr i te down Hamil tonians for coupled fields for 

which that is not the c a s e , 

Haag: Then what you a r e doing is jus t per tu rba t ion theory in 

the d i sc re te spect rum in an opera tor fo rm? 
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Coester : Yes , 

Haag: For p rac t i ca l purposes is it n ece s sa ry to multiply out two 

expansions as you do in Eq. (36)? 

Coes te r : Equation (36) is the s imples t re lat ion I know which 

es tab l i shes a connection between U (0, -oo) and the time independent 
a 

fo rma l i sm, U itself does not have a l imit a-»0. I shall soon come to 
a 

d i scuss formulae which a r e m o r e useful than (36) for p rac t i ca l com­

putat ions . They a r e al l easi ly der ived from (36). 

Ekstein: There a r e two questions on the equation. Would you 

p lease wr i te it down for the case where P is one-dimensional operator 

for the benefit of p a r t of the audience, including m e ? The second 

question i s , "In what sense has this theorem been p r o v e d ? " 

Coes te r : The theorem has been proved by comparing the p e r ­

turbat ion expansion for P t e rm by t e rm with the per turbat ion expansion 

of the left-hand side of Eq, (36). 

Tanaka: What does this p rove? 

Coes te r : It p roves Eq. (36) if the expansions converge; if 

they don't converge it does not prove anything. 

Now your other question: Write (36) down for the case where P 

is one dimensional . A is then also one dimensional . Let ijj and <j) be 

the corresponding v e c t o r s . We may then wri te (36) in the form 

a5b U^'i'^U^^)'^ - ^^'^ ' (36a) 
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Haag: Could you put this in the form 

Coes te r : No, because this l imit does not exis t . 

Haag: Can you explain how this can happen? After a l l , the p r o ­

jection into a single vector and the vector i tself a r e a lmos t the same 

thing, I mean , how is i t that the project ion exis ts and the vector does not? 

Coes ter : I should have been m o r e careful in d iscuss ing the 

l imi t s involved. Let U A be a pa r t i a l sum of the expansion (35) 
a 

U ^ ' A = A + y ;: „ ^ . , V , . . A. 
n '= l ^ ' 0 - ^ 0 + ' ^ ' ' 

It is easy to verify that lim U d> does not exis t in genera l . There fore , 
a— V a. 

a-*0 a a 

a lso does not exis t . On the other hand we have proven that 

l im y U ^"-"^^AU ^"^^^ 
a-^0 '^ „ Q a 

m=0 

does exis t . In fact we have proven 

T V TT ( n - m ) , ^̂  ( n ) ^ vn 1 ^ , 1 - , , ,n ' 1 

m=0 n' = 0 0 o 
d E 

(38a) 

The existence of the l imi t n—oo is m e r e l y a s sumed . I r e f e r r e d to this l imit 
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w h e n I a s s u m e d e a r l i e r " the c o n v e r g e n c e of the p e r t u r b a t i o n e x p a n s i o n s ' 

F r o m (36) fo l lows 

Z = A P A = lirn z z ' = l im Z 
a-*D a a a—0 a 

and 

(39) 

P A = liro U z ^ (40) 
a-»l) a a 

w h e r e by def in i t ion 

and 

z = A U A (41) 
a a 

Z = z z "'' . (42) 
a a a 

T h e r e fo l lows f u r t h e r 

F = P Y = J i m U y , (43) 
a—v a a 

w h e r e y i s r e l a t e d to z in the s a m e m a n n e r in w h i c h Y i s r e l a t e d to Z . [ ( s e e 
a a 

E q s . (9) and (10).] . E q u a t i o n (43) t a k e s a f a m i l i a r f o r m if A i s one d i m e n ­

s i o n a l ( n o n - d e g e n e r a t e c a s e ) 

" ^ ^* ^Ji^ <ir>- ^a* • <̂ )̂ 
a 

If w e r e p l a c e V by -qV in the e x p a n s i o n (35) , we can e a s i l y v e r i f y t h a t 

9 U 
A V U = i a A f ^ "• I . (45) 

S e e , for i n s t a n c e , M . G e l l - M a n n and F . L o w , ref . 6. 
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There follows from (43) and (45) 

au 
G.AVF.^lng, i a A ( ^ ^ j ^ _ V- ^̂ ^̂  

In non-degenera te case (46) reduces to the following well-known formula 

for the energy shift 

/ s i n < U > ) 
G = lirn iaf — i . (47) 

So far we have d i scussed bound state per turba t ion theory without utilizing 

the pa r t i c l e s t ruc tu re of the sys t em. In my next l ec tu re I intend to d iscuss 

those features of the theory which occur specifically in many-par t i c l e p rob lems . 
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LECTURE II, 

All the per turba t ion schemes which I d iscussed las t t ime have been 

applied to many-pa r t i c l e s y s t e m s . Today only the time-independent formu­

lation will be used . In o rde r to keep the formulas reasonably s imple , I a s ­

sume that the zero o rde r s tate is non-degenera te . Concrete r e su l t s a r e ava i l ­

able only for that c a se . It i s easy , however, to formulate the bas i s equation 

a lso for the degenera te c a se , I shall outline la ter on how this is done. 

Let me quickly review those resxilts of the f i rs t l ec ture which we need 

today. Let <j) be the normal ized zero o rde r state and A the project ion operator onto 

cj) , The corresponding eigenstate Q. of H is normal ized by the condition 

( " , 4>) = 1 . (1) 

The opera tor F which t r a n s f o r m s cj) into £l (Q. = Fcj) ) has by definition the 

p r o p e r t i e s 

F A = F (2) 

A F = A (3) 

H F = F A H F (4) 

A H F = E A (5) 

where E is the des i r ed eigenvalue of H. In the following, ĉ  is always r e ­

p re sen ted by a Slater de te rminant formed from suitable single par t ic le wave 

functions u (x). In an occupation number represen ta t ion cj) is r ep re sen ted 
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by 

* = I % % (6) 

where the product / / , . . is taken over all occupied single par t i c le s t a t e s , and 

cb„ is the vacuum state, a c r e a t e s a par t i c le in the state v . The opera tor F 
0 V 

can then be r ep re sen t ed in the form 

A 
F =A + 2 F A (7) 

k = l ' ^ 

w h e r e by def in i t ion 

F , = 7! y, „ , .„ Si . . .aT a . . . a F (p . . , p , v . . . v , 
- - k p ^ . Z ^ . p ^ V ^ . Z J . V ^ (k,')2 p^ P k ^ i ' ' k 

(8) 

The indices p and v v a r y respec t ive ly over the empty s ta tes and the occupied 

s t a t e s . The ent i re system of single pa r t i c l e s ta tes is by assumpt ion complete 

and o r thonormal . 

y u ( x ) u % ' ) + y u ( x ) u ' ( x ' ) = 6 (X -X') , (9) 
i-/ V V ^ p p 

V p "̂  "̂  

F(p^ . . . p , , V, . . . V, ) i s the re la t ive probabil i ty ampli tude for finding in the 

state fi the configuration with k excited pa r t i c l e s in the s ta tes p, — . p , and 

k holes in the s ta tes v^ — . v . The re la t ion between ^ and cj) i s ve ry s imi l a r 

to the re la t ion between the physical vacuum and the b a r e vacuum in field theory . 

The choice of pa r t i cu l a r single pa r t i c l e s ta tes u (x) is so far quite a r b i t r a r y . 
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The func t ions F c h a n g e in a v e r y c o m p l i c a t e d m a n n e r if the s ing le p a r t i c l e 

b a s i s i s a l t e r e d . 

If the H a m i l t o n i a n H i s of t h e fo rm 

H = - J d x a " ' ' ( x ) i 2 _ a{x) + ^ J d x J d x ' a''"(x) a''"{x') V{x-x ' ) a (x ' ) a{x) 

(9) 

V p 

i t i s e a s y to s e e t h a t on ly F^ and F c o n t r i b u t e to the e x p r e s s i o n for the e n e r g y 

E = (cj), HFct>) . (<j>,H(l + F ^ + F2)<|)) . (11) 

A good a p p r o x i m a t i o n to the e n e r g y b u t not to the wave funct ion can t h e r e f o r e 

a l w a y s be o b t a i n e d by c o n s t r u c t i o n a good a p p r o x i m a t i o n to F^ and F ^ on ly . 

The v e c t o r equa t i on 

HF^<j) = EF;,<t) (12) 

i s e q u i v a l e n t to the s y s t e m 

cj), H ( l + j : ^ +T^ ) ^ = E (13) 

(cj), a ^ a ( x ) H ( l + J ^ + J ^ + F ^ )(|) ) = Eijj (x) (14) 

/ c | > , a a a ( x , 2 ) a ( x ^ ) H ( l + F , + F 2 + F 3 + F ^ ) < J ) U E 4 ; ^ ( X , X 2) 
I 1 2 / 1 2 

(15) 
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( * ' % ^ " - % ^ a (x^) . . . a (xJH( l + J F ) 4. ) = E 4.̂  ^(x^...x^) 
k q = l 1 • • • k 

(16) 

where the wave functions on the right hand side are defined by 

+ + 
i\) {x^...x ) = {<\> , a. . . . a. a(x )...a(x3^)j:4)). (17) 

v^ . . .V j^ î  I k 

The problem is to replace this system by an approximate set of equations 

which determine F^ and F^ . The simplest and crudest way of doing this 

is the Hartree-Fock approximation. It consists of putting Q = (1 + F^ ) 4> and 

retaining only eqs. (13) and (14). These equations determine F̂ ^ and E in 

this approximation. The equations take on a nnore familiar form if one re­

quires the u (x) to be self consistent single particle functions defined by the 

condition u (x) - ijj (x) or F^ = 0. Equation (14) is then the usual Hartree-

Fock equation for the self consistent single particle w âve functions. 

Broadly speaking,the Brueckner approximation is an improvement of 

the Hartree-Fock approximation: F and F^ are determined from approxi­

mations to Eqs. (14) and (15). Originally the approximation was developed 

only for nuclear matter, that is for an unlimited medium. Homogeneity of 

the medium fixes the u (x) to be plane waves and F, =0. The approximate 

equation for F^ was at first obtained by heuristic considerations rather than a 

systematic approximation from the exact Schrodinger equation. Later Goldstone 

derived the equation for F^ by summation of selected terms in the Rayleigh-
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Schrodinger per turba t ion expansion. This expansion can be obtained by i t e r ­

ating the equation 

F = A + i : : ^ ^ (W -G) F (18) 

where H - H . + W and E = E„ + G. In every order of the expansion one obtains 
0 0 

a l a rge number of t e r m s for F and G due to the complexity of the many par t ic le 

s t r u c t u r e . One can bes t keep t r ack of these many t e r m s with the aid of dia­

g rams s imi la r to the Feynmann d iag rams of field theory . Matr ix elements 

which a r e products of independent m a t r i x elements a r e represen ted by d i s ­

connected d i a g r a m s . Essen t ia l for Goldstone's derivat ion was the proof that 

al l disconnected d iag rams in the expansion of G cancel . The per turbat ion se r ie 

of G is obtained ent i re ly in t e r m s of connected d i ag rams . 

Kaplan: What is the undesi rable feature of t e r m s descr ibed by 

disconnected d iag rams and what is their physical significance? 

Coes te r : For nuclear m a t t e r , d iagrams without external l ines 

a r e propor t ional to the volume. Since the total energy is volume p r o ­

port ional products of disconnected d iagrams mus t cancel in the ex­

pansion for G. 

It is poss ible to genera te the per turbat ion s e r i e s in such a manner that 

only linked d iag rams a r i s e and the procedure of collecting and cancelling t e r m s 

8 
is avoided. F o r that purpose we define an opera tor S by the equation 

F = e ^ A (19) 
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where S is of the form 

A 

k=l 

+ + 1 
S, = y, y, a . . . a a a /xj S (Pi "9 ^ v, ...v 

-^k LJ U P P , V, . . . V , (k . ' )2 •—k " l̂ "̂  k i k 
P , . . . P , V, . . . V , ^1 ^ k 1 k ' ' P i ••• P ]^ ' 1 ••• ' k 

(20) 

Haag: What is the justification for writ ing F as an exponential? 

Coes te r : Equation (19) w^ith (20) is not an assumpt ion about F , 

but a definition of S. It is a compact form of the system 

F , = S^ 

F = S + — S 2 

i : 3 = ^ 3 + ^ 1 - - § 2 + ^ S3^. (21) 

which can always be solved for the S in t e r m s of the F ' s . The exponential 
*^k ' 

s e r i e s b r eaks off with the power A because of the exclusion pr inc ip le . The 

purpose in the definition (19) i s to obtain ope ra to r s S which have only linked 

d iagrams in their per turba t ion expajision. I could wri te a power s e r i e s with 

a r b i t r a r y coefficients for (19) and then l a t e r de te rmine the coefficients from the 

requ i rement that_S, contain only linked d i a g r a m s . 

Haag: T h e ^ only have a physical meaning if you apply them 

to this one state 4> . What fixes them uniquely, I mean -what is so special 

when you can take many F ' s which would do the same thing? 
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Coes ter : The F, contain by definition only creat ion opera to rs 

for the empty s ta tes and annihilation opera to rs for the filled s t a tes . 

The S have the same p roper ty . Hence they all commute with each other . 
JK. 

Any other ope ra to r s which have the same effect on cj) differ by t e r m s 

containing annihilation ope ra to r s a of empty s tates and creat ion opera ­

t o r s a of filled s t a t e s . 
V 

With the definition (19) we may wri te instead of (12) 

e~3.li e§-<j> = E 4) . (22) 

The expansion 

e"-^ H e ^ = H + [ H, S] + ^ M H , ^ ] ^ j 

b r eaks off with the fourth o rder t e rm if H is given by (9). A per turbat ion 

s e r i e s for S can be generated as follows. Let H = H + W, H ^ = E <{) . 

If we multiply (22) by (1-A) we have 

— • - 1 

[ ^0'^] * + (1-A) (w + [ W, J ] + ^ |_[ w , j ] ^ S J + . . . ) ct> - 0 

Upon expansion of S in powers of W 

(23) 

00 
.M 

n=l 

Eq. (23) gives us [ H ^ ^ ' ] and therefore_S_ in t e r m s of lower order 

S ' " ' ' . n. < n. 

http://e~3.li
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Ekstein: Do you mean to say that the commutator of an unknown 

opera tor with H de te rmines this o p e r a t o r ? 

Coes te r : Not in genera l , but in this case it does because of the 

s t ruc tu re which S has by i t s definition, Eq, (20). Specifically we have 

[H , S 1 = y y a ^.. .a"^ a . . . a ( ^ ^ 
'• 0 '—h^ ^' ^ p ' p , V, V ' k r 

P i " - P k ^ i - ' - ' ^ k 1 ^ k 1 k 

X ( t o + 0 ) + . . ^ + CJJ - W -CO . . . W ) S ^ ( P , . . . P , , V T . . . V , ) , , _ . 

Pi P2 Pk ^1 ' '2 ^ k ^ ^ ^ ^ 

where oj and w a r e the single par t i c le energ ies of the levels p and v r e s p e c -
p V o J. o 

t ively. Since co > u> for al l p and v the energy difference can be divided out. 

By definition S, does not have any diagonal m a t r i x e lements with r e spec t to the 

e igenstates of H . The per turbat ion s e r i e s for S obtained from (23) in this 

manner contains only m a t r i x e lements r ep re sen t ed by linked d i a g r a m s . The 

S's occur everywhere in mult iple commutator express ions which guarantee 

that every factor is "linked" to every other factor . 

The physical ideas involved in the Brueckner approximation have been 

9 

discussed at length by Gomez, Walecka and Weisskopf, One mus t a s sume 

that the exact wave function is well approximated by a Slater de te rminant in 

that region of configuration space where the distance between any two nucleons 

is l a r g e r than a cer ta in "healing d i s tance" d. The single par t ic le wave functions 

which make up this Slater de te rminan t a r e the "self cons is ten t" single par t ic le 
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wave functions. If they a r e used to cons t ruc t a complete single par t ic le bas i s 

we have F^ - 0. Systematic approximat ions to Eqs . (13), (14), (15), based 

on these ideas have been d i scussed by Brenig and Kummel . One can obtain 

in this manner a set of sinnultaneous equations which de termine the functions 

u (x) and ijj (x, , x^) . These equations a r e s imi la r to the equations on which 
^ ^ 1 ^2 

12 

Brueckne r , Gammel and Weitzner base their "Theory of Finite Nuclei". They 

differ, however , in significant a s p e c t s . Nothing is known at this t ime about the 

numer i ca l impor tance of these differences. 

Ekstein: Could you say a few words about the effective two-

body in teract ion w^hich rep laces the singular two-body potentials in this 

theory? 

Coes te r : One defines a ma t r i x (x x / K v^ v„) by 

( X ^ X ^ I K I V^ V ^ ) = V (X^ -x^) ^ ^ ^ (^1 ^s) - (26) 
1 2 

The total energy of the sys tem i s then 

,2 

E = - 2 d x u / ( x ) ^ ^ U ^ ( X ) + i _ Z J - 2 V X / K / V , v^) 

(27) 

^ 1 ^ 2 

where 

2 
(Vg V I | K | V^V^)~ / d x ^ J d x ^ u^^ (Xg) u^'^ (x^) ( X g x j K J v ^ v^ ) 

(28) 
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The ma t r i x (26) is uniquely defined and it a r i s e s natural ly in the theory. The 

definition of an opera tor which has the m a t r i x e lements (28) is quite ambiguous 

Some of the differences which I mentioned ea r l i e r a r e due to this ambiguity. 

Haag: What rennains in this scheme of the original idea that 

one could get away from a nucleon-nucleon potential and get r e su l t s in 

t e r m s of exper imenta l nucleon-nucleon phase shif ts? 

Coes te r : Nothing, I bel ieve . In the case of an infinite medium 

the ma t r i x (k' k ' j K / k k^) sat isf ies an equation s imi la r to a sca t ­

te r ing equation. It is not an acceptable approximation to muti la te this 

equation to the point >vhere it becomes identical with a scat ter ing equa­

tion for free nucleons . 

So far our scheme is applicable only if all single par t ic le levels a r e 

either completely filled or completely empty. If some levels a r e par t ly filled 

the zero o rde r energy is degenera te . The formal ism can then be general ized 

along the l ines descr ibed in the f i rs t l e c t u r e . The opera tor F has sti l l the 

form given in Eqs . (7) and (8) but the number of single par t ic le s ta tes u is 

l a r g e r than the par t ic le number A. The subspace A is spanned by all Slater 

de terminants formed with A of the u ' s . Let d> , cb̂  , . . . be bas i s vec tors in 
V a P 

this subspace . The energy is now obtained by diagonalizing the finite m a t r i x 

(V ^^^p)-
u (x) and F ^ (x) mus t be obtained by methods s imi la r to those used before . 
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In conclusion I might summar i ze the p resen t situation as follows: I t 

is quite plausible that the energ ies of finite nuclei can be calculated to a good 

approximation by the genera l methods we have d i scussed . The development 

of p rac t i ca l approximation p rocedure s along these l ines is still in a p re l imin­

a ry s tage . There is no r ea son why these nnethods should lead to good approxi ­

mat ions for nuclear m o m e n t s , the density distr ibution and t rans i t ion ma t r ix 

e l emen t s . 

PARTICIPANTS IN DISCUSSIONS 

H. Ekste in , Phys ics Division, Argonne National Labora to ry , 

Rudolf Haag, Phys ics Depar tment , Pr inceton Universi ty, Pr ince ton , 

New^ J e r s e y . 
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