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Abstract

Muon Colliders have unique technical and physics advantages
and disadvantages when compared with both hadron and elec-
tron machines. They should be regarded as complementary. Pa-
rameters are given of 4 TeV high luminosity ut u~collider, and
of a 0.5 TeV lower luminosity demonstration machine. We dis-
cuss the various systems in such muon colliders.

Introduction

The possibility of muon colliders was introduced by Skrinsky et
al.f1}, Neuffer{2], and others. More recently, several workshops
and collaboration meetings have greatly increased the level of
discussion{3],[4]. A detailed Feasibility Study[5] was presented
at Snowmass 96.

Technical Questions

Hadron collider energies are limited by their size, and techni-
cal constraints on bending magnetic fields. Lepton (ete~or
wt p) colliders, because they undergo simple, single-particle
interactions, can reach higher energy final states than an equiv-
alent hadron machine. However, extension of ete~ colliders
to multi-TeV energies is severely performance-constrained by
beamstrahlung, The luminosity £ of a lepton collider can be
written:
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where o is the average vertical (assumed smaller) beam spot
size, E is the beam energy, Phearn is the total beam power, o
is the electromagnetic constant, r, is the classical radius, and
n., is the number of photons emitted by one bunch as it passes
through the opposite one. If this number is too large then the
beamstrahlung background of electron pairs and other products
becomes unacceptable.

As the energy rises, the luminosity, for the same event rate,
must rise as the square of the energy. For an electron collider,
Teollisions = 1, and, for a fixed background, we have the severe
requirement:
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In a muon collider there are two significant changes: 1) The
classical radius r, is now that for the muon and is 200 times
smaller; and 2) the number of collisions a bunch can make
Ncollisions 15 NO longer 1, but is now related to the average bend-

ing field in the muon collider ring, For 6 T, it is 900.
In addition, with muons, synchrotron radiation is negligible,
and the collider is circular. In practice this means that it can be
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much smaller than a linear electron machine. The linacs for the
0.5 TeV NLC will be 20 km long. The ring for a muon collider
- of the same energy would be only about 1.2 km circumference.
There are, of course, technical difficulties in making suffi-
cient muons, cooling and accelerating them before they decay
and dealing with the decay products in the collider ring. Despite
these difficulties, it appears possible that high energy muon col-
liders might have luminosities comparable to or, at energies of
several TeV, even higher than those in eTe~colliders.

Parameters

The basic parameters of a 4 TeV p+pu~collider are shown
schematically in Fig.1 and given in Tb.1 together with those
for a 0.5 TeV demonstration machine based on the AGS as an
injector. It is assumed that a demonstration version based on
upgrades of the FERMILAB machines would also be possible.

C of m Energy TeV 4 5
Beam energy TeV 2 25
Beam vy 19,000 2,400
Repetition rate Hz i5 25
Muons per bunch 1012 2 4
Bunches of each sign 2 1
Norm. rms emit. ey 7 mm mrad 50 90
Bending Field T . 9 9
Circumference Km 7 12
Ave. ring field B T 6 5
Effective turns 900 800
[3* at intersection mm 3 8
rms LP. beam size um 2.8 17
Luminosity em—2s~1 1035 1088

Table 1: Parameters of Collider Rings

Components
Proton Driver

The proton driver is a high-intensity (four bunches of 2.5 x 103
protons per puise) 30 GeV proton synchrotron, operating at a
repetition rate of 15 Hz. Two of the bunches are used to make
4#’s and two to make p~’s. Prior to targeting the bunches are
compressed to an rms length of 1 ns.

For a demonstration machine using the AGS[6], two bunches
of 5 x 102 at a repetition rate of 2.5 Hz at 24 GeV could be
used.
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Figure 1: Schematic of a Muon Collider.

Target

Predictions of nuclear Monte-Carlo programs{7][8][9] suggest
that 7 production is maximized by the use of heavy target mate-
rials, and that the production is peaked at a relatively low pion
energy (=~ 100MeV), substantially independent of the initial
proton energy.

Cooling requirements dictate that the target be liquid: lig-
uid lead and gallium are under consideration. In order to avoid
shock damage to a container, the liquid could be in the form of
a jet.

Pion Capture

Pions are captured from the target by a high-field (20T, 15 cm
aperture) hybrid magnet: superconducting on the outside, and
a water cooled Bitter solenoid on the inside. A preliminary
design[10] has a Bitter magnet with an inside coil diameter of
24 cm (space is allowed for a 4 cm heavy metal shield inside the
coil) and an outside diameter of 60 cm; it provides half (10T) of
the total field, and would consume approximately 8 MW. The
superconducting magnet has a set of three coils, all with inside
diameters of 70 cm and is designed to give 10 T at the target
and provide the required tapered field to match into the decay

channel.

Decay Channel and Phase Rotation Linac

The decay channel consists of a periodic superconducting
solenoidal (5 T and radius = 15 cm). A linac is introduced along
the decay channel, with frequencies and phases chosen to deac-
celerate the fast particles and accelerate the slow ones; i.e. to
phase rotate the muon bunch.

Fig. 2 shows the energy vs ct at the end of the decay channel.
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Figure 2: Energy vs ct of muons at end of decay channel with
phase rotation; muons with polarizationP> {1, -1 < P < 4,
and P< —3 are marked by the symbols ‘+’, *’ and ‘-’ respec-
tively.

The selected muons have a mean energy 150 MeV, rms
bunch length 1.7m, and rms momentum spread 20 % (95 %,
er, = 3.2 eVs). The number of muons per initial proton in this
selected bunch is ~ 0.3.

Polarization Selection

If nothing is done then the average muon polarization is about
0.19. If higher polarization is desired, some selection of muons .
from forward pion decays (cos 65 — 1) is required. This can be
done by momentum selecting the muons at the end of the decay
and phase rotation channel. A snake[11] is used to generate the
required dispersion. Varying the selected minimum momentum
of the muons yields polarization as a function of luminosity loss
as shown in Fig.3. Dilutions introduced in the cooling have
been calculated[12] and are included. A siberian snake is also
required in the final collider ring.
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Figure 3: Polarization vs Fi,es of muons accepted; the dashed
line shows polarization as selected before cooling; the solid line
gives polarization after cooling.

Ionization Cooling

For the required collider luminosity, the phase-space volume
must be greatly reduced; and this must be done within the 4 life-
time. Cooling by synchrotron radiation, conventional stochas-
tic cooling and conventional electron cooling are all too slow.
Optical stochastic cooling[13], electron cooling in a plasma
discharge[14] and cooling in a crystal lattice[15] are being stud-
ied, but appear very difficult. Ionization cooling[16] of muons
seems relatively straightforward.

In ionization cooling, the beam loses both transverse and lon-
gitudinal momentum as it passes through a material medium.
Subsequently, the longitudinal momentum can be restored by
coherent reacceleration, leaving a net loss of transverse momen-
tum.

The equation for transverse cooling (with energies in GeV)
is:

den _ dE, €n £1(0.014)2
ds  ds E, ' 2E,m,Lg’

where ¢, is the normalized emittance, 8, is the betatron func-
tion at the absorber, dE,, /ds is the energy loss, and Ly, is the
radiation length of the material. The first term in this equation
is the coherent cooling term, and the second is the heating due
to multiple scattering. This heating term is minimized if 3, is
small (strong-focusing) and L g is large (a low-Z absorber).
Energy spread is reduced by placing a transverse variation
in absorber density or thickness at a location where position is
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energy dependent, i.e. where there is dispersion. The use of
such wedges can reduce energy spread, but it simultaneously
increases transverse emittance in the direction of the dispersion.
It thus allows the exchange of emittance between the longitudi-
nal and transverse directions.

Cooling System The cooling is obtained in a series of cool-
ing stages. In general, each stage consists of three components
with matching sections between them:

1. a FOFO lattice consisting of spaced axial solenoids with
alternating field directions and lithium hydride absorbers
placed at the centers of the spaces between them, where
the 3, ’s are minimum.

2. a lattice consisting of more widely separated alternating
solenocids, and bending magnets between them to gener-
ate dispersion. At the location of maximum dispersion,
wedges of lithium hydride are introduced to mterchange
longitudinal and transverse emittance.

3. alinac to restore the energy lost in the absorbers.

In a few of the later stages, current carrying lithium rods re-
place item (1) above. In this case the rod serves simultaneously
to maintain the low 3, , and attenuate the beam momenta. Sim-
ilar lithium rods, with surface fields of 10 T, were developed at
Novosibirsk and have been used as focusing elements at FNAL
and CERN{17].

The emittances, transverse and longitudinal, as a function of
stage number, are shown in Fig.4. In the first 10 stages, rela-
tively strong wedges are used to rapidly reduce the longitudinal
emittance, while the transverse emittance is reduced relatively
slowly. The object is to reduce the bunch length, thus allow-
ing the use of higher frequency and higher gradient rf in the
reacceleration linacs. In the next 7 stages, the emittances are
reduced close to their asymptotic limits. In the last 3 stages, us-
ing lithium rods, there are no wedges and the energy is allowed
to fall to about 15 MeV. Transverse cooling continues, and the
momentum spread is allowed to rise. The total length of the
system is 750 m, and the total acceleration used is 5 GeV. The
fraction of muons remaining at the end of the cooling system is
calculated to be 55 %.

Acceleration

Following cooling and initial bunch compression the beams
must be rapidly accelerated to full energy (2 TeV, or 250 GeV).
A sequence of recirculating accelerators (similar to that used
at CEBAF)could be used but would be relatively expensive. A
more economical solution would be to use fast pulsed magnets
in synchrotrons with rf systems consisting of significant lengths
of superconducting linac.

For the final acceleration to 2 TeV in the high energy ma-
chine, the power consumed by a ring using only pulsed magnets
would be excessive and alternating pulsed and superconducting
magnets[18] are used instead.




Collider Storage Ring

After acceleration, the u* and p~ bunches are injected into
a separate storage ring. The highest possible average bending
field is desirable to maximize the number of revolutions before
decay, and thus maximize the luminosity. Collisions occur in
one, or perhaps two, very low-3* interaction areas.

Bending Magnet Design The magnet design is compli-
cated by the fact that the u’s decay within the rings (4~ —
e~ V.v,), producing electrons whose mean energy is approxi-
mately 0.35 that of the muons. These electrons travel toward
the inside of the ring dipoles, radiating a fraction of their energy
as synchrotron radiation towards the outside of the ring, and
depositing the rest on the inside. The total average power de-
posited, in the ring, in the 4 TeV machine is 13 MW. The beam
must thus be surrounded by a ~ 6 cm thick warm shield[19],
which is located inside a large aperture conventional supercon-
ducting magnet.

The quadrupoles can use warm iron poles placed as close
to the beam as practical, with coils either superconducting or
warm, as dictated by cost considerations.

Lattice In order to maintain a bunch with rms length 3 mm,
without excessive rf, an isochronous lattice, of the dispersion
wave type[20] is used. For the 3 mm beta at the intersection
point, the maximum beta’s in both x and y are of the order of
400 km (14 km in the 0.5 TeV machine). Local chromatic cor-
rection is essential. Two lattices have been generated{211[22],
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Figure 4: Normalized transverse and longitudinal emittances as
a function of section number in the model cooling system

one of which[22], after the application of octupole and decapole
correctors, has been shown to have an adequate calculated dy-
namic aperture.

Studies of the resistive wall impedance instabilities indi-
cate that the required muon bunches would be unstable if un-
corrected. In any case, the rf requirements to maintain such
bunches would be excessive. BNS[23] damping, applied by 1f
quadrupoles[24], is one possible solution, but needs more care-
ful study.

Muon Decay Background

Monte Carlo study[25],[19] indicated that the background,
though serious, should not be impossible. Further reductions
are expected as the shielding is optimized, and it should be pos-
sible to design detectors that are less sensitive to the neutrons
and photons present.

There would also be a background from the presence of a halo
of near full energy muons in the circulating beam. The beam
will need careful preparation before injection into the collider,
and a collimation system will have to be designed to be located
on the opposite side of the ring from the detector.

There is a small background from incoherent (i.e. p*u~—
ete™) pair production in the 4 TeV Collider case. The cross
section is estimated to be 10 mb, which would give rise to a
background of ~ 3 10 electron pairs per bunch crossing. Ap-
proximately 90 % of these, will be trapped inside the tungsten
nose cone, but those with energy between 30 and 100 MeV will
enter the detector region.

Conclusion

o Considerable progress has been made on a scenario for a 2
+ 2 TeV, high luminosity collider. Much work remains to
be done, but no obvious show stopper has yet been found.

o The two areas that could present serious problems are: 1)
unforeseen losses during the 25 stages of cooling (a 3%
loss per stage would be very serious); and 2) the excessive
detector background from muon beam halo.

e Many technical components require development: a large
high field solenoid for capture, low frequency 1f linacs,
multi-beam pulsed and/or rotating magnets for accelera-
tion, warm bore shielding inside high field dipoles for the
collider, muon collimators and background shields, etc.
but:

o None of the required components may be described as ex-
otic, and their specifications are not far beyond what has
been demonstrated.

¢ Ifthe components can be developed and the problems over-
come, then a muon-muon collider could be a useful com-
plement to e e~ colliders, and, at higher energies could be
a viable alternative.




Acknowledgment

This research was supported by the U.S. Department of Energy
under Contract No. DE-AC02-76-CH00016 and DE-AC03-
76SF00515.

References

[1] E. A. Perevedentsev and A. N. Skrinsky, Proc. 12th Int. Conf. on
High Energy Accelerators, F. T. Cole and R. Donaldson, Eds.,
(1983) 485; Early Concepts for u* p~ Colliders and High En-
ergy ui Storage Rings, Physics Potential & Developmentof ™y~
Colliders. 2™* Workshop, Sausalito, CA, Ed. D. Cline, AIP Press,
Woodbury, New York, (1995).

[2] D. Neuffer, IEEE Trans. NS-28, (1981) 2034.

[3] Proceedings of the Mini-Workshop on u*u~ Colliders: Parti-
cle Physics and Design, Napa CA, Nucl Inst. and Meth., A350
(1994) ; Proceedings of the Muon Collider Workshop, February
22, 1993, Los Alamos National Laboratory Report LA- UR-93-
866 (1993) and Physics Potential & Development of u™* u~ Col-
liders 2% Workshop, Sausalito, CA, Ed. D. Cline, AIP Press,
Woodbury, New York, (1995).

[4] Transparencies at the 2 + 2 TeV utu™ Collider Collaboration
Meeting, Feb 6-8, 1995, BNL., compiled by Juan C. Gallardo;
transparencies at the 2 + 2 TeV u™u~ Collider Collaboration
Meeting, July 11-13, 1995, FERMILAB, compiled by Robert
Noble; Proceedings of the 9th Advanced ICFA Beam Dynamics
Workshop, Ed. J. C. Gallardo, AIP Press, Conference Proceed-
ings 372 (1996).

{51 uTu~ Collider: A Feasibility Study, BNL-52503, FermiLab-
Conf.-96/092, LBNL-38946, Proceedings of the Snowmass
Workshop 96, to be published.

[6] T. Roser, AGS Performance and Upgrades: A Possible Proton
Driver for a Muon Collider, Proceedings of the 9th Advanced
ICFA Beam Dynamics Workshop, Ed. J. C. Gallardo, AIP Press,
Conference Proceedings 372 (1996).

[7] D. Kahana, et al., Proceedings of Heavy Ion Physics at the AGS-
HIPAGS '93, Ed. G. S. Stephans, S. G. Steadman and W. E. Ke-
hoe (1993); D. Kahana and Y. Torun, Analysis of Pion Production
Data from E-802 at 14.6 GeV/c using ARC, BNL Report # 61983
(1995).

[8] N. V. Mokhov, The MARS Code System User’s Guide, version
13(95), Fermilab-FN-628 (1995).

[9] J.Ranft, DPMJET Code System (1995).

[10] R. Weggel, private communication; Physics Today, pp. 21-22,
Dec. (1994).

[11] E Chen, Introduction to Plasma Physics, Plenum, New York, pp.
23-26 (9174); T. Tajima, Computational Plasma Physics: With
Applications to Fusion and Astrophysics, Addison-Wesley Pub-
lishing Co., New York, pp. 281-282 (1989).

[12] B. Norum and R. Rossmanith, Polarized Beams in a Muon Col-
lider, in Physics Potential & Development of u* ™ Colliders,
Proc., 3rd Int. Conf., San Francisco, Dec. 1995, Elsevier, in press.

[13] A. A. Mikhailichenko and M. S. Zolotorev, Phys. Rev. Lett. 71,

(1993) 4146; M. S. Zolotorev and A. A. Zholents, SLAC-PUB-
6476 (1994).

[14] A. Hershcovitch, Brookhaven National Report AGS/AD/Tech.
Note No. 413 (1995).

[15] Z. Huang, P. Chen and R. Ruth, SLAC-PUB-6745, Proc. Work-
shop on Advanced Accelerator Concepts, Lake Geneva, WI ,
June (1994); P. Sandler, A. Bogacz and D. Cline, Muon Cool-
ing and Acceleration Experiment Using Muon Sources at Triumf,
Physics Potential & Development of it p~ Colliders 2™ Work-
shop, Sausalito, CA, Ed. D. Cline, AIP Press, Woodbury, New
York, pp. 146 (1995).

[16] A. N. Skrinsky and V.V. Parkhomchuk, Sov. J. of Nucl. Physics
12, (1981) 3; D. Neuffer, Particle Accelerators, 14, (1983) 75; D.
Neuffer, Proc. 12th Int. Conf. on High Energy Accelerators, F.
T. Cole and R. Donaldson, Eds., 481 (1983); D. Neuffer, in Ad-
vanced Accelerator Concepts, AIP Conf. Proc. 156, 201 (1987).

[17] G. Silvestrov, Proceedings of the Muon Collider ‘Workshop,
February 22, 1993, Los Alamos National Laboratory Report
LA-UR-93-866 (1993); B. Bayanov, J. Petrov, G. Silvestrov, J.
MacLachlan, and G. Nicholls, Nucl. Inst. and Meth. 190, (1981)
9; Colin D. Johnson, Hyperfine Interactions, 44 (1988) 21; M. D.
Church and J. P. Marriner, Annu. Rev. Nucl. Sci. 43 (1993)-253.

[18] D. Summers, presentation at the 9th Advanced ICFA Beam Dy-
namics Workshop, unpublished.

[19] I Stumer, presentation at the BNL-LBL-FNAL Collaboration
Meeting, Feb 1996, BNL, unpublished.

[20] S.Y. Lee, K.-Y. Ng and D. Trbojevic, FNAL Report FN595
(1992), Phys. Rev. E48, (1993) 3040; D. Trbojevic, et al., Design
of the Muon Collider Isochronous Storage Ring Lattice, Micro-
Bunches Workshop, BNL Oct. (1995), to be published.

[21] A. Garren, et al., Design of the Muon Collider Lattice: Present
Status, in Physics Potential & Development of p7 u~ Colliders,
Proc., 3rd Int. Conf., San Francisco, Dec. 1995, Elsevier, in press.

[22] K. Oide, private communication.

[23] V. Balakin, A. Novokhatski and V. Smirnov, Proc. 12tk Int. Conf.
on High Energy Accel., Batavia, IL, 1983, ed. ET. Cole, Batavia:
Fermi Natl. Accel. Lab. (1983), p. 119.

[24] A. Chao, Physics of Collective Beam Instabilities in High Energy
Accelerators, John Wiley & Sons, Inc, New York (1993).

[25] G. W. Foster and N. V. Mokhov, Backgrounds and Detector Per-
formance at 2 + 2 TeV ™t u~ Collider, Physics Potential & De-
velopment of yit i~ Colliders 2™ Workshop, Sausalito, CA, Ed.
D. Cline, AIP Press, Woodbury, New York, pp. 178 (1995). pre-
sentation at the unpublished.




