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ABSTRACT 

. I  

A process is outl'ined for the production of nranim 
a l l o y  powders by co-reduction of m i x t u ~ e s  of uranium dioxide 
and a l l o y  element oxide,with calcium in a sealed react ion 
vessel. The procese I s  shown to,produc:e powder with a wide 
va r i a t ion  in particle t o  particle compo~sition although of 
conslrstent composition over various s i m d  fractions.  The 
particle s i ee  and shape is a lso  described. 
compound oxides w i t h  calcium is shown t o  be unsuitable. 

Reduction of 
44 

The p a r t i c u l a r  alloy systems considered are uranium 
with nickel,  chromium, molybdenum, and niobium. The uranium- 
molybdenth and uranium-niobium powders are single phase ' 

metastable gamma, which is of cansequence In  the production of 
dimensionally stable nuclear' fuels .  
the alloy powders are discussed. . 1  

Li$ely application6 of 
* \  

, .  
- .  - 1 -  

J * .  
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URAETIW ALLOY POWDERS BY DIRECT REDUCTION OF OXIDES 

b Y  

Myers, R.H. , and Robins, R.G. 

I. INTRODUCTION 

1. The production of uranium powder by the calcium 
reduct on of u r  ium dioxide has been d scribed by Myers 

i n  dimeneional s tabi l i ty  and in corrosion res i s tance  of 
ce r t a in  uranium alloys . together w i t h  the known advantages 
of the powder metallurgical techniques f o r  the fabr ica t ion  
of uranium f u e l  elements, prompted the authors t o  study the 
feasibil i ty of producing uranium a l loy  powders by a direct 
reduction process similar t o  that used for uranium, 

2. The alloy systems which were chosen included ones 
l ike ly  to  be of' i n t e r e s t  as Azels a8 w e l l  as ones i n  which 
the determination of composition var ia t ion  w a s  made possible  
by the application, o f  metallographic techniques. The r e s u l t s  
given i n  this paper were selected t o  show the general trend 
in composition var ia t ion ,  pu r i ty ,  and particle s i z e  and shape 
of  the powders. During the reduction work both compound, and 
mechanically mixed oxides were tr ied; the latter gave a more 
s u i  table product. 

11. PROCEDURE AND RESULTS 

e t  alei, Budde 3 , and Myers and Robin6 55 . The Improvement 

Details of the equipmen and procedures used i n  th i s  
Br ie f ly  the procedure was 4 3. 

work have already been described . 
t o  charge either the compound oxides o r  the mechanically mixed 
oxides w i t h  calcium metal granules in to  a calcium oxide l lned ,  
heat-resis t ing steel react ion vessel o r  "bomb" under an 
atmosphere of  apgon. The bomb was heated slowly enough to  
maintain a uniform temperature i n  the charge until  react ion 
occurred - usual ly  a t  about 630% - af ter  which the bomb 
temperature was raised rapidly to  a selected value above the 

7School of Metallurgy, New South Wales University of Technology, 
Kensington, N, S. W. , Australia. 
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l iqu idus  of the p a r t i c u l a r  all0 
niobium and 30 at.-$ molybdenum . 
4. 
leached in cold d i l u t e  a c e t i c  acid t o  remove the calcium oxide 
and excess calcium surrounding the uranium a l loy  p a r t i c l e s ,  which 
were then washed and dried. 

( a )  Reduction of Compound Oxides 

5. I n i t i a l l y  reduction experimnents were carried out  on 
compound oxides because i t  was: thought that these would be most 
l i k e l y  t o  yield a homogeneous product. TBBo stable and r e a d i l y  

cind UO . N i O  were studied, prepared compound oxides, 
The hea t s  o f  react ion for the red cition o these oxide8 were much 
g r e a t e r  than f o r  U 0 2  and even on a fjOg sca le  the react ions were 
m i l d l y  explosive. 

I n  the case of UO .Moo3 the react ion was so exothermic 
that the products .of r eac t  on ,were completely fused, and a metal 
button was recovered having a composition of 58 at.-$ molybdenum. 
T h i s  button represented a yield of  !Si'$. 

7. 
upwards i n  the bomb and so  were rapJ.dly cooled. The metal re- 
covered represented only 65% of  that charged and had an ove ra l l  
composition of 48 at.-$ nickel. 
was e s timated- by examining individual par ti cles m e  ta l lographical  Qz 
Because of the existence of several  e a s i l y  iden t i f i ed  in te r -  
mediate phases, these p a r t i c l e s  could be classified i n t o  one of  
three composition ranges, namely 28.0-33.5, 33.5-46.0, and 48.0- 
63.0 at.-$ nickel  respectively. 
found t o  be approximately from 28 t o  63 at.-$ nickel. 
p a r t i c l e s ,  which were o f  irregular ohape, ranged in s i z e  up to  
only 30 micron due probably t o  the n p i d  cooling following the 
explosive reaction. 

(except i n  .the case of 20 at.-$ 

. t  

3 
When. cold the react ion products were crushed, and 

u03* Mooz ? 

s 6. 

I n  the reduction of U 0 3 , N i O ,  the products were thrown 

The d i s t r ibu t ion  of composition 

q t s  range 'of composition was 
The 

(b)  Reduction of Mixed Oxides 
8. 
w i t h  n ickel ,  chromium, molybdenum-, ' and niobium. The p a r t i c u l a r  
a l l o y  compositions were based on l i t e r a t u r e  r epor t s  of alloys 
which had been found t o  reduce the dimensional i n s t a b i l i t y  and/ 
o r  suscep t ib i l i t y  t o  corrosion of 'pure uranium. 

9. 
molybdenum; and uranium-niobium, over a wide composition rmge, 
indicated tha t  the powders produced sho l d  be s ingle  phase, In  
the uranium-nickel and uranium-chromium 'systems* the estimation 
of compobition, var ia t ions  by metallographic techniques w a s  
possible. 

The systems 'chosen f o r  thls work were a l loys  of uranium 

The existence of the metastable gamma phase in uranium- 

The uranium-nickel a l l o y s  were most 
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e a s i l y  located i n  a p a r t i c u l a r  composition range by the 
i d e n t i f i c a t i o n  of the several intermediate phases present. 
Although uranium-ch"romium was a simple eutec t ic  system, the 
accuracy of the determination of p a r t i c l e  composition was 
reduced due to  e u t e c t i c  degeneration. 

10. A l l  of the a l l o y  powders prepared from mixed oxides 
were reacted i n  a bomb of su f f i c i en t  s i z e  t o  proauce 1 kg of  
metal powder (10 cm diameter and 30 can high). The mixing 
of! the component oxides w a s  carried out i n  a s t a i n l e s s  steel 
ba l l  m i l l ,  which was overloaded with oxide and underloaded 
w i t h  s t a i n l e s s  steel balls, t o  promote mixing rather than 
s i z e  reduction and t o  reduce contamination by a t t r i t i o n  of 
the m i l l  and balls. 

(i) Uranium-nickel 

Cumulative uss Pe'rcentage 
r 

"UGNi" Alloy nEutecticn Alloy 

The results f o r  two compositions involvin uranium 
and nicke l  are presented; one of composition U @ i  f 14.3 at.-$ 
11. 

Ni) and the o ther  of eu tec t i c  composition (33.5 at.-$ Ni). 
Both batches were prepared from mixtures of U 0 2  and N i O ,  and 
after the react ion with calgium had occurred the nominally 
U @ i  batch was held a t  1230 C ,  and the nominally eu tec t i c  

. batch at 800°C'for approximately forty minutes (Le. 300OC 
and 60% above the respect ive l iquidus temperatures). The 
particle s i z e  d i s t r ibu t ions  f o r  these powders, shown i n  Table 
1. indacated a mean m8s diameter of 90 micron f o r  ''U6Mi" and 
200 micron f o r  "eutectic" material. t 

I Yield-$ . I  80 

TAB= 1. 

PARTICLE SIZE DISTRIBUTIOM OF URANIUM-NICICEL' PONDERS . .  

71 

-10 
-20 
-40 
-74 

-104 
-147 
-208 
-295 

7 
12 
21 
45 
52 
55 
56 
59 

6 
7 

11 
18 
27 
36 
52 

. 66 
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Composition Range 
(at .  -sS) 

0 14.3) 
14.3 28.0 
28.0 33.5 
33.5 48 
48 - 63 
Oxide particles 
Unidentified 
particles 

.d 

bbss Percentage i n  Various Size Range6 
(micron) 

74-104 lOlt-I.4.7 147-208 208-295 
- - 0 1 

5 4 2 
18 17 * 20 

60 56 
16 19 

58 
12 

3 3 2 1 
2 2 3 1 

4 
16 
65' 
10 

12. To estimate the var ia t ion  in composition of particles 
in the powder, samples f r o m  each s i z e  range were mounted, 
polished, and etched t o  r evea l ' t he  d i f f e r e n t  phases, The 
estimation of the d i s t r ibu t ion  in composition was car r ied  out 
by the metal lographic- ident i f icat ion of the composition of 
individual  p a r t i c l e s  i n  f ive  fieldsl of 100 particles f o r  each 
of the s i z e  fractions.  The "U6Ni" powder had a var ia t ion  in 
particle composition of 4 - 48 at,-$ nickel, with 50$ by weight 
o f - the  particles f a l l i n g  between 1 4 . a 3  - 33.5 at,-$. 
"eutectictt  powder had a variat ion of 14.3 - 63 ata-$, the 
details  of which are shown in Table 2. 

The 

TABLE 2. 

DISTRIBUTI~ OF COMPOSITION IN U-Ni "EUTECTIC" POWDERS 

A typical photomicrograph of the U-ai '!eutectic" powder i s  
shown i n  Plate 1. 
seen.- Chemical ana lys i s  of each of  the s ized f r a c t i o n s  above 
74 micron and of  the minus 74 micron f r a c t i o n  f o r  both a l loys  
showed 16.0 f 0,6 at.* nickel  f o r  the ''U6Ni" powders and 3.5f 
0.8 at.-$ nickel for the "eutectic" powders, 

The regular shape of the particles can be 

I ( ii) Uranlum-Chrornlum { "  -. 
To show the reproducibi1it;g *of yields' and p a r t i c l e  

s If ;e d i s t r ibu t ion  of the powders,.'t:he r e s u l t s  obtained f rom 
three batches of uranium-chromium powder of nominally e u t e c t i c  
composition (20. a t . 4  -chromium) are presented. In  each case a 
mixture of: U 0 2  and C 0 uas reacted w i t h  calcium q d  then the 

I temperature. held at %dC f o r  30 miinutes (Le. , 100 C above 
< the eu tec t i c  melting,point).f The s:hi lar d i s t r i b u t i o n  of, 

particle s i z e s  for each batch can .be seen' from Table 3. The 
mean mas6 diameter was app+Lmatel;g 90 micron. 

1 
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TABLE 3 
PARTICLE SIZE DISTRIBUTION OF URANIUM-CHROMIUBJI POWDER CJF 

NOMINALLY EUTECTIC COBlIPOSITION 

Cumulative Mass P 

Batch 1 1 Batch 2 (micron 

-10 
-20 
-40 
-74 

-104 
-147 
-208 
-295 

14 
27 
30 
46 
56 
64 . 77 
95 

17 
22 
29 
40 
51 

86 
98 

68 

I ?r cen t age 

Batch 3 I 
19 
27 
36 
50 
59 
70 
a2 
96 

14. A typ ica l  photomicrograph of the polished and etched 
powder i s  shown i n  Plate 2,_in which the regular p a r t i c l e  shape 
can be seen. The range of p a r t i c l e  composition was found metallo- 
graphically to be 10 - 80 at.-$ chromium, with approximately 70$ 
by weight between 20 and 30 at.-$. The composition of individual  
f r a c t i o n s  was found by chemical ana lys i s  t o  be 20.9 * 0.9 at.-$ 
chromium. 

( i i i )  Uranium-molybdenum 
15. 
compositions of 11, 22 and 30 at.-$ were prepared from mixtures 
of U02 and MoO2. A f t e r  the react ion had occurred in each case 
the tenperature was raised t o  the maximum operating temperature 
of the bomb - 1300°C - and held f o r  one hour. The d i s t r ibu t ion  
of part ic le  size of the powder f o r  each batch i s  given i n  Table 
4. 
11 at.-$ a l loy ,  t o  90 and 60 micron f o r  the 22 and 30 at.-$ 
a l loys  respectively. 

16. 
the 11 and 22 at.-$ a l loys  were s i n g l e  phase and tha t  the 30 at,+ 
alloy, while being predominantly s ing le  phase , included some 
particles w i t h  the molybdenum rich phase which ex is ted  above. 
32 at.+ molybdenum. An accurate composition range could not be 
establ ished but  i n  the two lower a l l o y s  i t  was within 0 t o  32 at* 
and In the richest a l loy ,  0 to  approximately 40 at.-$ molybdenum. 
I n  cont ras t  t o  the two lower a l l o y s  the 30 at.-$ a l l o y  consisted 
of i r r egu la r ,  porous par t ic les .  

Batches of uranium-molybdenum powder having nominal 

The mean mass diameter decreased from 180 micron f o r  the 
. 

Metallographic examination of the powders revealed that 
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-TABLE 4 
PARTICIZ SIZE DISTRIBUTION OF URANII.M-MOLYBDENW POWDERS 

Size (micron R=Y 
~ 

-10 
-20 
-40 
-74 

-104 
-a7 
-208 
-295 

Yield-$ 

~ - ~~ 

Cumulative Mass Percentage 

11 at,-$ Alloy1 22 at.* Alloy130 at.-$ Alloy 

10 
11 
14 
22 
27 
45 
53 
6 1  

12 
22 
28 
41 
55 

72 
78 

61  

13 
I 24 

31 
67 
73 
87 
91 
94 

74 I 81 I 81 

176 The molybdenum content of the various f r ac t ions  from 
each batch was found t o  be (nominal composition i n  bfackets): 
11.5 2 0.7 11 at.* MO , 22.6 2 0.6 (22 at.-$ Mo), and 
30.6 f 0.6 30 at.-$ Bdo 

(iv) Uranium-niobium 
la. 
niobium a l l o y  was higher than the safe working temperature of 
the reae t ion  vessel the r e s u l t s  obtained were similar to  those 
f o r  the o ther  a l loys,  except f o r  the i r r e g u l a r  p a r t i c l e  shape. 
A f t e r  the reaction of aomixture of U 0 2  and Nb2O5, the tempera- 
ture w a s  raised t o  1300 C and held f o r  one hour. The 'distribu- 
t i o n  of particle size f o r  the uranium-niobium powder produced 
i s  given in Table 5 which indicates a m e a n  mass diameter of 
approximately 1 9  micron. 

Although the l iquidus temperature of a 20 at.+ 

TABLE 5 
PABTICLE SIZE DISTRIBUTICR7 OF URANIUM-20 at.-$ NIOBIUM POWDER 

I Size R a n g e  I cumulr)ti've ~ a e s  I (micron) Percentage 

-10 
-20 
-40 4 

-74 
-104 
-147 . 
-208 

,0295 . 1 
I Yield-$ I 88 I 
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Metallographic examination of the powders could not be used 
t o  estimate individual particle composition as the product 
w a s  s ing le  phase. Chimica1 ana lys is  of the various fpact ions 
of uraniueniobium powder showed their  niobium content t o  be 
20.6 f 1.4 at.-$. 

(VI Im(gurit1es i n  the powders 
19. 
determine whether there  was any contamination by i ron,  nickel,  
chromium or calcium. The t o t a l  Fe + Ni + Cr pick up seldom 
exceeded 0.006$ in the plus 74 micron f r ac t ions  although i n  
the minus 74 micron f r ac t ion  it rose  t o  0.08 i n  the nickel ,  
chromium and molybaenum alloys and 0.06% i n  the niobium alloy. 
The calcium content of the minus 74 micron f r ac t ions  of the 
powder8 was usually l e s s  than 0.01%. However, i n  the coarser  
f r a c t i o n s  of the molybdenum and niobium alloys i t  rose t o  
0.2% due probably t o  entrapment of l i m e  in the pores of the 
particles (See P l a t e  4). 

A l l  powders were spectrographically analysecl t o  

IV. DISCUSSION 

20. 
choice of a l l o y  compositions, and resulted i n  extremely high 
heats of reaction, low yields, Irregular particle shape and 
a wide var ia t ion  in particle t o  p a r t i c l e  composition. As the 
process based on mixed oxides led t o  va r i a t ion  i n  par t ic le  
composition.of the same order  and d id  not  suf'fer from the 
disadvantages mentioned above, i t  was considered more l i ke ly  
t o  be of  use. 
mixed oxide process. 

( a )  Composition var ia t ions  

21. The a l l o y  element content of the various f r a c t i o n s  
of any one powder was found to  be constant within the l i m i t s  
of aecnracy of the ana ly t i ca l  methods, and the overa l l  a l l o y  
element content of each powder was only s l ight ly  above the 
nominal value, However, t h i s  apparent homogeneity did not 
e x i s t  from p a r t i c l e  t o  par t ic le ,  where a wide var ia t ion  i n  
composition was found, the worst case being the 10 to  80 at,-$ 
range i n  the "eutectic" chromium alloy. 

22. It had been assumed p r i o r  t o  this work that agglomera- 
t i on ,  following the reduction of oxide particles of about 1 
micron i n  diameter, t o  metal particles w i t h  a mean mass 
diameter of ,  say, 50 micron, would r e s u l t  i n  uniform p a r t i c l e  
composition. When the i n i t i a l  experiments did not show this 
expected uniformity, a microscopic exwina t ion  of  the mixed 
oxides was made. This revealed tha t  the consti tuent oxide 
p a r t i c l e s ,  a l l  of which were in the s i z e  range 0.7 - 2.5 
micron, were int imately mixed. This complete mixin@; w a s  

The compound oxide reduction process l imited the 

The following discussion deals only w i t h  the 
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observed i n  a l l  subsequent experiments and BO far no sa t i s f ac to ry  
explanation of the va r i a t ions  i n  composition of the p a r t i c l e s  
i n  the metal potaders can be proposed. The belief that inadequate 
mixing was n o t  the cause of the var ia t ion  was reinforced by the 
r e s u l t s  obtained from the experiments using compound oxides i n  
which the uranium and alloying elements would be atomically 

(b )  P a r t i c l e  s i z e  

23. 
2.5 micron I n  diameter, the metal a l loy  agglomerates produced 
from the reduced p a r t i c l e s  had mean mass diameters ranging up t o  
approximately 200 micron. All powders contained occasional 
p a r t i c l e s  up t o  3 mm i n  diameter. I n  t e reduction of uranium 
oxides w i t h  calcium it has been f o u n d l * h  that the particle 
s i z e s  o f  uranium powders were increased by higher temperatures 
reached on reaction, higher soaking temperatures above the 
melting poin t ,  and longer soaking times. Although these aspects 
have not been spec i f ica l ly  studied ye t  for the a l loys ,  the same 
trend was evident, a t  l e a s t  f o r  the f i rs t  two factors .  By 
comparison w i t h  the uranium powders the mean mass diameters of 
a l l  of  the a l loy  powder6 were much higher. The approximate 
value for uranium was 30 micron compared w i t h  60 micron f o r  
30 at.* Yo, 90 micron f o r  22 at.+ Mo, t h e  chromium e u t e c t i c  
and U N i ,  180 micron f o r  11 at.-$ Mo and 200 micron f o r  the 
nicke t eutectic.  

(e) P a r t i c l e  shape 

1 dispersed. 

I 

Although the individual oxide p a r t i c l e s  were a l l  less thm 

24 The major f a c t o r  w h i c h  a f fec ted  p a r t i c l e  shape was the 
difference between the l iquidus temperature of the a l l o y  and the 
soaking temperature. Regular part ic les  of e s sen t i a l ly  spherical 
shape, as  i l l u s t r a t e d  i n  Plates 1 and 2, were obta&ned when the 
temperature of soaking was up to  approximately 200 C above -the 
l iqu idus  temperature. With soaking temperatures outs ide t h i s  
range i r r e g u l a r  p a r t i c l e s  were produced. 

25.0 When tihe temperature difference was greater than about 
200 C irregular non-porous agglomerates resulted. T h i s  type of 
agglomerate i s  seen i n  Plate 3 which shows'a secthon through a 
f r a c t i o n  of "U@i" powder which was soaked a t  300 C above the 
nominal l iqu idus  temperatureb 
which had been soaked a t  100.C above the l iqu idus  temperature 
had regular  p a r t i c l e s  of the same shape a s  those i n . P l a t e  1. 

26. With powders which were soaked a t  temperatures lower 
than the l iqu idus  temperature, f o r  example, U-20 at.$ Nb and 
U-30 at.-$ Mo, the par t ic les  were i r r egu la r  and porous. P la te  
4 i s  a photomicrograph of a sect ion through a typica l  single 
par t ic le  from the U-30 at.-% !do powder. 

A similar  batch of '*U6Nit! powder 
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( d )  Y i e l d 8  

27. 
i n  these ekperlments were about 8%. 
was i n  the metal globules which adhered t o  the calcium oxide 
l iner .  Experiments which had been carried out  on a smaller 
scale gave lower y i e lds  due t o  the grea te r  surface area of the 
l f n e r  in re la t ion  t o  the mass of' the products of reect ion,  80 
that  a s ign i f i can t  increase i n  yield could be expected from 

,react ions carried out on a larger scale. This trend has also 
been noted i n  work on the production of pure uranium powder 
where recoveries of 98,5$ have been obtained with batches o f  
5 kg. The recovery 
as i t  would have enta i led  leaching of the greater part of t he  
calcium oxide lining. Apart f r o m  increasing the leaching t i m e  
and acid consumption t h i s  would have allowed impurit ies i n  t h e  
oxide, and scale from the bomb, to  m i x  w i t h  the a l loy  powders. 
Analyses car r ied  out  on the leach liquors and on the parts of' 
the  l i n e r  w i t h  no visible globules adhering accounted f o r  l o s ses  
amounting t o  only O*!j$.  

(e )  Application 

28. I n  the f ie ld  of nuclear f u e l  technology the usefulness 
of the a l l o y  powders produced by the process described i n  t h i s  
paper i s  limited by the wide particle s i z e  d i s t r i b u t i o n  and 
par t ic le  composition variation. 
composition o r  s ize ,  o r  a particle s ize  of the order of 1 micron 
would be desirable, the powders would be unsuitable. They should 
be su i tab le  f o r  the production by m e l t i n g  o r  powder metal lurgical  
techniques of bar and spec ia l  shaped f u e l  elements and they may 
have some appl icat ion i n  the manufacture of  matrix type fuels 
although i t  would probably be desirable t o  use only s ingle  phase 
material, f o r  example, uranium-molybdenum o r  uranium-niobium 

The yields of leached a l l o y  powders which w e r e  obtained 
The main source of l o s s  

of the adhering material w a s  no t  attempted 

Where a uniform p a r t i c l e  

alloys, 

V, ACKNCWLEDQEMEHTS 

29. The authors g ra t e fu l ly  acknowledge the subs tan t ia l  
grant made t o  the Hew South Wales University of Technology by 
the Australian Atomic Energy Commission t o  support a reaearch 
programme which includes the work described i n  this paper. The 
authors  are indebted t o  Edr,D,A. S i n c l a i r  of the Defence Standards 
Laboratories, Sydney, f o r  the spectrographic analyses. 

VI. REIFERENCES 

1, Myers, R.H. , Mayo, R.G. , and Buddery, J.H. , 
"The Production of Uranium Powder by the Uranium 
dioxide-Calcium Routett. UKAERE Report  No. M/R 862 (1952) 



-11- A/mW .15/P/1097 
AUSTRALIA 

2, Budder 

1 

. -  

3. Myers, R,H, , and Robins, BOG, 
"Some amects of the Production o f  Uranium Powder 
bs the Calci um Reduction of Oxides*', 
on the Peaceful Uses of Atomi'c Energy i n  Australia - 
Prdceedlngs, (June 1958). 

Symposium 
'Y3ome amects of the Production of Uranium Powder 
bs the Calci um Reduction of Oxides*', 
on the Peaceful Uses of Atomi'c Energy i n  Australia - 
Prdceedlngs, (June 1958). 

Symposium 

4, Beard, A. P. and 'Heumann, F. , 
"Prenaration of bherical uranium Powder bs Reduction 

USAEC Report No, o f  Uranium Trioxi d e  with Calcimtf, 
=L - 1380 (1955). 

! 

. .  



A/CONF 1 5 / P / w v  -12- 

Photomicrograph of the 208-295 micron- fraction o f  
the nickel-uranium . "eutectic" alloy powder. .Plate 1 

Etchant lm NaOH - 
.. I . .  - 



Phot~icmgraph of the 74-104 micron fraction of  
the chromium-uranium "eutectic! alloy powder. P la te  2 

Etchant lo$ MaOH - 
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Photomicrograph of the l.47-208 micron f r a c t i o n  of 
- "U 6 Ni" powder, Polished and unetched, 
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