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ABSTRACT' 

The antiproton annihilation p rocess  in complex nuclei has  been 

fur ther  studied in photographic emulsidns . When a 19.8 g r / c ~ 2  LiH 

absorber  was introduced in an existing antiproton beam, the antiproton- . . 
to-meson r a t i o . .  improved by a factor of about 10, becoming 1/50, 000. 

Thus in a single s tack exposed to this improved beam, 165 antiprotons 

were  found. These together with 20 m o r e  found in other s tacks  and the 

36 reported i n  the "Antiproton. CollaborationLExperimentf' (a  total of 

221 analysed s t a r s )  a r e  included in this analysis .  

, , F r o m  this analysis  the annihilation p rocess  in complex nuclei 

can be interpreted to proceed a s  follows: The antiproton annihilates 

itself with one nucl'eoti (proton o r  neutron),  t ransforming a l l  the avai l -  

able energy mainly into .rr mesons  of average multiplicity 5. 36. * 0.28 

with a n  occasional K-R emission of frequency (3.5 * 1.570) per  s t a r .  The 

mesons  interact  with the nucleus leaving i t  in an excited state,; The 

nucleus relea.se s the excitation energy through nucleon emission.  On 

the average,  the s t a r s  in. flight have m o r e  excitation than those a t  r e s t .  
2 By the use of this experimental  data and available information 

on pion interactions in nuclear ma t t e r ,  the fraction of interacting pions 
Y (absorbed and inelastically sca t te red)  has  been deduced for the s t a r s  in 

flight and a t  r e s t  separately.  Fur the rmore ,  i t  is shown that with .a bet ter  

knowledge of the pion interactions in  nuclear mat te r ,  we can use an t i -  

. protot1 at~nihilations to investigate the nucleon distribution a t  the surface 



of the nucleus. . , .  . . ,  
. .. 

The pion-pion angular . . distrib.ution has  been deduced on the 

bas is  of energy-momentum conservation, by the use of the F e r m i  
C 

stat is t ical  model of the annihilation with Lorentz -invariant phase space. 
. , . . 

The theoretical distribution a g r e e s  with the experimental one i f  an  
ii 

adjustment 'of  the iriteraction.volumk i s  made to account for the observed 

pion multiplicity. A strong pion-pion interaction i s  thus unlikely. 



. I. INTRODUCTION 
- .  

I '  

The success  of the Dirac ~ h e ' o r y  df the 'electron in predicting 

i t s  charge .conjugate, the positron, st imulated the in te res t  of the ex-  

r' 
perimetital physicist  t o  seai;ch.for the chargk conjugate of the proton, 

th6 antiproton. The differdnces and ' the s imi lar i t ies  between proton and 

antiproton required by the theory a r e  summar' ized in Table I, which, 

indicates a l so  the proper t ies  verified by the f i r s t  experiments .  
. , 

Charge t e  -.e Counters (sign and 

Table I 

magnitude) (1)  
'. Emulsions (magnitude) (2)  - 

Ma.s s m m counter  s(  emulsion4 2) 

Antiproton Exper .  'ver i f iedby:  P rope r ty  ' 

1 /2 i /2 : Spin 

Proton 

Magnetic moment p. . r)l 

Mean life 7 -r -7 (192) 
7- l a r g e r  than 10 . sec  

t ime P . .  

Counters (1)  
Creation ( f rom excitation function) in p a i r s  

Annihilation ' . E m i l l s i ~ n s ( ~ ) a n d  counters ( 1) 

I-spin T 1 /2 1./2 

T3 
P a r i t y  



Immediately;.after a beam of protons with energy above the 

threshold ( -  5.8 B ~ V )  for antiproton production was available a t  the .  - 

Berkeley Bevatrqn, a sea rch  for the an,tiproton s ta r ted  with scintilla - 
tion counters.  . In the fall of 1955 the antiproton was discovered by 

' 1 .  \ 
Chamberlain, Segre,  Wiegand, and Ypsilantis. Charge, mass,  and 

.. , stability against  spontaneous decay were  the verified pr,operties.  
. . 

At about the same time, emulsion groups in B,erkeley and.Rome 

were  undertaking an intensive sea rch  for antiprotons in photographic 

emulsions exposed a t  the Bevatron. Except for the sign of the charge, 

the emulsion work verified the counter experiment;  in addition, the 

annihilation proper ty  was observed. -A total of 36 antiprotons were  

found; these were  repor ted  in the "Antiproton Collaboration. Experi-  

ment". thereaf ter  cited a s  ACE. . . 

Both experiments  established r a the r  cotlclusive1.y .the existence 

of the antiproton. The r e s e a r c h  then was directed toward the investiga- 

tion of ,the proper t ies  of interaction of antiprotons with ma t t e r  and the 

investigation of the modes of annihilation with-improved s ta t i s t ics .  

In o rde r  to continue this work, i t  was necessa ry  to improve the 

antiproton beam, increasing the ra t io  of antiprotons to other spurious 

par t ic les  (mainly pions, muons, and electrons) .  A successful s tep 

was taken in this direction, when a LiH absorber  was .introduced in the 
. . 

beam, thus producing a momentum difference between antiprotons and 

mesons  which was resoived la te r  into a 'spatial separation by momentum- 

analysing magnets.  In a stack exposed to this beam, 165 antiprotons 

were  found, The analysis  of these s t a r s  combined with the 36 f r o m  
I 

ACE and the ,20 others  found'in other s tacks has  been reported.  
3 , 4  

The present  work i s  r a the r  a supplement to that work, and f r o m  

the experimental point.of view. does not offer anything new. It. i s  in -  

tended to be an  extension of the previous analysis  and a fur ther  in t e r -  

pretation of the experimental  r e su l t s .  In o rde r  to present  this work in 

some organic form,  .the experiment and. those experimental  r e su l t s  

connected with the discussion and analysis  will be presented br ief ly .  



I EXPERIMENTAL PROCEDURE 

A. The Separated Antiproton Beam. 

In Fig.  1 the experimental a r rangement  of the separated ant i -  

proton be'am i s  shown. The spectrograph i s  the same  one used. in a 

previous counter experiment5 with the addition of the LiH absorber  

and the magnet Mc. A carbon target  a t  T i s  bombarded by the circulat-  

ing proton beam of the Bevatron a t  the end of each  accelerat ing cycle. 

A fraction of the par t ic les  coming out of the target ,  deflected by the 

fringing magnetic field of the Bevatron, en ters  the spectrograph. These 

par t ic les  contain about one antiproton per  million other  par t ic les .  

The sys tem of the quadrupole magnet Ql together with the 

analyzing rna.gnet M focuses the negat ive part ic les  of momentum 

8 19 + 4 % - ~ e v / c  a t  F Quadrupole magnet L a ro le  s imi lar '  
. . 

to a field, lens correct ing l a t e ra l  momentum aberrat ion.  

In o rde r  to achieve a separation in momentum 'depending on the .: 

m a s s ,  a wedge-shaped LiH absorbe r  of medium thickness 19.8 g r / cm 
2 

 ha^ been plsccd s t  F1. Thc bcsm is cxpcctkd to have 7 0 0 - ~ c v / C  and ,!< 

7 7 7 - ~ e v / c  momentum for antiprotons and light mesons  respect ively 

a f te r  i t  has  passed  through the absorber .  Because of the shape of the 

abso rbe r ,  the . original . spread  in  momentum (4%) i s  preserved .  

The momentum difference achiev.ed between the antiprotons and 

the light mesons i s  resolved into a spatial  separat ion by the subsequent 

sys tem of magnets a t  F2. The magnet Mc se rves  two purposes:  

., ( a )  i t  deflects the par t ic les  acc,ording to momentum and thus fur ther  

inc reases  the spat ia l  separat ion between antiprotons and mesons ;  and 

(b)  i t  c l e a r s  f rom the beam the highly unwanted.protons (produced by 

pion interactions) which can be confused with the antiprotons.  

A ~ : F  a stack o f 2 0 0  Ilford-G5 emuls ions  (15 c m  by 23 c m  by 
2 

600 p) was exposed for a total  integrated beam of 4 ' x ' l ~ 1 3  protons on 

the' target .  In this stack (No. 78), 165 antiprotons were  found constitut- 

ing the majori ty  of the antiprotons studied in this work. In this beam 

a ra t io  of antiprotons to minimum ionizing par t ic les  of 1/50,000 has  

been obtained, showing an improvement over the previous beam by a 

factor of ten. 



Bevatron beam 
' .  

Fig. - 1. The exposure geometry. 



In Fig.  2 the antiprotons coming to r e s t  have been plotted a s  a 

function of their range (R)  in emulsion and their horizontal  l inear  

coordinate Y which i s  perpendicular to the beam. A l inear  f i t  to this 

distribution i s a l s o  shown by the line ( Y ) .  - The dependence between 
- 
.R and Y i s  the r e su l t  of the analysing magnet M and the momentum 

C 

spread  in the beam. 

F r o m  measurements  of the density of rr- s t a r s  in the stack, a 

470 .rr- contamination was found. Measurements  of the intensity of the 

beam along the beam (Fig .  3) revealed the electron component. The 

position of the maximum and the relat ive increase  of the intensity due 

to electron multiplication requi re  a 48% contamination in e lec t rons .  

The r e s t  of ' the par t ic les  (48%) were  assumed to be muons. We see  that 

in the antiproton separated beam most  of the pions were  removed, while 

a la rge  number of muons and electrons remained.  

B. Scanning and 'proton .Contamination. . . . 

The emulsion plates wer'e scanned under 22x to 53x objectives 

in  r n m h i n a  ti.on with lOx.eyepieces, , ,The  ocanning procccdcd pnrnllel  

to the leading edge of the stack, along the Y coordinate, and 5mm a.way 

f r o m  the edge. The good collimation of the beam has  allowed us 

visually to distinguish the antiprotons f rom the l a rge  background of 

minimum par t ic les  by means of ionization and the angle between the 

t rack  and the main direction of the beam. 

All t r acks  with ionization about twice minimum and making an  

angle with the direct ion of the beam of l e s s  than about l o 0  were  con- 

s idered  a s  antiproton candidates, and they were  followed until they 

ei ther  interacted in flight o r  came to r e s t ,  . A  s t a r  usually resul ted a t  

the end of these - t racks .  

T racks  of protonic m a s s  and which produc'ed d s t a r  'upon coming 

to r e s t  a r e  cer tainly an'tiprotons. A number of par t ic les  of protonic 

m a s s ,  however, came to' r e s t  without giving any energy r e l ease .  These 

t racks ,  called P, , might be protons o r  antiprotons which ei ther  did not 
6 P annihilate o r  in.which the final products of the annihilation were  all 

neutrals  (F ). 
P 



MU- 15900 

L 
. . .  . . . . .  

Fig. 2. , (a)  The r a n g e  of stopping antiprotons, i s  plotted a s  a function 
o f  the entrace - jr cbor,dinate.' The curve gives the mean anti-  
proton range, R a s  a function of the y coordinate. The momen- 
tum dis.persion i s  due to the clearing magnet M (see Fig. 13). C 

(b) , The spread in range ar,ound a a s  given by the curve in 
A: Thd'hdlf width' at' half maxinriuni'is about 13 mriz. AR/R is  
.thus * ,0.11, which corresponds to. a momentum spread of AP/P 
.equal to. 0.029,. . . . .  , 



COORDINATE ALONG PLA7 ti. 78-100 . . 

BEPM DIRECTION 
m 

I I I I I I 
0 2 4 x 6 8 10. 

Arad . MU-14121 

Fig.. 3.. The transition crirve for the light-particle flux. The l ight -  
. . particle flux was measured along the beam direction (the X 

coordinate'alorlg Plate 78-100). The curve i s  plotted against 
distance along the plate a s  measured in radiation lengths in emul- 
sion. The peak a t  about 2 units of radiation 1eng.th clearly indi- 
cates the presence of a large fraction of electrons in the beam 
( -50 yo) .  



The good collimation of the beam makes possible fur ther  examina- 

tion of the P Is. In Fig.  4 a l l  t racks  followed and coming to r e s t  a r e  
el 

plotted a s  a function of ( R-RI (Fig.  2) and b e  relative entrance space 

angle 8 The antiprotons a r e  concentrated in a smal l  region close r e l '  
to the origin of the coordinates,  while the P ' s  a r e  statist ically uni- e. 
formal ly  distributed over a l a r g e r  region. It i s  then obvious that the 

0 par t ic les  outside the rectangle ( IR-RI  < 2 . 4  cm, Bre l  <3 ) containing 

a l l  the definite antiprotons a r e  accidental  protons.  We est imate f r o q  

the density of protons outside the rectangle that 4 i 0 . 7  protons a r e  

present  inside the rectangle.  There  a r e  7 P events,  two ol which 
P 

occur  nea r  the surface of the plates,  and possible minimum prongs 

might have been missed .  Comparing those two numbers  an  est imate of 

2 +J % contamination in i? s t a r s  i s  obtained. The e r r o r s  a r e  s ta t is t ical  
BJ 

ones and do not take into account e i ther  that some bias  i s  present  

against  picking up t r acks  with la rge  8 o r  la rge  
re1 

)R-q  o r  the 

possibil i ty that the two t racks  nea r  the surface might have a minimum 

prong. Both of these effects tend to dec rease  the 2 t3% est imate.  - 2  
0 All  par t ic les  of protonic m a s s  and with 8 < 3 interacting in 

flight have resul ted in a s t a r .  Only three of them have no pions, and 

the total visible energy r e l ease  is l e s s  than the kinetic energy of the 

incoming part ic le .  These three s t a r s  could be due to  pqoton interactions, 
- 
P charge exchange, o r  annihilations with the energy given to neut ra l  

par t ic les .  F r o m  the P contamination with 8 < 3U and the proton mean 
re1 

f r e e  path for interaction in emulsion, we est imate about 3 proton in t e r -  

actions to be among t h e  antiproton s t a r s  in flight. By the use of a 4 m b  . 
7 P charge-exchange c r o s s  section, we expect 0.5 such events.  F r o m  

these es t imates  we deduce 2 * 1 s t a r s  to be among t h e  95  s t a r s  in 

flight, which i s  a ve ry  insignificant amount to give any noticeable bias  

to the analysis .  

C. Measurements  on the Prongs. 

We used various m e a s ~ . ~ r i n g  techniques for the prongs f rom the 

annihilation s t a r s  depending on the ionization and the dip angle.  

Pro jec ted-  and dip-angle measurements  have been made fo r  a l l  prongs.  

F o r  g/g < 1.3, grain count measureme:nts were made on a l l  t racks ,  
0 
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Fig.  4. A plot of the deviation in range from the mean range 
AR = IR - R 1 ,  for ending t racks  of protonic mas s  versus the 
r e  lative entrance angle Brel  (space angle). The rectangle 
determined by B r e l  2 3 0 and AR I 24mm contains all  the 
identified antiproton tracks.  
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8 
whereas pp measurements  using third-difference methods (when 

0 
needed) have been made for  t racks  with.dip angle ,< 20 . . Except fo r  

I 0 
one energet ic  e lectron pair ,  a l l  these prongs with dip angle 4 20 were  

light mesons,  considered a s  pions ( see  Section 111, A, 3 ). We have 

considered a l l  the s teeper  prongs a s  pions also.  All the prongs were  

followed for a sufficient length to eliminate low-energy electrons 

( . .  - 10 , Mev). F o r  g/g .3 1.3 a l l  prongs were  followed, and identifica - 
tion and energy measurements  were  made by s tandard emulsion 

techniques. The end points of all prongs ending in the emulsi.on stack 

were  examined carefully f o i  possible decay secondaries .  No at tempt  

was made to distinguish alphas,  deuterons,  and t r i tons ,fro.m protons 
0 

for  ranges  R ( 1 c m .  F o r  RH > 1 crn and angle 6 40 , opacity 
H 

measuremen t s  were  made.  These measurements  identified .one 

deuteron, and one part ic le  was ei ther  a deuteron or  a C part ic le .  



111. THE PRODUCTS FROM THE ANNIHILATION STARS 

A. Pions 

1. The Charged-Pion Multiplicity 

In. Fig.  5 the distribution of s t a r s  a s  a function .of the observed-  

pion multiplicity is shown separately for s t a r s  a t  r e s t  and in  flight. 

Nd corrkct ions 'have been made for the possible presence of F events 
P 

. in  the s t a r s  a t  r e s t  o r  proton contamination and antiproton' charge - 
exchange events in the s t a r s  in flight. All these cor rec t ions- - i f ' any--  

a r e  v e r y  sma l l  and can .be neglected. F r o m  these distr 'ibutions the 

following average values pe r  s t a r  f6r the char ged-pion m:ultiplicitie s 

, a r e  obtained: . @T *) f l i iht  = 2.50 f 0.26, (N -t) rest  = 2.30 f 0.28, and 
TT 

= 2.41 0.19, where the , e r r o r s  r ep resen t  the s ta t i s -  
I 

t ical  s tandard deviations. 

If the annihilation of the antiproton occur s  with one kind of " 

nucleon, proton o r  neutron, then in o r d e r  to conserve the charge, 

only modes of annihilation 'with even o r  odd numbers  of charged pions 

a r e  respect ively allowed. The observed distribution of s t a r s  in 

charged-pion multiplicity is continuous, indidating that antiprotons 

annihilate with protons a s  well a s  with neutrons.  We must ,  however, 

be overcautious in this statement,  because pion-absorption.and pion- 

detection inefficiency reduce any discontinuity in the distribution. 

2. The Pion Spectrum ' 

. In Fig.  6 the measured  pion spec t rum of the annihilation proc - 

e s s  in complex nuclei  i s  shown for the s t a r s  a t  r e s t ,  in flight, and 
. . 

combined. Although the energy o f  a l l  pions obser.ved with dip angle 

1/31 520 '  has  been measured ,  only the pions with 1 ~ 1  s.15° a r e  in-  

cluded in this spectrum. This low cut-off angle i s  necessa ry  i n  o r d e r  

to reduce the systematic  e r r o r s ,  due to the distortion of the plates,  

of the energy measured  by the scat ter ing technique. A comparison of 

the average  pion energy a s  a function of the dip angle showed. a s y s  - 
tematic  dec rease ,  even though the method of third differences was 

applied to eliminate second-order distortion effects. 
8 

Assuming that a t  ve ry  low..dip-angles no effects of distortion 

a r e  present  znd considering the dependence of the average  pion energy 



. . 
k t  

MU- 15,889 

F i g .  5. The observed char ged-pion multiplicity .dis tribution f rom 
, , .antiproton s t a r s .  

. . 
. . 



I I 

COMBINED 
pions 

. . 

Fig. 6. The observed char  ged-pion spectrum from antiproton s t a r s  . 
Energy measurements  included here  come f rom pions with dip 
angle < 15O'. This represents  - 1/4 of the total solid angle. 

, : 



on the dip angle, we have applied a correct ion wl  = 10 *5 Mev to the 

measured  average  pion energy to account for distortion effects.  This 

correct ion,  however, cannot be reliable,  and systematic  e r r o r  s might 

s t i l l  be present ,  thus giving a lower pion energy. 

The pion detection efficiency depends on the ionization, and 

therefore,  on the pion energy. Assuming that the efficiency i s  1OOyo 

for  ionization g/g >1.2, uniform for  g/gO < 1.2, and 90% for a l l  pions, 
0 

we have deduced a correct ion w - 7 *2 Mev which must  be applied to 
2 - 

the measured  average  pion energy to account for  this effect.  

In Table I1 the average (measured  and cor rec ted)  pion energy 

a s  a function of the charged-pion multiplicity Nrr f , and for s t a r s  a1 

r e s t ,  in flight, and combined a r e  given. There i s  a l so  given the ex- 

pected average  pion energy f rom the normalized F e r m i  model, ( s e e  

IV c, l ) ,  

3 .  The a t / a -  Ratio 

In photographic emulsions the sign of the charge of a par t ic le  

can  not be determined unless a charac ter i s t ic  of the charge react ion 

i s  observed.  The pions, coming to r e s t ,  revea l  their  charge.  The 

positive ones,  being repulsed by the Coulomb field of: the nucleus, 

decay away f r o m  the nucleus, giving a p meson of a given range 

( -400p)o  This sl.ibseq~~r.r~t.ly comes to r e s t  and decays into. a visible 

clertrnn. On the other hand, the.negative pions, being a t t rac ted  by 

the nucleus, a r e  captured into Bohr orb i t s ,  and because of their  la rge  

t ime of decay relal ive lo the t ransi t ion probabilities f rom one orhit. 

to the next, they fall  into the nuclear field and interact .  Thus, f rom 

the rr- endings, we expect to see  ei ther  nuclear prongs ( a s t a r )  o r  

. nothing a t  a l l  (p endings) when the energy i s  given to neut ra l  prongs.  
% 

Of a l l  light mesons  followed, 76 came to r e s t ,  with 22 showing 
t + +  the charac ter i s t ic  of the rr (nt+p +e ) decay, while 53 produced a 

a s t a r  o r  a p ending charac ter i s t ic  of the r r - .  There  was only one 

case  where the charge couldnot  be determined. These 76  meson 
t -  

endings compared with other experimental  data on IT , rr endings and 

m a s s  measuremen t s  through g/g -ve r sus  -range curves have established 
0 

that no p mesoris a r e  present  among those light mesons .  
4 



'Table I1 

0 
.Ratio y o f  the number of pion:pion angles  g rea t e r '  than 90 th those 

0 
sma1le.r' than 90 , and t h e  average  pion-pion'angle(8), a s  a function of 

charged pion. multiplidity. 

N. * At r e s t  In flight Combined 
TT 

No; of .  Y ( 8 )  . '  No. of y (8) No. of (9 . . 
p a i r s  p a i r s  p a i r s  
- .- .- -- 

. . 
2 '  3 5 1.19 " 90. 16 . '1.89 100 - 51 1.44 94;2 . 

3 103 ' 1  94 ' ' 84 i .90 98 '187 . 1.41 95.8 

4 114 1.59 97. 4 8 1.53 99 162 1.57 98.1 

5 5 0 1. 50 101 30' . ' 1.50 .97 ' 80 1.50 99.6 
. . 

6 15 1 .14  '86 15 0 :88 94 3 0 1..00 .89.8 



In Fig.  7 the spec t ra  of the IT'- and IT- mesons a r e  shown. The 

Coulomb b a r r i e r  of the nucleus, where the annihilation takes place,  

p reven t s  emi,ssion..oi  IT'.;^. . .  low energy.. F o r  th is  reason,  to find a 

, IT+/=- ra t io ,  independent of the. Coulomb field, . . only pions with T IT 2 20 
. t  - 

: Mev have been considered. These . . pions, give a (IT.  / n , ) o d s : =  

20/44 = 0.45* 0 .12. 
- 

. . 
. . .  , - t 

The la rge  abundance of IT relative to IT mesons has  been in  - 
t e rpre ted  a s  a combined r e su l t  of (a )  the charge conservation in the 

annihilation p rocess  and (b )  the differences iti .scattering of two .types . 

of pions by the nucleus.  Assuming char'ge.independence, charge 

conservation, and  that the ra t io  of annihilations with neutrons to those 

with protons i s  the same a s  the n/p rat io  in the emulsion nuclei, we 
t expect a ra t io  ( x  /IT-) = 0.760' Taking into account a l so  the fact that 

t - 
TT- mesons.  sca t te r  m o r e  than IT a n d  that the spectrum of the IT peaks,  

t 
. a t  lower energy than the IT' we est imate an over -a l l  ra t io  (IT / IT-)  

- - 
es t .  

0. 58. With a l l  uncei ta int iesinvolved in ' t h i s  est imate,  we might say 

that the agreement  with the observed ra t io  i s  sat isfactory.  

4. Antiproton-Pion.Angular Distribution 

In F ig .  .8 the angular distribution between the pions and a l so  the 

direction of the inco'ming antiproton 'for s t a r s  a t  r e s t  and in flight i s  

shown. F o r  I:he s t a r s  a t  r e s t  . . ,  an isotropic  distribution is e.xpected, 

while for t h o s e i n  flight a smal l  forward i s  expected by the 

conservation of momentum. The agreement  between the expected and 

the observed distribution for thc o t a r s  in flight i s  i n d i c 2 t . i ~ ~ :  of very  

smal l  scat ter ing,  because the scat ter ing tends to reduce' any anisotrnpy. 

In addition, i t  can be concluded f rom these distributions that to a good 

a p p r o x i ~ ~ ~ a t i o n  the pions can  be considered to be emitted isotropically 

in the labora tory  system. 

5. The Experimental  Pion-Pion Angular Distribution 

F r o m  dip- and projected-angle measurements  per formed on a l l  

charged mesons,  the 'angle 13 betwee-n each pivrl pair  in  every  s t a r  - 
has  been computed. F o r  a s t a r  of N * dbserved charged-pion 

IT 

multiplicity, N * (N:  f - 1)/2 pion p a i r s  a r e  possible.  Neutral  pions, 
IT 'IT 



32 REST 

21 FLIGHT . 

Fig. 7. The energy distribution of pions with identified sign f rom 
antiproton s t a r s .  The shaded histograms represent  pions f rom 
antiproton s t a r s  a t  res t .  
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Fig. 8. The pion-emis sion angles relative to the antiproton direction 

. . in the laboratory sys tem.  The figure'shows the number of pions 
plotted against  the cosine of the emission angle. For  the s t a r s  a t  
r e s t ,  the line corresponding to isotropic emis'sion i s  shown. For  I - 
the s t a r s  in flight the' l ine corresponding to isotropic emission in 
the c. m .  sys tem suitably averaged over antiproton and pion 
energ ies  is shown. 



and an  avera'ge of 0.8 charged pions pe r  s t a r  have not been 'observed 

because of pion absorption and inefficiency in the pion detection. We 

a l so  note that the observed distribution has  been influenced, somewhat 

by the pion scat ter ing inside the nucleus. -. 

The distribution of a l l  charged pion pa i r s  plotted against  cos 8 

is shown in.Fig.  9 .  This distribution has  been examined for  s t a r s  a t  

r e s t ,  in flight,. and a s  a function of N . *. Al1;these subgroups ha've the 
TT 

same  features ,  and we thus r ep resen t  a l l  of them combined. In o rde r  

to give an  idea of their  s imi lar i t ies ,  however, the average  ( 8 )  and. 

the r a t i o  y of the number of pa i r s  w i t h 0  3 . 9 0 ~  to those with 8 < 90° 

for a l l  ca ses  examined a re .  given in Table 11. F r o m  the experimental 

distribution a preference'  of pion p a i r s  toward l a rge  angles is charac  - 
t e r i s t ic  of the distribution.,  An interpretation of the anisotropy based 

on; the conservation of energy and momentum i s  discussed in Section 

IV C, 2, and the theoretical distribution thus obtained is plotted to-. 

ge ther  with .the experimental one. 

B. Strange Pa r t i c l e s  

The conservation of. s t rangeness  and energy demands that the 

modes of annihilation with no K:?s o r  a K - R  pair  be allowed only, and, 

fur thermore ,  a lower l imit  in the ionization i s  s e t  for  the K mesons:  

g/gO 3 1.2. All prongs with ionization l a rge r  than 1.2g (where g i s  0 0 
: the ionization of minimum -ionizing part ic le  s )  were followed, and they 

ei ther  left the stack o r  came to r e s t .  A few of . them interacted in 

flight. A careful examination of the endings for  possible decay prongs 

has  been made.  Pions coming to r e s t  a r e  easi ly  distinguished f rom 
. . 

heavier par t ic les  because of the,i.r l a rge  scatter,ing and their  :"greyness" 

close to their  ending. In addition, g/g -vs-range measurements  have 0 
made possible adefini te  identification of these par t ic les .  Among a l l  

prongs followed, only dne case  Of a K  meson.coming to r e s t  ( ~ t a r . . 3 - 2 5 ) '  

has  been observed. . . . .  . 



Fig. .9. Distribution of angles between a l l  pion pai rs  from the antiproton- 
annihilation s t a r s .  The curve corresponds to the distribution 
expected f rom energy'and mromentum conservation. 
- .  . 

. . 



Since the only way to c rea te  a K meson f rom an  annihilation 

s t a r  is by d i rec t  production f rom the annihilation process ,  this 

definite example of a K meson proves that they a r e  being produced in 

the annihilation process .  

It i s  m o r e  difficult, however, to identify the prongs which do 

not end in the emulsion. The mos t  important method of identification 

used was ionization ve r sus  ppc measurements  by scattering. The 

distinction between pions and heavier par t ic les  was r a the r  eas i ly  done, 
' but the distinction among K's  and protons i s  poor due to the distortion 

of the plates and the sma l l  scat ter ing signal. This method becomes ' 

very  unreliable a s  the dip angle increases .  With a l l  c a r e  and ref ine-  

ment  of the technique i t  was possible to identify some of these pa r t i -  
0 c les  up to 30 dip angle.  Other s tandard emulsion techniques (espe - 

2 ,  
cially scat ter ing measurements  with the surface -angles method have 

been t r ied above 30' dip. 

In Table I11 we summarize  a l l  the available information in  the 

K mesons .  F r o m  this table we can establ ish lower and upper l imi ts  

in ' the  I(-meson abundance, considering the known and suspected K . 

mesons  below 30° dip and correct ing for the so l idangle .  F o r  the 

lower l imi t  we have considered the three  definite K's, while fo r  the 

upper l imit  a l l  five possible K 's  have been considered. In o r d e r  to 

find the of ' s t a r s  with a K-R pai r ,  cor rec t ions  have to be . . 0 
made for  ( a )  the KO -R mode which accounts for  about 16% of a l l  

s t a r s  w i t h K 1 s  and (b) the KO - K mode in which the K- has  been 

absorbed by the nucleus and which is est imated to include . -8% 

of all s t a r s  with K's.  . We thus obtain an  es t imate  of 3.5 * 1.5% of the 

annihilations containing a K-R pa i r .  
. . . . .. 

F r o m  the est imate of the K - abundance and the average  

energy of the K mesons ,  . PIS' = 650 Mev, a n  est imated averdge energy 

pe r  s t a r  ( c E ~ - ~ * )  = 50+25  Mev i s  given to K - meson production.. 

2;  Hyperons ( Y )  

It is possible that in the annihilation of an  antiproton in complex 

nuclei  a hyperon may  be produced. This can be explained in  two ways: . 
( a )  K interaction with the nucleus can r e su l t  in a hyperon through the 



Table I11 . . .  I 

- 
, . 

Data on K mesons  (including ambiguous c a s e s )  f rom antiproton s t a r s  
> .  

. . 

Event p r o n g  .' Dip ' Available TK- Termina l  . . . Comments  

n'o . no. angle : path (Mev) .  .behavior  

. . . (degrees )  ( c m )  
- - -.- 

. . . . . . . . .  
3 - 3  8 15 2.47 80 d i sappears  definite K ( ~ )  

. . 
in  flight 

'3,25 . ' , 1 ' 30. ' 5. 3 104 decays a t  definite K s e e  

rest APpcridix V 

. . . 3S759. . .2 . ,  29. .. 8. 3 . 235 leaves .  s tack definite K 

3s-83 5. 2 3 4 355 leaves  s tack uncer ta in  identi-  

fication 
. . 

. . .  . . 
' 3-7 3 .  19 3.'5 ': 260. l eaves  s t a c k  uncer ta in  'identi- 

. , . . f i c . a t i o ~ ( ~ )  

2-3.  .2 . 44 . . .1. 9 175 . l eaves  s tack uncer ta in  

s iaep  (a) . . 

3.5-3 3 7 4 7 . 8  120 comes  to uncertain 

1-est; nnthing s teep 

. . , at and 

1s -71  , 3 67 '  1 . 5  102 s ta r ,  in  flight uncer ta in  s teep 
' I . .  

3s-86 3 64 . 1 . 7  195 s t a r  in flight uncer ta in  s teep 
. I  . . . . . 

3 - 3 11 74 4 . 0  195 leaves  ' s tack uncertain s teep c.) 
... , 

. . . .  . . . . . 
a . ., . . . .  - . . . . 

F r o m  Ref. 2 .  



reaction K +  ri.' -P Y $- IT, o r  (b)  the annihilation c a n  take, place in the 

presence of a second nucleon according ' to  + n It n + Y + K + n. In 
t 

this work an  energet ic  Z (T + = 250 Mev,) i s  suspected, and a s imi lar  = 2 .  
case  has  been reported in ACE. .  However, hyperons coming f r o m  

antiproton annihilation s t a r s  have definitely been observed $n the p ro -  
10 pane bubble chamber.  

C. Nucleons 

1. Charged Prongs .  

A la rge  fraction of the prongs in the annihilation s t a r s  a r e  

protons,  deuterons,  alphas,  and m o r e  complicated nuclear  f ragments  

( recoi l s ) .  The major i ty  of these prongs have a r a the r  shor t  range, 

and thus they end in  the stack, while the remaining ones leave the 

s tack.  We classif ied these into two categories  according to their  

energy. ' Evaporation prongs (EV) a r e  the ones with TH ,< 30 Mev, 'and 

knock-ons (KO) a r e  those with TH 3 3 0  Mev. 

The evaporation prongs.  were  a s sumed  a t  f i r s t  to be protons,  

and f r o m  the range the energy was found. Although mdny other par-  

t ic les  a r e  expected to be present  ( e .  g. deuterons and alphas) ,  this 

a s  sumption does not appreciably influence the total average  energy 

given to the evaporation prongs p e r  s t a r  (zEEV) . This  can be seen 

i f  one considers  the difference in energy f r o m  range-energy curves  . 

and the difference in  the binding energy of alphas and protons.  How- 

( EV) to account,,for the ever ,  a small. correct ion has  been applied to E 

alpha and deuteron contamination by the'  use of thi experimental.  data 
- 

on IT absorption s t a r s  in emulsion. 
11 

The knock-on prongs have been identified by the g/gO vs range 

method for those which .ended while scat ter ing measuremen t s  and other 

~measurelne. t~ts  were  performed (See K-mesons) .  Almost  a l l  these 

par t ic les  were  pro tons , .  with a few c a s e s  of K ' s  and deuterons.  

In .Fig. 10 the spec t rum of a l l  nucleons i s  shown. This spec-  

t r u m  for T > 10 Mev can be descr ibed by the empir ica l  re lat ion:  H ' 



Fig. 10. The heavy-prong (proton) spectrum from antiproton- 
annihilation s t a r s .  The curve i s  an empirical  fit to the data given 
in the text. The triangles a r e  f rom cascade calculations on 

' ~ ~ 1 0 0  by Metropolis et  al. ( I 4 )  
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where (NH) i s  the average number of heavy prongs pe r  s t a r ,  T 
H 

the kinetic energy in ~ e v ,  and K and a a r e  pa ramete r s :  K .= 2, 

a = 1.26 for 10 Mev < TH < 100 Mev, and K = 222, a = 2.28 for TH> 100 

Mev. The shapes of the spec t ra  for the s t a r s  a t  r e s t  and in flight 

have been found to be s imi lar ,  with only a difference in intensit ies , 

. 
such tha t  : Krest. /Kflight = (NH) r e s t /  ( ~ d  flight. The d i s -  
continuity of the spec t rum a t  about 7 Mev i s  a resu l t  of the influence 

of the Coulomb b a r r i e r  against  positive pa r t i c l e  emission. An average  

Coulomb potential b a r r i e r  of - 7  Mev i s  indicated. In the s a m e  figure,  

th ree  points have been calculated by the use of the Monte: Carlo calcu- 
12 

lations on n-, ++ interactions w i t h ~ u '  O0 suitably averaged over the 

pion spectrum. Considering the l a rge  number of assumptions in-  

volved in .  these calculations and in their  averaging over our  pion 

spectrum, the comparison between these points and the experimental  

ones shows sat isfactory agreement .  

In Fig.  11 the number of s t a r s  a s  a function of NH (NH = NEV + 
NKO) a r e  plotted for s t a r s  a t  r e s t  and in flight. F r o m  these dis t r ibu-  

t ions the .average 'multiplicities of heavy prongs pe r  s t a r  ( N ~ )  a r e  

obtained: ( N ~ ) ~ ~ ~ ~  = 3.33 t0 .34 ,  and ( ~ 4  flight = 5.09 * 0. 60. 

In Fig.  12 the number of s t a r s  a s  afunction of the total  energy 
L 

given to . the charged nucleons p e r  s t a r  a r e  shown for s t a r s  a t  r e s t  and 

in flight. The total energy .E includes the kjnetic energy together 
H 

with 8-Mev binding energy. An average energy per  s t a r  given to 

charged nucleons, ( z E ~ ) ~ ~ ~ ~  = 1 4 4 t  15 Mev and (CEJ flight 

220 *26 Mev, i s  then obtained. 

The differences observed i n @ ~ H )  and (NH) for s t a r s  in 

flight and a t  r e s t  have been attributed to a difference in the penetration 

of the antiprotons into the nucleus,. resulting in a. difference in the 

amount of pion interaction ( see  ~ ' e c t i o n  IV B, 1) .  

-In T.able IV a summary  i s  given of the average number,  total 

energy per  s t a r ,  and energy pe r  prong for the evaporation, the knock- 

on, and the combined heavy prongs,  a s  a function of the charged-pion 

multiplicity and for s t a r s  a t  r e s t ,  in flight, and combined. F r o m  this 

table one can observe that (a )  the 'number of heavy prongs decreases '  



Fig. 1 I.. The heavy -prong distribution from antipr oton-annihilation 
stars. 

* .  
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Fig. 12 .  The distribution of the energy emitted in heavy prongs 
(protons) per antiproton-annihilation s tar . .  



Table IV 

The a v e r a g e  values fo r  the number of heavy prongs,  

the energy  p e r  heavy prong,  an2  the energy  in heavy prongs  per  s t a r .  

*- 

No. of E n e r g l e s  ( ~ e v ) ~  
I n t e r -  .N,* No of s t a r s  h e a v y  prongs  P e r  prong -- P e r  s t a r  
ac t lon  

-- ---- -- 

' d  0-2 45 . 4 .8  2.  ! ( 3 .  9 17. 3 108, 2 43.  5 8 3 . 2  216.8 300.0 

3 30 3 : 3  1. 2 4 ,  5 16. 3  '105. 1  39 .6  5 4 . 4  126. 1  180 .5  
In 

4 - 6  11  1 .2  0 . 7  1 . 9  15 .8  8 2 . 5  4 1 . 2  18.7 60.'0 78. 7 
flight 

oTzd  101 3 . 7  1 . 6  5 . 3  1 7 . 2  108 .9  44..6 63 .9  172 .4  236. 3  

3 ' 62 2 . 7  1 3 . 8  1 6 . 6  101 .8  4 1 . 4  44 .2  1 1 0 . 4 .  154 .5  
Al l  4 -6  36 1 . 3  0 . 5  1 . 8  15 .3  109 .4  3 9 . 8  19 .9  52 .0  71.9 
combined 

a T h e s e  energ ies  include a binding, energy  of 8 ~ e k  p e r  prong.  

' The energ ies  w e r e  ass igned  on  the assumpt ldn  that  a l l  p rongs  w e r e  p lu loas .  Actually doutosons and alpha 

particles a r e  a l s o  p resen t ,  and a  c o r r e c t i o n  f o r  t h ~ s  effect IS made  l a t e r .  

T h e s e  n u m b e r s  include the even t s  occur r ing  n e a r  the s u r f a c e  of the emuls ion  ( A 2  < 2 0  p), f o r  which no  pion 

mult ipl ic i ty  was ass igned .  
\ 

d No P.. 
even ts  have been included. These  a l l~ount  to 2 + 8. of a l l  s t a r s  a t  r e s t .  

P - 2 



' " . . .  
with N . * (b)  the av 'e r ige  energies  (EEV) and (EKO) a r e  independent 

TT 

of N .  * and of wh'ether the s t a r s  a r e  i n  flight o r  a t  r e s t .  The strong 
.. T T .  . , .  I - 

dependence of (NH) 6" N & indicates .that pion absorption i s  the main 
TT 

' .channel of' e'n.ergy given to the nucleus.  . The constancy of 
. , 

. .  . ~ .  

&EV>. 
and ( ) can be understobd'as follows:  he knock-on ;rongs 

E~~ 
, , 

. . . mainly &me f rom pion' absorption.'and d i rec t  collisions of the pions 

with the nucleons. But these p rocesses  dep'end only' upon the pion spec- 
\ 

t r i &  which''is about the same  for s t i r s  in flight and a t  r e s t  and for  

the different N * values.  The evaporation prong's a r e  understood 
Tr . . t i  be.pi-od&ti of the "evaporatioiif~'- of the nucleus through i t s  poten- 

t i a l  bar+&r. l3 ' The spec t rum of the evaporation prongs does not va ry  

much with. the variation of the excitatioti ehergy, being , r a the r  a 

charac ter i s t ic  of the nuclear  -potential depth. 

. . .  . . .: . . 



I DISCUSSION . 
, . . . 

-, : . . ;  . 3 . :  . .. . . . .  2 .  

, .  3 . .  . .. . . . .  . 1 .  

A.  The ~ n n i h i l a t i o n  P roce  s s and Be s t  -F i t  ~ a l h e  s 
. . .. . . . 

. .. 

.An .analysis .of the, .annihilation s t a r s  in-nuclear emulsion. is 

attempted in this section.. :: ..The anal-ysis i.s based'  on the fact that the 

antiproton annihilates with one nuc:l'eon in .the. cente.r -of -mass system, 

t ransforming the, available energy .mainly into IT mesons .. The pions 

being produced :inside the.nucleus interact  with the nucleus before 

they escape .  . . 

. . In F i g .  13a dia grammat i r  repr,nsentation.of the ,annihilation 

prpcess',  subsequent phenomena; and related quantities a r e  shown. 
. 2  

The F-nucleon s y s t e m  having an  available energy W = 2mc 
t TF 

t ransforms into an  average pion mul t ip l i c i ty  PIT) (the d is russ ion  is 

l imited only to pions because K mesons a r e  .very r a r e  and they will 

give only a sma l l  correct ion to the analysis) .  Here  T -  i s  the an t i -  
P 

proton kinetic energy  and B i s  the.. sma l l  ( -8 Mev) binding energy of 

the nucleon. These pions have a n  average energy (E'  ). An energy 
IT 

balance in! this  stage of the p rocess  gives: 

where (ZE ) is the average cncrgy pc r  € t a r  biven to K m e s o n s .  K-R 
On their  way out of the nucleus, the pions give , r i s e  to pi013 

interact ions with the resl: of the nucleus. If the average number o f  

interacting pions (per  s t a r )  is denoted by v and i f  a i s  the fraction 

absorbed, then va pions will not come out of the nucleus. Thus, the 

pion multiplicity a f te r  the pions have left the nucleus i s  (N - av) .  
IT 

Out of these,  only charged pions can be observed and with an.eff ic iency 
*O * 

E . Let  ( .rr /.rr ) be the ra t io  of a l l  pions to the charged ones and 

(N,+) the observed pion multiplici.ty, then the .following relat ion i s  

obtained: 

The average  observed pion energy (E ) differs  f rom the p r i -  
IT 

m a r y  energy (Ek) by the effects of the inelast ic  scatt*ering, the energy 



. . 

Fig. 13. A diagrammatic presentation of the annihilation process in 
complex nuclei. 



dependence of the pion absorption, and finally by the influence of the 

pion nuclear potential V . The effects of pion interaction decrease  the 
TI 

.pion energy. The .average pion energy af te r  pions .have interacted i s  
I .  

:(ElTI. -w),  where w has  been computed f rom the energy dependence of 

the pion interaction (Fig.  14) averaged over the pion spec t rum.  If 

E i s  the average  pion. energy af te r  the inelastic scattering, we have 
0 

. The energy U lost  by the pious ;scaping the nucleus i s  given 

to the nucleus.  The nucleus being 1eft.in a rath.er highly excited s tate  
., . 

r e l e a s e s  this energy mainly (hrough nbclepn emission.  f (E$ t w g  

i s  the average  energy of t h e  interacling p i o ~ l a  w h e r  t wO has becn 
4 

conlputed f rom the energy dependence of the pion interaction (F ig .  14), 

we then have 

A o  average  energy per  s t a r  (ZEJ i s  observed to be r e l eased  

by the charged nuclear  prongs of multiplicity ( N ~ ) ,  mainly protons.  

The remaining energy  U - (ZEH) i s  assumed to be re leased  by neu- 

t r a l  par t ic les ,  mainly neutrons.  F r o m  other studies of -TI mesbn in t e r -  

actions in photographic emulsion and Monte Carlo calculations of the 

same  problem, empir ica l  re lat ions can be. established for the branch-  

ing ra t ios  in . the multiplicity and the energy given to the charged and 

the neutral  nuclear  par t ic les .  These a r e  

and 

where n (average number of heavy prongs pe r  nonelastic pion in t e r -  H 
action) and h a r e  empir ica l  constants.  4 



Pion kinet ic  energy (Mev )  

Fig. 14. Calculation of the fraction of noninteracting pions a s  a 
. function of energy, for annihilations occurring a t  K'. (S) denotes 

not scat tered inelastically, (A) not absorbed, and (T)  not 
. inelas tically 'scattered or  absorbed. 



Equations (1)  to (6) ,  except (2) ,  were  solved for the four quan- 

t i t ies  (E:), (N> , y , and U by 9uccessive approximations since 

the sys tem i s  overdetermined. In this par t icular  solution the pion 

poten.tia1 V .= 0 was a s sumed .  The 'values of the other quantities in 
IT 

these equations have been tabulated in Table V together  with their . 

definition and the source  of their  nurrierical value. .  .The analysis  has  
. . 

been .ca.r.ried o u t  s'eparateljr fo r  , s t a re  in flight and  a t  r e s t . .  These ' 

derived qua.ntitie s a r e  the "best-fi t  value st!, and the . e r r o r s  assigned 

to them do not ref1,ect an\j systematic  e r r o r s  inherent in the analysis  

we made but ref lect  only the e r r o r s  assigned to the "input" quantities. 

Using, the best-f i t  values of ( ~ d a n d  v in Eq. ( 2 )  we have 

obtained the value of ( I T ~ I T * )  We note that it i s  not possible 
*o to calculate ei ther  E o r  ( IT /IT ) separately because they occur a s  a 

product.  However, with an est imated value r = 0.90 * .05, we obtain * 
( IT* ' /IT ) = 1.56 +0.16, which i s  in good agreement  with charge in-  

* 
dependence requir ing ( rr* O /  IT ) = 3/2. This r e su l t  leaves l i t t le room 

f o r  other neut ra l  par t ic les  present  in the annihilation p rocess  o r  fo r  
-. 

violation of the charge -independence principle.  (It shouid be noted 
- 0 

that neutrons have been  taken into accdunt in U and KO o r  K 

mesons  in +EKE) lo 
We will make a c r i t i c i sm of the previous analysls  based on the 

pion multiplicity (N,)' We will accept  the measured  pion multiplicity 

with the hydrogen14 and propane l o  bubble chamber s experiments  

a r t h e  t r ~ ~ e  n n r  F r o m  these exper iments  we have (N,) = 4.8 +0.3, 

while our  work predic ts  ( N  ) = 5.35 *0.28. In the chamber work, 
IT E m  

(N,) 
was deduced f rom Eq. (2) ,  where no pion absorpt ion took 

place,  the, pion detection efficiency was 1, and the observed (NIT*) - 
was used. In this work the multiplicity came out mainly f rom the 

pion energy  (E '  ) .  
IT 

The difference between (N ) and (NIT ) E m 9  though not 
IT H 

s tat is t ical ly  significant, m a y  s t i l l  be .  r e a l  because of any one o r  a 

combination of the following effects:  

(a) There  might be a remaining sys temat ic  e r r o r  in (E;) f rom dis tor  - 
tion in the plates ,  giving a lower energy for the pious for which s c a t t e r -  

ing measuremen t s  were  per formed.  



Definition of the quantities u s e d  in Eqs.  (1)-(6) together  with the i r  numer i ca l  values,  e r r o r s ,  and sources .  

-- - - - - -- 

Symbol Definition At r e s t  In flight Combined Source  

A .  Input Data f r o m  This  Exper iment  --- - - - 

<w> ~ i e r a ~ e  total  energy  1868 2009 1927 Dirac  theory  and 
avai lable p e r  s t a r  in measu remen t  of 5 
annihilation (Mev) kinet ic  energy  ' 

CE ,> Average t 0 t a 1 ' ~ i o n  energy  324* 21 
(MeV) 

( c E ~ )  Average energy p e r  s t a r  144.5* 15 
used  for  heavy-prong (proton) 
e m i s  s ion (Mev) 

p E K R >  Average total  energy  used  50* 25 
p e r  s t a r  for  KR p a i r  p r o -  
duction (Pulev) 

pH> Average 'number  of heavy 3.33* .34 prongs  p e r  s t a r  

<N,*> Observed  average  charged- 2.50+ .26 
pion mult ipl ici ty 

361*30 33.9* 18 Direc t  m e a s u r e m e n t s  
with es t imated  (-. 5%) 
co r rec t ions  

220.3* 26 176.4* 13 Di rec t  measu remen t s ,  
considering heavy prongs  
a s  protons 

50* 25 50*25 .. Direc t  measu remen t s  
and e s t ima tes  

5.W* .60 4.07* .31 Di.rect m e a s u r e m e n t s  

2.3W.28 2.41*.19 Direc t  m e a s u r e m e n t s  

(N,*> Observed  ave rage  pion 3.07*.45 3.3>* 1.0 3.15*.41 Direc t  measu remen t s  
multiplicity for  s t a r s  with 
CEH< 40 Mev 



Table V (cont'd) 
-. . . - . . - - 

SY- Definition E e s t  and flight c0mbine.d Source 

B. Input Data .from Pion Experiments and Calculations 

Fraction of . 
interacting pions 
absorbed 

Average final total energy < 21% 15 
of inelastically scat tered pions 

> 
M e v  

Average number of heavy prongs < 2.5* 0.2 
per  nonelastic pion 'interaction 

> 

Ratio of total energy given < 2.7* .2. 
to nucleons to the total 

> 
energy given ,to protons 

Energy correction t e r m  5* 2 
due to pion interactions 
(Mev ) 

Energy correction t e r m  15*6 
due to pion interactions related 

Estimated f rom pion- . 
interaction experiments 
averaged over observed 
pion spectrum 

Estimated f r o m  pion - 
interaction experiments 
averaged over observed 
pion spect rum 

Estimated f rom pion- 
interaction experiments 
averaged over observed 
pion spect rum 

Estimated f rom evaporation 
theory and experiments'  and 
f r o m  calculations on pion - 
initiated cascades 

Auxiliary quantity based 
on observed pion spect rum 
and pion m.  f .  p. in nuclear 
mat ter .  
Auxiliary quantity based 
on observed pion spect rum 
and pion m. f .  p. in nuclear 
mat ter .  



Table V (cont'd) 

Symbol Definition At res t '  In flight Combined source 

C. Derived Quantities 

Average pr imary  337*'21 
total pion energy 
(MeV) 

. . 
Average energy per  393* 36 
s t a r  used for proton and 
neutron. emission 
(Mev) 

Average pion multiplicity 5.39* 34 

Average number of . 1.32k.14 
interacting pions 

-1  ' 

E i s  the efficiency 1.76*.23 
correction factor. 

*0! 
(n /a ) i s  the ,ave;age ratio 
of all  pions to the number 
of charged pions 

367* 25 350* 18 Best-fit . 

, . evaluation of 
. .  . Eqs;  (1)-(6) 

612*45 49 l*  37 Best-fit . 
evaluation of 
Eqs. (1)-(6) 

5.33*40 5.36* 28 Best-fit 
'evaluation of 
Eqs.. (1)-(6) h 

0 
1.93* :14 1.61*.12 Best-fit I 

ewaluation of 
Eqs. (1)-(6) 

1.69* .27 1.72* .18 ~ e s t - f i t  
evaluation of 
Eqs. (1)-(6) 



( b ) .  We have a s sumed  V = 0, which i s  not well . justified.  The pion 
lr 

potential i s  energy-dependent l 5  and i t  i s  closely related to the shape. 

of the nucleon distribution in the nucleus.  At low pion energies ,  V 
lr 

is of the o r d e r  of 30 to 35 Mev, dec reases  with increas'ing energy, 

passes  through ze ro  a t  the (3/2, 3/2) pion-nucleon resonance, and 

becomes negative above this resonance. l 5  Because of this  peculidr 

energy dependence of the pion potential and the ifact that antiprotons 

annihilate a t  the surface of the nucleus, the over -all  e f fec t  of the 

potential might average  to ze ro  when averaged over  the en t i re  pion 

spec t rum.  The effect of the pion potential, might, however, be signi- 

ficant,  and the simplification V = 0 ref lects  the ra ther  crude know- 
-IT 

ledge existing on this ma t t e r .  

( c )  The energy-momentum relati.on for pi0n.s i,s not the same in f r e e  

space  a s  in the nucleus.  
16 

This cer tainly changes the phase space of 

the pions in the final state of the annihilation. This difference may  be 

significant, and thus the multiplicity of F-nucleon annihilations could 

be inherently different. This argument  i s  independent of the model , 

used for the annihilation i'f the ma t r ix  'element of the annihilation i s  the 

same  in both cases .  17 

In the analysis ,  secondary-pion production by pion-nucleon 

interaction has  been neglected. An overest imate of this effect dec reases  

(N$ b y  1.5% whic l~  i s  insignificant. This est imate was deduced on the 

assumption that 5% of the interacting pions give r i s e  to pion production. 
18 

The pion multiplicity can be obtained f rom l e s s  "obscure" a rgu-  

ments  if we consider only the s t a r s  with . E q 40 Mev and as sume  that 
H 

in those s t a r s  no pion absorption took place. This gives a lower l imit  

for  the pion multiplicity. With conservation of charge independence 

assumed,  and an  est imated value of s = 0.90+0.05 ,4  f r o m  Eq. (2) we 

get for these s t a r s  3 5.2 +0.7. The resul t ,  although s tat is t ical ly  

insignificant, i s  again higher than the multiplicity found in the hydrogen- 

and propane -bubble -chamber experiments .  



. . . .  . . . , . . , 

B. Amount of pion Interaction 
. . 

1. The Radius of Annihilation 
. . . . .  

, . . ,In this sect ion we.wil1 attempt to make a calculation of the amount 

of pion interaction produced in the annihilation p rocess  in complex nuclei: 

A pion i s  consi.dered to have interacted with the nucleus i f  i t  has  been 

absorbed o r  inelastically scat tered.  F r o m  this calculation and the 

"observed" amount of pion interaction, we will be able,  f i r s t ,  to find 

the,average.  radius  of annihilation and, second, 'to find the c r o s s  s e c -  

tion for antiproton-nucleon annihilation for a given 'shape of the nucleus. 

Consider that the shape of the nucleus i s  descr ibed by a F e r m i -  

like spherical  distribution: 

- 1 3 - 13  where.:^ = r ' A ~ / ~ ,  a = 0.5 X 10 cm, r o  = 1.07 X 10 cm, A i s  
. 0 . . 

of the nucleus, and p o  is defined through the normal i -  , . 
3- 

p{:r.)d r ,  = A .  . :This  leads to 

'9. 2 2 2  
P o  = 3 ~ / 4  ITR(R + IT a .  ). (8)  

.. . Let r a  be the distance of.annihilation' from the center of the nucleus, 

and a s sume  that the pions emitted f rom the point of annihilation a r e  

isotropically distributed in the laboratory sys tem.  This i s  a reasonably 

good assumpt ion 'as  can be seen f rom Fig.  8 .  Let  us consider an  or tho-  

gonal sys tem with i t s  origin a t  the cer?ter of.the Aucleus and with the 

z axis  passing through the annihilation point. Fu r the rmore ,  le t  9 be 

the angle between the direction of emission of a pion with the z axis  

and + the angle of projection of the direction of emiss ion  of a pion 

. on :the xy plane with respec t  to the x ax is .  The pion will "see" m - 
L .  

nucleons/cm f rom the .production point, 
UJ . .  

wher.e s i s  taken along the line of the pion's motion. 



L 
If .X(E ) i s  the mean f ree  path in nucleons/cm for pion in t e r -  

' T T .  - m ( 8 )  
action, and E i s  the energy, then e i s  the probability for 

the pion to emerge  f rom the nucleus without interaction; If we average - 
over  a l l  pion direct ions,  then the fraction F ( E  ) of pions which does not 

. lT 

. , interact  i s  given by: 

Now it .is possible to integrate Eq. (10) over 4 because of the spher i -  

ca l  symmetry  of the -nucleon .distribution in the nucleus : 

e lT) . d cos 8. . (11) 

To sirrrp1if.y the ~ ~ i a t h e l n a t i c a l  difficulties involved in the inte- 

gration.of Eqs .  ( 9 )  and ( l l ) ,  we have assumed a nucleus of uniform 

density p The radius of this uniform nucleus i s  denoted by R',  which 0' 3 t u r n s  out to be a l i t t le l a r g e r  than. R, R ' / R . =  (3/4 nro  p0)1/3. - Under 

this assumption, Eq. (11) can be integrated for  specific values of the 

annihilation radius r : 
. a 

(a)  If the annihilation occur s  inside this  uniform nucleus and i f  the 

probability fo r  annihilation i s  proportional to the volume ((.a>= 3 ~ ' / 4 ) ,  
19 then.we have ,. . .  . 

. . 
where x (E  ) I Z R . ' ~ ~ ~ ( E  ) o  

c 

lT .n 
. ' (b) If the anrlihilation occur s  on. the Burface of the sphere  ( r  = R' ) ,  

2 0 a. 
then we have 

.. . 

( c ) .  F o r  pion outside the sphere ( r  >> R'  ), we have 
a 

used the approximate~formula  



We have calculated F ( E  ) a s  a function of energy, using mean 
TT 

f r e e  paths given by Frank,  Gammel and   at son'^ and using a proper  

average over the emulsion (A) = 67. In Fig.  14 we show F,(E,) a s  a 

function of energy a s  i t  has  been calculated f rom Eq. .13. Curve ( T )  

r ep resen t s  the frac'tion of pions which did not interact  (F ) and has  
T 

been calculated by the use of the total mean f ree  path. l5  Curve A 

rep resen t s  the fraction of pions which was not absorbed (F ) and was 
A 

calculated by the use of the absorption mean f ree  path. l 5  By subt rac-  

tion of F f rom F the fraction of pions that do not undergo inelastic A T' 
scat ter ing has  been obtained (Curve S). As we will see  in this s e c -  

tion, the antiprotons annihilate a t  an average distance f rom the center 

of the nucleus r R .  F o r  this reason,  we have used the energy a 
dependence of F ( E  ) and FA(E  ) and the values v ,  a ,  and b of Table V 

S TT TT 

to calculate the correct ion t e r m s  w and w discussed in Section IVA' 
0 

and Table V. 

Similar calculations of F ( E  ) have been performed by the use 
T T .  

of Eqs. 12, 14 for  ra = l . l R 1 ,  1.2R1, 1.3R1, 1.4Rq. F r o m  the calcula- 

Liorls of F(E ) a t  ra/lXt = 3/4, 1, l . l l  2 1.3'. and 1.4, the average  
- TT 

F over the pion spectrum has  been obtained for each rad ia l  distance. 

In Fig.15a the fraction of pion interaction, 1-F,  i s  plotted a s  a func- 

tion of the radius  of annihilation, r normalized to the half-density a '  
radius,, R. 

The same calculations have been ca r r i ed  out by varying r 
-13 0 

f r o m  1.0 X 10 c m  to 1.4 X 10-13cm and separately for  light and 

heavy nuclei. The calculations show that the amount of pion inter  - 
action i s  not sensit ive to r A dependence on A i s  present ;  i t  is 

0 ' 
not ve ry  la rge ,  however, and the averaging over the emulsion nuclei 

i s  not cr i t ical .  The dependence on a i s  expected to be much sma l l e r  
P 

than the dependence on r , and i t  has  not been considered. L ~ h i s  can 
0 

be seen  f rom the dependence of p on r and a through.Eq. ( 7 )  0 0 3 
In .'this calculation the approximation of the nucleus to be of 

uniform density i s  not a ve ry  accura te  one because of the sma l l  mean 

f r e e  ,path for pion interaction. This simplification of the nuclear  shape 

gives ' l e s s  pion interaction than the rea l i s t ic  case  descr ibed by p( r ) .  

The difference between them inc reases  with r , / ~  and approaches zero. 



Fig. 15. . (a) ,  The percentage of interacting pions a s  a function of the 
average annihilation radius.  ' The ar rows marked R and. F 
represent  the percentage of interacting pions computed fo r  s t a r s  
a t  r e s t  and in flight, respectively. 

(b) The average depth of.anti'proton penetration into the 
nucleus a s  a function of the annihilation radius.  Both curves a r e  
expressed in units of R, the half-density radius. 



a s  r '  /R goes to zero. '  Because this discdss'ioh i s . r a t h e r  exploratory, a 
the approximation suffices. . .  

The rea l ly  difficult question in this problem i s  how well do we 

know the mean f r e e  path' in nuclear ma t t e r .  At present  cer tain theore-  

t ical  values a r e  available, 15' 21 and there a r e  la rge  uncertainties in 

these calculations, especially near  the (3/2, 3/2) resonance,  which i s  

.very close to the average pion energy of the annihilation process .  

Taking the resu l t s  of the previous calculations ser iously and 

using the best-fi t  values for  the amount of pion interaction ( V / N ~ )  

f rom Table V, we expect average rad i i  of annihilation for  s t a r s  in 

flight and a t  r e s t  to be (ra/RInight = 1.02+0.02 and ( r a / ~ ) r e S t  . - - 

1 .10 + 0.02. The e r r o r s  correspond only. to the s tat is t ical  e r r o r s  in 

the amount of pion interaction. F r o m  these r e su l t s  we see  that the 

s t a r s  in flight occur deeper in the nucleus than ..ones a t  r e s t .  The 

interpretation of this difference has  been that the antiprotons,  i n t e r -  

acting in  flight, go direct ly  to the nucleus, while the ones a t  r e s t  a r e  
. . 

captured into ,Bohr orbi ts .  4' 22 In addition, for the average element , 

in einulsion a l ready at  the F and D energy levels,  the antiprotons get 

annihilated because . of . the overlapping of these s ta tes  with the nucleus 

, and of the high value . of . the annihilation cross-sect ion.  

. 2. A Possible  Investigation of the Surface of the Nucleus 

It is shov& he re  that the knowledge of average radius for  ant i -  

proton annihilations in flight can give information on the nucleon d i s t r i -  

bution in the nucleus 'and in par t icular  of the nuclear  density a t  the 
, . 

"fringer1 of the hlcle'us. This i s  a c.onsequenc& of the la rge  annihila- 

tion cross-sec t ion  which causes the annihilation of .the antiprotons a s  
. . . . . . 

' soon 'as they come' c lose to nuc'lear mat te r .  

Let b be the impact of the aktiproton'relative to 

the center of the nucleus and r the annihilation radius.  The forward a 
peaked F-nucleon scktbering c r d s s k e . c t i ~ n ~ ~  and the application of. the 

Paul i  ~ r i n 6 i ~ l . e  on, the sca t te red  nucleon dec reases  the antiproton 

scat ter ing in the ndcl'eu's substantially and, to a good approximation, 

' i t  cak 'be neglected. Let x be' the coordinate of the antiproton on i t s  
. .  . . . 

l inear  path of motion. The inverse of the  number  of nucleons pe r  c m  
2 



c rossed  by the antiproton up to the point of annihilation defines the 

elementary annihilation c r o s s  section with the nucleus: 

Here  p f ( r )  i s  a modification of the nudlear density p ( r )  taking into 

account the finite range of the antiproton interactions.  The connec- 

tion between p l ( r )  and p( r )  is given by: 24 

+ + J' 

where f (  ) r - r l ( )  defines the strength of the annihilation interaction 
+ + 

between an  antiproton a t  the position r ,  and a nucleon a t  r '  . In the 
-> --• -. , . . , , 

case  of local  interactions we have F ( )  r - r ' l )  +,d(r-r' ) and consequently 

p l ( r ) + p ( r ) .  
an 

a s  a function of the F r o m  Eq. (15) we have calculated a- 
P -n 

radius  r for a given b, neglecting the effects of the nonlocal charac-  

t e r  of the interaction. F o r  the exploratory nature of this  work, this 

approximation suffices; in an accura te  calculation, however, the 

effects of the nonlocality in the interaction must  be considered. 

In Fig.  15b the value of can and i t s  inverse a r e  plotted a s  n 
P -n 

function of the average annihilation radius for all antiproton impact 

p a r a m e t e r s  and the emulsion nuclei. W e  note that the averaging proc- 

e s  s over the emulsion nuclei is not verv  sensit ive.  The calculations 
-13 h a v e b e e n m a d e w i t h r  = 1 . 0 7 ~ 1 0 ~ ~ ~ c m a n d a = 0 . 3 X l O  cm, 

0 
-13 0. 5 ~ 1 0 - l ~  cm, and 0.8 x 10 cm.  If one uses  the mean radius of 

annihilation for the s t a r s  in flight, found in the previous section for  

the three values of a ,  an  e lementary  F-nucleon c r o s s  section of 

l67mb, 106mb, and 50mb is obtained, respectively.  

Considering that ( a )  antiproton scat ter ing will be prevented if 

. the sca t te red  nucleon rece ives  an  energy l e s s  than 30 Mev--because 

of the Paul i  Pr inc ip le- - ,  (b) the angular dependence of the scat ter ing 

cross ,  sec t ion . i s  forward peaked, 2 3  and  (c )  the scat ter ing c r o s s  s e c -  

tion i s  equal to the annihilation c r o s s  section, a 570 dec rease  must  be 
an 25' 

applied to a- to account fo r  the scattering: Thus for the Stanford 
P -n 



- 13 par.al;lleters of the nucleon distribution ( r  - l . 0 7  X I 0  cm, a = 
26 0 - 

0.50 X 10-13cm) the predicted elementary annihilation c ross  section 
an  

i s  .a = 100 * 12 m b  a t  a n  average laboratory antiproton kinetic 
p-n . . . . . 

energy of 140 Mev., The. e r r o r  quotkd here  is,  again, the statistical 

.I ' 

one, and i t  does not ref lect  the reliability of the model. A comparison 
an  

of the a-,. with the. annihilation c r o s s  section in hydrogen gives a 
.' P-n 

.satisfactory agreement  with a = 0.5 x 10- l3cAf  while for a = 

0.3  X 10-13cm and 0.8 X 1 0 " ~ ~ c m  the agreement  is very poor. 

Similar calculations can be performed for the s t a r s  a t  r e s t  if  

Bohr orbi ts  a r e  assumed a,tld the time of transition f rom higher to 

lower s tates  i s  considered. This would afford additional information 

on the nuclear shape, but no calculations have been made. S o m e  

calculations for the s tates  of K- mesons for the light and heavy emul- 

sion elements have been made. 2 7 



C. . Aspects..of ,the .Statis t ical  Model of Annihilation 

. 
' .. 1. General . . . . .  

- '  

I t  has  become' customary to 'co'mp'are the exper'imental resu l t s  
5 . . 

with ;he modified ~ e r i i  s t i t i s t i c a l  the'ory o f  the annihilation p rocess .  2,4 

Modified'means that the [nteraction volume of the F e r m i  theory i s  

adjusted so  that the calculated averagk pion multiplicity i s  equal to 

the observed one. In   able VI the distribution of pion multiplicity 

P i s  given, neglec&ing K-K production, and. considering energy- n 
morxientum cbnservatibn for  the phase space used by F e r m i ,  28 and the 

. . 
~ o r e n t z - i n v a r i a n t  phase ( see  next sect'ion). 

. 
This m o d i f i e d . ' ~ e r k i  s ta t is t ical  model gives a sat isfactory 

agreement  with the following experimental resu l t s :  

( a )  pion spectrum (Fig.  16), % 

. . 

(b)  the charged-pion multiplicity N . *,(Fig.  17), 
TT 

( c )  the average pion energies  a s  a function of N .  * (Table VII). 
TT 

Table VI 

D ~ ' E  tribution of pion multiplicity P according to  the F c r m i  sl:a.ti ;ti r:xl n 
model  normalized f o r  an interaction r ~ d i u s  of r = L 54%/mTc, for (NJ= 5.4. 

- - 

Pn with Fermi P with.:Gorentz -invariant 
[ I  . . 

phase space phase space 



TT (Mev) 
MU-15,898 

Fig. 16. The pion-energy spectrum. Curve A gives the pion-energy 
distribution a s  predicted by the normalized F e r m i  statistical 
model for (~4 = 5.36, and curve B gives this distribution 
corrected for he effects of pion absorption, inelastic scattering, 
and detection efficiency. 



Fig. 17 .  . The experimental char ged-pion multiplicity distribution 
compared with the distribution of c a r  ed pions obtained f rom 
the normalized F e i m i  model for (N f =  5.36, corrected for 
32% loss  through the effects of pion a%sorption and detection 
efficiency. 



Table  VII . . 

The a v e r a g e  exper imen ta l  pion kinetic.  e n e r g y  a s  a function of. the o b s e r v e d  charged-pion 

multiplici ty.  A l so  shown f o r . c o m p a r i s o n  a r e  the va lues  computed . f rom the normal i zed  F e r m i  s ta t i s t ica l  mode l .  

. . 

At  r e s t  -In flighc Cc-mbined 

* N o  of 
) a  ( )  ( )  No' of (TJ raV(Tn) (T$ F e r m i  N o  of ( ~ J r a w ( ' J  (Tr)Fermi 

pions pions 
(Mev)  (Mev)  (Mev)  (Mev)  (Mev)  (Mev)  

p ions  
(Mev)  (Mev)  (Mev)  

": < 15" dip  - < 15O dip  <_ 15' dip 

a 
T h e s e  n u m b e r s  include sdrne 'p ions  f r o m  even t s  o c c u r r i n g  ne3.r a n  emuls ion  in t e r face  for  which no N value w a s  

l T  ' . . . .. 
ass igned .  . 



2. The Pion-Pion Angular Distribution 

In an attempt to see if IT-rr forces a r e  present  in the annihila- 

tion process we have examined the v-rr angular distribution. In present  

models of the annihilation process,  the pions a r e  confined for a short 
- 24 

t ime of - 10 sec  in a volume where mutual interactions between them 

can occur.  The presence of IT-rr forces will impose some correlation 

between the emitted pions. In the case where no correlation between 

the pions i s  present,  the pion-pion angular distribution should be i so-  

tropic. Take, for instance, the nth pion as defining the z axis,  and the 

angle between the z axis and the ith pion to be 6. Then the distribution 

of the ith pion within the angle 6 and the e t d 8  u,ut~ld  be proportional 

to the solid angle sin Bded+ i f  no restr ict ion on the direction of the i 
t h 

th 
pion was imposed by thc n one. 

' However, the observed distribution i s  anisotropic, favoring 

large  angles 6.(See Fig. 9 .  ) We then conclude that the pions cannot be 

considered independent among themselves. We know that, be sides 

any other possible correlations of which we might think, we must  sti l l  

consider momentum-energy conservation laws which constrain the 

freedom of the pionic system. With simplified assumptions we can see 

that the c o n s e r v a t i o ~ ~  of momentum and energy influences the pion-pion 

angular distribution in such a way a s  to describe qualitatively the 

observed angular distribution. Assullle lor  example that the symmetric  
-+ 4 + 

configuration of momenta p 19 p z 9  0 e ' D  i s  the most  probable one, 

and furthermore,  that the average (Y) an:?!) (see definitions in I11 A,ij 

correspond to this state.  Simple geometrical calculations then give 

a value for 19 of 120°, 1 0 9 . 5 ~ ~  and 108O for s t a r s  with multiplicities ( >  
3, 4, and 6, respectively. All these multiplicities give a y which i s  in 

qualitative agreement with the observed value. 

It follows then that before we interpret  the observed anisotropy 

in t e rms  of pion-pion interactions, we must  f i r s t  calculate the effects of 

the conservation laws on this distribution. Since the distribution i s  a 

combination of a l l  pion multiplicities and because other s imi lar  integral 

distributions (spectrum, the charged-pion multiplicity N *, and the rr 
averag e pion energies a s  a function of N &)can be made Lo agree  quite 

rr 



h e l l w i t h  the statist ical  mod6f;by adjustink 6n ly the  volume of inter - 

action, it i s  expected. that a .statist ical  treatment of the problem for  our 

. - experimental data i s  equally justified. . 

. . ,- We have calculated the.pion-pion angular distribution for a s y s -  . .  . . . . . .  " .. . . 

,, tem of n , indistinguishable pions of m a s s  p, and total energy . W, 
. .8 

whose d i s t r ibu t i0n . i~ .  determined by F e r m i  phase space alone. Because 
. . ( i t '  I ., 

of i t s  noninvariant charac ter ,  the F e r m i  phase space . . represents  . grea t  

.difficulties in the t ransformations f rom one sys tem or' var iables  to 

another. Thus, it i s  ra ther  difficult, to comp~ite  the pion-pion angular 

distribution in  a n  exact  way for this casc .  

In o rde r  to over come these mathematical difficulties we have 

considered iiistead an invariant form o,f the.'phask ipace rused  in field 
,. .. 

theory. This i s  ;ctually the expresgion obtained f rom the covariant 
, , .. 

S-niair ix . theory of ~ e ~ n m i d ~ ~ i f  i t  i s  assumed that the S -ma t r ix  

element fo r  ,the emission of .n pions i s  simply a constant, independent 

" of the momenta o r  energies  of the erkiitted,pions. 1f'this . constant . i s  
, .  

taken to be vn, then, for the calculatisn o f  the probabili t ies (P,) of 

annihilation into n pions, this fo rm of phase space . . gives essentially 
. . 

the same re su l t s  a s  that used by F e r m i  ( see  Table VI). It is reasonable 

to expect that these.phase-space expressions shpuld give quitea.closely 

the same angular correlat ions between .the picins, e'specially since they 
n .  

differ . . only,by a factor ( o: ) which va r i e s  relatively l i t t le over the . . 1 . :  

different configurations b ~ b i l a b l e  for the n 

If .we .assume,  thed, that the ma t r ix  element for the F-nucleon 

absorption i s  constant, the, covariant transit ion probability for this 

p rocess  will be 

where A i s  a cons.tant independent of n, and G (I) i s  the isotopic-spin 
z . . .  . n 

weight factor .  Here Fn(W ) i s  the invariant form of phase space 

defined by 



. where a .  i s  the relat ivis t ic .energy of the pion with momentum pi: 
1 . .  . , . .. 

. : . . 
Since in the transit ion probability T n only'the phdse space contains 

the energy-  and ~ ~ ~ o ~ ~ ~ c ~ i t ~ ~ r r - ~ o n o ~ c r ~ ~ ~ a t i ~ n  larGs, ' we will consider the 
. . 2 

phase space neglecting normalizing constants ..' Thus Ffi(W ) can be 
. . 

written a s  

The square . bracket  . r ep resen t s  the phase , space  for the (n-  1) pions 
.+ 

with energy .(W -wn) and total . momentum . -pn . 
Let  us evaluate this squar  bracket  in t$_elLorentz sys tem in n-1  + n - f  

. which 5 Pi has  the value 6 = 0, and w. 1 has  the. valup 
i= 1 i = l  n -1  2 -2 w. 1 = ' . F r o m  Lorentz i n v a y i a n c i  (.3 wi) - Z g i ) ' h a s  

i= 1 1 = i= 1 
. , 

the same value in a l l  coordinate s y s t e r n . ~  .' Evaluating this  in the 

sys tem just defined and in the laboratory sys t em gives ,. 

2 
W'. = (W- 

2 2 2 2 
wn) - Pn = 'W f p.- - 2Wwn. . (21) 

d3P In the t ransformed '  system, because ( - ) is invariant and w 
has  the same  value in a l l  Lorencz systems, thk ' ~ . ~ u s r a  brack.et 

. . . . 
becomes 

n - 1  n -  1 n - 1  
d3p; 

. . - wl.)a( 3 ) 77 -1, 0.  
i= 1 i = l  1 

2 
which i s  just Fn - l,(W',, , a c y r d i n g  to Eq. (18).  Hence, we have 

2 
. . [W -:n(n-2) p ] / 2 ~  

/ 

The upper l imi t  has  been determined f rom 



2 
The  functions Fn(W ) can now be calculated successively by means of 

' 2 '  
Eq. (22), s tar t ing f r o m  F2(W ) , e .  g . ,  

3 

L WL - .3p. . 

2 2 
a F3(W ), = 4sr(2?) pdw(l - 4p 

1. . . 
)i , etc .  

L 
The functions F;(W ) have been calculated in the IBM 650 for  

2 -  ' 

n = 2, 3, 4, and 5 a s  a function of W . The F;(w~) a r e  smooth 
2 

funct ions  of W , and they have bee.ii .approximated to a second o rde r  

\ . - .  
,polynomial.. Simi,larly, f rom Eq. (18) we can get the distribution 

in the m0ment.a of t y o  pions2 

- - . -  J J  . %.[/I < Y -  ( W - U  Q P , ,  p2)  = 
"2 

1 . 1  2 
1 = 

n n 

( 2  3 
i = 3  i = 3  1 

4 -  n 
; ..,Tranaforniioy Lo the sys tem in which 5 p. b e ~ o m e s  2 -;'I = 0,  and n . .  . - ,1 . i = 3  

wi takes the value J! = W", we see  that: the sqt;?e bracket  
i=3  . 2 I=% l '  
r e p r e s e n t s ' ~  : (W" ), w e r e  n-2. 

(24) 
d3& " d 3;2 

Now, we have . ( '  - ) 2 sin 8d8, 
a1 a3 
I L. 

where 8 i s  'the angle between the two pions; one of them defining'the 

z axis .  Hence we may wl-ite 

Thus .the pion-pion:angular distribution in cos 8 i s  

. . qn(cos  e)fJ . p  p I? . (WH 2 )tlwldo2. 1 2 n - 2 .  (26) 



F o r  given value of cos 8, the integration over .w. and wr proceeds over 
. . .  . . .. - ,  1 ,. 2 .2 

the a r e a  defined by the l imitations w Z p, -id2 +,)L, 
2 2 

1 
and-W I '  >(n-2 )  p . 

The a r e a  defined by these l imi ts  inc reases  to with increasing 8 and 

decreasing n.  . . ,  

The double integrals  in, Eq. (26) have been calculated on the 

IBM 650 computer for  n = '4, 5', 6 ,  and 7 as a function of cos 8. The 

calculated @ (cos 6) a r e  shown in F ig .  18 normalized to the same 

number of pion pa i r s .  In Table VIII the ra t io  y and the ( 8 )  a r e  given 

as  a function of the multipli'city.   he expected influence of the 
. . .  
conservation laws is very  c lear  in these distributions,  e .  g .  dec reas  - 

i n g  anisotropy with incredsing pion m.ultiplicity. T h e d e g r e e s  of f r e e -  
. . 
'dom in the sys t em of n pions a r e  (3n - 4), if'rnoment'um and energy 

a r e  conserved. As  the pion multiplicity inc reases ,  the four constraints  

become l e s s  important,  the correlat ion between pions i s  looser ,  and 

therefore the distribution becomes more  isotropic .  

In o r d e r  to compute the angular distribution that corresponds 

to the annihilation p rocess ,  i t  i s  necessa ry  to average over these 

distributions according to the probability (P ) for anni.hilation into n 
u pions. The probability (P ) has' been taken f rom calculations of n 
the s tat is t ical  models  ' ( ;see Table VI) in whiriha.n interaction volume has  

been used such that the calculated and observed multiplicities a r e  equal. 

Table., VIII 
- 
Theoretical calculatioirs for 0 and y as a function of the pion m111 t i -  . ( )  
plicity, using a Lorentz- invariant ,phase ?pace with encrgy-momen- 

:.. . , 

.. . tum 'c6nservation. 



. . 
Fi,g. 18. Theoretical pion-pion angular distributions, using the 

statistical modi l  of annihilation and Lor entz invariant phase 
space with. conservation of energy and . - .momentum. 



It i s  expected that the use of the calculated Pn will be a s  good 

a s  in the case  of the pion spectrum, the charged-pion 'multiplicity 

N .  *, and the average pion energies  a s  a function of N A, in which 
IT IT 

sat isfactory agreement  between theory and experiment were  found. 
n(n - 1) 

In addition the k ( c o s  8) has  been weighted by which r ep resen t s  

the possible pion p a i r s  in a s t a r  of multiplicity no The distribution I, 

. . . .. 

computed i s  plotted in F ig .  9 together with the experimental  points. 
\ 

This distribution gives a ra t io  (y) 
calc = 1.66, and(8/ealc = 99.6', 

while the observed values a r e :  (y)obo = 1.45 *0.13, and = 

97 *4O. 
\ 

If one con-siders that scat ter ing of pions in the nucleus reduces 

any anisotropy in pion angular distribution, the agr,eement be tween 

theory and.experiment  i s  striking. (A comparison df the pion-pion 

angular distribution for annihilations in emulsion and in hydrogen 

can show i f  there  is any appreciable scat ter ing of pions). If we 

a s sume  that no appreciable amount ~ f ' ~ i o n s  has  been sca t te red  in the 

nucleus (we have est imated 7% inelastic scat ter ing)  then the a g r e e -  
/ 

ment is suggestive of the following: 

(a )  The obser'ned anisotropy re su l t s  f rom the conservation 

laws alone and gives no evidence for an  influence of 

p ion-pion interactions in  the annihilation p rocess .  

(b) A s ta t i s  t ical  model of the annihilation p rocess  gives a 

good agreement  with the integral  distributions i f  an 

adjustment of the interaction volume i s  made.  

( c )  Independently of any assumptions,  a s  for example 

charge indepenclenoe, pion absorption, and efficiency 

bf.pion detection, the average  pion multiplicity in the 

annihilation i s  l a r g e r  than four.  \ 

3,. On the K-Meson - Spin . -  

Sandweiss calculated the effects of the spin of the K meson on 

the abundance of K,K m e  son pa i r s  in the annihilation process ,  assum- 

ing the F e r m i  s tat is t ical  theory with conservation of :energy, momen- 
3 1 tum, and angular momentum.. The spin of the K meson enters  into 

the theory a s  a weight factor (2s.  + 1) where S i s  the spin. ,We show 



in Fig.  19 the resu l t s  of h is  calculations together with the present  

K-I7 meson abundance. The K-R meson abundance favors  a zero-  

spin K meson, but it i s  st i l l  to smal l  to give meaningful agreement  

with the calculations. We. think that, i f  possible, an  application of 

the Sandweiss proposal to the Koba-Takeda model of the annihilation, 3 ? 

which dec reases  the K-R abundance, should be of in te res t .  



MU-  16887 

Fig. 19. The iso-spin lines for K-meson spin: (30) pK is 
the abundance of K-a pa i r s  a s  a function of 
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T h i s  r e p o r t  was  p r e p a r e d  a s  a n  a c c o u n t  o f  G o v e r n m e n t  
s p o n s o r e d  w o r k .  N e i t h e r  t h e  U n i t e d  S t a t e s ,  n o r  t h e  Com- 
m i s s i o n ,  n o r  a n y  p e r s o n  a c t i n g  on b e h a l f  o f  t h e  C o m m i s s i o n :  

A .  Makes a n y  w a r r a n t y  o r  r e p r e s e n t a t i o n ,  e x p r e s s e d  o r  
i m p l i e d ,  w i t h  r e s p e c t  t o  t h e  a c c u r a c y ,  c o m p l e t e n e s s ,  
o r  u s e f u l n e s s  o f  t h e  i n f o r m a t i o n  c o n t a i n e d  i n  t h i s  
r e p o r t ,  o r  t h a t  t h e  u s e  o f  a n y  i n f o r m a t i o n ,  a p p a -  
r a t u s ,  m e t h o d ,  o r  p r o c e s s  d i s c l o s e d  i n  t h i s  r e p o r t  
may n o t  i n f r i n g e  p r i v a t e 1  y  owned r i g h t s ;  o r  . 

A s s u ~ l ~ e s  any  l i a b i l i t i e s  wi . th  r e s p e c t  t o  t h e  u s e  o f ,  
o r  f o r  'damages  r e s u l t i n g  f r o m  t h e  u s e  o f  a n y  i n f o r -  
m a t i o n ,  a p p a r a t u s ,  m e t h o d ,  o r  p r o c e s s  d i s c l o s e d  i n  
t h i s  r e p o r t .  

As u s e d  i n  t h e  a b o v e ,  " p e r s o n  a c t i n g  o n  b e h a l f  o f  t h e  
C o m m i s s i o n f f  i n c l u d e s  a n y  e m p l o y e e  o r  c o n t r a c t o r  o f  t h e  Com- 
m i s s i o n ,  o r  empl o y e e  o f  s u c h  c o n t r a c t o r ,  t o  t h e  e x t e n t  t h a t  
s u c h  e m p l o y e e  o r  c o n t r a c t o r  o f  t h e  C o m m i s s i o n ,  o r  e m p l o y e e  
o f  s u c h  c o n t r a c t o r  p r e p a r e s ,  d i s s e m i n a t e s ,  o r  p r o v i d e s  a c c e s s  
t o ,  a n y  i n f o r m a t i o n  p u r s u a n t  t o  h i s  employment  o r  c o n t r a c t  
w i t h  t h e  C o m m i s s i o n ,  o r ' h i s  e m p l o y m e n t  w i t h  s u c h  c o n t r a c t o r .  




