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The sublimation and vapor pressure of Ar were measured in the36

temperature range 23.752-87.375 K.  Pressures below 1 Torr were measured

with a McLeod gauge and corrected for effects of thermal transpiration

and mercury streaming. The estimated accuracy of these pressure measure-

ments ranges from 1% near 1 Torr to 10% near 10 Torr. Above 1 Torr-5

a calibrated Bourdon gauge was used to give pressures to 19·03 Torr.

Temperatures were measured to t3 mK with a N.B.S.-calibrated Pt re-

sistance. thermometer.  A liquid helium bath was used throughout the

temperature range for which the experiment was done.  The data were

fit to theoretical sublimation pressure curves to obtain values for

the static lattice energy, lattice vibrational energy, and geometric

mean frequency of the phonon spectrum.  The data were also compared

with theoretical calculations of others based on an anharmonic self-

consistent phonon theory.  Equivalent sublimation-pressure data on

normal Ar are compared with our Ar36 data in the temperature range

62.315-84.503 K.  This comparison yields vapor-pressure ratios which

are in reasonable agreement with theory and other experiments.  Thermo-

dynamic properties of normal Ar and of Ar calculated from these data36

are also compared. It is found that several of the differences in

MASTERproperties may be qualitatively understood in terms of the increased
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zero-point energy of Ar compared to normal Ar.36

The Kapitza resistance, RK(T), is calculated for a Cu-He4 inter-

                   face using the acoustic mismatch theory of Khalatnikov and of Mazo

and Onsager. Included in the calculation are the effects of: phonon

attenuation in the copper as well as impedance matching due to the in-

creased He density near the interface.  We calculate R (T) for several
K

values of attenuation in the Cu; detailed calculations are displayed

for the case of equal attenuations for longitudinal and transverse waves

in the solid. Also considered are different attenuation profiles in

the Cu.  We use a density profile, for the He, calculated from compress-

ibility data and the van der Waals attractive force between He and the

Cu substrate. Our model includes the effect of a solid layer of He at

the copper surface, i.e. in such a He layer both longitudinal and trans-

verse waves are allowed. Included in our calculations are the effects

of different density profiles for the He.  The calculations indicate

that for suitable choices of the physical parameters, the theoretical

results for RK(T) agree in magnitude as well as T dependence with the

experimental data.  Unfortunately, the important physical properties

have not yet been experimentally determined and a definitive test of

this theory must await such data.
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I.  INTRODUCTION

There are many areas for fundamental theoretical and experimental

research in low temperature physics.  This thesis deals with two dif-

ferent phenomena which occur at low temperatures:  The first is an

experiment to measure the sublimation and vapor pressure of the argon

36
isotope, Ar  , in the temperature range 23.752-87.375 K.  In the second,

we make a theoretical investigation of the thermal boundary resistance

which occurs at the interface between two different materials when heat

flows across the interface. This effect is commonly known as Kapitza

resistance and is most pronounced between liquid He4 (or He3) and a

dense, elastic solid, for example a metal at very low temperatures,

T 5 1 K.

The sublimation and vapor pressure experiment is discussed in

Chapter II of this thesis and the theoretical calculation of Kapitza

resistance is the topic of Chapter III.

A.  Discussion of Sublimation and Vapor Pressure

Properties of the rare-gas solids have long been of interest be-

cause the interatomic forces are weak, short-ranged, and relatively

well understood.  To a good approximation these forces can be repre-

sented by two-body central forces, and comparatively simple theories

can therefore be used to predict properties of the rare-gas solids.

In particular sublimation pressure is calculable from lattice-dynamical

theories and consequently can be used as a test of such theories.  The

1
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purpose of this experiment is to provide an accurate table of sublima-

tion-pressure data for Ar which extend over several orders of magni-
36

tude.  From these data we calculate the static lattice energy, heat of

sublimation, vibrational energy, and geometric mean frequency of the

phonon spectrum.  Since the sublimation pressure of normal argon (ArN)

1.2
has been measured previously with the same apparatus, ·  we compare the

sublimation pressure of ArN with that of Ar and discuss the observed36

differences. We also discuss the observed differences in some of the

calculated properties mentioned above.

Vapor and sublimation pressures of ArN have recently been mea-

sured in the range 75-85.2 K by Chen, Aziz, and Lim. Lee, Fuks, and
3

4
Bigeleisen  have, also recently, made differential measurements com-

paring vapor and sublimation pressures of ArN and Ar36.  Their data,

in the form of P(ArN) and P(Ar36) _ p(ArN), extend from 62-102 K.

Earlier measurements on the argon isotopes have been made by Clusius

and co-workers5 in the range 84-88 K, and by Boato and co-workers6-8

in the ranges 84-119 and 72-83.7 K.

The vapor-pressure ratios for isotopes of solid Ne and Ar have

been calculated by Klein, Blizard, and Goldman  using the improved self-

consistent phonon scheme of Goldman, Horton, and Klein.
10

B.  Description of the Kapitza Resistance Effect

The thermal boundary resistance, R ' between liquid helium and a

solid is known as Kapitza resistance, and is defined by

RK = A AT/4 (cm2 K/W) . (1)

In Equation 1, Q is the heat flow, A is the area of the interface, and

AT is the temperature discontinuity across the interface.  Kapitza11

discovered the phenomenon in 1941 while investigating the thermal
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conductivity of superfluid He4.  He observed a temperature discontinuity,

AT, between a heated metal surface (Cu) and the liquid helium of ap-

proximately 2 mK per mW/cm2 of heat flux, 4/A (between 1.6 K and the

lambda point).  That is R  = 2 cm2 mK/mW (= 2 cm2 K/W) in the tempera-

ture range 1.6-2.172 K.

A possible explanation of the phenomenon was first put forth by

Khalatnikov12,13 in 1952 and later, but independently, by Mazo and

13.14
Onsager. ' Each of these authors treated the heat flow across the

liquid-solid interface as a thermal distribution of quantized elastic

waves and calculated the transmission coefficient for waves incident

at the interface using classical elastic waves. Since the velocity of

sound in a solid may be an order of magnitude or more larger than in

liquid helium, and the density of a solid may be 1-2 orders of magnitude

larger than that of liquid helium, there will be a large acoustic mis-

match and the flow of phonon energy across the liquid-solid interface

will therefore be impeded.  R 's calculated using this acoustic mis-

match theory have a T temperature dependence (due to assuming a Debye-3

density of states for the phonon modes).  However, experimentally ob-

served R.&'s are typically an order of magnitude or more smaller than the

theoretical values and have temperature dependences ranging from T to
-2

T-4.5.13

In an attempt to resolve some of these discrepancies between

theory and experiment, several alternative theories have been proposed,

of which we shall mention the ones closely related to our work.  Challis,

Dransfeld, and Wilks modified the original acoustic mismatch theory
15

of Khalatnikov and of Mazo and Onsager by taking into account the im-

proved matching due to the increased density of liquid He4 near solid
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16surfaces. They suggested that the improved acoustic matching would

result in an increase in the energy flux across the liquid-solid inter-

face and therefore decrease R. C.  Although R  calculated with their model

has a temperature dependence of T-4.2 above 1 K, we feel that the im-

proved agreement with experiment in the magnitude of R < is significant.

Concurrent with our present calculations of Kapitza resistance,

there has been other work dealing directly with the effects of17-20

phonon attenuation in the solid, in particular copper, on R .  The

basic assumption used in the models proposed by these other workers
0

(and by us) is that within 1000 A or so of the solid surface there is a

region in which the phonons are more strongly attenuated than in the

21bulk solid. Kuang Wey-Yen in analyzing his experimental R  data for

several materials considered the effects of an amorphous layer (the

Beilby layer) which is formed on the surface of a cold worked metal.
0

Such a deformed layer has a thickness of about 50-100 A and it is

estimated that the transition to the bulk polycrystalline properties21

occurs over a distance of 103-104  .  His analysis considered the

possibility of the elastic constants being lower (hence lower sound

velocities) in this amorphous region, which of course would improve the

acoustic matching for the system and thereby decrease RK.  While we

agree completely that the effects associated with a thin deformed layer

beneath the surface of the solid (in particular phonon attenuation) are

significant with respect to decreasing R ' we feel that the impedance

matching effects associated with the dense helium region at the liquid-

solid interface should be included.

The purpose of the third chapter of this thesis then is to demon-

strate that the combined effects of impedance matching and phonon
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attenuation in the solid result in calculated Kapitza resistances which

agree quite well with experimental data.  We first describe the model

which we use and then the theory required to obtain the desired quantity,

RK.  Following this we give a brief description of the numerical tech-

niques used and give the accuracy which we expect from such calculations.

Finally, we present our results for a variety of parameters and make

some comparisons with experimental data.



'

THE EXPERIMENT ON SUBLIMATION ANDII.

VAPOR PRESSURE

A.  Theory

The condition for a multi-phase thermodynamic system to be in

thermal equilibrium is that the specific Gibbs free energies for each

of the phases in thermal equilibrium be equal.  For a solid-vapor

system (or liquid-vapor system) this is expressed as

G[Vapor] = G[solid(or liquid)] . (2)

The calculations of G for each phase in Equation 2 may involve assump-

tions about the system which neglect properties unique to the boundary

separating the two phases.  This problem can be circumvented however,

by treating the interface as a third phase, separate from the bulk

materials on either side of the interface. That is, thermal equilibrium

for a three-phase system implies equilibrium between any two phases [in

particular the solid(or liquid) and vapor phases] and Equation 2 is

therefore applicable in general.

Applying classical thermodynamics to a solid-vapor system (or

liquid-vapor system) in thermal equilibrium yields the Clausius-

Clapeyron equation which may be written22

d(ZnP) = -L  .                       (3)

d(1/T)   R[1 - P(vc - B)/RT]

In Equation 3 P is the pressure, T is the temperature, L is the heat of

sublimation, R is the gas constant, and v  is the molar volume of
C

the condensed phase, i.e., the solid or liquid.  The second virial

6
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coefficient, 8, is defined by the gaseous equation of state:

Pv  = RT(1 + 8/v ) , (4)gg

in which v  is the molar volume of the gas.  Over a sufficiently narrowg

temperature interval Equation 3 can be integrated to give the classical

vapor-pressure equation:

tn P= A/T+B , (5)

where

A= -L                               (6)

R[1 - P(vc - 8/RT]

The heat of sublimation L may then be calculated by fitting sub-

limation-pressure data to Equation 5. If data for a large temperature

range are available, then the temperature dependence of L may be cal-

culated by successively applying this technique   to adj acent narrow

temperature intervals.

Using statistical mechanics to calculate the Gibbs free energy of

the gaseous phase, a somewhat different vapor-pressure equation can be

obtained.  The classical partition Function, 2, for a canonical en-

semble of N particles is defined by
23

2 = (1/h3NN:)fdr3N dp3N exp(-BH) . (7)

In Equation 7 the variables of intergration, ri and Pi' denote compo-

nents of the canonical position and momentum coordinates, respectively.

The variable H is the total hamiltonian for the system, h is Planck's

-1
constant, and B is defined by B = (kBT)   where kB is Boltzmann's con-

stant and T is the temperature. For a system of N particles in a

volume V, Equation 7 can be written

2= (1/N:) (mkBT/27rh2)3N/2 f dr3N exp(-8 I v ) (8)
ij   '

i<j

where m is the mass of each particle, R is defined by h = h/2A, and
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vij is the pair potential describing the interaction of the ith and

jth particles, i.e., vij E \1(| i - rj|) Using the cluster expansion

techniques described in Reference 23, the integral in Equation 8 can

be evaluated to first order in v to give
ij

2 = (vN/N:)(mkBT/2*R2)3N/2 {1 - 8(T)[N(N - 1)/V]} . (9)

In Equation 9 the second virial coefficient, 8(T), is defined by

8(T) = (+1/2)Jdr3{1 - exp[-Bv(r)]} . (10)

The second virial coefficient defined by Equation 10 is the same as

that defined by Equation 4.

For a canonical ensemble, the Helmoltz free energy, F, is given

by

F = -(kBT)£n2 ' (11)

Using Equations 9 and 11 for the gaseous phase and the thermodynamic

relation, G=F+ PV, another form of the vapor-pressure equation is

obtained:

tnP - P(vc - BYRT = F/RT + (5/2).61(kBT) + (3/2).En(m/211i2) . (12)

In Equation 12, F is the Helmoltz free energy of the solid and the re-

maining symbols are the same as those defined in Equations 3 and 8.

For physical analysis of experimental data, it is necessary to

complement Equation 12 with a theory which gives values for the Helmoltz

free energy, F, of the solid. In the case of the rare-gas solids, much

progress has been made in lattice-dynamical theories from which F (and

consequently P) can be calculated.  There are basically two forms of

lattice dynamics which have been applied to the analysis of sublimation-

pressure data.  These are known as the quasi-harmonic and self-consis-

tent theories of lattice dynamics.  We shall now give a brief descrip-

tion of each of these theories.
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In the quasi-harmonic theory, the fundamental assumption made is

that the energy eigenstates of the solid can be accounted for solely by

non-interacting phonons.  A further assumption, and that which makes the

theory quasi-harmonic, is that anharmonicity in the solid results only

in a temperature dependent phonon frequency spectrum and volume.  That

is, phonon-phonon interactions are not considered. The actual fre-

quency spectrum, as a function of temperature, is obtained by applying

a variational principle to the Helmoltz free energy as a function of

lattice parameter. For our purposes, however, we do not require the24

complete theory.

Assuming a perfect monatomic crystal structure and quasi-harmonic

lattice vibrations, Salter derived an expression for the vapor-pressure

25
equation  :

61(PT1/2) + exp(-gs/kBT) - P(v  - 8)/RT
C

-3   (-1)n-1(1/n)(R/2kBT)2n<w2n, I   (1/wj)2nl = a/T +b,  (13)
n=1 j=1

where

a = E /R (14)0

and

b = 3.Enwg + (1/2)Zn[(m/2 r)3(1/kB)] . (15)

In these equations, E  is the static lattice energy and gs is the

Gibbs free energy of mono-vacancy formation.  The 3N lattice fre-

quencies, wi, determine the geometric mean frequency of the lattice

frequencies, w , and the 2nth moment of the lattice frequencies,g

<u,2n>. The remaining symbols  are  the  same as those de fined in Equations

3 and 8.  If one uses the Debye approximation for <w2n> and truncates

the infinite series in Equation 13 at the 4th order term, Equation 13
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becomes;

1/2
ZA(PT   ) + exp(-gs/kBT) - P(v  - 8)/RT

C

- (3/40)(OD/T)2 + (1/2240)(eD/T)4 = a/T +b. (16)

In Equation 16, 0D is the characteristic Debye temperature of the solid.

The static lattice energy, E , represents the binding energy of the

solid and can therefore be calculated by summing, over all lattice sites,

the potential of pair interaction evaluated at the mean separation dis-

tance for the atoms.

It should be mentioned at this point, that Equation 13 was ob-

tained through the use of an expansion which is valid only for high

temperatures, T 3 40 K.  A difficulty with this theory then, is that in

the range where it is most easily used (for example Equation 16 is

valid for T 2 58 K) phonon-phonon interactions are important and should

not be neglected. In fact, in analyzing our experimental data using

Equation 16, we do obtain results which suggest that the quasi-harmonic

lattice theory is not valid for such high temperatures.

The improved self-consistent phonon theory of Goldman, Horton,

and Kleinll for the Helmoltz free energy of the anharmonic crystal does

include phonon-phonon interactions and appears to be a valid theory for

argon even at temperatures near the triple point (T = 84 K).  In their

theory, anharmonic effects are included in two ways:  The change in the

potential with temperature, which is consistent with temperature de-

pendent changes in the frequency spectrum and lattice spacing (due to

3
anharmonicity) is considered in the self-consistent portion of their

theory. This results  in the so-called "effective potential".     The

phonons thus obtained are said to be renormalized and have infinite

lifetimes. Using this newly calculated "effective potential",   they  then
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calculate the third order terms which describe interactions between

renormalized phonons.     This  is the "improved"  part of their theory.

It is interesting to note that the self-consistent theory resembles
1)

the quasi-harmonic theory in that anharmonicity results in a tempera-

ture dependence in the crystal volume and frequency spectrum.  How-

ever, the quasi-harmonic theory does not consider that the potential

between any pair of atoms in the crystal lattice is altered by the

motions of all the neighboring atoms. In the self-consistent theory,

this effect is taken into account by.replacing the pair potential with

' the thermally averaged pair potential.  The self-consistent nature of

the theory becomes apparent at this point: The thermally averaged

potential is calculated using the phonon distribution function and

summing over all phonon modes.  However, the phonon modes are them-

selves determined by this thermally averaged potential. Such a cal-

culation must then be iterated until a self consistent set of results

is obtained.

The improved self-consistent theory of Goldman, Horton, and Kleinlo

has been used to calculate vapor pressure ratios of isotopes of Ne and

Ar by Klein, Blizard, and Goldman. Their calculations have been
9

carried out for both (13, 6) and (12, 6) potentials of the Lennard-

Jones type using nearest neighbor interactions.  We use their calculated

values of the Helmoltz free energies of Ar and Ar to make compari-
36       40

sons of our sublimation-pressure data and vapor-pressure ratios with

theory.

B.  Experimental Method

A detailed description of the apparatus and experimental tech-

nique used is given in Reference 1.  A schematic representation of the
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apparatus is shown in Figure 1.  There are, however, some important

modifications which were made for this experiment.

With the gas-sample container open to the apparatus, the pres-

sure of the gas sample at room temperature was about 180 Torr. Since

this is below the triple-point pressure of Ar, it was necessary to con-

dense the sample directly from the vapor to the solid beginning at about

76 K.  The volume of the solid formed was approximately 0.15 cm3 at 50 K.

After cooling to 30 K, volatile impurities were removed by repeated

fractional distillation.

The sample temperature was controlled manually with a 10-turn,

5000 - n potentiometer in series with a regulated power supply which

supplied current to the heater on the copper block.  By carefully

controlling the amount of He exchange gas, the heater current required

was minimized.  This was done to insure that no thermal gradients would

be set up along the copper block.  For temperatures above 55 K, the

sample temperature could in this manner be controlled during the course

of a single measurement to + 1 mK, as judged by the response of the

Bourdon gauge.  Temperature control below 55 K was within the limits

of the thermometer accuracy, i 3 mK.  To insure that thermal equilibrium

had been established such control was generally maintained for 1/2 h.

1.  Temperature Measurement

The sample temperature was measured using a Pt resistance ther-

mometer imbedded in the Cu block as shown in Figure 1.  The thermometer

was a four-lead Model 8164 Leeds and Northrup capsule-type and a

calibration of the thermometer was supplied by the National Bureau of

Standards.  A small amount of vacuum grease was used to enhance the

thermal contact between the thermometer and the Cu block. To further
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insure that the thermometer and Cu block were at the same temperature,

the thermometer leads were thermally anchored to the Cu block.

A single-potentiometer technique was used to measure thermometer

resistance and hence the sample temperature. Two of the leads were

connected to a DC constant current source of 2 mA.  The remaining two

leads were run to a Leeds and Northrup K-5 potentiometer to measure the

potential drop across the thermometer.  To account for thermal emfs along

the thermometer leads, all resistance measurements were repeated with

the direction of the thermometer current reversed.  Although the sensi-

tivity of the measurements using this technique is approximately 0.5 mK,

the estimated accuracy is + 3 mK.

This is due primarily to the time factor involved in making each

measurement.  That is, during the course of a single measurement, the

thermal emfs (as well as the sample temperature) can change slightly.

These effects combined with the uncertainties in the thermometer cali-

bration (1 1 mK) give the estimated accuracy of temperature measurement,

+ 3 mK.

2.  Pressure Measurement

The sublimation and vapor pressures of Ar extend over several36

orders of magnitude for the temperature range used in this experiment.

For this reason it was necessary to use two techniques covering two

pressure ranges to measure pressure.

For pressures above 1 Torr, a calibrated Bourdon gauge was used.

The particular instrument was a Texas Instruments Model 142 quartz spiral

Bourdon gauge.  A single Bourdon tube, which covered pressures from

0-1000 Torr, was sufficient for this experiment. For our Bourdon gauge,

a photocell detector is used to detect the deflection of the Bourdon
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tube by locating a beam of light reflected from a mirror attached to

the Bourdon Tube. A counter which divides the full scale deflection

into 300,000 counts is attached to the photocell detector.  For a
.T

Bourdon tube with a pressure range of 1000 Torr then, the corresponding

sensitivity of the gauge is about 3 microns.

A mercury manometer read with a Wild cathetometer was used to

calibrate the Bourdon gauge.  With the cathetometer, the mercury level

in the manometer could be measured to + 0.02 mm. Corrections were

applied to these readings to account for the capillary depression of

26
the mercury meniscus. Corrections were also made for the thermal

expansion of mercury (readings were corrected to the 0' C density of

mercury) and for the local deviation from the standard gravitational

2
acceleration (the standard value is g = 980.350 cm/sec , while at

Michigan State University g = 980.665 cm/sec2).  The correction for

the thermal expansion of mercury was the largest correction (< 0.5%)

but was nevertheless an accurate enough correction so as to not intro-

duce any new errors.  No errors were introduced by the gravitational

correction since it, too, is known to a high degree of precision.  The

correction for the depression of the mercury meniscus was a small

correction (5 0.06 Torr) but was also the most uncertain.  From the

tables in Reference 26 it was clear that we could expect as much as a

15% error in the meniscus correction. That is, an additional error

of + 0.01 Torr is introduced by the meniscus depression effect.  As

judged by our calibration curve for the Bourdon gauge, the accuracy of

our pressure measurements could be given as 1 0.03 Torr.  This accuracy

is consistent with the above mentioned uncertainty in the meniscus

correction combined with the errors associated with the cathetometer

readings.
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To measure pressures below 1 Torr, a Consolidated Vacuum Corpora-

tion Type GM-100-A McLeod gauge was used.  A liquid nitrogen cold trap

separated the McLeod gauge from the sample chamber and thus prevented

any mercury contamination of the sample.  Because of this cold trap,

however, it was necessary to correct the McLeod gauge readings for

mercury streaming. Mercury vapor will condense in the cold trap;27

therefore, there will be a flow of mercury vapor from the McLeod gauge

to the cold trap which will then result in a reduced pressure in the

McLeod gauge.  Data and equations given in Reference 27 were used to

make this correction, which was always less than 10% of the McLeod

gauge reading.

It was also necessary to correct for the effects of thermomolec-

ular flow.28,29  When the mean free path of molecules in a tube (con-

necting two chambers at different temperatures) is comparable to or

larger than the diameter of the tube, a pressure gradient is observed

along the length of the tube.  The pressure will be higher in the warmer

chamber.  As the mean free path becomes shorter, the pressure difference

decreases and eventually goes to zero.  This effect is most pronounced

at low temperatures and low pressures.  An empirical relation and

experimental data given in Reference 28 were used to make this correc-

tion.  At the lowest temperatures and pressures measured, this correc-

tion lowered the measured pressure by as much as a factor of 3.  At

temperatures near 50 K and pressures of 0.1-1.0 Torr, the correction

was less than 2% of the measured pressure.  The correction became

negligible at higher temperatures and pressures.
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3.  Gas Sample Analysis

The gas sample was purchased from the Mound Laboratory and pro-

vided with a mass-spectrometer analysis.  Amounts by mole fraction of

each constituent were given as:  Ar greater than 99.5%, N2 less than

0.4%, H2 and 02 each less than 0.1%; of the Ar, more than 99.9% was

Ar36.  Our own mass-spectrometer analysis, performed by the Chemistry

Department at Michigan State University upon completion of the experi-

ment, yielded by mole fraction the following impurity concentrations:

N2 less than 0.1%, 02 less than 0.02%, and H2 less than 0.0004%.

C.  Results of the Experiment

The experimental sublimation- and vapor-pressure and temperature

data are shown in Table 1 and plotted in Figure 2.  At the lower temp-

eratures, say below 35 K, the observed pressures begin to level off and

the scatter in the data increases.  The leveling off is due primarily

to the presence of those volatile impurities which could not be removed

from the sample.  Another limiting factor, and one which contributes

to the scatter in the data, is that these pressures were the lowest

which could be measured with our McLeod gauge.

In ·order to obtain a measure of the amount of scatter in the data

shown in Table 1, we used a truncated form of Equation 16:

in(PT1/2) = a/T t b, (17)

where the parameters a and b are the same as those defined in Equations

14 and 15, respectively.  We first fit the data by the method of least

squares to Equation   17   over two temperature ranges   in the solid.      The

calculated coefficients are a = -988.088, b = 20.2338 for the temperature

range 35.479 - 60.183 K, and a = -994.1123, b = 20.33541 for the

temperature range 60.326 - 83.760 K.  We used Equation 5 to represent
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TABLE 1

Experimental sublimation- and vapor-pressure and temperature data.

Temperature Pressure P-P |P-Pcalc|calc
T (K) P (Torr) (Torr)                 p

23.752 2.8 x 10-6
24.768 6.5 x 10-6
25.898 9.9 x 10-6
28.576 1.1 x 10-5
29.324 1.4 x 10-5 + 1.4 x 10-5 1.00
30.637 1.8 x 10-5 + 1.7 x 10-5 0.94
32.121 1.8 x 10-5 + 1.3 x 10-5 0.72
33.305 3.4 x 10-5 + 2.0 x 10-5 0.59
33.968 3.8, x 10-5 + 1.4 x 10-5 0.37
35.479 8.5 x 10-5 + 0.2 x 10-5 0.024
36.113 1.3 x 10-4 - 0.4 x 10-5 0.031
36.945 2.9 x 10-4 + 0.5 x 10-4 0.172
38.152 6.3 x 10-4 + 0.7 x 10-4 0.111
39.276 1.02x 10-3 - 0.14x 10-3 0.137
39.774 1.44x 10-3 - 0.14x 10-3 0.097
41.430 3.85x 10-3 - 0.33x 10-3 0.086
41.972 5.50x 10 - 0.15x 10-3 0.027-3

42.951 9.26x 10-3 - 0.29x 10-3 0.031
44.212 0.0172 - 0.0009 0.0523
44.493 0.0206 - 0.0002 0.0097
45.489 0.0327 - 0.0008 0.0245
46.933 0.0621 - 0.0022 0.0354
47.940 0.107 + 0.008 0.0748
48.962 0.157 + 0.006 0.0382
50.453 0.272 + 0.002 0.0074
51.009 0.339 + 0.007 0.0206
51.930 0.470 + 0.006 0.0128
52.937 0.670 + 0.010 0.0149
53.928 0.928 + 0.007 0.0075
54.956 1.31 + 0.03 0.0229
55.987 1.80 + 0.02 0.0111
57.005 2.40 0.00 0.0000
57.935 3.17 + 0.02 0.0063
58.889 4.08 - 0.04 0.0098
60.152 5.76 - 0.05 0.0087
60.183 5.80 - 0.04            0.0069
60.326 6.07 - 0.02 0.0033
61.118 7.47 - 0.02 0.0027
62.315 10.15 + 0.01 0.0010
62.904 11.71 - 0.01 0.0009
64.139 15.76 + 0.03 0.0019
64.887 18.70 0.00 0.0000
66.633 27.59 + 0.02 0.0007
66.956 29.54 - 0.01 0.0003
67.927 36.26 - 0.02 0.0006
68.902 44.47 + 0.16 0.0036
70.154 56.90 + 0.09 0.0016
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Table 1 (cont'd.)

Temperature Pressure P-P |P-Pcale|caic
T (K) P (Torr) (Torr)                 P

71.471 73.29 + 0.22 0.0030
72.356 86.07 - 0.02 0.00023
73.510 105.96 - 0.01 0.00009
74.681 130.30 +0.32 0.00246
75.557 150.62 - 0.16 0.00106
76.826 185.95 + 0.12 0.00065
78.167 230.12 + 0.10 0.00043
78.702 249.91 - 0.03 0.00012
79.612 286.81 - 0.30 0.00105
80.403 323.29 + 0.25 0.00077
80.885 346.06 - 0.64 0.00185
81.439 375.37 - 0.28 0.00075
81.440 375.46 - 0.24 0.00064
81.878 399.37 - 0.61 0.00153
82.324 426.06 + 0.05 0.00012
82.668 446.42 - 0.61 0.00137
83.241 484.02 + 0.08 0.00017
83.639 510.82 - 0.20 0.00039
83.760 519.62 + 0.13 0.00025
83.991 533.57 - 0.25 0.00047
84.045 537.13 0.00 0.00000
84.503 565.80 - 0.01 0.00002
85.047 601.60                 + 0.16 0.00027
85.492 632.02 + 0.13 0.00021
85.998 668.16 + 0.20 0.00030
86.482 704.22 + 0.25 0.00036
87.031 746.65 + 0.01 0.00001
87.244 763.73 0.00 0.00000
87.316 769.43 - 0.15 0.00019
87.375 774.06 - 0.33 0.00043
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the data in the liquid range 83.991 - 87.375 K with calculated para-

meters A = -806.7794 and B = 15.88561. The third and fourth columns of

Table 1 are based on these parameters applied to the appropriate tempera-

ture ranges.  Notice that the calculation of pressure, with parameters

a and b for the lowest temperature range, has been extended to 29.324 K

on Table 1.  This illustrates that the sublimation pressures begin to

level off at the lower temperatures. For the most part the deviations

of the actual pressures from the corresponding equations is what one

would expect with scatter of + 3 mK and + 0.03 Torr.

Figure 3 is a plot of Zn(PT ) versus 1/T for data ranging from
1/2

T = 68.902 K, P = 44.47 Torr to T = 83.639 K, P = 510.82 Torr.  The

straight line is the least squares fit, of the data shown, to Equation

17 with calculated parameters a = -992.9865 and b = 20.31851.  A

measure of the "goodness of fit" of Equation 17 to the data, is the

average fractional deviation |AP/P|ave E '(P    - P )/P 1 Forexp calc exp,ave·

the set of points in Figure 3, |AP/P|ave = 0.00087, which is too small

to be observed in the figure.

1.     Discussion of Equation   :16

Sublimation-pressure data can be used to determine several prop-

erties of Ar by comparison with theory.  We did this by fitting P(T)
36

data of Table 1 to the theoretically derived Equation 16.  Further dis-

cussion of this equation is now in order to make clear how this was done

and what it means.

The second term in Equation 16 expresses the effect of vacancy

formation on vapor pressure.  It can be written as exp(-gs/kBT) =

exp(s/kE)exp (-h/kBT), where  s  and  h are, respectively, the entropy  and

enthalpy of mono-vacancy formation.  This term is equal to the fractional
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36vacancy concentration.  We take the value of s/k  for Ar to be that
B

30
suggested by other workers   for normal argon, s/kB = 2.0, since no

value for the isotope is available.  A suitable value for the para-

31meter h/kB is then determined from measurements   which give the vacancy

concentration of normal argon at the triple-point as exp(-g /k T  ) <
s  B tr  -

0.13%.  This gives h/kB 2 724.57 K.  The vacancy formation term, as

a function of temperature, is at most then exp(-gs/kBT) =

exp(2) exp(-724.57/T).  This is the form used for our analysis; some

typical values are given in Table 2.  For temperatures near the triple

point, 80.403 - 83.760 K, one effect of including this vacancy correction

term is to decrease the parameter a of Equation 16 by 0.079%.  This

effect becomes smaller at lower temperatures and in particular, for the

temperature range 58.889 - 66.633 K, is only 0.005%.

A somewhat larger effect is found in the third term of Equation 16,

-P(v( - 8)/RT.  This term combines the effects of finite crystal volume

and gas imperfection.  Values for the molar volume, v , are obtained
C

32from Dobbs and Jones. The second virial coefficient, 8, is calcu-

lated according to Hirschfelder, Curtiss, and Byrd. Some representa-33

tive magnitudes of vc, 8, and -P(vc - 8)/RT are given in Table 2.  In

the temperature range 80.403 - 83.760 K, the inclusion of the finite

crystal volume-gas imperfection term increases the parameter a of

Equation 16 by 1.61%.  At the lower temperatures, 58.889 - 66.633 K,

the effect on a due to this term is reduced to 0.98%.

The 4th and 5th terms of Equation 16, -(3/40)(0D/T)2 and

(1/2240)(eD/T)4, respectively, are the leading terms of the infinite

series contained in Equation 13.  To estimate these terms we used for

the Debye temperature of Ar36, eD36 = 88.02 K.  This Debye temperature



Crystal Second Gas imperfection- Quantum-mechanical
Temperature Vacancy molar virial finite volume corrections                    +

correctiona,b volumec coefficientd correction
T(K) exp(-gs/kBT)          vc                -8            P(vc - 8)/RT   (3/40)

(eD/T)2
(1/2240)(e /T)4              (cm3/mole)  (cm3/mole)

58.889 3.4 x 10-5 23.59 451.37 5.3 x 10-4 0.168 2.2 x 10-3
g

62.904 7.4 x 10-5 23.73 398.14 1.3 x 10-3 0.147 1.7 x 10-3            m
0

68.902 2.0 x 10-4 23.96 335.30 3.7 x 10-3 0.122 1.2 x 10-3

73.510 3.9 x 10-4 24.15 297.41 7.4 x 10-3 0.108 9.2 x 10-4
g

78.702 7.4 x 10-4 24.36 262.79 0.0146 0.0938 7.0 x 10-4 m E
80.403 9.0 x 10-4 24.44 253.48 0.0179 0.0899 6.4 x 10-4 ZE.

N

83.639 1.3 x 10-3 24.57 235.77 0.0255 0.0831 5.5 x 10-4
0
:r

45
aReference 30

bReference 31

CReference 32
.gl

dReference 33

*



80.403 - 83.760 K, -(3/40)(eD/T)2 decreases a by 1.40% and (1/2240)(eD/T)4
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for Ar was calculated from that obtained by Morrison and co-workers36                                                                34

for ArN, 0DN = 83.5 K, assuming that eD varies inversely as the square

root of the mass.  Values for the fourth and fifth terms of Equation 16

at various temperatures are given in Table 2.  Their effects on the

parameter a of Equation 16 are as follows:  For the temperature range

' increases a by 0.027%.  For the temperature range 58.889 - 66.633 K,

-(3/40)(eD/T)2 decreases a by 1.75% and (1/2240)(eD/T)4 increases a by

0.064%.  For intermediate temperatures these effects change monotonically.

The next higher order term in the infinite series in Equation 13

can be approximated as (-1/180740)(eD/T)6.  For temperatures greater than

-458 K, its magnitude is less than 2% of the term in T  , and is therefore

negligible.

2.  Obtaining Thermodynamic Properties From the Data

We fit P(T) data of Table 1 to Equation 16 by the method of least

squares in the following manner:  Beginning at T = 58.889 K, P = 4.08

Torr, the first 10 points in order of increasing temperature and pres-

sure are fit to Equation 16.  Then the first point is dropped, the

11th point is added and another 10-point fit is made.  This procedure

is repeated until the last data point to be used, T = 83.991 K,

P = 533.57 Torr, is included in the fit. In all, 25 intervals were

fit to the data.  For each interval of fit, the average of the inverse

temperature, <T-1>, is calculated.  The temperature corresponding to

that average, <T-1>-1, is used to obtain the temperature dependence

of the parameters a and b for that interval; these values for each data

interval are shown in the first column of Table 3.
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TABLE 3

The static lattice energy, E , and geometric mean of the lattice vibra-

tional spectrum, w , calculaEed from our data using Equation 16, are
shown in the secon  and fourth columns, respectively.  The third column
shows the values of the heat of sublimation calculated from our data
using Equation 5.

Static Heat Geometric
lattice               of                mean

, Temperature energy sublimation frequency
T(K) -Eo(cal/mole) L(cal/mole) wg(1012 sec-1)

62.068 2022.05 1923.63 7.681
62.866 2018.64 1919.80 7.610
63.627 2014.79 1915.55 7.533
64.490 2011.89 1912.18 7.478
65.470 2009.94 1909.63 7.440
66.502 2007.77 1906.80 7.400
67.502 2006.00 1904.32 7.367
68.563 2003.08 1900.61 7.314
69.614 2003.05 1899.76 7.313
70.685 1999.69 1895.51 7.254
71.694 1998.21 1893.06 7.229
72.812 1995.18 1888.94 7.179
73.896 1991.60 1884.07 7.121
74.978 1990.00 1881.15 7.095
76.014 1988.55 1878.32 7.072
76.966 1987.40 1875.66 7.054
77.891 1984.36 1871.11 7.008
78.703 1981.45 1866.66 6.965
79.438 1981.45 1865.20 6.964
80.131 1977.64 1860.35 6.909
80.726 1975.36 1857.26 6.876
81.237 1976.33 1857.33 6.890
81.735 1975.75 1856.15 6.882
82.153 1974.80 1854.48 6.869
82.513 1970.31 1849.12 6.805
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In the manner just described we obtain, as functions of tempera-

ture, the static lattice energy, E  = a R, and the geometric mean fre-

quency, w  = [ (21T/m)kB1/311/2 exp(b/3).  The first two columns of

Table 3 show the values our analysis gives for T and E , respectively.

Values obtained for w are shown in the last column of Table 3.g

Sublimation-pressure data can also be used to obtain the tempera-

ture dependence of the heat of sublimation L.  To do this, the same

P(T) data used to obtain E  and w  are fit to Equation 5 over succes-
0g

sive temperature intervals in the manner described above.  Values for

L resulting from this analysis are shown in the third column of Table 3.

The lattice vibrational energy. E can now be calculated
'  vib'

according to the thermodynamic relation,

L = Ug - Uc + P(vg - vc) · (18)

In this equation U  and U  are, respectively, the internal energies
g C

of the gas and crystal, and v  and v  are the molar volumes discussed
g C

previously.  Now Uc can be expressed as, U  =E +E which leadsc    o    vib'

to:

Evib = -Eo -L+ P(vg - vc) +U g. (19)

To order of the second virial coefficient, Equation 19 can be

rewritten as:

Evib = -Eo -L- P(vc -8) + (5/2)RT - (RT2/v )(dE/dT)
. (20)

Values for 8 are the same as those used in the calculations of E  and0

L.  The results of these calculations for Evib are shown in the second

column of Table 4.

D.  Discussion

In Table 3 the·static lattice energy, Eo(T), derived from our

data, appears as an increasing function of temperature.  Qualitatively,
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TABLE 4

Lattice vibrational energies calculated from Equation 20 are shown in
the second column.  Theoretically predicted values from Equation 22
are shown in the third column.

Temperature Lattice Vibrational Energy
(experiment) (Debye theory)

T(K) Evib(cal/mole) Evib(cal/mole)

62.068 406.46 406.37
62.866 410.78 410.66
63.627 414.89 414.81
64.490 419.56 419.51
65.470 424.91 424.86
66.502 430.54 430.48
67.502 436.05 435.94
68.563 441.89 441.78
69.614 447.68 447.58
70.685 453.59                        453.50
71.694 459.24 459.07
72.812 465.46 465.24
73.896 471.65 471.26
74.978 477.80 477.30
76.014 483.72 483.09
76.966 489.34 488.40
77.891 494.76 493.57
78.703 499.68 498.10
79.438 504.13 502.21
80.131 507.95 506.09
80.726 511.10 509.44
81.237 513.98 512.33
81.735 516.48 515.14
82.153 518.77 517.50
82.513 520.98 519.53
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one expects this behavior since the crystal expands with increasing

temperature.  However, a quantitative comparison between the Eo(T)

36
values for Ar  , in Table 3, and the theoretical E (T) presents

numerous difficulties.  In principle one could calculate E (T), in

the effective two-body approximation, from the Lennard-Jones 6-12

potential and lattice parameter data, a (T), for Ar36.  However,
0

36                                                                     I
ao(T) for Ar   has apparently not yet been determined so that one is

forced to use a (T) obtained from measurements on ArN.  If this is done0

and a lattice sum calculation for an fcc lattice taken over all

neighbors is made, the general result for E (T) is given, for example

in Kittel as35

12
Eo(T) = 2€[12.131(a,/F/ao(T))  - 14.454(a,/F/ao(T))61 . (21)

Using lattice parameter data as given by Dobbs and Jones32 and energy

and distance potential parameters, respectively  as E/kB =  119.4  K  and
0

c = 3.40 A, obtained by Zucker,36 we find the resulting Eo(T) to be

higher than our experimental values by about 30 cal/mole.  That is, our

data show that the Ar36 solid is more tightly bound than predicted by

this theory.

There are two principal sources of this disagreement.  The first

is simply that a (T) for Ar36 is different from a (T) for ArN.  However,
0

since a (T) for Ar36 is expected to be larger than that for ArN,

making this correction would still further increase the theoretical

Eo(T).  As will be seen later though, estimates of this increase are

small, less than 2 cal/mole.  We believe that the main source of dis-

agreement between theory and experiment is due to the effects of

anharmonicity on the interatomic potential and therefore also on the

lattice dynamics for the system.
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It is interesting to note that if one mistakenly excludes the

terms, -(3/40)(OD/T)2 and (1/2240)(OD/T)4, from Equation 16 and makes

the empirical fit to the data with the equation truncated in this way,

then the resultant values of E (T) coincidentally agree remarkably

well with the effective two-body theory. It is also interesting to

note that excluding the term -P(vc - 8)/RT from Equation 16 signifi-

cantly alters the behavior of E (T).  Instead of increasing monotoni-

cally with T, E (T) reaches a maximum at T = 75 K and thereafter is a

decreasing function of T.

1.  Behavior of Lattice Vibrational Energy

The lattice vibrational energy, in the Debye theory, is given

by23:

E    = (9/8)R0D + 3RT D(0D/T) , (22)vib

where

3 KD(y) = (3/y ) j dx x3 (ex - 1Il.
0

36
Values for Evib' based on this theory and using eD   = 88.02 K, are

shown in the third column of Table 4.  The agreement with the experi-

mental results in the second column is quite good.

2.  Comparing Properties of Ar36 and ArN

We compared sublimation-pressure data shown in Table 1 for Ar
36

with that given in Reference 1 for ArN and found the sublimation pres-

sure of Ar36 to be consistently higher than that of ArN.  This

difference in sublimation pressure is small, ranging from about 1.4%

at T = 62 K to approximately 0.6% at T = 83 K.

36                N
In Table 5 we compare P(T) data of Ar with that of Ar in the

form p36 _ PN.  For temperatures in the range 62-75 K we used the PN

data given in Reference 1. In the temperature range 75-84 K we used
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TABLE 5

Comparison of sublimation pressures of Ar and ArN.  Data for ArN36

in the temperature range 62.315-74.681 K are taken from Reference 1.
For the temperature range 75.557-84.503 K, the unpublished data on
ArN of Christen and Opsa137 are used.

Temperature Pressure Present work Data of
difference Reference 4

T(K) p36-PN (Torr) 102(p36_PN)/PN 102(p36_PN)/PN

62.315 0.14 1.399 1.466
62.904 0.17 1.473 1.434
64.139 0.22 1.416 1.373
64.887 0.23 1.245 1.323
66.633 0.35 1.285 1.255
66.956 0.33 1.130 1.240
67.927 0.37 1.031 1.207
68.902 0.64 1.460 1.167
70.154 0.71 1.264 1.121
71.471 1.01 1.397 1.078
72.356 0.91 1.069 1.051
73.510 1.20 1.145 1.020
74.681 1.46 1.133 0.983
75.557 1.12 0.749 0.960
76.826 1.69 0.917 0.926
78.167 2.04 0.894 0.895
78.702 2.12 0.856 0.880
79.612 2.26 0.794 0.869
80.403 3.19 0.997 0.840
80.885 2.54 0.739 0.833
81.439 3.19 0.857 0.823
81.440 3.22 0.865 0.823
81.878 3.08 0.777 0.811
82.324 3.84 0.909 0.801
82.668 3.35 0.756 0.803
83.241 4.26 0.888 0.787
83.639 4.15 0.819 0.803
83.760 4.58 0.889 0.736
83.991 3.92 0.740 0.651
84.045 4.18 0.784 0.649
84.503 4.34 0.773 0.638
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newer, improved, data taken independently   on 'the same apparatus   by

Christen and Opsal. It was found by these workers, in a reexamina-37

tion of the ArN data of Reference 1, that in the range of 75-84 K the

earlier data were about 0.3% (i.e. 0.5 to 1 Torr) too high due to

uncontrolled temperature gradients in the Cu block.  These temperature

gradients were due to excessive heat input into the stainless-steel

inlet tube.  In the work of Christen and Opsal on ArN and in the

present experiment, these temperature gradients and their effects were

eliminated.  Table 5 shows that p36 is still consistently higher than

pN; the improved data increase the difference at 83 K to 0.89%.

In an attempt to quantitatively explain this difference we fit

the ArN data of Reference 1 to Equation 16 in the same manner as des-

cribed for Ar36.  We obtained values for the geometric mean frequency,

w , of ArN which when multiplied by the ratio of the square roots of the

masses, 440/36, averaged 0.5% higher than those shown  in the fourth

column of Table 3 for Ar36.  The significance of this small difference

will be discussed below.

The values obtained for the static lattice energies of Ar and36

ArN are very close and one cannot say with any certainty just how

much they do differ.  Part of the difficulty is that the ArN data

gave a comparatively irregular E (T).  We did, however, calculate the

average difference (E036 - EON)ave' with the result (E036 - E N)    =o  ave

1.72 cal/mole.  A rough approximation of this difference may be obtained

from theory in the following way:  The lattice sum calculations men-

tioned earlier predict for the E (T) curve (of ArN) an average slope,

BEQ/AT = 2.10 cal/mole K, in the temperature range 62.068-82.315 K.

For this same temperature range, the Debye theory gives the average
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slope for the E (T) curve (of ArN), AE   /AT = 5.57 cal/mole K.vib vib

Using these values then, an estimate of the dependence of static

lattice energy on vibrational energy is found to be, AE /BE = 0.378.
o   vib

The Debye theory further predicts the average difference in the vibra-

tional energies of Ar36 and ArN for this temperature range to be,

36     40
(E    -E ) = 3.15 cal/mole.  Based on this discussion, we expectvib Vib ave

then an average difference in static lattice energies, (E036 - E 40)   =o   ave

1.19 cal/mole.  We believe that this compares favorably with the ob-

served value, considering all the approximations we have made.

36       NAlthough our analysis of Ar and Ar  data does not yield a

conclusive explanation of the observed difference in sublimation

pressure, we do believe it to be consistent with the following

explanation:  The zero-point vibrational energy, Ez, of a solid in

the harmonic approximation is simply a sum over frequencies,
3N

36       N
EZ = (1/2) I Fitoi' Since the interatomic potentials of Ar  and Ar

i=1

are the same, the effective force constants which determine the w  arei

the same.  Thus, the zero-point vibrational energy of Ar should be36

higher than that of ArN by the mass dependent factor, 440/36.  This

36means that Ar will be more anharmonic and therefore expand more with

increasing temperature.  That is, a higher zero-point energy implies

a higher static lattice energy which in turn explains the higher sub-

limation pressure.

Of course, a point is reached where effects of anharmonicity in

the interatomic potential  become important.  Qualitatively, from the

shape of the interatomic potential, one expects the effective force

constants, which determine the frequency spectrum, to decrease as

anharmonicity increases. Our   analysis   re fle cts   this   in   two ways. The
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geometric mean frequency, w , of Ar is a decreasing function of
36

g

temperature as shown in Table 3.  Secondly, the geometric mean of Ar36

averages about 0.5% less than 440/36 times that of ArN, that is

I (wN/40/36 - w36)/w ] = 0.5%.  This also is consistent with Equa-
36

g  gave
tion 16.  For example at T = 72 K, the observed difference in sublima-

tion pressure, (P36 - P40)/P40 = 1%.  Assuming the static lattice

energies to differ by E36 - EN = 1.2 cal/mole, and assuming the dif-

ference in Debye temperatures, 036 - e  - 4.52 K, the difference in

geometric means must, according to Equation 16, compare as:

(440/36 w  - w36) /w36 = 0.3%.
3.      Comparison  with   the   Work of Others

We compared our Ar data with that of Lee, Fuks, and Bigeleisen,
36                                               4

(LFB) and found our pressures to be lower than theirs for temperatures

below 73.5 K and higher for temperatures above 73.5 K.  These dif-

ferences range from about -0.6 Torr at 63 K to + 2.2 Torr at 83 K.

However, LFB's temperature measurements are based on the ArN vapor-

pressure data of Flubacher, Leadbetter, and Morrison. We therefore34

compared ArN data from Table 5 with that of Flubacher, Leadbetter,

and Morrison and found the differences to be similar to those des-

cribed above for Ar36.  We have found no explanations for these

differences but have been able to conclude that the measurements made

on ArN and Ar in our laboratory are consistent with one another.
36

To make a comparison of our sublimation-pressure data with an

anharmonic crystal theory, we used Equation 12 and the Helmoltz free

energy as calculated with a (13,6) potential by Klein and co-

workers.9,38  Our experimental pressures were higher than those

predicted by Equation 12 throughout the temperature range 60-80 K.
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' These differences ranged from 3% at 60 K to 1.6% at 80 K.

In order to compare our vapor-pressure ratios with theory and

other experiments, we made a least squares fit of the values shown in

I Table 5 to the equation:

Ap/PN = c/T2 + d/T
, (23)

where AP = p36 _ PN.  Equation 23 is an approximate form of

Bigeleisen's expression for the natural-logarithm isotope separa-
39

tion factor, a, given by £na = [1 - P40(v  - 8)/RT] in(p36/p40).  The
C

calculated coefficients are c = 57.87 and d = -0.014. Using these

values for c and d in Equation 23 we find that our vapor-pressure

ratios are about 4% higher than LFB's in the temperature range

62-83 K. In the fourth column of Table 5, we have included LFB's

vapor-pressure ratios which have been interpolated to our temperatures.

We also calculated Ina and compared our results with. the

theoretical predictions of Klein et al., as given on Figure 4 of
9

Reference 9. In comparison with theirs, assuming a (13,6) potential,

our values are lower by less than 1% at 60 K, essentially equal at

65 K, and about 3% higher at 80 K.



III. THE THEORETICAL CALCULATION OF
KAPITZA RESISTANCE

i A.  The Model

The model we propose begins as follows:  The copper has a thin de-

formed layer21 (i.e., perhaps a region of high dislocation density40,41)

beneath the surface, which will absorb the evanescent waves generated

by a large fraction of the phonons incident from the liquid helium.

These are phonons which normally, in the absence of such an absorbing

layer, would be totally reflected.  For the Cu-He4 system under con-

sideration this corresponds to phonons incident at angles greater than

-60 (i.e., the critical angle of reflection associated with transverse

waves in the solid.)  Since energy will be therefore dissipated in the

deformed layer, there will naturally arise the question:  What happens

to the dissipated energy?  While we cannot answer this completely, we

can, however, make a plausible argument.  If this energy goes into

phonon modes, then the energy may be assumed, for the most part, to

remain in the solid.  That is, since the probability of reflection from

the solid to liquid interface if quite high (2 0.99), the scattering of

phonons back into the liquid helium can be neglected.

As part of our model we consider the density of helium near the

Cu-He4 interface to increase as the copper surface is approached.  In

order to calculate this density profile as a function of distance from

the interface, we proceed in the manner of Challis et al· We assume15

' that the van der Waals force between a helium atom and the copper

36
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substrate varies as d-4, where d is the distance from the substrate.

The potential energy of a single helium atom can then be written as

0(d) = -ad-3.  For the constant a we take the value originally given

by Schiff,42 (which was used in Reference 15) a = 5.3 x 10-37       3erg cm. ,

Other estimates of a, for metals, have been made by Sabisky and

Anderson using the Lifshitz theory of the van der Waals force.  For43

a metal with a plasma frequency, w  = 10 eV, (for Cu, w  = 10 eV) they

obtain a = 2.14 x 10-37 erg cm3 for d 1 10  .  However, for distances

0
as great as d = 20 A, the change in a is not more than 1%.  The poten-

tial 0(d) = -ad-3 can therefore be used with a constant, since in our

calculations d never exceeds 15  .  At first it might appear that the

large difference in the two values of the potential parameter might

be important.  As will be seen later, however, the effect on the density

profile, with respect to our calculations, is not so important.  Treat-

ing the helium as a continuum, we associate with a potential gradient,

20, a corresponding pressure gradient, FP; for which

(p/m)90 =-YP . (24)

In Equation 24, p is the density of the helium as a function of dis-

tance from the copper substrate and m is the mass of a helium atom.

Equation 24 is equivalent to the integral equation
P(d)

(a/m)d-3 = J dp/p(P) . (25)
p(oo)

In order to solve Equation 25 for P(d) and hence p(d), we use experi-

mental data which give liquid and solid helium densities as a
44-47

function of pressure extrapolated to 0 K.  Our calculated density

profile, using a = 5.3 x 10-37 erg cm3, has a discontinuity in p at

0
d=8 A which corresponds to the liquid-solid transition.  For the

potential parameter, a = 2.14 x 10-37 erg cm3, the liquid-solid
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0
transition occurs at d=6 A. Since the zero-point motion of the atoms

is so large for helium, it is unlikely that the transition will be so

well defined.  In order to account for this and at the same time to

consider that the potential parameter a may be too large, we have

smoothed out the calculated density profile.  The smoothed profile

which we then use has the analytic form

p(d) = p  (1 + a/xb) , (26)He

where a = 9.95, b = 1.79, and p is density of bulk liquid helium.He

The density profile described by Equation 26 gives a value for p(d)
0

corresponding to the density of solid helium at d =7 A; that is
0

p(7 A) = 0.189 gm/cm3.

We should mention at this point that in our calculations we

consider the effects of changing the density profile in a number of

ways.  Our first approach is to consider the density as a constant for

0
distances, d, within 7 A of the copper substrate. In this way we first

see the effects of including transverse waves in the dense helium

region.  Next we consider cases in which the density attains a higher
0

value, becoming constant at distances of 6, 5, and 4 A from the sub-

strate.  Finally we consider the effects of actually changing the shape

of the profile in the region where the density is increasing (for

0
example; 7<d<1 5 A).  We should like to point out now that the latter

- I

has only a slight effect on our calculated RK values.

It is perhaps appropriate at this point to describe a portion of

the calculation. In order to calculate the energy flux associated with

the propagation of waves through a medium with a continuously varying

density, we subdivide that medium into thin layers.  The density at

the midpoint of each layer is equal to the real density at that point
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in the medium.  We make the layers thin enough so that none ever

48satisfies the 1/4 wavelength condition for optimum transmission.

B.  Theory

We first consider the propagation of waves through a system of

solid and liquid layers. In order to establish the conventions used

in our calculations, we present a brief description of the elastic

theory of solids and liquids.  More mathematical details of the theory

are given in Appendices A, B and C.

1.  Elastic and Viscoelastic Materials

For an isotropic, elastic, the stress-strain relationssolid48

can be expressed in the simple form

Tij = U[@Si/3xj) + (3Sj/axi)] + X6ij(3Sk/3xk) (27)

In Equation 27. T.. is the stress tensor, A and U are the Lamd parameters,
1J

Si is the displacement field, (1/2)[(3Si/3x ) + (3Sj/Bxi)] is the strain

tensor, and 6.. is the unit tensor.  Summation is implied over repeated
1J

indices.  The equations of motion for the system are given by

P(32Si/at2) = 3Tij/3xj , (28)

where p is the density of the material.  Because isotropy is assumed, a

solution of Equation 28 can be decomposed into two fields; a curl-free

field plus a divergence-free field.  Therefore, we can choose to work
+

with a velocity field,  v (with cartesian components defined by vi = asiht)

which can be obtained from a scalar potential, 0, and a vector potential,
+
$.

These potentials satisfy wave equations

P(320/at2) = (A + 20)920 , (29)

0(32*/3t2) = uv2* , (30)

which have plane-wave solutions.  For waves propagating in the xz-plane
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then, these potentials are given explicitly by:
»+ ++ +

0 = [A exp(ik·r) + B exp(-ik·r)]exp(-iwt) and 0 = (0,0,0) where
++ ++

4 = [C exp(iK·r) + D exp(-ix·r)]exp(-iwt).  The corresponding total

+  +   +         +                 +
velocity field is given by, v=v£ + vt, where v£ = Ft, vt =Y x 0,

and the subscripts 2 and t refer to longitudinal and transverse waves,

respectively.

For the case of a non-viscous fluid, Equations 27, 28 and 29 apply

49with the shear modulus, u, set equal to zero.  When viscosity is present

the shear modulus is pure imaginary, u = -iwn and Equations 27, 28, 29

and 30 are used. n is the coefficient of viscosity of the fluid.

49Finally when the material is a visco-elastic solid, the elastic con-

stants A and v are replaced by A - iw[E-(2/3)n] and U-iwn, respectively,

where n and & are coefficients of viscosity.  Equations 27, 28, 29 and

30 are used for this case also.

The cases for which the elastic constants are complex result in

plane waves which are attenuated, that is the wave vectors are complex.

We therefore consider the effects of phonon attenuation in our calcula-

tions by using complex wave vectors in the absorbing material.  For

example, for a longitudinal wave vector, k, we then have

k  =  (w/c£)(1  + ivz) , (31)

where V£ and c£ are, respectively, the loss factor and velocity for longi-

tudinal waves.  Similarly, for a transverse wave vector, K, we have

K = (w/ct)(1 + ivt) , (32)

where Vt and ct are, respectively, the loss factor and velocity for

transverse waves.  At this point we should mention that since the com-

plex elastic constants are restricted to lie in the 4th quadrant of the

49complex plane,   the loss factors can only have values between 0 and 1

(i.e., 0 1 Vt,t 1 1).
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Restricting ourselves, once again, to waves propagating in the

xz-plane, we consider the boundary conditions49 (based on Equation 28)

which are appropriate to the cases encountered in our calculations.

For a non-viscous liquid-liquid interface, the conditions are that

the normal components of the velocity field and stress tensor be con-

tinuous.  Since we will always be dealing with plane boundaries in the

xy-plane, this requires that T T and v be continuous. ContinuityXZ' ZZ'      Z

of T is trivially satisfied since p=O o n both sides of the inter-XZ

face.  For a liquid-solid interface, we then have the same conditions

(continuity of Txz' Tzz' and vz with T   = 0), however, all three mustXZ

be used, since there are now three unknown wave amplitudes to determine.

At a solid-solid interface, we must have continuity of Txz, Tzz' vx, and

v , and there are (in this case) four unknown wave amplitudes to solve

for.

In Figure 4, we have a diagram of a system of solid and liquid

layers which is typical of those used in our calculations.  The labeling

of the x and z axes indicates the positive directions along those axes.

The boundary of the semi-infinite solid is at z = z0 E 0 and the semi-

infinite liquid has its boundary at z = zn.  In between the semi-

infinite solid and semi-infinite liquid is a system of n layers, some

liquid and some solid.  The subscripted variables, zi, along the bottom

of the figure, indicate the values of z which bound each layer.  Also

shown are the resulting waves which propagate through the layers when

a wave is incident from the liquid at z = zn.  The solid layers support

both longitudinal and transverse waves (indicated by ki and xi, respec-

tively), while in the liquid layers, there are only longitudinal waves

(indicated by ki).  The angles shown from the normal (ei and Yi)
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correspond to real angles only when the corresponding wave vectors are

real (no attenuation).  When attenuation is present, the real angles

have to be determined from the real parts of the wave vectors.  The

dashed line in the middle of the figure along the z-axis is used to

imply the presence of the n-2 layers not shown.

To calculate the propagation of energy through the system of

layers shown in Figure 4, we employ the method given in Reference 48.

For the solid layers we relate the stress and velocity components of

the mth layer to those in the (m-1)st layer by applying the boundary

conditions appropriate at solid-solid interfaces. Since there are some

differences between our results and those given in Reference 48, (most

likely misprints) we show our results in Appendix C of this thesis.

For the liquid layers,  we  use the concept 'of the input impedance  of  a

layer as discussed in Reference 48.  Results of these calculations are

also shown in Appendix C.  For the entire system of solid and liquid

layers, we then calculate the transmitted wave amplitudes in the solid

at z=0  and the reflected wave amplitude in the liquid at z= zn'

for unit amplitude of the incident wave.  Knowing these amplitudes we

then calculate the energy transmission coefficient, TR, as a function

of frequency, w, and angle of incidence, 0 E en+1.  From Equations 27

and 28, it follows that the cartesian components of the energy flux,
+
P, at any point in the medium are given by 49

Pi = (1/2) Re(-T  v*) , (33)ij j

and therefore the energy transmission coefficient, TR, is given by

TR = [Re(-Txzv*) + Re(-Tzzv )]/WOn+1Re(kz)n+1 ' (34)

Our reason for calculating TR at both ends of the system of layers is

to provide a check on our calculations.  That is, since energy must be
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conserved, in the absence of attenuation, TR must be the same at both

ends of the layered system. In our subsequent calculations,.conserva-

tion of energy was always satisfied where required.

2.  The Heat Flux and Kapitza Resistance

To calculate the Kapitza resistance, we proceed along the lines

12of the acoustic mismatch theories of Khalatnikov and of Mazo and

14
Onsager.    We quantize the incident energy flux, pz(inc), according

to PZ(inc) = (hw/Q)c   cose.  0 is the volume is the sound velocityHe , CHe

in bulk liquid helium, and w is the angular frequency of the incident

wave. The transmitted  flux,   Pz,  is then given by Pz = (6/n)TR (w,0)cHecose.

Assuming a Debye density of states for the incident phonons, we then

calculate the total heat flux, W(T), as a function of temperature, T,

oo                                  /2
W(T) = (h/4A2CH2) f dw w3 n(w,T) f de TR(w, e) sine cose  .  (35)

0                        0

In Equation 35 n(w,T) is the Bose-Einstein distribution function,

n(w,T) = [exp(Aw/kBT) - 1]-1, kB is Boltzmann's constant, and h is

Planck's constant divided by 2w.  The Kapitza resistance is defined by

R -1 = dW/dT, and using Equation 35 we then obtain

-               #/2

RK-1 = (kB/A)4(fi/47r2c 2)T3 f dx x4ex(ex - 1)-2 J de TR(k Tx/h,0)sinecose.He    '
0 0

(36)

Equation 36 is the expression we use to calculate R <.  In the next

section we describe the numerical method used to obtain values for R 

as a function of temperature.

C.  Numerical Method

In  order to calculate R  using Equation  36,  we must evaluate  the

double integral
CO

I(T) = f dx x4 (ex - 1)-2 g(kBTx/A) . (37)

0
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where
IT

g(kBTx/h) = f de TR(kBTx/h,e) sine cose . (38)
0

Remembering that w = kBTx/A, we first form an array of points, g(wi),

over a range of w values suitable to the temperature range for which

Rk is to be evaluated.  To obtain the points in this array, we use an

adaptive numerical integration scheme which varies the increment size,

80, according to the amount of curvature in the integrand.  We then

evaluate g(kBTx/h) for arbitrary values of x and T by linearly inter-

polating between the appropriate points in the array g(wi).  The same

integration scheme is then employed to perform the integral over x in

Equation 37 and thereby obtain I(T).

For temperatures T f 1.0 K, we expect better than 1% accuracy in

our integrations.  Above 1.0 K, the accuracy will decrease to perhaps

as much as 5% at T = 2.0 K.

The computer program used to perform these integrations is shown

in Appendix D.

D.  Discussion

1.  Effects Due to Phonon Attenuation

In Table 6 we show results of our initial calculations in which

only the effects of phonon attenuation in the copper are included,

i.e., impedance matching is omitted.  A more complete tabulation of

these results is given in Table Fl.  Only a single attenuation variable,

V, is shown, since we have taken the loss factors, V£ and Vt, [defined

in Equations 31 and 32] as equal.  That is, V E V£ = Vt.

This is a reasonable choice for the following reason: In making

these calculations we found that for a given transverse wave attenuation,

Vt, the calculated RK values were relatively insensitive to changes in
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TABLE 6

Kapitza resistance, R ' in the form R T3, as a function of phonon at-
tenuation in the copper.

3Loss Factor Kapitza Resistance x (Temperature)

RKT3
v                           (cm2 K4/W)

0.0 1270

0.001 -540

0.002 501.9

0.01 401.8

0.02 334.3

0.06 201.4

0.10 145.0

0.12 127.2

0.15 107.6

0.20 85.8

0.25 71.5

0.30 61.4

0.40 48.1

0.50 39.6

0.70 29.7

1.0 22.0
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the longitudinal wave attenuation, V£.  Also, the relationship be-

50
tween V£ and Vt is not yet well understood.  Acoustic experiments

 
on water-stainless steel inter faces do, however,   show  V£  and  Vt   to  be

the same order of magnitude (actually, Vt = 2V£) for ultrasonic fre-

quencies up to about 100 MHz.

The loss factor, V, is further assumed to be independent of

frequency and temperature.  Under these assumptions, still neglecting

impedance matching, RKT3 is independent of temperature.  Effects of

frequency dependence in V on R  are discussed in Reference 17.  For

the density and sound velocities in copper we use; Pcu = 8.93 gm/cm3,

c£ = 5.0 x 105 cm/sec, and ct = 2.3 x 105 cm/sec.  In the bulk liquid

4helium we use;  PHe = 0.145 gm/cm3 and cHe = 2.38 x 10  cm/sec.  We

can use the results shown on Table 6 to determine the range of values

of V which should be used for our subsequent calculations. The

smallest values of V that give R C values which agree with Kapitza

resistance experiments at low temperatures, lie in the range 0.10-0.12.

51Anderson, Connolly, and Wheatley measured Kapitza resistances and

obtained:  R  3 = 134 cm K4/W at T = 0.06 K and R  3 = 127 cm K4/W

52at T = 0.08 K.  However, from R  values measured by Zinov'eva   we

find; R T3 0 60 cm2K4/W at T = 0.08 K and from Table 6 this corresponds

to a loss factor V = 0.30.  At higher temperatures, somewhat higher

attenuations are required to fit this theory to experiment.  For our

subsequent calculations then, we use values of V in the range

V = 0.12-0.50.

2.  Effects of Including Impedance Matching

We shall now discuss the results when the effects of impedance

matching are included in the theory.  In Figures 5 and 6 we show the
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Figure 5: Calculated energy transmission coefficient, TR, at three
frequencies as a function of angle of incidence.  The fre-
quencies are expressed in terms of temperatures defined by
W = 3.7 x 1011T (sec-1).  Both longitudinal and transverse
waves are included in the first, most dense He layer.
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Figure 6:  TR calculated at three frequencies.  Only longitudinal waves
are included in the first He layer.
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calculated energy transmission coefficient, TR, at three frequencies.

The frequencies are expressed in terms of temperatures for which

w3 n(w,T) is a maximum; i.e., w = 3.7 x 1011T (sec-1).  The axis cor-

responding to the angle of incidence is expressed in radians and ranges

from 0.0-1.6 rad.  The point where all the curves in Figure 5 tend

toward zero is #/2 rad = 900.  We have made this axis non-linear to

bring out the structure in TR at small angles of incidence; that is,

the axis is expanded for small angles.  For the density profile we

use Equation 26 and the parameters, a and b, as given below Equation 26.

It is convenient to introduce a variable, F, which defines the maximum

density, pl, of the helium by:  Fl =F p  .  When the distance fromHe

the copper surface is such that the helium density is equal to Pl,

the density is taken to be constant from that point to the surface.

For the calculated curves in Figures 5 and 6, F = 1.3 and the corre-

0
sponding distance over which the density is constant is 7 A.

4
Since F = 1.3 corresponds to the lowest density for which He  is

a solid, the effects of including transverse waves in the dense helium

region should be considered for values of F 1 1.3.  For calculating

the curves shown in Figure 5 then, transverse waves are included in

the solid helium layer.  For comparison, the curves shown in Figure 6

are calculated with the solid helium layer treated as a liquid in the

sense that transverse waves are excluded.

The sound velocity in liquid helium, a linear function of density,

is taken from the experimental work of Abraham and co-workers. 53  In

the solid helium we use the sound velocity, c£, for longitudinal waves,

also a linear function of density, as measured by Vignos and Fairbank. 54
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We then choose c  = (1/2)c£ as a suitable average for the sound

velocity of transverse waves.

To illustrate more clearly the structure of the transmission

coefficient, TR, as a function of angle of incidence, we show in

Figure 7 TR calculated for a small attenuation, V = 0.01.  The other

parameters used for calculating the curves shown in Figure 7 are the

same as those used for Figure 6 (i.e., only longitudinal waves are

included in the first, most dense He layer).  For the lowest frequency

shown (corresponding to T = 0.1 K) the TR curve in Figure 7 is almost

identical to the curve one would obtain if the impedance matching effects

were neglected.  That is, the impedance matching region has very little

effect at this lowest frequency, since the wavelength in bulk He cor-

0
responding to T = 0.1 K (A = 400 A) is much longer than the thickness

0
of the impedance matching region (d = 15 A).

The first dip in this curve corresponds to the critical angle

of incidence associated with longitudinal waves in the Cu;

ecrt = sin-1 (cHe/cz) = 0.0475 rad.  When no absorption is present,

longitudinal waves in the Cu, for angles of incidence beyond this

critical angle, travel along the interface and are exponentially at-

tenuated inward from the interface. This attenuation should not be

confused with the attenuation resulting from absorption.  When the

attenuation of a wave is along the wavefront (that is, perpendicular to

the direction of propagation) there is no absorption of energy.  Energy

absorption in a wave is present only when the wave has some attenuation

along its direction of propagation.  Waves which are attenuated

laterally are called evanescent waves and in the absence of absorption

carry energy only along the interface.  That is, evanescent waves will
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Figure 7:  TR calculated at three frequencies.  Only longitudinal waves
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give no contribution to the transmission of energy from the liquid to

the solid.  This is clear since kz [= (w/c£)cose£] becomes pure

imaginary when sine£ [= (c£/cHe)sine] is greater than 1 and the energy

flux through the interface is proportional to the real part of kz.  In-

cluding absorption in the solid (as we have done in Equations 31 and 32)

results in kz values which always have a real part; i.e., energy is

transmitted through the interface for all angles of incidence.

The second dip in this curve corresponds to the critical angle of

incidence associated with transverse waves in the Cu;

ecrt = sin-1(cHe/ct) = 0.1035 rad.  The transverse waves are then also

evanescent for angles of incidence greater than 0 .  Just beyond thecrt

transverse critical angle is the Rayleigh peak at an angle of incidence

called the Rayleigh angle; 0  = 0.110 for this Cu-He4 system.  For the

small attenuation used in Figure 7 the peak is quite narrow and well

defined.  It corresponds to the angle of incidence for which the longi-

tudinal and transverse evanescent waves are propagating in exactly the

same direction.  As V approaches zero the width of the Rayleigh peak

approaches zero and its contribution to TR thus goes to zero.  As V

becomes larger (see Figure 6 for example) the Rayleigh peak broadens and

much of the other structure also becomes less pronounced.  There

is an additional small peak for angles of incidence near  /2 (=900).

This peak represents the strong coupling of waves at grazing incidence

from the liquid to the transverse waves in the solid.  For the higher

frequencies shown in Figure 7, this peak  does not appear for reasons

which will be explained later.

The effects of including transverse waves in the solid helium

layer are quite evident when the curves in Figures 5 and 6 are compared.
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Associated with the longitudinal waves in the first, i.e., most dense,

He layer there is a critical angle of incidence. In Figure 6 only

longitudinal waves are allowed in this layer, and therefore for waves

incident from the bulk at angles greater than this critical angle, only

evanescent waves exist in the layer.  The critical angle is very close

to the point where the three curves in Figure 6 appear to intersect.  In

this supercritical region, the penetration depth for evanescent waves is

proportional to the wavelength of the evanescent waves.  Therefore, as

the frequency increases the transmission coefficient in the supercritical

region will decrease.  By comparison, in Figure 5, the critical angle

for longitudinal waves is not even apparent, since the transverse waves

seem to play the dominant role in determining TR.  This is not surpris-

ing since the critical angle for transverse waves is very near w/2.

The considerable enhancement of TR at the frequency corresponding to

T = 1.49 K is due solely to the transverse waves in the first helium

layer.

In Appendix E, we show a more complete set of figures in order to

illustrate the frequency dependence of the transmission coefficient TR.

The TR curves in Figure El combined with those in Figure 6 span the fre-

quency range corresponding to 0.1-3.0 K, for the case of no transverse

waves in the He.  These TR curves show that the penetration depth of the

evanescent longitudinal waves in the first, most dense He layer de-

creases with increasing frequency. For angles of incidence near 0.5

rad, a peak begins to appear in the T = 3.0 K curve of Figure El.  This

corresponds to a strong coupling of the longitudinal waves in the first

He layer with the transverse waves in the Cu.  This peak is analogous

to  the peak which occurs  near  1/2  rad  in  the  T  =  0.1 K curve of Figure  6.
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The curves in Figures E2-E7 show the transmission coefficient, TR,

for frequencies corresponding to the temperature range 0.1-4.0 K.  As

the wavelength is decreased (frequency is increased) we see that the

significant enhancement of TR occurs at increasing angles of incidence.

This behavior is consistent with a condition for optimizing trans-

48
mission of waves through a layer  ; A/4 = d cose, where X, d and 0 are

respectively, the wavelength, thickness, and angle of transmission for

the layer.  Applying this condition to the transverse waves in the

first He layer yields results which are consistent with the behavior of

the TR curves in Figures E2-E7. If one views the transmission of

waves through a layer in terms of multiple reflections within the

layer, the optimum transmission occurs when the waves undergo con-

structive interference.  Comparing the T = 3.0 K curve of Figure E6

with that of Figure El, we can see the results of destructive and

constructive interference of both types of waves in the first He

layer.  As an example, for angles of incidence beyond about 0.5 rad,

the T = 3.0 K TR curve of Figure E6 is significantly less than the

lower frequency TR curves shown in Figures E5-E6.  We can only at-

tribute this to important interference effects which must occur be-

tween the additional evanescent longitudinal waves which accompany

the multiple reflections of transverse waves within the layer.  With

the exception of the strong peak near 0.5 rad, the T = 3.0 K curve

of Figure E6 looks very much like the T = 3.0 K curve of Figure El.

The strong peak, of course, is due to constructive interference of

the transverse waves in the first He layer; and as the wavelength

is decreased, this peak occurs at increasing angles of incidence.

Figures E2-E7 show this dependence quite clearly.
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When comparing the TR curves of Figures El and E6 one must

remember that the longitudinal sound velocities in the first He layer,

in each case, are not the same.  For the calculated TR curves of Figure

El, experimental sound velocity data for liquid He4 are used, while for

i He layer are used.  The critical angle for longitudinal waves in the

first He layer will be less when the solid He4 data are used (Figure

E6) than when the liquid He4 data are used (Figure El) since the

longitudinal sound velocity in solid He4 is greater than in liquid He4

(for equal densities).

In Figures E8-E13 we show calculated TR curves using a small

attenuation, V = 0.01, and with all parameters identical to those used

for Figures E2-E7.  The purpose of these is to enable one to identify

the structure of the TR curve as a function of angle of incidence and

frequency.  For example, in Figure E10 we can see the contributions

to TR associated with the two critical angles, ecrt = 0·0475 rad and

0    = 0.1035 rad, the Rayleigh peak at e  = 0.110 rad, and thecrt                                      R

peak associated with the constructive interference of transverse waves

in the first He layer (which occurs at increasing angles of incidence

as the frequency is increased).

We show calculated Kapitza resistance values as a function of

temperature.(in the form RKT3) in Figures 8-17.  The parameters used

in calculating the lower
R <T3 curve in Figure 8 are the same as those

used for Figure 5.  Similarly, the upper RKT3 curve in Figure 8 is

calculated using the same parameters as those used for Figure 6.  The

relatively higher transmission coefficients associated with including

transverse waves in the solid He layer, as shown in Figure 5,
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Figure 8:  RKT3 calculated as a function of temperature T.  For the
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Figure 12:  R T.3 calculated for two attenuations and a helium density
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correspond, naturally,   to a lower  R '      The  e f fect   o f including trans-

verse waves in the solid helium layer is seen to be significant over

a wide temperature range.  Figure 9 shows the effect on R T3 of using a

higher attenuation, V = 0.25, for the case of transverse waves allowed.

The effect of this increased attenuation is to lower the R ' although

the overall T dependence is still the same.

In Figures 10 and 11 we compare R T3 values for two different

attenuations in each figure but with higher values for the parameter F.

In Figure 10, the distance from the copper substrate for which the

0
helium density is constant (Pl = 1-4 p  ) is about 6 A.  Similarly,He

in Figure 11 the distance for which the helium density is constant

(Pl = 1.5 pHe) is about 5.3  .  We see that the basic shape of the RKT3

curve in either case has not changed by comparison with Figure 9.  The
3

RKT  minimum, for a given value of V, is lower and occurs at a higher

temperature when F is increased. We observed this trend to hold, for

increasing F, on up to F = 2.0.  The physical reason for this trend is

that higher values for the density of the first He layer give higher

sound velocities and this corresponds to longer characteristic wave-

lengths.

In Figures 12 and 13 we show calculated R T3 values using (with

one exception) the same parameters, respectively, as for the curves

shown in Figures 10 and 11.  For the curves shown in Figures 12 and

13 transverse waves are included only in the first, most dense, He layer

0
(in Figure 12 for pl =1 4 9 d=6 A and in Figure 13 forHe'  1

0
p  = 1.5 p  , dl = 5.3 A) whereas, in Figures 10 and 11, transverse1        He

waves are allowed in the dense He region for p l 1.3 p  -d<7  .
He'   -

Including transverse waves over a longer distance in the dense He
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region improves the impedance matching.  This can be seen by comparing

the R T3 curves in Figures 10 and 11 to those in Figures 12 and 13,

respectively.

In order to test how sensitive our results were to the details of

the density profile we investigated the effect of changes in the analytic

form of p(d) given in Equation 26.  We observed only small changes

resulted in the calculated values of R <T3.  That is, the two important

factors in the density profile are the maximum values of the density,

and the distance over which the density is constant.

In Figures 14, 15, 16 and 17 we show R <T3 values for attenuations

in the copper which vary with distance from the copper surface.  This

is what one expects for a real solid.  We also show on these figures

some experimental data to facilitate comparisons. In21,51,52,55

Figure 14, V in the Cu has the following simple dependence:  V = 0.25

0
for a layer which extends from the copper surface 20 A into the

copper, and V = 0.12 beyond the layer.  For Figure 15:  V = 0.30 for
0                                 0

20 A, V = 0.12 for the next 250 A, and V = 0.06 beyond the layers.

0 0
For Figure 16:  V = 0.42 for 25 A, V = 0.12 for the next 250 A, and

V = 0.06 beyond the layers.  Finally, for Figure 17:  V = 0.50 for
0                                 0

25 A, V = 0.12 for the next 100 A, and V = 0.06 beyond the layers.

3
The calculated R T  values used in Figures 8-17 are also tabu-

K

lated in Appendix F.
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Figure 14:  RKT3 calculated using an attenuation profile in the copper:
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IV. SUMMARY AND CONCLUSIONS

A.  The Sublimation and Vapor Pressure Experiment

We have measured the sublimation and vapor pressure of Ar36

over a wide temperature range in the solid and for temperatures in the

liquid up to the boiling point.  These measurements were reproducible

for two different runs to the extent that it was not possible to

distinguish the two sets of data.

The effects of impurities are most evident (see Figure 2) at the

lowest temperatures for which data were taken.  These effects, however,

represent the presence of non-condensable impurities in the vapor which

at the higher temperatures have only a negligible effect on the ob-

served pressures.  The presence of condensable impurities (i.e., N2

and 02) have a significant effect only for temperatures in the liquid

range, T 2 84 K, and even then the effect on vapor pressure is small;

these impurities raise the vapor pressure by less than 0.1% (- 1 Torr

at 84 K).

The most important result of our experiment is that our sublima-

tion-pressure data are in good agreement with the predictions of the

improved self-consistent phonon theory of Goldman, Horton and Klein. '10

Our Ar36 data further show, when compared with equivalent data on ArN,

the sublimation and vapor pressure of Ar to be consistently higher36

than that of ArN.  This isotopic effect on sublimation pressure is

commonly referred to as the vapor-pressure ratio between Ar36 and ArN.

69
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Our vapor-pressure ratios are also in good agreement with the predic-

tions of the improved self-consistent theory referred to above.

More exact knowledge of the thermodynamic properties of rare-gas

solids and of isotopic effects could be determined if other kinds of

experimental data were available. Some particularly useful kinds of

experiments, for example, would be specific heat and thermal conductivity

measurements on normal and isotopically pure rare-gas solids.

B.  The Calculation of Kapitza Resistance

We calculated the Kapitza resistance, R (T), over a range of

temperatures (0.01-2.0 K) for which experimental data are available.

In addition to considering the effects of phonon attenuation in the Cu,

we have included the impedance matching effects associated with a dense

He region of varying density at the Cu-He4 interface.

As we have seen from our initial calculations, neither of these

effects, when considered alone, is sufficient to explain the experi-

mentally observed R  values.  By considering only phonon attenuation

effects in the Cu, we can obtain R  values which agree in magnitude

with experimental R  values at low temperatures; T 5 0.5 K.  We can,K

furthermore, obtain the experimentally observed temperature dependence,

at these lower temperatures, by allowing the attenuation to vary with

distance from the copper surface. It is not possible, however, to

obtain agreement with experiment in the magnitude or T dependence of

RK for T 3 0.5 K without also considering the effects of impedance

matching.

We believe we have shown the importance of considering impedance

matching effects in conjunction with phonon attenuation effects on

Kapitza resistance. It is clear that the magnitude and temperature
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dependent features of experimentally observed Kapitza resistances are

included in the results of our model. It is also clear, however, that

much more experimental information than is currently available, is

needed about the detailed structure of the copper and helium in the

vicinity of the interface.



APPENDICES



APPENDIX A: DECOMPOSITION OF THE
DISPLACEMENT FIELD

In order to decompose the displacement field into longitudinal

and transverse components, we first express Equation 28 in the vector

form:

P(32 /3t2) = uv2; + (A+21J) YY'i  . (Al)

+
Next, we consider the displacement field S as composed of two parts:

+          +              +

S =St + S (A2)
t

such that

+
Y XS£-0 (A3)

and

V·S =0. (A4)-   t

Equation A3 defines the longitudinal component, S£ and Equation A4

defines the transverse component, St.  Using Equations A3, A4 and

the vector identity

+
' 9 x (Y x A) = -V2* + yy·A , (A5)

we can express Equation Al in the form:

+

P(32St at2) + P(32SZ/3t2) = 1192St + (A + 21J) V2SZ . (A6)

It is clear then, that solutions of Equation Al can be obtained by

solving the equations:

P(32 £/ jt2) = (A + 2u) v2 z (A7)

and

+ +

P(32st/3t2) = uv2st . (A8)
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It is sometimes more convenient to work with the velocity fields,

+ + + +
v£ E 3S£/Bt, and vt E 3St/Bt.  This is particularly true when one wishes

to calculate the transmission and reflection of energy at a boundary.

+ +
Using Equations A7 and AB we obtain the equations for v£ and vt:

+

P(32 2/3t2) = (A + 2u) V2vf , (A9)

and

9(32vt/3t2) = uv2*t · (A10)
+

At this point we define the velocity potentials, 0 and *,by the

equations:

:£ -  20 . (All)

and

+

 t=px*' (A12)
+

Since F·(F x W) = 0 and Y x (p0) = 0, we then obtain, using Equations

A5,   and  A9 - A12, the desired wave equations:

P(320/3t 2) = (A + 2U) 920 , (A13)

and

P(324/3t2) = PV2  . (A14)

Equations A13 and A14 are, respectively, Equations 29 and 30 of

Chapter III.



APPENDIX B: THE ENERGY FLUX

In this section we shall consider the propagation of energy

in an anisotropic, viscoelastic material. That is, we consider the

49
general form for the stress tensor Tij   :

T =C +n (Bl)ij ijkmakm ijkmvkm '

where

akm : (1/2)[(3Sk/exm) + (3Sm/exk)] (B2)

and

Vkm = 3akm/at . (B3)

In Equation Bl, Cijkm is the elastic tensor and nijkm is the viscosity

tensor. Equation B2 defines the strain tensor in the same way as it is

defined for Equation 27, so that the equations of motion for this

system are given by Equation 28:

P(32 Si/at2) = 3Tij/3xj . (28)

The components of the elastic tensor, Cijkm' have the following sym-

metry properties49:

Cijkm = Cjikm = Cjimk = Cijmk = Ckmij = Cmkij = Cmkji = Ckmji '  (84)

This is known as Voigt symmetry and is a consequence of two assumptions:

The strain tensor is symmetric (no local rotations) and the existence

of the elastic potential (analogous to the Hooke's law assumption for

stretching in one dimension; i.e., assuming the potential is a quadratic

function of strain).
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The  components  of the viscosity tensor, n ijkm'  also  have  this

Voigt symmetry. The key assumption in this case is that the rate at

which energy is absorbed is quadratic in the time derivative of strain

vkm'

In terms of the velocity field vi (defined in Appendix A),

Equation 28 may be written

p(3vj/3t) = 3Tij/3xi · (B5)

Multiplying Equation B5 by vj and summing over repeated indices gives

- [ (1/2)pvjvj] = (3Tij/3xi)Vj . (B6)

Using Equation Bl and the symmetry relations expressed in Equation B4,

we then obtain the conservation equation:

 t[(1/2)pvjvj + (1/2)Cijkmaijakml =   (Tilvj) - nijkmvijvkm '  (87)
3xi   J

The left side of Equation B7 is the time derivative of the energy

density, and the second term on the right side of Equation B7 is the

rate at which energy is absorbed.  For this reason, the term -Tijvj

is taken to be the energy flux.

Assuming time dependent solutions (of Equation B5) having the

simple harmonic form, e-iwt, we find the time averaged energy flux,

 , with components given by Equation 33:

*.
Pi = (1/2) Re(-Tijvj) . (33)



APPENDIX C: THE TRANSMISSION COEFFICIENTS

Applying the appropriate boundary conditions to a system of

solid layers, the components of stress and velocity in the mth layer

(at z = zm) are related to those in the (m-1)st layer (at z = zm-1) by

the following set of equations, 48

(fm) - ai™) 0(,=1) (Cl)

where the Ei are defined by,
(m)

((m)   =   -T(m).    E fm)   =   v(m).    E (m)   =   -T(m)    ,

and 44      z
(m) = v(m).

The  coefficients,   a  ), in Equation  Cl are given  by:

(m)
all    cos2Ym cosPm + 2sin2Ym cosQm

(m)
a12 (2wpm/Km)sinym c082Ym[cosfm -

COSQm]

(m)
a13 i[sin2Ym sinQm - (kx/kmz)cos2Ym sinPml

-(m)
-14    -iwpmI(1/kmz)CO822Ym sinpm + (1/Kmz)sin22ym sinqm]

4r (kx/wpm)[cospm - cosQm]

(m)
a22    2sin2Ym cospm + cos2Ym cosQm

a  )   (-i/wpm)I(kx2/kmz)sinpm + imz sinqm]

-(m)
a24 i[sin2 Ym sinqm - (kx/kmz)(082Ym sinPml
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(m)
831    ikx[ (1/Kmz)c082Ym sinqm - (2kmz/xm2)sinpml

-(m)=32    -iwpm[4kmz/Km2)sin2Ym sinPm + (1/xmz)COS22ym sinQm]

a T)   2sin2Ym cospm + cos2Ym cosQ
m

a      (2wpm/Km)sinYm cos2Ym[cosPm - cosQm]

-(m)                          2.
a41 c-i/wpm)[kmzsinPm + (kx /Kmz)sinQm]

-(m)
=42    ikx[ (1/xmz) cos2Ym sinQm - (2kmz/K2m)sinPml

a      (kx/wpm) [cospm - cosQm]

-(m) 44    cos2Ym cospm + 2 sin2Ym cosQm·

In the above expressions, the angles Pm and Qm are defined by;

P  =k  d  and Qm =K  d   where dm is the thickness of the mth layer.m   mz m mz m,

The components of the wave vectors are obtained using the form of

Snell's law valid even for absorbing media:  kmx = 1<mx E kx = kntlsinen+1,

k z  =  ki  -  ki,  and  Ki*  =  Ki  -  ki. The angle,  Ym,  used  in the remaining

trigonometric functions is defined by, sin Ym = k /K  andx m

cosYm = Km</Km.  For M solid layers, there are M matrices such as

the one shown in Equation Cl.  We can multiply these M matrices to-

gether to obtain a single matrix, Aij, which relates the stress and

velocity components in the mth layer (at z = zm) to those in the semi-

infinite solid (at z = 0). That is,

(M) (0)
Ei   = Aij Ej (C2)

where

(M) (M-1) -(2)  (1)
Aij = aik  akl   " amn  anj

For the simple case of the liquid-solid boundary of the Mth

layer, we define the input impedance,48 Z in), as Z(in) = -T M)/vz(M).
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The input impedance for successive liquid layers is then calculated

according to the recursion formula,

(in)
Z in) = Zj [ (Z il) - iZ  tanP )/ (Z  - iZ tanP )] . (C3)j j j-1     j

The phase angle, Pj, is defined in the same way as for the solid layers,

and Z  is the characteristic impedance of the jth layer; Zj = wp./k.J  JZ.

Recalling that the waves in the jth layer are given by the scalar

potential,

ikjzz -ikjzz  i(kxx-Wt)
tj = [Aje + B.e     le

J

we then have the following relations;

n                                iP.
AM+1/An+1 = (Pn+1/PM+1)  11  [(Z in) + Zj)/(Z in) + Zj+l)]e  1 ((4)

j=M+1

BM+1/AM+1  =.(Zl(in)  -  Z,i+ )/(Zl(in)  + ZM+1) (C5)

R E Bn+1/An+1 = (Z(in) - Zn+1)/(Z(in) + Zn+1) (C6)

Equations Cl-C6 enable us to calculate the energy transmission, TR,

at the boundary of the semi-infinite solid (z = 0) and at the boundary

of the semi-infinite liquid (z = z ).  At z = zn we haven-

TR=1-|R 12 (C7)

At z=0 the expressions are much more complicated, but we can

describe the procedure used. In the semi-infinite solid., the velocity

potentials are given by,

ikozz i(kxx-wt) ik  z  i(k x-wt)0Z

00 = (Aoe     )e           and  4  = (C e     )e   x00

Since the shear stress component, T , is zero at the liquid-solid(M)

XZ

interface, we can obtain a relationship between the wave amplitudes,
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A  and C , by using Equation (2.  Furthermore, using Equations (4 and

C5 we can calculate any of the other stress and velocity components

at the liquid-solid interface.  A  and C0 can both then be determined.

Knowing the wave amplitudes, A  and C , we then calculate the energy

transmission coefficient at the boundary of the semi-infinite solid

according to Equation 34.



APPENDIX D: KAPITZA RESISTANCE PROGRAM

TABLE Dl

List of the FORTRAN program, KR and its subroutines, used to calculate
the Kapitza resistance.

PROGRAM KR(OUTPUT)
COMMON PO,CO,VO,Pl,Cl,ClT,Vl,VlT,PS,CSL,CST,VSL,VST
COMMON/Y/VI,W,N
COMMON /Z/ THO,DTH
COMMON/XY/ERRORl,DTHl,DTH2,LAST,LASTl,LAST2
COMMON /XZ/ IFLAG,JFLAG,KFLAG
COMMON/XZV/LFLAG,XMAXV,NV
COMMON/TOCH/A
COMMON/TOARRAY/TM,TRW,DTRW,TRWS,DTRWS,NMAX,DELTA,ALPHA
COMMON/LAYERS/NINF,NSUP
COMMON/TOK/T,DT,NOFT,DX,NT,B,ERRORA,ERRORF,TMIN,TMAX
COMMON/DENSE/AX,BX,XMIN,XMAX
COMMON/SAVE/PHMAX,QHMAX
COMMON/VINS/PlS,VlS,XMINS
COMMON/VINH/PlH
DIMENSION TM(200),TRW(200),DTRW(200),TRWS(200),DTRWS(200)
DIMENSION STHO(64),CTHO(64),TR(64),TL(64)

100 FORMAT(5F15.5)
PHMAX=50.

QHMAX=50.
ALPHA=.1
DX=3.83
F=2.
G=.16
XMIN=3.60
XMAX=10.
BX=ALOG(G)/ALOG(XMIN/XMAX)
AX=(F-1.)*(XMIN**BX)
T=.4 $ TMIN=.377 $ TMAX=8. $ DT=.1 $ NOFT=20 $ DELTA=.05
F=1.4 $ XMIN=6. $ XMAXV=6. $ NV=1 $ NSUP=16 $ KFLAG=2
ALPHA=ALPHA*(XMAX-XMIN+4.)/(XMAX-XMAXV+4.)
NINF=XMAX-XMAXV+5
IFLAG=1
JFLAG=1
LFLAG=1
ERRORl=.01 $ ERRORA=.005 $ ERRORF=.01
A=.353825 $ B=7.846685E8
PO=.145 $ CO=23800.
Pl=F*PO $ PlH=Pl
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-                        Table Dl (cont&.)

Cl=-72437.+637606.*Pl $ ClT=.5*Cl
IF(KFLAG.EQ.l)Cl=-44173.+468509.*Pl
PS=8.93 $ CSL=500000. $ CST=230000.
VO=0.
Vl=0.
VSL=.12
Vl T=Vl $ VST=VSL
LAST1=6
LAST2=6
Pl S=PlH $ VlS=Vl $ XMINS=XMIN
PlS=PS $ Cl=CSL $ ClT=CST $ VlS=.25 $ XMINS=20.
XMIN=0.
CALL, KAPITZA
END

SUBROUTINE KAPITZA
COMMON PO,CO,VO,Pl,Cl,ClT,Vl,VlT,PS,CSL,CST,VSL,VST
COMMON/XY/ERRORl,DTHl,DTH2,LAST,LASTl,LAST2
COMMON/TOARRAY/TM,TRW,DTRW,TRWS,DTRWS,NMAX,DELTA,ALPHA
COMMON/TOK/T,DT,NOFT,DX,NT,B,ERRORA,ERRORF,TMIN,TMAX
DIMENSION TM(200),TRW(200),DTRW(200),TRWS(200),DTRWS(200)

100 FORMAT(5E 15.5)
101 FORMAT(l I 5,5E 15.5)

THM=ASIN(1.)
DTHl=ASIN(CO/SCL)
LAST=THM/DTHl
DTHl=THM/LAST
DTH2=(THM-LAST1*DTHl)/LAST2
CALL INITIAL
CALL ARRAY(TMIN,TMAX)
NM=NMAX
DO 2 I=l,NM

2 PRINT 101,I,TM(I),TRW(I),DTRW(I),TRWS(I),DTRWS(I)
T=T-DT
DO 1 I=l,NOFT
T=T+DT
CALL SUMX(T,DX,ERRORA,ERRORF,FLUXT,FLUXTS)
T3=T**3
C2=CO**2
RKI=B*FLUXT/C 2
RKT3=1./RKI
RKIS=B*FLUXTS/C 2
RKTS 3=1,/RKIS
RK=RKT3/T3
RKS=RKTS 3/T3

PRINT 100,T,RK,RKT3
PRINT 100,RKS,RKTS 3

1 CONTINUE
RETURN
END
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Table Dl (cont'd.)

SUBROUTINE CHOICE(X,T,TRWC,TRWCS)
COMMON/TOCH/A
COMMON/TOARRAY/TM,TRW,DTRW,TRWS,DTRWS,NMAX,DELTA,ALPHA
DIMENSION TM(200),TRW(200),DTRW(200),TRWS(200),DTRWS(200)
Tl=A*T*X
IF(Tl.LT.TM(1))GO TO 1
I=l.+ALOG(Tl/TM(1))/ALOG(1.+DELTA)
IF(I.GE.NMAX)GO TO 3
TRWC=TRW(I)+(Tl-TM(I))*DTRW(I)
TRWCS=TRWS(I)+(Tl-TM(I))*DTRWS(I)
GO TO 2

3 TRWC=TRW(NMAX)
TRWCS=TRWS(NMAX)
GO TO 2

1 TRWC=TRW(1)
TRWCS=TRWS(1)

2 CONTINUE
100 FORMAT(l I5,5E15.5)

RETURN
END

SUBROUTINE INITIAL
COMMON PO,CO,VO,Pl,Cl,Cl T,Vl,VlT,PS,CSL,CST,VSL,VST
COMMON/X/AKO,AK02,AK12,AKSL2,AKST,AKST2
COMMON/VINS/PlS,VlS,XMINS
TYPE COMPLEX AKO,AK02,AK12,AKSL2,AKST,AKST2
Vll=Vl
Vl=Vls

Ak 12=(1.+(0.,1.)*Vl)/Cl

AkI 2=Ak12**2
AKO=(1.+(0.,1.)*VO)/CO
AK02=AKO**2
AKSL 2=(1.+(0.,1.)*VSL)/CSL
AKSL2=AKSL 2**2
AKST=(1.+(0.,1.)*VST)/CST
AKST2=AKST**2
Vl=Vll
RETURN
END

SUBROUTINE CONST(M,STHO,CTHO,TR,TL)
COMMON PO,CO,VO,Pl,Cl,Cl T,Vl,VlT,PS,CSL,CST,VSL,VST
COMMON/X/AKO,AK02,AK12,AKSL2,AKST,AKST2
COMMON/Y/VI,W,N
COMMON /Z/ THO,DTH
COMMON /XZ/ IFLAG,JFLAG,KFLAG
COMMON/DENSE/AX,BX,XMIN,XMAX
COMMON/VECTOR/AKSLZ,AKSTZ,AKX,AKX2,AKlZ
COMMON/TRIGF/S 2GST, C 2GST
COMMON/SAVE/PHMAX,QHMAX
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Table Dl (cont'd.)

TYPE COMPLEX AKO,AK02,AK12,AKSL2,AKST,AKST2
TYPE COMPLEX AKX,AKX2,AKOZ,AKlZ,AKSLZ,AKSTZ

-                     TYPE COMPLEX SGST, SGST2, S 2GST, S 2GST2, CGST,C 2GST, C 2GST2
TYPE COMPLEX ZO,Zl,ZSL,ZST,ZN,PH,TANPH
TYPE COMPLEX AKI,AKIZ,ZI,R
TYPE COMPLEX EXPH,AL,SINPH,COSPH
TYPE COMPLEX R 2,AT,V2Z,FLUXSL,FLUXST,FLUXI
TYPE COMPLEX AK2Z
TYPE COMPLEX U,V,ATAL,ZNl,W4
DIMENSION U(4),V(4)
DIMENSION STHO(M),CTHO(M),TR(M),TL(M)

100 FORMAT(5E15.5)
DO 1 K=l,M
THO=THO+DTH
STHO(K)=SIN(THO)
CTHO(K)=COS(THO)
AKX=AKO*STHO(K)
AKX2=AKX**2
AKOZ=CSQRT(AK02-AKX2)
AKl Z=CSQRT(AK12-AKX2)
AKSLZ=CSQRT(AKSL2-AKX2)
IF(AKSLZ.EQ.(0.,0.))GO TO 3
AKSTZ=CSQRT(AKST2-AKX2)
SGST=AKX/AKST
CGST=AKSTZ/AKST
S 2GST=2.*SGST*CGST
SGST2=SGST**2
C 2GST=1.-2.*SGST2
C 2GST2=C 2GST**2
S 2GST2=1.-C2GST2
ZO=PO/AKOZ
RZO=REAL(ZO)
GO TO (16,17),KFLAG

16 OONTINUE
ZSL=PS/AKSLZ
IF(AKSTZ.EQ.(0.,0.))GO TO 11
ZST=PS/AKSTZ
ZN=ZSL*C 2GST2+ZST*S 2GST2
GO TO 12

11 ZN=ZSL
12 CONTINUE

RZN+REAL(ZN)
TO TO (6,7),IFLAG

6   CONTINUE
IF(AKl Z.EQ. (0.,0. ))GO TO 18
Zl=Pl/AKl Z
GO TO 19

18 Zl=(1.E50,1.E50)
19 CONTINUE)

AL=2.*ZSL/(ZN+Zl)
ZI=Zl
PH=10.*XMIN*W*AKlZ

IF(AIMAG(PH).GT.PHMAX)PH=(1.,0.)*REAL(PH)+(0.,1.)*PHMAX
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Table Dl (cont'd.)

IF(AIMAG(PH).GT.PHMAX)PH=(1.,0.)*REAL(PH)+(0.,1.)*PHMAX
COSPH=CCOS(PH)
IF(COSPH.EQ.(0.,0.))GO TO 13
TANPH=CSIN(PH)/COSPH
ZN=Zl*(ZN-(0.,1.)*Zl*TANPH)/(Zl-(0.,1.)*ZN*TANPH)
GO TO 14

13 ZN=Zl*Zl/ZN
14 CONTINUE

GO TO 20
17 XMIN1=XMIN

CALL SOLIDUS(ZNl,ATAL,U,V,W4)
ZN=ZN1
ZI=ZN

20 CONTINUE
DO 2 L=l,N
DI=(XMAX+4.-XMIN)/N
D=DI*(2.*L-1.)/2.
PI=PO*(1.+AX/((D+XMIN)**BX))
CI=-44173.+468509.*PI
GO TO (9,10),JFLAG

9 VI=Vl*(PI/PO-1.)
10 CONTINUE

AKI=(1.-(0.,1.)*VI)*(CI**2)
AKI=1./AKI
AKIZ=CSQRT(AKI-AKX2)
IF(AKIZ.EQ.(0.,0.))GO TO 21
Zl=ZI
ZI=PI/AKIZ
GO TO 22

21 Zl=ZI
ZI=(1.E50,1.E50)

22 CONTINUE
IF(KFLAG.EQ.2.AND.L.EQ.1)GO TO 23
EXPH=CEXP((0.,1.)*PH)
AL=AL*EXPH*(ZN+Zl)/(ZN+ZI)
GO TO 24

23 AL=(1.,0.)
P2=PI
R2=(ZN-ZI)/(ZN+ZI)
AK2Z=AKIZ

24 CONTINUE
PH=10.*W*AKIZ*DI
IF(AIMAG(PH).GT.PHMAX)PH=(1.,0.)*REAL(PH)+(0.,1.)*PHMAX
COSPH=CCOS(PH)
IF(COSPH.EQ.(0.,0.))GO TO 15
TANPH=CSIN(PH)/COSPH
ZN=ZI*(ZN-(0.,1.)*ZI*TANPH)/(ZI-(0.,1.)*ZN*TANPH)
GO TO 2
15 ZN=ZI*ZI/ZN

2 CONTINUE
EXPH=CEXP((0.,1.)*PH)
AL=AL*EXPH*(ZN+ZI)/(ZN+ZO)
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Table Dl (cont'd.)

GO TO 4
7 CONTINUE
AL=2.*ZSL/(ZN+ZO)
GO TO 4

3 R=(1.,0.)
AL=(0.,a)
GO TO 5

4 CONTINUE
R=(ZN-ZO)/(ZN+ZO)
AL=AL*PO/PS

5 CONTINUE
IF(KFLAG.EQ.2)GO TO 25
TR(K)=1.-R*CONJG(R)
AL=AL*AKSLZ/AKOZ
TL(K)=AL*CONJG(AL)*RZN/RZO
GO TO 26

25 TR(K)=1.-R*CONJG(R)
XMIN=XMIN1
IF(W4.EQ. (0.,0.))GO TO 27
AL=AL*PS/P2
V 22=(0.,1.)*AK2Z*AL*(1.-R2)
AL=V22/W4
AT=AL*ATAL
FLUXSL=(U(1)*AL+V(1)*AT)*CONJG(U(4)*AL+V(4)*AT)
FLUXST=(U(3)*AL+V(3)*AT)*CONJG(U(2)*AL+V(2)*AT)
FLUXI=PO*CONJG(AKOZ)
TL(K)=REAL(FLUXSL+FLUXST)/REAL(FLUXI)
GO TO 26

27 TL(K)=TR(K)
26 CONTINUE
1 CONTINUE

RETURN
END

SUBROUTINE SOLIDUS(ZNl,ATAL,U,V,W4)
COMMON PO,CO,VO,Pl,Cl,ClT,Vl,VlT,PS,CSL,CST,VSL,VST
COMMON/X/AKO,AK02,AK12,AKSL2,AKST,AKST2
COMMON/Y/VI,W,N
COMMON/VECTOR/AKSLZ,AKSTZ,AKX,AKX2,AKlZ
COMMON/TRIGF/S 2GST, C 2GST
COMMON/DENSE/AX,BX,XMIN,XMAX
COMMON/XZV/LFLAG,XMAXV,NV
COMMON/SAVE/PHMAX,QHMAX
COMMON/VINS /Pl S, Vl S, XMINS

TYPE COMPLEX AKO,AK02,AK12,AKSL2,AKST,AKST2

TYPE COMPLEX AKSLZ,AKSTZ,AKX,AKX2,AKlZ
TYPE COMPLEX S 2GS T, C 2GS T, SG 1, CG1, SG 1 2, S 2G 1, S 2G 1 2, C 2G1, C 2G 1 2

TYPE COMPLEX ZNl,ATAL,ANUM,ADEN,AKlT,AKlT2,AK1TZ
TYPE COMPLEX QH,PH,SINQH,COSQH,SINPH,COSPH,SINQHB,SINPHA

TYPE COMPLEX A,U,V,Wl,W4
DIMENSION A(4,4),U(4),V(4)

'7..
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Table Dl (cont'd.)

Pll=Pl $ Pl=PlS $ V1Tl=VlT $ VlT=VlS $ XMIN1=XMIN $ XMIN=XMINS
AKlT=(1.+(0.,1.)*VlT)/ClT
AKlT 2=AKlT**2

AK1TZ=CSQRT(AKlT 2-AKX2)
SG1=AKX/AKlT
CG1=AK1TZ/AKlT
SG12=SG1**2
C 2Gl=1.-2.*SG12
S 2Gl=2.*SG1*CG1
C 2G1 2=C 2Gl**2

S 2G1 2=1 . -C 2G12

PH=10.*W*AKlZ*XMIN
IF(AIMAG(PH).GT.PHMAX)PH=(1.,0.)*REAL(PH)+(0.,1.)*PHMAX
SINPH=CSIN(PH)
COSPH=CCOS(PH)
IF(PH.EQ.(0.,0.))GO TO 5
SINPHA=SINPH/AKl Z
GO TO 6

5 SINPHA=10.*W*XMIN*(1.,0.)
6 CONTINUE
QH=10.*W*AK1TZ*XMIN
IF(AIMAG(QH).GT.QHMAX)QH=(1.,0.)*REAL(QH)+(0.,1.)*QHMAX
SINQH=CSIN(QH)
COSQH=CCOS(QH)
IF(QH.EQ.(0.,0.))GO TO 7
SINQHB=SINQH/AK1TZ
GO TO 8

7 SINQHB=10.*W*XMIN*(1.,0.)
8 CONTINUE

A(1,1)=C 2Gl*COSPH+2.*SG12*COSQH
A(1,2)=2.*Pl*SG1*C2Gl*(COSPH-COSQH)/AKlT
A ( 1,3) = (0 ., 1 . ) * (S 2Gl*S INQH-AKX*C 2Gl*S INPHA)

A ( 1,4 ) =- (0 ., 1 . ) *Pl* (C 2G1 2*SINPHA+S 2G1 2*SINQHB)

A(2,1)=AKX*(COSPH-COSQH)/Pl
A(2,2)=2.*SG12*COSPH+C 2Gl*COSQH
A(2,3)=-(0.,1.)*(AKX2*SINPHA+AKlTZ*SINQH)/Pl
A ( 2,4 ) = (0 ., 1 . ) * (S 2Gl*SINQH-AKX*C 2Gl*SINPHA)

A( 3,1 ) = (0 ., 1 . ) *AKX* (C 2Gl*S INQHB- 2 . *AKlZ*SINPH/AKlT 2)

A(3,2)=-(0.,1.)*Pl*(4.*AKl Z*SG12*SINPH/AKlT2+C2G12*SINQHB)
A(3,3)=2.*SG12*COSPH+C 2Gl*COSQH
A(3,4)=2.*Pl*SG1*C 2Gl*(COSPHzCOSQH)/AKlT
A(4,1)=- (0.,1. )*(AKlZ*SINPH+AKX2*S INQHB) /Pl
A(4,2)=(0.,1.)*AKX*(C 2Gl*SINQHB-2.*AKlZ*SINPH/AKlT2)
A(4,3)=AKX*(COSPH-COSQH)/Pl
A(4,4)=£2Gl*COSPH+2.*SG12*COSQH
IF(NV.EQ.0)GO TO 13
POV=PO
Vlv=Vl
CALL VISCUS(POV,VlV,A)
XMIN1=XMAXV

13 CONTINUE

U(1)=(0.,1.)*PS*C 2GST
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Table Dl (cont'd.)

U(2)=(0.,1.)*AKX
U(3)=2.*(0.,1.)*PS*AKSLZ*AKX/AKST2
U(4)=(0.,1.)*AKSLZ
V(1)=(0.,1.)*PS*S,2GST
V(2)=-(0.,1.)*AKSTZ
V(3)=- (0. , 1.)*PS*C 2GST
V(4)=(0.,1.)*AKX
ANUM=(0.,0.)
ADEN=(0.,0.)
DO i I=l,4
ANUM=ANUM+A(3,I)*U(I)

1 ADEN=ADEN+A(3,I)V(I)
IF(ADEN.EQ. (0.,0.))GO TO 9
ATAL=-ANUM/ADEN
Wl=(0.,0.)
W4=(0.,0.)
DO 2 I=1,4
Wl=Wl+A(l,I)*(U(I)+V(I)*ATAL)

2 W4=W4+A(4,I)*(U(I)+V(I)*ATAL)
GO TO 10

9 CONTINUE
Wl=(0.,0.)
W4=(0.,0.)
DO 3 I=1,4
Wl=Wl+A(l,I)*V(I)

3 W4=W4+A(4,I)*V(I)
10 IF(W4.EQ.(0.,0.))GO TO 11

ZN1=Wl/W4
GO TO 12

11 ZN1=(1.E50,1.E50)
12 CONTINUE

Pl=Pll $ VlT=V1Tl $ XMIN=XMIN1
RETURN
END

SUBROUTINE VISCUS(POV,VlV,A)
COMMON/Y/VI,W,N
COMMON/XZV/LFLAG,XMAXV,NV
COMMON/VECTOR/AKSLZZ,AKSTZZ,AKX,AKX2,AK1ZZ
COMMON/DENSE/AX,BX,XMIN,XMAX
COMMON/SAVE/PHMAX,QHMAX
COMMON/VINS/PlS,Vl S,XMINS
COMMON/VINH/PlH
TYPE COMPLEX AKX,AKX2
TYPE COMPLEX AKSLZZ,AKSTZZ,AK1ZZ
TYPE COMPLEX AK12,AKlT,AKlT 2,AKlZ,AK1TZ
TYPE COMPLEX SG l, CG l, CG 1 2, S 2G l, S 2G 1 2, C 2G l, C 2G1 2

TYPE COMPLEX QH,PH,SINQH,COSQH,SINPH,COSPH,SINQHB,SINPHA
TYPE COMPLEX A,B,C
DIMENSION A(4,4),8(4,4),C(4,4)

100 FORMAT (l I5)



88

Table Dl (cont'd.)

101 FORMAT(5E15.5)
DO 2 L=l,NV
DO 1 I=1,4
DO 1 J=1,4

1 B(I,J)=A(I,J)
Dl=(XMAXV-XMIN)/NV
D=Dl*(2.*L-1.)/2.
Pl=POV*(1.+AX/((D+XMIN)**BX))
IF(Pl S.NE.PlH)Pl=PlH
Vl=VlV*(Pl/POV-1.)
Cl=-72437.+637606.*Pl
IF(LFLAG.EQ.2)Cl=-44173.+468509.*Pl
AK12=(1.-(0.,1.)*Vl)*(Cl**2)
AK12=1./AK12
GO TO (3,4),LFLAG

3 ClT=.5*Cl
VlT=Vl
AKlT2=(1.-(0.,1.)*VlT)*(ClT**2)
AKlT2=1./AKlT 2
AKlT=CSQRT(AKlT2)
GO TO 5

4 ClT=Cl*(SQRT(1.5*Vl)+.0001)
AKlT=(1.+(0.,1.))/ClT
AKlT2=AKlT**2

5 CONTINUE
AKlZ=CSQRT(AK12-AKX2)
AK1TZ=CSQRT(AKlT2-AKX2)
SG1=AKX/AKlT
CG1=AK1TZ/AKlT
SG12=SG1**2
C 2Gl=1.-2.*SG12
S 261=2.*SG1*(Gl
C 2G1 2=C 2Gl**2

S 2G1 2=1 . -C 2G1 2

PH=10.*W*AKlZ*Dl
IF(AIMAG(PH).GT.PHMAX)PH=(1.,0.)*REAL(PH)+(0.,1.)*PHMAX
SINPH=CSIN(PH)
COSPH=CCOS(PH)
IF(PH.EQ.(0.,0.))GO TO 15
SINPHA=SINPH/AKl Z
GO TO 16

15 SINPHA=10.*W*D1*(1.,0.)
16 CONTINUE

QH=10.*W*AKlTZ*Dl
IF(AIMAG(QH).GT.QHMAX)QH=(1.,0.)*REAL(QH)+(0.,1.)*QHMAX
SINQH=CSIN(QH)
COSQH=CCOS(QH)
IF(QH.EQ. (0.,0.))GO TO 17
SINQHB=SINQH/AK1TZ
GO TO 8

'

17 SINQHB=10.*W*D1*(1.,0.)
8 CONTINUE
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A(1,1)=C 2Gl*COSPH+2,*SG12*COSQH
A(1,2)=2.*Pl*SG1*C 2Gl*(COSPH-COSQH)/AKlT
A(1,3)=(0.,1.)*(S 2Gl*SINQH-AKX*C2Gl*SINPHA)
A ( 1,4 ) =- 0 ., 1 . ) *Pl* (C 2G12*SINPHA+S 2G12*SINQHB)

A(2,1)=AKX*(COSPH-COSQH)/Pl
A(2,2)=2.*SG12*COSPH+C 2Gl*COSQH
A (2,3) =- (0. ,1.)*(AKX2*S INPHA+AKlTZ*S INQH) /Pl
A(2,4)=(0.,1.)*(S 2Gl*SINQH-AKX*C2Gl*SINPHA)
A(3,1)=(0.,1.)*AKX*(C 2Gl*SINQHB-2.*AKlZ*SINPH/AKlT2)
A(3,2)=- (0.,1.)*Pl*(4. *AKl Z*SG12*S INPH/AKlT2+C2G12*S INQHB)
A(3,3)=2.*SG12*COSPH+C 2Gl*COSQH
A(3,4)=2.*Pl*SG1*C2Gl*(COSPH-COSQH)/AKlT
A(4,1)=- (0.,1. )*(AKlZ*S INPH+AKX2*S INQHB) /Pl
A(4,2)=(0.,1.)*AKX*(C 2Gl*SINQHB-2.*AKlZ*SINPH/AKlT2)

'

A(4,3)=AKX*(COSPH-COSQH)/Pl
A(4,4)=C 2Gl*COSPH+2.*SG12*COSQH
DO 6 I=1,4
DO 6 J=1,4
C(I,J)=(0.,0.)
DO 6K=1,4

6 C(I,J)=C(I,J)+A(I,K)*B(K,J)
DO 7 I=1,4
DO 7 T=l,4

7 A(I,J)=C(I,J)
2 CONTINUE
XMIN=XMAXV
RETURN
END

SUBROUTINE SUM(HK,HKS)
COMMON/Y/VI,W,N
COMMON//Z/ THO,DTH
COMMON/XY/ERRORl,DTHl,DTH2,LAST,LASTl,LAST2
COMMON/TOSUM2/TRSCTHO,TLSCTHO,THOl,TRWl,TRWSl
DIMENSION STHO(64),CTHO(64),TR(64),TL(64)

100 FORMAT(3F7.3,5E 15.5)
101 FORMAT(3I 7,5E 15.5)
102 FORMAT (lI5,5E15.5)

TH01=0.
TRW=0.
TRWS=0.
TRSCTHO=0.
TLSCTHO=0.
DO 4 J=l,LASTl
M=1

IF(J.EQ.1*M=2
NI=0
DTH=DTHl
THO=TH01
IF(J.EQ.1)THO=TH01-DTH
CALL CONST(M,STHO,CTHO,TR,TL)
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AREA=0.
AREAS=0.

  DO 1 K=l,M
SCTHO=STHO(K)*CTHO(K)
AREA=AREA+.5*(TR(K)*SCTHO+TRSCTHO)

1 AREAS=AREAS+.5*(TL(K)*SCTHO+TLSCTHO)
TRSCTHO+TR(M)*SCTHO
TLSCTHO+TL(M)*SCTHO
TH01=THO
THO=THO-DTH
DTH=2.*DTH

3 NI=NI+1
DTH=DTH/2.
M=(2**NI)/2
IF(M.EQ.128)GO TO 9
THO=THO-M*DTH+DTH/2.
AREAl=.5*AREA
AREAS 1=.5*AREAS

CALL CONST(M,STHO,CTHO,TR,TL)
DO 2 K=l,M
SCTHO=STHO(K)*CTHO(K)
AREAS 1=AREAS 1+TL (K) *SCTHO/ ( 2 . **NI)

2 AREAl=AREAl+TR(K)*SCTHO/(2.**NI)
DAREA=*REAl-AREA)/AREA
DAREAS=(AREAS 1-AREAS)/AREAS
AREA=AREAl
AREAS=AREAS 1

ERROR=ERROR1*TRW/((LAST+1-J)*AREA)
ERRORS=ERROR1*TRWS/((LAST+1-J)*AREAS)
IF(ERROR.LT.ERRORl)ERROR=ERRORI
IF(ERRORS.LT.ETTORl)ERRORS=ERRORl
IF(ABS(DAREA).GT.ERROR)3,9

9 CONTINUE
TRW=TRW+AREA
TRWS+TRWS+AREAS

4 CONTINUE
TRW=TRW*DTHl
TRWS=TRWS*DTHl
PRINT 102,N,W,TRW,TRWS
TRWl=TRW/DTH2
TRWSl=TRWS/DTH2
CALL SUM2 (TRW 2,TRWS 2)
HK=TRW+TRW 2
HKS=TRWS+TRWS 2
RETURN
END

SUBROUTINE SUM2(TRW2,TRWS 2)
COMMON/Y/VI,W,N

'

COMMON /Z/ THO,DTH
COMMON/XY/ERRORl,DTHl,DTH2,LAST,LASTl,LAST2
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Table Dl (cont'd.)

COMMON/TOSUM2/TRSCTHO,TLSCTHO,THOl,TRWl,TRWSl
DIMENSION STHO(64),CTHO(64),TR(64),TL(64)

100 FORMAT(3F7,3,5E15.5)
101 FORMAT(3I 7,5E 15.5)
102 FORMAT(lI5,5E15.5)

TRW=0.
TRWS=0.

DO 4 J=l,LAST2
M=1
NI=0
DTH=DTH2
THO=TH01

CALL CONST(M,STHO,CTHO,TR,TL)
SCTHO=STHO(M)*CTHO(M)
AREA=.5*(TR(M)*SCTHO+TRSCTHO)
AREAS=.5*(TL(M)*SCTHO+TLSCTHO)
TRSCTHO=TR(M)*SCTHO
TLSCTHO=TL(M)*SCTHO
TH01=THO
THO=THO-DTH
DTH=2.*DTH

3 NI=NI+1
DTH=DTH/2.
M=(2**NI)/2
IF(M.EQ.128)GO TO 9
THO=THO-M*DTH+DTH/2.
AREAl=.5*AREA
AREAS 1=.5*AREAS

CALL CONST(M,STHO,CTHO,TR,TL)
DO 2 K=l,M
SCTHO=STHO(K)*CTHO(K)
AREAS 1=AREAS 1+TL (K) *SCTHO/ ( 2. **NI)

2 AREAl=AREAl+TR(K)*SCTHO/(2.**NI)
DAREA=(AREAl-AREA)/AREA
DAREAS=(AREAS 1-AREAS)/AREAS
AREA=AREAl
AREAS=AREAS 1

ERROR=ERROR1*TRWl/((LAST2+1-J)*AREA)
ERRORS=ERROR1*TRWSl/((LAST2+1-J)*AREAS)
IF (ERROR.LT.ERRORl)ERROR=ERRORl
IF(ERRORS.LT.ERRORl)ERRORS=ERRORl
IF(ABS(DAREA).GT.ERROR)3,9

9 CONTINUE
TRW=TRW+AREA
TRWS=TRWS+AREAS
TRWl=TRW1+AREA
TRWSl=TRWS 1+AREAS

4 CONTINUE
TRW=TRW*DTH 2
TRWS=TRWS*DTH2
TRWl=TRW1*DTH2
TRWSl=TRWS 1*DTH2
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PRINT 102,N,W,TRW,TRWS
PRINT 102,N,W,TRWl,TRWSl
TRW2=TRW
TRWS 2=TRWS
RETURN
END

SUBROUTINE SUMX(T,DX,ERRORA,ERRORF,FLUXT,FLUXTS)
100 FORMAT(3I8,5E 15.5)
101 FORMAT(3F8,3,5E15.5)
102 FORMAT(5E15.5)

COMMON/TOCH/A
L=0
XL=0.
HXL=0.
HXLS=0.
FLUXT=0.
FLUXTS=0.

3 M=0
L=L+1
X0=XL
HXO=HXL
HXOS=HXLS
XL=XO+DX
CALL CHOICE(XL,T,TRWS,TRWCS)
EXL=EXP(XL)
HXL=TRWC*(XL**4)*EXL/((1.-EXL)**2)
HXLS=TRWCS*(XL**4)*EXL/((1.-EXL)**2)
AREAO=.5*(HXO+HXL)
AREAOS=.5*(HXOS+HXLS)

2 SHX=0.
SHXS=0.
M=M+1
N=(2**M)/2
N 2=2*N

DO 1 I=l,N
X=XO+(2*I-1)*DX.'N 2
CALL CHOICE(X,T,TRWC,TRWCS)
EX=EXP(X)
HX=TRWC*(X**4)*EX/((L.-EX)**2)
HXS=TRWCS*(X**4)*EX/((1.-EX)**2
SHXS=SHXS+HXS

1 SHX=SHX+HX
AREA=.5*AREAO+SHX/N 2
AREAS=.5*AREAOS+SHXS/N 2
DAREA=ABS((AREA-AREAO)/AREAO)
DAREAS=ABS((AREAS-AREAOS)/AREAOS)
AREAO=AREA
AREAOS=AREAS

IF(DAREA.GT.ERRORA,OR.DAREAS.GT.ERRORA)GO TO 2
FLUXT=FLUXT+AREA
FLUXTS=FLUXTS+AREAS
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DFLUX=AREA/FLUXT
DFLUXS=AREAS/FLUXTS
Tl=A*T*X
PRINT 100,L,M,N,Tl,TRWC,FLUXT,AREA,DFLUX
PRINT 101,XO,XL,X,Tl,TRWCS,FLUXTS,AREAS,FLUXS
IF(DFLUX.GT.ERRORF,OR.DFLUXS.GT.ERRORF)GO TO 3
FLUXT=FLUXT*DX
FLUXTS=FLUXTS*DX
PRINT 102,T,FLUXT,FLUXTS
RETURN
END

SUBROUTINE ARRAY(TMIN,TMAX)
COMMON/Y/VI,W,N
COMMON/TOARRAY/TM,TRW,DTRW,TRWS,DTRWS,NMAX,DELTA,ALPHA
COMMON /LAYERS /NINF,NSUP
COMMON/DENSE/AX,BX,XMIN,XMAX
DIMENSION TM(200),TRW(200),DTRW(200),TRWS(200),DTRWS(200)
I=1

TM(1)=TMIN
T=TM(1)
N=1+(XMAX-XMIN+4.)*T/(10.*ALPHA)
IF(N.LT.NINF)N=NINF
IF(N,GT,NSUP)N=NSUP
W=370.*T
CALL SUM(HK,HKS)
TRW (1) =HK
TRWS(1)=HKS

1 I=I+1
TM(I)=(1.+DELTA)*TM(I-1)
T=TM(I)
DT=TM(I)-TM(I-1)
N=1+(XMAX*iIN+4.)*T/ (10.*ALPHA)
IF(N.LT.NINT)N=NINF
IF(N.GT.NSUP)N=NSUP
W=370.*T
CALL SUM(HK,HKS)
TRW(I)=HK
TRWS(I)=HKS
Il=I-1
DTRW(Il)=(TRW(I)-TRW(I-1))/DT
DTRWS (Il)=(TRWS (I) -TRWS (I-1)) /DT
IF(T.LE.TMAX)GO TO 1
DTRW(I)=DTRW(I-1)
DTRWS(I)=DTRWS(I-1)
NMAX=I
RETURN
END
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Figure E5:  TR calculated at frequencies corresponding to the tempera-
tures; 1.55, 1.6, 1.75, and 2.0 K.
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3APPENDIX F:
TABULATION OF CALCULATED R    VALUES

TABLE Fl

Kapitza resistance, R C' in the form R (T3, as a function of phonon at-
tenuation in the copper.

Loss Factor Kapitza Resistance x (Temperature)3

RKT3
v                                                                      (cm2   I<4 /W)

0.0 1270
0.001 540
0.002 501.9
0.003 480.6
0.004 465.2
0.005 452.1
0.006 440.7
0.007 430.4
0.008 420.6
0.009 411.6
0.01 401.8
0.02 334.3
0.03 287.2
0.04 250.8
0.05 223.4
0.06 201.4
0.07 183.2
0.08 168.3
0.09 155.8
0.10 145.0
0.11 135.5
0.12 127.2
0.13 119.9
0.14 113.4
0.15 107.6
0.16 102.4
0.17 97.6
0.18 93.3
0.19 89.4
0.20 85.8
0.21 82.5
0.22 79.4
0.23 76.6
0.24 74.0
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Table Fl (cont'd.)

Loss Factor Kapitza Resistance x (Temperature)3

RKT3
V                                                                               (cm    K4 /W)

0.25 71.5
0.26 69.2
0.27 67.1
0.28 65.1
0.29 63.2
0.30 61.4
0.4 48.1
0.5 39.6
0.6 33.8
0.7 29.7
0.8 26.5
0.9 24.0
1.0 22.0
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TABLE F2

Calculated R T3 values used in Figure 8.

T (K)
R T3 (cm2 K4/W)

(upper curve) (lower curve)

0.01 128.2 127.6
0.02 129.8 128.0
0.03 131.3 128.4
0.04 132.8 128.8
0.05 134.2 129.2
0.06 135.6 129.5
0.07 136.8 129.7
0.08 138.0 129.9
0.09 139.0 130.0
0.1 140.0 130.1
0.2 143.5 126.0
0.3 136.4 113.2
0.4 122.3 94.8
0.5 107.4 77.3
0.6 95.4 63.6
0.7 87.3 51.7
0.8 82.2 46.9
0.9 79.1 45.5
1.0 77.2 45.3
1.1 76.1 45.7
1.2 75.6 46.5
1.3 75.4 47.7
1.4 75.5 49.0
1.5 75.7 50.2
1.6 76.0 51.5
1.7 76.3 52.7
1.8 76.7 53.8
1.9 77.0 54.8
2.0 77.3 56.0
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TABLE F3

Calculated R T3 values used in Figures 9-11.

T(K)
RKT3 (cm2 K4/W)

Figure 9 Figure 10 Figure 11
V=0.12 V=0.25 V=0.12 V=0.25 V=0.12 V=0.25

0.01 127.6 71.7 127.6 71.8 127.6 71.8
0.02 128.0 72.0 128.2 72.1 128.3 72.2
0.03 128.4 72.3 128.8 73.5 129.0 72.7
0.04 128.8 72.6 129.4 72.9 129.7 73.1
0.05 129.2 72.9 130.0 73.4 130.4 73.6
0.06 129.5 73.2 130.5 73.8 131.0 74.0
0.07 129.7 73.4 131.0 74.1 131.6 74.5
0.08 129.9 73.6 131.4 74.5 132.1 74.9
0.09 130.0 73.8 131.8 74.8 132.6 75.3
0.1 130.1 73.9 132.1 75.1 133.1 75.7
0.2 126.0 72.4 131.8 75.9 134.9 77.7
0.3 113.2 65.6 123.7 72.4 130.7 76.4
0.4 94.8 55.1 108.2 64.3 120.3 71.4
0.5 77.3 44.8 89.1 53.9 104.8 63.3
0.6 63.6 37.2 71.0 43.5 86.7 53.5
0.7 51.7 30.9 57.9 35.8 70.9 44.4
0.8 46.9 28.4 49.7 30.9 59.2 37.4
0.9 45.5 27.6 44.8 27.8 51.1 32.5
1.0 45.3 27.5 41.7 25.9 45.3 29.0
1.1 45.7 27.7 40.1 24.8 42.0 26.9
1.2 46.5 28.4 39.2 24.3 39.6 25.1
1.3 47.7 29.2 38.9 24.1 37.9 24.0
1.4 49.0 30.1 38.8 24.0 36.9 23.4
1.5     . 50.2 31.0 39.2 24.3 36.2 22.9
1.6 51.5 31.9 40.0 24.5 35.9 22.7
1.7 52.7 33.0 41.2 25.3 35.7 22.7
1.8 53.8 33.7 41.7 26.0 35.7 22.7
1.9 54.8 34.4 42.6 .26.6 36.0 23.0
2.0 56.0 35.2 43.5 27.2 36.5 23.2
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TABLE F4

Calculated RKT3 values used in Figures 12 and 13.

T(K) RKT3 (cm2 K4/W)
Figure 12 Figure 13

V=0.12 V=0.25 V=0.12 V=0.25

0.01 127.7 71.8 127.8 71.8
0.02 128.4 72.3 128.7 72.4
0.03 129.2 72·8 129.6 73.1
0.04 129.9 73.3 130.5 73.7
0.05 130.7 73.8 131.4 74.3
0.06 131.3 74.3 132.3 74.9
0.07 132.9 74.7 133.1 75.5
0.08 132.5 75.2 133.8 76.1
0.09 133.0 75.6 134.5 76.6
0.10 133.5 75.9 135.2 77.1
0.2 134.1 77.5 138.5 80.4
0.3 127.5 74.9 135.4 80.0
0.4 114.3 68.0 126.3 76.0
0.5 96.6 58.5 113.3 69.2
0.6 78.7 48.2 98.8 61.2
0.7 64.3 39.9 84.7 52.5
0.8 54.3 33.9 72.6 45.2
0.9 47.7 29.8 62.8 39.1
1.0 43.5 27.1 55.3 34.3
1.1 40.7 25.3 49.5 30.7
1.2 39.1 24.3 45.2 27.9
1.3 38.2 23.7 42.2 26.2

1.4 37.7 23.4 39.8 24.6
1.5 37.7 23.4 38.1 23.6
1.6 37.8 23.6 36.9 22.9
1.7 38.3 23.9 36.1 22.4
1.8 38.9 24.3 35.7 22.1
1.9 39.5 24.7 35.4 22.0
2.0 40.3 25.2 35.3 22.0
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TABLE F5

Calculated R T3 values for Figures 14-17.

T(K) RKT3 (cm2 K4/W)
Figure 14 Figure 15 Figure 16 Figure 17

0.01 126.2 178.2 175.3 186.0
0.02 125.3 166.0 161.2 174.5
0.03 124.4 154.8 148.3 163.3
0.04 123.5 145.1 137.1 152.8
0.05 122.5 137.1 127.6 143.1
0.06 121.5 130.5 119.8 134.2
0.07 120.5 125.1 113.3 126.2
0.08 119.4 120.6 107.8 118.9
0.09 118.3 116.8 103.1 112.4
0.1 117.1 113.5 99.0 106.5
0.2 102.4 95.3 76.2 71.7
0.3 84.7 78.6 59.9 53.5
0.4 66.9 60.6 45.1 39.8
0.5 52.2 46.4 34.2 30.0
0.6 41.3 36.3 26.6 23.3
0.7 32.9 28.8 21.0 18.2
0.8 29.2 25.4 18.7 16.1
0.9 27.9 24.2 17.8 15.3
1.0 27.4 23.8 17.5 15.1
1.1 27.4 23.7 17.4 15.0
1.2 27.7 23.9 17.6 15.2
1.3 28.2 24.3 17.9 15.5
1.4 28.8 24.8 18.3 15.8
1.5 29.4 25.3 18.7 16.1
1.6 30.0 25.8 19.1 16.4
1.7 30.7 26.3 19.5 16.8
1.8 31.2 26.8 19.9 17.1
1.9 31.7 27.2 20.2 17.4
2.0 32.4 27.7 20.6 17.8
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