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makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
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process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
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This report was prepared as an account of work
sponsored by the United States Government, Neither
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Commission, nor any of their employees, nor any of
their contractors, subcontractors, or their employees,
makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, com-
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1. ABSTRACT '

$P 14T A

This analysis presents the preliminary structural
evaluation of the pressure tube to high pressure
tubesheet weld. Stresses considered are those
resulting for steam side design pressure, sodium
side pressure, and forced displacement of the
tubeweld due to tubesheet deflection under design
loading.

The analysis i1s made in accordance with the 1971
ASME Boiler and Pressure Vessel Code, Section IIT
for Nuclear Power Plant Components and includes
Addenda through Summer, 1972.
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2. SIGNIFICANT RESULTS

i
|
|

Al]l stresses are satisfactory and meet the apbropriate !
allowables set forth in the ASME Boiler and Pressure !
Vessel Code, Section IIT for Nuclear Power Plant :
Components. i
The highest value of local primary membrane stress ;
intensity occurred at Cut 5-6 (See sheet 18). The
stress intensity was 20.4 ksi which did not exceed
the allowable of 1.5 Sm = 22.2 ksi.

The greatest range of primary local plus secondary ,
stress intensity (for pressure and forced displacement !
only) was 26.4 ksi which was well below the allowable
of 3 Sy = 44.4 ksi. This value occurred at Location 5
(See sheet 18). The effects of temperature on the
range of stress will be considered in the fatigue
evaluation.
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GENERAL DISCUSSION

The forced displacement imposed upon the tubeweld
was determined by modeling the tubesheet, sodium
flange, high pressure shell, sodium shell, and
support skirt (See sheet 9) with the "SAAS" Finite
Element Computer Program (Reference 46) and
extracting deflections in the area of the weld.

The above deflections together with steam side and
sodium side pressure were loaded on the tubeweld
model (See sheet 10) and evaluated with Wilson's
Finite Element Computer Program (Reference 25).

The exaggerated deformed shapes shown on Sheets 14
and 15 give a qualitative representation of the

type of stress (compressive or tensile) in various
areas of the tubesheet and tubeweld. The iso-stress
plots on Sheets 16 and 17 show the stress patterns
that have formed in the tube to tubesheet weld.

Examination of the surface stresses tabulated on
Sheet 19 will disclose that some surface yielding
occurs, however, these areas will shake-down to
elastic action after one cycle of loading.
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4. REFERENCES

1. ASME Boiler and Pressure Vessel Code, Section ITI
for Nuclear Power Plant Components.

25. Computer program, "Analysis of Axisymmetric
Solids," E. L. Wilson, University of California,
February, 1967. |

46. "SAAS II Finite Element Stress Analysis of
Axisymmetric Solids with Orthotropic, Temperature-
Dependent Material Properties," by Robert M.

Jones and James G. Crose, September, 1968.

k8. "Giant (Graphical Information Analysis Tool),"
Computer program, by J. J. Diorio and S. E.
Deabler, Combustion Engineering.
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5. STRESSE S
2. SOMMRRY

SURFRCE STRESSES

INS 1D E QUTSIDE
cocATION] VivormaAe Vo cocmrion| V mormac Ve
@ s.06 .5/ @ 2.¢3 .49
@ c.95%5 //.30 @ - /.02 s.¢/
@ ~-£.50 2/.20 @ /.80 /9 .00
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COMBUSTION ENGINEERING, INC. NUMBER A-S

ENGINEERING DEPARTMENT, CHATTANOOGA, TENN. SHEET___ 2 or_ 20
CHARGE NO. pate__2-9-13 sy_HEILKER
pescriprion PRESSURE TUBE AT SODIUM- CHECK DATE BY

ARGON INTERFACE

SUMMARY

The purpose of this analysis is to examine the high pressure
tube at the sodium level in the steam generator, and deter-
mine if any inelastic deformation occurs. It is shown in
this report that inelastic deformation does occur (See Sheet
14), and an attempt was made to calculate the incremental
plastic strain using a simplified conservative method, the
full relaxation Bree method. The Bree method proved, however,
to be too conservative and the recommendation of this report
is to perform a more rigorous inelastic calculation.

RESULTS

The stresses obtained from a seal-shell analysis (Sheet 7
through 10) indicate that the critical stress intensity is
Vo-Ux on the inside surface of the tube. Two locations
were examined in detail, Node 14, the location of maximum
thermal cycling between steady level and fluctuating level,
and Node 22, the location of maximum stress. The effects of
fatigue and secondary creep were found to be small but
plastic deformation was shown to exist., Although satis-
factory results were not obtained using the full relaxa-
tion Bree method, it should be pointed out that this

method assumes ratcheting to exist while the figure on
Sheet li clearly indicates the stresses to be in the
shakedown regime.
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COMBUSTION ENGINEERING, INC. NUMBER -5

ENGINEERING DEPARTMENT, CHATTANOOGA, TENN. SHEET 3 oF__ 20
CHARGE No.--D=51100 pATE_2-9-73 sy HEILKER
pescripTioNn PRESSURE TUBE AT SODTUM- CHECK DATE BY

ARGON INTERFACE

REFERENCES

1. ASME Boiler and Pressure Vessel Code, Section IIT
for Nuclear Power Plant Components

2. Interpretations of ASME Boiler and Pressure Vessel
Code, Case 1331-5, August 4, 1971.

3. Commitments and Agreements of Steam Generator Design
Transients Meeting held at LMEC, November 15, 1972.

4, "Metals Handbook," Volume 1, Properties and Selection,
Eighth Edition, American Society for Metals.

5. "Elastic-Plastic Behavior of Thin Tubes Subjected to
Internal Pressure and Intermittent High-Heat Fluxes
with Application to Fast-Nuclear-Reactor Fuel
Elements," by J. Bree.

6. "Seal-Shell-2, A Computer Program for the Stress Analysis

of a Thick Shell of Revolution with Axisymmetric Pressure,
Temperature and Distributed Loads," WAPD-TM-398, AEC
Research and Development Report, 1963.
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COMBUSTION ENGINEERING, INC. NUMBER Wocdnt-3

ENGINEERING DEPARTMENT, CHATTANOOGA, TENN. SHEET 4 OF 20
CHARGE NO..2:-3 /990 DATE_/2—=/2 =72  my HELKER
DESCRIPTION PRESSUYRE TUBE AT ScOIvM - CHECK DATE BY

PARGON INTERFEFRCE

GEOMETRY

SAT. /. ARGoON GRS
STELPM
v ] "RESYm EVEL
0.725’ _ b ¢

FeovecruyrTIonN

SOODIVM LEYEL

72 —>
0.172 AT STERDY (LEVEL
[ ”
©0.578
| ASSUMED LEVEL
FLUCT URTION
SAT. SoD/umm

ST ERM %‘2— .
sa-213 75 (9Cr =t Mo )

/7 IS ASSUMED THRART DURING NORMARL OPFRAT/ON
©OF THE SoDIUmM MERTED STEAM GENERRTOR THERE
wrtlt BE PERIODS WHEN THE SoD/IvMN LEVEL

RT THE SCDrom — PRCGON INTERFFACE writl BE&
STEROY. /7 1S5 RLSC RSSUMED THART 7FHERE
Wit BE PERICOLS WHEN THE SoD/IoM (EVEL S
FLOCTURTING RB7 SOME RATE . /7 IS FMHEN
NECESSARY TO SAHOW THR7T 7HE PRESSUVRE
JTOBE 1S5 ~NOT OVER STRESSEDLD pBY CYCL/ING
BETWEEN THESE COND/T/ONS. ASSUME 30,000
CYCLES OR RBPPROX/IMAPTELY ONE CYCLESS S MHovRS.
ARSSUME GO0 CYCLES OF WORMARL STARRTUVPF.

5P 14614
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COMBUSTION ENGINEERING, INC. NUMBER
ENGINEERING DEPARTMENT, CHATTANOOGA, TENN. SHEET 5 oF 290
DESCRIPTION PRESSUYRE 7TpRE A7 SoDIYM - CHECK DATE BY
PRGON INTERERCE
SERL-SHELL mopEl ( SEE REF, _G
ANANNNNN )
/1
Qo
NODE | RADIVS :Levnr/o%nwczmss
4
FLUCT.
10 vP o 0.¢cY 2.25 Q.772
/2 3¢ o.cef | —2.25 | 0./72
14
1<
4 T STERDY LEVEL
ECLEVRTION =O
20
22
X
FLUCT.
2¢ —BowWwN
—_28
7~
l 3¢ BLOWOFF (ORD = /.050 AP




COMBUSTION ENGINEERING, INC.

ENGINEERING DEPARTMENT, CHATTANOOGA, TENN.

CHARGE NO._L=-S //00
DESCRIPTION PRESSURE TYBE RT SODICM —

NUMBER A-5

SHEET < OF

20

DATE_/2-/2~ 72

BY AEILKER

CHECK DATE

BY.

P Has1 A

PARGON INTERERCE

LORDIN G

PRESSUVURE

FOR THE PLPURPOSES OF THIS PRPNRLY SIS THE
NORMAL OPERRART/IWNG PRESSURES PARE

COMBINED WITH THE THERMRARL LOSO/INGS.
THE PRESSURES USED PLPRE ~LS5 FoLtlLowSsS:

STERPM PRESSURE 24650 PSS/

Soo/’em PRESSURE = go APS/

THERMBL

TEMPERABTURE DRTR IS THKEN DIRECTLY
FROM C.E. CReCULRTION " trGrH PRESSURE
TOBE SODIvM INTERFACE ' porED 1/-2-72
BY OLOovGG S/ICLVER WAHMHICH PPRPPELREO /N 7HE
NOVEMBER 1972 PROGRESS REFPORT.

coNDIT/IOoN A — STERDY LEVECL

CONDIT /70N Vi) - FLUCTURTING CLEVE L

/7T WARS FOUND THRT7 PAFAF7TER A NUMBER OF
FLUCTURT/ION , B STERDY TEMPERRFATURE
OISTRIBOTION /S FCRMED. REGUARRDLESS ©OF
THE FREQUENCY OF FLULCTURTION , THE SAME
TEMPERRBTUR E LDISTR/IBUT/ION ¢S FORMED.

conOITION C ~ mpare~n 7T ( ZERO .srREss>




SSIYLS

(157 )

25

15

FLUCTUBTING
LEVEL

<—_5_' STERDY LEVEL

Vx STeEAMm S10e ( INS/DE)
AXIAL STRESS

PRESSURE 7UBE

RT Sootum = RRGON
INTERFRCE 7 oF 20
/2=// =72 MHEILKER

-1
/.0

HEIGHT AFABoVE

!
o

STERDY

| 1
-7.0 -2.0

LEVEL

S-&



(1S¥ ) $SFYLS

25

20 —+

TEE

‘e -

FLUCTURTING

LAYELK

®

1 STERDY

LEYEL

Ve s7epm stoe ( INSIDE)
C/IRCUOMFERENTIRL STRESS

PRESSURE TUBE
AT Sootum - RRGON
INTERFRCE & oF 20
/12~7-72 HEILKER

| T | ]
7.0 o -/.0 -2.0
HEIGH T RBOYE STERDY CLEVEL




(15X ) SSIgLS

PRESSURE 7¢UBE

pr——
[

AT SOo1vom - RARGON

INTERFACE 9 ofF 20

vx sootwm SI0E (ovrTs/0E) 12~ =72 HE ILKER

e — RX/AL STRESS
&
IR - T~
\\
\ HEIGHT RBOVE STERDY LEVEL
2 T T T l

1
\o - /.0 ~-2.0
; STEARARPY LEVEL

FLUCTURTING

LEVEL —1’#

-/0




$SSFHLS

(1S¥)

Ve sSoo/ivm SivE (ovrsioe)
to - CIRCUMFERENTIRL STRESS

~°0——-—0—-‘-—0-——r~.,.___\

| ‘ ‘

v PRESSURE TuvuBE

AT Sop/vm - PRRGON
/INTER FRCE /0 oF20
/2=t 72 HEILKER

s JSTEADY LEVEL

\
\
A

MEIGHT ARBOYE STERDY LEVEL

- /.0 -2.©

\ FLUCTURTING LEVEL

S-d
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COMBUSTION ENGINEERING, INC. NUMBER
ENGINEERING DEPARTMENT, CHATTANOOGA. TENN. SHEET /" oF___2°
CHARGE No._2—= 51/06 DATE {2=- /372 BY LYE/LKER
DESCRIPTION _PRESSURE 7UBE PRT SODICM~—  CHECK DATE BY

RPRGON INTERFRACE

PRIMARY STRESS (LORD CONTROLLED

PSSUME 5 DESIGN PRESSURE OF 2705 psi [P 9¢sF
b P
Vx = 2R€ = /.9¢ P = 3.949 KS/
6P
Ve = z = 3.3¢ F = ?.07 KS/
P _
Vva = ~ "2 = —-o0o.soF = -/.35 kKks/
S.ZT. max = Ve-7n = 9.07-(-1.35)= /0. 42 Kks/
FRoMm  SEC. I PAlLtowmBLE S = 12.3 KS/ @ gie s

/

PRIMARY + SECONDARY STRESS

FOR THE CONSIDERATION OF SECONORRY STRESSES,
TWO LOCRB7/ONS W/LL BE EXRMINED, NOODE /Y
PO OO E 22 (SEE SHEET 5 ). EXPMINBTr0N
OF THE STRESS CURVES ON THE PRECEDING SHEET
REVERLS T7THRT THE CRITICHAL STRESS INTENSITY
1S (Vo~Va) on THE IVSICE SURFRPCE OF THE
T7UORE.

NOCO E /14 — LOCRT7T/ON OF MAIX/IMUM RALEANGE OF
SECONOPRY STRESS LETWEEN ConNOr7/onN <
OND CONOITrIOoN B.

NNOLE 22 — L0CRT7TION OF AMEAXIMUM RANG E OF
SECONOARPRY ST RESS.

WNOTE T HART THE PRIMRPRY STRESS (S5 THE
SPME A7 sl cocmrrons. CP.+ P8/ = Pum

SP 114514




DESCRIPTION _PRESSURE TOUBL KLY SoL/vM —

COMBUSTION ENGINEERING, INC.
ENGINEERING DEPARTMENT, CHATTANOOGA, TENN.

CHARGE NO._2=57//90

NUMBER A-5

/2

SHEET OF

20

DATE.Z-2-73

BY. L 7E/LKER

CHECK DATE

BY

PARGON INTERFPRCE

SP1HGLA

PRIMARY + SECONDPBARY

STRESS cowv7'D

NODE t% CINsSIipE)

CONDITION R - STERDY

CONODITION B -FLIOCT.

7w = G749 °F

Sy = 22.2 kS

Vg = r0.2 ks/

5.7. =Ve-Va = /2.85 KS)

Vi = 3.3¢ (2.57)+2.¢5
= /.29 kS/

Vy = /.56 xS/

CONDITION &~ PMBIENT

V=0

(FPu+ Ls * Qasrvce

K Zvex

C P pnn * T aomyee D
( //.29 *+ 14,3¢ 3

coT 25.¢5

> 22.0

FOR conOorTronNn 3

Vow
x = /vy = o.s5/%

vy = ?T/r\, - 0.¢59

(SEE SHEET

o

Tm = 734 F
Sy = 2/.8% KS/
Vo = Z23.0 Kks/

5.. < Ve-V, = 25.¢5 Kks/

Ver =77.29 KkS/
V—T = v/7¢, 36

<s

- T4

<

- 57 AVE.

< z22z.0

Vale &7 INE LPRPS T/
PNARLYSIS [|S REQUIRED

14 )




COMBUSTION ENGINEERING, INC.
ENGINEERING DEPARTMENT, CHATTANOOGA, TENN.

CHARGE NO._2=357/90
DESCRIPTION _PRESSURE TUOUBE LT Sobr/vM —

ARGON IINTERFPAICE

NUMBER A-5

SHEET /1Z OF 20
DATE.Z-2 -7 3 BYLZEILKER
CHECK DATE BY

SP AR A

PRIMARY + SECONDORRY

STRESS cowv7'D

NODE 1Y CINSIDE)

CONDITION R - STERDY

CONDITION B-FLoOoCT.

7 o
Sy
Vo =

5.7. =
Ve =

= /.29 KS/ Vi =217.29 xsv/

Vr = 7.5¢ «s/ Ve = 24, 3¢

c74°F 7o =
22.2 Ks/ Sy =
70.2 Ks/ Vo =
Voe—Va = /2.85 KS/ s.I. =

3.3¢ (2.57)+2.¢5

CONDIT/ION C ~ PMBIENT

V=0
( P +—% * Qrovce <s
M X i

<
<

( /.29 + r14.3¢C 3 - 22.9

as07T 25.¢5 > 22.0 7AHUS IINELRST/IC
PANABRLYSIS 1S REQU/IRED

FOR cownODrTronNn 0B

o
"'/\7y = o.s5/%

7777\, = 0.¢S9% (see

>

734 °F

2/.8% KS/

23.0 KS/

Ve -V, = 25.6¢5 s/

sweer 19 D)
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COMBUSTION ENGINEERING, INC. NUMBER
ENGINEERING DEPARTMENT, CHATTANOOGA, TENN. SHEET /3 OF 20
CHARGE NO..2-5//90 DATE_2—-2 —73 BY LLEINLKER
DESCRIPTION L RESSURE TOBE A7 SODIOM = CHECK DATE BY.

ARGON INTER FRCE

PRIMPAPRY + SECONDARY STRESS

con7'l

NODE 22 C/nSIDE )

CoONOITION A ~-~STERDY

CONDr T IO LB - FLOUOCT.

Tom = 734 ° F

Sy = 2/.8 Kks/

Vo =23.0 kS/

S5.T. =Ve-V,= 25.¢5 Ks/
Vorr = //.29 kS/
=/9.3¢6 KkS/

coNOosrTION C ~ FAMBIENT

= o
[(PL + %)Mnx +an~e-el‘

(V—"’Méx *+ V7 cronvce >
C .29 +/9.2¢ )

GouT 30. 88 > 2.7

FOR CoworrronNn O

Vim

/Vy=

-
s

X = ©0.527%

0. 892

(-3

7w =759 °F

Sy =2/.¢ s/

Vo = 27.2 «s/
S.I.=Ve-Vh = 30.55 <5/
Vi /.29 KS/

vV r /9.2 kS/

1l

]

Y

IA

57 AVYG

N

2/.7

THOS /NELRSTIC

PNRLYSIS /S REQU/RED

(see sweeT _14 )




COMBUSTION ENGINEERING, INC. NUMBER A-S

ENGINEERING DEPARTMENT. CHATTANOOGA. TENN. sneer— 'Y oF__ 20
CHARGE No._2=5//92 DATE_2— 2 — 73 gy /E/LKER
DESCRIPTION LRESSURE 7TUBE R7 SODIUM—=  cHECK DATE BY

PRGON INTERFRCE

STRESS REGIMES FOR ONE - DIMENSION AL
ELRASTIC -~ PERFECTLY — PLRSTIC MODEL
7 r
[
13,5! l
1 i |
1 ‘ ‘
g
' 1y
A -
v . t
it ’
o 3
N | A
v S
2 K |
N ' . RATCHETING |REGIME
v) a' ! ;I
¢ h ‘ i .
Q !’ ) ; E
~ o
g q + ) II 11 !‘
N\ |.pasmc |
a CYCLING | ‘
) REGIME ]
N | Ml |
w 3 NN i t
1 k]
~ }
N AR A
S
R 2
-:“-Sz
" SHAKEDOWN/REGIME| ™ - NODE 22
] S’
}
/ ;r —=
| - ca— | NODE] 14
: \
ELASTIC REGIME \
o L
. o 25 5 75 / /.25
5 PRIMARY sme.ssﬁzsao STRESS
5




COMBUSTION ENGINEERING, INC. NUMBER A-5

ENGINEERING DEPARTMENT, CHATTANOOGA, TENN. SHEET /5 OF 20
’ CHARGE No._2-5//00 DATE_2-2-73 BYL/EILKER
. DESCRIPTION LRESSVRE 7UGBE AT SODIUM = CHECK DATE BY

. PARGON NTERFRCE

FULlL RELRXRPBT7TI/ION BREE METHDD

N THE FULL RELAXRART/oN BREE METHOO , 77 /S
PSSUMEPL THRAT SCOFFICIENT CREEF STARALP/INS
CCCUAR , WHILE THE wWRLL IS SUBTECT 70 7THE
MABXIMIN  THERMAL GRRO/IENT , TO RELRARX 7HE
STRESSES 70 Ver 7HROOGHOUT 7HE WARLL. NO
RELREATION TARKES PLRCE IN BNY OTHER PARRT
OF THE CYCLE. OS/ING THIrS METHOD/RHTCHET//VG-
OCCURS /N RLL REG/ONS/.S#OWA/ IN THE FIGCUCRE
on SHEET 1Y | EXCEPT THE ELRASTIC REG/ME.
THIS METHOLD G/VES CONSERYART/IVE PFPREL/ICT/IONS
RELATIVE TO THE MORE RIGOROUS IINELARSTIC
METHODS OF BNALYS/IS.

THE PCRSTIC STRAIN /INCREMENT PER CYCLE:’él7

Vy

63 = £ ) WHE RE. E = 24.¢ X103/<5/ é)?so°,c
v

X = M/Vv
&

Y = T/Ty

%
S = /—X+Y—2[Y(/~x)] FOoR Cx,v) w S,

SeE sweeT /Y

SP 11461 4
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COMBUSTION ENGINEERING, INC. NUMBER /-5

ENGINEERING DEPARTMENT, CHATTANOOGA, TENN.

sueeT— /& oF__2°
CHARGE No._ 2-5//°© DATE_2—-2 — 73 BYLYE/LKER
DESCRIPTION 2R ESSURE TUBE R7 SO0D/YUM>- cHECK DATE BY

LRGON /NTERFACE

~uol RELRXABTZT/ION BREE METHOD cConNnT ‘D

~NODE 1Y (/nvSIOE)D)

FROM SHKHEET _12 :

X = oO0.5/%
0.¢c859

72
s / - 0.518+ 0.459-1[0.459 Cr- o.s-/s)]

& =T o0.o0/3¥®

2/.8

- =l o - -5
69 T 24.C x/03 <°‘°'38> = /.22 X /o PER CYCLE

NODE 22 (/NSIDE)

FRoM SHEET _13 _

X = 0.523
vy = 0.892
72
5§ = /) -o0.523+0.892 - 2[0.992. (/—o.szs)J
§ = o.o0c4¢
. __2/.¢ _ g
€9 " 249.Cxr03 (0.0¢49¥) = s (¢ x/0° pPER cvctLE
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COMBUSTION ENGINEERING, INC. NUMBER 2-5

ENGINEERING DEPARTMENT, CHATTANOOGA, TENN. SHEET /7 oF___29°
CHARGE NoO...2-5//0° DATE_Z~-2—-73 BY LLEH KER
DESCRIPTION _2RESSURE TvBE R7T S20/9M — CHECK DATE BY.

PRGON INTERFARCE

FUtl RELRXP7/oN BREE ME7THOD conT'O

~onE 14 CiNSIDE)

SINCE mMOST OF THE T7THERMPL CrCcl/nvG OCCURS
BETWEEN CONOIT/ON B RANO convDpDr7/o0N 8,
/7T WL CONSERVART/IVELY BE ASSOMED THAT
THERE RPRE 30,006 CYCLES OF 7THE PLPLARST/IC
STRAIN INCREMENT CRILCULRTED ON THE
PRECEDING SHEET7T FOR wNopE /14 NSIDE.

- - -5 _
€ 5 N Eg = 30,000 (r.z2z2 x70"°>) = o0.3ce
Ep _ ©0.3¢cC

/éﬂLLow = 5.6z =18.3 > /.0

THERE FOR £ THIS METHNOD OF CRLCCULRT ING T AL
/INELRST/C PLRSTIC STARAIN /75 7700 CONMNSERVRTIIVE
PND P9 MORE R/IGOROUS METHOL 'S REGQUIRED.

NODE 22 (INSIDE))

SINCE 7HE STRESS RANGE PBETWEEN CONDIT/ON R
PNO CONDITION B S SMRLL , /7 W/l BE ASSUNVED
THRT THE CYCLING OCCURS RBETWEEN ConbDrrioM/
B AN BAMBIENT. 7HERE PRE CLOO CSYCLES OF

THE PLRSTIC STRAIN /INCREMENT CRLOULRTEL oM
THE PRECEDING SHEET FOR NODLE 22 /NS/LE.

€p = Nej = ¢oo (s5.¢cc x/o's) = o0.03¢Y

Ep . Q.934
/énu.ow =S~50°z = /.7 2> [t.0

THERE FORE THIS METHOL OF CRLCULRTING THE

INVELRSTIC PLRSTIC STRA/W /S To00o CONSERVAT/IVE
ONO R _MORE RIGOROUS METHOD /S REQUIRED.




COMBUSTION ENGINEERING, INC. NUMBER £-S

ENGINEERING DEPARTMENT, CHATTANOOGA, TENN. SHEET /g oF__ 292
CHARGE No._ 2 =-5//00 DATE_2-2-23 BYLIE/LKER
‘ DESCRIPTION _PRESSVRE TYBE A7 SOD/UM— CHECK DATE BY

PRGON INTERFACE

LoNe TERM CREEP (SECONORRY)

FTHE CREEP STRAIN WLl BE CN/FORM
FHROVGHOUT FTHE FUBE. /7 ¢S CRUSED BY
THE CONSTRANT PRIMRBRRY STRESS LORDING
OVER 7mE UNiTS 30 YEAR (IFETI/IME .

FOR 2 PRIMARRY STRESS LEVEL OF //.2% KS/ y

PND B TEMPERRBRTURE ¢EVEL OF 750 F

’

TAHE SECONDLLORY CREEPL /IS NEGL/IG/BLE .

7HOS €, =o.

$P 14614
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COMBUSTION ENGINEERING, INC. NUMBER =5

ENGINEERING DEPARTMENT, CHATTANOOGA, TENN. SHEET /9 oF 20
CHARGE NO..£=5//00 DATE_ 22 =73 BY LLEXKER
DESCRIPTION PRESSVRE T7UBE RT S00/6m~— CHECK DATE BY

PRGON INTERFACE

FRT7/IGUE

NOOE /Y (/NJ/DE\,

(convorrion B-reoer.) 7o CRmBreE~NnT )

STRESS ARANGE = 25.¢§ — 0 = 25.¢5 KS/
_ 25.¢§ _

PLTERNARTING STFrARAESS — — zZ — = /72.83 ks/

AROM RE F. / 1., IT-9-/

£ 30 e X~

S9 = E V =zZagc (12.83) = ;5. cs5 Ks/

NUMBER OF CYCLES = 300,000

A7 coo

//Vd = 300,000 = 0.0020

(convorrron B -rFeveT.)T0o (CONDITION B - STEFDY)

i

STRESS RANGE 25.¢5 —- f/2.88 = /2,80 KS/

- /2.80 _
PALTERNATING STRESS — 72~ = C.Y%0 Kks¢
€30 z0
S ~ E V=3 (cv0d= 7.27 kst < 13,0 ks/

7/\/0/ =0

Z 7/\/,_./ = 0.0020 40 T O0.0020
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COMBUSTION ENGINEERING, INC. NUMBER i -5

ENGINEERING DEPARTMENT. CHATTANOOGA, TENN. SHEET 20 OF 2o
CHARGE NO..2- 5//09° DATE_2-2 — 73 BYHZENKER
DESCRIPTION PRESSURE TUBE AR7 SODIUM— CHECK DATE BY.

PRGON IN7TERFARACE

LRTIGUE convT '’

voo&E 22 (s/nSIOE)

(conprTion B~ FeoeT.) To ( APMBIE~NT )

STRESS RANGE = 30.585 — 0 = 30.$§ £s/
_ 30.55 _
PULTERNPRTING STRESS — 2 = /5.28% KkS/
FROM REF. / Fre. I —-9—/
£E30 Jo
5= TEV = 3qc¢(/528)= /8.3 ks/

NOMBER ©OF CYCCLES = /20,000

7 - —€°° _ _

A\/d =~ ‘20,000 0.005%50

(conNvOorsTrOoN B-—FLUCT,) 70 (CcoNOorTron 9*57‘5/90)’)

STRESS RANGE = 30.855 — 25.¢€S5 =2 4,90 kS/

4,50
RLTERNRTING STRESS < z = 2.45 K3/
£ 30 - 30 _
S99 =ZFV =55 C(295) = 2,99 xs/ K /3 ks/

%\/d=°

Z h//\/d * 0.0050 +0 = O0,0050
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SODIUM WATER REACTION

DEMO PLANT



T Turs

DecuniEnT is Tux ProrertYy OF

ENGINEERING. INC.. WINDSOR. CONN.
AND 15 NOY 70 DE REPSODUCED. OR VEED TO FURNISN ANY IN-
FORMATION FOR BAKINIG OF DRAWINGS OR APPARATUS EXCEPY
WHERE PROVIBED POR DY AGREENENT WITW SMD CONPANY.

REPORT NO.

COMBUSTION ENGINEERING, INC.

CHATTANOOGA DIVISION
NUCLEAR COMPONENTS DEPARTMENT

TITLE

SODIUM-WATER REACTION

A= 6
CALCULATION NO DATED
DEMO PLANT
D-5r/00 STEAM GENERATOR
CONTRACT NO. UNIT DESIGNATION

L

- .
e T v
Gordew &. Chen  d N o
PREPARED d CHECKED REVIEWED
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COMBUSTION ENGINEERING, INC. NUMBER Vil %

ENGINEERING DEPARTMENT, CHATTANOOGA, TENN. SHEET 1 OF 27
CHARGE No.__P-51/c0 pate_2-14-73 py__CHEN
DESCRIPTION SODIUM-WATER REACTION CHECK DATE T-tLaas - 5;’{4:’-;

TABLE OF CONTENTS

Sheet
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1. ABSTRACT

Tube leakage may occur sometime during the life of
the sodium-heated steam generator. The reaction
between sodium and water is a potential hazard to
both personnel and equipment. The objective of the
analysis is to determine the dynamic response of the
vessel shell and the flow baffle of the evaporator
and the superheater of the steam generator by numeri-
cal analysis of the deformation of these two elements
under the reaction pressures resulting from the
rupture of the tubes in the evaporator or in the
superheater and then further determine the integrity
of the steam generator. The effect of volume increase
in the vessel where the sodium-water reaction takes
place has not been considered in developing the
dynamic pressures. However, the results are known

to be conservative. This analysis has concluded a
satisfactory result for both units of the steam
generator under the given dynamic loads.
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2. SIGNIFICANT RESULTS

As shown in Figures 5 and 6 and tables in Section 5.e.,
the maximum displacements of the vessel shells and
the baffles are found to be as follows: i

Max. Displacement
of the Vessel Shell

Max.Displacement

of the Flow Baffle
Evaporator Exceeded ff= 1.0898
Superheater 1.038409<r%= 1.0887

load.

It is noticed that the baffle In the evaporator has
ruptured, however, the vessel shell sustained the
The dlsplacement of the baffle in the super-
heater stayed within the strain limit of 0.0887".

The calculated required thicknesses for the vessels
under the maximum cover gas steady pressures of 450

psi and 150 psi are 0.9187" and 0.2253" for the
evaporator shell and the superheater shell respectively.
Both are less than the actual thickness of 1.25".

These results assure the integrity of these two
vessels subjected to the sudden increase of internal
pressure due to sodium-water reaction.

1.01538¢r* = 1.1157
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3. GENERAL DISCUSSION

The structure considered in this analysis is shown
in Section 5.a. The shells and the flow baffles
were analyzed for the dynamic pressure described in
Section 5.b., which was developed from the BUG-3
Computer Code by NPD; only the highest peak pressure
inside each vessel was considered.

The procedure used in evaluating the dynamic response
of the vessels and the baffles was as follows:

(a) The equation of motion for the flow baffle was
evaluated numerically by the Runge-Kutta method.
The baffle was allowed to expand with time until
it reached its maximum displacement or it
exceeded the critical radius and ruptured.

(b) If the flow baffle had reached its maximum
displacement before it ruptured, the analysis
was concluded, no further study on the dynamic
response of the shell would be needed.

(¢) If the flow baffle had ruptured before reach-
ing a maximum displacement then the equation
of motion for the vessel shell was evaluated
by the same numerical method, starting from
the time when the baffle was ruptured. The
shell was allowed to expand with time until
either the shell reached its maximum displace-
ment or it exceeded the radius at instability
and ruptured. :

The displacement versus time curves for the shell
and the baffles dre shown in Figures 5 and 6. The
values are taken from tables in Section 5.e.

5P 14814
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5) PETALLED ANALY S!S

A) LysreM GEOMETRY

A CROSS SECTION oF THE VESSEL sHELL AAND
FLow BAFFLE OF THE EVAPORATOR AnND SuPERHEATER
SECTIONS ARE SMOWA/ BELOW. CERTAIN DIMEANSIONS
ARE GIVEN TO FACILITATE THE ANALYSIS.
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5) PETALLED ANALYSIS

2) LysreEM GEOMETRY

A CROSS SECT/ION oF THE VESSEL SHELL AND
FLow BAFFLE OF THE EVAPORATOR AnND SUPERHEATER
SECTIONS ARE SHMOWA/ BELOW. CERTAIN DIMENSIONS
ARE &GIVEN TO FACILITATE THE ANALYSIS.
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5.) PETAILED ANALYS!S

b) SysremM ALLOWABLE

THE oOoBTECTIVE ©OF THIS CALCULATION S 70 ASSURE
THAT THE SYysSTEM MEETS THE FOLLOWING RAEQRUIREMENTS.

/. THE THICKNESSES oF THE VESSEL 4HELLS ARE ToO

BE GREATER THAN (- = LR

FEAUIREP ~ “g — Sp’ WHERE P

1S THE coVER &EAS PRESSURE AFTER THE AUPTURE
pIsc BURSTS .(see I[-//10 , REF. 5)

2. THE MAXIMUM DISPLACEMEGNTS oF THE VESSEL
SHELLS oOF THE EVAPORATOR AND THE SUFPERHEATER.
SECTIONS DO NOT EXCEED THEIR CRITICAL VALUES.
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5) PETAILED AA/AcLy Sl ¢

C) LYSTEM LOADING

THE DpYNAMI C PRESSURE DURING THE Soprysrf— WATEK
REACTION (NS IDE THE VESSELS ARE PRESENTED 1A/
FIGURES | ANnD 3 FoR EVAPORATOR AND supPERHEATEK
RESPECTIVELY. INPICATED /N THE FIGURES ARE DYNAMIC
PRESSURE VS. TIME CURVES OF DIFFERENT ELEVATION £
IN THE VESLELS., QALY THE CURVE WITH THE HIGHEST
PRESSURE , WHIcH OCCURED AT THE BoTroM oF THE
Vessels , ARE CHosEN AS THE DYNAMI C LOADIASG
FoR THE ANALYSIS.

FIlGURES 2 AND ¢ Syo) THE COUER GAS PRESSURTES
OF TWE EVAPORATOR AND THE SUPERHEATER , FOR THE
COoNSIPERATION OF REAUIREMENMT [ oF SEc. 5.56.
A VALuE oF &S50 PSSl (5 PpETERMINEL [Foff rHE
EYAPORATOR SECTION AMND (50 PSI  FOR THE S5UPEAHEATER
AS PESIGAN PRESSURES [froM THESE FIAURES,
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5. ) DETAILED ANALYS]S
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5) PETAILED ANALYS|S

d THOD OF Ly s/
d-1) NoMENCLATURE

NOMENCLATIURE

Ho = INITIAL SHELL THICKNESS ,IN T = TIME SCALE , SsEL

h =Hfy | pimensiontess syere. T =00 RE /2 717" tme
THICKNESS FACTeR , SEC.

W = GTRAIN— HARDEN EBExpPoNENT C, = INITIAL TIME, SEC

F, = APPLIED Dymwamic inTERNAL & = UNIT MASS oF MATL
PRESSURE Ps|
Vo= STRENGTH mMEASURE PS|
Ps-‘—’ APPLIED STATIC INTERNAL
PRESSURE P51 T= /7 Dimsnsiontsss
TIME S(CALG
1= Py Ao/ 7o H, DIMENS 0N LESS

OYNAMI ¢ PRESSURE RATIO W= 1mtTIAL yzroc 1Ty

FPe= P.AR./T-H. DIMENSion (E5S I’*ﬁ INSTABILITY prmEr-

INTERIAL PRESSURE KRAT/IC SIoNLESS RADIUS
R = SHNELL RADIUS , /N E = MopUhtUS 6F ELASTI
cITy.

Re= /MITIAL 3HELL RADIUS, /N

r = R/ﬁ’, DIMEANS)pAILE 55 SHELL
RADPIUVUS

SP 11481 A
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5 ) DETAILED ANALYSIS

d) MerHoD oF ANALYS1S
d-2) pAssumPrions

Q) MATERIAL |5 tNCOMPRESSIBLE (ELASTIC DEFORMATION,
NEGLECTED ).

b) PLANE <TRAIN FoR LONE CyLIAJDERS (éézzo)

C) LuDWISK pPOWER —Low STRAIN HARDING (T=T; €")

d) Vonmisss Frow criTERIA 15 USED.

) No INTERACTION BETWEEN PRESSURE VERSUS TME

CURVE AND INCREASE oF VoldmE puE ToO
DEFORMATION of VESSEL SHELL 14 CorsiPERED.

h) IN DeTsrMININVG THE RESPONSE of THE THIAMN
CYLINDERS , THE HIGHEET INSTANTANEOWS FEAK
PRESSURTE 1M THE ZSECTIOA 1% TAKZA) AND 1S

ASSUMED TO BE RADIALLY AND AxiaLl)
SYMMETRICAL.
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5) DETAILED ANALY 515

1S

A) MeTHOD OF ANALYSIS

J—ZQ MATER /AL PROPERTIES

THE TYPES OF MATERIAL USED AND THEIR FPROPERTIES
ARE TABULATED AsS Foilows , BASED oOAN THE DE s'&GA

TEMPERATUKES sHoWA.

ELEMENT |TVPE oF _f::’: :_N 73 '3 . 57 E
MATER 141 IZD) K%y ’b/MIB ey Ks|

EvAPORATOR| */ ~*4° >

rype wos| B6é | 65,4 (00008 0.72 | 18.8 | z60x/0

EVAPORATOR - E |

VESSEL 5A-287 - X4 28.5 o oo073)| o. z/q Z0.92 |24 550
SHELL . p
SupERH A $A - w0
Barrie |TVPE45| P60 £8,7¢ o, o007 0.77¢ | /16.95 | z5x /0
Moo ik M, .

SUPERH EATER SA-387 3
VvESSEL & 6o \/07.92)0.00093 | 0.227 | 20.32Z \zut.8x1%
SHELL k-0

THE (o, & M VYALUES ARE oBTAINED AS |LLUSTRATED

IN THE FollOoWrN&G EXAMPLE FOR THE MATERIAL ©F SA-240

TVYPE #o05 AT 866.

AT

AT RUPTURE pPeINT

S INCE

WE HAVE

YIELD

PoIANT

5),:- 7 = /8.8 Ks| Erzéx/oa.zél

E

€

Sv

= Z26 x/0

PPy

= G /g =0-723 x /073

= g7 =

0 K

U ELong. = & =2

So

r=r e (see. 5. ¢c-2). A560Mp-r/a/\/~€__]
SOLVING SIMULTANEOUSLY: /8.6 = (. (0.77 3 o037t

=V lo=zil)™

g =654 K3y




S 114614

COMBUSTION ENGINEERING, INC. NUMBER A-&

ENGINEERING DEPARTMENT, CHATTANOOGA, TENN. sHEeT__2€ or__217
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5.) PETAILED ANALY SIS

d) MerHop oF AnALySIS
d=4 ) _FORMULATION AND CorPUTATION

THIN -WALLED CYyLiNDRICAL SHELL SUBJTECTED TO
UNIEORM INTERNAL PRESSUIRE

THE EQUIVALENT STATIC PRESSURE —RADPIUS RE(ATION
FOR THIN WALLED CyLINDRICAL <SHELL WRITTEN N A
DIMENSIODNLESS ForkmM 15

z_ ot L
=G5

(REF. |) (1)

THE EQUATION oF mMoOoTIOoN FoR THE SYs7emM , IN A
DIMENSIONLESS FORM , 1S GIVEN AS

z

= I
L= T (BB (REF- ) 3

SuBSTITUTING PP BY THE EXPRE $$/0N FromM EQUATION (1)
LEADS TO THE FOLLOWING RELAT/ON

dr_ _ _r z ol LnF
45 = (- (F ] @)

i FOUND BY SETTING THE DERIVATIVE ©oF Pg wiTH
REspeECT ToO | EeuAl 7O ZEERO.

7 =°e=(z27(ent)- FEn (24 r)'”"—,é-]/,,af

L£.8. Z,&Vb/"::m

a& . ’,* - e’"/&




P LA

COMéUSTION ENGINEERING, INC.

ENGINEERING DEPARTMENT, CHATTANOOGA, TENN.

DESCRIPTION

CHARGE NO

D-51l/00

S0DIr UM —-WATER ReALTION

NUMBER

A-6

SHEET.

77

OF

27

DATE y4 "/4—75

ay.CEN

CHECK DATE_2 1%~ 7> BY. Sc

5) DETA/ILED ANALYSIS

d) merwop oF AnALySi1S

d~4) FORMULATION AND compPuTATICN

EQUATION (3) 5 350LVED BY WNIMERICAL INTEGRATION
USING RUNGE — KUTTA MeTHOoD (REF. 6). THE RESULTS
OF WHIcH ARE PRESENTED N SFEcTIioN) 5, €.

THE VALUES OF INSTABILITY [FApIidS rf THE ELEMENTS
IN THIS ANALY SIS ARKE HSTEDP As Friews.,

ELEMENT A, n ’;# UNIT
(/N)
Flow 23.3/125% 2./ /.- 08982 \EVAPORATOR
BAFFLE /5. 500 0./72 /. 0 887 |SUPERHEATER
VEssetL 28.75 c.-z!9 /- 7/ 57 |E¥aporATOR
SHE LL Z20.9375| o0.z227 [. 1 2/0 |SUPELHEATK

IF A THIN CYLINDER FA/ILURE
THE RADIUS OF TME CYLINER CAN ~NOT EX CEED THE
RADIUS AT INSTABILITY DPELINED ABOVE ,

/s TO BE AVOIDED,

A CoMPUTATIONAL FoRM FeR A SECOND— oRPEK
PIFFERENCIA L E®UATION | pBTAINED FRoAM REF. &

wiTH SLIGHT CHANGE /N 7HE NOTATIONS , 15 FRESGMTED
IN THE FotlowrA/&§ pPAGE FOK REFERENCE .
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5) DETAILEDL ANALYSLS

d) mMeTHID of ANALYSI4

d-th) FoRmULATION AMP CeMPUTATI N

CoMPUTATIOA AL FORM OF rﬁ'g— KRUNGE- KATTA METH CL

. dF =f(V, 7. T)
DaE. - dz," s " s

INITIAL ConoITION = 1 Vo, Z.
T r r r
7;1:7; w =1, /7/ :é ;'/'={(’:',:‘t)
z' _ . . , v (X4 ’
?f—'Tll*A/z M=ttt by = Fr + 5 e = 7& (172 . bz s Cre)
T:;’CI*‘;Q la=t; 40, /",‘3 = ’7‘1 + 2 A% Hs f (4, lys . Gs)

iy = £ + Fs

4T

N
W
-
~
T
AN
N
N
<
o

s =551, t2ntzhsthy)

- At L 44 ¢ X, e
A = —Z(/,; + zl+ 2l3+ly)

’ td 4 l' P
T =G tsT| fy=ttal; L=t tak b= f{(hn. kT
(AN A VISV iz = by +hay 254 o= f(hs fie, Ga)
T3=Tyt% Ks=hithi"H Fz3 = /E/ + Fay 4T/2 l’;; =f(ts. :3 Tzs)
Ty =Ty VAT gz iy 52T Fg =15, + by 4T Fid = f (Fu, Fys Tg)
an =2 h t2fr2hs t hy) |0 6 = (h t2bt 205t By)
- ’ 74 .’
7;’=TH+AZ ral—;/;,-wrz_ /;I + & /5/:f(/3/: GI'T?'/)
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5) DETAILED ANALYSIS

RO-:ZBIB/";I/

T=o.c00734 %73 0= o 7~

E) SYMMARY . He=/ 07 N=0.172
e- s [ ON V'o':ésjt/papsl t. = o.000f SeC.
(FLow parrFLE) ‘
INPUT OATA OUTPUT DATA COMMENTS
Time | F £ Fos Pt | D1sp. |VELOGITY|ACCELER H/
il 2k PstA | psiA | PS5IA | P5i1A4 IN ”"/;% /A//ﬁ_d- K..
d.ooor[l 28000| /9500 | /9500 1600P|23,3/e8| 0.0 ‘3',34”01 /. o
p.00col| 16000 | 12000| 12000 Boo?| 23,2124 26/ 702, 095%/ ). 0000574
s.ooco3| Bee° | 4700 6700 SYoo |23, 3]74)| H4/5 60 ZB%XM‘/,mnM/
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£ ) EVAPORATOR 56CTIOA

(FLow BAFFLE)

INPUT  DATAH OUTPUT PATA CoMMBATS
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5) DETAILED ANALYSIS A, = 28.75" 1 =0.00078 Y Uz o0 Vec
e) SUMMAR)Y H,= (.25"
- n = 02z/9
&-|) EVAPORATOR SecT/oN
(vesselL sHELL) . 278500 P51 ¢ = g.00r5 sec.
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5) DETAILED ANALYSIS A,= /5.5" T= 0000754 %3 4o .0 b
€) SuMMARY | Ho= 107 n= o7
€-2) SUPERHEATER SEcTI0N I = 58700 P51 £ =0.0000] sec
(FLow BAFFLE) : |
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5) DETAILED ANALYS]S

€) SUMMARY

e-z2) SUPERHEATEKR $ECTION

(FLow BAFELE)

INPUT PATA OUTPUT PATA COMMEANTS
TiMe | FRy Piz Fiz Pod | D1sp. | VéLoctTy| AccelER A
sec. |psia | psial Psial psial N “Usec| e K
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DESCRIPTION

COMBUSTION ENGINEERING, INC. NUMBER A-6

ENGINEERING DEPARTMENT, CHATTANOOGA, TENN. SHEET z5 or__ 27 '
CHARGE NO D'.S-/Ioo DATE Z ’/4" 7.3 BY. C”E/\/
50D01U0M — WATEK REACTION cueck pate 1513 gy 3¢

5 ) DETAILED ANALY $15

e) 50MM/N<y
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217

©
:

00
;

!

3
}

~ (S3HONI) SNIQvY NV3IW

o
4

4 | | | n | - L
M ] )
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FIGURE &. RESPONSE OF THE FLoW BAFFLE
For ONE TUBE FAILURE IN SUPENHEATEK




COMBUSTION ENGINEERING, INC. NUMBER A-©6
ENGINEERING DEPARTMENT, CHATTANOOGA, TENN. SHEET z6 oF__%27

CHARGE No._ P~ 5//00 pATE_Z =14 =73 ay. cHEN
DESCRIPTION ___ 500/ UM -~ WATER REACTIPA) cueck pate 21t 1% gy 3¢

5) PETAILED ANALYS) S

€) SuMMARY
E-3) EVALUATION of THE HESULTS

CoNSIPER RERUIREMENT |

A v, TR
. _ PR _  O45xz8[cS
KEG UIRED Sem—-SP 4 —o.5xa4ys5
. — v
= o.9/87 < tue“e/ shell /.z5

(B) 5uUPERHEATER

tgzadmsp Swr—-5P 13,6 - 0.5..015

© ,?
=0.2253 L Cyepory shen™ 125

ConsiDER nglggﬂzﬂr Z

(A) EVAPORATOK

THE FlLow BAFFLE EXCEEDED [TS INSTABILITY RADIUS
AT o.ccr16 s6c. ( SEE syeEST 20 )

APTER THE RUPTURE ©OF THE FLOW BAFFLE , THE Vesssl
SWNELL DisPLACBMENT KEACHED |ITS MAXIMUM AT

0.0032 S&c ., WHICH WAS 4TILL BELOW THE CRITICAL YALUE

Rk, = r.orss3s <t*=r1157 (see swesT_2l)
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COMBUSTION ENGINEERING, INC. NUMBER A-6
ENGINEERING DEPARTMENT, CHATTANOOGA, TENN. SHEET Zz27 o 21

CHARGE No.__P=5//00 pATE_Z L4 =73 gy CHEAN
DESCRIPTION 5&0/”/‘4"‘ W”m ﬁEACT/OI\/ CHECK DATE Z'lL' 23 BY 2‘2

5) PETAILED ANALY SIS

E) symmary
€-3) EVALUATION o©of THE RESULTS

Cons) pER REQRUIREMENT Z-

(B) SUPERMHEATER

THE FLoW BAFFLE REACHED ITS MAXIMUA DIiISPLACE -

MENT AT 0.00/4 $BC. , WHICH wAs ST/LL BELow
THE CRITMCAL VALUE .
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SPECIFICATIONS - DEMONSTRATION PLANT STEAM GENERATORS
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1.0 SCOPE
2.1 Reactor Development and Technology (RDT) Standards
2.2 American Society of Mechanical Engineers (ASME) Codes
3.1.5 Seals
3.3.2.1 Design Conditions
3.4.8 Threaded Fasteners and Bolts
3.5.3 Water Level Indicators

3. 11 Reports and Documentation

Nuclear Components Department

£-2088




NO. EP-7670-4 REV. PAGE

MODIFICATION EXCEPTIONS AND/OR INTERPRETATIONS TO RDT E4-16T
DATED MAY, 1972, FOR SODIUM HEATED STEAM GENERATORS

This exceptions/interpretations document modifies, supplements or clarifies RDT
Standard E4-16T dated May, 1972, and in conmjunction with the Ordering Data,

can be used to procure sodiumn heated steam generators.

2.1 Reactor Development and Technology (RDT) Standards. Delete the

following RDT Standards from this paragraph (mot applicable).

RDTM 1 - 2T 3 - 11T
RDT M1 - 6T 4 - 1T
2 - 1T 4 - 2T
2 - 4T S - 2T
2 -7T 5 - 3T
2 - 8T 5 - 4T
2 - 15T 6 - 1T
3 - 4T 7 - 3T
3 - 5T
3 - 6T
3 -9T

Add the following RDT Standards to paragraph 2. 1:

RDT M 1 - 10T
RDT M 7 - 4T

2.2 American Society of Mechanical Engineers (ASME) Codes
Section XI rules for in-service inspection dated 1971 and addenda

through Summer, 1972,

ASME Boiler and Pressure Vessel Code Case interpretations, code case
1331-7 Nuclear Vessels for high temperature service.

3.1,5 Seals - Internal by-pass seals are not goverened by this

paragraph.

Nuclear Components Department
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3.1.7.2 Delete last sentence.
3.3.2.1 Add paragraph as follows: The steam generator
design pressures and temperatures shall be included in the Ordering Data.

3.4.8 Threaded Elements and Bolts - Item 9 - Delete this require-

ment and replace with the following: Threaded or bolted connections on
the sodium side shall be held to 2 minimum. Where bolted connections
are required, suitable analysis shall be provided.

3.5.3 Water Level Indicators - Delete this paragraph. (In a forced

recirculating steam generator utilizing a separate steam drum, the water
level will be established within the drum and level indicators will be
required in this component.

3.11 Reports and Documentation - Add sentence: "Submittal of reports and

Documentation shall be in accordance with Table IV".

Nuclear Components Department
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SODIUM HEATED STEAM GENERATOR

LMFBR DEMONSTRATION PLANT

ORDERING DATA

TABLE OF CONTENTS

1.0 SCOPE
1.1° Components and Services to be furnished
3.0 TECHNICAL REQUIREMENTS
3.1 General Requirements
3.1.1 Steam Generators
3.1.1,2 Type and Description
3.1.1,3 Design Basis
3. 1.3 Inspectability and Maintainability
3.1.3.1 Inspection
3.1.6 Cover Gas
3. 1. 7 Drainability
3.1.7.2 Drain lines
3. 1.8 Size and Weight
3. 1.9 Preheating
3.1,9.2 Heatup rates
3. 1. 11 Performance Requirements
’| 3.2 Thermal and Hydraulic Design Requirements

3.2.1 Design Objectives
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3.3

3.4

L

3.2.2

3.2.3

3.2.4

3.2.5

3.2.7

3.2.1.1 Specific Objectives

Type and Orientation

Physical Properties and Purity of Sodium
Physical Properties and Purity of Feedwater
Heat Transfer Surface

3.2.5.1 Excess Surface and Tubes

Pressure Drops

3. 2. 11 Thermal Transients

Structural Design Requirements

3.3.2

3.3.3

3.3.4

3.3.6

3.3.7

3.3.9

Stress Limits

3.3.2.1 Design Conditions
Seismic Requirements
Vibration

3.3.4.1 Flow ratio
Thermal Transient Stresses
Nozzle Loads

Baffles and Support Plates

3.3.9.2 Sizing

3. 3. 11 Sodium Water Reaction

3. 3. 14 Corrosion Allowance

Connections, Accessories and Appurtenances

3. 4.2 Auxiliary Lines

3. 4. 3 Insulation Supports
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3.5

3.6

3.4.6 Foundation and Support Structure
3.4.7 Piping and Connections
3.4.9 Preheating System Supports
Instrumentation
3.5.1.1 Instruments
3.5.2 Sodium Level Indication
3.5.4 Pressure Gauges
3.5.5 Temperature Instrumentation
3.5.6 Flow Instrumentation
3.5.7 Water to Sodium Leak Detection
3.5.8 External Leak Detection
3.5.9 Instrumentation, Inspection, Maintenance and Repair
3. 5. 10 Structural Instrumentation
Operating Conditions
3.6.1 Types of Operating Conditions
3.6.1.1 Normal Conditions
3.6.1.2 Upset Conditions
3.6.1.3 Emergency Conditions
3.6.1.4 Faulted Conditions
3.6.2 Steady-State and Transient Operations
3.6.2.1 Normal Conditions
1. Full Power steady state conditions
2. Part Load steady state conditions

3. Dry heatup and cooldown
4, Normal Startup and Shutdown
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3.9

S.
6.
7.

Load Changes
Step Changes
Other normal operating conditions

3.6.2. 2 Upset Conditions
1. Normal Reactor plant
2, Loss of Recirculating pump flow
3. Other Upset Operating Conditions

3.6.3 Abnormal Conditions

3.6.3.1 Emergency Conditions

1

2,
3.
4.

9N 4

7'

Single Secondary Sodium pump Seizure with Scram
Single primary Sodium pump Seizure with Scram
Activation of Sodium-water Reaction Relief System
Loss of Feedwater Flow via Feedwater Control
Valve Closure with Scram

Sodium-water Reaction Due to Single Tube Rupture
Steam Line Rupture

Other emergency conditions

3.6.3.2 Faulted Conditions

3. 7.3 Materials

3. 8.1 Fabrication

3.8.2,7 Tube Plug Welding

3.8.2 Heat Treatment

3. 8. 11 Assembly

3. 8. 13 Identification and Marking

3. 8. 13. 3 Nameplates

Installation and Field Service Requirements

3.9.1 Services to be Provided

3.9.4 Handling

3.9.6 Installation Requirements
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3. 10. 2. 3 Requirements for Pressure Relieving Devices

3. 12 Drawings

3. 12, 6 Parts List

4.6.2 Helium Leak Tests
5.1 Items to be Delivered
Table 1 Additional Requirements for Examination of Materials (RDT

E4-16T)

Table 11 Range of Steady State Operating Conditions
Table III Drawing Submittal Requirements
Table IV Report and Document Submittal
Figure 1 Steamn Generator Envelope
Figure 2 Schematic Arrangement of Steam Generator
Figure 3 Nozzle Loads
Figure 4 Normal Operating Ranges
Figure 5 Na/Hy0 Flow vs % Power
Figure 6 Steam /Water Pressures vs % Power
Figure 7 Normal Load Changes
Figure 8 Normal Scram Transient
Figure 9 Secondary Sodium Pump Seizure
Figure 10 Primary Sodium Pump Seizure

Figure 11  Activation of NA/Hy0 Protection System
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‘ NO.

Note: This document supplements the Sodium-Heated Steam Generator Standard RDT
E4-16T, dated May, 1972. The numbering system used in this document
is the same as RDT E4-16T. When no additional requirements to RDT

E4-16T are required, the paragraph is omitted.

1. SCOPE
This document contains the Ordering Data to be used for the design and
fabrication of sodium heated steam generators for LMFBR Demonstration
Plants.

1.1 Components and Services to be Provided - Components and services

to be provided include the following items:
A complete steam generator as defined in 3. 1.1, including:
A. Structural supports
B. Lifting lugs
C. Drain, vent, and relief connections
D. Preheat Requirements
E. Tests and mockups to back up the design
F. Drawings, plans and instruction manuals
G. Design, analysis, and performance reports
H. Quality Assurance procedures and documentation
I. Spare parts
J. Field services as defined in 3.9

K. Insulation Requirements
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1.1 Components and Services to be Provided continued

L. Steam Generator Instrumentation
Associated equipment not covered by this specification: steam drum,
pumps, piping, valves, sodium water reaction relief systems, control
systems, isolation and dump systems.
TECHNICAL REQUIREMENTS

3.1 General Requirements

3.1.1 Steam Generator

3.1.1.2 Type and Description - The steam generator shall

consist of a bayonet-evaporator module and a bayonet superheater module
as shown in Figure 1. The steam generator shall operate as a forced

recirculation system as shown in Figure 2.

Feedwater shall enter the evaporator through nozzle H and flow downward
through the bayonet tubes to the base of the tubes, where it shall

flow upward through an annulus, receiving heat from the sodium on

the shell side in counterflow. The steam shall then exit through

nozzle G and after passing through a separator (not part of this

specification), enter the superheater module through nozzle C.
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3.1. 1.2 Type and Descripton continued

Entering the superheater, the steam shall flow downward through an anmulus
between the bayonet tube and pressure tube, receiving heat from the shell

side sodium in counterflow. Upon reaching final superheat temperature at

the base of the tube, the steam shall flow upward through the bayonet tube

and exit the unit through nozzle D. The bayonet tube portion of the superheater
tube assembly shall be made of double wall tubes to provide a stagnant space

between the tubes for insulating purposes.

Sodium shall enter the lower portion of the superheater module through nozzle
A and flow upward around the bayonet tubes and exit through nozzle B near
the top of the bundle, The sodium shall then enter the upper part of the
evaporator module through nozzle F and flow downward around the bayonet

tubes and exit the evaporator at the lower end through nozzle E.

The steam generator shall be designed to incorporate an inert cover gas
between the tubesheet and the sodium free surface in the evaporator and
superheater modules. The cover gas systems in the modules are completely
independent. Nozzles above and below the sodium level shall be incorporated
to provide a means of measuring and controlling the sodium level in each
module. A vent nozzle/s shall be provided at the highest points inside the

module shells,

The steam generator design shall incorporate sodium-water reaction relief
systems for each of the modules. Primary and secondary relief systems shall

be connected to the modules at nozzles located in the gas space in each
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3.1.1.2 Type and Description continued

of the modules.

3.1.1.3 Design Basis - The steam generator shall

be designed in accordance with the latest edition and addenda of the ASME
Boiler and Pressure Vessel Code, Section III, together with the applicable
code cases including Code Case 1331-7, the high-temperature criteria of
RDT F9-1T, and the requirements of this specification. The steam
generator shall be classified as a Class I vessel and shall be Code stamped,
The steam generator shall be designed for a service life of 30 years operation
at the conditions defined in 3. 6.
3.1.3.1 Inspection - Requirements for In-Service Inspec-

tion shall be in accordance with ASME Code Sec. XI,'Rules for Inservice Inspectionq

3.1.6 Cover Gas - Argon cover gas shall be utilized above
the surface of the sodium. The argon cover gas supply shall have

the following characteristics:

Supply Inlet Temperature (°F) 100
Working Pressure (psia) 0 - 150
Purity 99. 996%
Impurities PPM
Oxygen (tentative) S
Hydrogen (tentative) 2
Nitrogen 15
Carbonaceous Gases S
Water (D.P, - 849F) 6
Other 7

3.1.7.2 Drain lines will be 2" pipe size,

3.1.8 Size and Weight - The approximate size and weight of
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3. 1.8 Size and Weight continued

the steam generator are shown in Figure 1.
3.1.9.2 The heatup rate of the steam generator shall
be 5°F/hr. from ambient to 350°F.

3.1.11 Performance Requirements - The steam generator

shall be capable of continuous operation through the range of conditions
specified in 3.6. The steam generator shall be designed for exposure to

the following environmental conditions after installation and during operation:

Ambient Temperature Later
Ambient Pressure Later
Ambient Humidity Later
Nuclear Radiation Intensity Later
Neutron Radiation Later

3.2 Thermal and Hydraulic Design Requirements

3.2.1 Design Objectives

3.2.1,1 The steam generator shall be designed to permit safe,
stable, and predictable operation throughout the load range of the steady state
and transient conditions presented in 3. 6.

3.2.2 Type and Orientation - The steam generator shall be forced

recirculating shell and bayonet tube heat exchanger with sodiym on the shell
side and water/steam on the tube side. The superheater and evaporator shall
be contained in separate shells each mounted separately in a vertical position
as shown in Figure 1.

3.2, 3 Physical Properties and Purity of Sodium - For the steam

generator design, the sodium properties as recommended in ANL-7323 shall

be used.
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3.2.4 Physical Properties and Purity of Feedwater - The

feedwater purity limits for the steam generator model shall be as follows:

PPB
1. Total dissolved solids S0
2, Towral silica 20
3. Total iron 10
4. Total copper 2
5. Conductivity after ion exchange 1
6. PH 9.2 - 9.4

3.2.5.1 Excess Surface (Later)

3.2.5.2 The steam generator sodium level control system
will be designed to maintain the sodium level with a permissable
variation from the set point of plus or minus 3 inches.

3.2,7 Pressure Drop - The water/steam side and sodium side

pressure drop shall not exceed the following:

Water/steam side, evaporator S0 psi
Water/steam side, superheater 125 psi
Sodium side, evaporator 20 psi
Sodium side, superheater 20 psi

3.2.11 Thermal Transients - An analysis shall be performed

to evaluate the response of the steam generator to the inlet flow and

temperature transients of water and sodium specified in Section 3. 6.
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3.3 Structural Design Requirements

3.3.2 Stress Limits - Allowable stresses for the steam generator

shall be in accordance with Section II of the Code, Code case 1331-7
and RDT F9-1 for a service life of 30 years under the normal, upset,
emergency, and faulted conditions specified in 3. 6.

3.3.3 Seismic Considerations - Earthquake zone 2

DBE Acceleration .2G Horizontal acting
. 1G Vertical simultaneously

3.3.4 Vibration
3.3.4.2 Flow rates for use in vibration analyses shall be 110%
of the maximum flow rates specified in table II.

3.3.6 Thermals Transient Stresses - Regions of discontinuities such

as nozzles, tube to tubesheet joints, tubesheet to shell regions, and thick
sections such as tubesheets, nozzles, and shells shall be analyzed for
thermal stresses resulting in past from the number of sodium and water-
steam temperature transients specified in Section 3. 6.

3.3.7 Nozzle Loads - Nozzle loads shall bein accordance with

Figure 3.

3.3.9.2 Tube bundles, baffle and tube support thickness, and
tube hole clearances shall meet the requirements of the specifications, codes
and code cases contained in Section 2. 0.

3. 3. 11 Sodium-Water Reaction - The steam generator shall be designed

to contain the pressure and shock forces caused by the design basis leak

(DBL) defined below:
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3. 3.11 Sodium-Water Reaction continued

One (tentative) guillotine failure of pressure tube at the worst location
as determined by a sodium-water reaction pressure loading analysis.

3.3.14 Corrosion Allowance - Later

3.4 Connections, Accesses, and Appurtenances

3.4.2 Auxiliary Lines - See 3.4.7

3.4.3 Insulation Supports - The supplier shall provide insulation

supports on the exterior surfaces of the steam generator evaporator
and superheater shells. Integral clips or rings for supporting
the insulation shall be provided prior to final heat treatment.
Requirements for insulation shall be established by the supplier based
upon the following criteria and operating conditions, (Later)

3.4.6 Foundation and Support Structure - (Later)

3.4.7 Piping Connections - The interface location of the sodium and
water/steam lines and auxiliary lines are shown in Figure 1, Piping sizes,

end preparation and number required shall be as follows:

No. Required Pipe Size End Preparation
Sodium inlet, superheater 1 18" Butt Welded
Sodium inlet, Evaporator 2 12" Butt Welded
Sodium outlet, evaporator 1 18" Butt Welded
Sodium outlet, superheater 2 12" Butt Welded
Evaporator recirc. water inlet 1 16" Butt Welded
Evaporator saturated steam
outlet 1 16" Butt Welded
Superheater saturated steam
inlet 1 14" Butt Welded
Superheater steam outlet 1 14" Butt Welded
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3.4.7 Piping Connections continued

Auxiliary Lines (in each evap/S.H. module)

No. Required Pipe Size End Prep.
Sodium Level Nozzles Later Butt Welded
Primary Relief Nozzles Later Butt Welded
Secondary Relief Nozzle 12" Butt Welded
Cover Gas Makeup & Vent Nozzle 1" Butt Welded
Vent (steam/water) 1" Butt Welded
Instrumentation 2" Butt Welded

et s N

3.4.9 Preheating System Supports - (Later)

3.5.1.1 The following instruments and provisions for instrumen-
tation are considered to ‘be a part of the steam generator and consist
of the following:

Strain gages for measurement of shell stresses
Sodium level indicators

External sodium leak detection
Water-to-sodium leak detectors

Pressure indicator

Vibration instrumentation

Temperature indicator

e

o Ao

®

Numbers and location of instrumentation (Later)

3.5.2 Sodium Level Indication - The steam generator shall be fitted

with independent sodium level indicators mounted external to the
evaporator and superheater shell modules.

3.5.4 Pressure Gages - The requirements of the pressure gages to

measure sodium and water/steam pressures shall be determined and provided
by the supplier for installation in the piping adjacent to the steam generator
model,

3.5.5 Temperature Instrumentation - Requirements for the temperature
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3.5.5 Temperature Instrumentation (contimued)
instrumentation necessary to establish the thermal and structural performance
of the steam generator model shall be determined by the supplier.
Thermocouples shall be installed on the steam generator model to
adequately measure the following:

a. Sodium side temperature

b. Water/steam side temperature at end points

c. Shell temperature
Requirements and location of temperature measuring devices shall be as
follows: (Later)

3.5.6 Requirements for flow measurement shall be provided by the
supplier. No flow measurement will be required within the steam generator

shells.

3.5.7 Water-to -sodium Detection - The evaporator and superheater

modules of the steam generator shall have provisions for two (2)
independant means of monitoring for water-to-sodium leakage.

1. Diffusion tube Hydrogen detectors shall be located in the
sodium piping as close as practicable to the superheater outlet
nozzles and the evaporator outlet nozzle,

2, The cover gas space in the evaporator and superheater modules
shall have provision for continuous monitoring of the cover gas by
means of a gas chromatograph to detect hydrogen.

3.5.8 External Leakage Detection - (Later)

3.5.9 Instrumentation, Inspection, Maintenance,and Repair - Test

procedures to determine the functional operation of instrumentation shall

be provided by the purchaser.
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3.5.10 Structural Instrumentation - The supplier shall determine the

requirements of instrumentation necessary to determine the structural per-
formance of critical areas of the steam generator. This instrumentation
shall be provided as part of the steam generator. Procedures for
installation of instrumentation will be provided by the supplier.

3.6 Operating Conditions

Note: (The information and criteria in this section is of a preliminary
nature and is not in the form that will be contained in the final
specification. Some of the notations and discussions are included

for preliminary information only and will be deleted in the final

spec. Tables will replace the curves shown in figures 4 through 11).

3.6.1 Types of Operating Conditions - The steam generator shall be

designed and fabricated for satisfactory operations under the normal, upset,
emergency and faulted conditions as defined in paragraph NB-3113 of
Section III of the ASME Code and as specified below in Sections 3.6.2 and
3.6.3. These operating condition categories are defined in summary in
the following paragraphs.

3.6.1.1 Normal Conditions - Normal conditions are any

conditions experienced in the course of system startup, operation in the
design power range, hot standby and system shutdown, other than Upset,
Emergency, Faulted or Testing Conditions.

3.6.1,2 Upset Conditions - Any deviations from Normal

Conditions anticipated to occur often enough that design should include a

capability to withstand the conditions without operational impairment are
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3.6.1.2 Upset Conditions continued

called Upset Conditions. The Upset Conditions include those transients
which result from any single operator error or control malfunction,
transients caused by a fault in a system component requiring its isolation
from the system and transients due to loss of load or power. Upset
Conditions include any abmnormal incidents not resulting in a forced outage
and also forced outages for which the corrective action does not include
any repair of mechanical damage.

3.6.1.3 Emergency Conditions - Emergency Conditions are

those deviations from Normal Conditions which require shutdown for

correction of the conditions or repair of damage in the system. The

conditions have a low probability of occurrence but are included to provide
assurance that no gross loss of structural integrity will result as a concomitant
effect of any damage developed in the system, The total number of postulated
occurrences for such events shall not cause more than 25 stress cycles
having an Sa value greater than that for 109 cycles from the applicable
fatigue design curves.

~

3.6.1.4 Faulted Conditions -~ Faulted conditions are those

combinations of conditions associated with extremely-low-probability,
postulated events whose consequences are such that the integrity and
operability of the nuclear energy system may be impaired to the extent

that considerations of public health and safety are involved. Such
considerations require compliance with safety criteria as may be specified

by jurisdictional authorities.
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3.6.2 Steady-State and Transient Operation - The steam generator

shall perform under steady-state operational and environmental conditions,
including transients induced by varying loads. It shall also operate under
other operational tramsients which are not steady-state conditions. All of
these operating conditions are defined in the following paragraphs.

3.6.2.1 Normal Conditions

1. Full Power Steady-State Operating Conditions -

The steam generator full power steady state operating conditions are shown
in Table IL

2. Part Load Steady-State Operating Conditions -

The steam generator part load steady-state operating conditions of temperature
flow and pressure are shown in Table II and the curves on Figures 4,
5 and 6,

3. Dry Heatup and Cooldown - Dry heatup and

cooldown rates of the steam generator shell are shown in the following
table. Heatup of the shell is accomplished by trace heating prior to filling
with sodium,

Temp. °F  No. of

Event Location Start End Occurrences Temperature Change
Dry Shell Amb ient 350°F 10 + 5°F /hr.
Heatup

Dry Shell 350°F Ambient 10 - 5% /hr.

4, Normal Startup and Shutdown - The normal startup

and shutdown temperature transient conditions are specified in the following

table. The temperature change rates shown apply specifically to the inlet
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3.6.2.1 Normal Conditions continued

nozzles on both the sodiumm and water/steam sides.

Temp. °F No. of Max. Rate of
Event Location Start End  Qccurrences Temp. Change
Startup  Sodium Inlet Nozzle 350°F 924°F 600 +100°F /hr.
FW Inlet Nozzle @ Drum 100°F 370°F
Shutdown Sodium Inlet Nozzle 924°F  350°F 250 -100°F /hr.
FW Inlet Nozzle @
Drum 370° 100°F

During the startup transient sodium flow is held constant at 30% to 35%
power and then increased lineraly to 40% flow at 40% power. The flow
and power transients during shutdown are the reverse of those given for
startup. (Feedwater flow, temperature and pressure during startup

and shutdown will be determined later).

5. Load changes Over the 40 - 100% Power Range -

The steam generator will be subjected to two types of load changes, i.e.
step changes in load and ramps

a, Normal Ramp Change - Normal ramp load changes will vary

linearly between the end conditions at 40% and 100% full power with a
power ramp rate of 3%/min. Temperature change rates are shown in the
table below. Sodium and feedwater flows vary from 39.5% to 100% and
37% to 100% respectively over this power range. This information is
summarized in Figure 7 for a normal load decrease from 100% to 40%.

A load increase over the same range is simply the reverse of these curves,
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Additional temperature ramps over different load rangescan be obtained from

the part load operation curves shown in Figures 4, 5 and 6.

Temp., °F No. of Max. Rate of
Event Location Start End  Occurrences Temp.Change
Normal Power Sodium Inlet Nozzle 924 960 9000 1. 8°F /min.
Increase FW Inlet Nozzle @
Drum 370 460 4. 5°F /min.
Normal Power Sodium Inlet Nozzle 960 924 9000 -1. 8°F /min.
Decrease FW Inlet Nozzle @ 460 370 -4.5°F /min.
Drum

*Temperature transients at other locations within the steam generator
will be available later.

b. Step Changes - It is assumed that the demonstration plant must be

capable of performing step changes in power which are at least equivalent
to those provided for in current water reactor plants. Therefore, the
step change is based on a + 10% instantaneous change in power from any
power level over the 40% - 100% power range. The response of the plant
to these steps should be as quickly as possible. However, the rate of
change of temperature, pressure and flow has not been determined and
will be supplied later. The C-E PWR's specify that these step changes
exhibit temperature and pressure fluctuations within the range of their normal
specified plant variations, The normal demonstration plant variations

are not available, therefore, this information will be supplied later. The
number of occurrences is estimated to be 1500, equally divided between

upswings and downswings,
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c. Fast or Emergency Ramp Power Changes - (Later)

6. Other Normal Operating Conditions - There are

several other operating conditions that are considered normal but are not
included here because it is felt that they are similar in transient response
to some of those already listed. These operating conditions would include
such things as: Hot Restart after Scram, Shutdwon after Scram, or

the Return to Power from Hot Standby or the reverse, i.e., going to Hot
Standby condition from Power Operation. All of these transient conditions
are similar to or a combination of either normal startup and normal
power increases over the load range or the reverse, which is normal
power decreases and normal shutdown. Therefore, they have been accounted
for by increasing the number of occurrences of the appropriate normal
operating condition.

3.6.2.2 Upset Conditions - The following transients are defined

as upset conditions and are considered to be representative of most the
group of possible upset events. Included are curves showing the expected
thermal transients in the fluid at the sodium and feedwater inlet nozzles

and their estimated number of occurrences. The thermal transients at
other locations throughout the steam generator are currently being evaluated.

1. Normal Reactor Plant Scram - (Number of Lifetime

Occurrences = 350) Reactor plant scram is an opcrating procedure for
very quickly reducing the power output of the reactor to a low level of

2-5% as determined by fission product decay heat., This scram might
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3.6.2.2 Upset Conditions continued

be a result of a false spurious electrical signal or a desired response
from one of many protective system signals or an operator-initiated signal.
The reactor scram primarily consists of reducing the reactor power by
dropping all control rods, and simultaneously reducing the heat transfer
system flows by tripping the primary and secondary sodium pumps and

the feedwater pumps. The secondary sodium flow coasts down to 5%
while the feedwater flow coasts down to 4%. These flow decay curves
and the sodium and feedwater inlet temperature transients for the first

300 seconds following scram are shown in Figure 8. Also shewn is the
feedwater inlet pressure drop of 200 psi which varies with the square of
the flow. Furthermore, when scram occurs, the turbine-generator is also
tripped. After the 300 seconds shown on the curves, the transient is
assumed to follow the normal shutdown transient.

2. Loss of Recirculation Pump Flow - (Number of

lifetime occurrences = 20 pump) Definition of transient - (Later)

3. Other Upset Operating Conditions - It is recognized

that there are a number of other operational events that are considered

to be Upset Conditions. However, at this time since they all would very
quickly cause a reactor scram, it is assumed that the transients would

be similar to a scram transient. Therefore, allowance has been made
for these events by appropriately adjusting the number of occurrences of the
normal scram. Some of the other Upsct Conditions include events such as:

positive reactivity insertion with scram; loss of electrical power to one
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3.6.2.2 Upset Conditions continued

primary, secondary or feedwater pump with scram, loss of plant power
with scram, control rod drop with scram, and turbine trip with scram.

It is recognized that the scram following some of these events might be
delayed somewhat and therefore, momentary up or down temperature
transients could be initiated. However, from past experience these have
been found to be quite short in time and have very little effect on the
overall temperature transient used for structural amalysis. Therefore,
since these delays were not identified at this time, no attempt was made
to include them and all such events are assumed to be similar to a normal
scram. It should be pointed out that as additional plant system design
information becomes available, these Upset Conditions will be reconsidered
and if this assumption appears invalid in any of the cases, the transient
will be considered separately.

3.6.3 Abnormal Conditions - Abnormal conditions are class-

ifiable as occurring after a failure or malfunction of a component or system.
Although no longer stated as an operating category in the ASME Code,

the events under this section in the RDT Standards include events which
now fall under Faulted, Emergency and in some cases, Upset Condition
categories of the ASME Code. Since some Upset Conditions were also listed
under section 3. 6,2 - '"Steady-State and Transient Operation" of the RDT
standards above, e.g., reactor scram, it was decided to include all Upset

Conditions under that category. Therefore, only Emergency and Faulted
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3.6.3 Abnormal Conditions continued

Conditions will be included in this section.

3.6.3.1 Emergency Conditions - The following

transients are defined as Emergency Conditions and are representative

of a group of possible events but do not include all such events. Included
here, similar to what was done previously for Upset Conditions, are
curves showing the expected thermal transients in the fluid

at the sodium and feedwater inlet nozzles and their estimated number of
occurrences. The transients at other locations throughout the steam
generator are currently being determined and will be available in the near
future.

1. Single Secondary Sodium Pump Seizure with Scram -

(Number of Lifetime Occurrences = 3 per loop) The seizure of one
secondary sodium pump is quite similar to a normal scram, with the
exception of the flow coastdown in the affected loop. Since the pump shaft
is assumed to seize quickly, the impellar stops rotating and therefore
creates an additional resistance in the loop flow. This is assumed to
cause a flow coastdown twice as fast as a normal loop coastdown. The
sodium inlet temperature to the steam generator of the affected loop will
remain constant over the first 300 seconds. Feedwater parameters are
identical to those occurring during normal scram. All of these steam

generator inlet parameters for the affected loop are shown in Figure 9,
@

Parameters in the other two secondary sodium loops and associated feed-
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3.6.3 Abnormal Conditions contimued

water systems are identical to normal reactor scram, since scram is
assumed to occur a few instants after pump seizure. After the 300 sec.
shown on the curves, the transient is assumed to follow the normal shut-

down transient,

2. Single Primary Sodium Pump Seizure with Scram -

(Number of Lifetime Occurrences -3 loop) The steam generator inlet
conditions for the first 300 seconds of this transient are shown in Figure

10. Everything is the same as normal scram with the important exception

of sodium inlet temperature which eventually decreases at a rather high

rate of -3°F/sec. This temperature ramp is caused by the stoppage of

the primary flow in the seized loop caused by closure of the check valve.

That is, once flow in that primary loop is essentially stopped, the se-
condary sodium loop, even at low decay heat flows, rapidly removes

the stored heat in the [HX primary sodium. The reduction in primary

sodium temperature causes a similar reduction in secondary sodium
temperature which eventually levels out near the steam saturation temperature.
Sodium and feedwater flows, temperatures and pressures in the two other main
heat transfer loops are thesame as for normal scram. Furthermore, after
the 300 seconds shown on the curves of Figure 10, the transient is assumed
to follow the pormal shutdown transient,

3. Activation of Na/Hy0 Protection System - (Number

of Lifetime Occurrences - 2 per component - evaporator/superheater pair)
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3.6.3 Abnormal Conditions continued

This event consists of an emergency isolation and dump of the water/steam side
of an evaporator/superheater module pair during power operation. Following the
initiation of such an event, a reactor plant scram will occur, probably triggered
by a loss of pressure signal of the effected steam generator. For this transient,
a delay of 5 seconds is assumed before scram occurs. The sodium inlet nozzle
temperature and flow transients are therefore similar to normal scram and are
illustrated in Figure 11. The feedwater parameters will also vary according

to normal scram conditions with a 5 second delay; however, this transient

is not influenced by feedwater conditions since the water/steam sides are isolated.
Instead, when the isolation valves close and the dump valve opens, the water/
steam mixtures will quickly blow down. This occurs in both the evaporator

and superheater modules simultaneously since the protection system of each

pair is tied together., These blowdown flows are currently being determined

and are not yet available., Therefore, the internal temperature transients in

the stzam generator duringand after blowdown have not been determined. They
will be supplied in the near future. Again, as before, after the first 300 seconds,
the transient is assumed to be similar to the normal scram transient.

4, Loss of Feedwater Flow Via Feedwater Control Valve

Closure with Scram - (Number of Lifetime Occurrences = 2 valves) Although

the operating philosophy for this event has not been completely defined yet, it
is included and briefly discussed here because of the possible effects it might
have on the steam drum, the evaporator, and recirculation pump designs. This

event is different from the loss of feedwater pump power event in that the
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3.6.3 Abmnormal Conditions continued

closing of the feedwater control valve stops all feedwater flow whereas 4%

natural convection flow still remained after loss of pump power. With the complete
loss of feedwater flow to the steam drum, the drum level can drop, possibly

to a point where the recirculation pumps began to cavitate. This condition

could damage the pumps. Furthermore, with no low temperature feedwater

entering the drum, the drum water temperatures will begin to rise as a function

of the recirculation water temperature only. This will cause temperature transients
on the drum as well as the evaporator. It is probably possible to eliminate this
possible transients by proper operating procedures and/or a backup feedwater

supply, however, this has not yet been determined. Therefore, the transient, if any,
during this event will be defined later.

5. Sodium-Water Reaction Due to a Design Basis Leak -

The pressure, flow and temperature transients during this event will be defined
later,

6. Steam Line Rupture (Loss of Pressure) - This

transient has not been defined yet and will be supplied later.

7. Other Emergency Operating Conditions - Several

other events which might be considered to fall within this category by some
designers are briefly discussed in this section. The RDT standard lists four
additional events including: loss of primary sodium, loss of secondary sodium,
loss of operating power, and scram with sodium flow continuing. The first two

events could include two initiating conditions, both of which have been already
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3.6.3 Abnormal Conditions continued

discussed and specified. This is, the loss of primary or secondary flow
can be caused by power failure to the pumps which is similar in transient
response to reactor scram and is included under Upset Conditions.

This event could also be caused by seizure of a pump as was discussed
above under Emergency Conditions., The third event, loss of operating
power is similar in response to reactor scram and is included under Upset
Conditions. The last event, i.e., scram with sodium flow contimuing,

has been precluded by the control philosophy of the demonstration plant.
That is, sufficient backup trip circuits will be provided to insure that all
pumps trip whenever scram occurs.

3.7.3 Material Samples - (Later)

3.8.1 Fabrication - Submittal of drawings and documents shall be in
accordance with tables 3 and 4.

3.8.2,7 Tube Plug Welding - Tests to demonstrate tube

plugging procedures and equipment shall be performed by the supplier.
The type and number of these demonstration acceptance tests shall be sub-
mitted to the purchaser for approval.

Tube plugs to be furnished by supplier (Later).

3.8.3 Heat Treatment - Heat treatment procedures shall be submitted

for purchaser approval prior to heat threatment. Six copies of heat treat-
ment records shall be submitted. Number of copies is shown in Table 4,
3.8.11 Assembling - An inspection and assembly procedure shall be

submitted by the suppler for purchaser approval.

Nuclear Components Department
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3. 8. 13 Identification and Marking

3.8.13.3 Nameplates - Nameplates shall be installed on both
modules on stand-offs in an accessible location to permit reading after
insulation is applied. In addition to the ASME Code requirements for
marking, the nameplates shall include the following data:

Part Name Contract No.
Identifying No. C-E Spec. No.

3.9 Installation and Field Services Requirements

3.9.1 Services to be Provided - The supplier shall provide the

services of a field representative to monitor installation, pre-operational
testing, repair, performance of test program and to provide technical advice
during these operations. Specific requirements will be determined later,

3.9.4 Handling - The supplier shall provide all fixtures and equipment
necessary to handle the steam generator components. These include:

- Shipping saddles, covers, tie downs, etc.

- Fixtures necessary for up-ending the components at the site

- Equipment for maintaining a positive pressure inert gas atmosphere on

the interiors of the components during shipment and storage.

3.9.6 Installation Requirements - The supplier shall monitor the off-

loading of the steam generator at the site and the up-ending, lifting and
installation of the components in the facility.

The supplier shall monitor the installation of all instrumentation
furnished by the supplier.

3.10.2.3 Requirements for pressure relieving devices - (Later)

3.12 Drawings - The time, number of copies, and approval require-

Nuclear Components Department
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3.12 Drawings continued

ments for drawings shall be in accordance with Table 3.

3.8.2.7.

requirements (Later).

5.1 Preparation - Items to be delivered (Later).

Nuclear Components Department

3.12,6 Parts List - Spare tube plugs to be furnished - See paragraph

4,6.2 Helium Leak Testing - Acceptance standards and specific
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TABLE II A

RANGE OF STEADY STATE OPERATING CONDITIONS

CONDITION
100%
Power 80 60 40
Heat Load, MWt 110 88 66 44
SODIUM SIDE
Sodium Flow Rate (lb. /hr.) 4.35x100 | 3.48x10% | 2.61x10% | 1.74x109
Sodium Inlet Temp. (°F) 960 945 933 926
Sodium Outlet Temp. (°F) 673 665 658 656
Sodium Inlet Pressure (psig) _ Later |
Sodium 4 P (psi) 18 11.5 6.5 2.9
STEAM-WATER SIDE
Eeedwater Flow (Ibs. hr.) 3.97x10° | 3.18x10° | 2.38x105 | 1.59x109
eedwater Temp. (°F) 460 440 412 370
eedwater Pressure (psia) 2666 2624 2590 2563
ecirculation Ratio 3.5 4.0 6.0 9.0
team Outlet Temp. (°F) 900 900 900 900
team Outlet Pressure (psig) 2500 2500 2500 2500
|




DESIGN CONDITIONS

TABLE II B

Item

Superheater

Design Press/Temp.

Evaporator

Design Press/Temp.

Heat transfer tubes

Tubesheet

Sodium shell

Channel shell

2600 psia/960°F
2700 psia/750°F
250 psia/960°F

2700 psia/750°F

2700 psia/866°F
2750 psia/750°F
250 psia/866°F

2750 psia/750°F




TABLE 3

DRAWING SUBMITTAL REQUIREMENTS

ITEM | DESCRIPTION NO. OF REPRODUCIBLE REF. SUBMIT FOR TIME OF SUBMITTAL
DOCUMENTS REQUIRED APPROVAL INFO,
1. Preliminary Outline Drawings
Initial Submittal
Final Submittal
2, Assembly Drawings
Initial Submittal
Final Submittal
3. Final Outline Drawings
4, Detail Drawings
5. Drawings & Spec. List
6. Paris List
7. Weights and Center of

Gravity




TABLE 4

REPORTS AND DOCUMENTS SUBMITTAL

ITEM | DESCRIPTION NO. OF REPRODUCIBLE REF, SUBMIT FOR TIME OF SUBMITTAL
DOCUMENTS REQUIRED APPROVAL INFO,
1, Design Reports
2, Interim Reports
3. Q. A. Program Plan
4, Inspection and Test Plan
5. Process Special Control
& NDT Procedures
6. Inspection & Test Procedures
7. Nonconforming Item Docu-
mentation
8, Handling, Pres,, Packing, &
Storage Procedures
9. Proposed New Design Criteria
10, Design Descriptioh
11, Quality Records
12, Periodic and Progress Reports
13, Operations and Maintenance

Manual




PRELIMINARY DATA EVALUATION:
EFFECTS ON SIZING AND
RECOMMENDATIONS CONCERNING

FUTURE TESTING

CONTRACT 7670
C.E. LMFBR STEAM GENERATOR

DEVELOPMENT PROGRAM

SUBTASK 2.2

INSULATOR TUBE TEST

APPENDIX C

January 18, 1973

Prepared by /A B acled

Approved by=ﬁ_d_il,éz




EE COMBUSTION DIVISION

NO.

7670 REV. O PAGE 1

Introduction

Over the preceding several weeks, Combustion Engineering's KDL PWR test
loop facility has been utilized to experimentally verify the effectiveness of
the bayonet assembly, which comprises a critical component of the CE
LMFBR steam generator design.

The purpose of this interim report is to summarize the effect of those tests
on the CE reference design,and to set forth CE recommendations with regard
to future testing, :

Only a limited amount of data, directly applicable to the CE design, has been
considered in this preliminary study. The remainder of the considerable
data available will be evaluated in the formal and complete report of the
insulator tube test program.

Discussion

The CE reference steam generator concept utilizes a bayonet tube
configuration in both the evaporator and superheater modules. This
configuration, along with the flow arrangement of the two fluids, allows CE's
steam generator to enjoy several advantages over competing designs such
as unrestrained tubes, tubesheets which operate below the creep range and
unexceeded accessability for in-service inspection and maintenance. Details
of this concept are shown in Figure 1.

In order to utilize a bayonet arrangement, however, an effective barrier
against regenerative heat transfer across the bayonet tube must be found,
The CE design utilizes a double bayonet tube with an "insulating" gap
letween to provide the required barrier. Figure 2 is a schematic repre-
sentation of this "bayonet assembly",

The purpose of the insulator tube test program was to verify the effectiveness
of the bayonet assembly as abarrier to regenerative heat transfer.

A six foot test section similar to the bayonet assembly was operated in the
PWR test loop at KDL. Both the evaporator and superheater configurations
were simulated. Figures 3 and 4 are schematics of the test loop configurations
for simulation of the evaporator and superheater respectively. Complete
details of the test program may be found in Ref. (1).

Nuclear Components Department
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Summary of Results - Evaporator Configuration

The test loop was first operated in the evaporator configuration . The results
of this series indicated that regenerative heat transfer will causz a temperature
rise in the downcomer of approximately 5°F. This corresponds to a Nusselt num-
ber of approximately 3.5 to 4 for the insulator gap. The effect of this regen-
erative heat transfer is negligable, and the effect on sizing cannot be detected
within the accuracy of our current methods.

Summary of Results - Superheater Configuration

While the effects of regenerative heat transfer in the evaporator were found
to be negligable, the opposite case holds true in the superheater, within which
much higher temperature differences across the insulation g2P are found.

Figures 5, 6 and 7 represent a portion of the data from the superheater series
at three pressure levels 1500, 1900 and 2600 psia. The data covers a range
of flow rates and average insulator gap temperatures.

Although the data, to be best understood, must be reduced to non-dimensional
terms, three general conclusions can be drawn from the general trend of the
data. First, the flow rate has a preceptable, but not important, effect on
the heat losses. This is expected due to the low overall contribution of

the flow film resistances to the overall resistance. At lower flow ratings
the resistance tends to be slightly greater. Secondly, operating pressure

has a significant effect, with more heat being lost at the higher pressure
levels. Third, the trend at the highest driving temperature differences

( > 300F) indicates a probable radiation component.

Some scatter appears in the data, with a few points showing unusually high
losses. These few points are thought to result from data taken during
periods where leaks occurred at the flanges in the test section, This meant
that the actual flow rate in the test section was lower than measured, and
hence, indicated heat loss(from WCp AT at 2 points in the bayonet tube)
was much worse than actual, This will be further investigated as data
reduction proceeds.

Effect on Superheater Sizing

Certain groups of data were directly applicable to the conditions in the CE
LMFBR superheater, and these data points were used to reset the sizing
of the Demonstration Plant Superheater.

E-2638
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Effect on Superheater Sizing - contimued

The procedure for this evaluation was as follows:

1.

Select data points relevant to the conditions in the superheater, and

make a plot of the heat loss per foot of test section versus the temperature
difference across the bayonet assembly. The applicable points chosen
were those at 2600 psia, and flow rates above 1800 #/hr. These

points were ploted in Figure 8 and a conservative design curve was
determined therefrom.

The dimensions of the simulated bayonet assembly in the test are different
from thoge of the present steam generator bayonet assemblies in that

the diameters are larger in the steam generator (See Figure 9). A
correction factor for the increased area per foot was determined as
follows:

f = 1/2 (.916+ .636) = 1.25
1/2 (.75 + .4925)
The differences in t} and ty were neglected.

An estimate of the superheater size was made and a plot of the temperature
difference across the bayonet assembly versus length was created using
the performance program (See Figure 10).

The superheater was divided into four foot lengths from the sodium level
down, and using Figures 8 and 10, an estimate of the heat loss in each
section made. The approximately four feet of bayonet assembly above the
sodium level was also taken into account, assumimngthe highest temperature
difference. Table 1 shows the computation of the heat loss in the
superheater,

Knowing the flow rate in the superheater, an enthalpy balance was made
to determine the temperature required at the entrance to the riser tube.

The flow rate in each tube is about 2337 #/hr. in a superheater with 170
tubes. A trial and error enthalpy balance yields a required inlet temperature

of
at

~~ 925, 6F (at 2525 psia) to result in conditions of 900°F at 2500 psia
the outlet,

Nuclear Components Department
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6. The performance program was run with various multipliers on the
insulator gap fluid conductivity to match the required conditions at the
bottom of the tube, This resulted in a steam generator with a somewhat
larger area than previously sized. A summary is presented in Table 2
The indicated multiplier on the conductivity (Nusselt number) was 4. 7.

Comparison with Predicted Values

A value of the Nusselt number may be estimated by a correlation based on
Jakob's study of convection heat transfer in vertical enclosed air spaces.

The conclusion is not directly applicable, since the ratio of length to gap

width in the insulator gap greatly exceeds the range of the correlation. A
conservative estimate of the heat loss, however, should be obtained by

assuming the ratio to be 42,2, the maximum investigated. Using this procedure,
the Nusselt number is predicted to be about 3.1, as compared with 4.7 as indi -
cated above. Details of the calculations are presented in Appendix 1.

Recommendations for Future Testing

In the light of the results of the insulator tube testing to date, a decision
must now be made concerning continuation of the test program with a
different (smaller) gap. The following facts are pertinent to such a decision.

1. The present configuration is adequate for the present demonstration
plant steam generator design.

2, There appears to be an 1ncreasmg radiation component at higher
temperature differences ( > 300° F).

3. The aforementioned correlation for convection heat transfer predicts
only small effects from variation of gap width. Specifically,
with larger gaps, the value of n would become 1/3 (Gr > 2.1 x 10 )
and the heat transferred would be essentially independent of gap width,
With a smaller gap, some added resistance is predicted down to the
point where conduction begins to predominate (Gr < 2 x 103). For a
gap half the size of the current test, the predicted resistance would be
about 15% higher.

Based on the above facts, itis CE's view that another test with a different
insulator gap would be desirable from a scientific aspect in that further
information on the nature of heat transfer across such gaps would be obtatned,

Nuclear Components Department
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From a practical aspect, however, the current gap configuration is considered
adequate for the intended use, and the available analytical tool predicts that
little if any added resistance would be gained by variation. (Conversely, it
predicts that the effectiveness of the gap will be relatively insensitive to
mamufacturing tolerances, etc). This viewpoint would tend to indicate that

no further testing is needed.

Looking forward to future designs, it is estimated, based on this preliminary
assessment, that the present insulator tube would be adequate for design
steam temperatures up to 950CF assuming saturation pressures on the order
of 2500 psia. For steam generators incorporating even higher superheat
temperatures at that pressure, an advanced insulator design, possibly

with smaller multiple gaps may be required, and additional testing may be
desirable at that time.

Nuclear Components Department
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TABLE 1 HEAT LOSS ACROSS BAYONET
ASSEMBLY IN SUPERHEATER
Increment Uncorrected Uncorrected
No. Length T Loss/Ft. Loss - 4Ft.
1 4 ft, 223 F 1830 BTU 7320 BTU/HR
FT Hr
2 193 1510 6040
3 152 1140 4560
4 110 800 3200
5 74 530 2120
6 44 310 1240
7 20 140 560
8 2.5 5 30 75
Above Na 4 233 1950 7800
Total 32,915

Correction for Area:

QL = 32915 x 1,25 = 41144 BTU/HR

Nuclear Components Department
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TABLE 2 EFFECT ON SIZING OF SUPERHEATER
Number Tubes* Length Area
Original Design 150 30. 8 ft. 1814 f
Present Design 170 31.1 ft. 2076 ft2

*Does not include design margins.

Nuclear Components Department
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New York, (Third Edition - 1954) pp 181-2,
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EFFECT OF STEAM PRESSURE ON DESIGN

1.0 Introduction

While the work presented in tnis steam generator conceptual design package has

been pased on a steam outlet pressure of 2500 psia (2400 at tne turbine), it nas
pbeen recognized throughout the period of this effort, however, that alternate,
lower, pressures are being considered. The 2500 psia design pressure was selected
by CE as presenting the greatest challenge to our design, analytical and fabrication
efforts. Extrapolation to lower pressures was considered to be relatively straignt

forward, while extrapolation to nigher pressures was seen to pose some difficulties.

Tnis summary nas been prepared to serve two purposes. First, to assist those
responsible for setting plant parameters and, secondly, to indicate the capaoilities

of the CE generator design.

Portions of this summary are quantitative reflecting the results of development
work already performed. Other portions, where specific information is not yet
available, are addressed in qualitative terms. Where quantitative information
was available, comparisons were made at the three pressures whicn are currently

considered candidates: 1400, 1900 and 2400 psia.

2.0 Steam Generator Sizing

Due to tne changing properties of water and steam,and effects on tne mechanisms
of heat transfer, the water/steam side pressure nas a significant effect on the

pnysical size of the steam generator.

2.1 Tube Thickness

As design pressure increases, tine thickness of tne high pressure tuve, consti-

tuting part of the sodium water boundry, correspondingly increases. The resis-

tance of the tube is a significant protion of the overall resistance to heat
transfer and a reduction in design pressure,and hence thickness, will result in a
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notabnle size decrease in both the evaporator and superheater.

2.2 Saturation Temperature

For givan inlet conditions, a change in the design pressure,and hence sat-
uration temperature,can have a marked effect on the available LMID, and therefore,
generator size. Lower pressures,with accompanying lower saturation temperatures,

result in a larger LMID. Tne required heat transfer surface is therefore reduced.

2.3 Insulator Effectiveness

Tne effectiveness of the insulator gap as a barrier to regenerative heat
transfer, particularly in the superneater, is dependent upon tne thermal
conductivity of tne fluid. As the pressure is increased, the conductivity
of the steam in tne superneater increases and thus tne efficiency of the
insulator gap decreases. Tnis is partially offset since temperatures differ-

ences across tne insulator gap are lower at higher pressures.

2.4 Circulation Ratio

If the effect of pressure on the DNB neat flux-quality relationship were
significant, tnis aspect of design could affect steam generator size, since
a lower allowable circulation ratio would result in a more efficient econo-

mizer section.

Tne design circulation ratio was determined for 2500, 1900 and 1500 psia sat-
uration pressures. Tne two higner pressure CR's were selected using priprietary
CE data as outlined in Section 3.1.5.3. The CR at 1500 was determined by an
extrapolation of the data of BAW 3238-13. There were no significant differences

indicated and a CR of 3.5 would be selected for all three cases.

2.5 Effect on Generator Size

A preliminary study was made to quantitatively evaluate the effects of the

above mechanisms on generator size. Not included in this study were the re-
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sults of tne insulator tube testing (Appendix C), which were available at

a later date.

The study was accomplished using tne CE recirculation sizing program. The

sodium outlet temperature was optimized for eacn steam outlet pressure to

achieve a minimum weighted surface area in the generator and IHX combination.

The following ground rules were used in the study.

1.

As sodium teinperature out of the steam generator is reduced, steam

generator size increases and IHX size decreases;therefore, an optimum
(minimum) size exists for each steam outlet pressure. Optimum sodium

outlet temperature was defined as the temperature at whicn the sum of the
steam generator heated surface area and 2/3 of the associated intermediate
heat excnanger heated surface area reacned a minimum. The 2/3 factor
accounted for the estimated relative cost of the units. (See Section 3.1.5.2)
A numoer of tubes was cnosen in the superheater and evaporator so tnat
reasonaple pressure drops were obtained (100 psi or less in tne superneater
and 50 psi or less in the evaporator).

Three steam generator outlet pressures were considered:

Turbine Pressure Steam Generator Qutlet Pressure
1400 psia 1500 psia
1800 psia 1900 psia
240Q psia 2500 psia

The following parameters were held constant for tne three cases:

1. Total heat transferred - 110 MWt

2. Sodium inlet temperature - 960°F

3. Steam outlet temperature _ 900°F

4. Feedwater temperature - 460°F

b, fube flow geometry
Hign pressure tube QU - 1.9 in.
Heat transfer annulus, evaporator - .1875 in.
Heat transfer annulus, superneater - .1000 in.
Insulation gap (evaporator & superneater) - .06 in.
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5. Tihe following parameters were varied as dictated by operating requirements:

1. Tube wall thickness - established by design pressure and temperature.

2. Fluid Properties.

Tne results of the sizing study are summarized in table 2.5-1

TABLE 2.5-1
SUMMARY OF PRESSURE EFFECTS

Steam Outlet Pressure

(psia) _ 2500 1900 1500
Superheater
No. of tubes 150 134 134
Lengtn - ft. 2 30.78 23.70 20.00
Heated area - ft 1813.00 1247 .00 1052 .00
P - psid 99.70 101 .00 97.50
Evaporator
No. of tubes 380 250 250
Length - ft. 2 32.45 30.90 23.50
Heated area - ft 4842 .00 3034.00 2307 .00
P - psid 21.00 26 .30 17.00
CR (required) 2.82 3.22 2.94
CR (actualg 3.50 3.50 3.50
TNA out - °F 673.00 650.00 635.00

As tne table indicates, the total surface area required in the steam generator
increases with water-side pressure; this is also true of the IHX. This in-
crease is primarily due to two mechanisms. First, is the decrease in available
log mean temperature difference (LMID) as the saturation temperature in tne
evaporator approaches closer to the sodium temperature. Second, is an increase
in tube wall tnickness required to contain the higher pressure. The incre-

mental size increase (slope of the curve in Figure 1) increases with pressure.

Within the range of this study, there is no reason in terms of practicality,
with respect to sizing,to choose one outlet pressure over anotner. Ultimately,

the decision is an economic one, weighing capital cost versus plant performance

over the expected lifetime,



3.0 Performance

In addition to effects on steam generator size, the effect of design pressure on
performance must be considered. Tnree areas wnich were evaluated in this study were

stability, sodium-water reaction effects and reliability.

3.1 Stability

A meaningful quantitative evaluation of the effects of design steam pressure
on stability would involve an extensive effort and probably experimental

verification.

The following references, however, can lend some qualitative insight into
tne problem:
-Nanavandi, A. N., and Von Hollen, R. F., "Flow Stability in

Large Vertical Steam Generators ASME 64-WA/AUT-11

-Boure', J. A. Bergles, A. E., and Tong, L. S., "Review of
Two Phase Flow Instability" ASME 71 HT42

Both of these references indicate that, in a boiling system, increasing the

pressure tends to make the system more stanle.

This is not to say, however, that either a 1400 psia or 2400 psia design
would be stable or unstable, only that the trend is favorable toward nigner

pressures.

3.2 Effect of System Pressure on Sodium-Water Reactions

The magnitude of reaction loading imposed on the steam generator shell is affected
by tne rate of blowdown of water into sodium. The investigation of blowdown rate
for severed tuve requires four discrete methods of analysis. These are:

Subcooled pressurized liquid blowdown through short tupes

Subcooled pressurized liquid blowdown tnrougn long tubes

Saturated steam/water blowdown

Superheated steam blowdown
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. The following is a discussion of tnese methods, and comparisons of blowdown rates.

-

3.2.1 Subcooled Pressurized Liquid Blowdown Tnrougn Snort Tubes Using
Zaloudek's Model

Zaloudek 's (l)data demonstrates that compressed subcooled water blowdown for

0 - %— - 20 can be represented by:
= ]2 » 2

G = (J%Z (Pup _ Psat) Ibs/ft™ _ gec

G = mass velocity during upstream choking, lbs/ft2 - sec
2

up = upstream pressure 1bs/ft

P = Saturation pressure lbs/ft2

sat

Vf = specific volume of saturated water ftallb

C = 0.95, contraction coefficient dimensionless

Tne data were correlated by equation (1) with a maximum deviation of 10%.

Since a tube rupture at the tubesheet bottom would have an %— greater than 20

(L= 12.5" for tuoesheet tnickness, bayonet tube I.D. = .501"), equation (1) (which
assumes entrance acceleration only with no momentum loss due to flashing) cannot

be applied. It is clear that momentum losses must be accounted for in the computa-
tion of critical mass flux, wnere flashing does occur. Wnere longer tubes are
ruptured, tne initially supersaturated liquid core has more time to break up.
Extremely long tubes (such as a bottom tip rupture with an L/D 800) allow thermo-
dynamic equilibrium to be approached, where bubbly two-phase flow breaks down into

a nearly nomogeneous mixture. The pressure drop is tnen primarily caused by momentum

losses due to changes in specific volume and wall shear flow retardation.

(l)F. R, Zaloudek, '"Steam-Water Critical Flow from High Pressure Systems,"

Hanford Atomic Products Operation, HW-80535, January 1964

D-6



TABLE 3.2-1
A COMPARISON OF BLOWDOWN RATE VS. PRESSURE

Case 1 Case 2 Case 3
Pup’ Psi 1400 2000 2600
Subcool, °F 100 100 100
Temp., °F 487 536 574
P ¢ PSia 606 931 1270
Ve, 3710 .0201 0213 .0226
6, 1b/ft?-sec 18,175 20,487 22,184

Since Vf is essentially constant, blowdown rate increased by 22% for tne 2600 psia

system over the 1400 psia system.

3.2.2 Subcooled Pressurized Blowdown Tnrougn Long Tubes

R. E. Henry ) developed a non-equilibrium model to describe the two phase critical
discharge of initially saturated and subcooled 1iquid through long tubes (L/D 2 12).
His solutions are based on the upstream and stagnation fluid conditions. Henry shows

that

2 v X (@)
GC = (PC - P‘%EEEZ‘— + _‘g (Vgt - Vlo )]

where v = specific volume, lb/ft3
P = pressure, 1b/ft2
g = gravitational constant, ft/sec2

x = quality

(2)
R. E. Henry, "The Two-Phase Critical Discharge of Initially Saturated or Subcooled
Liquid," Nuclear Science & Engrg., Vol, 41, No. 3., Sept. 1970
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where G = critical mass flux, 1b/ft® - sec

c

C contraction coefficient = .95

and the subscript 0 refers to initial stagnation conditions
t refers to throat (exit plane) conditions
L refers to saturated liquid properties

g refers to saturated vapor properties

For an analytical solution, Henry's equation requires an estimate of tne exit plane
quality and critical pressure ratios. His results are plotted as critical mass

flux vs. L/D ratio for saturated water and are attached as Firgure 3.2-1, with initial
stagnation pressure varying from 28.4 to 2600 psia (dotted lines indicate cross-
plotting and/or extrapolation from other graphs in reference 2). Figure 3.2-2 is a
plot of critical mass flux vs. initial stagnation pressure for various L/D ratios.
Tnese curves can be used to obtain maximum steady state blowdown rates througn long
tubes assuming the 1iquid to be saturated; however, where a considerable degree of
subcooling may exist, solution of equation (2) is essential, or non-conservative
results may pe obtained. Subcooling causes a lTower outlet quality and, therefore,
less momentum pressure drop resulting in a higher blowdown rate. Firgue 3.2-3 (critical
pressure ratio vs. L/D) from reference (2) is attacned to use as an estimate for PT

for obtaining tnroat quality.

TABLE 3.2-2
A COMPARISON OF BLOWDOWN RATE VS. PRESSURE

Case 1 Case 2 Case 3
Po’ psia : 1400 2000 2600
Subcool, Of 100 100 100
Psat, psia 606 931 1270
v .0201 0213 .0226
hQ 473. 532. 581.
n, critical pressure ratio .66 .63 .60
Xy L 06 .09 R
Pt 400 586 762
vgt 1.16 .78 .60
Gc 7632 9044 10,580




Tne apove calculations show a plowdown rate increase of 39% wnere tne system

pressure was increased from 1400 psia to 2600 psia, keeping 100° subcooled water.

3.2.3 Saturated Steam/Water Mixture Blowdown Using Moody's Model

F. Jd. Moody(3)deVe10ped a model for maximum blowdown of a two-pnase mixtura tnrougn pipes
in terms of upstream stagnation properties and pipe geometry. Tne exact mechanism of
tne model need not be described here, since Moody's grapical output allows the

user to obtain an immediate solution.

Grapns are given for values of FL/D =0, 1, 2,3,4,5,10, 20, 50 and 100.

TABLE 3.2-3
A COMPARISON OF BLOWDOWN RATE VS, PRESSURE

Case 1 Case 2 Case 3
P,» Psia 1400 2000 2600
quality .30 .30 .30
f, friction factor .01 .01 .01
Pipe L/D 100( 300f 500{ 100| 300} 500{ 100{ 300| 500
G, 1b/ft2 -sec 5200 13700 {2900} 7000|5100 }4100|8700{6800 {5600

The above calculations show plowdown rate increases of 67% for L/0 =100, 78%
for L/D = 300, and 93% for L/D =500 where the steam pressure was increased from

1400 psia to 2600 psia with constant quality.

3.2.4 Superneated Steam Blowdown Using Lapple's Model

4
’ C.E. Lapp]e( ) presents graphs of P ambient / P(J vs. G/G witn fL/D as

crit

3
( )F.' J. Moody, 'Maximum Two-Phase Vessel Blowdown from Pipes, "General Electric Co.,

APED 4827, April 1965,

(4)0. E. Lapple, Fluid and Particle Dynamics, Univ. of Del,, March 1951, pp. 61



. the independent parameter. With this method, supernheated steam can be treated as
an ideal gas. Lapple presents graphs for values of k (ratio of specific neats,

Cp/Cv of 1.0, 1.4 and 1.8. For steam, the slightly conservative value of k = 1.4

is used.
TABLE 3.24
A COMPARISON OF BLOWDOWN RATE VS. PRESSURE
Case 1 Case 2 Case 3
Po, psia 1400 2000 2600
Superheat, °F 300 300 300
T, 2 887 936 974
ho, btu/1b 1430 1433 1438
Gepi > 1b/ftZ - sec 2512 3494 4453
Pipe L/D _ 100 | 300 1500 100] 300) 500} 100} 300] 500
G/Gcni 6] .42 .33} .6 .42) .33} .6} .42] .33
G 1507 1055 }829]2096 }1467}1153}2672 |1870}1469
wnere Gcni = Po /gc M , maximum mass velocity of fluid under frictionless,

eRlo

isothermal flow.

Tne above calculations show blowdown rate increases of 77% where the system

pressure was increased from 1430 psia to 2600 psia keeping.degree of superaeat

constant.

3.2.5 Conclusions

Since results witn CEBUG nave shown that the specific impulse on the shell ( }'Pdt)
during a sodium/water reaction is proportional to (leak rate)l/2 , an increase in

system pressure will raise the load on the snell during the reaction. The following
‘ results are for comparisons with generating tubes of the same diameter (if larger
diameter tubes were to be used, the specific impulse will increase in proportion to

the diametric increase):
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TABLE 3.2-5
INCREASE IN SHELL IMPULSE FOR:

Regime L/D 1400 psi 2600 psi 2600 psi
ubcooled snort tube 0-12 Base 6% lU.Eg
Subcooled Tong tube 12-300 n . 9% 18 %
aturated mixture (30% quality 100 - 157 29 2
aturated mixture (30% quality) 300 o 7% 33 %
aturated mixture (30% quality) | 500 w 197 39
Superheated steam all v 187 33 %

3.3 Reliability

With respect to tne tubesneet, cnannel snell and channel cover, the reliaoility of tne
generator snould not be affected by steam generator pressure. All of tnese are
sized to the same standards for each - pressure and tne margins of safety snould

be similar.
In tne case of tne tubing, nowever, wnere relatively small defects could comprise a
significant portion of tne tube wall, tne tnicker wall sections at a design pressure of

2400 could possibly be considered an advantage.

4.0 Manufacturing Aspects

An evaluation was made in qualitative terms witn respect to tne effect of steam
generator design pressure on the manufacturing aspects of producing a steam generator.

These are discussed in the following sections.

4.1 Manufacturing Costs

In addition to tne effects on generator size wnich were discussed above, tnere are
several factors wnich would tend to slightly increase tne cost of a nigner pressure

unit when compared to a lower pressure design.

Tne materials required for the tubesneet, tubing, and channel shell and cover

would be tnicker tnus adding to material costs.
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Additional welding would ve required on the thicker sections.

Cost of Non-Destructive Testing,particu]arly radiograpny would be somewhat in-

creased for tne tnicker sections.

Tnere would be little if any effect on the other aspects of manufacture sucn as

forming, fitup, bundling, etc.

It is our best judgement that the net effects of these items on the overall
manufacturing cost would ve insignificant, especially wnen compared to other
effects sucn as variation of number of tubes and/or neated lengtn as previously

reported.

4.2 Welding and nDT

No particular effect on welding and NDT is anticipated except as mentioned above with

respect to costs.

5.0 Effect of Steam Pressure on Water/Steam Recirculating Equipment

5.1 Recirculating Pumps and Seals

Recirculating pumps over the range of pressures have been sucessfully incor-
porated witn C-E fossil poiler applications. As such, C-E considers pumps and

seals to be within tne state-of-tne-art.

5.3 Steam Drums - Effect on Costs and Size

Using the C-E demonstration plant steam generator steam drum as a reference (2400
psig system), tne following can be noted with respect to a lower pressure steam drum:
a) For effective steam separation, a longer steam drum would be required due

to the nigner specific volume (approximately 25% longer maintaining the same
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b)

drum diameter wnen comparing the 2400 and 1400 psia systems). Also,

thinner plate would ve used on tne drum for tne lower pressure systems.

Costs for tne 1450 psia steam drum when compared to the 2500 psia would be
approximately 10% lower. Tnis is essentially due to the lower costs of
material due to the tninner plate. The labor and welding costs, etc. would

not pe appreciably cnanged.
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APPENDIX E

SHELL SIDE DISTRIBUTION AND PRESSURE LOSS CALCULATIONS

Axial AP Calculations for LMFBR Superheater Tube Bundle
Crossflow AP Calculations for the LMFBR Superheater
Axial OP Calculations for LMFBR Evaporator Tube Bundle

Crossflow AP Calculations for the LMFBR Evaporator



COMBUSTION ENGINEERING, INC. NUMBER E.\

ENGINEERING DEPARTMENT, CHATTANOOGA, TENN. SHEET 1 OF 9
CHARGE NO DATE BY
DESCRIPTION CHECK DATE BY

TITLE: Axial A P Calculations for LMFBR Superheater Tube Bundle

OBJECTIVE: To determine the relative magnitude of pressure drops
expected within the tube bundle of the LMFBR Steam
Generator (below the crossflow region) in order to
assess whether or not flow maldistribution problems
exist in this area.

ASSUMPTIONS: Assuming that the effects of the wall (shroud
inside diameter) will be felt to a distance of 2
tube rows into the tube bundle.

CONCULSIONS: This calculation indicates negligible pressure drop
differentials between the peripherial region of the tube bundle
and the central region; therefore, it is concluded that no
maldistribution problems will esist in the tube bundle.

Prepared by: D. D. DeFur 1/25/73

Checked by: S. R. Penfield 1/29/73
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- COMBUSTION ENGINEERING, INC. NUMBER E.2

ENGINEERING DEPARTMENT, CHATTANOOGA. TENN. sHEET_ 1 OF 9
CHARGE NO DATE BY
‘ DESCRIPTION CHECK DATE BY.

TITLE: Crossflow /A P Calculations for the LMFBR Superheater

OBJECTIVE: To determine the magnitude of pressure drops expected
in the crossflow region of the LMFBR Steam Generator
(the region where fluid flows from the openings in the
flow baffle radially into the tube bundle) in order to assess
whether or not flow maldistribution problems exist in that
area.

CONCLUSION: This calculation indicates a pressure drop which is
negligible compared with total pressure drop down through
the tube bundle; therefore, it is concluded that no maldistribution
problems will exist in this region,

Prepared by: D. D. DeFur 1/23/73
Checked by: S. R. Penfield 1/29/73
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TITLE: Axial AP Calculations for LMFBR Evaporator Tube Bundle

OBJECTIVE: To determine the relative magnitude of pressure drops
expected within the tube bundle of the LMFBR Steam
Generator (below the crossflow region) in order to
assess whether or not flow maldistribution problems
exist in this area.

. ASSUMPTIONS: Assuming that the effects of the wall (shroud
inside diameter) will be felt to a distance of 3
tube rows into the tube bundle.

CONCULSIONS: This calculation indicates sodium maldistribution
between tubes near the shell wall and central tubes.

Prepared by: J. W. Aderholdt 2/7/73

Checked by: S. R. Penfield 2/7/73
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TITLE: Crossflow AP Calculations for the LMFBR Evaporator

OBJECTIVE: To determine the magnitude of pressure drops expected
in the crossflow region of the LMFBR Steam Generator
(the region where fluid flows from the openings in the
flow baffle radially into the tube bundle) in order to
access whether or not flow maldistribution problems exist
in that area.

CONCLUSION: This calculation indicates a pressure drop which is
negligible compared with total pressure drop down
through the tube bundle; therefore, it is concluded
that no maldistribution problems will exist in this

region.
Prepared by: J. W. Aderholdt 2/7/73
Checked by: S. R. Penfield 2/7/73
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