

Y TIC DEC 6 - 19741

ORNL-EIS-74-21
(Suppl. 3)

ENVIRONMENTAL ASPECTS of the TRANSURANICS

A Selected, Annotated Bibliography

OAK RIDGE NATIONAL LABORATORY
OPERATED BY UNION CARBIDE CORPORATION • FOR THE U.S. ATOMIC ENERGY COMMISSION

**ENVIRONMENTAL ASPECTS OF THE TRANSURANICS
A SELECTED, ANNOTATED BIBLIOGRAPHY**

Compiled and Edited by

F. M. Martin

C. T. Sanders

S. S. Talmage

Information Division

DECEMBER 1974

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Work Supported by Nevada Applied Ecology Group
Nevada Operations Office
of the
U. S. ATOMIC ENERGY COMMISSION

at

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37830
operated by
UNION CARBIDE CORPORATION
for the
U. S. ATOMIC ENERGY COMMISSION

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

[Signature]

TABLE OF CONTENTS

	<u>Page</u>
ABSTRACT.	v
PREFACE	vii-ix
SAMPLE REFERENCE.	x
BIBLIOGRAPHIC REFERENCES.	1-144
INDEXES	
Author	145-149
Subject Category	151
Keyword.	153-164
Geographic Location.	165-166
Permuted Title	167-200
Taxon.	201
Publication Description.	203-217
DISTRIBUTION.	219-226

ABSTRACT

This fourth published bibliography of 528 references is from the computer information file built to provide support to the Nevada Applied Ecology Group (NAEG) of the AEC Nevada Operations Office. The general scope is environmental aspects of uranium and the transuranic elements, with a preponderance of material on plutonium. In addition, there are supporting materials involving basic ecology or general reviews on other nuclides that are entered at the request of the NAEG. References provide findings-oriented abstracts. Numerical data is referred to in the comment field. Indexes are given for author, subject category, keywords, geographic location, permuted title, taxons, and publication description.

PREFACE

Five hundred and twenty-eight references are presented in this, the fourth bibliography, published from the information activity supported and guided by the Nevada Applied Ecology Group of the AEC's Nevada Operations Office.

The first three published bibliographies^{1,2,3} have presented 2,107 references previously. The scope is centered on the environmental aspects of plutonium, with later extensions into uranium and all transuranic elements. All published material is contained in a dynamic computerized information file that is used to answer specific requests related to its scope. Users may contact the Ecological Sciences Information Center for assistance at any time. Guests making arrangements to visit the Oak Ridge National Laboratory are invited to use the collection of documents retained by the center.

Citation Form

The bibliographic data were arranged according to the Environmental Information System standard format for computer entry of information.⁴

As a result of computer limitations in indicating superscripts and subscripts in the standard manner, certain conventions have been established in the bibliography:

¹Environmental Aspects of Plutonium, A Selected Annotated Bibliography, ORNL-EIS-72-21 (December 1972), 387 p.

²Environmental Aspects of Plutonium and Other Elements, A Selected, Annotated Bibliography, ORNL-EIS-73-21 (Suppl. 1) (August 1973), 482 p.

³Environmental Aspects of Plutonium and Other Elements, A Selected, Annotated Bibliography, ORNL-EIS-74-21 (Suppl. 2) (February 1974), 272 p.

⁴Oen, C. J., N. F. Sollins, and D. K. Trubey, Guide to the Generalized Bibliographic Format for the Environmental Information System, ORNL-EIS-71-3 (February 1972), 36 p.

BLANK PAGE

- 1) $X_{\sub{t}}$ (X being a variable) means X_t or X subscript t.
- 2) In chemical compounds and elements, NaIO_3 (for example) means NaIO_3 .
- 3) $10(E+3)$ or $X(E-3)$ (E denoting exponent) means 10^3 or X^{-3} , respectively.
- 4) For units of measurement, such as centimeters, meters, feet, etc., X^3 means X^3 .

Indexes

Indexes are provided for: 1) author, 2) subject category, 3) keyword, 4) geographic location, 5) permuted title, 6) taxon, and 7) publication description.

CREDITS

Lorie Weinberg assisted in preparing the material for this publication, and Beth McMullin was responsible for literature scanning and selection.

ACKNOWLEDGEMENTS

P. B. Dunaway, Director of the Nevada Applied Ecology Information Center, Nevada Operations Office, has closely guided the group in the selection of material for this project.

Dr. G. R. Eisele of the Comparative Animal Research Laboratory has contributed documents on the biomedical aspects of plutonium, and Dorothy Hamel of the Nevada Applied Ecology Group Technical Library and her staff have been helpful in alerting us to relevant materials.

Ruth Slusher of the Computer Sciences Division, ORNL, and Faye Fletcher of the Information Center Complex have managed the computer production of this document.

The computer programs supporting the composition and indexing for publications constitute a part of the Oak Ridge Computerized Hierarchical Information System (ORCHIS).⁵

Mailing Address:

Ecological Sciences Information Center
Oak Ridge National Laboratory
Building 2029
P. O. Box X
Oak Ridge, Tennessee 37830

or Tel. 615/483-8611, Ext. 3-6524 or 3-6915
(FTS) 615/483-6524 or 483-6915

⁵Brooks, A. A., ORCHIS Progress Report, TM-3688
(February 1972), 22 p.

SAMPLE REFERENCE

This is an example of the format of the descriptive fields used in this bibliography:

- | | |
|---|--|
| 1 - Record Number
(Sequential Number of Reference) | 6 - Publication Description |
| 2 - Author | 7 - Language of Document |
| 3 - Corporate Author | 8 - Restriction |
| 4 - Publication Date | 9 - Abstract |
| 5 - Document Title | 10 - Abstractor's Initials |
| | 11 - Comments (Pertinent Numerical Data) |

²<266>

² Langham, W., and E.R. Russell, ³ University of Chicago, Chicago, IL. ⁴ 1945, July 23

⁵ Excretion Studies. ⁶ CN-3167; Part of Nickson, J.J. (Ed.), Report of Conference on Plutonium, ⁷ May 14th and 15th, (p. 27-45), 62 p. ⁷ (Russian, English Summary) (Declassified December 22, 1952) ⁸

⁹ Attempts to establish a method of sampling and analyzing urine for small amounts of plutonium and establish a relationship between the amount of plutonium in urine and the total body burden are summarized. A method for collecting and analyzing samples is given. Results of personnel monitoring and human excretion following injection of 4.7 ug of plutonium citrate (+4) are given in tabular form. Results of rat studies showed that the percent of the total injected dose excreted in urine was independent of the size of the dose administered. The excretion of plutonium by humans, dogs, rats, rabbits, and mice is shown in tabular form. The minimum amount of plutonium excreted daily was 0.01% of the retained amount. No comparisons between concentration in the blood and urinary excretion could be made. (ST)¹⁰

¹¹ Tables 18-25 contain plutonium excretion data for man and several animals.

<1>
Dunaway, P.B. (Ed.), and M.G. White (Ed.),
Nevada Operations Office, Las Vegas, NV. 1974,
July

The Dynamics of Plutonium in Desert
Environments, Nevada Applied Ecology Group
Progress Report as of January 1974;
CONF-731048; NVO-142; Proceedings of the NAE
Plutonium Environmental Studies Program
Symposium held in Las Vegas, Nevada, October
2-3, 1973, 369 p.

A status report of the Nevada Applied Ecology
Group research activities is given. The
twenty-six articles included have been
abstracted separately for the data base.
Investigations on the soils of Pu
contaminated areas at the Nevada Test Site
were reported with statistical analyses
included. Other papers dealt with the Pu
content of vegetation of contaminated areas;
Pu metabolism in dairy cattle; grazing
studies on Pu-contaminated areas, giving the
radionuclide levels in Area 18 cattle;
ecological studies of vertebrates; digestion
of ingested Pu in chickens and subsequent
transfer to eggs; the role of soil
microorganisms in the movement of Pu;
resuspension studies, including the use of
NTS data to predict air concentrations of Pu
due to resuspension on the Eniwetok Atoll;
distribution and inventory element activities
on NTS and off-NTS; the Pu transport and dose
estimation model; a description of the
information support for the NAE by the Oak
Ridge Data Base and the Library Services at
AEC Nevada Operations Office. (PMH)

<2>
Pawler, E.B., and E.H. Essington, Los Alamos
Scientific Laboratory, Los Alamos, NM. 1974,
July

Soils Element Activities, October,
1972-September, 1973. CONF-731048; NVO-142;
Part of Dunaway, P.B. and White, M.G. (Eds.),
The Dynamics of Plutonium in Desert
Environments, Proceedings of the NAE Plutonium
Environmental Studies Program Symposium held in
Las Vegas, Nevada, October 2-3, 1973, (p. 7-16),
369 p.

The report presents a general review of the
Soils Element Activities for the year
October, 1972-September, 1973. Areas
declassified, areas sampled, and analytical
results for plutonium 239, 240, and americium
241 are briefly discussed. Changes found in
the ratio of plutonium 239, 240, and
americium 241, as well as the implications of
the changing ratio, are presented. It is
suggested that the observed increasing ratio
with depth of soil profile may be related to
"differential solubility" of the two
radionuclides, and that with passing time,
americium 241 may become the radionuclide of
prime concern. A modified analytical method
for plutonium in soils, the LASL-HASL leach
method, is discussed. (Auth)

<3>
Mayha, H.J., I. Aoki, and D.L. Wireman, Reynolds
Electrical and Engineering Company, Inc., Las
Vegas, NV. 1974, July

REECo Field Activities and Sample Logistics in
Support of the Nevada Applied Ecology Group.
CONF-731048; NVO-142; Part of Dunaway, P.B. and
White, M.G. (Eds.), The Dynamics of Plutonium in
Desert Environments, Proceedings of the NAE
Plutonium Environmental Studies Program
Symposium held in Las Vegas, Nevada, October
2-3, 1973, (p. 17-19), 369 p.

The field activities and sample logistics of
Reynolds Electrical and Engineering Co., Inc.
(REECo), in support of the Nevada Applied
Ecology Group (NAEG) plutonium studies in the
Test Range complex, are discussed in the
report. Field instrument measurements,
determination of sampling sites, and
procedures used in preparation of samples are
included. The field activity status of the
present NAE intensive study areas is as
follows: fences enclosing the contaminated
areas have been erected; single transect soil
samples have been collected from all study
areas and prepared for analysis; grid systems
have been completed in all study areas;
FIDLER surveys are complete in Areas 5 and
13, and are 75 percent complete at Tonopah
Test Range and Area 11; soil and vegetation
sampling are complete from Areas 5 and 13.
(Auth)

<4>
Leavitt, V.D., National Environmental Research
Center, Las Vegas, NV. 1974, July; 1974, March

Soil Surveys of Five Plutonium-Contaminated
Areas on the Test Range Complex in Nevada.
CONF-731048; NVO-142; NERC-LV-539-28; Part of
Dunaway, P.B. and White, M.G. (Eds.), The
Dynamics of Plutonium in Desert Environments,
Proceedings of the NAE Plutonium Environmental
Studies Program Symposium held in Las Vegas,
Nevada, October 2-3, 1973, (p. 21-27), 369 p.

The report discusses soils in five areas
located on the Test Range Complex, Nye
County, Nevada. The survey was undertaken as
part of the Nevada Applied Ecology Group
(NAEG) plutonium studies. Most of the
surface soils in the areas have a gravelly
texture and are typically classified as
gravelly sandy loam. The majority of the
surveyed land is either floodplain or
alluvial fan with deep soils having
well-developed profiles and platy structure.
All of the soils are alkaline, ranging in pH
from 7.0 to 9.0. Two general categories of
vegetation are found in the study areas, low
and high desert shrub. The low desert shrubs
are predominantly creosote bush (LARREA
DIVARICATA) and white bursage (FRANSERIA
DUMOSA). The high desert shrubs are mostly
fourwing saltbush (ARTIPLEX CANESCENS),
winterfat (EUROTIA LANATA), and bud sagebrush
(ARTERISIA SPINESCENS). (Auth)

See also complete report, NERC-LV-539-28.

<5>
Tamura, T., Oak Ridge National Laboratory, Environmental Sciences Division, Oak Ridge, TN. 1974, July

Distribution and Characterization of Plutonium in Soils from Nevada Test Site. CONF-731048; NVO-142; Part of Dunaway, P.B. and White, M.G. (Eds.), The Dynamics of Plutonium in Desert Environments, Proceedings of the NAEQ Plutonium Environmental Studies Program Symposium held in Las Vegas, Nevada, October 2-3, 1973, (p. 29-42), 369 p.

The distribution and characterization of plutonium in soil fractions of the Nevada Applied Ecology Group (NAEQ) intensive site study area samples were studied. The report discusses analytical results obtained on three selected surface soil samples from two areas at Nevada Test Site. Analytical methods are described for determination of total plutonium content, plutonium distribution in different particle size fractions, and short-time digestion leachability by HNO₃. Leaching with HNO₃ revealed that 65 to 91% of the plutonium could be leached. The leaching results suggest the possibility of using the acid extraction as a means of predicting the "availability" of plutonium in soils. Preliminary data suggest that plutonium in the coarser size fractions is PuO₂, whereas plutonium associated with the finer size particles possibly is a hydrous PuO₂. (Auth)

<6>
Eberhardt, L.L., and R.O. Gilbert, Battelle Memorial Institute, Pacific Northwest Laboratories, Richland, Wa. 1974, July

General Statistical Considerations in Environmental Plutonium Studies. CONF-731048; NVO-142; BNWL-SA-481E; Part of Dunaway, P.B. and White, M.G. (Eds.), The Dynamics of plutonium in Desert Environments, Proceedings of the NAEQ Plutonium Environmental Studies Program Symposium held in Las Vegas, Nevada, October 2-3, 1973, (p. 43-49), 369p.

The high sampling variability encountered in environmental plutonium studies along with high analytical costs makes it very important that efficient sampling plans be used. However, efficient sampling depends on explicit and simple statements of the objectives of the study. When there are multiple objectives, as in the Nevada Applied Ecology Group (NAEQ) study, it may be difficult to devise a wholly suitable sampling scheme. Sampling for long-term changes in plutonium concentration may also be complex and expensive. Some possibilities to be considered are: later transport by water, penetration into the soil, gradual dispersion along soil surfaces as the result of wind movement, and local accumulation areas (as in soil mounds under bushes at Nevada Test Site). Further attention to problems associated with compositing samples is recommended, as is the consistent use of random sampling as a basic technique. (Auth) (PMM)

Portions of this report were published as BNWL-SA-4810.

<7>
Gilbert, R.O., and L.L. Eberhardt, Battelle Memorial Institute, Pacific Northwest Laboratories, Richland, Wa. 1974, July

Statistical Analysis of Plutonium in Soil at the Nevada Test Site--Some Results. CONF-731048; NVO-142; BNWL-SA-4815; Part of Dunaway, P.B. and White, M.G. (Eds.), The dynamics of Plutonium in Desert Environments, Proceedings of the NAEQ Plutonium Environmental Studies Program Symposium held in Las Vegas, Nevada, October 2-3, 1973, (p. 51-89), 369 p.

The statistical field sampling design being used to estimate surface soil inventory in Areas 13 and 5 of the Nevada Test Site (NTS) is described and discussed. It is estimated that the total amount of Pu 239-240 in the upper 5 cm of soil inside the outer fence region of Area 13 is 39 Ci with a standard error of 5 Ci. This estimate is obtained from soil samples collected at randomly chosen locations according to a stratified random sampling plan. Correlation and regression analyses are computed, which indicates that lab gamma scans on soil samples for Am 241 can, in general, predict quite well the concentrations of Pu 239-240 present in the soil in Area 13. This suggests the determination of Pu 239-240 may not be required on all soil samples in this area. Average Pu/Am ratios are obtained for Areas 13, 5, and the Tonopah Test Range (TTR). The average ratio for TTR appears to be considerably greater than those for Area 13 or 5. There is also some evidence to suggest that the Pu/Am ratio may not be constant over all levels of Am 241 for the lower count per minute (cpm) regions of Areas 13 and 5. Correlation analyses indicate the FIDLER field instrument as used in the current sampling program (cpm readings taken 1 ft off the ground over the soil sampling location) is not accurate in predicting Pu 239-240 concentrations in surface soils. However, three-dimensional maps of FIDLER readings taken at grid points in Area 13 and Pu 239-240 determinations in soils taken at random soil sampling locations indicate the usefulness of the FIDLER for mapping the general surface distribution of Pu 239-240. Data are presented which suggest the Pu/Am ratio may decrease with depth of profile. Also, the available data are examined to estimate the within-lab variability on replicate samples. The results suggest that four or five replicates may be necessary to detect even rather large differences between the three participating labs. There are no apparent consistent differences between the three participating laboratories in reported Pu 239-240 determinations for aliquots from the same soil samples from Areas 13, 5 and TTR sent to each lab. (Auth)

Portions of this report were published as Report BNWL-SA-4815 (Rev.).

<8>
 Romney, E.W., A. Wallace, R.O. Gilbert, S.A. Bamberg, J.D. Childress, J.E. Kinnear, and T.L. Ackerman, University of California, Los Angeles, CA; Battelle Memorial Institute, Pacific Northwest Laboratories, Richland, WA. 1974, July; 1973, December

Some Ecological Attributes and Plutonium Contents of Perennial Vegetation in Area (Nevada Applied Ecology Group Vegetation Studies). CONF-731048; NVO-142; UCCLA-12-937; Part of Dunaway, P.B. and White, M.G. (Eds.), The dynamics of Plutonium in Desert Environments, Proceedings of the NAEG Plutonium Environmental Studies Program Symposium held in Las Vegas, Nevada, October 2-3, 1973, (p. 91-106), 369 p.

The report includes data on the ecological attributes of vegetation in Area 13, Nevada Test Site (NTS), as well as data on the Pu 239-240 and Am 241 in samples of vegetation collected in conjunction with the soil sampling program in Area 13. Prominent shrub and grass species in the fallout pattern of Area 13 include ARTEMISIA SPINESCENS, ATRIPLEX CANESCENS, ATRIPLEX CONVERTIPOLIA, EUROTTIA LANATA, GRAYIA SPINOSA, KOCHIA AMERICANA, LYCIUM ANDERSONII, and CRYZOPSIS HYMENOIDES. Individual or codominant species distinguished local association patterns of varied size within the fenced study area. Vegetation cover estimates in sample study plots ranged from 12.8 to 28.3%. Shrub densities ranged from $11.2 \times 10^{2+3}$ to $17.9 \times 10^{2+3}$ plants per hectare, and the standing shrub biomass ranged from 1,592 to 4,285 kg per hectare (0.7 to 1.9 tons per acre). Preliminary results showed rather uniform distributions of Pu 239-240 and Am 241 among individual samples of the same plant species collected within an intensive study plot. However, there was considerable variation in the contamination levels between different species, presumably from superficial entrapment of resuspended particulate material. Concentrations in EUROTTIA LANATA were three to five times higher than in other species sampled from the same study site. The Pu 239-240 and Am 241 generally tended to decrease in samples of vegetation collected at increasing distances from ground zero, but there were poor correlations between vegetation and soil Pu 239-240 concentrations in isopleth strata within the fenced grazing area. Results showed inconsistencies in the Pu/Am ratios for vegetation and soil. Lower ratios found in vegetation samples indicate that preferential uptake and concentration of Am 241 through plant roots might have occurred in the Project 57 area. (Auth)

<9>
 Major, W.J., K.D. Lee, R.A. Weissman, and R. Melgard, LFE Environmental Analysis Laboratories Division, Richmond, CA. 1974, July

Determination of Plutonium 239 and Americium 241 in Large Nevada Applied Ecology Group Vegetation Samples. CONF-731048; NVO-142; Part of Dunaway, P.B. and White, M.G. (Eds.), The Dynamics of Plutonium in Desert Environments, Proceedings of the NAEG Plutonium Environmental Studies Program Symposium held in Las Vegas, Nevada, October 2-3, 1973, (p. 107-118), 369 p.

A method has been developed at this laboratory for analyzing Pu 239 and Am 241 in various types of woody vegetation from Nevada Applied Ecology Group (NAEG) collection sites in amounts ranging from 300 to 500 g dry weight. Special dry ashing techniques are

used initially to eliminate carbonaceous material. A one-gallon metal paint can, covered with perforated aluminum foil, is used as a disposable container to perform initial drying (110°C) and carbonization steps (250°C). Ashing is then completed in a Pyrex glass beaker (600°C), also covered with perforated foil. The sample ash is treated with HNO₃-HCl plus H₂O₂. Any insoluble residue is filtered and treated with HF and HNO₃ in soil-type dissolution procedure, since tests show that a variable amount of undissolved plutonium and americium remains in the residue. The vegetation is thus reduced from its large, irregular bulk to a small volume of homogeneous solution. All or a portion of the dissolved sample is transferred to a counting vial for instrumental measurement of Am 241 via its 60-kev gamma emission. Uncertainties in counting such low-energy gammas in inhomogeneous samples are essentially eliminated and a standard counting geometry is achieved. Radiochemical isotope dilution analysis is performed for Pu 239 using Pu 236 tracer. Also, if Am 241 is too low for instrumental measurement or a confirmation of the instrumental measurement is required, isotope dilution analysis for Am 241 is performed using Am 243 tracer. Comparisons are made between radiochemical and instrumental analyses of Am 241. Plutonium is isolated from a sample aliquot on an anion exchange resin column. Americium is isolated from another aliquot on an HNO₃-methanol anion exchange resin column. Plutonium and americium are finally electrodeposited on stainless steel and measured by alpha spectroscopy. Tracer recoveries for plutonium range from 60 to 80%, with americium slightly lower. (Auth)

Portions of this report were published as Report TLW-6122

<10>
 Rhoads, W.A., EG&G, Inc., Santa Barbara Division, Goleta, CA. 1974, July
 Analysis of Vegetation Cover in Certain Plutonium Contaminated Areas Using Aerial Photography. CONF-731048; NVO-142; Part of Dunaway, P.B. and White, M.G. (Eds.), The Dynamics of Plutonium in Desert Environments, Proceedings of the NAEG Plutonium Environmental Studies Program Symposium held in Las Vegas, Nevada, October 2-3, 1973, (p. 119-133), 369 p.

Two methods of estimating vegetation cover were developed using aerial photographs; both are less expensive and do not contribute to disturbance of the areas compared to standard methods of measuring vegetation cover on the ground. Cover values for five Pu-contaminated areas at Nevada Test Site and Tonopah Test Range are presented. A preliminary assessment of vegetation conditions in the vicinities of Clean Slate 2 and 3 (Bollett Coaster Series) is given. (Auth)

Portions of this report were published as Report EGG-565-108.

<11>
Au, P.H.P., National Environmental Research Center, Las Vegas, NV. 1974, July

The Role of Soil Microorganisms in the Movement of Plutonium. CONF-731048; NVO-142; Part of Dunaway, P.B. and White, M.G. (Eds.), The Dynamics of Plutonium in Desert Environments, Proceedings of the NAEQ Plutonium Environmental Studies Program Symposium held in Las Vegas, Nevada, October 2-3, 1973, (p. 135-141), 369 p.

Microbial studies which are completed or in progress were designed to determine the ability of microorganisms to absorb plutonium, to quantify the uptake, and to determine the microbial population of soils of the Nevada Test Site (NTS). Results of the microbial inventory of Area 13 (NTS) showed that about 2% of the ASPERGILLUS was near the surface of the humuscek and increased with distance away from the plants. PENICILLIUM, on the other hand, showed an inverse pattern in that its relative abundance decreased away from the plants. A method was developed for in vitro studies in which aerial fungal spores were collected to determine soluble plutonium uptake from agar medium. The concentration of plutonium in mature spores was approximately one-fourth of that in the growth medium. (Auth)

<12>
Barth, J., and A.A. Mullen, National Environmental Research Center, Las Vegas, NV. 1974, July

In Vitro Plutonium Studies Using the Artificial Rumen and Simulated Abomasal and Intestinal Fluids. CONF-731048; NVO-142; Part of Dunaway, P.B. and White, M.G. (Eds.), The Dynamics of Plutonium in Desert Environments, Proceedings of the NAEQ Plutonium Environmental Studies Program Symposium held in Las Vegas, Nevada, October 2-3, 1973, (p. 143-150), 369 p.

An artificial rumen, and simulated abomasal and intestinal fluids procedure was used to study the alimentary solubility and biological availability of various forms of plutonium. Plutonium was added to viable rumen juice and incubated for 24 hr. This juice was converted to simulate the digestive stages of the abomasum, duodenum, jejunum, and lower small intestine by the addition of enzymes, bile, and adjustment of the pH. Samples were collected from these digestive stages for soluble plutonium analysis by liquid scintillation. When plutonium was administered as soluble plutonium nitrate, 10.1% remained soluble following the artificial rumen incubation period, 15.3% following the abomasal period, and 30.1% and 32.7% when held at pH 4 and 5 respectively, in the duodenal phase. The solubility

increased to 60.1% following the addition of bile and enzymes and the adjustment of the pH to 6. Plutonium administered as plutonium citrate was 9.0% soluble following the rumen incubation period, 13.1% following the abomasal period, and 22.5% and 24.8% when held at pH 4 and 5 respectively, in the duodenal phase. This increased to 59.6% following the addition of bile and enzymes, and the adjustment of the pH to 6. Plutonium administered as 0.06 μ m plutonium dioxide spheres was 1.5% soluble following the rumen incubation period, 2.3% following the abomasal period, and 3.6% and 3.9% when held at pH 4 and 5 respectively, in the duodenal phase. This increased to 7.4% following the addition of bile and enzymes and the adjustment of the pH to 6. The sharp rise in soluble plutonium observed for all forms following the addition of bile and enzymes and adjustment of the pH to 6 was found to be due to the presence of bile rather than enzymes or change in pH. (Auth)

<13>
Smith, D.D., National Environmental Research Center, Las Vegas, NV. 1974, July

Grazing Studies on Selected Plutonium Contaminated Areas in Nevada. CONF-731048; NVO-142; Part of Dunaway, P.B. and White, M.G. (Eds.), The Dynamics of Plutonium in Desert Environments, Proceedings of the NAEQ Plutonium Environmental Studies Program Symposium held in Las Vegas, Nevada, October 2-3, 1973, (p. 151-161), 369 p.

A grazing study in Area 13 of the Nevada Test Site was initiated in May of 1973 and is proceeding on schedule. This includes the monthly collection of ingesta samples from fistulated steers, the quarterly sacrifice and sampling of a goat, and the semiannual sacrifice and sampling of selected adult and young cattle. No data are yet available. Bone ash samples collected from the NTS beef herd for the years 1958-1967 have been obtained from the University of Nevada, Reno, and submitted for plutonium and americium analyses. During 1972, cattle from three different herds on and around the Nevada Test Site were sampled to determine the tissue burdens of plutonium and uranium. The herds sampled were: (1) a control herd from Searchlight, Nevada; (2) a herd from Area 18, Nevada Test Site; and (3) a herd from the Roller Coaster area. The uranium content of the tissues sampled was relatively consistent among the three herds; however, the Pu 239 was about 20 times higher in femur from the Roller Coaster herd than in the Searchlight cattle. This ratio was lower in edible tissues. Using the maximum concentrations observed in beef tissue, the hypothetical maximum bone dose for man ingesting 250 g/day for 50 years was calculated to be 9.7 mrem from beef muscle or 36.4 mrem for beef liver. (Auth)

<15>

Stanley, R.E., E.W. Brethauer, and W.W. Sutton, National Environmental Research Center, Las Vegas, NV. 1974, July

Absorption, Distribution, and Excretion of Plutonium by Dairy Cattle. CONF-731048; NVO-142; Part of Dunaway, P.B. and White, M.G. (Eds.), The Dynamics of Plutonium in Desert Environments, Proceedings of the NAEQ Plutonium Environmental Studies Program Symposium held in Las Vegas, Nevada, October 2-3, 1973, (p. 163-185), 369 p.

In order to obtain information on the significance of the milk link in man's food chain as a source of plutonium exposure and to gain additional information on plutonium deposition patterns in ruminants, a series of metabolism studies with dairy cows was initiated. This preliminary report outlines the first two studies in the series and while some of the laboratory assays have not been completed, several comparative observations can be reported at this time. Two groups of Holstein dairy cows, four cows in each group, were studied to examine the physiological transport of ingested plutonium citrate and plutonium dioxide. Approximately 3 μ Ci of plutonium citrate per animal was administered in an acute treatment to the first group, while 1 μ Ci of plutonium dioxide was given daily to each animal for 19 consecutive days in the second group. Samples of blood, milk, urine, and feces were taken during and after oral dosing, while tissue collections were made at necropsy 6 to 13 weeks after treatment. As expected, the major portion of plutonium activity (approximately 95% in Group 1 and slightly less than 100% in Group 2) was excreted in the feces. However, recovered activity in urine and milk following both the acute dose of plutonium citrate and the multiple doses of plutonium dioxide confirmed the physiological uptake and transport of both chemical forms. Total plutonium transport to milk was not great and, on a percent of oral dose basis, was observed to be 2×10^{-4} and 2×10^{-5} following the plutonium citrate and plutonium dioxide treatments, respectively. A complete report, including a comparison of gastrointestinal uptake, tissue deposition patterns, physiological reduction factors, and placental transfer, will follow once the laboratory analyses are finalized. (Auth)

<15>

Hoar, K.S., and W.G. Bradley, University of Nevada, Las Vegas, NV. 1972, July

Ecological Studies of Vertebrates in Plutonium Contaminated Areas of the Nevada Test Site. CONF-731048; NVO-142; Part of Dunaway, P.B. and White, M.G. (Eds.), The Dynamics of Plutonium in Desert Environments, Proceedings of the NAEQ Plutonium Environmental Studies Program Symposium held in Las Vegas, Nevada, October 2-3, 1973, (p. 187-212), 369 p.

Various standard census methods were employed during the period March, 1972-August, 1973, to obtain a qualitative and quantitative inventory of the vertebrate biota in three plutonium-contaminated study areas of the Nevada Test Site (NTS). Data are presented on the vertebrate composition, relative abundance, and seasonal status in the study areas. More detailed data on rodent populations are included for Area 12. Five species of snakes have been observed in these study areas. Additional species, although not observed due to their nocturnal habits,

are undoubtedly present. The insectivorous lizards, *CNEMIDOPHORUS TIGRIS* and *UTA STANSBURIANA*, are the most abundant lizards in all of the study areas, while as *CALYPSAURUS DRACONOIDES* is only abundant in Area 5. The carnivorous lizard, *CHCAPHYSIS WISLIZENI*, is found in all three study areas. Seasonally, birds are an important group in all study areas. Species richness, seasonal status, and relative abundance varied greatly between the years 1972-1973. The Horned Lark is the only common-to-abundant resident, while common-to-abundant migrants during spring, 1973, were Black-throated Sparrows, Mourning Dove, and Western Kingbird. Rodents common to all study areas were: *DIPODOMYS MICROPS*, *DIPODOMYS MERRILLI*, *PERognathus longimembris* and *AMMOSPERMOPHILUS LEUCURUS*. In addition to the four common species, *MICRODIPODOPS MEGACEPHALUS* and *PERognathus PARVUS*, characteristic of the Great Basin Desert, were found in Area 13. Concentrations of Pu 239 and Am 241 were determined in the pelt, GI tract, and carcass of nine *DIPODOMYS MICROPS*, resident of Area 13 for at least six months. Maximum Pu 239 values obtained in nCi/g ash were $2.44 \times 10^{(E-0)}$, $4.74 \times 10^{(E-0)}$ and $8.58 \times 10^{(E-3)}$ for the pelt, GI tract and carcass, respectively. Am 241 values were $2.87 \times 10^{(E-1)}$, $5.49 \times 10^{(E-1)}$, and "not detectable" for the pelt, GI tract, and carcass, respectively. (Auth)

<16>

Mullen, A.A., National Environmental Research Center, Las Vegas, NV. 1974, July

Distribution of Ingested Plutonium in Chickens and Subsequent Transport to Eggs. CONF-731048; NVO-142; Part of Dunaway, P.B. and White, M.G. (Eds.), The Dynamics of Plutonium in Desert Environments, Proceedings of the NAEQ Plutonium Environmental Studies Program Symposium held in Las Vegas, Nevada, October 2-3, 1973, (p. 213-219), 369 p.

Soluble plutonium 238 citrate and relatively insoluble particulate plutonium 238 oxide were administered orally to two groups of laying hens daily for two weeks. The yolks, whites, and shells from the eggs were analyzed for their plutonium content. Yolks from the eggs of chickens fed plutonium citrate appeared to be the only egg fractions in which plutonium activity was observed. This activity reached a peak of 0.0155% of the administered dose nine days after the initial ingestion. The activity decreased with a biological half-life of 1.85 plus or minus 0.48 days and an indication of a longer half-life of >25 days. Ten chickens from each group were sacrificed 12 days after the final administration of plutonium. Tissue samples were collected to determine the amount of plutonium present in the edible portions and feathers of the chickens. The remaining chickens were sacrificed 30 days after the final dose was administered. Preliminary results indicate little plutonium remained in either the tissues or feathers obtained from either group of chickens at time of sacrifice. (Auth)

<17>

<17>
 Phelps, P.L., and L.R. Anspaugh, Lawrence Livermore Laboratory, Biomedical Division, Livermore, Ch. 1974, July; 1974, February 19

Resuspension Element Status Report.
 CONF-731048; NYO-142; Part of Dunaway, P.B. and White, M.G. (Eds.), The Dynamics of Plutonium in Desert Environments, Proceedings of the NAEG Plutonium Environmental Studies Program Symposium held in Las Vegas, Nevada, October 2-3, 1973, (p. 221-233), 369 p.; UCRL-75484; Part of Anspaugh, L.R., et al, Resuspension of Plutonium, A Progress Report, (p. 1-16), 111 p.

An intensive study on the resuspension of plutonium at the Nevada Test Site has been initiated. The main thrust of the study is to develop a mathematical model for describing the concentrations of plutonium in air as a function of the source and driving forces. Apparatus and experimental techniques for studying the dynamics of plutonium and soil particle behavior have been developed. This has included the development of ultrahigh-volume air samples (1500m³/hr) which allow collection of adequate samples of plutonium at worldwide air concentration levels in two hours of sampling time. The most intensive field program to date has been in the GMX area. Data have also been collected in Area 13 and Mercury. Analysis of air samples collected from February, 1971, to July, 1972, shows that the GMX site, which was contaminated 17 years ago, still represents a significant resuspension source. However, the average air concentration of resuspended Pu 239 outside the exclusion area is only a small fraction of the presently accepted maximum permissible concentration for occupational exposure. It was also concluded that the air concentrations of Pu 239 in Mercury may be influenced by the local NTS sources. Measurements using cascade impactor studies indicate that there is no difference in the distribution of activity with particle size for the three species Pu 238, Pu 239, 240, and Am 241. The data also showed that the fraction of the resuspended plutonium aerosol at GMX which would be expected to undergo pulmonary depositions is approximately 0.2 based upon the ICRP Task Group on Lung Dynamics model. Experimental results have shown that there is no obvious correlation of specific Pu activity with particle size. An average specific activity of 890 dpm/g, or about one-third of that found in the soil in close proximity to the cascade impactors, was measured. Particle data from the cascade impactors showed that the ratio of Pu 239, 240 to Am 241 activity is the same as reported for soil in the vicinity of the cascade impactors. Preliminary results from the ultrahigh-volume air sampler runs indicate a gross correlation between many of the wind speed related parameters and the concentration of resuspended plutonium. Experience and data gathered at the GMX site were used to derive simple predictive models for air concentrations of plutonium due to resuspension on the Eniwetok Atoll.

(Auth) (PMM)

<18>
 Kennedy, N.C., and H.G. Booth, Air Resources Laboratory, Las Vegas, NV. 1974, July; 1974, February 19

Measurements of Meteorological Parameters.
 CONF-731048; NYO-142; Part of Dunaway, P.B. and White, M.G. (Eds.), The Dynamics of Plutonium in Desert Environments, Proceedings of the NAEG Plutonium Environmental Studies Program Symposium held in Las Vegas, Nevada, October 2-3, 1973, (p. 235-239), 369 p.; UCRL-75484; Part of Anspaugh, L.R., et al, Resuspension of Plutonium, A Progress Report, (p. 17-23), 111 p.

A part of the Air Resources Laboratory-Las Vegas support to the Resuspension Element has been the recording of meteorological information at air sampling locations. Measurements of wind direction, speed, and precipitation were made at Reynolds Electrical and Engineering Company and Lawrence Livermore Laboratory air sampling sites. These data are being used in the analysis of sample variation. In conjunction with the more detailed GMX area resuspension experiments, a more elaborate meteorological data gathering system has been established. A brief outline of the wind, temperature, moisture, solar radiation and other miscellaneous meteorological measurements made during sampling periods is given. The wind and temperature profiles for 4 high-volume air sampler runs are shown in a graph. One profile is for light winds, one for strong winds, and the other two for the initial two runs for which the Pu 239 activity data has been received. (PMM)

Figure 2 gives meteorological data for four particle analyzer runs at GMX site. Figure 1 gives meteorological data for four UHV air sampler runs at GMX site.

<19>
Goluba, R.W., Lawrence Livermore Laboratory, Biomedical Division, Livermore, CA. 1974, July; 1974, February 19

Ultra High Volume Air Sampler. CONF-731048; NVO-142; Part of Dunaway, P.B. and White, M.G. (Eds.), The Dynamics of Plutonium in Desert Environments, Proceedings of the NAEG Plutonium Environmental Studies Program Symposium held in Las Vegas, Nevada, October 2-3, 1973, (p. 241-246), 369 p.; UCRL-75484; Part of Anspaugh, L.R., et al, Resuspension of Plutonium, A Progress Report, (p. 24-32), 111 p.

An air sampler with a nominal volumetric flow rate of 1500 m³/hr was developed in order that a measurable amount of Pu 239 could be collected in as short a time span as 2 hr. The design of the unit is patterned after an air sampler built by Asikainen and Blomqvist (1970) which had a flow rate of 1000 m³/hr. The air flow through the sampler is maintained by a centrifugal blower that its inlet is attached to one side of a large plenum. The filter, which measures 0.6 x 1.7 m, is mounted horizontally on top of the plenum at a height of 1.3 m above ground level. The filter material used is Delbag 99/98 Microscutan, which is made of mats of polystyrene fibers with diameters of 1 μ m and less. The blower exhausts through a 0.3 m diameter of 3 m long sheet metal duct, which is inclined at an angle of 10 degrees with respect to the ground. The length of the duct precludes any interference of the exhaust flow stream with the air intake to the sampler. The duct is inclined so that the exhaust flow stream dissipates without directly striking the ground, which would artificially introduce aerosol into the air. The centrifugal blower is a 0.4 m diameter wheel with radial blades and is driven by a 7.5 hp electric motor. A schematic of the calibration setup for the ultra high volume air sampler is shown and the experimental procedure is described. (FMM)

<20>
Reichman, J.M., Lawrence Livermore Laboratory, Biomedical Division, Livermore, CA. 1974, July; 1974, February 19

Salivation and Creep Sampler. CONF-731048; NVO-142; Part of Dunaway, P.B. and White, M.G. (Eds.), The Dynamics of Plutonium in Desert Environments, Proceedings of the NAEG Plutonium Environmental Studies Program Symposium held in Las Vegas, Nevada, October 2-3, 1973, (p. 247-254), 369 p.; UCRL-75484; Part of Anspaugh, L.R., et al, Resuspension of Plutonium, A Progress Report, (p. 33-43), 111 p.

Motion of windblown sand close to the ground can occur by two mechanisms. The first of these mechanisms is creep, which is the "rolling" motion of sand along the ground. The second mechanism is salivation which occurs when wind speed increases and sand "hops" along the ground in short, arching paths. Measurement of these mechanisms of sand movement, together with the resuspended sand, is necessary for the understanding of the total flux of windborne soil. Several devices used to measure salivation and creep in previous studies were evaluated to determine the most efficient. Modifications then were made to further increase efficiency. Testing of the units was conducted under controlled conditions at Livermore in order that more reproducibility could be obtained than would be possible at the Nevada Test Site. (ST)

<21>
Koval, J.S., Lawrence Livermore Laboratory, Biomedical Division, Livermore, CA. 1974, July; 1974, February 19

In Situ Optical Particle Size Analysis of Ambient Aerosol. CONF-731048; NVO-142; Part of Dunaway, P.B. and White, M.G. (Eds.), The Dynamics of Plutonium in Desert Environments, Proceedings of the NAEG Plutonium Environmental Studies Program Symposium held in Las Vegas, Nevada October 2-3, 1973, (p. 255-264), 369 p.; UCRL-75484; Part of Anspaugh, L.R., et al, Resuspension of Plutonium, A Progress Report, (p. 44-54), 111 p.

The Clonet Particle Analyzer is a light-scattering instrument capable of sizing and counting particles in the range of 0.5 to 10 μ m in diameter. The design, calibration and configuration of this instrument for data collection at the Nevada Test Site is described. Between April 18 and August 2, 1973, data from 132 Clonet Particle Analyzer runs were collected. Very little data reduction has been completed. The primary goal of the data analysis will be detection of correlations between particle concentration and one or several meteorological parameters. (ST)

<22>

<22>

Anspaugh, L.R., and P.L. Phelps, Lawrence Livermore Laboratory, Biomedical Division, Livermore, CA; Lawrence Livermore Laboratory, Electronics Engineering Department, Livermore, CA. 1973, July; 1974, February 19

Results and Data Analysis: Resuspension Element Status Report. CONF-731048; NVO-142; Part of Dunaway, P.B. and White, M.G. (Eds.), The Dynamics of Plutonium in Desert Environments, Proceedings of the NAEG Plutonium Environmental Studies Program Symposium held in Las Vegas, Nevada, October 2-3, 1973, (p. 265-298), 369 p.; UCRL-75484; Part of Anspaugh, L.R., et al., Resuspension of Plutonium, A Progress Report, (p. 55-93), 111 p.

The long-range goal of the Nevada Applied Ecology Group (NAEG) resuspension studies is to produce a set of equations which can be used to predict the time-dependent average concentration of resuspended material downwind from a source of any geometrical configuration and soil surface characteristics. Results which are currently available are limited and/or have not been fully analyzed; they are presented in the nature of a status report and as representative of the types of measurements being made. These results include resuspension measurements and analysis for Pu 239 at the fence boundaries of the GMX and Camp Mercury, NTS areas; measurements of particle size distribution for aerosols at the GMX site using cascade impactors; and the study of resuspension of plutonium in the GMX area using ultrahigh-volume air samplers. (ST)

<23>

Anspaugh, L.R., Lawrence Livermore Laboratory, Biomedical Division, Livermore, CA. 1974, July; 1974, February 19

Appendix A, Resuspension Element Status Report: The Use of Nevada Test Site Data and Experience to Predict Air Concentrations of Plutonium Due to Resuspension on the Enewetak Atoll. CONF-731048; NVO-142; Part of Dunaway, P.B. and White, M.G. (Eds.), The Dynamics of Plutonium in Desert Environments, Proceedings of the NAEG Plutonium Environmental Studies Program Symposium held in Las Vegas, Nevada, October 2-3, 1973, (p. 299-310), 369 p.; UCRL-75484; Part of Anspaugh, L.R., et al., Resuspension of Plutonium, A Progress Report, (p. 94-111), 111 p.

Two approximate methods, the resuspension factor approach and the mass loading approach, were used to predict resuspended air activity in the vicinity of an area contaminated with Pu. The mass loading approach is based upon measured or assumed levels of particulate matter in ambient air with the assumption that this material is derived from the contaminated soil. Representative calculations were made using Nevada Test Site data and experience to predict air concentrations of Pu due to resuspension on the Enewetak Atoll. Soil levels for both soluble and insoluble Pu 239 calculated by both methods agreed within a factor of two. (ST)

<24>

Church, B.W., D.M. Brady, I. Aoki, and W.A. Bliss, U.S. Atomic Energy Commission, Las Vegas, NV; Reynolds Electrical and Engineering Company, Inc., Las Vegas, NV; National Environmental Research Center, Las Vegas, NV. 1974, July

Distribution and Inventory Element Activities On Nevada Test Site and Off Nevada Test Site. CONF-731048; NVO-142; Part of Dunaway, P.B. and White, M.G. (Eds.), The Dynamics of Plutonium in Desert Environments, Proceedings of the NAEG Plutonium Environmental Studies Program Symposium held in Las Vegas, Nevada, October 2-3, 1973, (p. 311-320), 369 p.

The Nevada Applied Ecology Group Distribution and Inventory Element expanded its activities this past year to include investigation of all plutonium-contaminated areas on and near the NTS. This progress summary report describes the element activities under way, but does not include compiled data. Soil samples taken at 226 NTS event sites are being analyzed for Pu 239-Pu 240, Am 241, gross gamma, and specific gamma emitting constituents of the gross gamma spectra. Offsite activities include plutonium concentration analyses of filters and soil samples from selected stations adjacent to NTS in NERC-LV's routine Air Surveillance Network (ASN). Statistical analysis of plutonium-in-air results was performed on data from eight widely separated stations of the ASN. A separate comprehensive element progress report is in preparation, which will include details of the Distribution and Inventory Element activities to date. (Auth) (ST)

<25>

Oen, C.J., Oak Ridge National Laboratory, Environmental Plutonium Data Base Group, Oak Ridge, TN. 1974, July

Information Support for the Nevada Applied Ecology Group. CONF-731048; NVO-142; Part of Dunaway, P.B. and White, M.G. (Eds.), The Dynamics of Plutonium in Desert Environments, Proceedings of the NAEG Plutonium Environmental Studies Program Symposium held in Las Vegas, Nevada, October 2-3, 1973, (p. 321-328), 369 p.

A computer file of 2,500 references on the environmental aspects of plutonium, uranium, and the Nevada Test Site (NTS) has been developed. Recent emphasis on the historic (pre-1962) literature on plutonium and uranium accounts for over 400 references. These early AEC-sponsored reports are primarily on exposure, radionuclide contamination, and radioactivity resulting from nuclear testing at the NTS or on the medical and biological aspects of plutonium and uranium. Services available include published bibliographies, customized bibliographies, and assistance in locating documents. A manual file of documents rounds out this information resource. (Auth)

<26>
Hamel, D.M., U.S. Atomic Energy Commission, Las Vegas, NV. 1974, July

Nevada Applied Ecology Group Library Services at AEC Nevada Operations Office. CONF-731048; NVO-142; Part of Dunaway, P.B. and White, M.G. (Eds.), The Dynamics of Plutonium in Desert Environments, Proceedings of the NAEQ Plutonium Environmental Studies Program Symposium held in Las Vegas, Nevada, October 2-3, 1973, (p. 329), 369 p.

Current status of the Nevada Applied Ecology Group (NAEG) Library reflects staff cutback. Relocation and consolidation of materials are recommended as follows. AEC/NV has recently assumed responsibility and total operation of the library as an AEC facility. The contractual arrangements with University of Nevada, Las Vegas (UNLV) ended in August, 1973. Decision was made and is being effected to consolidate the Technical Library and NAEG collection. This move will provide a distinctly better use of space and existing staff. In addition, there will be an attendant reduction in the duplication of materials and record maintenance. As a consequence of the general cutback, the library was not permitted to refill the NAEG library technician position recently vacated. This action has necessitated a drastic reduction of direct library services to NAEG. Specifically, all supportive responsibilities, such as acquisition of books and periodicals, scanning literature, cataloging and indexing technical reports, journal articles, and reprints, charging out materials, responding to queries, and coordination with the Environmental Plutonium Base in Oak Ridge have of necessity been relegated in priority with overall NV library requirements. In conclusion, a reevaluation of the total information supportive services is suggested, to reflect current requirements of the Nevada Applied Ecology Group. A careful redefinition of needs will permit the library to function with optimum efficiency within its new capabilities. (Auth)

<27>
Martin, W.E., S.G. Bloom, and R.J. Yorde, Jr., Battelle Columbus Laboratories, Columbus, OH. 1974, July

Nevada Applied Ecology Group Plutonium Study Modeling Program: Plutonium Transport and Dose Estimation Model. CONF-731048; NVO-142; Part of Dunaway, P.B. and White, M.G. (Eds.), The Dynamics of Plutonium in Desert Environments, Proceedings of the NAEQ Plutonium Environmental Studies Program Symposium held in Las Vegas, Nevada, October 2-3, 1973, (p. 331-360), 369 p.

A computer program based on a matrix exponential method was used to solve a system of ordinary differential equations which simulate the behavior of Pu 239 in desert ecosystems such as those found at and near the Nevada Test Site. The model was used to estimate the rates of Pu 239 transport, via several environmental pathways, to Standard Man, who was assumed to live in a contaminated area. These estimates were then used to calculate radiation doses and dose commitments, as a function of time, to different organs. The model provides a method for evaluating the potential radiological hazard to man due to the presence of Pu 239 in a given area. However, the studies designed to implement the model, by providing accurate estimates of critical parameters, are still in progress. Therefore, the results to date are incomplete and inconclusive. On the basis of present assumptions and parameter values, the model indicates a 70-year dose commitment to the pulmonary lymph nodes of 13.6 rem per pCi (Pu 239)/g (soil). Comparable values for other organs are: bone, 0.14 rem; lung, 0.10 rem; kidney, 0.015 rem; liver, 0.011 rem; GI tract, 0.007 rem; and total body, 0.003 rem. Inhalation accounts for 100% of the dose to the lungs and pulmonary lymph nodes, a negligible fraction of the dose to the GI tract, and about 56% of the dose to bone, kidney, liver, and total body. This means that all but a negligible fraction of the dose to the GI tract and 44% of the Pu 239 entering the bloodstream is due to ingestion of soil, vegetation, milk, beef, and beef liver. It is quite possible that the relative importance of inhalation has been overestimated, while the relative importance of ingestion has been underestimated. (Auth)

<28>
Gelchert, W.W., and J. Sedlet, Argonne National Laboratory, Argonne, IL. 1972, October 31

Radiochemical Determination of Plutonium in Environmental Water Samples. Radiochemical and Radioanalytical Letters, 12(4-5), 215-221

A radiochemical separation procedure for the determination of plutonium in large environmental water samples is presented. The procedure is based on the coprecipitation of plutonium with calcium fluoride from an acid-fluoride medium followed by purification on an anion-exchange resin and electrodeposition for alpha spectrometry. Chemical recoveries of added plutonium from samples up to 50 liter have averaged 94%. The detection limit of Pu 239 in 10 liter samples is 0.5 fCi/l. (Auth)

<29>

<29>
 Craig, D.K., R.L. Buschbom, and J.P. Herring,
 Battelle Memorial Institute, Pacific Northwest
 Laboratories, Biology Department, Richland, WA.
 1973, June

Relationships Between Nebulizer Suspension
 Concentration, Concentration and Size
 Distribution of Plutonium 239 PuO₂ Aerosols
 Generated for Animal Inhalation Experiments.
Health Physics, 24, 637-644

In a study of low-level effects of inhaled Pu 239 PuO₂ in beagle dogs, alveolar burdens over the 1500-fold range from 2 nCi to 3 uCi were deposited in unanesthetized dogs by aerosol inhalation. Aerosols were generated by nebulizing magnetically-stirred suspensions of Pu 239 PuO₂ particles in water, the aerosol concentration (CONC) being varied, primarily, by changing the Pu concentration of the suspension (SSA). If the mass concentration of the suspension was kept below about 10 mg (40 uCi) PuO₂/ml, a good correlation (R equals 0.827 for n equals 64) was observed between CONC and SSA with constant air flow through the exposure chamber. SSA values from 1 to 600 uCi/ml gave CONC values in the range 1.5 to about 3000 nCi/l. However, the aerodynamic equivalent size distribution of Pu 239 PuO₂ in the exposure chamber was found to vary significantly with CONC. The aerosols were log-normally distributed and the activity median aerodynamic diameter (AMAD) increased from about 1.5 to 3 μ m as CONC increased (R equals 0.777 for n equals 64), while the geometric standard deviation (GSD) decreased (R equals -0.576 vs AMAD). An explanation of this unexpected phenomenon, based on aggregate formation due to the greater likelihood of there being more than one PuO₂ particle per nebulizer droplet at the higher SSA values, is advanced. The effect is believed to contribute to the large variation observed in the percentage alveolar deposition of inhaled Pu 239 PuO₂ aerosols from 1.4 to 31.3% in 52 dogs for which the thorax x ray count was significantly different from zero at $P < 0.05$. (Auth)

<30>

Bruengen, F.W., W. Stevens, and B.J. Stover,
 University of Utah, College of Medicine,
 Division of Radiobiology, Department of Anatomy,
 Salt Lake City, UT. 1969, February

Americium 241 in the Blood: In Vivo and In Vitro Observations. *Radiation Research*, 77(2), 349-360

The concentration in canine blood of trivalent Am 241 that had been injected intravenously at doses of 0.9, 0.3, and 0.1 uCi/kg decreased at a rate comparable with those of divalent alkaline earths. A small fraction of the Am 241 was associated with blood cells, but the major part was in the serum. Complexes with serum proteins were demonstrated in sera obtained at 1 and 5 minutes after injection. Americium 241 complexes with both transferrin and albumin were identified and isolated in *in vitro* experiments with human sera. The Am(+3) complex with transferrin is less stable under physiological conditions than either the Fe(+3) or Pu(+4) transferrin complex. Evidence was obtained for a third Am(+3) protein complex. (Auth)

Figure 1 shows a comparison of the concentrations of Pu 239, Ra 226 and Am 241 in plasma during the first day after IV injection.

<31>

Fairhall, L.T., U.S. Public Health Service,
 Rockville, MD. 1957

Industrial Toxicology. The Williams and Wilkins Company, Baltimore, Maryland, 2nd Edition, 376 p.

The importance of evaluating the disease hazard from industrial applications of chemicals is pointed out. The possibility of relating chemical constitution and physiological activity has proved a fascinating field of speculation. Since no rational scheme is available to aid in deciding upon the toxicity of a given substance, it is necessary to carry out experiments with animals, but caution must be exercised in interpreting the results. In the book on the toxic effects of industrial poisons, the chemicals are divided into two sections, namely inorganic substances and carbon compounds. Each element, including Pu and U, or compound is then described according to characteristics, industrial uses, and toxicity and usually methods of analysis are given. In the appendix there is a conversion table for gases, a table of some end products of detoxification of certain compounds of industrial interest, values for the average maximum permissible atmospheric concentration of contaminants to which workers may be exposed in an 8 hr working day, and a table of comparative toxicities of various substances based on the LD 50 value for oral administration to rats. (FMM)

<32>

Bionne, P.J., and B.O. Stuart, Battelle Memorial Institute, Pacific Northwest Laboratories, Applied Physics and Electronics Department, Richland, WA; Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1968, March 1

Plutonium Inhalation Model Simulates the Long-Term Burdens of the Deep Lung and Systemic Organs. BNWL-SA-1540; CONF-680502-1; Part of Proceedings of the 6th IEEE Region Symposium held in Portland, Oregon, May 22, 1968, (23 p.), 206 p.

The dynamic simulation of plutonium buildup and elimination from the major organs of the body after plutonium dioxide inhalation was developed from tissue radioanalyses and excretion data from beagle dogs, which were sacrificed from two months to six and one-half years after inhaling plutonium 239 PuO₂ aerosols. The model's description of individual tissue levels as functions of time after exposure were fitted to the analyzed plutonium burdens obtained from over fifty dogs, providing insights into several problems connected with inhaled insoluble plutonium. Thus, it was found that changing the combined initial depositions in the nasopharynx, tracheobronchial, plus fast pulmonary regions, from 70% to 90% had comparatively little effect on the long-term burdens of plutonium in the liver, bone, and kidneys. The rapid initial peak in the blood compartment suggests that much earlier blood sampling is needed. The use of a model based on the slow pulmonary compartment appears to be justified in the study of effects upon systemic organs and the lymphatic system as additional lung radioanalyses and whole body retention data become available. In addition, the model has been programmed for a UNIVAC 1108 digital computer using a digital simulation language. The model appears to give sufficiently accurate dynamic levels in all major organs to permit its use with individual animal retention and excretion data. Predictions of long-term buildup and elimination of plutonium in critical organs are used in establishing maximum permissible air concentrations of plutonium dioxide, and known excretion patterns may be used to determine initial burdens following possible accidental exposure. (Auth) (FMM)

<33>

Djuric, D., M. Kilibarda, Lj. Novak, D. Panov, and M. Vukotic, Institute of Occupational Health, Department of Radiological Health, Belgrade, Yugoslavia. 1964

Studies on Airborne Radioactive Contamination of Miners in a Yugoslav Uranium Mine. Health Physics, 10, 1059-1064

For the last 4 years the radon concentrations in the atmosphere of a Yugoslav uranium mine have been periodically measured. The concentration of Po 210 in the urine of miners was also determined. The potential sources of Pb 210 and Po 210 and the possibility of correlation between a radon exposure and polonium excretion in the urine are discussed. Certain assumptions lead to a very rough estimate of the integral exposure of miners to radon. To elucidate one of the many problems encountered in a more detailed study of this correlation, a method for determination of Po 210 in the dust of the uranium mine was developed. Radium and uranium can be determined simultaneously with polonium. (Auth)

<34>

Bernard, S.R., Oak Ridge National Laboratory, Health Physics Division, Oak Ridge, TN. 1958

Maximum permissible Amounts of Natural Uranium in the Body, Air and Drinking Water Based on Human Experimental Data. Health Physics, 1, 288-305

The distribution of uranium in the human body following intravenous injections of hexavalent and tetravalent uranium has been studied in the case of eight terminal patients. At the dosage levels used the data indicate that the kidneys and the skeleton are the principal sites of deposition with approximately equal amounts in each. On this basis the kidneys become the critical organ and the toxic effect of the uranium rather than radiation damage becomes the limiting effect in determining the maximum permissible concentrations (MPC) for occupational exposure. The influence of particle size on retention of inhaled material is considered in interpreting some of the available human data. (Auth)

<35>

MacNider, W. de P., University of North Carolina, Laboratory of Pharmacology, Chapel Hill, NC. 1936

A Study of the Acquired Resistance of Fixed Tissue Cells Morphologically Altered through Processes of Repair. I. The Liver Injury Induced by Uranium Nitrate. A Consideration of the Type of Epithelial Repair Which Imparts to the Liver Resistance Against Subsequent Uranium Intoxications. *Journal of Pharmacology and Experimental Therapeutics*, 56, 359-372

A study was made on dogs of the acute injury to the liver from uranium nitrate, the various types of repair processes which may be inaugurated subsequent to the injury, the functional value of the epithelium responsible for the repair and the degree of resistance acquired by the liver to secondary intoxications by the uranium nitrate. The dogs were given subcutaneous injections of either 2 or 4 mg of uranium nitrate/kg. Prior to these intoxications as well as during the acute stages of hepatic injury, and at intervals for ten weeks during the periods allowed for processes of repair, the degree of hepatic function was ascertained by employing the phenoltetrachlorphthalein test for liver function. Biopsy material was also studied. The animals that recovered from a slight injury to the liver induced by 2 mg of uranium nitrate per kilogram showed that the process of epithelial repair was accomplished by the formation of a normal type of polyhedral cell. This repair process was associated with a return of the liver to its normal functional value as indicated by the use of phenoltetrachlorphthalein. The experiments also showed that when the animals were reintoxicated with the same amount of uranium nitrate per kilogram, no evidence developed of an acquired resistance on the part of the liver either in a functional or structural sense. The results obtained in the animals intoxicated by a larger amount of uranium nitrate, (4 mg per kilogram), showed that if the liver epithelium was sufficiently injured, the repair of this tissue was accomplished by the formation of an atypical type of hepatic cell characterized by its flatness and evenness in staining and also by its tendency to remain as a syncytial structure. The animals of this group furthermore showed that when hepatic repair had taken place by the formation of this type of atypical cell, the livers of such animals had acquired, as a result of such an epithelial metaplasia, a high degree of resistance against this poison in an amount 2 mg per kilogram in excess of the quantity which was severely hepatic to the normal type of polyhedral liver cell. (FMM)

<36>

Kornberg, H.A., and et al, General Electric Company, Hanford Atomic Products Operation, Richland, WA. 1957, January 4

Biology Research Annual Report, 1956. HW-47500; 237 p.

Reorganization has disbanded the Radiological Sciences Department and transferred the Biology Section to the newly named Biology Operation of the Hanford Laboratories Operation. Work performed during the past year is reported. Research programs continue to change from being primarily Hanford oriented toward being mostly concerned with radiobiological problems derived from the

general needs of radiation hazard control. Metabolism and irradiation studies on rats, sheep and pigs, decontamination studies, studies utilizing radioactive particles, plant and microbiological studies, and the effects of production facility effluents on biota have been investigated. The work involves the radionuclides phosphorus 32, strontium 90, ruthenium 106, cesium 137, iodine 131 and plutonium. Five papers dealing with work on plutonium have been abstracted and entered into the data base separately. (BBB)

<37>

Ballou, J.E., General Electric Company, Hanford Atomic Products Operation, Richland, WA. 1957, January 4

Effect of Age on the Absorption of Plutonium and Ruthenium. HW-47500; Part of Kornberg, H.A., et al, Biology Research Annual Report, 1956, (p. 25-29), 237 p.

Gastrointestinal absorption of plutonium and ruthenium by immature rats exceeded adult absorption by as much as 85 times for plutonium and 5 times for ruthenium. Plutonium distribution was essentially the same in the seven-day-old rat and the adult. Ruthenium distribution varied considerably with age, but at all ages the highest concentrations were found in kidney, liver, femur and ovaries. (Auth)

<38>

Kawin, B., W.L. Dockum, and R.P. Palmer, General Electric Company, Hanford Atomic Products Operation, Richland, WA. 1957, January 4

Distribution and Excretion of Plutonium. HW-47500; Part of Kornberg, H.A., et al, Biology Research Annual Report, 1956, (p. 30-35), 237 p.

Following intravenous injection into rats, plutonium distribution in several cellular fractions and plasma components is being studied. In urine, plutonium may be associated with S 35, as suggested by paper chromatography. Tissue localization of plutonium is being studied by autoradiography. Preliminary results are reported at this time. (Auth)

Table 1 gives the relative percentage of Pu 239 in cell components (nuclear fraction, mitochondria, and microsomes) of rats one hour after intravenous injection of 50 ug of Pu 239 (*4).

<39>

Bcrasky, R., General Electric Company, Hanford Atomic Products Operation, Richland, WA. 1957, January 4

Collagen Reactivity with Plutonium. HW-47500; Part of Kornberg, H.A., et al, Biology Research Annual Report, 1956, (p. 36-41), 237 p.

Collagen reactivity with plutonium was determined by electron microscopic observation and hydrothermal stability measurements. The observations and results suggest that collagen combines chemically with plutonium in vitro. (Auth)

<40>

Ballou, J.P., and W.D. Oakley, General Electric Company, Hanford Atomic Products Operation, Richland, WA. 1957, January 4

Absorption and Decontamination of Plutonium on Rats. HW-47500; Part of Kornberg, H.A., et al., Biology Research Annual Report, 1956, (p. 142-145), 237 p.

Absorption of plutonium through rat skin from a solution containing Pu^{+4} in nitric acid was comparable to that previously measured for other nitric acid solutions of plutonium. The absorption of tributyl phosphate complexed plutonium in carbon tetrachloride solution was approximately four times greater. The ability to remove plutonium from pieces of excised pig skin was found to be a suitable preliminary test of the efficiency of decontaminating agents. (Auth)

<41>

Smith, V.H., and R.W. Wager, General Electric Company, Hanford Atomic Products Operation, Richland, WA. 1957, January 4

Preparation of Aqueous Suspensions of Ruthenium 106 RuO_2 and Plutonium 239 PuO_2 . HW-47500; Part of Kornberg, H.A., et al., Biology Research Annual Report, 1956, (p. 157-159), 237 p.

The preparation of aqueous suspensions of radioactive ruthenium oxide and plutonium oxide particles is described. Ruthenium oxide particles usually ranged in size from 0.5-2.5 microns in diameter with 90% in the 1-2 micron range. Plutonium oxide particles ranged in size from 0.5-3 microns with about 80% between 0.5-1.5 microns. The suspensions may be used in experiments for intratracheal injections. (BBM)

<42>

Becker, K. (Comp.), Oak Ridge National Laboratory, Oak Ridge, TN. 1972, August

Bibliographies in Nuclear Science and Technology. AED-C-21-10; 54 p.

This is the last of a series of ten bibliographies (AED-C-21-01 to 10) which covers with about 12,000 references the literature mostly in photographic, chemical, and solid-state dosimetry; internal (radionuclide incorporation) dosimetry; and ionometric techniques in dosimetry. This issue contains 2,581 references of conference papers, reports, patents, dissertations, monographs, and publications in journals, which deal mostly with ionization chambers, GM and proportional counters, scintillation and semiconductor counters and similar, mostly pulse-type dose rate measuring devices, published between the mid-1960's and mid-1970's. Subject and author indices are given. (Auth)

<43>

Brower, L.W., Sandia Laboratories, Environmental Health Department, Albuquerque, NM. 1973, March 1973, August

Environmental Monitoring Report for Sandia Laboratories from 1964 through 1972. SLA-73-0339; WASH-1259; Part of Environmental Monitoring at Major U.S. Atomic Energy Commission Contractor Sites, Calendar Year 1972, (p. 231-283), 1217 p.

Water, soil and vegetation around Sandia Laboratories are regularly monitored and the results analyzed. The data from these tests, primarily for radiation levels, are presented for the period from 1964 through December 1972. In August 1970 plutonium soil samples were taken in the near vicinity of three plutonium work areas. All the samples were below the detectable limit of one fentocurie (fCi) of total plutonium per gram of soil. In October 1971 four new sampling sites for plutonium were established. All of the samples taken were below the detectable limit, for a 10-minute count, of 3 picocuries of total plutonium per gram of soil. Based upon the environmental sampling data, Sandia Laboratories has not released any significant amount of radioactive or nonradioactive contaminants to the environment during the period January 1, 1964, through December 31, 1972. The soil sampling data show less activity than was obtained before the start-up of the two reactor facilities and the vegetation data on the average have remained relatively constant. Water-sampling data are within the limits recommended for unidentified radionuclides. (PMH)

<44>

Taylor, B.T., United Kingdom Atomic Energy Authority, Atomic Energy Research Establishment, Health Physics and Medical Division, Harwell, Berkshire, England. 1966, June

Measurement of Plutonium 239 In Vivo. AERE-PR/RPM-1; Part of Johnston, J.E. (Ed.), Health Physics and Medical Division Research Progress Report, January-December, 1965, (p. 25), 37 p.

A report is presented on continuing investigation of the performance of the large area proportional counter for determination of lung burdens of plutonium 239. The equipment was used to investigate two cases of suspected inhalation of plutonium 239. Contributions to the background due to cesium 137 and potassium 40 in the body were determined from phantom measurements, and amounted to 7 counts/min in the L x-ray energy band for a subject containing 165 g of potassium and 20 nci cesium 137. The estimated minimum detectable lung burden of plutonium 239 was 28 nci based on a simple calibration with a point source and absorbers of Mix D. The performance of the counter has been considerably improved by the use of an additional anti-coincidence counter covering the window in the original design, with the complete anti-coincidence system, the reduction in counter background above 4 kev is nearly a factor of 50 in the lead shield (from 950 counts/min to 21 counts/min). In the L x-ray energy band (10-24 kev) the lowest background obtained is 7.2 counts/min, the additional anti-coincidence counter producing a reduction by a factor of about 7. The improvement in discrimination against gamma ray contributions to the background due to cesium 137 and potassium 40 in the body, is also about a factor of 7. A subject containing 20 nci cesium 137 and 165 g of potassium increases the counter background by 1 count/min in the L x-ray energy band. The counter is capable of detecting less than 1 maximum permissible lung burden (16 nanocuries of plutonium 239). (PMN)

<45>

Sanders, C.L. (Ed.), R.H. Busch (Ed.), J.E. Ballou (Ed.), and D.D. Mahlum (Ed.), Battelle Memorial Institute, Pacific Northwest Laboratories, Richland, WA. 1973, June

Radionuclide Carcinogenesis. CONF-720505; AEC Symposium Series No. 29; Proceedings of the 12th Annual Hanford Biology Symposium held at Richland, Washington, May 10-12, '72, 500 p.

The broad objective of this symposium on radionuclide carcinogenesis was to update current knowledge of carcinogenesis from internally deposited radionuclides. One aspect of the symposium was the increasing emphasis being placed on the roles of hormones, viruses, nonradioactive cocarcinogens, and tumor-promoting agents acting together with radionuclides in the induction of tumors. Emphasis is also increasing on retrospective epidemiologic studies in human populations exposed accidentally, occupationally, or medically to alpha emitters and the attempts to relate observations in experimental animals to the human problem. Those papers involving Pu and Am have been entered separately into the data base. (BBM)

<46>

Sanders, C.L., Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1973, June

Cocarcinogenesis of Plutonium 239 PuO₂ with Chrysotile Asbestos or Benzpyrene in the Rat Abdominal Cavity. CONF-720505; AEC Symposium Series No. 29; Part of Sanders, C.L., et al (Eds.), Proceedings of the 12th Annual Hanford Biology Symposium on Radionuclide Carcinogenesis held at Richland, Washington, May 10-12, 1972 (p. 138-153), 500 p.

Studies were made of the carcinogenic response of intraabdominally injected plutonium 239 PuO₂ at several doses and the cocarcinogenic response to combinations of plutonium 239 PuO₂ with 3,4-benzpyrene (BP) or chrysotile asbestos. Groups of 18 to 36 female rats were given an intraabdominal injection of 70 to 360 or 2880 nci of plutonium 239 PuO₂ particles, 720 nci of PuO₂ with 5 mg of BP, 15 mg of asbestos or 5 mg of BP alone. Control rats received an injection of saline or were untreated. The asbestos fibers and PuO₂ were concentrated within fibrous adhesions of the visceral peritoneum, mostly in the omentum. The PuO₂ was also concentrated within parasternal lymph nodes, although no tumors were derived from these high-radiation dose areas. Benzpyrene increased the translocation of plutonium 239 to liver and lung; asbestos had no influence on plutonium 239 distribution. Both abdominal sarcomas and mesotheliomas were induced by plutonium 239 PuO₂ or asbestos. No mesotheliomas were found in rats given BP only. About 90% of all abdominal tumors originated in the omentum. Observed tumor incidences following plutonium 239 were a 26% incidence of mesotheliomas and a 39% incidence of sarcomas at a calculated average dose of 33,500 rads to omental tissue, a 10% mesothelioma incidence and a 21% sarcoma incidence at 6300 rads, and a 6% mesothelioma incidence and a 23% sarcoma incidence at 770 rads. Asbestos acted in an additive manner with plutonium 239 in inducing mesotheliomas, the two agents combined having an effect equal to the sum of their effects when administered separately. A similar additive response was seen with BP and plutonium 239 PuO₂ in the induction of abdominal sarcomas. Our results suggest that radiation protection considerations for plutonium should involve the distribution of radiation dose within the target tissue as well as evaluation of exposures to other industrial pollutants. (Auth)

<47>
Moskalev, Yu.I., and V.W. Strel'tsova, Ministry of Public Health, Institute of Biophysics, Moscow, USSR. 1973, June

Dependence of Osteosarcomogenic Activity of Radionuclides on their Physical Properties and Physiological State of the Animal. CONF-720505; AEC Symposium Series No. 24; Part of Sanders, C.L., et al (Eds.), Proceedings of the 12th Annual Hanford Biology Symposium on Radionuclide Carcinogenesis held at Richland, Washington, May 10-12, 1972, (p. 307-311), 500 p.

The induction of osteosarcomas by bone-seeking radionuclides is dependent on the radiation dose delivered to the skeleton, the energy and effective half-lives of the emitters, and the protraction of administered dose. Optimal osteosarcomogenic doses to rat skeleton were in the range of 15 to 50 krads for beta emitters (Sr 89, Sn 90, Ba 140, Cs 137, Y 90, Y 91, Ce 144, Pm 147, La 140, and P 32) and 0.7 to 1.8 krads for the alpha emitter Pu 239. Beta emitters with a short effective half-life (Y 90, La 140, and Cs 137) when compared with beta emitters with a long effective half-life (Y 91, Ce 144, and Sr 90) have shown relatively low osteosarcomogenic activity. A sharply decreased osteosarcoma incidence was observed after fractional administration of beta emitters as compared to a single injection of the same dose of isotope. Fractionation of Pu 239 administration had no significant effect on osteosarcoma incidence. The radionuclide-induced osteosarcoma incidence was identical for both male and female rats but significantly age dependent for each sex. When the sciatic nerve was cut prior to Ce 144 administration, fewer osteosarcomas appeared on the denervated extremities. (Auth)

<48>
Fahrigant, J.I., T.H.S. Hsu, D.H. Knudson, and C.L.E. Smith, University of Connecticut, School of Medicine, Department of Radiology, Farmington, CT; George Washington University, School of Medicine, Department of Radiology, Washington, DC; Institute of Cancer Research, Department of Biophysics, Sutton, Surrey, England. 1973, June

Effect of LET on Radiation Carcinogenesis: Comparison of Single and Fractionated Doses of Plutonium 239, Americium 241, Phosphorus 32, and X Rays on the Production of Osteosarcomas in Rats. CONF-720505; AEC Symposium Series No. 29; Part of Sanders, C.L., et al (Eds.), Proceedings of the 12th Annual Hanford Biology Symposium on Radionuclide Carcinogenesis held at Richland, Washington, May 10-12, 1972, (p. 322-346), 500 p.

Serial radiography, high-resolution autoradiography, histopathology, and the analysis of tumor-cell population kinetics were used to investigate carcinogenic effects of alpha and beta emitting radionuclides and localized x radiation on the induction of bone tumors in male August and hybrid (August crossed with Marshall) rats. Comparisons have been made over a period of 27 months on the effects of single and fractionated doses of high-linear-energy-transfer (LET) and low-LET (x ray) radiations in young rats to assess the characteristic development of radiation-induced changes, neoplastic transformation, and tumor-growth kinetics. Among the lesions observed radiographically following fixation of radionuclides in bone were failure of longitudinal bone growth, abnormal bone molding, pathological fractures, and the production of sclerosing, lytic, and mixed forms of osteosarcoma primarily in the appendicular skeleton but in certain situations in the axial skeleton as well. Fractionation of the administered dose of P 32 resulted in an increase in bone-tumor incidence and some indication of earlier development of neoplasia. With high-LET radiation (Pu 239 and Am 241), fractionation did not affect tumor incidence but did shorten the latent interval. With low-LET radiation, on the other hand, fractionation of dose decreased the tumor incidence, the extent of peritrabecular fibrosis in the metaphyses, and the development of epiphyseal plate abnormalities, but, in general, pathological lesions also included impaired limb growth and reversible and progressive forms of bony architectural damage in the femoral and tibial metaphyses and epiphyses leading to the production of sclerotic and lytic bone tumors. Characteristic early premalignant changes were dependent on the site of irradiation, such as deposition and retention of radionuclide, rather than on LET only. These alterations were frequently metaphyseal sclerosis, followed by growth extension within the bone, secondary cortical destruction, and delayed extension to surrounding soft tissues. The significance of histopathologic changes in relation to autoradiography and radiography for the identification of sites and cellular mechanisms essential to premalignant changes, the induction neoplasia, the accurate determination of latent periods for tumor development, dose-tumor relationships, the dependence of tumorigenesis on LET, and tumor-growth kinetics are discussed. (Auth)

<49>

<49>
 Marshall, J.H., and E. Lloyd, Argonne National Laboratory, Radiological Physics Division, Center for Human Radiobiology, Argonne, IL, 1973, June.

The Effect of the Remodeling of Bone Upon the Relative Toxicities of Radium and Plutonium in Man and Dog. CONF-720505; AEC Symposium Series No. 29; Part of Sanders, C.L., et al (Eds.), Proceedings of the 12th Annual Hanford Biology Symposium on Radionuclide Carcinogenesis held at Richland, Washington, May 10-12, 1972, (p. 241-436), 500 p.

When the rates of bone formation and resorption are high, monomeric plutonium does not remain for long on bone surfaces. Dogs injected with radioisotopes at little over one year of age (as in the Salt Lake Project) have bone turnover rates that exceed those in adult man by at least an order of magnitude. Therefore, the skeletal toxicity of monomeric plutonium relative to radium in man is significantly larger than that in the experimental dogs. The probable magnitude of this effect is estimated by constructing expressions for the dose rate to bone surface from Pu 239 and Ra 225 as a function of time since injection and as a function of the remodeling rate of bone. Skeletal plutonium is assumed to be initially deposited on bone surfaces; as time from injection increases, this initial deposit is displaced from bone surface by resorption and by burial due to new bone formation, eventually approaching a volume distribution. On the other hand, radium is treated as a volume distribution throughout. The relative biological effectiveness (RBE) of plutonium vs. radium in either man or dog is then assumed to be the ratio of the average skeletal dose from radium to that from plutonium under the condition that the doses to bone surface within the mean induction time of osteosarcomas are equal. Using best estimates of the parameter values from existing literature and taking RBE (Pu/Ra) equal to 6 for the Salt Lake dogs, the model leads to an estimate for RBE (Pu/Ra) in man of 17 plus or minus 6, about three times that in the dogs. The need for more data concerning this probable effect is emphasized. (Auth)

<50>
 Norwood, W.D., J.A. Norcross, C.E. Newton, Jr., D.B. Sylton, and C. Lagerquist, Hanford Environmental Health Foundation, Richland, WA; Battelle Memorial Institute, Pacific Northwest Laboratories, Richland, WA; Dow Chemical Company, Rocky Flats Division, Golden, CO, 1973, June.

Preliminary Autopsy Findings in United States Transuranium Registry Cases. CONF-720505; AEC Symposium Series No. 29; Part of Sanders, C.L., et al (Eds.), Proceedings of the 12th Annual Hanford Biology Symposium on Radionuclide Carcinogenesis held at Richland, Washington, May 10-12, 1972, (p. 465-474), 500 p.

The first 14 autopsies presented to the Registry serve to indicate areas of differences between organ depositions determined by calculations or *in vivo* radiation measurements made before death and extrapolations from measured deposition in organ samples. They also show some marked differences in the concentration of Pu 239 in

different areas of an organ, emphasizing the need for large samples or whole organs. In one autopsy 92% of the total lung deposit was found in pleura and subpleural lung parenchyma. Studies are in progress to determine more accurately the deposition in pleura, lung parenchyma, and lymph nodes in the chest. In one autopsy the concentration of the Pu 239 in vertebrae was 3.5 times that in the rib. In several other cases the difference between the concentration in rib and that in sternum has varied from 2 to 30, the concentration in ribs being higher in some cases and lower in others. Whole bodies will be studied to help determine the best organ samples to use in extrapolating total organ deposition from a measured sample. Perhaps greater emphasis should be placed on maximum concentration in organs rather than on total organ burden, which is presently used in setting permissible organ limits. Pertinent health physics and medical data for the 14 cases are tabulated. (Auth)

<51>

Taylor, L.S., National Council on Radiation Protection and Measurements, Washington, DC, 1972

What We Do Know About Low-Level Radiation. TID-25857; Part of Kline, A.B., Jr., The Environmental and Ecological Forum, 1970-1971, (p. 168-186), 186 p.

The criteria of the National Council of Radiation Protection (NCRP) and measurements used for setting radiation protection standards in the USA were reviewed. Dose-effect relationships for man in the dose range of 100 rem upward delivered at high dose rates can be regarded as well established on the basis of clinical and experimental data. While a tremendous effort has been made to discover significant deleterious effects of very low dose level and dose rate radiation on man all results have been convincingly negative. The range considered covers: an acute exposure to 1 or 2, or even a few more, rads received at once and not frequently repeated; larger doses of 10 to 20 rads received all at once and rarely repeated; and chronic exposure to levels of millirads or less per day over long periods of time and totaling some 5 or 10 rads distributed over a lifetime. In spite of the lack of observable effects from low-level radiation doses, the NCRP has maintained the basic philosophy that there could be deleterious effects in the low dose range proportional to those observed at vastly higher doses. The upper limit of 170 rem/yr average recommended for the human population for exposure from all man-made radiations, other than medical applications, is some hundred times lower than the lowest dose that has been shown to cause a statistically significant pathological change in man. This population dose limit is at least some hundred times higher than the average dose to the population estimated for the operation of all the nuclear power plants expected to be built up to the year 2000 assuming no improvements in production technology. (Auth)(HP)

<52>

Sanders, S.M., Jr., E.I. du Pont de Nemours and Company, Savannah River Plant, Aiken, SC. 1961, April

Plutonium Excretion, Study Following Treatment with Zirconium Citrate and Edathamil Calcium-Disodium. Archives of Environmental Health, 2, 474-483

On December 1, 1958, a laboratory technician routinely analyzing Pu solution samples received a wound in her hand found to be contaminated with 2500 cpm alpha. Two hrs and 35 min. after the accident, 1.2 g of zirconium was administered intravenously with citrate in 200 ml of solution. The following day 1.0 g of calcium disodium ethylenediaminetetraacetate (Ca EDTA) was administered intravenously. About 90 dpm Pu was excreted in the first 17 hr. Feces collected 15 hr after the accident contained 1.35 dpm Pu. Feces from the fifth day contained 1.08 dpm Pu. No increase in Pu excretion was apparent during the administration of Ca EDTA. (HP)

<53>

Sanders, S.M., Jr., and S.C. Leidt, E.I. du Pont de Nemours and Company, Savannah River Plant, Aiken, SC. 1961

A New Procedure for Plutonium Urinalysis. Health Physics, 6, 189-197

A simple method of urinalysis, sensitive enough to detect 0.007 dpm plutonium in 250 ml of urine, is described. In this method, anion exchange is used to separate plutonium from other inorganic ions remaining after evaporation and oxidation of the urine. The quantity of plutonium is then determined by counting alpha tracks in an autoradiograph of the metal disk upon which the plutonium has been electrodeposited. (HP)

<54>

Jones, E.S., Oak Ridge National Laboratory, Oak Ridge, TN. 1962, November 2

Microscopic and Autoradiographic Studies of Uranium Distribution in the Rat Kidney. ORNL-3347; Part of Morgan, R.Z., Health Physics Division Annual Progress Report for Period Ending July 31, 1962, (p. 128-141), 180 p.

The concentration ratio is defined as the ratio of the average counts in the fields in the cortex to the average number of tracks per unit area, assuming the entire activity spread evenly over the whole kidney. The concentration ratio of uranium in the rat kidney is usually 1.3 but tends to approximate 1 at the 10-day postinjection time at the 1000 ug/kg level. At the 100 ug/kg level and at 4 days postinjection, the concentration ratio also approximates 1, and

this may indicate a time when active removal of uranium from the kidney takes place. The comparison between the autoradiographic and radiochemical methods of measuring activity gave a gross check in spite of the experimental difficulties and large variance of some of the estimates. The possibility that the greater amounts of uranium cause a malfunctioning at first cannot be overlooked. The observed location of the uranium tracks is consistent with the pathological conditions, and the pathological conditions corroborate earlier findings on chemical injury. (HP)

<55>

Saccoccanno, G., St. Mary's Hospital, Grand Junction, CO. 1968, November 20

Uranium Miners Health. COO-1862-4; Part of Hearings on Safety and Health Standards, (13 p.)

Cancer of the lung in uranium miners who are non-cigarette smokers is almost unheard of and the incidence of cancer of the lung is increased in cigarette-smoking uranium miners at least four-fold over and above the incidence levels of heavy cigarette smokers. Cigarette smoking and uranium mining are synergistic in relation to lung cancer. (HP)

<56>

Sagan, L.A., Palo Alto Medical Clinic, Department of Environmental Medicine, Palo Alto, CA. 1971, December

Human Radiation Effects, An Overview. Health Physics, 21, 827-833

late somatic and genetic effects of radiation exposure are reviewed. Emphasis was on the human experience, but animal experience was included where necessary. Particular attention was directed to dose-response relationships and studies of low dose effects, where they exist. Longevity, cancer (leukemia and other forms), and genetic effects are discussed. The author feels that the evidence is inconclusive with respect to effects in the range of exposures permitted by current radiation standards. (HP)

<57>

Gene, P.J. (Comp.), Australian Atomic Energy Commission, Research Establishment, Lucas Heights, Australia. 1972, May

Uranium Mining and Processing in Australia. AAECLIB/BIS-349; 77 p.

Ninety-seven references were selected from various secondary sources and annual reports of the Australian time period, 1952 to April, 1972. Author, title, publication description, and publication date are arranged alphabetically by author within years of publication. (HP)

<58>

<58>
 Smith, D.D., and et al, Western Environmental Research Laboratory, Las Vegas, NV. 1972, May

Radionuclide Concentrations and Botanical Composition of the Diet of Cattle Grazing the Area 18 Range of the Nevada Test Site, 1966-1970. SWRHL-110-r; 38 p.

The radionuclide content and botanical composition of the diet of the cattle grazing on Area 18 range of the Nevada Test Site was determined by analyzing rumen samples collected from fistulated steers. A value for November 26, 1969 of 22 mCi/g was found that could be the result of ingestion of a single particle by the grazing animal. The radionuclide concentrations of the rumen samples both from world-wide fallout and from NTS events were either below the minimum detectable amount or are of very low magnitude. No pathology has been found that can be attributed to radiation. Detectable levels of Zr 95, Ru 106, Ba 140 and Ce 144 were usually found in samples collected during the late spring and early summer. Levels of Ru 106 and Zr 95 persisted into the fall. Samples collected following a contaminating event usually showed I 131 and Ba 140. Grass was a major portion of the diet. Squirreltail grass and Indian rice grass were predominant. Galleta grass, the dominant grass in Area 18 appeared in large amounts in June 1956, July 1967, July, August, September 1968 and in September 1969. Desert bitterbush and Gambel oak were the principal browse species during most months. (HP)

<59>
 Grindler, J.E., Argonne National Laboratory, Argonne, IL. 1962, March

The Radiochemistry of Uranium. NAS-NS-3050; 350 p.

References are cited for general reviews of the inorganic and analytical chemistry of uranium and also for general reviews of the radiochemistry of uranium. A table of the isotopes of uranium shows the half-life, type and energy of radiation, and method of preparation. A review of the nuclear and chemical features of uranium that are of particular interest to the radiochemist is given, followed by a discussion of problems of dissolution of a sample, counting techniques, and a collection of radiochemical procedures for the element as found in the literature. (PMH)

<60>
 Dilley, J.V., Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1970, August

Therapeutic Removal of Inhaled Plutonium. BNWL-1306 (Part 1); Part of Thompson, R.C. (Ed.), Annual Report for 1969, (p. 51), 90 p.

Forty therapeutic agents were tested in studies of the removal of inhaled Pu 239 PuO₂ from the lungs of rats. Promazine HCL, Halotestin, Estradiol, Diuril, Phenergan, Progesterone, Diamox and Miltown, appeared to

show some effectiveness. Diamox, Diuril and Miltown decreased the rat lung burden but increased the translocation to other tissues. When the animals were treated with these drugs in combination with DTPA the systemic burden was reduced 45 to 90% in each group and the lung burden was decreased as much as 25 to 50% in the Diamox plus DTPA and Diuril plus DTPA groups. Miltown plus DTPA did not decrease the lung burden. These studies suggest that the primary drug treatment is somehow responsible for making the inhaled Pu 239 PuO₂ available for chelation by DTPA. (Auth)

<61>
 Park, J.F., E.B. Howard, and W.J. Bair, Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1970, August

Chronic Effects of Inhaled Plutonium 239 PuO₂ in Beagles. BNWL-1306 (Part 1); Part of Thompson, R.C. (Ed.), Annual Report for 1969, (p. 44-46), 90 p.

The long-term study of the biological effects of inhaled Pu 239 PuO₂ in beagle dogs is in its eleventh year. Of 40 exposed dogs, 30 have died and five were sacrificed for tissue distribution data. Twenty-two dogs which have come to autopsy had multiple primary pulmonary tumors. All 15 of these dogs that survived as long as 4 months postexposure had lung tumors. The lowest plutonium lung burden associated with a tumor was 0.05 uCi at death 9 years after exposure. Analysis of hematology data indicated that dogs surviving for 93 months after exposure to Pu 239 PuO₂, with body burdens of 0.2 to 1.0 uCi, continue to show lymphopenia compared to controls of similar age. The absolute lymphocyte count of the exposed dogs was 1.5 plus or minus 0.3 x 10³ (2+3)/mm³ (95% confidence interval) compared to 2.5 plus or minus 0.2 x 10³ (2+3)/mm³ for the controls. Plutonium analyses were completed on four dogs, 85 to 110 months after plutonium inhalation. The estimated initial alveolar deposition ranged from 0.5 to 1.8 uCi. The terminal body burdens were 0.4 to 1.4 uCi with 7 to 21% retained in the lungs, 41 to 56% in the tracheobronchial and mediastinal lymph nodes, 16 to 23% in the liver, 5 to 10% in the skeleton, 6 to 10% in the abdominal lymph nodes and 1.4 to 1.6% in the spleen. The lymphatic system contained 52 to 66% of the total plutonium retained in these animals. The livers of several dogs were divided along their anatomical fissures and each sample analyzed to determine the gross distribution of plutonium in the liver. Concentrations varied by about a factor of two between the highest and lowest lobe in a dog. This information is of significance to the interpretation of analyses on human liver tissue collected at postmortem. (Auth) (PMH)

Table 2 shows the Pu concentration in dog tissues 85 to 110 months after inhalation of Pu 239 PuO₂.

<62>

Sikov, M.R., and S.S. Mahlum, Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1970, August

Plutonium in the Placenta. BNWL-1306 (Part 1): Part of Thompson, R.C. (Ed.), Annual Report for 1969, (p. 24-25), 90 p.

Monomeric Pu 239 was intravenously administered to pregnant rats at a single time between 14 and 19 days of gestation; fetuses and placentas were collected at intervals thereafter. Autoradiographs demonstrated a pronounced localization of plutonium in the villus visceral-splanchnopleure portion of the yolk sac. Significant amounts were also seen in the decidua and labyrinth layers of the placenta. The concentration was lower in the spongiotrophoblast, the activity being primarily localized in the giant cells. Although high radiation doses were received by these localized areas, no intrauterine mortality was observed at doses of up to 50 uCi to the dam. There was no indication of altered placenta function. Only a small amount of plutonium crossed the placenta; autoradiographically, this appeared to be entirely in the monomeric form and was primarily located in the fetal bone. Studies in progress, with plutonium injected after 9 days of gestation, show similar localization in the placenta and fetal membranes, but doses as low as 6.25 uCi to the dam have produced extensive prenatal deaths.

(Auth) (FMM)

<63>

Rhoads, W.A., and R.B. Platt, EG&G, Inc., Santa Barbara Division, Goleta, CA; Emory University, Biology Department, Atlanta, GA. 1971, November 15

Beta Radiation Damage to Vegetation from Close-In Fallout from Two Nuclear Detonations. BioScience, 21(22), 1121-1125

The report recounts first field experiments associated with nuclear events and concerned with vegetation damage attributed primarily to beta radiation. It is supported by the first extensive field dosimetry for measuring both beta and gamma radiation doses simultaneously. Two small nuclear cratering experiments, Palanguin on April 14, 1965 and Cabriolet on January 26, 1968 occurred at the Nevada Test site. Vegetation studies were made on two species of sagebrush, ARTEMISIA ARBUSCULA and ARTEMISIA TRIDENTATA. Downwind to Palanguin, shrubs and trees were killed over an area of more than 3 km², and in Cabriolet they were killed over a few hundred square meters beyond the area covered by material thrown from the crater. At Palanguin, the killed and damaged areas coincided with areas of elevated radiation backgrounds. Doses at Cabriolet were documented with special dosimetry to measure the field of beta doses in the presence of gamma radiation. Conclusions were drawn that damage and death of ARTEMISIA downwind to Palanguin and Cabriolet were attributable to fallout radiation, and beta radiation, with its large potential doses, was primarily responsible. (BBM)

<64>

Martin, J.R., and J.J. Koranda, University of California, Lawrence Radiation Laboratory, Biomedical Division, Livermore, CA. 1971, July

Distribution, Residence Time, and Inventory of Tritium in Sedan Crater Ejecta. Nuclear Technology, 11, 459-463

Radioecological studies were conducted over a five year period to characterize the distribution and residence time of tritium in soil samples from ejecta of the Sedan Crater. Extracted water was assayed by liquid scintillation counting. Kangaroo rats were trapped and monthly body-water tritium concentrations were plotted as a function of time. Residence half-time for tritium in the rats was determined to be 14.5 plus or minus 1.4 months. The agreement of tritium residence time in the body water of the rat with that obtained from the soil data suggests that the surface-to-six-foot interval is the biologically significant zone for tritium in the desert ecosystem at Sedan Crater. The tritium inventory in the ejecta at T sub 0 is reported as 11.5 plus or minus 0.2 x 10²⁴ uCi. (BBM)

<65>

Not given, International Atomic Energy Agency, Vienna, Austria. 1971

Rapid Methods for Measuring Radioactivity in the Environment. CONF-710705; IAEA-SM-148; Proceedings of an International Symposium held in Neuhierberg, Germany, July 5-9, 1971, 967 p.

Twelve invited papers and 64 others are included. Topics include chemical and physical laboratory methods, field methods, normal and emergency surveillance, and data evaluation. A panel on future developments is included. (JMC)

<66>

<66>
 Sakanoue, M., M. Nakaura, and T. Imai, Kanazawa University, Faculty of Science, Kanazawa, Japan. 1971

Determination of Plutonium in Environmental Samples. CONF-710705; IAEA-SM-148/54; Part of Proceedings of an International Symposium on Rapid Methods for Measuring Radioactivity in the Environment held in Neuhberg, Germany, July 5-9, 1971, (p. 171-181), 967 p.

Instead of the time-consuming method using ion-exchange resin separation, a simple solvent extraction method for determining plutonium in environmental samples has been developed and applied for various samples, for example, soil from the Nagasaki area, subjected to the first plutonium atomic bomb explosion in 1945 was analyzed in 1969, as well as corals from the east Pacific Ocean coast, and seawater from the Pacific Ocean. As yield tracer, the alpha emitter Pu 234 (5.75 MeV) was first spiked into the sample, and the sample solution was prepared in 8 M nitric solution either by direct leaching of the sample with nitric acid or by dissolving the ferric hydroxide precipitate made from the acidic solution of solid samples or natural water. Solvent extraction with tri-octylamine was applied to this aqueous solution and followed by the scrubbing of uranium and thorium with 8 M HNO₃ and 10 M HCl, respectively. Finally, plutonium was stripped with 8 M HCl and 0.2 M HF, and determined by alpha spectrometry using a counting source prepared by electrodeposition on either a stainless steel plate or nickel foil. In addition to a gross alpha-track counting on cellulose nitrate, the very sensitive fission track method was also examined for determining Pu 239 and the evaluation of the interference from the contaminating uranium was studied. Contamination of the natural environment with plutonium isotopes was found in various samples and the content of each isotope was determined. (Auth)

Figure 6 shows the Pu 239 content in soil samples from various locations, with some data on Sr 90 content. Table 1 shows the Pu 239 content of the bottom sediments of the four water reservoirs in Nagasaki. Table 2 shows the content of Pu isotopes in coral and seawater.

<67>
 Dutton, J.W.R., and W.T. Mitchell, Ministry of Agriculture, Fisheries Radiobiological Laboratory, Fisheries and Food, Lowestoft, Suffolk, England. 1971

Rapid Methods for Specific Radionuclide Analysis and their Application to Aquatic Emergency Conditions. CONF-710705; IAEA-SM-148/13; Part of Proceedings of an International Symposium on Rapid Methods for Measuring Radioactivity in the Environment held in Neuhberg, Germany, July 5-9, 1971, (p. 745-755), 967 p.

The responsibilities of the Fisheries Radiobiological Laboratory, Lowestoft, include monitoring of the aquatic environment as part of the control systems to ensure safe disposal of liquid radioactive waste. In addition to planned discharges this responsibility extends to surveillance of the consequences to the aquatic environment of nuclear accidents. Laboratory methods of analysis for routine disposals have been

developed and many of these can be adapted for use in emergency conditions. Some methods are already rapid; others are readily amenable to modification so that a result is produced quickly, in an hour or so or even less. A range of laboratory analytical methods in current use for controlled disposals is described, together with an account of procedures at successive stages of sample preparation, chemical separation (where necessary), radiometric measurement and processing of data. They include both manual and automated procedures, using a range of detector systems, and are directed to estimation of specific radionuclides. The main alpha radionuclides which are analyzed regularly at the Fisheries Radiobiological Laboratory are Pu 239, Pu 240, and Am 241. Occasionally Cm 242 is present as are traces of other plutonium radionuclides. In conclusion an account is given of how these methods would be applied in the event of an emergency, and integrated with field measurement techniques. The way in which they would be adapted to overcome limitations imposed by their operation outside controlled laboratory conditions is also considered. (Auth) (PMH)

<68>
 Not given, Southwestern Radiological Health Laboratory, National Center for Radiological Health, Las Vegas, NV. 1968, December

Nimbus-B/SNAP-19 Launch, May 18, 1968, off-Site Radiological Surveillance. SWRHL-50-R; 15 p.

The Southwestern Radiological Health Laboratory monitored the off-site area during and after the launch of the Nimbus-B/SNAP-19. Shortly after launching, the vehicle was destroyed because of an undesirable flight path. The best estimates placed the impact area of the generator package about 5 miles north of San Miguel Island in the Santa Barbara Channel. A variety of environmental samples was collected from the mainland, sea, and channel islands and compared to previous data from the area. During the recovery operations, additional samples were taken. No increase in environmental radioactivity levels was observed from this operation. (HP)

<69>
 Tait, G.W.C., and J. Beal, Atomic Energy of Canada Limited, Chalk River, Ontario, Canada. 1964

The Integrating Impactor, a Monitor for Airborne Alpha Emitters. Health Physics, 10, 279-282

A monitor for airborne alpha emitters is described which provides warning on a continuous basis. The sensitivity is adequate for protection of workers against Pu 239 to the standard called for by the ICRP. The effects of natural background are eliminated. (Auth)

<70>
Lynn, R.L., D.C. Crandall, R.K. Mullen, and W.A. Rhoads, EGG, Inc., Santa Barbara Division, Goleta, CA. 1970, September

Gamma Radiation Spectra in the Vicinities of Projects Shoal and Faultless. EGG-7183-2255; 15 p.

The scintillator array used in the Aerial Radiological Measurement Survey (ARMS) System was employed in ground-based gamma radiation surveys of the Project Shoal and Project Faultless sites. Measurements were made at nine locations at the Project Shoal site and at four locations at the Project Faultless site. On the basis of an unconfirmed report of possible low-level radioactive contamination at the Project Shoal site, six rodents were trapped and removed from that site for whole-body gamma spectral analysis. Computerized analysis of the gamma spectra obtained at the Project Shoal site revealed a radiation peak in the 0.650-0.670 MeV region at some, but not all, of the locations where measurements were made. The origin of this radiation, which has tentatively been identified as Cs 137, is unknown. Similar analysis of the gamma spectra obtained at the Project Faultless site revealed no radiation peaks not attributable to normal background. Whole-body counts made on the rodents secured from the Project Shoal site revealed no radiation burden other than normally occurring K 40. The lack of any discernable peak in the 0.650-0.670 MeV region would suggest that the radioactive contaminant present at the Project Shoal site is not involved in the food-chain kinetics of the resident rodent population. (Auth)

<71>
Lotz, W.E., U.S. Atomic Energy Commission, Division of Biology and Medicine, Washington, DC. 1964

Symposium of Inhaled Radioactive Particles and Gases, Statement on the Problem. Health Physics, 10, 863-866

The widespread use of radioisotopic power units for space missions will depend on the degree of confidence mission planners have that the devices are reliable electrical power sources, that they can be depended on to operate without failures over the lifetime of the mission, that they can be employed in space safely and that the radioactive fuel will not create a hazard for local populations. The biological effects of dispersed radioactive particles are an important parameter in the SNAP programs. The hazards resulting from nuclear rockets from a premature and uncontrolled re-entry and impact could be serious or negligible depending on where the reactor was started and where the failure occurred. Potential exposures from Rover are 1) external whole body doses, 2) beta skin doses and 3) lung and gastrointestinal tract doses. (HP)

<72>
Not given, Air Resources Laboratory, Las Vegas, NV. 1972, April 28

Weather Prediction and Surface Radiation Estimates for the Sulky Event. PNE-718P; 39 p.

This report documents the activities performed by the Air Resources Laboratory, Las Vegas, Nevada in support of Project Sulky. The objectives and functions of the Weather Bureau in the Sulky experiment are outlined. The meteorological facilities and procedures are discussed along with the meteorological forecasts and radiation estimates which were issued. These forecasts are compared with meteorological and radiological data collected during and after the detonation of Sulky. The post-shot meteorological trajectories are described and the results of a tetracon tracking experiment run in conjunction with the Sulky shot are presented. (Auth)

<73>
Sant, W.H., T.R. Garland, and J.J. Roemer, Atlantic Richfield Hanford Company, Richland, WA. 1969, June

Improvements in Radiochemical Analysis and Data Reduction of Environmental Air Samples. ARH-SA-29; CONF-690606-3; Part of Proceedings of the 24th Northwest Region Symposium of the American Chemical Society held in Salt Lake City, Utah, June 12-13, 1969, (18 p.)

An environmental air sample radioactivity monitoring program used at the Redox Analytical Laboratory is described. A proposed revision and computerization of this program to meet the current and projected needs is outlined. The limits specified by the existing authority are referenced and explained. Methods of attaining improved lower detection limits and computer calculated results together with computer plots of long term data are outlined. (Auth)

<74>
Russell, S., H. Levine, and R. Schneider, U.S. Public Health Service, Division of Radiological Health, Radiation Surveillance Network, Rockville, MD. 1966, August

Plutonium in Airborne particulates, November 1965-March 1966. Radiological Health Data and Reports, 7(8), 483-484

Analysis of monthly results in picocuries per 1000 cubic meters of air are tabulated for the eleven station locations from November, 1965-March, 1966.

<75>

<75>
Not given, Western Environmental Research Laboratory, Environmental Surveillance, Las Vegas, NV. 1972, February

Final Report of Off-Site Surveillance for the Pin Stripe Event, April 25, 1966. SWRHL-59-c; 78 p.

The Public Health Service provided off-site surveillance in support of the Pin Stripe Event conducted on April 25, 1966, at the Nevada Test Site. This support consisted of tracking the effluent, monitoring radiation dosage to the off-site population, collecting and analyzing environmental samples of air, milk, water and vegetation, and conducting an intensive public relations program for the off-site residents. The maximum net gamma exposure rate measured by a portable survey instrument was 8 mR/hr. This reading was taken along a gravel road used only occasionally and well away from any continuously occupied area. The highest net gamma exposure rate measured at a continuously occupied location was 1.5 mR/hr. The above exposure rates were taken during cloud passage. The maximum gross beta concentration found on an air filter from a continuously populated area was 25,000 pCi/m³. This filter showed an I-131 concentration of 5300 pCi/m³. The highest concentration of I-131 in a domestic water supply was 3860 pCi/l and the highest concentration of I-131 in a single milk sample was 4800 pCi/l. This concentration (4800 pCi/l) appeared three days after the event and was not representative of the levels of I-131 actually consumed by any off-site resident. Dilution of milk from this dairy with milk from dairies outside of the contaminated area, lowered the level of I-131 to a maximum of 100 pCi/l. (Auth)

Appendix includes tables on additional air sampling results, complete water sampling data, vegetation sampling data, and complete milk sampling data.

<76>

Bernard, S.R., and C.P. Holloway, Oak Ridge National Laboratory, Health Physics Division, Oak Ridge, TN. 1965

Estimates of f sub 1 for Plutonium Compounds. ORNL-3849; Part of Health Physics Division Annual Progress Report for Period Ending July 31, 1965, (p. 212-213), 263 p.

The experimental data of Weeks, et al., and Ballou are used to derive mathematical equations for f sub 1 (percent of plutonium deposited in rats at four days). The valence state, the fraction as polymer, and the pH of the solution are the most important variables. Experimental values varied from 0.02% to 0.00002% of the administered dose. (JMC)

<77>
Kashima, M., D.D. Mahlum, and M.R. Sikov, Battelle Memorial Institute, Pacific Northwest Laboratories, Richland, WA. 1972, June

Metabolism and Effect of Monomeric and Polymeric Plutonium in the Immature Rat Liver. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 749-752

The distribution of monomeric and polymeric Pu 239 after administration to newborn, week-old, weanling, or adult rats was studied autoradiographically. The effects of Pu 239 on the liver were evaluated using hepatic incorporation of Au 198 colloid and blood clearance of I-131 rose bengal. The uptake of gold by the liver was markedly decreased at 21 days after exposure of newborn or week-old rats to 60 uCi/kg monomeric Pu 239. Polymeric Pu 239 (30 uCi/kg) decreased gold uptake only in animals injected as newborns. Blood clearance of I-131 rose bengal was decreased in animals injected at birth or at 1 week of age with either monomeric or polymeric Pu 239. Animals injected as weanlings or adults with either form showed no impairment of ability to clear I-131 rose bengal from the blood or to incorporate Au 198 into the liver. (Auth)

<78>

Keshchukova, N.A., V.P. Aristov, V.K. Lemberg, G.S. Muskhacheva, M.G. Poplyko, and I.A. Tsevelova, Ministry of Public Health, Institute of Biophysics, Zhivopisnaya 46, Moscow, USSR. 1972, June

Mechanism of Development of Plutonium-Induced Pulmonary Sclerosis. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 753-754

The mechanism of development of plutonium-induced pulmonary sclerosis following the inhalation of soluble plutonium compounds was studied by light and electron microscopy and with biochemical methods. Plutonium-induced pulmonary sclerosis is a consequence of radiation injury. The effects seen are due to excessive reparative functioning of connective tissue when disturbance of physiological regeneration takes place, and due to intensified destruction of parenchyma as a result of radiation injury. Endothelial elements of capillaries show the greatest susceptibility to radiation damage. Interstitial sclerosis develops as a consequence of intensified proliferation of fibroblasts. Collagen fibers are formed in the basal layer of the alveolar-capillary barrier and in positions previously occupied by capillaries. Infection and the consequent aggravation of pneumonitis processes is a significant factor in development of sclerosis. (Auth)

<79>
Sanders, C.L., and T.A. Jackson, Battelle Memorial Institute, Pacific Northwest Laboratories, Richland, WA. 1972, June

Induction of Mesotheliomas and Sarcomas from "Hot Spots" of Plutonium 239 Pu02 Activity. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 755-759

Albino rats were given an intraperitoneal injection of approximately 2.8 μ Ci, submicron-sized Pu 239 Pu02 particles. From 30 to 35% of the initially injected dose was found in the omentum within fibrous adhesions by 6 months after plutonium injection. About 27% of the animals developed mesotheliomas and 38% sarcomas of various types. All but 3 of these tumors originated from the omental area with a median induction period of about 1 yr. The tumors spread by implantation on serosal surfaces, by infiltration and by metastasis. In addition to omental tumors, two osteogenic sarcomas and one reticulosarcoma were found in Pu02 animals. The pathogenesis of Pu02-induced mesothelioma was similar to previously described mesothelioma formation following intracavitary administration of asbestos fibers. The distribution of Pu02 in fibrous adhesions was similar to that seen in tracheobronchial lymph nodes of beagle dogs following inhalation of Pu 239 Pu02. Likely sites for tumor formation from inhaled Pu02 may include mesenchymal tissue from lungs and thoracic lymph nodes and mesothelial lining of the pleura, particularly when the Pu02 is redistributed into "hot spots" of alpha activity. (Auth)

<80>
Jee, W.S.S., R.B. Dell, and L.G. Miller, University of Utah, College of Medicine, Division of Radiobiology, Department of Anatomy, Salt Lake City, UT; Idaho Nuclear Corporation, Reactor Development Branch, Idaho Falls, ID. 1972, June

High Resolution Neutron-Induced Autoradiography of Bone Containing Plutonium 239. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 761-763

The detailed neutron-induced autoradiographic process for bone containing Pu 239 produces autoradiographs with both fission fragment tracks and a corresponding bone image. Seven-microns-thick undecalcified bone sections were affixed on 300- μ m-thick Lexan (polycarbonate) film coated with 0.5% calf skin gelatin and exposed to neutrons in the thermal column of the Material Testing Reactor (MTR) at the National Reactor Testing Station in Idaho. The specimens were immersed in 28% KOH at 50°C for 1-1 1/2 hr to

etch pinholes at the location of each fission track and to pit the film at the location of the bone. When the films were etched immediately after irradiation, no bone image was produced, but when the bone sections were allowed to remain on the film for several weeks after irradiation, the irradiated bone caused a pitting of the film surface. Betas from P 32 seemed to be the main charged particles available to produce the pitting. This detailed neutron-induced autoradiographic process has advantages over the nuclear emulsion autoradiography of bones because it eliminates long exposure times and fading of latent image. It is a rapid, effective procedure. (Auth)

<81>
Smith, V.H., Battelle Memorial Institute, Pacific Northwest Laboratories, Richland, WA. 1972, June

Therapeutic Removal of Internally Deposited Transuranium Elements. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 765-778

Treatment for the accidental incorporation of the transuranic elements is mainly dependent on chelation therapy. Most of the therapeutic experience has evolved, justifiably, for the removal of plutonium. The plutonium therapeutic regimens may serve as a rough guide to the treatment of other transuranides, although, quantitatively, dissimilarities based on chemical and incorporated mass differences are to be expected. With the added complication of the biological disposition of the daughter products and the high specific activities of some of the isotopes, any significant incorporation should be treated, and treated promptly. While progress in the treatment of plutonium has been slow, a better understanding of removal from specific tissues, such as liver, bone and lung, for soluble and insoluble plutonium materials, is being achieved. The brightest spot is the ability to remove about half the inhaled particulates, plutonium or other transuranics, from the lung by lung washing. Coupled with the judicious use of chelation therapy this should significantly reduce the hazard from inhaled transuranics. These and other aspects of the treatment for poisoning by the transuranic elements will be discussed. (Auth)

Tables are given for: a.) Characteristics of hazard concern for some isotopes of the transuranium elements, b.) oxidation states of actinides, c.) effect of DTPA on the retention of intravenously injected neptunium and plutonium citrates in rats, d.) effect of Zn DTPA on retention of Eu 253 21 days after intramuscular injection into both hind legs of rats, e.) effect of DTPA on retention of Cf 252 and Am 241 in mice, f.) effect of Ca DTPA on removal of inhaled Pu citrate in rats, and g.) removal of inhaled Pu 239 Pu02 by pulmonary washing with isotonic saline in baboons and dogs. Charts are given for: a.) therapy for americium and curium depositions in man, and b.) experimental removal of americium and curium in animals.

<82>

<82>
 Seidel, A., and V. Wolf, Kernforschungszentrum
 Karlsruhe, Institut für Strahlenbiologie,
 Karlsruhe, German Federal Republic. 1972, June

Removal of Internally Deposited Transuranium Elements by Zinc DTPA. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 779-783

The comparative effectiveness of Ca DTPA and Zn DTPA in removing internally deposited Pu 239, Am 241, and Cs 242 was tested in the rat. The radionuclides were administered in a citrate solution and treatment with three chelate injections (1 μ mol/kg/d) was begun 6 days later. No essential differences were observed between the two chelates tested. The data indicate that the removal of the isotopes from the liver cannot be a suitable criterion for the effectiveness of treatment in other soft tissue organs. The liver isotope content was reduced to 10% of the controls, whereas the content of other organs, including bone, was never reduced to less than 40% of the control. In liver and lung, the response to treatment was different for Am 241 and Cs 242 as compared to Pu 239. There was no such difference as far as other organs are concerned. (Auth)

Tabular data are given on the influence of Ca DTPA and Zn DTPA on the removal of Pu 239, Am 241, and Cs 242 from the rat.

<83>
 Jech, J.J., B.V. Andersen, and K.R. Heid, Battelle Memorial Institute, Pacific Northwest Laboratory, Richland, WA. 1972, June

Interpretation of Human Urinary Excretion of Plutonium for Cases Treated with DTPA. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 787-792

Urinary excretion data are reviewed for selected human cases which were treated with DTPA following plutonium intake via inhalation and injection. Data obtained out to several years postintake are compared to the data for non-treated cases. These data point out the difficulties involved in determining the effectiveness of the DTPA and in evaluating the systemic deposition. Utilizing urine results obtained between treatment dates to determine the DTPA effect may be misleading, underestimate the effectiveness and result in a premature cessation of treatment. The extended data indicate that the urine excretion rates eventually stabilize to the rates predicted by the Langham or Healy models. However, the rates appear to remain elevated above that expected for periods up to a hundred days posttreatment. Evaluations based on data in the period prior to stabilization of the excretion rate may lead to overestimates of the systemic deposition. (Auth)

<83>
 Baxter, D.W., and M.P. Sullivan, Battelle Memorial Institute, Pacific Northwest Laboratories, Richland, WA. 1972, June

Gastrointestinal Absorption and Retention of Plutonium Chelates. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 785-786

The intestinal absorption of plutonium nitrate is increased approximately 700-fold when chelated with DTPA. Within 2 days, virtually all of the absorbed plutonium-DTPA complex is excreted in the urine. Thus, plutonium retention in the liver and skeleton is quite low, but more than twice as high as when DTPA is not present. Citrate is less effective than DTPA in increasing absorption, but more effective in increasing retention. Since both absorption and retention are increased by chelation, consideration must be given to this added risk when therapeutic procedures result in the chelation of plutonium entering the gastrointestinal tract. (Auth)

<85>
Mays, C.W., and T.P. Dougherty, University of Utah, College of Medicine, Radiobiology Division, Salt Lake City, UT. 1972, June

Progress in the Beagle Studies at the University of Utah. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 793-801

Young adult beagles are given single intravenous injections of monoseric Cf 252, Cf 209, Am 241, Pu 239, Th 228, Ra 226, or Sr 90 in citrate solution to achieve reproducible deposition patterns in tissue. Infected transuranium atoms become attached to transferrin and other substances in blood plasma. The skeleton and liver are the primary sites of deposition, although high local concentrations of californium, berkelium and americium also occur in the thyroid and kidney, and radium also concentrates in the eye. The initial skeletal deposition of monoseric transuranium elements is on bone surfaces. The mean local dose-rate to the soft-tissue layer 0-10^u from the mineralized bone surfaces of the beagle is about 20 times higher when Pu 239 is on bone surfaces than for an equal amount of Pu 239 randomly distributed throughout the bone mineral. Thus, the rate of bone-surface remodeling has a very important influence on the skeletal toxicity of the transuranium elements. The initial liver deposition of monoseric transuranium elements is rather uniform and mainly in the hepatic cells. Subsequently, much of the radioactivity shifts into the liver reticuloendothelial cells that line the sinusoids. At long times after injection, the distribution is very non-uniform, being highest in the portal region and lowest in the regenerative nodules. All, or virtually all, of the life-shortening from medium and low doses has been due to radiation-induced cancer. Bone sarcomas have been the most frequent foci of malignancy, but head sinus carcinomas, liver tumors, and eye melanomas have also been induced. On the basis of average skeletal dose, 1 rad from Pu 239 is the equivalent of 5-10 rads from Ra 226 in the induction of bone sarcomas. This is because in the skeleton considerable fraction of the Pu 239 disintegrations occur on bone surfaces near cells, whereas most of the skeletal disintegrations from Ra 226 take place within bone mineral. Plutonium will continue to be the chief interest, not only at low doses, but perhaps at different ages and in different chemical forms. Other radionuclides of practical and fundamental importance will continue to be studied. This is the first experiment in which tumor induction by fission fragments (Cf 252) is being determined. (Auth)

<86>
Park, J.F., W.J. Bair, and R.H. Busch, Battelle Memorial Institute, Pacific Northwest Laboratories, Richland, WA. 1972, June

Progress in Beagle Dog Studies with Transuranium Elements at Battelle-Northwest. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 803-810

Studies were initiated 10-12 yr ago to determine the biological effects of inhaled plutonium. Sixty-five beagle dogs inhaled Pu 239 PuO₂ and were held for life-span observations. Sixty dogs died or were euthanized when death was imminent due to plutonium-induced pulmonary fibrosis and/or neoplasia 2-135 months postexposure. Twenty-four of the dogs had primary pulmonary neoplasia, including 20 of the 21 dogs that survived at least 4.5 yr postexposure. Most lung tumors were broncholo-alveolar carcinomas of peripheral origin with metastases to several other tissues. Two squamous cell carcinomas, three epidermoid carcinomas and three thoracic sarcomas were also observed. The estimated initial alveolar deposition in the dogs with plutonium-induced tumors ranged from 0.2 to 3.3 uCi. Approximately 10% of the alveolar-deposited plutonium was retained in the lungs after 8-10 yr postexposure, with an accumulated average radiation dose to the lungs of 2000 to 12,000 rads in the tumor-bearing dogs. Forty to fifty percent of the plutonium was translocated to the tracheobronchial and mediastinal lymph nodes, 10-15% to the liver, 5% to the skeleton and 5% to the abdominal lymph nodes. The highest plutonium concentrations occurred in the tracheobronchial, mediastinal and abdominal lymph nodes, followed in descending order by lungs, liver and skeleton. Respiratory insufficiency and lymphopenia were the primary clinical signs associated with the fibrotic, metaplastic and neoplastic changes in the lungs, and with the fibrosis of the lymph nodes. The pathology in these tissues may have influenced the clearance and translocation rates of the plutonium. Alveolar deposition of more than about 1 nCi/g of lung, about 30 times the quantity, at equilibrium, resulting in an average lung dose of 0.3 rem/week, might be expected to cause premature death due to pulmonary pathology. Experiments were initiated in 1970 to study dose-effect relationships at low dose levels in 200 dogs depositing 0.002-3.0 uCi of Pu 239 PuO₂ or Pu 238 PuO₂. The lowest level corresponds to an average lung dose of 0.3 rem/week. This study should further identify the critical tissues for inhaled plutonium at low dose levels. (Auth)

<87>

Watters, R.L., and J.L. Lebel, Colorado State University, Department of Radiology and Radiation Biology, Fort Collins, CO. 1972, June

Progress in the Beagle Studies at Colorado State University. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 811-814

Air oxidized plutonium, $\text{Pu}(\text{NO}_3)_4$ and high fired PuO_2 (850 degrees C) which had known amounts of Am^{241} were implanted over the left metacarpus in beagle dogs and the concentrations of Pu^{239} and Am^{241} in various tissues were measured as a function of time. The effect of DTPA therapy upon organ depositions was also studied. For air oxidized plutonium, rapid movement of Pu^{239} and Am^{241} to the proximal lymph node (superficial cervical) has been observed by in vivo counting. Approximately 3% of the implant material reached the lymph node within 2 weeks and continued an exponential build-up to 17% at 1 yr. Results of plutonium assays in blood indicate a 14-fold increase in movement to the circulation from the $\text{Pu}(\text{NO}_3)_4$ implants as compared with the air oxidized plutonium. This is supported by comparison of the depositions in the liver and the proximal end of the femur where the $\text{Pu}(\text{NO}_3)_4$ experiment produced twenty-four times higher levels of plutonium than did the air oxidized plutonium experiment. The effect of DTPA therapy was greater for the nitrate than for the air oxidized plutonium implants. (Auth)

<88>

McClellan, R.O., Lovelace Foundation for Medical Education and Research, Albuquerque, NM. 1972, June

Progress in Studies with Transuranic Elements at the Lovelace Foundation. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 815-822

Research directed toward developing an improved understanding of the biomedical consequences of inhaling transuranic elements was initiated at the Lovelace Foundation in 1968, recognizing the need for additional information on these radionuclides as well as the opportunity to obtain data for comparison with those previously collected and being collected on fission product radionuclides. The research is being performed to develop information that will assist in predicting

potential effects in man from inhaled transuranic elements, and to provide the data necessary for establishing realistic radiation protection guides. Recognizing the need for quantitative data on the influence of particle size on the toxicity of inhaled alpha emitters, a major, and successful, effort has been directed toward the production of monodisperse aerosols of respirable particles. Studies on the metabolism and toxicity of Pu^{239} , Am^{241} , Cs^{244} and Cf^{252} have been performed or are under way in mice, Chinese hamsters, Syrian hamsters, rats and beagle dogs. The effectiveness of bronchopulmonary lavage for removing inhaled radioactivity, including Pu^{239} is also being studied. This study, in part, provided the basis for the use of bronchopulmonary lavage to recently treat an individual who accidentally inhaled Pu^{239} . (Auth)

<89>

Stover, B.J., University of North Carolina, Department of Pharmacology, Chapel Hill, NC; University of Utah, College of Medicine, Division of Radiobiology, Department of Anatomy, Salt Lake City, UT. 1972, June

Life Shortening Consequent to Internal Irradiation from Plutonium 239. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 823-827

Survival data for beagles at 6 dose levels of Pu^{239} , which range from 0.016 to 2.9 μCi $\text{Pu}^{239}/\text{kg}$ injected, are compared with those for beagles that received no Pu^{239} . The criterion for life shortening is that defined mathematically by the steady state theory of mutation rates. A brief summary of this theory is presented. The life-shortening decreased with decreasing dose level through the first 5 levels but none was observed at the lowest level. The death rate curves for the lowest dose level and the controls were essentially coincident. Osteosarcomas do occur at this dose level, so it may be a matter of "trading of causes of death" rather than decreasing the length of the animal's life. A brief comment on the chemistry of plutonium and the transplutonic elements is included. The retention and distribution of plutonium in these beagles is reviewed. Finally, suggestions are made about experimental factors that should be varied in order to evaluate the toxic effects of plutonium. (Auth)

<90>

Bistline, R.W., R.L. Watters, and J.L. Lebel, Colorado State University, Department of Radiology and Radiation Biology, Fort Collins, CO. 1972, June

A Study of Translocation Dynamics of Plutonium and Americium from Simulated Puncture Wounds in Beagle Dogs. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 629-631

The translocation dynamics of plutonium and americium from simulated wounds contaminated with $Pu(NO_3)_4$ and high fired PuO_2 (calcined at 850 degrees C) in the paw of dogs were analyzed by *in vivo* counting equipment. Measurements were made over the implant site and the major superficial cervical lymph node with a NaI(Tl) detector system. The difference in accumulation dynamics between the two chemical forms and effects of DTPA treatment are shown. In all cases, measurable levels of plutonium movement to this lymph node was seen within minutes. (Auth)

<91>

Craig, D.K., J.M. Thomas, J.R. Becker, and J.F. Park, Battelle Memorial Institute, Pacific Northwest Laboratories, Richland, WA. 1972, June

Alveolar Deposition of Plutonium 239 PuO_2 Aerosols in Beagle Dogs as Function of Respiration and Aerosol Parameters. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 647-651

Beagle dogs are currently being exposed to Pu 239 PuO_2 aerosols as part of a low-level effects study which will include both Pu 238 and Pu 239. Desired alveolar burdens range from 2 nCi to 3 μ Ci, divided into 6 groups. Respiration parameters measured during exposure include total inspired volume (VOL), respiratory frequency (RR) and tidal volume (TV). Aerosol parameters measured are concentration (CONC) and the aerodynamic equivalent size distribution, characterized by the activity median aerodynamic diameter (AMAD) and geometric standard deviation (GSD). These latter two measures were combined into one parameter, percentage activity less than 0.5 μ m aerodynamic equivalent diameter (LS 0.5), to describe the aerosol size distribution. Alveolar deposition (NCI) was determined from thorax counts 14 days postexposure. Percentage alveolar deposition, defined as DEP equals

(100 times NCI)/(VOL times CONC), varied from 0 to 54 for 36 exposed dogs. A correlation matrix involving aerosol, respiration and physiologic (TV) parameters was computed to determine those factors which most significantly influenced DEP. Subsequent stepwise regression analysis yielded the equation DEP equals 3.11 LS 0.5 plus 0.015 TV, which accounted for 74% of the variability in DEP. Unlike tidal volume, respiration rate was not significantly correlated with DEP. AMAD was found to be highly correlated with \log_{10} CONC (R equals 0.895) while GSD was significantly correlated with AMAD (R equals -0.597). This suggested that the pre-exposure value of CONC could be used indirectly to compute LS 0.5. Since an estimate of TV could also be obtained during the exposure, DEP values could be estimated from the suggested regression equation, and the volume (VOL) that a dog should inhale to obtain the required alveolar burden (NCI) could be calculated. The results obtained using this procedure are discussed. (Auth)

<92>

Parker, H.G., S.R. Wright, A.de G. Low-Beer, and D.J. Yaeger, University of California, Donner Laboratory and Lawrence Berkeley Laboratory, Berkeley, CA. 1972, June

The Metabolism of Einsteinium 253 in Mice. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 647-651

Es 253, a pure alpha emitter with a half-life of 20.5 days, is now available in microgram amounts. The potential for human exposure to it and the lack of published observations on its behavior in animals led us to study its whole-body retention, excretion and organ distribution in mice. Citrated Es 253 was injected intramuscularly; half the mice also received DTPA treatment beginning 2 hr after the injection. Daily whole-body counts were obtained by L x ray counting, and the organ and tissue activities were measured by x ray and alpha counting at 6 and 10 days. Comparison was made with our earlier Am and Cf study in mice. Einsteinium behaved according to predictions based on its place among the actinides. DTPA therapy was about as effective for Es as for the other actinides. The validity of the L x ray method for whole body, organ, tissue and excrete counts, using empirically determined correction factors, was established for the mouse. The method offers simplifications for future studies of this sort. (Auth)

The technique for Es whole-body counting could be applicable to counting other nuclides, such as Pu 239 and Cm 244 in which only the low-energy x rays provide detectable photons. The most conclusive check of the method was made in a similar experiment using Am 243 instead of Es .

<93>

<93>
 Henot, J.C., R. Massé, M. Morin, and J. Lafusa, Commissariat à l'Energie Atomique, Department de la Protection Sanitaire, Fontenay-aux-Roses, France. 1972, June

An Experimental Comparative Study of the Behavior of Neptunium 237, Plutonium 238, Plutonium 239, Americium 241 and Curium 242 in Bone. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 657-665

Actinides, whether administered by intramuscular injection or by aerosol, had different rates of uptake from the contaminated site and resulted in different bone deposits. Neptunium, especially when injected as an acid solution with valence 5, had a metabolic fate similar to elements with valence 2, yet its urinary excretion was higher than that of the alkaline earths. Because of their valences both curium and americium (valence 3) and plutonium (valence 4) could be compared to lanthanides. Following intramuscular injection, Pu 238 and Pu 239 could be distinguished from americium and curium by a greater uptake in bone. The part played by mass, noticeable after intramuscular injections, was still more noticeable after pulmonary administration. Bone deposits were higher with Pu 238 than with Pu 239. A study of the various plutonium compounds or complexes showed that bone burdens decreased as their stability in vivo increased. The smallest bone burden was obtained with the Pu-DTPA complex, the highest one with the Pu-transferrin complex. Bone-seeking actinides could also be distinguished by their histological distribution. Uptake areas were periosteum, perivascular spaces, endosteum, the inner epiphyseal plate, metaphysis and marrow. No element seemed to deposit noticeably on the mineral matrix; yet some migrating elements could be found in deep bone, closely connected with the osteocytes and their canaliculi. A rough assessment of actinide bone deposits could be obtained quickly by determining the total amount of urinary excretion of the element prior to any medical treatment. Estimating the bone burden to be twice the cumulative urinary excretion before initiating treatment with DTPA would usually overestimate bone deposition, which would not impair the therapeutic decision. DTPA was effective in treating bone deposits of elements of valence 3 and 4; they were decreased by one third within 3 months. It has not been determined whether this action will last beyond the fourth month. (Auth)

<94>
 Lloyd, R.D., C.W. Mays, C.W. Taylor, and J.L. Williams, University of Utah, College of Medicine, Radiobiology Division, Department of Anatomy, Salt Lake City, UT. 1972, June

Californium Excretion and Retention by Beagles Injected with Californium 249 or Californium 252. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 667-673

The metabolism of californium was studied in 11 beagles 0-160 days after intravenous injection of Cf 249 or Cf 252 as Cf(+)3

citrate. Total excreta collections were made for the first 21 days after injection, and the samples were analyzed for their californium content by gamma-ray counting of the 333 and 388 kev gamma-rays of Cf 249 or the fission gamma-rays of Cf 252. It was found that the excretion of californium during this period was mainly in the urine. About 3/5 of the total activity excreted during the first 3 weeks appeared in the first day's collection. A combination of total-body and partial-body counting was used to determine serially the total-body retention and partitioning of retained Cf between liver and non-liver tissue. These measurements indicated that 1 week following injection, about 20% of the injected Cf was deposited in the liver and that about 60% remained in non-liver tissue (mainly skeleton). The relative bone-to-bone distribution of Cf 239 in the skeletons of 2 dogs sacrificed 7 and 21 days after injection was similar to that of Cf 249 and Pu 239 injected as citrates. (Auth)

Tabular data for excretion of Pu, Am, and Cf in beagles during the first 3 weeks after intravenous injection, biological retention of injected Cf in beagles, and gross distribution of Cf 249 in beagle skeleton compared with Am 241 and Pu 239 are given.

<95>
 Atherton, D.R., and R.D. Lloyd, University of Utah, College of Medicine, Radiobiology Division, Department of Anatomy, Salt Lake City, UT. 1972, June

The Distribution and Retention of Californium 249 in Beagle Soft Tissue. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 675-677

Beagles injected intravenously with Cf 249 in citrate buffer of pH 3.5 were sacrificed 7 days and 3 weeks after injection. As with americium, the concentration of californium in the liver was highest of all soft tissue but the total was about 18-20%, whereas the beagle liver retains about 50% of injected americium at comparable times. Concentrations in other soft tissue ranged from 70% of that in the liver downward. The thyroid, kidney, spleen, lymphatic tissue and dura mater showed significant concentrations. The presence of californium was ubiquitous but in very low concentrations throughout all other soft parts; the brain, lungs, heart, gastrointestinal tract, pancreas, gonads, thymus, pituitary and adrenals being measured specifically, as were large samples of fat, muscle and pelt. From these initial studies it is seen that of the soft tissues, liver, thyroid and kidneys will be at greatest risk following administration of Cf 249. (Auth)

Tabular data for retention of Cf 249 and Am 241 in tissues as percentage of injected dose and concentration of retained Cf 249 and Am 241, (%/gram) x 10(243) are given. See also Report CCO-719-246, (p. 299-306).

<96>

Stevens, W., and P.W. Bruenger, University of Utah, College of Medicine, Radiobiology Division, Department of Anatomy, Salt Lake City, UT. 1972, June; 1972, March 31

Interaction of Californium 249 and Californium 252 with Constituents of Dog and Human Blood. CONF-710910; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 679-683; CCO-119-246; Part of Dougherty, T.P., Research in Radiobiology, Annual Report of Work in Progress in the Internal Irradiation Program, (p. 319-330), 380 p.

Beagles were injected with Cf 249 or Cf 252 in citrate buffer. The concentration of nuclides in plasma and whole blood was measured from 5 min to 48 hr postinjection. Small amounts of californium were found associated with the cellular elements. The concentration of californium in plasma decreased rapidly during the first few hours after injection. At 24 hr postinjection less than 1% of the injected dose was circulating. Californium 249 and 252 disappeared from the circulation at the same rate. Separation of plasma constituents by gel filtration demonstrated that californium in plasma was associated with compounds with a molecular weight of approximately 70,000. Additional information obtained by ion exchange chromatography indicated that this protein was transferrin. Data obtained in vivo from canines were extended by in vitro experiments with human blood. Gel chromatography of human plasma protein incubated in vitro with californium indicated that a Cf-protein complex was formed and appeared to be nearly identical to that seen in dogs. Re-chromatography of these fractions on DEAE-Sephadex showed that transferrin and californium did not coincide exactly. Thus californium-transferrin is either held more tenaciously by the ion exchange resin than iron-transferrin or apo-transferrin, or the shift was caused by the presence of another as yet unidentified minor protein component. The stability of the protein complex(s) formed is less than that of the plutonium-transferrin complex and this decreased stability is responsible for the high rate of its disappearance from the bloodstream. (Auth)

Table 1 gives the percent of injected dose of Cf 249, Cf 252, Am 241, Pu 239, and Th 228 circulating in blood at 5 min to 48 hr post-injection. Figures are given on the disappearance of Cf 249 and Cf 252 from the blood of beagles, elution profiles of plasma proteins and Cf 249 from Sephadex G-100-G-200 and DEAE Sephadex ion exchange columns.

<97>

Bruenger, P.W., D.L. Atherton, and W. Stevens, University of Utah, College of Medicine, Radiobiology Division, Department of Anatomy, Salt Lake City, UT. 1972, June; 1972, March 31

Intracellular Distribution of Californium 249 in Canine Liver. CONF-710915; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 685-689; CCO-119-246; Part of Dougherty, T.P., Research in Radiobiology, Annual Report of Work in Progress in the Internal Irradiation Program, (p. 307-318), 380 p.

Three beagles were injected intravenously with Cf 249 in citrate buffer. One of these dogs was sacrificed at 7 days, another at 21 days; liver biopsies were performed on the third dog starting at one day after injection. Liver specimens from all dogs were homogenized in sucrose-Ca(+)2 and subjected to differential centrifugation. Most of the Cf 249 was initially bound by soluble proteins, probably ferritin. At later times, increasing quantities were associated with intracellular organelles. Homogenate fractions free of nuclei and debris (homogenate after 6000 g min) were subjected to centrifugation for 220,000 g min in a continuous linear sucrose gradient of 12-52%. All fractions were collected and analyzed for Cf 249, protein, acid phosphatase (lysosomal marker), and cytochrome c oxidase (mitochondrial marker). At one day after injection more than 50% of the nuclide was found in the three lightest fractions and approximately 10% in the three heaviest fractions. This pattern was reversed with time and at 21 days 10% was found in the lightest fractions and 43% in the heaviest fractions. At this time more than 50% of the nuclide in the liver was associated with the fraction collected at 60,000 g. min, designated as mitochondria. This fraction showed high cytochrome oxidase activity and also acid phosphatase activity. It is presently assumed that redistribution occurs from soluble proteins into mitochondria and then into lysosomes. Similar data have been obtained from kidney and spleen homogenates. (Auth)

In the liver, the main association of californium was with ferritin, as has been described for Pu(+)4 and Am(+)3.

<98>

Taylor, G.N., W.S.S. Jee, C.W. Mays, R.B. Dell, J.L. Williams, and L. Shabestari, University of Utah, College of Medicine, Radiobiology Division, Department of Anatomy, Salt Lake City, UT. 1972, June

Microscopic Distribution of Californium 249 and Berkelium 249 in the Soft Tissues of Beagles. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 691-693

The microscopic distribution pattern of Cf 249 and Bk 249 in the soft tissues of beagles, one to three weeks following a single intravenous injection of a citrate solution, was found to be very similar to that of Am 241. Relatively high concentrations occurred in the hepatic cells of the liver, the glomeruli of the kidney, the interfollicular region of the thyroid, the cartilaginous tissues of the lung, and the media of the smaller arterioles of most organs. Very intense, but sparsely scattered "hot spots" were also present in the renal papillae and in the submucosa of the bronchioles. Lesser sites of localization were the endocardium of the AV heart valves, the glassy membranes of the larger hairs of the coat, the zona pellucida of the Graafian follicles and the zona arcuata of the adrenal cortex. With the exception of the liver, where the radionuclide was principally within the hepatic cells, most of the deposition sites were extracellular, within or associated with connective tissue which gave a positive periodic acid-Schiff reaction. (Auth)

<99>

Brooks, A.L., J.A. Newlinney, and R.O. McClellan, Lovelace Foundation for Medical Education and Research, Albuquerque, NM. 1972, June

The In Vivo Cytogenetic Effects of Californium 252 on Liver and Bone Marrow of the Chinese Hamster. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 701-706

Hamsters were injected with graded activities of Cf 252 citrate at pH 6.0 ($4.5 \times 10^{(2-2)}$, $1.5 \times 10^{(2-3)}$, $5 \times 10^{(2-3)}$, $1.7 \times 10^{(2-3)}$ and $5.6 \times 10^{(2-4)}$ uCi/g body weight), and sacrificed at 6, 15 and 42 days postinjection. The frequency of aberrations in the bone marrow was very low at all times and activity levels. When the animals injected with the three highest levels of Cf 252 were considered collectively, the aberration frequency was four times that of

the control animals. Many of the aberrations were balanced and had apparently survived cell division. These results suggest that rapidly dividing tissues, such as bone marrow, do not reflect chromosome damage from chronic irradiation to the same degree as slowly dividing tissues, such as liver, because cell division appears to select against damaged cells. The frequency of rings plus dicentrics in the liver, fitted by a power function and a linear regression, increased according to the 1.0 power of the dose with a coefficient of aberration production of $1.7 \times 10^{(2-3)}$ aberrations/cell/rad. There was a linear increase in the total aberration frequency in liver cells with increasing dose through all the time intervals studied. This increase could be described by the equation Y equals 0.05 plus $3.3 \times 10^{(2-3)} D$ where Y equals aberrations/cell and D is dose in rads. The coefficient of $3.3 \times 10^{(2-3)}$ aberrations/cell/rad was approximately half the $7.1 \times 10^{(2-3)}$ aberrations/cell/rad seen following exposure to Am 241, a pure alpha emitting radionuclide. When only the dose from the alpha emissions of the Cf 252 was considered, the aberration coefficient ($6.3 \times 10^{(2-3)}$ aberrations/cell/rad) was not significantly different from that for Am 241. (Auth)

<100>

Sikes, W.R., and D.D. Mahlum, Battelle Memorial Institute, Pacific Northwest Laboratories, Richland, WA. 1972, June

Plutonium in the Developing Animal. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 707-712

It is evident that many of the parameters used for calculation of permissible limits of exposure to radionuclides are different for the immature individual than for the adult. We have assembled the available data on such metabolic parameters as absorption, partition and retention, and find distinctive changes in these parameters which occur during maturation. Moreover, the radiation sensitivity of individual organs, and of the whole organism, changes during development. We have examined the effect of these changes on the selection of the critical organ in the immature animal. (Auth)

<101>

Matsuoka, O., M. Kashima, H. Yoshima, and T. Noda, National Institute of Radiological Sciences, Chiba, Japan. 1972, June

Whole-Body Autoradiographic Studies on Plutonium Metabolism as Affected by Its PhysicoChemical State and Route of Administration. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 713-722

A comparative investigation of autoradiograms was carried out on specimens obtained from animals administered monomeric or polymeric plutonium. Results were compared with those obtained from animals administered metabolically stable reference particles of known particle size. In addition to whole-body autoradiography and measurements of whole-body retention by counting of $\text{L} \alpha$ rays, blood clearance was examined, as well as the modification of plutonium distribution and excretion by DTPA. Following intravenous injection, the blood clearance of plutonium was influenced by particle size. A general rule was proposed relating the size of particles and their behavior in RES organs. The whole-body autoradiographic technique reveals characteristic distribution patterns at early stages following intraperitoneal or subcutaneous injection. The behavior of plutonium soon after administration is largely influenced by its particulate character rather than by its elemental (chemical) nature. The results obtained following inhalation of a plutonium nitrate aerosol showed no obvious translocation of plutonium to the liver, despite the water solubility of the nitrate form. The initial uniform distribution of inhaled plutonium changed to a nonuniform distribution after 3 months. The effectiveness of DTPA treatment was studied in experiments involving injection of premixed Ca DTPA and plutonium, or successive injections of Ca DTPA to plutonium-burdened mice. The effectiveness of treatment was influenced by the physico-chemical state of the plutonium as well as by biological factors. It was demonstrated by diffusion chamber techniques that the chelating action of Ca DTPA on plutonium colloids depends largely on their degree of polymerization. (Auth)

<102>

Moskalev, Yu.I., Ministry of Public Health, Institute of Biophysics, Zhiropisnaya 46, Moscow, USSR. 1972, June

Plutonium 239: Problems of Its Biological Effect. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 723-729

This paper will review the results of recent studies by Soviet scientists on problems of the biological action of Pu 239, one of the most dangerous radionuclides. The biological action of various compounds of this radionuclide is considered as a function of

the dose, routes and character of the intake into the body, including inhalation, intravenous and subcutaneous administration. Main attention is given to the analysis of late effects (tumor and non-tumor effects) developing in the body as a result of injury by Pu 239. Dose-effect curves for bone and lung tumors, estimation of minimum carcinogenic dose levels, and determination of doses not affecting the natural life-span. Data will be presented characterizing the comparative toxicity of Pu 239, Am 241, Np 237, and Cm 242. (Auth)

<103>

Durbin, P.W., M.W. Horowitz, and E.R. Closs, Lawrence Berkley Laboratory, Division of Biology and Medicine, Berkeley, CA; Lawrence Berkley Laboratory, Division of Mathematics and Computing, Berkeley, CA. 1972, June

Plutonium Deposition Kinetics in the Rat. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 731-741

A conventional kinetic model was constructed to describe the transport and deposition of intravenously injected $\text{Pu}^{(44)}$ citrate in the rat. A digital computer program (ZMIC) was used to generate numerical solutions to the differential equations representing the compartment model. Tissue data and information on the rate of Pu-protein binding in plasma were drawn from published sources. The model consisted of two blood compartments, unbound Pu ($\text{Pu}_{\text{sub f}}$) and protein-bound Pu ($\text{Pu}_{\text{sub b}}$), assumed to be bound for the most part to the Fe-carrying protein, transferrin (TF); two extracellular fluid (ECF) compartments, $\text{Pu}_{\text{sub f}}$ and $\text{Pu}_{\text{sub b}}$; and four effectively non-returning sinks: liver, skeleton, soft tissues and excreta. The implications of the solution of the model led to the following working hypotheses: (a) $\text{Pu}_{\text{sub f}}$ reacts with protein, presumably TF, in ECF as well as in plasma. The Pu-TF complex is the most likely form in which diffusible Pu is mobilized from parenteral injection sites, and the most likely form in which orally administered Pu is carried once it reaches the plasma. (b) Little, if any, $\text{Pu}_{\text{sub b}}$, is excreted or deposited in the liver. Formation of the Pu-TF complex is probably not a necessary preliminary to liver deposition of diffusible Pu. (c) Both $\text{Pu}_{\text{sub f}}$ and $\text{Pu}_{\text{sub b}}$ are sources of Pu deposited in bone. The surface of the reticulocyte (where Pu is released from the Fe-TF complex) is considered the most likely site of dissociation of the Pu-TF complex. Pu released at that site could either recombine with TF and recirculate as Pu-TF, effectively prolonging Pu circulation, or recirculate temporarily as $\text{Pu}_{\text{sub f}}$ providing the necessary feedback of $\text{Pu}_{\text{sub f}}$, or diffuse to the most readily accessible bone surface. (Auth)

Summaries are given for experimental studies by different researchers of kinetic studies of Pu 239 in rats. Tabular data are given for recalculated distribution of intravenously injected Pu 239 $\text{^{44}}$ citrate in tissues of young rats.

<104>

<104>
 Rosenthal, M.W., E. Moretti, J.J. Russell, and
 A. Lindenbaum, Argonne National Laboratory,
 Division of Biological and Medical Research,
 Argonne, IL. 1972, June

Marrow Deposition and Distribution of Monomeric and Polymeric Plutonium 239 in the Mouse, Estimated by Use of Iron 59. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 743-748

Iron 59 has been used in mice as a tracer for bone marrow to extrapolate from the plutonium measured in a standard sample of tibial marrow to the plutonium in total marrow 5-6 days after intravenous injection of different physical-chemical forms of plutonium. A factor of 44 was obtained from conversion of the radioactivity measured in the tibial sample to total body marrow. Using this factor, and calculating the total skeletal plutonium burden as the amount measured in two femurs times 13, one can calculate the proportion of skeletal plutonium located in the marrow. For monomeric, mid-range polymeric and highly polymeric plutonium, values of 2, 7-15 and 62%, respectively, were obtained. Similarly, for monomeric americium and a highly polymeric americium, 4 and 20% of the total skeletal burden was calculated to be in the marrow. In two experiments, in which monomeric plutonium had been found to be about twice as carcinogenic in bone as the mid-range polymeric plutonium, the amount of plutonium in all the bones and spinal segments was measured at 15 days. Using these data and the Fe 59 measurements, the marrow content of these two forms of plutonium throughout the skeleton have been calculated and tabulated. The total marrow burdens, calculated from the tibial samples, were 0.796% of the injected monomeric vs 3.66% of the mid-range polymeric plutonium. These amounts were 2.35 vs 16.3% of the amount of plutonium measured in the total skeleton, respectively. (Auth)

Tabular data are given for: a.) Fe 59 distribution in mice 5 hr after intravenous injection, b.) distribution of Fe 59 in mouse skeleton 5 hr after intravenous injection, c.) distribution of Fe 59 in mouse skeleton 15 days after intravenous injection, and d.) percent of Pu 239 content of individual bones that is located in the marrow.

<105>
 Gcez, L.S., J.L. Lebel, and R.L. Watters, Colorado State University, Department of Radiobiology and Radiation Biology, Fort Collins, CO. 1972, June

The Effect of Lymph Node Removal on Plutonium Dioxide Translocation. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 833-836

The translocation of high-fired PuO₂ via the lymphatic system from a simulated puncture wound in the left dorsal metacarpus of beagle dogs was studied. Comparisons were made between dogs with and without excision of the left superficial cervical lymph node. Accumulation of plutonium in the lymph node was determined by counting the low-energy x-ray complex with a thin NaI(Tl) detector. The dogs were killed less than 2 weeks after implant and the activity determined for selected tissues. Higher levels of plutonium were found in the liver, spleen and hepatic lymph nodes of lymphadenectomized dogs than in the intact dogs. Implications of these data with regard to therapeutic lymph node removal for workers contaminated with plutonium are discussed. (Auth)

<106>
Woshkin, V.E., Woods Hole Oceanographic Institution, Woods Hole, MA 02543, June

Ecological Aspects of Plutonium Dissemination in Aquatic Environments. CONF-10919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 537-549

The available data concerning the dissemination of plutonium and other transuranics in the aquatic environment are drawn together for appraisal. The most studied isotope has been Pu 239 derived from worldwide fallout. Essentially all the published work has been concerned with levels in the marine environment where plutonium is found widespread among planktonic, pelagic and benthic organisms. The concentrations are higher in organisms feeding on sediment or on surfaces than in those drawing largely on the water itself. Among the species where data are available are a variety of convenient indicator organisms for plutonium. There is some evidence that plutonium concentrations are increased in organisms of higher trophic levels. Bone and liver are major repositories for plutonium in marine vertebrates while muscle tissue of both marine vertebrates and invertebrates contain relatively lower concentrations. Plutonium is geochemically separated from both Sr 90 and Cs 137 in the water column and the sedimentation of Pu 239 may be more involved with biological processes than has been found for fallout rare earth isotopes. In marine sediments, as in soils, plutonium is more mobile than was originally expected. What little is known of the behavior of plutonium in the marine environment should be used conservatively to assess the behavior and distribution of new plutonium additions derived from sources other than fallout, and even more conservatively in predicting the impact of other transuranics in the aquatic environment. Considerably more understanding of the aquatic radioecology of several of the elements is a major priority especially since it now appears that when the relative biological effectiveness of alpha vs gamma or beta radiations is considered, fallout Pu 239 contributes more than fallout Sr 90 or Cs 137 to the artificial radiation exposure of many marine species. (Auth)

Data collected from a review of literature are presented in tabular form for many locations from 1957-1961. Included are: (a) americium 241 and plutonium 239 concentrations in Porphyra in the vicinity of Windscale, (b) plutonium 239 in seawater (fci/l), (c) plutonium 239 in aquatic sediments (pCi/g, dry, and μ Ci/km³), (d) plutonium 239 concentrations in marine invertebrates and algae (Pu 238, Cs 137 and Sr 90 concentrations shown when given in reference), (e) plutonium 239 concentration factors in marine invertebrates and algae, (f) plutonium 239 in marine vertebrates, fci/kg wet or fresh weight, and (g) plutonium 239 concentration factors in marine vertebrates.

<107>
Ronne, E.M., and J.J. Davis, University of California, Los Angeles, CA; Nevada Operations Office, Las Vegas, NV. 1972, June

Ecological Aspects of Plutonium Dissemination in Terrestrial Environments. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 551-557

The technology of plutonium production and processing is already established, but the realization of its peaceful applications depends largely upon the development of methods for preventing its distribution in the environment. Because of safeguards and effective control measures, no accidental plutonium contamination of the public domain has imposed serious risks to a population group. Trace amounts of plutonium from above-ground nuclear detonations are contained in world-wide fallout; however, the levels of plutonium in foodstuffs and other components of the environment are insignificant compared to the amounts known to be hazardous. There has thus been very little interest in the study of ecological aspects of plutonium contamination. The result is a paucity of information on the behavior of plutonium in ecosystems and its radiological effects on natural fauna and flora. The Nevada Applied Ecology Group is embarked upon a program at the Nevada Test Site to investigate the long range effects of plutonium disseminated into the desert ecosystems. Emphasis has been placed upon standardization of analytical methods, delineation of contaminated areas, problems of resuspension and redistribution, food chain transport and ecological effects. (Auth)

<108>

<108>
 Wallace, A., University of California, Laboratory of Nuclear Medicine and Radiation Biology, Department of Agricultural Sciences, Los Angeles, CA. 1972, June

Increased Uptake of Americium 241 by Plants Caused by the Chelating Agent DTPA. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 559-562; UCLA-12-858; Part of Annual Progress Report for the Period Ending June 30, 1972, (p. 33), 103 p.

The chelating agent diethylenetriaminepentaacetic acid (DTPA), which has the ability to increase uptake by plants of several metals and is widely used as a practical means of correcting iron deficiency in plants, has been shown to greatly increase the uptake from soils of Am 241 by plants. Application of high levels of zinc or manganese salts decreased Am 241 content of plants only slightly, indicating little, if any, competing effect. Most accumulated Am 241 was transported to leaves of all species studied. The ability of plants to accumulate Am 241 was not related to root temperature. During a subsequent growth period after applications of Am 241 to bush beans, some of the Am 241 was transported from the old leaves to the new leaves and also to new roots. The chelating agent DTPA had no effect on the retranslocation, however. Extraction studies with soil indicated that DTPA, but not EDDHA, could quantitatively extract Am 241 from soil. (Auth)

Tables are given for: (a) Am 241 uptake by soybeans growing in hacienda loam containing 8 UCI 241 Am/500 g soil, as affected by various micronutrients, (b) influences of 2 chelating agents (DTPA and Ra 157) on Am 241 content of stems and leaves of valencia oranges grafted to rough lemon or trifoliate orange, (c) Am 241 present in new growth of citrus plants after 1 year growth in soil containing Am 241 and 30 days after application of 135 pms DTPA to soil, (d) effect of root temperature on Am 241 uptake and distribution in bush beans, and (e) distribution and redistribution of Am 241 in bush bean plants.

<109>
 Miller, C.L., J.G. Payne, Jr., E.W. Bretthauer, and A.A. Moghissi, Western Environmental Research Laboratory, Las Vegas, NV. 1972, June

Transfer of Plutonium from Milk into Cheese. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 563-565

Plutonium 238 in citrate solution was added to cows' milk and was injected intravenously into goats. Aliquots of milk were refrigerated, or pasteurized and refrigerated, and held for preselected time periods ranging from 0.1 day to 8.0 days. Rennin-coagulated cheese was then prepared from the aliquots and plutonium analyses were conducted on the cheese and whey samples. The results showed plutonium transfers of 97.5 plus or minus 2.2% to the cheeses in all cases: in vivo and in vitro labeled milk, pasteurized and nonpasteurized, stored and non-stored milk. This quantitative transfer is probably due to coprecipitation of the plutonium with milk solids. (Auth)

A table is given for plutonium transfer from milk into cheese. Results are presented as cheese production in grams of cheese/liter of milk, and plutonium in the cheese as % of total received.

<110>
 Taylor, D.M., Institute of Cancer Research, Sutton, Surrey, England. 1972, June

Interactions Between Transuranium Elements and the Components of Cells and Tissues. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 575-581

Comparative studies of the interactions of plutonium, americium and curium with serum proteins from various species, with proteins isolated from the organic matrix of bone, and with some other proteins have all shown that plutonium is bound very much more firmly by protein than either americium or curium. Investigations of the sub-cellular distribution patterns of these elements in liver and testes have shown that all three elements become associated with lysosomal structures and that different mechanisms of lysosomal uptake are involved for polymeric and monomeric plutonium, americium and curium. The implications of these findings are discussed in relation to the types of biological damage which has been observed in experimental animals. (Auth)

A table is given for binding of transuranic elements Pu(+4), Am(+3), and Cm(+3) to biological ligands in vitro at pH 7.4. Binding is expressed as percentage of applied radioactive metal eluted from Sephadex G-50 gel column with the protein fraction.

<111>
Jee, W.S.S., University of Utah, College of Medicine, Division of Radiobiology, Department of Anatomy, Salt Lake City, UT. 1972, June

Distribution and Toxicity of Plutonium 239 in Bone. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 583-595

The deposition of Pu 239, the classical transuranium element upon bone surfaces is governed by the route of administration, physicochemical state of the plutonium, and the age of the animal. The effectiveness of the various routes of administration in delivering plutonium to bone, in decreasing order, is: intravenous about equals intraperitoneal > subcutaneous > intramuscular > intratracheal > inhalation > oral > direct application upon skin. Reticuloendothelial cells in the marrow compete with bone for polymeric plutonium and thus decreases the plutonium available for bone surfaces. The uptake in young and adult bones differed by a factor of 2. The fate of the plutonium surface deposits is modified by bone growth, modeling and remodeling in growing animals and remodeling in adults. These age-related processes remove the plutonium from bone surfaces and/or bury the surface deposits with new bone. The endpoints of low dose plutonium skeletal toxicity are bone necrosis and the induction of osteogenic sarcoma. The factors involved in bone tumor production are believed to be the delivery of sufficient radiation to bone surfaces (the sensitive site), the volume of cells at risk and, most important, the proliferative activity of the osteogenic tissue. (Auth)

Tabular data is given for maximum skeletal uptake of Pu 239, by various species of animals, in various chemical forms and by various routes of administration as percent of the administered dose. Tabular data is given for skeletal Pu 239 content as percent of administered dose in animals at various ages, distribution of Pu deposits on or under the surface of trabeculae of beagles injected with 0.3 uCi, (P3 dogs) and 0.0157 uCi (P1 dogs) of Pu 239/kg, and minimum dose of Pu 239 for development of osteogenic sarcoma.

<112>
Lindenbaum, A., and H.W. Rosenthal, Argonne National Laboratory, Division of Biological and Medical Research, Argonne, IL. 1972, June

Deposition Patterns and Toxicity of Plutonium and Americium in Liver. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 597-605

The deposition and retention of plutonium and americium in the mammalian liver after administration of about 5 uCi/kg or less are briefly reviewed. Inferences are drawn regarding physiological mechanisms and radiotoxic consequences. The initial deposition patterns, but not the retention patterns, of plutonium and americium in the liver are generally similar in a variety of species. The major biological process responsible for the variable and non-uniform

hepatic deposition appears to be phagocytosis. The amount of radionuclide phagocytized is dependent upon the extent of hydrolysis and polymerization of the administered actinide. The different biological half-times of plutonium and americium in the liver of different species suggest that there may be species differences in phagocytic function, protein binding, etc. The main route of elimination of plutonium (and probably americium) is via the bile and feces. There is gradual aggregation of radionuclide by Kupffer cells and, at least in the mouse, also by parenchymal cells. This aggregation is believed to result from a repeated sequence of phagocytosis, irradiation death of the phagocyte, and rephagocytosis. In the mouse and dog, 20 nCi of Pu 239 or Am 241 per gram of liver appears to be the threshold concentration that results in sufficient radiation-induced tissue damage to produce accelerated radionuclide loss into the blood, and translocation to the skeleton. In man it is postulated that progressive aggregation of low levels of actinide in the liver could also lead to radiation damage and subsequent translocation to critical osteogenic bone surfaces. (Auth)

Tabular data are given for long-term translocation of plutonium and americium from liver to skeleton in mice, beagles, and rabbits.

<113>
Sanders, C.L., Battelle Memorial Institute, Pacific Northwest Laboratories, Richland, WA. 1972, June

Deposition Patterns and the Toxicity of Transuranium Elements in Lung. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 607-615

Cellular sites of plutonium in the lung influence the toxicity of inhaled plutonium compounds. The loss of plutonium from macrophages, the death of macrophages, the engulfment of plutonium by the alveolar epithelium and the sequestration of plutonium in foci of fibrosis account for the relatively long retention times for PuO₂ in the lung. The concentration of plutonium in particles--disproportionately in a few larger particles--in specific cellular elements of the lung, and in subpleural, fibrotic areas of the lung, provides for high radiation dose rates in limited tissue volumes. Such "hot spots" of alpha irradiation may cause epithelial metaplasia and eventually, alveolo-bronchiolar carcinoma. Such factors may be of great importance when determining the acceptable limits of exposure to man to airborne plutonium and other transuranic elements. (Auth)

Tabular data are given for: long-term clearance rates for alveolar deposits of inhaled plutonium particles, and distribution of Pu 239 activity among particles of various sizes within alveolar macrophages obtained by saline washings after inhalation of Pu 239 by rats.

<114>

Lindenbaum, A., and J.J. Russell, Argonne National Laboratory, Division of Biological and Medical Research, Argonne, IL. 1972, June

Autoradiographic Determination of Alpha Activity by Variable Exposure to Plutonium 239 and Americium 241 in Mouse Liver. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in *Health Physics*, 22(6), 617-620

A quantitative autoradiographic technique for assay of plutonium or americium deposited in animal tissues was tested for linearity in the relationship between photographic exposure time and number of alpha tracks formed. Liver sections were prepared from mice injected intravenously with several polymeric preparations of Pu 239 or Am 241 at dose levels ranging from 6.6 to 93 μ Ci/kg. Exposure times varied between 2 and 42 days, depending on anticipated track concentrations. The normalized data showed a linear increase in the number of countable tracks with increased exposure times. Also, there was generally good agreement between liver burdens determined autoradiographically or radiochemically. These results indicate the reliability of comparisons based on autoradiographic measurement of discretely deposited plutonium or americium in liver (and other tissues) despite wide differences in deposition levels and exposure times. (Auth)

<115>

Rosen, J.C., M. Cohen, and M.E. Brenn, New York University Medical Center, Institute of Environmental Medicine, New York, NY. 1972, June

Short Term Metabolism of Americium 241 in the Adult Baboon. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in *Health Physics*, 22(6), 621-626

The distribution and retention of Am 241 was measured in two adult female baboons after single intravenous injections of Am 241 citrate. Retention of Am 241 in the whole body, skeleton and liver was determined by in vivo scintillation measurements of the 60 keV gamma-ray. In addition to "specific sites" in vivo measurements, serial biopsy samples were obtained to determine the rate of clearance of Am 241 from the liver. Clearance of Am 241 from the blood was rapid. Less than 1% of the injected dose remained at 48 hr and less than 0.05% remained one month postinjection. Greater than 99% of the activity was associated with the plasma fraction. From analysis of daily excreta, 10% of the injected dose was excreted by the end of the first week and 19% by the end of the first month. Approximately 70% was urinary

excretion; however, the urine to fecal clearance ratio varied from 0.06 during the first week to greater than 20 at 3 months. Estimates of the effective half-time of americium in the total body from excreta analysis and from in vivo measurements were 274 and 263 days, respectively. Clearance half-times from the liver evaluated by in vivo and biopsy analysis were 150 and 154 days, respectively. In vivo measurements over the head showed no detectable clearance from the skull during the same period. The animals were sacrificed at one and three months postinjection. In order of decreasing total activity the major loci were the skeleton, liver, lungs and kidney, which accounted for about 85% of the retained americium. At the end of one month the highest concentration of activity was found in the liver with concentrations decreasing in the order of bone, lung, aorta, kidney and spleen. Among various bones, the concentration of Am 241 varied within a factor of 2, being highest in vertebrae. The concentration in the ends of long bones was 2-3 times higher than in the shafts. (Auth)

Tabular data are given for: (a) excretion of Am 241 by baboons, (b) tissue distribution of Am 241 in baboons, and (c) skeletal distribution of Am 241 in baboons.

<116>

Hollies, J.G., and A.B. Purakovic, National Research Council of Canada, Division of Biology, Ottawa, Ontario, Canada. 1972, June

The Metabolism of Americium in Lactating Rats. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in *Health Physics*, 22(6), 627-631

The metabolism of Am 241 in lactating and control rats was investigated by measurements of whole-body retention and distribution in bone and liver. At the end of lactation, lactating rats contained more americium than controls. The retention of americium by the liver of lactating rats was also higher. In general, the amount of americium in the skeleton did not differ between experimental groups. The results show that the resorption of bone in lactation does not result in a loss of americium and emphasize the importance of reworking bone surfaces in the incorporation of americium in vivo. (Auth)

Tabular data for distribution of americium in rats injected: (a) intravenously on the day before breeding, (b) intraperitoneally four days before parturition, (c) intravenously on the day of parturition, and (d) intravenously on the fifteenth day of lactation are given.

<117>
 Ovcharenko, E.P., Ministry of Public Health,
 Institute of Biophysics, Zhivopisnaya 46,
 Moscow, USSR. 1972, June

An Experimental Evaluation of the Effects of Transuranic Elements on Reproductive Ability. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 641

The study of the effects of transuranic elements on reproductive ability was performed on rats of the Wistar strain, including parents of both sexes, the first generation offspring from day 4 of antenatal life to sexual maturity, and, in a separate series, the second generation offspring. All the transuranic elements studied were characterized by a high retention in the placenta, an increased transplacental transfer to the offspring during the late periods of pregnancy, and a decrease with age of the radionuclide content in the carcasses of sucklings. The highest concentrations in percent of the dose administered to the mother) of Pu 239 (citrate), Am 241 (citrate), and of Np 237 (nitrate) were: in the placenta, 7.55 plus or minus 0.82, 1.22 plus or minus 0.32 and 0.31 plus or minus 0.02; in the fetuses, 1.16 plus or minus 0.22, 0.45 plus or minus 0.08 and 0.17 plus or minus 0.04; and, in the total milk intake of 1 litter of the month-old rats, 4.24 plus or minus 1.10, 1.04 plus or minus 0.30 and 0.32 plus or minus 0.06, respectively. The transfer of polymeric Pu to the offspring was 15 to 20 times lower than that of Pu 239 citrate. Following the administration of Pu 239 and Am 241 citrates, a study of the estrus cycle of female rats, mating ability, death of embryos, fertility of male and female, survival, weight, physical development, sex function, radiosensitivity of the offspring and a histological investigation of median sections of gonads and of serial sections of fetuses, revealed that the character and depth of radio-induced changes depended upon the amount of activity injected and the time elapsed since injection. Eight to twelve months following administration of Am 241 in amounts of from 0.004 to 0.002 uCi/g, of the 15 rats examined five had follicular or lutein cysts, and seven had thecosas and adenomas. Nine months after the administration of 0.02 uCi/g a pronounced atrophy of the testes was observed. The administration of Pu 239 and Am 241 to rats of both sexes resulted in an increased incidence of intrauterine lethality

among offspring. The experiments with Am 241 indicated that in females the increase of prenatal deaths of offspring was related to the disorders of the developing placenta, as well as to an indirect influence of injury of the mother's system. Following exposure of males, the increase of intrauterine deaths of embryos was due to an effect on the fertility of unpoisoned females that had been mated to the experimental males. In the course of investigating the postnatal development of the offspring of experimental animals, a number of peculiarities were observed: decrease in viability, delayed physical development, variations in weight, disturbance of blood-formation, change in radiosensitivity, and depression of sex function. On the basis of the integral index of reproductive ability (number of viable rats at the age of 1 month as calculated per pregnant female) Am 241 proved to be more damaging than Pu 239. (Auth)

<118>
 Ledik, T.I., V.K. Lemberg, L.A. Buldakov, E.R. Lyubchanskii, and V.M. Pesternikov, Ministry of Public Health, Institute of Biophysics, Zhivopisnaya 46, Moscow, USSR. 1972, June

Biological Effectiveness of Neptunium 237. CONF-710919; Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in Health Physics, 22(6), 643-645

The intravenous injection of neptunium nitrate and oxalate at doses ranging from 2.0 to 0.017 uCi/kg was characterized by the occurrence of osteosarcomas (incidence ranging from 58 to 9% at cumulative skeletal radiation doses ranging from 520 to 5 rads, respectively). The major manifestations of injury after intratracheal administration of the two neptunium compounds at the same doses were the development of pneumosclerosis and malignant lung tumors (incidence ranging from 37 to 11% at cumulative lung doses of 3220 to 5 rads, respectively); and, to a lesser extent, of osteosarcomas (incidence ranging from 25 to 5% at skeletal doses of 408 to 4 rads, respectively). Comparing the potential hazards from Np 237, Pu 239, and Am 241, it is seen that for inductions of osteosarcomas and lung cancers, Np 237 exhibits the highest efficiency, Pu 239 occupies the second place, and Am 241 is the least effective of the three radioelements. (Auth) (BBM)

<119>

<119>
 Rotrappa, P., C.J. Wilkinson, and H.A. Boyd,
 Lovelace Foundation for Medical Education and
 Research, Albuquerque, NM. 1972, June

Technology for the Production of Monodisperse
 Aerosols of Oxides of Transuranic Elements for
 Inhalation Experiments. CONY-710919; Part of
 Thompson, R.C. and Bair, W.J. (Eds.),
 Proceedings of the 11th Hanford Symposium on the
 Biological Implications of the Transuranium
 Elements held in Richland, Washington, September
 27-29, 1971. Published in Health Physics,
 22(6), 837-853

A method of preparing and aerosolizing
 monodisperse particles of oxides of
 transuranic elements is discussed. A
 four-step process, involving source aerosol
 preparation, centrifugal separation,
 resuspension and aerosolization has been
 applied to plutonium dioxide. The procedure
 consists of generating an aerosol by
 nebulizing a solution of a transuranic
 element such as plutonium chloride, degrading
 the particles that are formed with a high
 temperature heating column to form a
 polydisperse aerosol of the oxide, separating
 and collecting this polydisperse aerosol in
 monodisperse aerodynamic size groups on a
 stainless steel collection foil in the
 Lovelace Aerosol Particle Separator (LAPS), and
 resuspending the monodisperse particles
 in water for future aerosolization by
 nebulization. The LAPS is a centrifugal
 device that provides a continuous separation
 of aerosol particles down to an aerodynamic
 diameter of 0.5 μ m. Air activity and
 particle size data obtained during an actual
 exposure of beagle dogs to monodisperse
 aerosols of PuO₂ obtained by this method are
 presented. The method was used to provide
 monodisperse aerosols of plutonium oxide,
 over a wide size range, with controlled and
 reproducible physico-chemical
 characteristics. Adaptation of the procedure
 for other transuranic oxides is discussed.
 (Auth)

<120>
 Not given, Health and Safety Laboratory, New
 York, NY. 1972, February

Surface Air Sampling Program, 80th Meridian
 Network, January-December 1969. Radiation Data
 and Reports, 13(2), 92-98

The Health and Safety Laboratory began its
 Surface Air Sampling Program in January 1963,
 as a continuation of the 80th Meridian
 Program conducted by the U.S. Naval Research
 Laboratory. The objective of this program is
 to study the spatial and temporal
 distribution of nuclear weapons detritus and
 lead in the surface air. The basic network
 consists of a line of sites approximately
 along the 80th Meridian extending from about
 76 degrees N to 90 degrees S latitudes. The
 longer-lived fission products and Pu 239
 concentrations should decrease the general

distribution in surface air of all previous
 nuclear debris which was transferred from the
 lower stratosphere to the troposphere during
 the collection period. While Pu 238 is
 present in low concentrations in nuclear
 weapon debris, about 17,000 curies of Pu 238
 were disseminated at high altitude in the
 stratosphere in April 21, 1964 during the
 reentry burnup of a SNAP-9A power source.
 The results of analyses on standard samples
 are shown in a table. Although most of the
 results are satisfactory, the August and
 September 1969 deviations for both plutonium
 isotopes are extremely high. The very low
 blank values during these months indicate no
 plutonium contamination. The Pu 238 to Pu
 239 and Pu 239 to Sr 90 ratios for actual
 samples collected during these months are all
 reasonable and therefore there is no reason
 to suspect that they are in error, however,
 no explanation can be offered to account for
 the poor quality control results. (PMH)

<121>
 Wagner, H.A. (Chairman), Edison Electric
 Institute, Committee on Nuclear Fuels, New
 York, NY. 1965, June

Plutonium Survey, 1964. EBI-65-41; 21 p.

A survey is given of the status, current rate
 of development, and future outlook of
 plutonium-fuels technology and its
 application to both thermal and fast
 reactors. The need for the development of
 plutonium-fuels technology applicable to the
 present and near-future commercial reactors
 has become urgent. This is due, in part, to
 the projected increased plutonium production
 resulting from a more optimistic near-term
 nuclear power growth forecast, but more
 importantly to the implications of the recent
 legislation covering private ownership of
 nuclear fuel. In addition, there is
 increasing evidence that plutonium will be a
 suitable fuel in thermal reactors. There is
 general agreement that the economic
 feasibility of fast reactors will be
 demonstrated in the 1970's, but the need for
 large quantities of plutonium as startup
 inventories is not expected to materialize
 much before the 1980's. Analyses show that
 the calculated value of plutonium is at least
 equal to that of U 235 as a thermal reactor
 fuel. The market price of plutonium is
 expected to hold close to the present price
 of \$10 per gram of fissile plutonium as
 nitrate during the 1970's. During the late
 1970's and early 1980's, the development of
 fast reactors and optimum plutonium use in
 thermal reactors are expected to increase the
 market price of plutonium, possibly to as
 much as \$15 per gram. (PMH)

<122>
Not given, Western Environmental Research Laboratory, Las Vegas, NV. 1972, February

Air Surveillance Network, July 1971. Radiation Data and Reports, 13(2), 88-92

The Air Surveillance Network, operated by the Western Environmental Research Laboratory (WERL), consists of 104 active and 18 standby sampling stations located in 21 western states. The network is operated in support of nuclear testing conducted by the Atomic Energy Commission (AEC) at the Nevada Test Site (NTS), at the Nuclear Rocket Development Station which lies adjacent to the NTS, and at any other western testing sites designated by the AEC. The monthly average gross beta radiation in air particulates during July 1971 is presented in a table. The minimum reporting concentration for gross beta radioactivity is 0.1 pCi/m³. From gamma spectrometry results, zirconium-nichium95, ruthenium 106, and cerium 144 from worldwide fallout were identified in varying combinations on filters collected in several states within the network. The highest concentrations of these radionuclides, respectively, were 7.0 pCi/m³ (Shoshone and Scotty's Junction), 1.8 pCi/m³ (Furnace Creek and Lathrop Wells), and 1.6 pCi/m³ (Shoshone). (PMN)

<123>
Mishima, J., and L.C. Schwendiman, Battelle Memorial Institute, Pacific Northwest Laboratories, Richland, WA. 1972, December

Airborne Release of Plutonium and Its Compounds During Overheating Incidents. BNWL-1651 (Part 1); Part of Simpson, C.L., et al, Annual Report for 1971, (p. 82-87), 188 p.

Studies to evaluate the fractional airborne release of plutonium under various postulated accident conditions are described. Data generated in earlier laboratory scale studies are reviewed. A larger scale facility--the radioactive aerosol release facility--was placed in operation providing the capability for measurement of fractional airborne release of radioactive particles from burning material on a more realistic scale. The amount and aerodynamic equivalent size distribution of particles that may become airborne under conditions found in some shipping accidents were measured in experiments conducted in a special wind tunnel in the radioactive aerosol release test facility. (Auth)

<124>
Mishima, J., and L.C. Schwendiman, Battelle Memorial Institute, Pacific Northwest Laboratories, Richland, WA. 1972, December

Characterization of Radioactive Particles in a Plutonium Processing Plant Exhaust System. BNWL-1651 (Part 1); Part of Simpson, C.L., et al, Annual Report for 1971, (p. 88-90), 188 p.

Filter and cascade impactor samples were taken of the stack gases and various exhaust streams of a plutonium processing plant to characterize by aerodynamic characteristics the amounts and distribution of particles with their associated radioactivity. Only general conclusions can be drawn from the limited data obtained thus far: the overall efficiency of the exhaust system is high; little, if any, of the alpha activity leaving the stack is being recycled back into the ventilation system; and the plutonium present appears to be attached to large, nonactive particles. (Auth)

<125>
Sakagishi, S., Japan Atomic Energy Research Institute, Division of Health Physics and Safety, Tokai-mura, Naka-gun, Ibaraki-ken, Japan. 1968, June

Environmental Survey. JAERI-5017; Part of Activities in the Division of Health Physics and Safety, April 1, 1967-March 31, 1968, (p. 121-139), 177 p.

Several technical developments on the analyses of radionuclides in soil were made and applied to the routine monitoring. Relating to the environmental hazard evaluation, wind speed and atmospheric stability were analyzed statistically. Environmental hazard was evaluated for the design of several facilities and the start of operation in the establishment. The analysis of sea current in the coastal area off Tokai, which was difficult until the preceding year because of insufficient data, was made systematically. (Auth)

Table 2-18 shows the activity of Th 232, U 238, K 40, Mn 54, Zr 95-Nb 95, and Cs 137 in soil.

<126>
Sakagishi, S., Japan Atomic Energy Research Institute, Division of Health Physics and Safety, Tokai-mura, Naka-gan, Ibaraki-ken, Japan. 1968, June

Internal Exposure. JAERI-5017; Part of Activities in the Division of Health Physics and Safety, April 1, 1967-March 31, 1968, (p. 149-153), 177 p. (Japanese)

A report is given of studies that were carried out in 1967. They are as follows: day-to-day variation of dietary intake and urinary excretion of fallout Cs 137 and stable K in man, determination of Pu in blood by anion exchange methods (preliminary report), and measurement of recovery by Sr 85 tracer in the chemical determination of fallout Sr 90 in urine, feces and total diet. (Auth)

<127>

<127>
 Sakagishi, S., Japan Atomic Energy Research Institute, Division of Health Physics and Safety, Tokai-Mura, Naka-gun, Ibaraki-ken, Japan. 1968, June

Radioactive Waste Treatment and Decontamination. JAERI-5017; Part of Activities in the Division of Health Physics and Safety, April 1, 1967-March 31, 1968, (p. 163-165), 177 p. (Japanese)

Reports on research and development carried out on radioactive decontamination in 1967 were presented. Studies were done on radioactive contamination and decontamination of solid surfaces, and on plutonium 239 contamination of pig skin and its decontamination by water, synthetic detergent, EDTA and sodium hypochlorite. (Auth) (FMM)

<128>

Ito, I., and K. Matsumoto, Tokai Works, Power Reactor and Nuclear Fuel Development Corporation, Tokai, Ibaraki, Japan. 1972, April

Experience on Scrap Recovery and Waste Disposal in the Plutonium Fuel Development Laboratory. PNCT-831-72-01; Part of Tokai Works Semi-Annual Progress Report, January-June, 1971, (p. 54-75), 194 p.

Plutonium in the scraps discharged from the fabrication steps of plutonium-uranium mixed oxide fuel was recovered by an anion exchange (NO₃-form) method and liquid waste from the facility was treated by a coagulation process. Plutonium and uranium in the liquid waste from the recovery process and analytical laboratory were precipitated by neutralization, and the precipitates were sorted. The volume of effluent of the precipitation process was about 5.6 m³ per year and the effluent was treated with the Fe(OH)₃-Ca(OH)₂ coagulation process to remove plutonium and uranium. The treated effluent was diluted with washing and laundry waste and then discharged to the sea. The activity level of the discharged effluent was below one tenth of (Rcp)w. (Auth) (FMM)

<129>

Ishiguro, H., T. Higusa, T. Igarashi, K. Nakata, and M. Kinoshita, Tokai Works, Power Reactor and Nuclear Fuel Development Corporation, Tokai, Ibaraki, Japan. 1972, April

Development of Plutonium Dust Monitor Using a Solid State Detector. PNCT-831-72-01; Part of Tokai Works Semi-Annual Progress Report, January-June, 1971, (p. 165-179), 194 p.

A new plutonium dust monitor was developed which is sensitive to an activity of 13 uCi of Pu corresponding to 2.2 Bq/cm³ in air. Some special characteristics of the monitor are a silicone surface barrier solid state detector which is 23 millimeters in diameter, a cellulose asbestos filter which is 25 millimeters in diameter and the air sampling head which is placed in front of the room exhaust. One detector monitors the airborne contamination by counting the activity of air dust gathered from several sampling heads. The monitoring system instantly detects airborne plutonium in the event of a contamination incident and gives the alarm to the operator near the glove box. (FMM)

<130>

Kurabayashi, M., and S. Ouchi, Tokai Works, Power Reactor and Nuclear Fuel Development Corporation, Tokai, Ibaraki, Japan. 1972, April

Uranium Concentration of Fishes and Plants Associated with the Discharges of the Low Level Uranium Liquid Waste. PNCT-831-72-01; Part of Tokai Works Semi-Annual Progress Report, January-June, 1971, (p. 190-194), 194 p.

Low level uranium liquid waste, about 1 x 10⁸(7) to 2 x 10⁸(7) uCi/cm³ in gross beta activity has been discharged from the Tokai Works to the Shinkawa River downstream for about 10 years since 1958. The uranium concentration of some fish and plants in the vicinity of the discharge point was determined. No appreciable contamination was found in fish or crayfish, but the uranium content of some plant samples was a little higher than that of other natural samples. Some laboratory studies done on the uptake of uranium by fish organ showed that accumulation occurred largely in the scales and gills and little in the muscle. In rice and kidney bean plants the accumulation of uranium was greater in roots than in leaves, the concentration factor being 2 to 5 for roots and 0.1 to 0.2 for the leaves. (FMM)

<131>

Kuwana, K., and K. Nakata, Tokai Works, Power Reactor and Nuclear Fuel Development Corporation, Tokai, Ibaraki, Japan. 1972, April

Low Level Alpha Counting System with Six Solid State Detectors. PNCT-831-72-01; Part of Tokai Works Semi-Annual Progress Report, January-June, 1971, (p. 190-194), 194 p.

An instrument was designed for the purpose of measuring samples with very low level alpha emitters. These samples are obtained from the chemical separation of plutonium in urine or feces. It is necessary that the counting system should have many detectors in order to measure simultaneously many samples. A cheap and effective instrument using six solid state detectors was developed. (FMM)

<132>
Galibin, G.P., and Yu.D. Parfenov, Ministry of Health, Institute of Biophysics, Moscow, USSR. 1971

Inhalation Study on Metabolism of Insoluble Uranium Compounds. CONF-700931; Part of Walton, W.H. (Ed.), Proceedings of the 3rd International Symposium on Inhaled Particles held in London, England, September 14-23, 1970, Vol. 2. Unwin Brothers Limited, The Gresham Press, Old Woking, Surrey, England, (p. 201-208), 1090 p.

When rats are subjected to a single inhalation (10 mg/m³ and 30 mg/m³) of insoluble uranium compounds-ammonium diuranate (NH₄UO₂7), uranium tetrafluoride (UF₄) and uranium octoxide (U₃O₈), 14-25% of the total amount inhaled is retained in the body of the animals. The principal organ for deposition of these uranium compounds is the skeleton. The biological half-life of uranium in the skeleton is 310-375 days. The lungs, kidneys and liver are other organs of retention. The deposition level of ammonium diuranate and UF₄ in the liver is 3-5 times as high as that of U₃O₈. The mobilization of uranium from the lungs is described by the sum of 4 exponentials. The effective half-life of uranium in the liver and kidneys is not more than 30 days. A similar pattern of uranium metabolism is obtained for chronic inhalation of these compounds. The estimation of the uranium content in the body is based on the concentration in the urine. (Auth)

<133>
Langseed, W.A., United Kingdom Energy Authority, Atomic Energy Research Establishment, Health and Safety Branch, Harwell, Berkshire, England. 1971

Air Sampling as Part of an Integrated Program of Monitoring of the Worker and His Environment. CONF-700931; Part of Walton, W.H. (Ed.), Proceedings of the 3rd International Symposium on Inhaled Particles held in London, England, September 14-23, 1970, Vol. 2. Unwin Brothers Limited, The Gresham Press, Old Woking, Surrey, England, (p. 983-995), 1090 p.

The general principles of monitoring of the worker and his environment are discussed in relation to work with uncontaminated radioactivity with particular reference to the control of air contamination hazards. The methods of using static samplers and personal air samplers for monitoring the work-place are described, and the interpretation of the results in terms of the basic standards of MPC in air to confirm that operating conditions are satisfactory is discussed. The place of particle-size measurements in air sampling is also reviewed. Proposals for the assessment of working areas at three alternative levels of risk are presented as part of an integrated program of control of radioactive contamination. (Auth)

Table 3 gives the characteristics of some uranium and plutonium aerosols.

<134>
Grammitt, W.E., Atomic Energy of Canada Limited, Chalk River Nuclear Laboratories, Chalk River, Ontario, Canada. 19/2, November

Liquid Effluent Monitoring. PR-B-95; AECL-4360; Part of Biology and Health Physics Division Progress Report, July 1 to September 30, 1972, (p. 36), 65 p.

At Chalk River Nuclear Laboratories, four liquid effluent streams discharge radioactivity to the Ottawa River. Three of these, the Process and Sanitary Sewers plus the 04 Storm Sewer, drain the active inner area. Perch Creek, draining Perch Lake and the disposal areas, also flows into the river. Each of these is sampled regularly and is analyzed for individual nuclides. The total amount of radioactivity discharged to the river per day is calculated from the measured flow rate and graphs are presented for Sr 90, Cs 137, Ce 144, Ru 106, Pu 239, and nominal beta activity. At no time did the average concentrations of radioactivity in any of the effluents exceed 1% of the ICRP 40-hour occupational MPC for water. (Auth) (Complete text)

<135>
Yaniv, S.S., University of Pittsburgh, School of Public Health, Pittsburgh, PA. 1969

Plutonium and Americium Measurement in Humans by X and Gamma-Ray Spectral Analysis. WASH-1241; D.Sc. Thesis, University of Pittsburgh, 183 p.

The interactions of relevant x and gamma rays with human tissues and detector materials are analyzed, and the development of a method that permits the evaluation of plutonium-americium body burdens is described. The method is based on analyses of spectral distributions of radiation emanating from plutonium and americium. The spectra were obtained using a xenon-filled proportional counter. The interactions of plutonium and americium 1 x rays and americium 60 KeV gamma rays, with the xenon-filled proportional counter were investigated. Mathematical relationships, based on theoretical considerations and experimental data, relating the observed spectra to plutonium and americium body content were developed. A computer program to calculate the body content was derived and is presented. Experimental tests, using a human phantom, indicate that the method can be used for measurements of plutonium-americium mixtures located in soft tissues up to a depth of not more than about 4 cm. (Auth) (PRM)

Table 24 shows measurements of Pu and Am in average-man radio phantom, liver region. Table 25 gives measurements for the lung region. Table 26 shows relative body burden contribution of Pu isotopes from reactor fuel irradiation at 6000 RWD/t.

<136>

<136>
 Allred, D.M., Brigham Young University,
 Department of Botany, Provo, Ut. 1973, July

Effects of a Nuclear Detonation on Arthropods at the Nevada Test Site. Brigham Young University Science Bulletin, Biological Series, 18(4), 1-20

Fifty-three arthropod species were studied in an area affected by an underground nuclear detonation (Project Sedan). These were represented by 10 species of ants, 17 beetles, 5 orthopterans, 4 scorpions, 6 solpugids, and 11 spiders. Relative populations were determined prior to the detonation and at three periods after the detonation: 1) one and two months after (August and September 1962), 2) 11 months after (June 1963), and 3) 13 months after (August 1963). One and two months after the detonation, the number of species was reduced from the expected by 48%, by 52% after 11 months, and by 66% after 13 months. Greatest reduction of specimens occurred with spiders, followed by ants and beetles. Fewest changes occurred in the number of scorpions. Populations of each group changed significantly in each period. Reductions from 30% to 100% occurred in all groups in all periods after the detonation except for the scorpions one and two months after, when an increase of 160% was noted. After 11 months, spiders had increased 33%. Within specific sectors, populations did not vary significantly from the expected except in a few instances. In August and September 1962, immediately after the detonation, populations of arthropods in sectors 3, 4, and 5 were much higher than expected. This represented the area from approximately 65 m to 140 m from GZ. The increase may have been due primarily to the physical transport and initial survival of those arthropods living closer to GZ than 65 m. (Auth)

<137>

Anderson, J.B., E.C. Tsivoglou, and S.D. Shearer, U. S. Public Health Service, Dallas, TX; R. A. Taft Sanitary Engineering Center, Cincinnati, OH. 1963

Effects of Uranium Mill Wastes on Biological Fauna of the Animas River (Colorado-New Mexico). Part of Schultz, V. and Clement, A.W., Jr. (Eds.), Proceedings of the 1st National Symposium on Radiocology held at Colorado State University, Fort Collins, Colorado, September 10-15, 1961, (p. 373-383), 766 p.

Bottom fauna in the Animas River from the mill to the New Mexico state line were much less abundant than above the mill and in unpolluted tributary streams. Few or none of the insects important as food for fishes were found in approximately 30 to 40 miles of polluted river below the mill. Fly larvae were the most resistant to pollution and were found at nearly all stations. The reduction of food supply and the direct toxic effects of the mill wastes reduced numbers of fish below the mill. Toxicity tests using rainbow trout with various mill wastes were useful in determining the most harmful wastes. Median tolerance limit values ranged from 0.09% to 0.22% for organic raffinate wastes. Other wastes were less toxic. Based upon the volumes of wastes discharged to the river and their toxicity, it was estimated that about 600 cubic feet per second were needed in 1958 to dilute wastes in the river to protect fish

life. By the fall of 1959 a program of waste treatment and storage of the most toxic waste in ponds had been effected. It was estimated from the toxicity studies that river dilution requirements had been reduced to 144 cubic feet per second. The data regarding the radium 226 content of attached filamentous algae, aquatic insects, and fish from the Animas River and other streams yield a good deal of information regarding the fate of this material in the water environment and its uptake by the aquatic biota. The natural, or background, radium 226 concentrations of these various forms have been shown, together with associated water and silt concentrations, and for the lower forms the radium 226 concentrations have been related to the gross alpha radioactivity. Radium 226 concentration factors for algae, insects, and skeletons and flesh of large suckers have been derived and appear to be consistent among themselves and among the types of biota. Thus, it has been indicated that a concentration factor for attached filamentous algae is in the range of 500 to 1,000, and that the corresponding factor for aquatic insects is no different. Radium 226 concentration factors for sucker skeletons appear to be about 100, while for sucker flesh a concentration factor of only three was observed, demonstrating the bone-seeking qualities of radium 226. (Auth) (PMM)

<138>

Anspaugh, L.R., P.L. Phelps, G.W. Huckabee, and T. Iodachine, Lawrence Livermore Laboratory, Biomedical Division, Livermore, CA. 1973, July 5

Field Spectrometric Measurements of Radionuclide Concentrations and External Gamma Exposure Rates at the Nevada Test Site, A Demonstration Study, UCRL-51412; 19 p.

A study was conducted at the Nevada Test Site to demonstrate the feasibility of using a portable Ge(Li) detector system to conduct a large-scale survey of the gamma-emitting radionuclides present in the environment. The technique of using field spectrometry to quantitate radionuclide concentrations and external gamma exposure rates is briefly summarized. Measurements were made at 14 locations close to the Baneberry and Sedan fallout fields. Fifteen radionuclides were identified and quantitated, including twelve fallout radionuclides: Mn 54, Co 60, Ru 106, Rh 101, Rh 102m, Sr 125, Cs 134, Cs 137, Eu 152, Eu 154, Eu 155, and Lu 174. Most were associated with the Sedan fallout field, but Baneberry contributed significantly to the present levels of Mn 54, Co 60, Ru 106, Sr 125, and Cs 134. Cs 137 was the most abundant radionuclide at 10 of the 14 locations and varied from 438 to 9960 nCi/m². The most abundant radionuclide at any location was Rh 102m, which had a maximum level of 19,160 nCi/m². External gamma exposure rates varied from 15.8 to 406 uR/hr, the latter is equivalent to 3.1 rad/yr and is mostly due to the presence of Co 60 and Rh 102m. The levels of naturally-occurring radionuclides varied by as much as a factor of 2. The field spectrometry method is compared with other methods of conducting a large-scale survey. (Auth)

<139>
 Archer, V.E., J.K. Wagoner, and F.E. Lundin,
 U.S. Department of Health, Education and
 Welfare, Health Services and Mental Health
 Administration, National Institute for
 Occupational Safety and Health, Division of
 Field Studies and Clinical Investigations, Salt
 Lake City, UT; National Institute of Child
 Health and Human Development, Bethesda, MD.
 1973, October

Lung Cancer Among Uranium Miners in the United
 States. *Health Physics*, 25, 351-371

Excess respiratory cancer has been
 demonstrated among all groups of uranium
 miners who have had more than 120 working
 level months of radon daughter exposure.
 Lung cancer incidence rose with increasing
 exposure. Factors which might distort the
 exposure-response relationship were reviewed.
 Exposure to other agents such as cigarettes
 probably contributed to the excess, but these
 factors should not be considered in setting
 permissible levels. Respiratory cancers are
 continuing to appear at a high rate among the
 study group even though radon daughter levels
 have been markedly reduced and most of the
 study group have stopped mining. (Auth)

Table 5 gives copious data on respiratory cancer
 cases among study group white underground
 uranium workers, 1950-1971.

<140>
 Not given, Argonne National Laboratory, Argonne,
 IL. 1972

Radiological and Environmental Research Division
 Annual Report, Ecology, January-December 1972.
 ANL-7960 (Part 3): 163 p.

The ecology report is organized into three
 sections, namely, Great Lakes Radiocology,
 Great Lakes Thermal Studies and Terrestrial
 Ecology. The radiocology program is
 concerned with the biogeochemical behavior
 and pathways to man of radionuclides and
 toxic trace elements in the Great Lakes. Two
 papers dealing with Pu-239 in water and
 biological samples are abstracted separately
 and the other papers cover studies on the
 Opossum shrimp, Cs 137 concentrations of
 alewives and sculpins, measurement of
 sedimentation rates using natural and fallout
 radionuclides, and sediments in Lakes
 Michigan and Superior. The Thermal Studies
 Group investigates the biological effects of
 thermal discharges at the Point Beach Nuclear
 Power Plant near Two Creeks, Wisconsin. Work
 is focused on the behavior response of Lake
 Michigan fish to heated effluent and studies
 of fish distribution in thermal plumes. The
 terrestrial ecology studies are concerned
 with tritium behavior in air-plant-soil
 systems, sulfur dioxide resistance in plants,
 a model of strontium and manganese dynamics
 in a tropical rain forest and radiation
 effects on carbohydrate synthesis and
 utilization in trees. (FMM)

<141>
 Astley, C., and C.L. Sanders, Battelle Memorial
 Institute, Pacific Northwest Laboratories,
 Biology Department, Richland, WA. 1973, April

Biliary Excretion of Injected Plutonium 238.
 BNWL-1750 (Part 1); Part of Thompson, R.C.
 (Ed.), Annual Report for 1972, (p. 35-36), 103 p.

Biliary excretion is an important mechanism
 for clearance of liver Pu. The experimental
 manipulations used to study biliary excretion
 may influence the tissue distribution and
 excretion of Pu by other routes. Groups of
 five rats were subjected to several
 manipulations required for bile duct
 cannulation and bile collection. The results
 show that only 2.4% of injected Pu 238 was
 found in the bile collected continuously for
 5 days after Pu injection. Bile flow rates
 were twice as high when bile was collected
 for only 1 hr/day and diverted back into the
 G.I. tract the remaining 23 hr/day, as
 compared to bile flow rates when the bile was
 collected continuously during a 5 day period
 after cannulation. Cannulation of the bile
 duct prior to injection of Pu 238 greatly
 reduced the amount of Pu 238 in liver, while
 increasing the amount of Pu 238 present in
 bone. About 0.3% of Pu 238 given to rats by
 gavage along with bile and NaOH to neutralize
 stomach HCl, was retained in the body at 10
 days after administration. Less than half
 the Pu 238 excreted in feces was accounted
 for in the bile, indicating loss of Pu 238 in
 feces via diffusion or secretion from gut
 mucosa. (FMM)

Table 1 shows tissue distribution and excretion
 of intraperitoneally injected Pu 238.

<142>
 Grummitt, W.E., Atomic Energy of Canada Limited,
 Chalk River Nuclear Laboratories, Biology and
 Health Physics Division, Chalk River, Ontario,
 Canada. 1971, December

Liquid Effluent Monitoring. AECL-4075; PR-B-91;
 Part of Progress Report, July 1 to September 30,
 1971, (p. 32), 56 p.

The total amount of Pu 239 discharged to the
 Ottawa River in mg/d is given in Figure 2.
 At no time did the average concentrations of
 radioactivity in the effluents exceed 1% of
 the ICRP 40 hr occupational MPC for water.
 (FMM)

<143>

Not given, Australian Atomic Energy Commission, Research Establishment, Lucas Heights, Australia. 1973, April

Environmental and Radiological Safety Aspects of the Mining and Processing of Uranium. AEC/E-272; COWP-711227; Proceedings of the AEC Symposium held in Lucas Heights, Australia, December 9-10, 1971, 97 p.

The prime purpose of the symposium was an educational one, that is to draw attention to the problems associated with the protection of man and the environment in the vicinity of uranium mining projects and to collect relevant information for future reference. Twelve papers were presented two of which are abstracted separately for the data base. The main topics covered in the symposium were: sources of pollution in uranium mining and processing activities and methods for their control, environmental studies for uranium provinces, practical dosimetry in uranium mining, biological effects of radiations, radiological safety and prospects for control of radiological hazards in uranium mining. One paper consisted of a bibliography on radiological health and safety aspects of uranium mining and ore treatment. (PMM)

<144>

Bair, W.J., D.H. Willard, J.P. Berring, and L.A. George, General Electric Company, Hanford Atomic Products Operation, Biology Laboratory, Richland, WA. 1962; 1963, January 15

Retention, Translocation and Excretion of Inhaled Plutonium 239 Dioxide. HW-76000; Part of Kornberg, H.A. and Sweeney, E.G. (Eds.), Hanford Biology Research Annual Report for 1962, (p. 126-135); Health Physics, 3, 639-649

Beagle dogs were given single exposures to one of seven Pu 239 PuO₂ aerosols that differed in particle size from 0.2 to 7.6 μ mass median diameter (MMD). Translocation of plutonium to other tissues and excretion in both urine and feces up to a month after exposure were greatest for dogs exposed to aerosols with the smallest median diameter. Dogs exposed to an aerosol with a MMD of 4.3 μ were studied for about 10 months. The half-time for retention of Pu 239 in lungs was about 300 days; however, during this period there was continuous accumulation of Pu 239 in bronchial lymph nodes, which resulted in about a 1500-1800 day half-time for total body retention of plutonium. Inhaled and intravenously injected plutonium nitrate (0.2 N HNO₃) were compared in still other dogs. After inhalation, 70% of the body burden was in the lungs, 10% in the liver and 15% in bone. After intravenous injection, more than 80% of the body burden was in liver and about 6% each in the spleen and bone. The rate of excretion in urine was about five times greater after inhalation than after intravenous injection. Corresponding differences were observed in the levels of plutonium in blood. The results of these studies emphasize the importance of the chemical form and the particle size of inhaled plutonium aerosols on retention, translocation and excretion, and point out the problems to be encountered in estimating the body burden from excretion analysis. (Ruth)

<145>

Ballou, J.E., and W.G. Morrow, Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1973, April

Long-Term Effects of DTPA Treatment of Plutonium Deposition in Rats. BNWL-1750 (Part 1); Part of Thompson, R.C. (Ed.), Annual Report for 1972, (p. 58-59), 103 p.

Six weekly treatments of inhaled DTPA were given to rats starting 20 days after Pu inhalation. The animals were sacrificed periodically over their lifetime for pathologic examination. Aerosols of Pu 239 (NO₃)₄ were generated from a 0.27 N HNO₃ solution. Groups with Pu or DTPA only, and sham treatment groups were included. DTPA treatments decreased the Pu content of soft tissues and bone compared to the amounts found in sham treated controls. After the series of 6 DTPA treatments the lung burden tended to be reduced to about 70% of that in sham treated rats. The total rat burden was reduced by half. No gross pathologic response was observed in the DTPA treated rats out to 200 days; histopathology results are not yet available. (PMM)

<146>

Ballou, J.E., and W.G. Morrow, Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1973, April

Chelatability of Plutonium in Blood. BNWL-1750 (Part 1); Part of Thompson, R.C. (Ed.), Annual Report for 1972, (p. 62-63), 103 p.

Blood taken from a dog at various times after intravenous or intratracheal injection with Pu nitrate or Pu citrate, was heparinized and centrifuged and the plasma was ultrafiltered using Visking cellulose tubing. UTPA (7 \times 10⁻³ M) was added to these samples of blood, and the percent of ultrafilterable Pu in the plasma was taken as a measure of the amount of Pu available for chelation. Following intravenous injection of Pu citrate, Pu in blood was initially 30 to 30% chelatable; after 3 hr approximately 60% of the blood was chelatable. However, during this interval the total blood Pu level decreased about 40%, so the net amount of Pu available for chelation remained fairly constant up to 3 hr after injection. The results after intratracheal injection of Pu nitrate and Pu citrate, still very tentative, indicate that blood Pu is from 50 to 60% chelatable up to 4 hr after injection. The amount in blood increased 3 to 10 fold for the nitrate and citrate salts, respectively, during the first 4 hr following intratracheal injection. In separated plasma or serum, Pu rapidly becomes less available, suggesting the involvement of formed elements of blood. (Ruth)

<147>

Baumgartner, W.V., H.V. Larson, G.H. Crook, and C.E. Newton, Jr., Battelle Memorial Institute, Pacific Northwest Laboratories, Radiation Protection Department, Richland, WA; General Electric Company, Richland, WA. 1965

The Treatment and Evaluation of Internal Deposition from a Plutonium Wound. BNWL-SA-39; 5 p.

Fragments of plutonium with activity exceeding 10 μ ci, resulting from an explosive disintegration of plutonium metal, penetrated a hood glove and lodged in the left upper arm of an employee. The health physics and medical aspects of the incident were followed rigorously; urine samples continuously analyzed for plutonium activity; blood samples obtained and analyzed prior to the administration of some 70 intravenous injections of diethylenetriaminepenta acetic acid (DTPA); and the activity in the wound measured frequently. Observations on modifications of prior methods of treatment are presented, i.e., washing open wound with solutions of DTPA and effect of intramuscular injections of DTPA into the wound site. Discussions are presented that include methods of evaluating the internal deposition. The use of digital and analog computer techniques using the standard models with observed data is analyzed and the value of the analog computer for aiding the understanding of excretion patterns from plutonium deposition cases discussed. (Auth)

<148>

Baxter, D.W., H.W. Rosenthal, and A. Lindenbaum, Argonne National Laboratory, Division of Biological and Medical Research, Argonne, IL. 1973, July

Decorporation of Monomeric Plutonium from the Dog by Glucan and/or DTPA. Radiation Research, 55(1), 148-152

Monomeric Pu 239 was injected intravenously into beagle dogs to determine the effectiveness of DTPA (diethylenetriaminepenta acetic acid) and glucan, a polysaccharide derived from yeast cell walls, as agents for plutonium decorporation. DTPA therapy (100 mg/kg) was initiated six days after plutonium injection and continued, on a twice weekly basis, for 88 days. Glucan (15 mg/kg), given in conjunction with DTPA to a second group of dogs, was administered on days 4, 33, and 52. Control animals received sterile saline in place of both DTPA and glucan. When all animals were sacrificed on day 90, the liver burden in control dogs was the same as previously determined at day 6. DTPA therapy removed over 98% of this plutonium; removal from spleen, lungs, kidneys, testes, muscle, and lymph nodes ranged between 50 and 90%. The total skeletal content was also reduced by 50%. Adjunct therapy with glucan did not result in significant additional removal of plutonium, probably because of the high effectiveness of DTPA given alone. Species differences in the deposition of plutonium in liver as related to the effectiveness of DTPA therapy, with possible implications for man, are discussed. (Auth)

Tables 2 and 3 show the distribution and concentration of Pu in dog tissues as affected by glucan and/or DTPA therapy.

<149>

Baxter, D.W., H.W. Rosenthal, J.J. Russell, E. Moretti, D. Chladek, and A. Lindenbaum, Argonne National Laboratory, Division of Biological and Medical Research, Argonne, IL. 1972, December; 1973

Comparison of Monomeric and Polymeric Plutonium in the Dog and Mouse. ANL-7970; Part of Annual Report, 1972, (p. 126), 236 p.; Radiation Research, 59, 556-565

Monomeric or polymeric plutonium was injected intravenously into beagles and Cr 61 mice in order to compare total body distribution of the two forms of this actinide in these species. Blood clearance rate, intralobular liver distribution, and urinary and fecal excretion were also determined for the dog. Monomeric plutonium was cleared from dog blood less rapidly than polymeric plutonium. During the first 15 min only 20% (vs 99%) had left the circulation. At sacrifice, 6 days postinjection, significantly more monomeric plutonium remained in the blood although the amount of each form was less than 1%. Monomeric plutonium was deposited chiefly in liver and skeleton of both species. Polymeric plutonium was deposited in liver, spleen, and lungs, with a comparatively small amount deposited in the skeleton. Autoradiographic measurements of plutonium deposition within the dog liver lobes showed a relatively homogeneous distribution of monomeric plutonium, whereas polymeric plutonium tended to be associated with sinusoidal (phagocytic) cells at the center of the liver lobes. The roles of phagocytosis and protein binding in plutonium transport and retention, with possible implications for man, are discussed. (Auth)

Tables 1 and 2 show the distribution and concentration of monomeric and polymeric Pu in tissues of dog and mouse after IV administration.

<150>

Blair, H.A., University of Rochester, School of Medicine and Dentistry, Department of Radiation Biology and Biophysics, Rochester, NY. 1972, December

Radiation Dose-Time Relations for Induction of Osteosarcomas in Mice and Dogs and their Bearing on Maximal Permissible Burden of Strontium 90 in Man. Health Physics, 23, 759-765

A method is discussed for deriving latent periods when survival times and quantities of injected carcinogenic nuclides are the only data available. It is proposed, with examples from the dog and the mouse, that the toxicities with respect to bone cancer production by Ra 226, Pu 239 and Sr 90 are related better on the basis of either radiation dose or injected dose causing cancer in equal times than on total incidence over an indefinite time. On this basis the toxicity of Ra 226 per injected dose probably does not exceed 40 times that of Sr 90 in both dog and mouse. The ratio in contrast to 200 used by Marinelli in calculating the maximal permissible burden of Sr 90 in man lowers his value from 9.5 to 1.9 uci. (Auth)

<151>

<151>
 Borg, I.Y., Lawrence Livermore Laboratory, Livermore, CA. 1973, March 5

Comparison of Shock Effects in Granitic Rock Recovered from the Monique Event, Algeria, and the Piledriver Event, Nevada Test Site.
 UCRL-51349; 14 p.

Shocked granite samples from the Monique Event in the Hoggar Mountains, Sahara, have been microscopically examined and compared with fractured granodiorite recovered from postshot cores at the Piledriver site, Nevada Test Site. One sample, nominally from the pulverized zone adjacent to the Monique cavity wall, is estimated to have been shocked to 155 plus or minus 35 kbar pressure and to have been recovered a few meters or 1.03 plus or minus 0.02 r sub c from the shot point. The second sample, nominally in the fractured zone, is estimated to have been shocked to 35 plus or minus 5 kbar and recovered 1.45 plus or minus 0.08 r sub c from the shot point. From all indications the dimensions of the pulverized and fractured zones measured at both the Monique and Piledriver sites are comparable when scaled to cavity radius (r sub c) rather than to yield ($W(2/1/3)$). The Higgins and Butkovich equation is equally successful in predicting r sub c for the two events, which belies the common impression that Hoggar cavities are always smaller than those produced by comparable U.S. explosions. From the point of view of phenononology, the Monique and Piledriver events differ in two, possibly related, respects. A zone of residual stresses exists beyond the fracture zone at Monique and was not recognized at Piledriver in postshot drilling operations. Secondly, on a microscopic level samples shocked ostensibly to the same pressures contain slightly more pervasive and closely spaced network of fractures at the Monique site than at Piledriver. (Auth)

<152>
 Borisov, V.P., A.T. Ivannikov, and S.M. Mikhailovich, Not given. 1966

Antidote Therapy of Uranium and Polonium Poisoning. AEC-tr-6944; part of Moskalev, Yu.T., Distribution and Biological Effects of Radioactive Isotopes, (p. 670-677), 718 p.

On poisoning rats with U 238 in the form of soluble uranyl nitrate, the most effective means of first aid for reducing uranium absorption from the intestine proved to be disubstituted sodium phosphate (or its neutral mixture with monosubstituted sodium phosphate). On poisoning with Po 210 in the form of the soluble nitrate salt in bismuth, an effective antidote proved to be the official antidote against heavy metals--the alkali solution of hydrogen sulfide (ANTIDOTUM METALLORUM), as well as hydroquinone sulfohydrate, an anhydrous preparation of hydrogen sulfide. Carbolen, activated charcoal, universal adsorbent and bismuth nitrate proved to be ineffective. (Auth)

<153>
 Boss, M.R., P.D. Hobbs, R.W. Loser, and D.E. Michels, Dow Chemical Company, Rocky Flats Division, Golden, CO. 1973, April 13; 1973, August

Annual Environmental Monitoring Report, Rocky Flats Plant, January through December 1972, Including Estimates of Releases to the Environment from Plant Operations. RFP-ENV-72; WASH-1259; Part of Environmental Monitoring at Major U.S. Atomic Energy Commission Contractor Sites, Calendar Year 1972, (p. 197-229), 1217 p.

Results of the environmental monitoring program in the vicinity of the Rocky Flats Plant during 1972 indicate that yearly average environmental concentrations of plutonium in air and water were less than 2% of applicable federal standards. Total long-lived alpha emitter concentrations in air, including natural background, were less than 30% of the soluble Pu 239 standard. No apparent changes were noted in the distribution of plutonium in soil from previous years. Changes in the distribution isopleths compared with 1971 are a result of additional sample results in the computer modeling program and do not reflect physical movement of plutonium in soils. (Auth)

In an addendum to the monitoring report it is stated that the concentrations of U and Pu in public areas as a result of air and water effluent releases from the Rocky Flats Plant are all below 1% of the relevant AECM P-24 Radioactivity Concentration Guides. Table 15 gives the Pu concentrations in vegetation samples. Table 16 gives the Pu concentrations in soil samples from around the Rocky Flats Plant. Table 13 gives the Am concentrations in reservoir water samples.

<154>

Boyd, G.A., A. Williams, W.L. Minto, D.V. Tiedeman, R.M. Fink, G. Casarett, and R.G. Metcalf, University of California, School of Medicine, Los Angeles, CA. 1950

Simultaneous Studies on the Intravenous Lethal Dosage of Polonium, Plutonium, and Radium in Rats. Part of Fink, R.M. (Ed.), Biological Studies with Polonium, Radium, and Plutonium, Chapter 8. McGraw-Hill Book Company, Inc., New York, New York, (p. 295-404), 411 p.

Comparative lethal-dosage studies of radium, plutonium, and polonium in rats were made to determine the relative toxicities of plutonium, polonium, and radium. Clinical observations, gross and microscopic pathological studies, and hematological studies were made. At death the rats were analyzed for total polonium and radium remaining in their bodies. The retention of plutonium was not determined. The LD 50 (lethal dosage for 50%) for polonium, plutonium, and radium at 20 days was 43, 83, and 2,100 microcuries per kilogram, respectively; at 60 days it was 23, 46, and 735 microcuries per kilogram; and at 100 days it was 17, 37, and 320 microcuries per kilogram. If the toxicity of an element is defined as the reciprocal of the LD 50, the ratios of toxicities show polonium and plutonium to be 49 and 25 times as toxic as radium at 20 days, 32 and 16 times as toxic at 60 days, 18 and 9 times as toxic at 20 days, 146,000 and 1.01 times as toxic at 60 days, and 82,000 and 0.55 times as toxic at 100 days, respectively. The most pronounced clinical effect of the three elements is a continual loss of weight from injection to death. The rate of loss increased as the dosage increased. The pathological changes found, in common, in rats injected intravenously with plutonium, radium, and polonium included pulmonary infection, lung hemorrhage and edema, liver necrosis, gastrointestinal hemorrhage, depletion of germinal cells and sperm in the testes, marked decrease of functional cells in the hematopoietic organs (spleen, lymph nodes, and bone marrow), atrophy of the spleen, hemorrhage and atrophy of the lymph nodes, and hemorrhage in the bone marrow cavities. Apparent regeneration of functional cells in the lymph nodes and bone marrow was observed. In the spleens of animals injected with plutonium and radium there was hyperplasia (increased cellularity) of the pulp. In rats injected with plutonium there was a suggestion of a slightly abnormal degree of degeneration of follicular cells in the ovaries of half the female rats studied. Degenerative changes and disorganization in the epiphysis of the femur were found in approximately half the animals injected with plutonium and in a third of the rats injected with radium, with marked depletion of osteoblasts and osteoclasts in almost all the rats in each of these groups. (Auth)

Appendix 1 deals with the effect of relative time of injection in survival time and Appendix 2 gives survival time for individual rats.

<155>

Boyd, G.A., H.E. Silberstein, R.M. Fink, A. Frenkel, W.L. Minto, R.G. Metcalf, G. Casarett, and G.M. Suter, University of California, School of Medicine, Los Angeles, CA. 1950

Pilot Studies on the Intravenous Lethal Dosage of Polonium, Plutonium and Radium in Rats. Part of Fink, R.M. (Ed.), Biological Studies with Polonium, Radium, and Plutonium, Chapter 7. McGraw-Hill Book Company, Inc., New York, New York, (p. 211-294), 411 p.

Pilot studies were made on polonium, plutonium, and radium to determine the 20 day LD 50 (the dosage that is lethal for 50% of mature rats in 20 days). Polonium dosages ranged from 50 to 170 uci/kg, plutonium dosages ranged from 18.5 to 185 uci/kg, and radium dosages ranged from 17 to 8,000 uci/kg. The 20 day LD 50 dosage values in terms of uci/kg for polonium, plutonium, and purified radium (polonium at approximately 0.07% of equilibrium value) were found to be approximately 50, 130, and 4,000 uci/kg, respectively. The toxicities relative to purified radium as defined by the ratio of the 20 day LD 50's were approximately 93 and 32 microcuries for polonium and plutonium, respectively. A radium preparation estimated to contain about 2 microcuries of polonium per 1,000 microcuries of radium appeared to be 2 to 4 times as toxic as the purified radium in the period 40 to 100 days after injection. The weights seemed to be the best clinical criterion of the condition of the rat. In general, as the dosages increased, the rate of weight loss increased. Pathology studies were made on some of the animals at death. Polonium produced changes in the hematopoietic system at all dosage levels used. These changes consisted of a marked atrophy of lymphoid elements in the spleen and lymph nodes, as well as a marked depression of cellular elements in the marrow. Visceral engorgement was a constant finding. Liver changes were unimpressive. The changes in the 50 uci/kg range suggest a lesser degree of toxicity than at higher levels. Radium caused changes in the hematopoietic system, liver, kidney, bowel, bone, testis, aorta, and coronary arteries. The changes in the hematopoietic system, bone, testis, and bowel were compatible with x radiation effects. Liver, renal, and vascular effects were unlike changes produced by x radiation. Plutonium produced damage to the hematopoietic system, bone, liver, testis, and kidney similar to that caused by x radiation. The testis may be less sensitive in comparison with other tissues than it is in high-voltage x radiation experiments. (Auth)

<156>

Brasson, P.E., and J.P. Corley, Battelle Memorial Institute, Pacific Northwest Laboratories, Occupational and Environmental Safety Department, Richland, WA. 1973, April

Environmental Surveillance at Hanford for CY-1972. BNWL-1727: 52 p.

Samples of surface water, groundwater, air, foodstuffs, soil and vegetation were collected at the Hanford site and analyzed for radioactivity. Columbia River water also received chemical and biological analysis. Additionally, measurements were made of river immersion exposure rate, surface exposure rate (1 meter above soil surface) and radionuclide deposition on soil surfaces and highways open to public access. In 1972 the average river radionuclide concentrations were less than 1% of the concentration guides for all identified radionuclides. Unidentified alpha emitters were 2.2% of which about 0.4% was due to Hanford operations. Airborne radioactivity concentrations at the Hanford boundary were, on the average, the same as the more distant sampling locations, indicating that Hanford operations did not contribute detectably to off-site airborne radioactivity. Average airborne beta, alpha, and I^{131} concentrations were 0.3, 6.6 and 0.1%, respectively, of the concentration guides for 1972. A number of foodstuffs were sampled and analyzed for radioactive content. Average concentrations of Zn^{65} , Sr^{90} , I^{131} and Cs^{137} in local milk were less than 1% of the concentration guide for water. Trace radionuclides were also measured in local meat, poultry, eggs, produce, gamebirds, white fish and Willapa Bay oysters. There are no applicable concentration guides for these foods. Zn^{65} concentration in the oysters decreased through 1972 at a rate closely corresponding to its radioactive decay rate and averaged $1.7 \times 10^{(8-6)} \text{ uCi/gm}$ in 9 samples. Soil and vegetation samples were analyzed for Pu , U , Sr^{90} and gamma emitters. Individual results showed no particular geographical pattern and the concentrations are believed to be the result of natural occurrence and regional fallout. Local Pu concentrations are typical of arid western states. The average external radiation exposure rate in the vicinity of Hanford was about 0.22 mR/day . The immersion exposure rate in the Columbia River at Richland averaged 0.14 mR/day , and the Columbia River shoreline exposure rate averaged 0.24 mR/day at Richland, both lower than measured upstream. Estimated 1972 dose to the average Richland resident from Hanford sources was less than 1 rem (0.6% of the standard), about the same as for 1971. (Auth)

See Also Report BNWL-1727 (Add).

<157>

Brewer, L.W. (Ed.), Sandia Corporation, Industrial Hygiene Laboratory, Environmental Health Department, Albuquerque, NM. 1968, February

The Determination of Actinides in Urine. SC-M-67-3044; Part of Analytical Procedures for the Environmental Health Laboratory, (p. 3-1 - 3-2), 147 p.

Urine is ashed using nitric acid and hydrogen peroxide. The ash is dissolved in hydrochloric acid and the actinides, Am^{241} , Th^{230} , Po^{231} , U^{233} , Np^{237} , Pu^{239} , and Cs^{244} , electroplated from an ammonium chloride plus hydrochloric acid electrolyte. The isotope is identified and quantitated by alpha spectrometry. (Auth)

<158>

Brewer, L.W. (Ed.), Sandia Corporation, Industrial Hygiene Laboratory, Environmental Health Department, Albuquerque, NM. 1968, February

Analytical Procedures for the Environmental Health Laboratory. SC-M-67-3040; 147 p.

This manual was compiled from techniques used in the Industrial Hygiene Laboratory of Sandia Corporation at Albuquerque, New Mexico. The procedures are similar to those used in other laboratories devoted to industrial hygiene practices. Some of the methods are standard and others are modified. Some were developed at Sandia. New and revised procedures will be issued as supplements to this document. Three of the procedures have been abstracted separately for the data base. Others include the determination of several organic compounds in air, Sr^{90} and Cs^{137} in soil, vegetation and water, mercury, arsenic and chromium in urine and other elements and compounds in environmental and biological samples. (Auth) (FMM)

<159>

Brewer, L.W. (Ed.), Sandia Corporation, Industrial Hygiene Laboratory, Environmental Health Department, Albuquerque, NM. 1968, February

The Determination of Enriched Uranium in Urine. SC-M-67-3046; Part of Analytical Procedures for the Environmental Health Laboratory, (p. 13-1 - 13-3), 147 p.

Uranium is separated from urine by coprecipitation with ammoniacal alkaline earth phosphate precipitate. The precipitate is ashed, and the uranium is purified by solvent extraction. The extract is evaporated onto a steel planchet for counting. (Auth)

<160>

Brever, L.W. (Ed.), Sandia Corporation, Industrial Hygiene Laboratory, Environmental Health Department, Albuquerque, NM. 1968, February

The Determination of Total Uranium on Fallout Trays and in Soil, Urine, and Water. SC-R-67-3048; Part of Analytical Procedures for the Environmental Health Laboratory, (p. 33-1 - 33-5), 187 p.

Fused mixtures of uranium in sodium fluoride (2% lithium fluoride) exhibit strong fluorescence (at 560 nm) in ultraviolet radiation. The intensity of fluorescence is proportional to uranium concentrations from less than 0.001 ppm to more than 10 ppm. The method is nearly specific for uranium, and sensitivities in the range of 0.0006 microgram (plus or minus 10%) per fusion button can be obtained. Large amounts of quenching interferences are removed, and uranium purified, by solvent extraction. Methods of preparation of samples of urine, water and fallout trays are described. (Auth) (PHM)

<161>

Brightwell, J., and A.G. Heppleston, University of Newcastle upon Tyne, Royal Victoria Infirmary, Department of Pathology, Newcastle upon Tyne, England. 1973

Inhibition of Urethane-Induced Pulmonary Adenomas by Inhaled Plutonium 239. British Journal of Radiology, 46(583), 180-182

Exposure of inbred mice belonging to an A strain to the inhalation of plutonium dioxide significantly inhibited the capacity of urethane to induce pulmonary adenomas, but tumor size was unaffected. Cell kinetic studies suggested that proliferation of cells comprising the adenomas diminished with time, though the decrease was less evident in irradiated than in nonirradiated animals. Alpha irradiation may act by interfering with the immuno-depressive effect of urethane. (Auth)

<162>

Brodsky, A., J.A. Sayeg, N. Wald, R. Wechsler, and R. Caldwell, University of Pittsburgh, Graduate School of Public Health, Pittsburgh, PA; Presbyterian University Hospital, Radiation and Medicine Department, Pittsburgh, PA; NUREC, Inc., Apollo, PA. 1967

The Measurement and Management of Insoluble Plutonium-Americium Inhalation in Man. CONF-660920; Part of Snyder, W.S., et al (Eds.), Proceedings of the 1st International Congress of Radiation Protection held in Rome, Italy, September 5-10, 1966, Part 2. Fergamon Press, Oxford, England, (p. 1181-1190), 1623 p.

A drybox explosion on January 17, 1966, exposed three individuals to inhalation of dust containing a mixture of Pu 239 and Am 241. Preliminary measurements at the University of Pittsburgh whole body counter 27 hr after the incident, using a 1 mm thick, 2 in. D, NaI detector indicated a possible

lung burden as high as 0.8 uCi Pu 239 in one of the individuals. Although a considerable fraction of the contamination was believed to be Am 241, upper-limit estimates of Pu 239 in the lung were still as high as 0.28 uCi on day 4 (postexposure), so the decision was made to administer 1 g/day DTPA intravenously for the next three days. On day 5, a hundredfold increase appeared in the count-rate and changes occurred in the spectral shapes indicating a sudden appearance of new surface contamination on the anterior chest. This activity, as well as its probable source (another spot of contamination found on the forehead) was removed. Subsequent spectral shapes indicated that further measurements were indicative of lung radioactivity. Isotopic analyses of contamination and air samples showed that the major fraction of the activity was Am 241. Interim estimates of lung burden were then: 7 x 10⁻³ uCi of Am 241 on day 4; 6 x 10⁻³ uCi on day 11; 6 x 10⁻³ uCi on day 28; and 4 x 10⁻⁴ uCi on day 57. These values are consistent with the elimination of about 36,600 d/min of Am 241 and 58 d/min of Pu 239 in the first fecal sample. Urine excretion rates, initially less than 0.8 dps/24 hr, increased 50-100 times between days 5-8, suggesting the efficacy of DTPA in removing insoluble Am 241 from the lung. (Auth)

<163>

Botton, J.C.E. (Comp.), Australian Atomic Energy Commission, Research Establishment, Lucas Heights, Australia. 1973, April

Radiochemical Health and Safety Aspects of Uranium Mining and Ore Treatment, A Bibliography. AEC/E-272; CONF-711227: Part of Proceedings of the AEC Symposium on Environmental and Radiochemical Safety Aspects of the Mining and Processing of Uranium held in Lucas Heights, Australia, December 9-10, 1971, (20 p.), 97 p.

The bibliography on radiochemical health and safety aspects of uranium mining and ore treatment is compiled under the following fourteen broad headings: environmental problems; external radiation measurement; general radiochemical health and safety aspects; historical aspects; internal contamination hazards; internal contamination measurement; internal contamination protection; medical aspects; monitoring programs; radioactivity fundamentals; radiological exposure limits; standards and regulations; ventilation; and waste management. (PHM)

<164>

<164>
Lyaginskaya, A.M., and Ye.P. Ovcharenko, Not given. 1971

Effect of Americium 241 on the Histopathology of the Ovaries of Rats. AFC-tr-7387; Part of Moskalev, Yu.I. (Ed.), Remote Aftereffects of Radiation Damage, (p. 455-462), 574 p.

Experiments were carried out on 126 white rats of the Wistar line with an initial weight of 160-170 g; 18 of them served as controls. The experimental rats were administered Am 241 intravenously in a 2% solution of sodium citrate (pH equals 6.0) in the following quantities: 0.096 uCi/g (first group), 0.035 uCi/g (second group), 0.02 uCi/g (third group), 0.01 uCi/g (fourth group), 0.004 uCi/g (fifth group) and 0.002 uCi/g (sixth group). The animals were killed 1, 3, 5, 7, 8, 9 and 12 months after administration of the radionuclide. The morphological changes in the ovaries are described and indicate a considerable damaging effect of the various amounts of Am 241 on the sex glands of female rats. There was a dependence of morphological changes on the administered dose. The time of development of changes in the ovaries is dependent on the Am 241 quantity administered to rats. For example, in the radiotolerant primordial folliculi, it was observed that after Am 241 administration in quantities of 0.096 and 0.035 uCi/g a considerable decrease in their number occurred after a month; in the case of a decrease in the administered quantity to 0.02 and 0.01 uCi/g--after five months; with the administration of small quantities (0.004 and 0.002 uCi/g)--after eight of nine months. In animals of all the experimental groups an irritation period preceded the depression period. With administration of large Am 241 quantities (0.096 and 0.035 uCi/g) this period was brief and represented by a large number of mitoses in the follicular epithelial cells. With the administration of small Am 241 quantities (0.004 and 0.002 uCi/g) it occupies an interval of three to five months and is morphologically manifested by an increase in the number of mature folliculi. In 12 of the 15 experimental rats which received Am 241 in small quantities (0.004 and 0.002 uCi/g) at late times (8-12 months) it was possible to detect multiple follicular and luteinic cysts and tumors of the theca and adenoma types. It should be noted that the appearance of these tumors occurred when there was a low absorbed dose in the ovaries (0.73 rad). (FMM)

<165>
Lindenbaum, A., and M.A. Smyth, Argonne National Laboratory, Division of Biological and Medical Research, Argonne, IL. 1971

Determination of Plutonium 239 and Americium 241 in Animal Tissues by Liquid Scintillation Spectrometry. CONF-700716; Part of Horrocks, D.L. and Peng, C.T. (Eds.), Proceedings of the International Conference on Organic Scintillators and Liquid Scintillation Counting held in San Francisco, California, July 7-10, 1970. Academic Press, New York, New York, (p. 951-963), 1078 p.

Plutonium 239 or americium 241 in ashed samples of bone, liver, spleen, feces and urine, dissolved in 0.1 N HCl, was assayed by a liquid scintillation method, using Triton N-101-xylene-PPO. A commercially available liquid scintillation spectrometer was used, and essentially 100% counting efficiency was

achieved. There was close agreement between analytical results obtained with this liquid scintillation method and with a previous one employing toluene-ethanol-PPO; also between results obtained with liquid scintillation spectrometry (LS) as compared to proportional counting (PC). LS is generally superior to PC because it is less laborious and time-consuming, yields closer replication of analytical values, and permits more analyses per experiment, since tissues low in activity can be counted individually, rather than pooled. The Triton N-101-xylene-PPO scintillation fluid has advantages over toluene-ethanol-PPO: it permits the use of larger volumes of aqueous samples, holds more insoluble matter in suspension (due to gelation), and, in most cases, allows vials to be stored indefinitely without apparent loss of activity. Simple instrumental methods of detecting and correcting occasional aberrant samples are described. (Auth)

Table 2 shows Pu 239 in liver, spleen and femurs of mice measured by proportional counting and liquid scintillation.

<166>
Kirby, H.W., and M.L. Salutsky, Mound Laboratory, Miamisburg, OH; W. R. Grace and Company, Research Division, Washington Research Center, Clarksville, MD. 1964, December

The Radiochemistry of Radium. NAS-NS-3057; 205 p.

The monograph on the radiochemistry of radium is one in a series covering the radiochemistry of essentially all the elements. In it are included reviews of nuclear and chemical properties of radium, discussions of methods of sample dissolution and of separation reactions, descriptions of counting techniques, and a compilation of radiochemical separation procedures. (Auth)

<167>
Gibson, W.M., Bell Telephone Laboratories, Murray Hill, NJ. 1961, August

The Radiochemistry of Lead. NAS-NS-3040; 158 p.

The volume is one of a series of monographs on the radiochemistry of the elements. There is included in a review of the chemistry of lead of chief interest to radiochemists, a discussion of methods of dissolution of samples and counting techniques. The standard radiochemical procedures for lead are given and form the basis of most of the detailed radiochemical procedures compiled. In addition, information on techniques which have demonstrated or promise potential advantages for radiochemical applications but are not in general use by radiochemists are presented. (FMM)

Table 1 shows the isotopes of lead.

<168>
Mullins, W.T., and G.W. Leddicotte, Oak Ridge National Laboratory, Oak Ridge, TN. 1962, March

The Radiochemistry of Phosphorus. NAS-NS-3056; 32 p.

The volume deals with the radiochemistry of phosphorus, and is one of a series of monographs on radiochemistry of the elements. There is included a review of the nuclear and chemical features of particular interest to the radiochemist, a discussion of problems of dissolution of a sample and counting techniques, and finally, a collection of radiochemical procedures for the element as found in the literature. (Auth)

<169>
Chiaccchierini, R.P., G.L. Jessup, W.S. Nelson, N.C. Telles, E. Tompkins, and J.F. Wright, U.S. Department of Health, Education, and Welfare, Public Health Service, Bureau of Radiological Health, Division of Biological Effects, Rockville, MD. 1970, December

A Review of Radium Toxicity Studies. BRH/DBE-70-5; 31 p.

The debate concerning the linear or threshold response of somatic radiation injury has been focused on the human radium toxicity studies. Because of the critical public health significance of the data derived from these studies, a task group from the Division of Biological Effects of the Bureau of Radiological Health undertook a review of the available human and animal radium studies for the purpose of determining the extent to which animal and human data are sufficient to resolve the question of dose-response relationship. The review contained in this report indicates that the animal and human radium experience to date is not sufficient to specify an unequivocal dose-response model. Therefore, in the low dose regions expected to be experienced by the general public, the assumption of a linear, non-threshold model continues to be a prudent public health philosophy for standards setting. (Auth)

Plutonium is only mentioned in the Utah study which was initiated in the early 1950's and designed to compare the effects of Pu 239 and Ra 226.

<170>
Carfagno, D.G., and W.H. Westendorf, Mound Laboratory, Miamisburg, OH. 1973, March 15; 1973, August

Annual Environmental Monitoring Report: Calendar Year 1972. MLM-2026; WASH-1259; Part of Environmental Monitoring at Major U.S. Atomic Energy Commission Contractor Sites, Calendar Year 1972, (p. 97-128), 1217 p.

The average concentrations of Po 210, Pu 238 and tritium detected in the environment surrounding Mound Laboratory, Miamisburg, Ohio, are presented for calendar year 1972. The average concentrations of these radioisotopes were well within the stringent standards adopted by the Atomic Energy Commission. The average concentrations of Po 210, Pu 238 and tritium measured in air during this period were less than 0.02%, 0.3% and 0.1% of their respective (RCG's) Radioactivity Concentration Guides. Water monitoring for radioactive species found the

average concentrations of Po 210, Pu 238 and tritium measured at the water sampling locations during this period to be less than 0.3%, 0.1% and 0.5% of their respective RCG's. These results represent a significant reduction in concentrations of Po 210 and tritium over those measured in 1971. The average concentrations of Pu 238 measured during 1972 were slightly lower than, but within the range of, those measured during 1971. Water monitoring for nonradioactive species was conducted. Additionally, data concerning radioactive species in surface water, community drinking water, foodstuffs, soil and silt are presented. No significant uptake of radioactive species from air or water by plant or animal life has been observed. No reentrainment of radioactive species from soil or silt is indicated at this time. Soil core sample analyses will continue to establish a Pu 238 soil inventory as part of the total program to assess the impact of the Laboratory's operations on the environment. (Auth) (PMM)

Table 8 gives the concentration of Pu 238 in the Great Miami River. Table 16 gives a summary of soil core analysis for Pu 238. Table 17 gives a summary of analysis of Great Miami River silt samples for Pu 238.

<171>
Chapman, T.S., and S. Hammons, Jr., Dow Chemical Company, Rocky Flats Division, Denver, CO. 1963

Some Observations Concerning Uranium Content of Ingesta and Excreta of Cattle. Health Physics, 9, 79-81

Samples of feed and excreta were obtained from six head of Holstein heifers selected at random from a dairy herd of thirty in Larimer County, Colorado. The normal diet of the herd contained 5,000 uuci of uranium per head per day. Most of this was in the feed concentrate. The calculated rate of excretion of uranium in the urine and milk combined was 0.6% of that in the feces. (PMM)

<172>
McClelland, J., Los Alamos Scientific Laboratory, Los Alamos, NM. 1955, August

The Determination of Plutonium in Urine. LA-1058; Part of Analytical Procedures of the Industrial Hygiene Group, Chapter 21, (p. 121-124), 173 p.

For the determination of Pu in urine, the urine sample is ashed with nitric acid, plutonium is coprecipitated with bisulfate phosphate, dissolved in hydrochloric acid and then coprecipitated with lanthanum fluoride. The lanthanum fluoride precipitate is slurried on a stainless steel plate and counted for alpha activity with a low-background proportional counter. Quantities of the order of 2 d/m or 2 x 10⁻¹¹ g of plutonium can be determined by this method. The tolerance for plutonium in urine given in the LASL Official Monitoring Handbook is 7 d/m/24 hour sample. Samples are rechecked if the results are 2 d/m/24 hour sample or higher. (Auth)

<173>

<173>
McClelland, J., Los Alamos Scientific Laboratory, Los Alamos, NM. 1955, August

Analytical Method for Americium in Urine. LA-1858; Part of Analytical Procedures of the Industrial Hygiene Group, Chapter 2, (p. 10-13), 173 p.

The method for analysis of americium in urine is based on the coprecipitation of americium with bismuth phosphate from a nitric acid solution of urine salts at a pH of 1.7. The bismuth phosphate is dissolved 6 N HCl and the americium coprecipitated a second time with lanthanum fluoride. The precipitate is slurried onto a stainless steel plate and counted with a low-background proportional alpha counter. Quantities of the order of 2 d/m or $6 \times 10^{12-19}$ g of americium can be determined by this method. The tolerance for americium in urine used at LASL is 7 d/m/24 hour sample. Samples are rechecked if the count is 2 d/m/24 hour sample or higher. (Auth)

<174>
Lloyd, R.D., D.R. Atherton, C.W. Mays, S.S. McFarland, and J.L. Williams, University of Utah, College of Medicine, Radiobiology Division, Department of Anatomy, Salt Lake City, UT. 1973, March 31

Curium Excretion, Retention, and Distribution Studies in Beagles. COO-119-248; Part of Dougherty, T.P., Research in Radiobiology, Annual Report of Work in Progress in the Internal Irradiation Program, (p. 163-177), 400 p.

The metabolism of Cm was studied in 5 young adult beagles from 0 to 57 days after the intravenous injection of Cm 240 plus Cm 243 in citrate buffer. Total excretion during the first 3 weeks after injection was mainly urinary. Of the entire Cm eliminated in this 3 week collection period, nearly 3/5 appeared in the first day's urine. About 5 times more Cm was excreted in the urine than in the feces on the first day. Following this, however, partitioning of Cm between urine and feces in the daily excretion was more nearly equal. A combination of total-body and partial-body counting of the living dogs utilizing the 209, 228, and 278 keV gamma rays of Cm 243 indicated that at a week after injection about 35% of the injected Cm was deposited in the liver and about 53% was in nonliver tissue (mainly skeleton). Three dogs were sacrificed at 6, 13, and 20 days after injection. Although the liver and skeleton accounted for the bulk of the retained Cm, some other tissues exhibited significant Cm concentrations, particularly the thyroid. Urinary excretion, retention,

and tissue distribution of injected Cm were similar to that of inhaled Cm in 2¹ beagles reported by McClellan, et al. A comparison of Cm excretion by beagles with the other transuranium elements Pu, Am, and Cf is given. It appears that the partitioning of excreted Cm between urine and feces is more like Am than either Pu or Cf. During the first 3 weeks after injection, Am, Cf and Cm were excreted mainly in the urine while Pu excretion was predominantly fecal. Retention values for Pu, Am, and Cf at corresponding times are also compared with those of Cm. (Auth) (MM)

Table 2 shows excretion of Pu, Am, Cm and Cf by beagles during the first 3 weeks after intravenous injection. Table 3 shows biological retention of injected Cm in beagles. Table 4 shows retention of Pu, Am, Cm and Cf by beagles one week after intravenous injection in citrate solution. Table 5 shows distribution and concentration of injected Cm in tissues of

<175>
Mahim, D.D., J.E. Ballou, A.C. Case, W.E. Keder, and W.J. Clarke, General Electric Company, Hanford Atomic Products Operation, Biology Laboratory, Richland, WA. 1963, January 15

Metabolism and Toxicity of Neptunium 237 in the Rat. HW-76000; Part of Kornberg, H.A. and Swazee, E.G. (Eds.), Hanford Biology Research Annual Report for 1962, (p. 22-30), 269 p.

Intestinal absorption of Np in rats was influenced by valence state and mass level. Under all circumstances its absorption was substantially greater than that of Pu. The level of Np 237 deposited in femur and adrenal remained fairly constant over a 207 day retention period. The significance of zonal deposition of Np in the adrenal is discussed as it may relate to critical organ consideration. Female rats receiving 12 or 24 mg Np 237/kg died or were moribund within 48 hours. Histological examination revealed damage to the liver, kidney, spleen, and brain. Chemical analysis showed a marked increase in liver lipids. (Auth)

<176>
Hedahl, O.T., University of Michigan, Ann Arbor, MI. 1961, December

The Radiochemistry of Palladium. NAS-NS-3052; 62 p.

The volume deals with the radiochemistry of palladium and is one of a series of monographs on radiochemistry of the elements. There is included a review of the nuclear and chemical features of particular interest to the radiochemist, a discussion of problems of dissolution of a sample and counting techniques for radioactive palladium isotopes and finally, a collection of radiochemical procedures for the element as found in the literature. (Auth) (FBN)

A table of isotopes of palladium is given.

<177>
Bate, L.C., and G.W. Leddicotte, Oak Ridge National Laboratory, Oak Ridge, TN. 1961, September

The Radiochemistry of Cobalt. NAS-MS-3041; 90 p.

The volume deals with the radiochemistry of cobalt and is one of a series of monographs on radiochemistry of the elements. There is included a review of the nuclear and chemical features of particular interest to the radiochemist, a discussion of problems of dissolution of a sample and counting techniques for the radioactive cobalt isotopes and finally, a collection of radiochemical procedures for the element as found in the literature. (Auth) (PME)

Table 1 shows the radioactive nuclides of cobalt. Figure 1 shows the decay schemes of the cobalt radionuclides.

<178>
Leddicotte, G.W., Oak Ridge National Laboratory, Oak Ridge, TN. 1961, October

The Radiochemistry of Osmium. NAS-MS-3046; 20 p.

The volume deals with the radiochemistry of osmium and is one of a series of monographs on radiochemistry of the elements. There is included a review of the nuclear and chemical features of particular interest to the radiochemist, a discussion of problems of dissolution of a sample and counting techniques, and finally, a collection of radiochemical procedures for the element as found in the literature. (Auth)

<179>
Steinberg, E.P., Argonne National Laboratory, Argonne, IL. 1961, August

The Radiochemistry of Niobium and Tantalum. NAS-MS-3039; 57 p.

The volume deals with the radiochemistry of niobium and tantalum and is one of a series of monographs on radiochemistry of the elements. There is included a review of the nuclear and chemical features of particular interest to the radiochemist, a discussion of problems of dissolution of a sample and counting techniques, and finally, a collection of radiochemical procedures for the element as found in the literature. (Auth)

<180>
Mullins, W.T., and G.W. Leddicotte, Oak Ridge National Laboratory, Oak Ridge, TN. 1961, September

The Radiochemistry of Tungsten. NAS-MS-3062; 40 p.

The volume deals with the radiochemistry of tungsten and is one of a series of monographs on radiochemistry of the elements. There is included a review of the nuclear and chemical features of particular interest to the radiochemist, a discussion of problems of dissolution of a sample and counting techniques, and finally, a collection of radiochemical procedures for the element as found in the literature. (Auth)

<181>
Marinsky, J.A., University of Buffalo, Department of Chemistry, Buffalo, NY. 1961, July

The Radiochemistry of Germanium. NAS-MS-3043; 48 p.

The volume deals with the radiochemistry of germanium and is one of a series of monographs on the radiochemistry of the elements. A review of the nuclear and chemical features of particular interest to the radiochemist is presented together with a discussion of sample dissolution and activity measurement techniques. A collection of radiochemical procedures for the element as found in the literature is also included. The information that is presented was obtained from the general review references that are cited and from a search of the Chemical Abstracts from 1941 to June 1961 and the Nuclear Science Abstracts from 1948 to June 1961. Plans include revision of the monograph periodically when new techniques and procedures warrant its modification. (Auth)

<182>
Schubert, J., J.P. Fried, M.W. Rosenthal, and K. Lindenbaum, Argonne National Laboratory, Division of Biological and Medical Research, Argonne, IL. 1961

Tissue Distribution of Monomeric and Polymeric Plutonium as Modified by a Chelating Agent. Radiation Research, 15, 220-226

Mice injected with a polymeric (colloidal) solution of plutonium (2.6 uCi/kg) retained more of the radioelement in the liver and spleen and less in the bone than did mice injected with a monomeric plutonium solution (3.3 uCi/kg). Daily DTPA therapy was initiated 3 days later, and the level of the radioelement in bone was reduced about one-half in each case. The liver burden of mice injected with the monomeric form of plutonium was nearly completely removed after a few days of treatment, but that of mice injected with polymeric form was reduced slowly and by only about one-third. (Auth)

Table 1 shows a comparison of Pu retention and effect of DTPA therapy in mice receiving two forms of Pu.

<183>

Matsuoka, O., H. Yoshima, M. Kashima, and T. Noda, National Institute of Radiological Sciences, Chiba, Japan. 1970, October 1

The Effect of DTPA Treatment on Acute Toxicity in Mice. MIRS-Pu-7; Part of Research Report on Internal Exposure to Plutonium, April 1969-March 1970, (p. 70-72), 91 p.

The effect of the repeated DTPA treatment on the acute toxicity of monomeric and polymeric Pu was investigated regarding whole-body retention, survival time and body weight change. Monomeric and polymeric Pu of 0.03 $\mu\text{Ci}/\text{g}$ were given to mice intravenously. One day after injection, a DTPA saline solution of 100 $\mu\text{g}/\text{kg}$ was administered repeatedly to mice intraperitoneally and spaced 3 days apart. Whole-body retention was measured in both treated and untreated groups of the two types of plutonium and in 3 additional groups, i.e., DTPA chelate Pu, monomeric plus DTPA, polymeric plus DTPA for comparison. The whole-body retention of the six groups observed was as follows in order of highest to lowest in retention; polymeric, monomeric, polymeric and DTPA treatment, polymeric plus DTPA, monomeric and DTPA treatment, monomeric plus DTPA, DTPA chelate Pu. Repeated DTPA treatment produced remarkable decreases of body retention depending on the physicochemical form of Pu. Survival time and body weight change were however, not so affected by DTPA treatment although the near survival time depended also on the initial physicochemical state. (Auth)

<184>

Hasse, R., Commissariat a l'Energie Atomique, Direction de la Protection, Sanitaire, Section de Toxicologie Nucleaire, Fontenay-aux-Roses, France. 1971

Comparative Cytological Study of the Effect of Inhaled Plutonium and Silica on the Behavior of the Alveolar Macrophages. CONF-700931; Part of Walton, W.H. (Ed.), Proceedings of the 3rd International Symposium on Inhaled Particles held in London, England, September 14-23, 1970, Vol. 1. Unwin Brothers Limited, The Gresham Press, Old Woking, Surrey, England, (p. 247-259), 1090 p. (French)

Comparison of the results of cytological observations and kinetic analysis of lung clearance in rats poisoned by plutonium and silica has enabled the part played by the different parameters to be established. Plutonium showed a cytotoxic and cytostatic action and inhibited the bronchial excretion of macrophages. Silica showed a cytotoxic action, enhanced cellular production and inhibited the bronchial excretion of macrophages. Plutonium action appeared as a threshold mechanism; below a limiting dose cytological changes were compensated and did not result in any disturbance of excretion. The determining factor in the blockage of alveolar clearance seemed to be a disturbance of cellular mobilization or motility depending on the cell itself and its environment. (Auth)

<185>

Major, W.J., R.A. Wessman, R. Melgard, and L. Leventhal, Tracerlab, Technical Services Division, Richmond, CA. 1964

Routine Determination of Plutonium by Tracer Techniques in Large Biological Samples. Health Physics, 10, 957-965

A precision tracer procedure was developed for the rapid analysis of non uniformly distributed plutonium in large biological samples. Liver, lung, kidney, lymph node, trachea, gastrointestinal tract, nasal mucosa, pharyngeal mucosa, bone, urine and feces samples from burros, sheep, and dogs (exposed to plutonium aerosols) were assayed for plutonium. The chemical procedure consisted of: equilibration of sample plutonium with Pu 236 tracer, wet ashing by refluxing with H_2SO_4 and a catalyst, extraction of plutonium from bulk salts with cupferron-chloroform, purification with ion exchange resins, and electrodeposition on platinum. These procedures minimized the requisite volume of acids and avoided the violent exothermic reactions of some wet ashing procedures. Problems associated with dry ashing, such as loss of the radioisotope by entrainment in solid carbon particles and formation of insoluble oxides of plutonium, were avoided. Also, the need for the large ashing furnaces was obviated. The plutonium content was measured by tracer yielding and alpha pulse-height analysis. This method ensured a high degree of accuracy, high sensitivity, and freedom from interference from other alpha emitters. A typical chemical yield was 55% and the counting precision was within 3%. Limits of detection were approximately 0.05 dis/min for a thousand minute count. (Auth)

<186>

Mahlum, D.D., and M.R. Sikov, Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1973, April

Age-Related Effects of Plutonium in Rats. BNWL-1750 (Part 1); Part of Thompson, R.C. (Ed.), Annual Report for 1972, (p. 9-10), 103 p.

The long-term effects of monomeric Pu 239 administered to rats at various ages were compared. Animals exposed as adults and weanlings received intravenous doses of 0.3, 1.0 and 3.0 $\mu\text{Ci}/\text{kg}$; higher doses were administered to the newborn and prenatal groups. Samples of bone were taken for radioanalysis at the time of death to define the long-term dose to the bone. It was found that bone tumor incidence was initially higher in males than in females and in animals injected as adults. (Auth)

<187>
Koshurnikova, N.A., V.K. Lester, and E.R. Lyubchanskiy, Not given. 1971

Remote After-effects of Inhalation of Soluble Plutonium 239 Compound. AEC-tr-7387; Part of Moskal'v, Yu.I. (Ed.), Remote After-effects of Radiation Damage, (p. 334-343), 574 p.

The pathological and anatomical changes detected in rats and rabbits following inhalation of soluble Pu 239 compound are described. Some of the rabbits were administered the isotope intratracheally. The results show that Pu, with its inhalation in the form of soluble compounds, in contrast to the dioxide, induces not only pneumosclerosis and pulmonary cancer, but osteosarcomas as well. Attention is drawn to the blastomogenic effects of small Pu doses. Pulmonary cancer was detected with tissue doses of about 50 rad and osteosarcoma with doses of about 4-15 rad. The maximum occurrence of pulmonary tumor occurred with total tissue doses from 500 to 1000 rad in comparison with Pu citrate. Ammonium Pu-pentacarbonate exerted a more clearly expressed blastomogenic effect. For example, at optimum doses pulmonary tumors were detected in 63-78% of the rats which inhaled the carbonate complex and in 40-48% of the animals receiving Pu citrate. (PMH)

<188>
Sunderman, D.N., and C.W. Townley, Battelle Memorial Institute, Columbus, OH. 1961, November

The Radiochemistry of Silver. NAS-NS-3047; 55 p.

The volume deals with the radicchemistry of silver and is one of a series of monographs on radiochemistry of the elements. There is included a review of the nuclear and chemical features of particular interest to the radiochemist, a discussion of problems of dissolution of a sample and counting techniques, and finally, a collection of radiochemical procedures for the element as found in the literature. (Auth)

<189>
Anders, E., Enrico Fermi Institute; University of Chicago, Department of Chemistry, Chicago, IL. 1960, November

The Radiochemistry of Technetium. NAS-NS-3021; 50 p.

The volume deals with the radicchemistry of technetium and is one of a series of monographs on radiochemistry of the elements. There is included a review of the nuclear and chemical features of particular interest to the radicchemist, a discussion of problems of dissolution of a sample and counting techniques, and finally, a collection of radiochemical procedures for the element as found in the literature. (Auth)

<190>
Wahlum, D.D., and M.R. Sikov, Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1968, May

Physicochemical Form as a Determinant of the Toxicity of Plutonium 238 in the Rat. BNWL-744; Part of Thompson, R.C. et al (Eds.), Annual Report for 1967, (p. 5.5-5.7), 253 p.

Female rats of the Charles River CD strain, 3-4 months old, were injected intravenously with 54, 108, or 162 uCi/kg of the monomer of Pu 238, or 50, 100, or 150 uCi/kg of the polymer. These animals were kept for determination of survival times. In a second experiment rats were injected with 54 or 161 uCi/kg of the monomer, or 50 or 100 uCi/kg of the polymer, and groups were killed at 1, 7, and 33 days postinjection for tissue radioanalysis. It was shown that the acute toxicity of Pu 238 was related to the physicochemical form injected, with the polymeric form being nearly twice as toxic as the monomer. The polymeric form produced earlier deaths, and there was a substantial difference in the distribution of the monomer and the polymer. Nearly twice as much monomer, as polymer, was deposited in bone; while a substantially greater proportion of polymer was deposited in liver. The fraction in the liver decreased very little between 1 and 7 days, but was markedly reduced in the monomer injected animals after 33 days. Femur and spleen values increased beyond the first day postinjection, with particularly high spleen values attained in the polymer injected animals. Adrenal weights were increased at both the 50 and 100 uCi/kg levels of polymer, whereas spleen weights were decreased in both monomer and polymer injected animals. (PMH)

Table 2 shows distribution in liver, spleen, kidneys, adrenal and femur of rats of intravenously injected monomeric and polymeric Pu 238. See also Health Physics, 17(2). 346-347.

<191>

<191>
Lyubchanskiy, E.R., Z.M. Bukhtoyarova, and N.A. Koschurnikova, Izdatel'stvo Meditsina, Moscow, USSR. 1969

Behavior of Plutonium 239 and the Histological Picture of Injury of the Skeleton and Liver of Rats Under Single and Chronic Intake of the Isotope. AEC-tr-7195; Part of Moskalev, Yu.I. (Ed.), Radioactive Isotopes and the Body, (p. 376-387), 458 p.

Experiments were done on rats of the Wistar strain with an initial weight of 150 plus or minus 1.1 g. A solution of Pu 239 citrate complex was administered intraperitoneally. In one series of experiments the animals received Pu six times/week for the course of 20, 40, 80 and 160 days in the quantities of 0.0033 uci and 0.0066 uci. In the other series of experiments the isotopes were administered once. The thigh, liver and kidneys of the animals were radiochemically analyzed after sacrifice and some tissues were studied histologically. It was shown in the experiments with a single intraperitoneal administration, that the magnitude of the deposition of Pu 239 in the skeleton decreased, did not change in the liver, and increased with age in the kidneys. Elimination from the skeleton and kidneys occurred with the same biological half-life and with two half-lives from the liver. The rate of elimination was independent of age and injected dose. The histological study of the bone tissue and liver showed the high effectiveness of alpha radiation in the chronic administration of the isotope. (Auth) (FNM)

Table 2 shows Pu 239 accumulation factor in the organs of rats after chronic intraperitoneal administration. Table 3 shows Pu 239 elimination from the organs of rats after single and chronic administration.

<192>
Lyubchanskiy, E.R., and L.A. Buldakov, Not given. 1966

On the Experimental Substantiation of the Maximum Permissible Content of Plutonium 239 in the Human Organism and in the Air of Work Premises. AEC-tr-6944; Part of Moskalev, Yu.I., Distribution and Biological Effects of Radioactive Isotopes, (p. 548-580), 718 p.

The literature data presented and the calculations of MPE norms of Pu 239 in the human organism performed on the basis of these data show that the osteosarcomogenic effect is the most sensitive test of the toxicity of plutonium; the MPE norm derived from this criterion is 0.055 uci. This norm is 8-10 times as low as the MPE derived from the life-span criterion and 1.4 times as high as the MPE adopted in the Soviet 1960 standards (0.04 uci). The MPC of Pu 239 in the air of work premises, derived from the available data on the patterns of metabolism of this isotope in the rat on inhalation, amounts to $3.6 \times 10^{(2-15)}$ Ci/liter and is 1.8 times as high as the MPC adopted in the

Soviet 1960 standards ($2 \times 10^{(2-15)}$ Ci/liter). When the Pu 239 concentration in the inhaled air does not exceed the calculated MPC norm, the actual content of Pu 239 in the human organism toward the end of active work-life (at the age of 70) is three times as low as calculated in theory (0.955 Ci); this is assured by the existing labor legislation. For the currently effective MPE of Pu 239 (0.04 Ci), the safety factor with respect to the human individuals most sensitive to the effect of ionizing radiation is 1.4. For the currently effective MPC of Pu 239 in the air of work premises ($2 \times 10^{(2-15)}$ Ci/liter) the overall safety factor is 5.4 (1.8×3). As new information on the biological effect and metabolism of Pu 239 is acquired, the MPE and MPC norms should be periodically carefully revised. (Auth)

Table 3 gives calculated values of MPE of Pu 239 for man. Table 6 gives Pu 239 content in the lungs of rats at various periods following administration.

<193>
Lyubchanskiy, E.R., Izdatel'stvo Meditsina, Moscow, USSR. 1969

Behavior of a Citrate Complex of Plutonium 239 in the Body of Rats After Stopping Chronic Inhalation. AEC-tr-7195; Part of Moskalev, Yu.I. (Ed.), Radioactive Isotopes and the Body, (p. 153-160), 458 p.

Experiments were done on rats of the Wistar strain with an initial weight of 140-150 g. The animals were subjected over the course of 160 days, 6 times per week, to a 10-minute inhalation of aerosols of a citrate complex of Pu 239, with a pH of 6.5. The rats were killed immediately, and after 8, 32, 64, 128, and 238 days following the last inhalation. Various tissues were subjected to radiochemical analysis. The results show that after stopping chronic inhalation of the citrate complex of Pu 239 the skeleton and lungs were the basic organs for deposition of the isotope. The effective half-lives for the elimination from these organs were 8.16 and 92.5 days, respectively. The rate of elimination of Pu 239 from the lungs did not depend considerably on the manner of administration of the isotope. Concerning the high concentration and nonuniform microdistribution of Pu 239, the lungs were the critical organ as to radiation dose throughout the course of the entire experiment. After 600 days the integral dose in the lungs was higher than in the thigh by a factor of 3. The Pu 239 concentration and the rate of its decrease in different fragments of the skeleton were not the same. (Auth) (FNM)

Tables 1 and 2 show Pu 239 concentration in organs and tissues of rats, at various periods after stopping chronic inhalation of the citrate complex.

<194>

Dolphin, G.W., United Kingdom Atomic Energy Authority, Atomic Energy Research Establishment, Health and Safety Branch, Radiological Protection Division, Harwell, Berkshire, England. 1964

Estimation of Body Content Following Inhalation of Insoluble Plutonium. CONF-448-10; STI/PUB/84; Part of Proceedings of a Symposium on the Assessment of Radioactive Body Burdens in Man held in Heidelberg, Germany, May, 1964, Vol. 2, (p. 589-602), 666 p.

The problem of estimating the body content of plutonium following the inhalation of plutonium oxide is of considerable practical importance and, on the grounds of the known insolubility of plutonium oxide, measurements of plutonium in urine might be considered valueless. The relevant published biological data from beagle dog experiments and data from two human cases are reviewed. From this review it is concluded that there is evidence for believing that the body content, following an accidental inhalation, can be estimated from the measurements of plutonium excreted in urine at times greater than about 300 days after the intake. Some possible excretion methods are discussed. Finally, there is a comment on the radiological protection aspects of insoluble plutonium in the lungs and bronchial lymph nodes and it is stressed that the particular nature of the plutonium must be taken into consideration. (Auth)

A proposed model is shown to illustrate the metabolic pathways and movement of inhaled insoluble Pu. The numbers given in the model are the percentages of the initial intake at 900 days after intake in beagle dogs.

<195>

Beach, S.A., and G.W. Dolphin, United Kingdom Atomic Energy Authority, Atomic Energy Research Establishment, Health and Safety Branch, Radiological Protection Division, Harwell, Berkshire, England. 1964

Determination of Plutonium Body Burdens from Measurements of Daily Urine Excretion. CONF-448-11; STI/PUB/84; Part of Proceedings of a Symposium on the Assessment of Radioactive Body Burdens in Man held in Heidelberg, Germany, May, 1964, Vol. 2, (p. 603-615), 666 p.

The original data from 16 human experiments, as reported by Wright Langham and others, have been reanalyzed using a simple compartment model. The functions obtained from this analysis, relating the body burden to the daily excretion in urine following an injection, are used in proposed mathematical models for the slow release of soluble plutonium into the blood stream from a wound site or the lungs. The results of calculations on the model for various hold-up times at the wound site or lungs are presented graphically. The presently available data on the biological variation between men and in the day-to-day plutonium in urine excretion in an individual are analyzed and discussed with special reference to the best design of a routine urine sampling program. (Auth)

<196>

Maisin, J.-P., Centre d'Etude de l'Energie Nucléaire, Département de Radiobiologie, Mol, Belgique. 1968

Metabolism and Toxicity of Plutonium. Journal Belge de Radiologie, 51, 274-283

The toxicity and metabolism of Pu were examined and the main routes of penetration and elimination of this nuclide in the human body were reviewed. The consequences of contamination by Pu 239 and the basic principles for the treatment of contamination were discussed. The problem of assessing the Pu body burden was also dealt with. (Auth)

Table 2 shows the distribution of Pu 239 in tissues of man following intravenous injection of Pu(+6) citrate (after Langham).

<197>

McMillian, R.O., L.K. Bustad, W.J. Clarke, W.L. Dockum, J.R. McKenney, and H.A. Kornberg, General Electric Company, Hanford Laboratories, Biology Laboratory, Richland, WA. 1962

Bone-Seeking Radionuclides in Miniature Swine. Part of Dougherty, T.F., et al (Eds.), Proceedings of a Symposium on Some Aspects of Internal Irradiation held at The Homestead, Heber, Utah, May 8-11, 1961. Pergamon Press, Oxford, England, (p. 341-348), 529 p.

Progress is reported on a long-term daily Sr 90 feeding experiment whose objective is to define relatively safe levels of dietary intake of Sr 90 for man. Miniature swine are fed four levels of Sr 90--1, 5, 25 and 125 uci/day. Animals maintained on 25 uci of Sr 90 per day for over two years appear normal and their 18-month-old offspring exposed to Sr 90 since conception have manifested only a slightly depressed growth rate. Adult animals fed 125 uci of Sr 90 per day for eight months, together with their three-month-old offspring, appear clinically normal. For comparative purposes, the relative toxicity of a single injection of Sr 90, Ra 226 and Pu 239 in miniature swine is being studied concurrently. A single intravenous dose of either 64 uci Sr 90/kg body weight, 6.4 uci Ra 226/kg or 1.3 uci Pu 239/kg is administered at six weeks, six months or one year of age. All animals injected are alive at 18 months following radionuclide administration and show only minimal evidence of damage. A leukopenia was noted immediately following injection, but the leukocyte count returned to normal very rapidly. Bone changes were noted radiographically in some animals, especially those injected at six weeks of age with Pu 239. (Auth) (FHM)

See also report HW-76000, (p. 1-10).

<198>

<198>

McClellan, R.O., W.J. Clarke, G.S. Vogt, and L.K. Bustad, General Electric Company, Hanford Atomic Products Operation, Biology Laboratory, Richland, WA. 1963, January 15

Comparative Toxicity of Strontium 90, Radium 226, and Plutonium 239. HW-76000; Part of Kornberg, H.A. and Swerea, E.G. (Eds.), Hanford Biology Research Annual Report for 1962, (p. 1-10), 269 p.

Male miniature swine, which received a single intravenous injection of Sr 90, Ra 226, or Pu 239 18 months previously when six weeks, six months or one year of age, were killed to study the early effects of these radionuclides. Only minimal radiographic changes were observed. Severe histological changes characterized principally by disorganization of developing bone and necrosis and fibrosis were observed in each of the age groups with all three radionuclides. On the basis of histological changes in bone, Pu 239 in swine, irrespective of age, is more damaging per rad than Ra 226 or Sr 90. Three females injected intravenously with Ra 226 at three to four years of age all developed clinical symptoms of severe renal damage and succumbed seven to nine months after injection. (Auth)

<199>

McClellan, R.O., H.W. Casey, and L.K. Bustad, General Electric Company, Hanford Atomic Products Operation, Biology Laboratory, Richland, WA. 1963, January 15

Transfer of Some Radionuclides to Milk. HW-76000; Part of Kornberg, H.A. and Swerea, E.G. (Eds.), Hanford Biology Research Annual Report for 1962, (p. 98-108), 269 p.

Mature purebred Suffolk female sheep in their second to fifth month of lactation were injected intravenously with Ca 45, Sr 90, Ru 106, Pm 147, Ra 226, U 233, or Cm 244. All of the radionuclides were administered as nitrates. Milk, plasma, and whole blood samples were collected and radioanalyzed for a ten-day period following injection. The rates of plasma clearance of the radionuclides for the ten days following administration in decreasing order are: U 233, Cm 244, Ca 45, Ra 226, Sr 90, Pm 147 and Ru 106. The average milk-to-plasma ratios were: Ca 45, 30; Sr 90, 10; Ra 226, 6; Pm 147, 2.5; Cm 244, 2; Ru 106, 0.015; and U 233, 0.08. (Auth)

<200>

McDonald, W.E., Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1973, April

Removal of Plutonium by Pulmonary Lavage. BNWL-1750 (Part 1); Part of Thompson, R.C. (Ed.), Annual Report for 1972. (p. 64-65), 103 p.

The removal of insoluble Pu from the lung by pulmonary lavage was about 50% efficient in dogs after 19 weekly lavage sessions beginning 8 days after exposure to Pu 239 PuO2. The pathologic consequences of this treatment were evaluated. All lavaged lungs showed an increased goblet cell production. No lung damage was observed at 48 hr and at 7 days postlavage. Rats received Pu 239 PuO2 by inhalation; 7 days later their lungs were lavaged with the test solution; they were killed, and the lungs and lavage fluid analyzed for Pu. Physiological saline was the reference wash solution. Some of the agents tested included dimethylsulfoxide (DMSO), DMSO plus DTPA, 0.25% sucrose, KCl, 1.8% NaCl, water, Pluronic and Triton X-100. The reference wash solution, 0.9% NaCl, removed 10 to 16% of lung plutonium in a single lavage session. Removal was increased about 50% with Triton X-100 or with 1.8% NaCl and the combination of the two doubled the amount removed. Wash solutions 4 degrees C or 50 degrees C were no more effective than body-temperature solutions. Water or sucrose lavage removed only about 3% of the lung Pu. Addition of pronase to saline essentially blocked Pu removal. (FMM)

<201>

Mahlum, D.D., Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1965, January

Effect of Dietary and Hormonal Manipulations on Neptunium 237 Induced Fatty Livers. BNWL-122; Part of Thompson, R.C. and Woods, S.W. (Eds.), Hanford Biology Research Annual Report for 1964, (p. 79-80), 216 p.

Neptunium 237 was administered intravenously to rats as the citrate complex, pH 4.0-4.5, and livers were removed 24 or 48 hr after administration for fat determination. It was found that liver fat accumulation induced by injection of Np 237 can be reduced by prior hypophsectomy or adrenalectomy. Oral administration of glucose or butylated hydroxytoluene also resulted in decreased fatty response to Np 237. Thyroidectomy, ovariectomy, and testosterone treatment were without effect in female rats. Castration or injection of estradiol did not render the male more susceptible to Np 237 induced fatty livers. (Auth) (FMM)

<202>
Mahlon, D.D., General Electric Company, Hanford Atomic Products Operation, Biology Laboratory, Richland, WA. 1963, January 15

Intercellular Binding of Neptunium and Plutonium. HW-76000; Part of Kornberg, H.A. and Sweeney, E.G. (Eds.), Hanford Biology Research Annual Report for 1962, (p. 36-38), 269 p.

Female rats were injected with 6 mg Mp 237/kg body weight or 16 μ g Pu 239/kg of body weight. The animals were sacrificed either 1/2, 24, or 72 hours post injection. The organs were removed and 10% homogenates prepared in 0.25 M sucrose. Separation into nuclear (plus cellular debris), mitochondrial, microsomal, and soluble fractions was carried out by means of differential centrifugation. The distribution of Mp 237 and Pu 239 in subcellular fractions of liver and kidney of the rat was found to vary with the tissue studied, the element used, and the chemical form of the element administered. At both 1/2 and 72 hours post injection, the distribution of Mp 237 administered as the nitrate in liver fractions show that mitochondria contain the largest amount of the activity. The nuclear fraction contains the next greatest amount, with appreciable quantities appearing in the microsomal and soluble fractions. At 1/2 hour after injection, the pattern of distribution of Mp 237 is quite different in the kidney compared to the liver. When Mp 237 is administered in the citrate form and the animals sacrificed after 24 hr, the nuclear fraction becomes the most heavily labeled. At 1/2 hr after injection of Pu 239 in the nitrate form, the most activity is found in the nuclear fraction of both liver and kidneys. However, the mitochondrial and soluble fractions of liver each contain about 25% of the Pu 239, while the soluble fraction of kidney contains approximately three times the Pu 239 present in the mitochondria. (FMM)

Table 1 shows the distribution of Mp 237 nitrate in liver and kidney fractions of rats. Table 3 shows the distribution of Pu 239 nitrate in liver and kidney fractions of rats.

<203>
McClanahan, B.J., and H.A. Ragan, Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1965, January

Translocation of Subcutaneously Administered Plutonium 239 PuO₂. BNWL-122; Part of Thompson, R.C. and Woods, S.W. (Eds.), Hanford Biology Research Annual Report for 1964, (p. 81-82), 216 p.

Blond miniature swine were injected with 3.5 μ ci of Pu 239 PuO₂ in 0.01 ml of 0.1% polypropylene glycol ethylene oxide polymer in each foreleg at each of two sites. The animals were sacrificed 1, 7, 30, 60, and 90 days after injection. The amount of

plutonium deposited in soft tissues following subcutaneous injections of Pu 239 PuO₂ was about one-hundredth of that deposited when Pu 239 nitrate was injected. The regional lymph nodes were an exception, accumulating up to one-half as much when Pu 239 PuO₂ was injected as when Pu 239 nitrate was injected. (Auth) (FMM)

Table 1 shows Pu 239 in tissues of swine.

<204>
McClanahan, B.J., E.B. Howard, H.A. Ragan, and J.L. Beamer, Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1968, May

late Effects of Intradermally Administered Plutonium in Swine. BNWL-714; part of Thompson, R.C. et al (Eds.), Annual Report for 1967, (p. 112-114), 253 p.

At 9 months of age, ten Hanford miniature swine were injected intradermally with plutonium nitrate. Five years after multiple intradermal injections, liver and skeletal burdens were 6.5 and 9.2%, respectively, of the administered dose. The skin sites retained 2-7% of the injected plutonium. The liver was diffusely cirrhotic with severe fatty degeneration and necrosis of the hepatic cord cells. Some of the lymph nodes displayed a significant hyperplasia in the germinal follicles, and the hepatic node was lymphomatous. (Auth)

Table 1 shows retention of Pu in tissues of miniature swine, five years after intradermal injection.

<205>
McClanahan, B.J., Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1968, May

Plutonium-Contaminated Wound Studies. BNWL-714: Part of Thompson, R.C. et al (Eds.), Annual Report for 1967, (p. 6.3-6.7), 253 p.

Lacerations were made through the skin and subcutaneous tissue of the hind leg of rats. Solutions or suspensions of the appropriate plutonium compound, containing about 5 μ ci Pu 239, were placed in the wounds. One-half hour later the wounds were rinsed with 500 ml of either 0.9% NaCl or 0.2% DTPA in 0.9% NaCl. Some of these animals were subsequently injected intravenously with Na3 Ca DTPA (14 μ g/kg body weight) daily for a total of five injections. In the experiments Pu was injected subcutaneously as the nitrate or as the previously formed DTPA chelate. Some of these animals were subsequently treated with DTPA intravenously, at approximately daily intervals for a total of nine treatments. It was found that plutonium was not effectively removed from contaminated wounds by irrigation with DTPA, nor from intramuscular deposition sites by suffusion with DTPA. Simultaneous administration of dimethylsulfoxide (DMSO) did not increase the effectiveness of DTPA. Plutonium injected subcutaneously as the DTPA chelate was rapidly absorbed and 85% was excreted in the first day's urine. (Auth) (FMM)

<206>

<206>
 McClanahan, B.J., and H.A. Ragan, Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1966, January

Translocation of Subcutaneously Deposited Plutonium. BNWL-280; Part of Thompson, R.C. and Swezey, Z.G. (Eds.), Annual Report for 1965, (P. 83-85), 139 p.

Minature swine were injected subcutaneously on each foreleg with Pu 239 PuO₂ in 0.1% polyacryleneglycolethyleneoxide polymer to obtain information on plutonium translocation. The effects of diethylenetriaminepentaacetic acid (DTPA) and dimethylsulfoxide (DMSO) on translocation following subcutaneous injections of Pu 239(¹⁴) nitrate in rats were also investigated. Following subcutaneous injection of Pu 239 PuO₂ in minature swine, soft tissue concentrations of Pu 239 showed a continuing increase over a 1 year period. Treatments designed to alter translocation of Pu 239(¹⁴) nitrate in rats were generally of little effect. (Auth) (FMM)

Table 1 shows Pu 239 concentrations in the soft tissues of swine following subcutaneous injection of Pu 239 PuO₂.

<207>
 Huth, G.C., and P.J. Moldofsky, General Electric Company, Space Technology Products, Philadelphia, PA. 1971

In Vivo Measurement of Plutonium and Other Very Low Energy Emitters. IAEA-SM-143/33; STI/DUB/269; CONF-701112; Part of Proceedings of a Symposium on New Developments in Physical and Biological Radiation Detectors held in Vienna, Austria, November 23-27, 1970, (p. 225-234), 742 p.

A new type of radiation detector, the silicon avalanche diode, has made possible the previously impossible in vivo measurement of beta radiation as low as 5 keV and x ray and gamma radiation as low as 1 keV. The solid state analogue of the proportional counter, the avalanche diode provides internal charge gain within the silicon wafer, raising the radiation-induced signal far above the detector noise level. By this mechanism, radiation formerly below detector noise level can be detected with extremely low background (on the order of 1 count per minute) at temperatures up to 100 degrees C. Applications are being explored in nuclear medicine in the fields of bone scanning with I 125, eye tumor studies with P 32 and I 125, rapid analysis of skin cancer response to treatment (P 32), and in vivo detection of plutonium via the 13.6, 17.4, 20.5 keV L x rays from the uranium daughter. All these applications make use of the three principal characteristics of the avalanche detector:

(1) internal gain; (2) small size--as small as 3 mm (or as large as 30 mm) diameter; and (3) low noise and high sensitivity even at elevated temperatures. Currently, in vivo measurements of plutonium lodged in bronchial and metastinal lymph nodes behind the lungs are proceeding using a flexible detector probe that is inserted in the esophagus, in effect, partially swallowed. The experiments are performed with dogs whose inhaled plutonium has been filtered by these nodes from the lungs. At present, a minimum detectable amount at an 84% confidence level of Pu 239 of typical composition (i.e. including small amounts of other isotopes) detected by an avalanche detector in the esophagus is about 20 nCi. The results of the nuclear medical investigations being carried out by a dozen physicians throughout the United States on these and other applications indicate that the avalanche detector is making possible, in many cases for the first time, reliable in vivo measurement of extremely soft radiation with drastically reduced background and over a wide temperature range. (Auth)

<208>

Anspaugh, L.R., B.L. Phelps, G. Holliday, and K.O. Hanby, Lawrence Radiation Laboratory, Biomedical Division, Livermore, CA. 1970, November 13

Distribution and Redistribution of Airborne Particulates from the Schooner Cratering Event. UCRL-72514; CONF-701106-5; Part of Proceedings of the 5th Annual Health Physics Society Midyear Topical Symposium on the Health Physics Aspects of Nuclear Facility Siting, held in Idaho Falls, Idaho, November 3-6, 1970, Vol. 2, (p. 428-446), 288 p.

Project Schooner, a 31-kt nuclear cratering detonation, was conducted on December 8, 1968, at the Nevada Test Site. Twelve sampling stations consisting of 6 each, radiation activated, high-volume air samplers were established on arcs 6 and 50 miles downwind from the detonation site. Two stations were located upwind. The air samplers were electronically programmed to operate in a sequential fashion. Intensive sampling extended up to 6 weeks following the event. More than 20 gamma-emitting radionuclides were identified in the airborne particulates by the use of a Ge(Li) detector. Several days after the event, W 181 was the predominant radionuclide detected, and served as a unique tracer. Half-life of suspended radioactive particulates was observed to be 38 days. Resuspension factors were calculated and found to vary between 6 x 10²(2-5) and 10²(2-1)/m. Data showed the passage of radioactive particulates not to occur as an abrupt event but for the air activity to remain high for long periods of time after the detonation. Secondary peaks of air activity were seen as late as 2 to 4 days postshot and amounted to as much as 30% of the initial activity. Contributions of redistribution effects to the long-term radiological hazards associated with nuclear events are qualitatively discussed. (Auth)

<209>
Bair, W.J., and A.D. Wiggins, General Electric Company, Hanford Atomic Products Operation, Biology Laboratory, Richland, WA. 1963, January 15

Life Span of Mice Following Inhalation of Plutonium Dioxide. HW-76000; Part of Kornberg, H.A. and Swartz, E.C. (Eds.), Hanford Biology Research Annual Report for 1962, (p. 115-117), 269 p.

Pulmonary deposition of Pu 239 PuO₂ (0.038 to 0.72 nCi) in mice ranging in age from 122 to 369 days had no significant effect on their life span. Lungs and skeletons from a number of mice were analyzed for Pu 239 content and each was found to contain 0.1 to 10 pCi. The mean age at time of death for all groups varied from 649 to 782 days. (Auth) (PMM)

<210>
Evans, R.D., A.T. Keane, and M.M. Shanahan, Massachusetts Institute of Technology, Department of Physics, Radioactivity Center, Cambridge, MA. 1972

Radiogenic Effects in Man of Long-Term Skeletal Alpha Irradiation. Part of Stover, B.J. and Jee, W.S.S. (Eds.), Radiobiology of Plutonium. J.W. Press, Salt Lake City, Utah, (p. 431-468), 552 p.

In the absence of human-injury data, some radiation protection guides for Pu 239, Sr 90, and other bone-seeking radionuclides are founded on the human radium base-line or reference standard of 0.1 uci Ra residual burden, combined with radionuclide toxicity ratios determined from observations on long-lived experimental animals. In the M.I.T. series of human long-term radium cases, from a presently identified population of about 2200 individuals, some 600 have so far been studied (1970) while living plus about 60 after death through autopsy specimens, exhumations, or exhumed bodies, in addition to 120 matched control individuals. At average skeletal cumulative dosages above about 1000 rads marked radiobiological effects are seen. Among the epidemiologically suitable (unselected) high-dose cases, the cumulative incidence of bone sarcomas plus head carcinomas is about 0.28. The tumor appearance time in humans seems to increase with decreasing dosage, as it does in beagles, such that there would be a domain of dosages for which the required tumor appearance time exceeds the life span, thus defining a practical threshold dosage. The origin and proper use of UNSCEAR-ICRP linear nonthreshold models in formulating maximum-risk estimates for large-population exposures to low doses of radiation is reviewed. In humans undergoing long-term skeletal alpha-irradiation there is evidence for recovery processes and dose-rate dependence. Life-long observations are required before the response-vs-dosage relationships are certainly the final values.

Vigorous and long-term efforts will be exerted by the AEC's Center for Human Radiobiology to obtain the maximum information from this unique, inadvertently exposed, and irreplaceable human population. (Auth)

The report deals with radium and mesothorium toxicity in man but can be used as a base line or reference standard for determination of the toxicity ratio of other bone-seeking radionuclides such as Pu.

<211>
Carpenter, B.S., National Bureau of Standards, Analytical Chemistry Division, Activation Analysis Section, Washington, DC. 1972

Quantitative Applications of the Nuclear Track Technique. Microscope, 20, 175-182

The nuclear track technique has been applied to the quantitative determination of several elements that emit charged particles. The detector sample "sandwich" is exposed to the desired radiation source, fast or thermal neutrons, or high energy photons, and the charged particles emitted are registered in plastic detectors. The elements boron, lithium, nitrogen, thorium and uranium have been determined in various matrices; e.g., liver, orchard leaves, tomato leaves, blood, glass, soil, steel and minerals. The amount of material in these matrices is determined in three different ways: the absolute method, the method of standard additions and the comparative method. All three of these methods require that the plastic detectors be chemically etched and the resulting optically visible tracks are then counted with the aid of an image analyzing microscope. (Auth)

<212>
Hclzer, R.E., Institute of Geophysics and Planetary Physics, Los Angeles, CA. 1972, October 20

Atmospheric Electrical Effects of Nuclear Explosions. Journal of Geophysical Research, 77(30), 5845-5855

A series of electrostatic field measurements were made in the vicinity of nuclear explosions on the Nevada Proving Ground of the Atomic Energy Commission in 1952. The program was carried out during four tests of Operation Tumbler-Snapper. Detonations with energy yields in the 20-k range produced electric dipoles with the negative charge uppermost and with moments of a few coulomb kilometers. The electrical field produced by the nuclear cloud could be observed for several minutes after the explosion while the cloud moved upward through the troposphere to the vicinity of the tropopause. The estimated magnitude of the dipole moment of the cloud increased for several minutes as it moved upward. The results of the tests are in qualitative agreement with a gamma-ray-Compton electron model of charge separation. Difficulties associated with quantitative predictions of the model are discussed. The passage over the instruments of weak radioactive cloud from the stem of the mushroom cloud in one test produced results that are interpreted as a perturbation of the normal air-earth current system. (Auth)

<213>

Smith, V.H., J.F. Park, and D.K. Craig, Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1973, April

Radioalytic Effects on Chelatability of Plutonium Oxide. BNWL-1750 (Part 1); Part of Thompson, R.C. (Ed.), Annual Report for 1972, (p. 63-64), 103 p.

Ultrafiltration of Pu oxides, stored as aqueous suspensions, reveals increased solubility with time for the higher specific activity isotope Pu 238. Complexing by DTPA is facilitated by the radioalytic degradation of the oxide and by length of contact time. (Auth)

<214>

Sanders, C.L., Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1968, May

Phagocytosis and Translocation of Intrapерitoneally Injected Plutonium 239 PuO₂ and Plutonium 238 PuO₂ Particles. BNWL-714; Part of Thompson, R.C. et al (Eds.), Annual Report for 1967, (p. 6.13-6.17), 253 p.

Female rats were given intraperitoneal injections of either 1.4 μ Ci Pu 239 PuO₂ or 1.8 μ Ci Pu 238 PuO₂ particles of count median diameter 0.05 μ suspended in 2 ml saline. Animals were selected at intervals following injection and the abdominal cavity washed twice with 10 ml saline. Peritoneal fluid cells from the wash were examined autoradiographically. Other animals were sacrificed for assay of tissues for plutonium. Particles of Pu 239 PuO₂ and Pu 238 PuO₂ were phagocytized by peritoneal mononuclear phagocytes at similar rates. The Pu 239 PuO₂ was transported to the lymphatics of the omentum, resulting in necrosis of the omentum and subsequent release of Pu 239 back into the peritoneal cavity. The fate of the Pu 238 PuO₂ particles was distinctly different and as yet not completely resolved. There was a substantially greater proportion of the Pu 238, as compared to Pu 239 that eventually deposited in the liver and other tissues. It was noted that the phagocyte played a vital role in the clearance of particulate Pu from the peritoneal cavity. (Auth) (PMM)

<215>

Sanders, C.L., Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1973, April

Cocarcinogenic Effect of Plutonium 239 PuO₂ and Asbestos in the Lung. BNWL-1750 (Part 1); Part of Thompson, R.C. (Ed.), Annual Report for 1972, (p. 34), 103 p.

Four groups of rats were given intratracheal instillations of either Pu 239 PuO₂, chrysotile asbestos, Pu 239 PuO₂ plus

chrysotile asbestos, or saline. Particulates were suspended in 0.3 ml saline prior to instillation. The coadministration of Pu 239 PuO₂ with asbestos resulted in less excretion of Pu 239 than was the case with Pu 239 PuO₂ only. Focal granulomatous lesions were common around bronchiolar areas of the lung in animals receiving asbestos. Plutonium oxide particles tended to concentrate in these asbestos-induced lesions forming "hot spots" of alpha activity. (PMM)

<216>

Sanders, C.L., Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1973, April

Effect of Fasting on Removal of Plutonium by DTPA. BNWL-1750 (Part 1); Part of Thompson, R.C. (Ed.), Annual Report for 1972, (p. 59-60), 103 p.

Metabolic alterations due to fasting had no effect on the biologic deposition of Pu 239 PuO₂ injected intraperitoneally in rats or on decoration of Pu with DTPA. (Auth)

<217>

Sanders, C.L., and R.R. Adae, Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1968, May

The Ultrastructure of Peritoneal Mononuclear Phagocytes Exposed In Vivo to Plutonium 239 PuO₂ Particles. BNWL-714; Part of Thompson, R.C. et al (Eds.), Annual Report for 1967, (p. 6.20-6.21), 253 p.

Female rats given intraperitoneal injections of 1.4 μ Ci Pu 239 PuO₂ (count median diameter, 0.12 μ) were killed at 2, 6, 24, or 168 hr after injection and the peritoneal cavity was washed with saline. Peritoneal cell pellets were fixed and sectioned and autoradiograms of sections were prepared. Numerous electron-dense particles were found localized within cytoplasmic vacuoles of phagocytes. These were shown to be plutonium by electron microscopic autoradiography. Pu was also found in lysosomes in the cytoplasm of the phagocytes at 7 days. Only minimal alterations in phagocytes were observed during the first 6 hr but obvious necrosis was observed at 7 days. Lymphocytes were depleted after the first day. Necrosis of lymphocytes and their subsequent engulfment and digestion by phagocytes was frequently observed after the first day. It was concluded that peritoneal mononuclear phagocytes were more resistant to alpha irradiation than were other peritoneal cells. Phagocytosis of plutonium particles during the first few hours after deposition did not result in ultrastructural damage which would appear to impair their ability to transport particles to the visceral peritoneum. (PMM)

<218>

Stevens, W., D.R. Atherton, B.J. Stover, and P.W. Bruenger, University of Utah, College of Medicine, Radiobiology Division, Department of Anatomy, Salt Lake City, UT. 1973, March 31

Comparison of the Intracellular Distribution of Plutonium 239, Americium 241 and Californium 249 in Livers After Intravenous Administration. CDO-119-243; Part of Dougherty, T.F. Research in Radiobiology, Annual Report of Work in Progress in the Internal Irradiation Program, (p. 201-212), 400 p.

The intracellular distribution in livers of beagles injected intravenously with either Pu 239(\pm 4), Am 241(\pm 3), Cf 249(\pm 3) or Cf 252(\pm 3) in 0.08 M citrate, pH 3.5, was studied serially. Liver homogenates were fractionated by differential centrifugation. A mitochondrial fraction was obtained by centrifugation at 60,000 g-min, a lysosomal fraction at 8 x 10(\pm 5) g-min and a cytosol at 5 x 10(\pm 6) g-min. Initially all three nuclides were found in the cytosol and mostly associated with ferritin. Considerably higher concentrations of Am and Cf than Pu remained in the cytosol at progressively longer times after administration. The order of the rate of removal of nuclide from the cytosol was Pu >> Cf > Am. As the nuclide was removed from cytosol it became associated with subcellular organelles. No constant relationship was observed between concentration of nuclide and mitochondrial or lysosomal marker. The ratio of nuclide to lysosomal marker was consistently higher in the mitochondrial fraction than in the lysosomal fraction. However, significant contamination of the mitochondrial fraction with lysosomes was not demonstrated using electron microscopy. It is concluded that mitochondria and lysosomes and possibly other organelles are involved with nuclide binding in canine liver cells. (Auth)

<219>

Sanders, C.L., Jr., Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1972

Carcinogenicity of Inhaled Plutonium 238 in the Rat. BNWL-SA-4659; CONF-730603-2; Part of Proceedings of the 18th Annual Health Physics Society Meeting held in Miami Beach, Florida, June 17-21, 1973, (40 p.)

Three groups of albino, female rats were exposed to an aerosol of soluble Pu derived from crushed Pu 238 PuO₂ microspheres suspended in physiological saline. Initial alveolar burdens of Pu 238 were 5 nCi (Group 1), 18 nCi (Group 2), and 230 nCi (Group 3). Only 1% of the initial alveolar lung burden remained in the lung at one year, decreasing to 0.3% by 600 days after exposure. The Pu 238 body burden was 25% of initial alveolar burden at one year, decreasing to 12% by 1,000 days after exposure; about half of the body burden was found in the skeleton at these times. The cumulative radiation doses to the lung at two years after exposure were 9 rads (1), 32 rads (2), and 375 rads (3). Unexposed controls exhibited a median survival time of 825 days as compared to experimental survival times of 650 days (1), 675 days (2), and 550 days (3). The incidence of lung tumors in controls was 1.1% as compared to incidences in Pu 238 exposed rats of 6.6% (1), 23.3% (2), and 25.0% (3). The incidence of all tumors, other than mammary tumors, was 4.3% in unexposed controls, and in Pu 238 exposed rats, 26.7% (1), 36.6% (2), and 46.8% (3). It was concluded that exposure of rats to small amounts of inhaled Pu 238 resulted in a significant incidence of tumors in the lung and other tissues. (Auth)

<220>

Stewart, K., and R.H. Wilson, United Kingdom Atomic Energy Authority, Atomic Weapons Research Establishment, Aldermaston, Berkshire, England; University of Rochester, Rochester, NY. 1969, March

Final Evaluation of the Biological Measurements on Operation Roller Coaster (Joint US/UK Field Experiments). AWRE-0-76/67; 66 p.

The measured lung burdens of Pu for the three types of animal: burro (representing the horse), sheep and dog, are assessed in terms of the respirable aerosol determined from results obtained with cascade impactors. Consistent agreement between the two kinds of sampler is obtained. The observed changes in lung burdens with time are examined and relationships deduced by regression analysis. The statistical analysis of the results shows that those for each animal species form a self-consistent set. Methods of estimating the dose to man following exposure to aerosol clouds of the kind formed on the Double Tracks and Clean Slate 2 experiments are proposed. (Auth)

Table 5 shows lung deposition/retention of Pu in sheep. Table 6 shows lung deposition/retention of Pu in burros. Table 7 shows aerosol retention of Pu in dogs and sheep. Several other tables and figures are given including some on particle size distribution and radiation dose to lungs.

<221>

<221>
 Smith, V.H., General Electric Company, Hanford Atomic Products Operation, Biology Laboratory, Richland, WA. 1963, January 15

Prevention of Plutonium and Neptunium Deposition. RG-76000; Part of Kornberg, R.A. and Swartz, E.G. (Eds.), Hanford Biology Research Annual Report for 1962, (p. 143-148), 269 p.

Rats were injected with 1.5 mci of Pu 239 as the pH 5.5 citrate. Ten minutes later ultrasonic irradiation of the right rear leg was started and continued for 30 minutes using a General Electric ultrasonic generator, with a frequency of 100 kc/s at 80 ma. Urethane was administered in separate experiments both before and after Pu injection. Several other chelating agents, such as B-HQ (β-hydroxyquinoline) and UN (β-methylsubstituted phenone) were tested. The effect of DTPA on Pu deposition was investigated. Rats were given 0.89 mci Pu 237 or 17.9 mci Pu 239 as the pH 5 citrate and treated with 4.5 and 1.5 moles of DTPA respectively. The results showed that there was no statistically valid difference in Pu retention between the ultrasonically treated and untreated legs in either the DTPA treated or control animals. Urethane treatment before Pu injection decreased the liver Pu by half and increased bone Pu by a fourth as compared with untreated controls or post-Pu treatment with urethane. DTPA was the most effective agent studied, exercising greater effect on Pu than Np. Effects of these agents on toxicity are also noted. (FMM)

Table 1 shows the effect of urethane and ultrasonics on liver and bone deposition of Pu. Table 2 shows the effect of therapeutic treatment on retention of intravenously injected Pu.

<222>
 Smith, V.H., Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1965, January

Removal of Internally Deposited Plutonium from Rats. BNWL-122; Part of Thompson, R.C. and Woods, S.W. (Eds.), Hanford Biology Research Annual Report for 1964, (p. 118-121), 216 p.

Female, Sprague-Dawley rats were intravenously injected with 2 uCi Pu 239(+4) in 0.2 ml of pH 5 citrate buffer. One, 5 and 24 hr later they were treated with 0.1 mmol of deferoxamine (DFA) and diethylenetriaminepentaacetic acid (DTPA) (total treatment dose, 0.3 mmole). To prevent tetany, slightly less than an equivalent amount of calcium was given with all DTPA doses. Urine and feces were collected daily from each treatment group of 10 rats. Five days after injection of plutonium, the animals were killed and tissues analyzed. When administered to the

same rat DTPA and DFA showed a cooperative action wherein the plutonium deposition in bone reflected the DFA effect and the soft tissue response was that of DTPA. A similar response was not shown for the removal of well-fixed plutonium. (Auth) (FMM)

Table 1 shows effects of treatments on Pu 239 content of tissues of rats and excreta five days after administration. Table 2 shows concentration of Pu 238 in liver, kidneys, spleen, feces, urine and feces for treated and control rats eight weeks after isotope administration.

<223>
 Schubert, J., Argonne National Laboratory, Division of Biological and Medical Research, Lemont, IL. 1961

Internal Contamination and Its Treatment. Part of Rajewsky, E. (Ed.), Proceedings of the 9th International Congress of Radiology held in Munchen, Germany, July 23-30, 1959. Georg Thieme Verlag, Stuttgart, Germany, (p. 1251-1257), 1625 p.

The action of chelating agents in hastening the elimination of radioelements deposited in the body is described. Specifically, the effectiveness of the well-known chelating agent, ethylenediaminetetraacetic acid (EDTA) is compared to that of diethylenetriaminepentaacetic acid (DTPA) with respect to its ability to hasten the elimination of plutonium and thorium from rats. The data show that DTPA is more effective than EDTA against trivalent and tetravalent radioelements. Ultrafiltration studies of the radioelements deposited in tissues before and after treatment with a chelating agent prove that diffusible chelate is formed within the tissues, and that the diffusibility of the chelate remains well above the control levels for at least a week. This explains the observation that, following a single injection of chelating agent, the urinary excretion of the radioelement remains well above control levels for several days afterward. While a chelating agent may act efficiently against the nonpolymerized forms of hydrolyzable radioelements such as thorium, it is shown that when the polymerized form of the radioelement is injected, the chelating agent is much less effective. This is attributed to the slow rate at which the chelating agent depolymerizes the inorganic polymer. On the other hand, subsequent injections of the chelating agent cause the urinary excretion of the polymerized element to be greater than that following earlier injections--the opposite effect is observed with the nonpolymerized or ionic form of the same radioelement. The question of the possible effectiveness of chelating agents such as EDTA against Sr 90 is discussed. Calculations based on mass action equations show that it is highly improbable that these chelating agents can affect the excretion of Sr 90. Other calculations show that it is impractical to effect the removal of Sr 90 by the administration of the stable isotope. (Auth)

<224>
 Scott, K., H. Fisher, D. Axelrod, J. Crowley,
 A.J. Barber, and J.G. Hamilton, Lawrence
 Radiation Laboratory, Livermore, Ca. 1946,
 October 15

Metabolism of Plutonium in Rats. MDDC-1018; 27
 p. (Declassified June 5, 1947)

The results of detailed metabolic studies of plutonium following oral, intramuscular, intravenous, subcutaneous and intrapulmonary administration to rats are presented. Plutonium is not absorbed from the digestive tract. The skeleton is the chief organ of deposition for plutonium absorbed by the body following parenteral administration. The digestive tract is the principal channel of elimination, and the degree of retention is very great. The rate of excretion is very slow, and the half-period of retention of plutonium by the skeleton is estimated to exceed 6 months. No significant differences in the metabolic properties of plutonium absorbed by the body were observed for its 3 valence states. Considerable retention of plutonium by the lungs following intrapulmonary administration was observed, and was found to be highest for the $+4$ state, less for $+5$ plutonium, and least for $+6$ plutonium. A significant degree of absorption of plutonium from the lungs with subsequent deposition in the skeleton took place following the intrapulmonary administration of solutions of this element in its 3 valence states. (Auth)

<225>
 Scott, K.G., H.C. Lanz, D. Axelrod, J. Crowley,
 and J.G. Hamilton, Lawrence Radiation
 Laboratory, Livermore, Ca. 1946, October 10

Studies on the Inhalation of Fissionable Materials and Fission Products and their Subsequent Fate in Rats and Man. MDDC-1276; 68 p. (Declassified August 28, 1947)

Experiments were done to ascertain the possible hazard resulting from inhalation of fissionable materials and fission products. Aerosols of plutonium, uranium plus fission products, protactinium, and short-lived fission products obtained from the cyclotron and the Clinton Pile were administered to rats. A Zr 89 aerosol was administered to one human subject and to rats. Aerosols of the above elements were almost totally retained by the head and lungs immediately after exposure. After four days the lungs contained the largest percentage of these elements. The elements deposited in the head were quickly eliminated via the gastrointestinal tract. The same avenue of elimination was used by the lungs, but at a slower rate. The small percentage absorbed into the body was primarily deposited in the skeleton after conditions of equilibrium had been established. Radioautographic studies indicate that the site of deposition in the lungs of these materials is in the bronchial passages and the alveolar structures. They are rapidly removed from the bronchial tree, presumably by ciliary action and are very slowly released from the alveoli. No accumulation of any of the radionuclides was observed in either blood vessels or lymph nodes. (Auth)

<226>
 Not given, Nevada Operations Office, Las Vegas,
 NV. 1973, January

Reports Available in Plowshare Open File.
 NVO-86 (Rev. 2); 30 p.

A significant compilation of scientific and technical information has resulted from Projects Gasbuggy, Rulison, Rio Blanco and Wagon Wheel, all of which are a part of the U.S. Atomic Energy Commission's Plowshare program to develop peaceful uses for nuclear explosives. The fundamental concept in these underground engineering applications is to use the energy of a deeply buried nuclear explosive to increase the permeability and porosity of rock thereby stimulating the flow of natural gas. The publications concerning Gasbuggy, Rulison, Rio Blanco and Wagon Wheel, that have been placed in the Plowshare Open Files by the Nevada Operations Office, are listed in the document. All of these publications are available to the scientific, technical, and industrial communities. Also listed are certain other publications concerning the AEC's safety programs for underground nuclear detonations which may be of particular interest. Addresses where the documents may be inspected or purchased are given. (PMM)

<227>
 Brown, G.W., Jr. (Ed.), University of
 Washington, College of Fisheries, Seattle, WA.
 1968

Desert Biology, Special Topics on the Physical and Biological Aspects of Arid Regions. Academic Press, New York, New York, Vols. 1-2, 635 p.

Basic biological and physical information on the desert and arid regions of the world is presented. A desert community, the Merkhiyat Jebels near Khartoum is first described. Succeeding chapters are devoted to causes, climates distribution and geological aspects of deserts, biology of plants, amphibians, reptiles, birds and mammals in deserts, desert limnology, venoms of desert animals and human adaptation to arid environments. Chapters 1-11 have been abstracted individually for the data base. (PMM)

<228>

<228>
 Cloudsley-Thompson, J.L., University of Khartoum, Department of Zoology, Khartoum, Sudan. 1968

The Merkhiyat Jebels: A Desert Community. Part of Brown, G.W., Jr. (Ed.), Desert Biology, Vol. 1, Chapter 1. Academic Press, New York, New York, (p. 1-20), 635 p.

The Merkhiyat Jebels are hills to the northwest of Khartoum and they rise to a height of about 100 meters above the general level of the surrounding plain. The vegetation of the area is classified as acacia desert scrub. Some plant species such as *MARUA CRASSIFOLIA* extend upward from the desert plain but others such as *HIBISCUS MICRANTHUS* are restricted to the jebels because they are too selectively grazed elsewhere by camels. Life develops rapidly in the natural temporary pools that appear each year after rain and last from a few days to 5 or 6 weeks. *TRIOPS GRANARIUS*, *T. CANCERIFORMIS*, *MOINA DUBIA* and *METACYCLOPS MINUTUS* are some of rain fauna. The mammals common to the area are humped cattle, camels, foxes (*VULPES PALLIDA*), mongooses (*ICHEONUMIA ALBICAUDA*), ground squirrels, jerboas, hares and bats. The reptiles include snakes (*PHYTOM SEBAS* and *NAJA HAJE*), tortoises and lizards. The peculiarities and behavior patterns of some of the arthropods are described such as the Buprestid beetles, (*STERNOCHERA CASTANEA*), the bagworm (*AUCHMOPHILA KORDOPENSIS*), scorpion (*LEBIURIS QUINQUESTRATUS*), mantids, grasshoppers, ants, wasps, flies, and spiders. (FMM)

<229>
 Logan, R.F., University of California, Department of Geography, Los Angeles, CA. 1968

Causes, Climates, and Distribution of Deserts. Part of Brown, G.W., Jr. (Ed.), Desert Biology, Vol. 1, Chapter 2. Academic Press, New York, New York, (p. 21-50), 635 p.

The sole common characteristic of all deserts is their aridity. The causes of aridity are several. For example, extremely porous soils allow water to percolate through them so rapidly that little is returned for the use of plants, thus creating an edaphic desert. Physiological deserts are present in the Arctic and Antarctic and at high altitudes on mountains in all latitudes because of the fact that water is present only in the solid form (ice) and hence is unavailable to plants. The world's deserts can be divided, climatically into five types, based on the causes of their aridity: (1) subtropical deserts, (2) cool coastal deserts, (3) rain shadow deserts, (4) continental interior deserts, and (5) polar deserts. The subtropical deserts include the Sahara of North Africa, the deserts of Arabia, Syria, Jordan, Iraq, Iran, Afghanistan, Baluchistan, West Pakistan, the Sonoran Desert of Mexico, Arizona and California, the Kalahari of South Africa, deserts of Australia and small areas of West Argentina. The cool coastal deserts are the Namib or the Coast of Southwest Africa, the Atacama, the coastal desert of Chile and Peru and the desert on the Pacific Coast of Baja California in Mexico. The Great Basin deserts of Nevada, Utah and adjacent states, owe their existence to their rain shadow position on the lee of the Sierra and Cascade Ranges to the west and the Rocky Mountains to the east. Examples of the other desert types are given and the climatic conditions of and causes of aridity, are discussed in detail for all the desert types. (FMM)

<230>
 Smith, H.T.U., University of Massachusetts, Department of Geology, Amherst, MA. 1968

Geologic and Geomorphic Aspects of Deserts. Part of Brown, G.W., Jr. (Ed.), Desert Biology, Vol. 1, Chapter 3. Academic Press, New York, New York, (p. 51-100), 635 p.

Detailed characteristics of the desert environment are a function of the interaction of bedrock geology and surface processes through time. Bedrock geology sets the stage for various destructive processes and predetermines the size, shape and distribution of landscape such as the mountains and uplands, cliffs and escarpments, sand dunes and drainage features. The surficial deposits in desert lowlands, hydrologic aspects of desert basins, and desert soils are treated in detail. The surficial geological processes such as weathering, gravitational movement of detrital rock, work of surface water and wind, as well as the climatic changes in desert regions, are discussed. (FMM)

<231>
Johnson, A.W., San Diego State College,
Department of Biology, San Diego, CA. 1968

The Evolution of Desert Vegetation in Western North America. Part of Brown, G.W., Jr. (Ed.), Desert Biology, Vol. 1, Chapter 4. Academic Press, New York, New York, (p. 101-140), 635 p.

The evolution of the vegetation of the Mojave and Colorado Deserts of the southwestern part of the United States is reviewed. By combining all information now available—paleobotanical records, paleogeographical concepts, modern distributional and ecological information, and cytological observations—it appears that the desert flora consists of species of diverse ages and origins, and the modern desert vegetation likewise can be characterized as a changing mosaic of species associations that together are arranged continuously in space and time. The Mojave and Colorado Desert floras include about 278 genera and 1084 species and about 156 of these species are endemic. Except for a few species (less than 1%), substantive information on the age, origin, or evolution of the California desert flora is lacking. To trace their evolutionary roots to the tropics is reasonable in the sense of the proposed tropical origin of angiosperms per se, but the proximal origin of the majority of species and perhaps genera of desert angiosperms in California apparently lies in the western United States. (PMM)

Tables are present showing the genera of angiospermous desert plants in California giving the number of species occurring, number of endemic species, and the geographical affinity.

<232>
McCleary, J.A., California State College,
Fullerton, CA. 1968

The Biology of Desert Plants. Part of Brown, G.W., Jr. (Ed.), Desert Biology, Vol. 1, Chapter 5. Academic Press, New York, New York, (p. 141-194), 635 p.

The flora of temperate, warm, coastal and Australian deserts is described and compared. For example, the flora of the Great Basin of North America is compared with that of central Asia where the species of Compositae and Chenopodiaceae, and more definitely those of the genera ARTEMESIA and ATRIPLEX, compose the bulk of the individuals along with other well-known genera such as ERYOTIA, SALICOLA, ASTRAGALUS and EPHEDRA. The warm deserts are quite distinct, both in general aspect and in the actual families and genera that occur there. The greater abundance of trees in comparison with the temperate deserts along with the wider spacing of the individuals is very noticeable. Although many plant families are known, the Zygophyllaceae, Liliaceae, Leguminosae, and the Amaranthaceae are outstanding. The two larger coastal fog deserts are dissimilar in plant constituents. In the South American deserts are located many outstanding members of the Leguminosae, Bromeliaceae, Cactaceae, Compositae, and Oxalidaceae. In South Africa the Leguminosae, Liliaceae, Asclepiadaceae, and Aizoaceae are most distinctive. The Australian deserts can be called grass deserts. Here TRIODIA is represented by many species, as is ASTREBLA and the ephemeral taxa of ARISTIDA and STIPA. In addition, the eucalypti as well as numerous species of the Proteaceae and Chenopodiaceae are common. The adaptations of plants to arid environments are discussed with reference to morphology, time of germination and physiology. Studies on the lower plants, namely algae, fungi, slime molds, lichens, bryophytes and ferns are reported and some ecological studies of desert floras are presented. (PMM)

<233>
Mayhew, W.W., University of California,
Department of Life Sciences, Riverside, CA. 1968

Biology of Desert Amphibians and Reptiles. Part of Brown, G.W., Jr. (Ed.), Desert Biology, Vol. 1, Chapter 6. Academic Press, New York, New York, (p. 195-355), 635 p.

Animals that succeed in deserts are those that have found a way to cope with or to evade the lean dry seasons. The amphibians, turtles, lizards and snakes are treated separately in respect to distribution, behavior, food habits, water balance, temperature preferences, reproduction and adaptations to deserts. (PMM)

<234>

<234>

Dawson, W.R., and G.A. Bartholomew, University of Michigan, Department of Zoology, Ann Arbor, MI; University of California, Department of Zoology, Los Angeles, CA. 1968

Temperature Regulation and Water Economy of Desert Birds. Part of Brown, G.W., Jr. (Ed.), Desert Biology, Vol. 1, Chapter 7. Academic Press, New York, New York, (p. 387-394), 635 p.

Birds are well represented in the desert regions of the world, where they exist despite some physiological handicaps and in certain instances because of the special advantage of extreme mobility. Most of the North American species apparently have not developed special means for contending with heat and aridity, even though the failure of the majority to utilize underground shelter limits their opportunities for evading the extreme conditions of their environment. Survival on hot days in deserts relies in part upon a general avian capacity for tolerating elevations of body temperature to as much as 4 degrees C above normal levels and upon behavioral patterns that serve to reduce heat stress. Water loss by desert birds generally exceeds oxidative water production and, like species from more mesic environments, they require preformed water. This requirement forces certain species to remain close to surface water. Others with stronger powers of flight may forage widely, moving to water every day or so. Tolerance of dehydration may be important to such birds. Many species appear virtually independent of surface water, obtaining their fluid from food such as succulent plants, fruits, insects, or vertebrate prey. A number of the deserts of the eastern hemisphere may be of considerable antiquity, and the avifaunas associated with them appear more distinctive than those of the deserts of the western hemisphere. Birds indigenous to these eastern deserts might well show more conspicuous physiological adjustments to heat and aridity than the majority of the North American species that have been studied. The keying of reproduction to rain or its consequences and the nomadic tendencies of birds from dry parts of Australia or Africa are probably indications of this. (Auth) (FMM)

<235>

Bartholomew, G.A., and W.R. Dawson, University of California, Department of Zoology, Los Angeles, CA; University of Michigan, Department of Zoology, Ann Arbor, MI. 1968

Temperature Regulation in Desert Mammals. Part of Brown, G.W., Jr. (Ed.), Desert Biology, Vol. 1, Chapter 8. Academic Press, New York, New York, (p. 395-422), 635 p.

The combination of heat and aridity, characteristics of low latitude deserts, presents an unusually acute thermoregulatory challenge to homeotherms because it poses the problem of losing heat to a hot environment while at the same time keeping water loss at a minimum. The adaptive complexes that allow mammals to live in deserts are diverse and varied and involve an interplay between physiology, behavior, and morphology in which temporal patterning on both a daily and a seasonal basis is of key importance. For most mammals and for all those weighing less than a few kilograms, the primary adaptation to the desert is one of evading the challenge of heat by going underground or by being nocturnal or both. Where behavioral avoidance is impractical, a frequently

observed adjustment involves the relaxation of limits for thermoregulatory homeostasis and the behavioral acceptance of hyperthermia. A number of desert mammals have basal metabolic rates lower than would be expected on the basis of size. Both seasonal and daily torpidity have been demonstrated in several kinds of rodents. Prolonged periods of summer dormancy (estivation) allow the animals to avoid the most stringent time of the year, while the daily periods of facultative hypothermia appear to be an adaptation to long-term food shortages. (Auth) (FMM)

<236>

Cole, G.A., Arizona State University, Department of Biology, Tempe, AR. 1968

Desert Limnology. Part of Brown, G.W., Jr. (Ed.), Desert Biology, Vol. 1, Chapter 9. Academic Press, New York, New York, (p. 423-466), 635 p.

The climatic distribution and origins of desert waters is first discussed. There is great diversity in desert waters but they share a number of features. Continental arid-land waters are markedly influenced by climatic fluctuations. A result is the high incidence of astatic lakes and their precarious existence. In drier regions, complete desiccation of lakes may follow a decline in precipitation or a temperature rise. In endorheic or archeic zones, waters are typically concentrated, are high in electrolytes and are quite different from the dilute standard type of humid, exorheic areas. Figures showing the anionic composition and concentration trends of various lakes are given. The productivity in desert waters is discussed. For example the mean annual gross photosynthesis in Pina Blanca Lake, Arizona was estimated at 1.6 kg O₂/m². Other aspects treated are plankton populations, benthos, fish production, biota of temporary waters and saline waters, endemism and relictism. (FMM)

<237>

Hinton, S.A., Jr., Indiana University, Medical Center, Indianapolis, IN. 1968

Venoms of Desert Animals. Part of Brown, G.W., Jr. (Ed.), Desert Biology, Vol. 1, Chapter 10. Academic Press, New York, New York, (p. 487-515), 635 p.

Venom to kill or immobilize prey is particularly useful to the desert predator that must rely upon sparse and often seasonal food supply, because it permits the animal to overcome prey that would otherwise be too large, too active, or too well defended to be taken. The venoms are described for scorpions, spiders, insects, centipedes, millipedes, amphibians, lizards and snakes. In some cases the chemical formula is given and the effects of the poison on man and animals, the venom apparatus and yield and toxicity of venoms are described. (FMM)

Table 2 gives the yield and toxicity of some medically important spider venoms. Table 3 gives the yield and toxicity of some representative desert snake venoms. Table 4 gives the enzymes of some representative snake venoms.

<238>
Lee, D.H.K., U.S. Public Health Service,
Division of Environmental Health Sciences,
Triangle Park, NC. 1968

Human Adaptations to Arid Environments. Part of
Brown, G.W., Jr. (Ed.), Desert Biology, Vol. 1,
Chapter 11. Academic Press, New York, New York.
(p. 517-556), 635 p.

The criterion of man's adaptation to living conditions, residence and work in hot arid zones is his ability to satisfy his needs in regard to comfort, activity and motivation. The five desert forces, heat, sun, aridity, lack of resources, and isolation, are the basic threats. Given food, water, and health, man is able, physiologically, to cope with almost all natural desert conditions. The factors that add to or subtract from the heat content of the body, namely environmental temperature, radiant heat, humidity, air movement and metabolic rate are discussed. The body's regulatory responses are examined and the disturbances of bodily function that may ensue are noted. The thermoregulatory processes described are dilatation of skin blood vessels, sweating, reduced activity and increased surface area by relaxed posture. Some technological adaptations, such as housing, air conditioning and clothing are described. Two other aspects entering into man's adaptability to unaccustomed conditions, one in the psychological (attitude) and one in the cultural (enculturation) sphere are discussed. (PHH)

<239>
Jones, Y.H., and P.O. Jackson, Battelle Memorial
Institute, Pacific Northwest Laboratories,
Richland, WA. 1968, May

The Determination of Plutonium to Americium Ratios in Biological Specimens. BNWL-710; Part of Thompson, R.C. et al (Eds.), Annual Report for 1967, (p. 3.11-3.12), 253 p.

Techniques were developed to determine the plutonium-to-amercuric ratios in organs of animals that had inhaled a mixed plutonium-amercuric oxide. These methods employed alpha pulse height or photon spectrometry techniques. Where samples were analyzed by both of these methods, good agreement was obtained. The photon spectrometric method is preferred because it can be applied directly to wet-ashed samples. However, because present silicon diode detectors are small and the x-ray fluorescence yields for Pu 239 are low, the overall counting efficiency is lower than that which can be achieved with alpha analysis. (Auth)

<240>
Bul'dakov, L.A., Z.I. Kalaykova, Yu.I. Moskalev,
and V.N. Strel'tsova, Not given. 1969

On the Role of the Time Factor in Separate and Combined Infection with Cerium 144 and Plutonium 239. AEC-tr-7195; Part of Moskalev, Yu.I. (Ed.), Radioactive Isotopes and the Body, (p. 329-356), 458 p.

Experiments were conducted on 1505 rats weighing from 140 to 200 g. A HCl solution of Ce 144 and a citric acid solution of Pu 239 were administered intraperitoneally at pH 3.0 and 6.5, respectively. The results show that under all versions of the administration of Ce 144 and Pu 239 the life span of the rats was reliably lower than in intact animals. The more considerable shortening of life span under the dosages used is caused by Ce 144. If in a single administration of Pu 239 in doses of 0.30 and 0.60 uci the average life span of the rats is shortened to 505 plus or minus 17.5 and 414 plus or minus 15.0 days from 682 plus or minus 10.4 days in the clean control, under the administration of 100 and 200 uci of Ce 144 the life span is shortened to 375 plus or minus 13.6 and 165 plus or minus 21.5 days. Simultaneous administration of 0.30 uci of Pu 239 plus 100 uci of Ce 144 or 0.15 uci of Pu 239 plus 50 uci of Ce 144 is accompanied by the shortening of the life span from 582 plus or minus 10.4 days in the clean control to 342 plus or minus 14.0 and 305 plus or minus 12.5 days, respectively. Under a double administration of 50 uci of Ce 144 and 15 uci of Pu 239 with an increase in the interval between injections, the average life span of the rats increased as compared with a single administration if Ce was used for the second injection and decreased or remained unchanged if Pu was used. Under a single administration of 0.30 uci of Pu 239 or 100 uci of Ce 144 or 50 uci of Ce 144 plus 0.15 uci of Pu 239 and also under the administration of the isotopes in double quantities, the percent of the occurrence of osteosarcoma was 6 minus 17.3% and under a double administration of the emitters with different intervals between injections, the occurrence of osteosarcoma decreases to 3 minus 24%. The results also show shifts in the cellular composition of peripheral blood following administration of isotopes. It was shown that quadruple administration of Ce 144 in a total dosage of 200 uci causes expressed early and prolonged leukopenia and moderate late anemia. Plutonium 239 in a total dosage of 0.60 uci does not affect the number of leukocytes but causes greater anemia at the end of the experiment. (PHH)

<241>

<241>
Buldakov, L.A., and Yu.I. Noskalev, Not given.
1961

Distribution of Plutonium 239 in the Skeleton and Liver of Rats and Kinetics of Its Elimination Depending on the Dose and Rhythms of the Isotope. AEC-tr-5425; Part of Radiobiology, (p. 37-45); Radiobiologiya, 1(8), 487-492

Upon intraperitoneal administration of plutonium in an amount of 0.25 to 4 μ Ci per rat, the character of distribution of the citrate complex of plutonium does not depend on the dose. The basic quantities of isotope are detected in the skeleton (up to 50%) and in the liver (up to 5.2%) within two months following a single administration. After a single and a prolonged uptake, the elimination of plutonium from the skeleton upon its introduction in the form of a citrate complex obeys the exponential law. The biological period of semi-elimination of plutonium from the skeleton upon single administration is equal to approximately 530 days, upon divided introduction to 410 days, and the elimination constants (Lambda) are 0.0013 and 0.0017, respectively. Upon prolonged administration, the value of plutonium deposition in bone tissue decreases. After a single administration, the elimination of plutonium from the liver obeys the exponential law and after divided doses that of the power function. Upon single administration, the biological period of semi-elimination of plutonium from the liver is equal to 195 days. (Auth)

<242>

Antonchenko, G.P., N.A. Kosurnikova, and E.R. Lyubchanskiy, Ministry of Public Health, Institute of Biophysics, Moscow, USSR. 1969

Morphological Changes in the Lungs of Rats After Inhalation of Large Doses of Soluble Plutonium 239 Compounds. AEC-tr-7028; Part of Radiobiology, (p. 97-104), 220p.; Radiobiologiya, 9(1), 75-90

The inhalation of plutonium 239 citrate and ammonium plutonium pentacarbonate in amounts producing an initial deposition of approximately 0.5-1.5 μ Ci of the isotope in the lungs shortens the average lifetime of rats by 10-15 fold in comparison with the control. The pathological anatomical changes in the lungs of the experimental rats after the intake of large quantities of plutonium citrate and ammonium plutonium pentacarbonate (in an excess of ammonium carbonate) do not depend on the chemical form of the inhaled compound and are determined chiefly by the amount of original deposition of the isotope in the lungs. Among the animals that died before the hundredth day, the leading thanatogenic factor was fibrinous-suppurative inflammation of the lungs; among the rats that died after the hundredth day, the leading cause of death was pneumosclerosis. (Auth)

<243>
Bukhtoyarova, Z.M., and A.P. Bifatov, Not given.
1969

Microdistribution of Plutonium 239 and the Histopathology of the Liver and Skeleton of Dogs to Intravenous Administration of the Isotope. AEC-tr-7195; Part of Noskalev, Yu.I. (Ed.), Radioactive Isotopes and the Body, (p. 364-375), 458 p.

The study was conducted on 36 dogs weighing from 7-29 kg and 2-5 years of age. Plutonium 239 was administered intravenously in the form of a nitrate solution at pH 3.0 in the quantity of 2 μ Ci/kg. The results show that the microdistribution of plutonium in the liver was not uniform. The greater portion of the isotope was distributed in the form of aggregates in the reticuloendothelial elements of the liver, preferentially in the peripheral sections of the liver lobules and the smaller part in the form of diffusely positioned tracks in liver cells and other structural elements of liver tissue. In early periods after administration of plutonium, dystrophic changes were noted preferentially in the peripheral parts of the lobules, sections of aggregation of the isotopes were seen and in later periods there was a rise of annular atrophic cirrhosis of the liver. In the bones of dogs, plutonium is localized in all structural elements of the bone tissue and bone marrow even in late periods following administration. The greatest content of the isotopes was noted in the metaphysis of the tubular bones with preferential concentration in the bone marrow, endosteum, periosteum and to a smaller degree in the bone tissue itself. Dystrophic changes in the bone structure and vessels were observed in early periods in the bone tissue, basically in the region of the metaphysis. There was a breakdown in normal osteogenesis and as a result the newly formed bone structure was a disorganized form. Pretumorous changes were noted after 6 months and typical osteogenic sarcoma after 2-5 years. (Auth) (PMH)

<244>

Grove, D.B., U.S. Geological Survey Reston, VA; Sandia Laboratories, Albuquerque, NM. 1969, October

The Development of Theoretical Equations to Describe the Flow of a Radioactive Ion in Groundwater, Annual Report, December 1, 1966 to November 30, 1967. SC-CR-58-3637; 58 p.

A mathematical modeling study of the flow of trace concentration of ions through a porous media is described. The theoretical work in the report was performed as an aid in evaluating possible hazard resulting from the earth burial of a SNAP device containing radioactive fuel material. Ion-exchange processes examined included instantaneous equilibrium, the use of theoretical plates, and the assumption of a second-order kinetic-rate reaction. (Auth)

<245>

Buldakov, L.A., Ministry of Public Health,
Institute of Biophysics, Moscow, USSR. 1968

The Behavior of Plutonium (Pu 239) in Young
Pigs. AEC-tr-6950; Part of Radiobiologiya, (r.
101-106), 306 p.; Radiobiology, 8(1), 62-64

The distribution of 1% citric acid solution of Pu 239 (pH equals 6.5) was investigated after administration of 3 uCi intravenously to 15 young pigs and 33 uCi perorally to 3 young pigs, each pig being 2.5 months old and weighing 10-12 kg. Animals from the first group (intravenous injection) were killed in groups of three on 1, 9, 65, 330 and 660 days after injection and those of the second group (peroral administration) on the day after administration. The absorption of plutonium citrate was 0.19 percent in the intestines and 67 percent of the absorbed portion of the Pu was retained in the skeleton. The maximum content in the spongy bones was only three times (after intravenous injection, 3-10 times) as much as in the compact parts of the skeleton. The Pu concentration in the bones was 3-10 times as large as in the soft tissues (excluding muscles) after peroral and 20-100 times as large after intravenous administration. (Auth)

The distribution of Pu 239 in the organs of suckling pigs 28 hrs after IV and peroral administration is shown in tabular form.

<246>

Galibin, G.P., P.A. Vlasov, and L.A. Fedorovskaya,
Not given. 1971

Remote Aftereffects of Killing Rats Using
Ammonium Diuranate. AEC-tr-7387; Part of
Moskalev, Yu.I. (Ed.), Remote Aftereffects of
Radiation Damage, (p. 214-224), 574 p.

Rats were subjected to daily inhalation of an ammonium diuranate aerosol at a concentration of 8 mg/m³ or 1 mg/m³. The results show that ammonium diuranate in a concentration of 8.1 mg/m³ is toxic for rats while a concentration of ammonium diuranate of 1.0 mg/m³ is close to the minimum effective concentration. In the case of chronic daily poisoning of rats with ammonium diuranate, one of the early indicators of damage is an impairment in functioning of the liver and kidneys (proteinuria, glucosuria, increase in the quantity of residual nitrogen in the blood, decrease in the quantity of hippuric acid eliminated in the urine, positive test with a bromophenol blue dye). Changes in the morphological composition of the peripheral blood in the case of damage with ammonium diuranate are characterized by a decrease in hemoglobin content, a decrease in the number of erythrocytes, reticulocytosis, relative lymphopenia and eosinophilia. At latent periods (after 2-20 months) following cessation of ammonium diuranate administration, indicators of body damage are an increase in the number of blood cells with a modified hue when a fluorescent microscope is used and eosinophilia. Ammonium diuranate, in the case of chronic inhalation in a concentration of 8 mg/m³, shortens the life of the animals, whereas a concentration of 1 mg/m³ under these same conditions exerts no influence on lifetime. Pathomorphological changes in the case of chronic inhalation of ammonium diuranate at latent periods are characterized by interstitial pneumonia and evidence of pneumosclerosis in the lungs, nephrotoxic focal sclerosis in the kidneys and the appearance of parenchymatous dystrophy in the liver with different degrees of expression in different animals. (Auth)

<247>

Campbell, E., and J.F. McInroy, Los Alamos
Scientific Laboratory, Los Alamos, NM. 1973,
November

Plutonium and Environmental Metals in Man,
Interlaboratory Meeting, May 9, 1973.
LA-5445-C; CONF-730577-1; Part of Proceedings of
a Symposium on Plutonium and Environmental
Metals in Man held in Albuquerque, New Mexico,
May 9, 1973, (10p.)

An interlaboratory meeting was held in Albuquerque, New Mexico, to coordinate the efforts of the Los Alamos Scientific Laboratory, Battelle Northwest Laboratories, and Dow Chemical Company in carrying out a tissue analysis program. Various aspects of the analytical procedures and handling of human autopsy tissues for plutonium analysis were discussed. The purpose of the tissue analysis program is to establish the level of plutonium in the general population and detect any trend or changes in the plutonium concentration. The meeting was concluded with a summary of the analytical methods used at the three laboratories. (ST)

<248>

<248>
 Ballou, J.E., D.K. Craig, J.F. Park, B.A. Ragan, and C.L. Sanders, Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1973, April

Dose-Effect Studies with Inhaled Plutonium in Rats and Dogs. BNWL-1750 (Part 1); Part of Thompson, R.C. (Ed.), Annual Report for 1972, (p. 21-27), 103 p.

Eighteen month old beagle dogs exposed to Pu 239 PuO₂ aerosols and sacrificed 7 to 30 days later had more than 98% of the final Pu body burden in the lungs. One dog with a low total body burden of 11 μ ci showed more translocation to muscle, skeleton, and other tissues. During the first postexposure year, 11 to 29% of the Pu was translocated from the lung to the thoracic lymph nodes with little translocation to other tissues. About 75% of the total excreted Pu was excreted during the first 8 postexposure days, with 99% of this in the feces. The mean whole body retention half-time of the alveolar deposited Pu was 4900 plus or minus 3800 days, and the 1³⁹Ag retention half-time was 1500 plus or minus 700 days. In the same manner dogs were exposed to freshly prepared and aged preparations of Pu 238 PuO₂. Dogs exposed to the freshwater suspensions showed more than 96% of the Pu body burden in the lungs and thoracic lymph nodes 30 to 78 days postexposure. Those exposed to the aged preparations had 17 to 45% of the Pu body burden in the skeleton, 4 to 11% in the liver, and 30 to 75% in the lungs and thoracic lymph nodes. The much greater translocation of the Pu 238 suggested that solubilization of the Pu 238 PuO₂ occurred to a significant degree within the dog, as well as in the water suspension. Life span dose effect experiments are continuing and new experiments using a more pure form of PuO₂ in dogs and Pu 239 and Pu 238 exposures on rats have been started. (ST)

Tables 2, 3, and 4 show tissue distribution of inhaled Pu in dogs after inhalation of: Pu 239 PuO₂ aerosols; fresh and aged Pu 238 PuO₂ aerosols; and Pu 239 PuO₂ and Pu 238 PuO₂ aerosols two to three years postexposure, respectively.

<249>

Dougherty, T.P., University of Utah, College of Medicine, Radiobiology Division, Department of Anatomy, Salt Lake City, UT. 1972, March 31

Californium 252 Pilot Studies in Beagles. COO-119-246; Part of Dougherty, T.P., Research in Radiobiology, Annual Report of Work in Progress in the Internal Irradiation Program, (p. 287-288), 380 p.

A pilot study was initiated at the University of Utah to study the delayed biological effects of Cf 252 using beagle dogs. Comparison of the biological effects of Cf 249, an alpha emitter, and Cf 252, which decays by alpha emission and spontaneous fission, can provide a method of identifying the separate effects of alpha and fission fragments. The experimental design is described and predictions of the incidence of tumors are made. (ST)

<250>

Schell, W.R., and A.I.C. Yang, University of Washington, College of Fisheries, Laboratory of Radiation Ecology, Seattle, WA. 1973, April 30

Long-Lived Radionuclides Produced at Bikini and Eniwetok Atolls, I. RLO-2225-T18-3; 29 p.

The report describes the early results of the investigation on the identification and measurement of long-lived radionuclides in samples collected from Bikini and Eniwetok Atolls. A description is given of the chemical procedures used to separate and measure several radionuclides (Be 10, Al 26, C 14, Fe 55, Mn 53, Am 241, and Pu 238-239) in samples collected inside and near nuclear detonation craters. In 1972 concentrations of Fe 55 in Bravo crater had an activity of 1500 dpm/g. Americium 241 and Pu 239 were found in concentrations of 1 to 60 pCi/g in sediment and soil samples. Americium 241 measured in biota was less than 0.1 μ Ci/g dry wt. The particulate Am 241 in water samples was found to be 5 to 70 pCi/m³, depending on location, indicating significant redistribution. It is possible that certain radionuclides may enter into the North Equatorial Current away from Bikini Atoll. However, the amounts are generally very low and large volumes of water are required to measure the concentration present. (Auth) (ST)

Table 1 lists the radionuclides measured in Bravo crater sediment after chemical separation. Table 2 lists the measurements of Am 241, Pu 238, and Pu 239-240 in sediment, water, and biota of Bikini and Eniwetok Atolls. Table 3 lists radionuclides with half-lives of more than 200 days in samples from Bikini Atoll.

<251>

Dougherty, T.P., and C.W. Mays, University of Utah, Salt Lake City, UT. 1969

Bone Cancer Induced by Internally-Deposited Emitters in Beagles. COO-690404; IAEA-SM-118/3; Part of Proceedings of a Symposium on Radiation-Induced Cancer held in Athens, Greece, April 28-May 2, 1969, (p. 361-367)

Osteosarcomas were the chief cause of death in adult beagles injected intravenously with bone-seeking radionuclides in citrate solution. The effectiveness of each nuclide depends on the type of radiation emitted and where this radiation is absorbed. Alpha-radiation is more effective than beta radiation, and the alpha emitters which deposit on bone surfaces are more effective than those which deposit throughout bone volume. For death with osteosarcomas 8 years after injection, values for RBE (relative biological effectiveness) based on average skeletal dose at 1 year before death and relative to Ra 226 equals 1 are: Pu 239 equals 6; Th 228 equals 8; Ra 228 (Mstb) equals 2.5; and Sr 90 equals 0.07 to 0.24. In humans Ra 226 was observed to induce bone cancers above a skeletal dose of about 1200 rads. Adjusting by the RME factors established in dogs, the predicted life-time doses above which bone cancers may occur in adult humans are: Pu 239 equals 200 rads; Th 228 equals 150 rads; Ra 226 equals 1200 rads; and Sr 90 equals 5600 to 17000 rads.

<252>

Stuber, C.E., U.S. Atomic Energy Commission, Technical Information Center, Science and Technology Branch, Oak Ridge, TN. 1973, January

Transplutonium Elements, A Bibliography. TID-3317-S-4; 174 p.

The bibliography comprises 835 references on the transplutonium elements compiled through the period ending June 30, 1973. The references were retrieved from the Nuclear Science Abstracts (NSA) data base using the computerized RESPONSA search system and were formatted for publication with indexes by the generalized output program GENOUT. The NSA subject indexing is displayed under each citation to provide information on the contents of the document. Part 1 includes 811 references dealing with the production, chemical, nuclear, physical, and biological properties and health and safety aspects of elements with $Z > 95$. The actinides group includes references dealing with the actinide elements in general or treating the actinides collectively. References dealing with $Z > 104$ are included in the transactinide group. Part 2 includes 23 references dealing with the natural occurrence of the transplutonium elements. This collection of references is concerned with attempts to locate or prove the existence of the transplutonium elements in nature. Author and subject indexes are included. (Auth)

<253>

Mc, T., A.D. Suttle, and W.M. Sackett, Texas A & M University, College Station, TX. 1973

Uranium Concentrations in Marine Sediments. Geochimica et Cosmochimica Acta, 37, 35-51

Uranium concentrations in a large number of marine sediment samples of different types with world-wide spatial distribution have been determined using the rapid, precise and nondestructive technique of counting the delayed neutrons emitted during $U\ 235$ fission induced with thermal neutrons. A direct proportionality was observed between percentage of organic carbon and uranium in sediments deposited in an anoxic environment in the Pettaquamscutt River in Rhode Island with concentrations ranging from 7 percent organic carbon and 7 pps uranium to 14 percent organic carbon and 30 pps uranium. A similar relationship was found in cores of sediments deposited on the Sigsbee Knolls in the Gulf of Mexico. For manganese nodules a direct relationship can be seen between uranium and calcium concentrations and both decrease with increasing depth of deposition. For nodules from 0-500 m in the Pacific, concentrations are 3 pps uranium and 0.3 percent calcium compared with 18 pps uranium and 1.5 percent calcium at 1000 m. Relatively high uranium concentrations were observed in carbonates deposited in the deepest parts of the Gulf of Mexico, with the >88 u carbonate fraction in Sigsbee Knoll cores having as much as 1.30 pps. A model to explain the observed variations must include uranium enrichment in near shore environments via an anoxic pathway, followed by redeposition in a deep ocean environment with dilution either by low-uranium-bearing foraminiferal or siliceous oozes or, along the continental margins, dilution with high-uranium bearing carbonate sands. (Auth)

Tables 3 and 5 give uranium concentrations (pps) in river and deep sea sediments, respectively.

<254>

Payne, D.E., and R.P. Grossman, National Environmental Research Center, Environmental Surveillance, Las Vegas, NV. 1972, November

Offsite Radiological Safety Program for Project Rulison Re-entry Portion of Phase 3. NERC-LV-539-14; 260 p.

The report presents the operational procedures and results of the off-site radiological surveillance activities conducted by the National Environmental Research Center-Las Vegas (NERC-LV) from April 1970 to October 3, 1970, during the re-entry phase of the Project Rulison Production Testing Program. No release of radioactivity occurred during re-entry operations, however, gas flaring operations during August released natural gas containing some radioactivity to the atmosphere. The only activity detected in the off-site area was tritium in atmospheric moisture samples collected at two remote, unpopulated locations near the test well during a flaring operation. All other environmental samples indicated no change in off-site radioactivity levels as a result of the re-entry program. (Auth)

<255>

<255>

Romney, E.M., A.J. Steen, R.H. Wood, and W.A. Rhoads, University of California, Laboratory of Nuclear Medicine and Radiation Biology, Los Angeles, CA. 1966

Concentration of Radionuclides by Plants Grown on Ejecta from the Sedan Thermonuclear Cratering Detonation. CONF-660405; Part of Aharg, B. and Hungate, F.P. (Eds.), Proceedings of an International Symposium on Radionuclides Concentration Processes held in Stockholm, Sweden, April 25-29, 1966, (p. 391-396), 1051 p.

Native and domestic plants grown on ejecta from the Sedan thermonuclear cratering detonation, July 6, 1962, concentrated very high levels of radiotungsten through their roots. Smaller, yet significant amounts of Sc 46, Mn 54, Co 60, Y 88, Sr 89, Sr 90, Zr 95, Ru 106, Sr 125, Cs 138, Cs 137, and Ce 144 also were concentrated through roots. Uptake of these radionuclides persisted through the 3-year cropping period of this study following the Sedan Event; and the gamma spectrum continued to be dominated by Y 88, Zr 95, Ru 106, Ce 144, W 181 and W 185. Plant foliage contaminated by Sedan fallout also showed Rb 86, Y 91, Rh 102, Ru 103, I 131, Cs 136, Ba 140, Ce 141, Eu 152 and Eu 154; but these radionuclides were not concentrated through roots in later cropping experiments. Radioactive dust continued to be deposited on the foliage of plants re-established on Sedan ejecta after the detonation occurred. (Auth)

Table 1 lists the radionuclides identified in Sedan ejecta and in plants grown on ejecta during a three year cropping period following the detonation.

<256>

Petrov, V.S., I.P. Tregubenko, D.I. Semenov, A.Z. Kach, and V.N. Strel'tsova, Akademiya Nauk SSSR, Trudy Instituta Biologii, Ural'skii Filial., Sverdlovsk, USSR. 1966

Administration of Unseparated Solution of Uranium Fission Products to Rats by Inhalation. AEC-tr-7169; Part of Metabolism of Radioisotopes in the Animal Organism, (p. 55-66), 220p.

An inhalation chamber is described that provides a continuous delivery of radioactive aerosol in the form of mist to small laboratory animals without contamination of the pelt. Tests involving inhalation by rats of unseparated solution of uranium fission products (Sr 90-Y 90 and Ru 106-Rh 106) with a mean particle diameter of one to four microns, showed reproducible results. A preliminary experiment resulted in deposition of 16.5% of the initially retained radioactivity in the respiratory tract. Immediately after inhalation, a significant amount of retained radioactivity was found in the trachea and large bronchi. Absorption from the lungs resulted in high radioactivity in the liver, bones and residual carcass. A high radioactivity in the gastrointestinal tract was indicative of swallowing of large particles initially retained in the upper respiratory tract. Within a month, total radioactivity of the entire rat dropped from 50 to 5%. (ST)

Table 3 gives the radioactivity in rat tissues at different intervals following inhalation of uranium fission products.

<257>

Dougherty, J.B., and L.S. Rosenblatt, University of Utah, College of Medicine, Division of Radiobiology, Department of Anatomy and Pathology, Salt Lake City, UT. 1970

The Comparative Toxicity of Radium 226, Plutonium 239, Thorium 228, Radium 228, and Strontium 90 to Leukocytes of Beagles. Radiation Research, 63, 56-70

The effectiveness of five internal emitters in depressing blood leukocytes in young adult beagles was studied during the first year postinjection. The radionuclides, Ra 226, Pu 239, Th 228, Ra 228, and Sr 90, were given as a single intravenous injection at dose ranges of 58.4 to 10,350, 15.8 to 2,877, 15.8 to 2,877, 49.5 to 8,470, and 571.2 to 97,483 nCi/kg, respectively. The occurrence of dose-dependent depressions in leukocytes has been previously established. The greatest depression was found in polymorphonuclear leukocytes (pmns), monocytes, and eosinophils while lymphocytes were depressed to a lesser extent. The probit transform was used to linearly relate response to the logarithm of the injected activity. Injected activities required to produce a 50% leukocyte depression (ED 50) were computed for eight time periods. Toxicity indices were also computed for four radionuclides relative to Ra 226 as a standard and converted to hematological relative biological effectiveness (RRB), again relative to Ra 226. For pmns and lymphocytes median values of RRB estimated over the eight time periods were: Th 228 approximately 4; Pu 239 approximately 4; Ra 228 approximately 1.5; and Sr 90 approximately 0.5. Alpha emitters depositing on bone surfaces were more effective in reducing leukocytes than those which are volume seekers. The beta emitter, Sr 90, was less effective than the alpha emitters rad for rad. (Auth)

<258>

Asatc, A.J., Norfolk State College, Norfolk, VA. 1973

Wind Effect Redistribution of Surface Contamination. ORO-4304-1; Progress Report for September 1972-August 1973; 5 p.

Progress is reported on the formation and programming of a model of the wind effected redistribution of surface contamination. Modifications and extensions of the model are explained. Surface contamination and air concentrations are computed with given computer programs. Planned studies, to be finished within the contract period, are listed. (ST)

<259>
Goates, M.A., Brigham Young University, Provo, UT. 1963, October

Mites on Kangaroo Rats at the Nevada Test Site. Brigham Young University Science Bulletin, Biological Series, '74, 14p.

A systematic study of parasitic mites on kangaroo rats of two species at the Nevada Test Site was conducted from August 1959 to December 1961. The intent was to determine the kinds, numbers, seasonal occurrences and ecological relationships of mites in nuclear disturbed and contiguous undisturbed areas. A total of 1,256 rats from nine plant communities was examined. The 6,208 mites collected represented 16 species including four undescribed. Fourteen were found on both kinds of rats. Considerably more rats were infested with chiggers than with nematognathids. Seasonal peaks in numbers of mites occurred during the three periods of February-March, July, and October-November. Forty percent fewer rats in the nuclear disturbed areas were infested than in undisturbed areas, and only one-third as many mites were found on rats in the disturbed as in the undisturbed areas. (Auth)

<260>
Beck, D.E., D.M. Allred, and E.T. Brinton, Brigham Young University, Provo, UT. 1963, October

Ticks of the Nevada Test Site. Brigham Young University Science Bulletin, Biological Series, '74, 12p.

As part of a study to determine kinds, population, seasonal occurrence, and geographical and ecological distribution of ticks in areas where nuclear detonations have taken place compared with undisturbed areas, the tick fauna of the Nevada Test Site is reported. Twenty four species of animals (primarily rodents and leporids) were found infested with eleven species of ticks. Collections were confined to the valleys and lower elevations of the mesas and mountains. Each type of tick was discussed in relation to its host, seasonal incidence, and associated plant community type. Comments on abundance, presence on unusual hosts, and stage of development are included. Results indicated that the nature of the habitat was influential on survival of the ticks when not on a host. (ST)

<261>
Barton, C.J., Oak Ridge National Laboratory, Nuclear Safety Information Center, Oak Ridge, TN. 1966, Summer

The Hazard of Dispersed Plutonium Particles. Nuclear Safety, 7(4), 468-473

Increasing usage of plutonium as a fuel material in nuclear reactors, together with the well-established inhalation hazard of this man-made element, has resulted in a need for information on particle production by overheated plutonium and plutonium-containing fuel materials. Ignition of metallic plutonium occurs under most conditions at 300 degrees C or higher. The higher the

temperature of oxidation, the smaller the fraction of total oxide that needs to be taken into account as significant from the inhalation hazard or aerosol dispersion aspects. Recent publications on the production of particulate material by oxidation of plutonium and the effects of particle size and composition on retention in the human respiratory system are discussed. Further studies are needed to develop similar information for PuO₂ and mixtures of PuO₂ with other oxides. (Auth) (ST)

<262>
Dougherty, T.F., B.J. Stover, J.H. Dougherty, W.S.S. Jee, C.W. Mays, C.E. Rehfeld, W.R. Christensen, and H.C. Goldthorpe, University of Utah, College of Medicine, Radiobiology Division, Department of Anatomy, Salt Lake City, UT. 1962

Studies of the Biological Effects of Plutonium 226, Plutonium 239, Radium 228 (Mesothorium I), Thorium 228 (Radiothorium), and Strontium 90. Radiation Research, 17, 625-681

The design of a long-term experiment to compare the biological effects of five radionuclides, Ra 226, Pu 239, Ra 228, Th 228, and Sr 90, in adult beagles is presented. Results of the first ten years of the study are briefly summarized. Injected dose (uci/kg), time elapsed since injection, skeletal dose in rads, bone tumor incidence, and reasons for death are given in tabular form. Results are presented under the following headings: metabolism and dosimetry; clinical observations; hematologic findings; blood chemistry findings; radiological findings; autoradiographic and histological findings in mineralized tissues; soft tissue, histopathologic and autoradiographic findings; and incidence of tumors. (ST)

Table 3 gives the summary of the experiment as of September 30, 1960, and includes injected dose, days since injection, dose to skeleton, bone tumor incidence, and reason for euthanasia or death.

<263>
Stuart, B.O., Battelle Memorial Institute, Pacific Northwest Laboratories, Richland, WA. 1973, January

Deposition of Inhaled Aerosols. Archives of Internal Medicine, 131, 60-73

Theoretical models and experimental studies of aerosol deposition in the respiratory tract as a function of particle size and respiration patterns are reviewed. In general, there is good agreement between the two. Models were developed based on the anatomical structure of the respiratory tract, air flows, and physical mechanisms of particle deposition by impaction, sedimentation, and diffusion. Particulate deposition is influenced by particle density, shape, hygroscopicity, and pathology. Particle size distribution and deposition site of the inhaled aerosol influence the resultant biological response. (Auth) (ST)

<264>

<264>
Harley, W.G., National Radiological Protection Board, Harwell, Didcot, Berkshire, England. 1973

Radiological Hazards Associated with Internal Contamination of the Body by Radionuclides. CONF-720503; Part of Proceedings of the IIRPA 2nd European Congress on Radiation Protection Bujdoso, E. (Ed.), Health Physics Problems of Internal Contamination, held in Budapest, Hungary, May 3-5, 1972, (p. 21-29), 655p.

Current evaluations of the hazards from external radiation and internal radioactivity, are summarized. Human experience with radium still provides a sound basis for fixing permissible levels for bone-seeking nuclides, but the importance is stressed of identifying the precise tissues at risk and determining the dose in those tissues from the various "bone-seeking" nuclides from their detailed metabolism. It is not sufficient for instance, to know that certain radionuclides are "bone seekers" but it is important to distinguish whether they are distributed widely in mineral bone like Sr 90 and Ra 226, or located on the surfaces of bone like Pu 239 and Ra 228. It is important also to take into account the respective sensitivities to malignant disease induced by radiation in the various tissues and also to include doses from nuclides not necessarily concentrated in the tissue of interest. It seems likely that malignancy is the somatic effect of greatest importance since there is evidence from the Japanese cities that morbidity from other causes has not been materially affected by the radiation doses. Tissue doses in fallout studies show that potential hazard from Cs 137 is some 7-15 times greater than from Sr 90. Fallout studies have provided the basis for greatly improved knowledge of the metabolism in humans and the agricultural behavior of Sr and now enable the dose commitment to persons of all ages to be reliably calculated. This information is especially valuable in regard to the protection of the public in the event of accidents to nuclear reactors and also shows that the potential hazards from Sr 90 are now found to be much less than was hitherto thought. (Auth)

<265>
Kunzle-Lutz, M., H. Metiveer, D. Moliba, A. Simon-Vermot, J.L. Grimbert, and P. Jockey, Commissariat a l'Energie Atomique, Centre d'Etudes de Bruyeres-le-Chatel, Laboratoire de Radiotoxicologie, France; Centre d'Etudes de l'Energie Nucleaire, Section Medicale, Saclay, France. 1971, January-February

Pulmonary Lavage: Therapy of Pulmonary Contamination by Plutonium Oxide. Journal of European de Toxicologie, 4(1), 53-59

The pulmonary lavage in vivo by saline solutions was tested with monkeys previously dusted over with plutonium oxide. The animals underwent 1, 3 or 5 series of washings of the lower right lobe; each session consisted of 5 to 10 repeated irrigations. The results obtained indicate the following: it is useless to carry out more than six irrigations during any one session; maximum efficiency is obtained when the treatment is carried out within the first few days immediately following the dusting; and whereas one session eliminates 10% of the dust particles in the area treated, several sessions lower the pulmonary amount in the treated area from 45 to 55%. Repeated treatment is therefore recommended. (Auth)

<266>
Hakanson, T.E., and L.J. Johnson, Los Alamos Scientific Laboratory, Los Alamos, NM. 1973

Distribution of Environmental Plutonium in the Trinity Site Ecosystem After 27 Years. LA-UR-73-1291; CONF-730907; Part of Proceedings of the IIRPA 3rd International Congress on Radiation Protection Symposium held in Washington, D.C., September 9-14, 1973, (6 p.)

The results are presented for a radioecology survey of the Trinity Site environs, where the world's first (July 1945) atomic bomb was detonated. The temporal behavior of the low environmental levels of the plutonium produced by this detonation are discussed. The data from this study were compared with similar data obtained in the Trinity Site environs nearly 20 years ago. The major change which was observed was an increased migration of Pu into the soils. Concentrations of Pu in vegetation and rodents were too low to make valid comparisons. (Auth)

<267>
 Morin, M., W. Skupinski, J.C. Menet, and J. Lafuma, French Atomic Energy Commission, Fontenay-aux-Roses, France. 1973

Experimental Research on the Treatment of Contaminations by Actinide Solutions. CONEP-720503; CEA-CONEP-2070; Part of Budoso, E. (Ed.), Proceedings of the IRPA 2nd European Congress on Radiation Protection Health Physics of Internal Contamination, held in Budapest, Hungary, May 3-5, 1972, (p. 317-320), 655p.

Adult Sprague Dawley SPF rats were administered the actinides, U 235, Pa 233, Np 237, Pu 238, Pu 239, Am 241, Cs 242, and Cf 252, in nitrate form either intramuscularly or by inhalation, to study the effect of DTPA therapy. DTPA therapy was most effective on the removal of elements with a valence of +3 (Am, Cs, and Cf). Its effect on Pu 238 was similar, but the effect on Pu 239 was difficult to evaluate because of the slower migration of this isotope. DTPA therapy proved to be ineffective on U, Pa, and Np contaminations. In the case of U contamination, increased migration rate combined with precipitation in the kidneys resulted in dangerous renal deposits. (Auth) (ST)

Table 1 gives the distribution in rats of U 233, Pa 233, Np 237, and Am 241 injected intramuscularly as nitrates. Table 2 gives distribution of DTPA complexes, following intramuscular injection to rats sacrificed one day after contamination. Table 3 shows distribution of the actinides after twice weekly treatment with DTPA for three months. Table 4 shows distribution after inhalation of the actinides and effect of DTPA treatment. Table 5 shows effects of delayed DTPA treatment.

<268>
 Abrams, R., H.C. Seibert, L. Forker, D. Greenberg, H. Lisco, L.O. Jacobson, and E.L. Simons, University of Chicago, Metallurgical Laboratory, Biology Division, Chicago, IL. 1946, June

Acute Toxicity of Intubated Plutonium. CH-3875; 35 p.

Doses ranging from 7.5 to 500 μ g of $\text{Pu}^{(4)}$ nitrate with a specific activity of 0.062 $\mu\text{Ci}/\mu\text{g}$ were administered to the lungs of rats by tracheal intubation. All doses were lethal; mean survival time ranged from 203 days for the lowest dose to 26 days for the highest. Lung retention was 25% after 210 days. Approximately 15% of the initial dose was deposited in the skeleton. Pathological changes in the lungs were characterized by severe inflammation, necrosis, and abscess formation. Animals surviving a month or longer showed widespread scarring of the lung, ephysema, and squamous metaplasia of the bronchial epithelium. In hematological studies, rats given 500 μg showed an initial rise in hemoglobin, erythrocytes, and neutrophils followed by a sustained anemia, lymphopenia, and reduction in neutrophils until death within 28 days. Hematological changes appeared to be dose dependent. The gross pathological changes in the lungs appeared to be due to the high retention of plutonium in the lung. The hematological effects were due to the general redistribution of plutonium. (Auth) (ST)

Table 1 lists the median lethal dose of Pu for various periods after administration by both intravenous and intrapulmonary routes.

<269>
 Albert, R.E., New York University, College of Medicine, Department of Environmental Medicine, New York, NY. 1972

The Tumorigenic Action of Beta, Proton, Alpha and Electron Radiation on the Rat Skin. CCO-3380-1; Progress Report of August 1, 1971 through July 31, 1972, 20 p.

Progress is reported on studies aimed at elucidating the various determinants of the dose-response relationships in radiation carcinogenesis using the rat skin as the experimental model. Progress is reported in the following areas: effects of protons in a sieve pattern on the incidence of skin tumors, tumor incidence in mouse skin, effects of fractionation of dose on tumor incidence and hair follicle atrophy, induction of tumors during the phase of hair growth, tumor induction in a resistant strain of rats, carcinogenic effect of radiation and methotrexate combined, effect of tumor growth rate on tumor incidence curve, the kinetics of recovery from carcinogenic damage, the critical depth for tumor induction in the growing phase, the dose-response curve for growing phase at 1.0 mm penetration, the effect of postirradiation proliferative stimuli on tumor incidence, effect of a sieve pattern on tumor induction for Grenz Rays, cell death and regeneration in the hair follicles and surface epidermis, properties of the G sub 0 phase in rat epidermis, and the treatment of radiation induced skin tumors with methotrexate. (ST)

<270>

Goldthorpe, H.C., University of Utah, College of Medicine, Radiobiology Division, Department of Anatomy, Salt Lake City, Ut. 1962

The Effects of Aging and Internal Emitters on Blood Chemistry. Part of Dougherty, J.P., et al (Eds.), Proceedings of a Symposium on Some Aspects of Internal Irradiation held in The Homestead, Heber, Utah, May 8-11, 1961. Pergamon Press, Oxford, England, (p. 117-129), 529 p.

The blood chemistry of normal beagle dogs and those given a single intravenous injection of Pu 239, Ra 228, Th 228, or Ra 226 was studied over a large period of their lifespan. In the normal aging controls, inorganic phosphates, total proteins, globulins, fibrinogen and glycoproteins all appeared to have a slight increase in value throughout life. Calcium, serum albumin, urea chlorides and carbon dioxide capacity tended to show a slight decline throughout life. Alkaline phosphatase tended to remain fairly constant throughout life. Cholesterol appeared to decrease in value in early life and at about midlife started to climb to above normal values. Special emphasis was given those groups in which a large number of the dogs had bone tumors at the time the measurements were made. The most striking change was the elevation of the mean values of alkaline phosphatase for almost all the groups in which bone tumor incidence is high. Pu 239 dogs showed a slight decrease in calcium with a slight increase of inorganic phosphates. The latter change appeared in some of the Th 228 dogs also. An interesting finding in the study of the serum proteins was an advancement in time of the normal reversal of the albumin-globulin ratio. Pu 239 dogs with bone tumors showed a slight decrease in serum urea nitrogen. Some increase in cholesterol values was noted. Both fibrinogen and serum glycoproteins showed an increase in the case of most of the groups of dogs with bone tumors. Terminal values for the various serum constituents of the injected dogs are given in graphical form. (ST)

<271>
Elkina, N.I., and I.A. Tseveleva, Not given, 1961, March

Mineral and Protein Metabolism in Bone Tissues of Rats in Plutonium Injury. JPRS-11242; Part of Medical Radiology, (p. 126-134), 190 p.; Meditsinskaya Radiologiya, 6(3), 58-63

The mineral and nitrogen metabolism of bones was studied in rats following administration of $20 \times 10^{2-3}$ and $1.9 \times 10^{2-3}$ uCi/g of plutonium in the form of nitrate or citrate solutions. The content of calcium, phosphorus, and nitrogen in the bones of the plutonium poisoned rats was not significantly different from the amounts in the control groups. The activity of acid and alkaline phosphatase activity in the chronic group was reduced by 25% after one year. The intensity of incorporation of P 32 and Ca 45 in the epiphyseal portion of the bones was considerably lower than in the control animals. In the chronic group the incorporation of glycine-¹⁴C in the proteins of the epiphyses was reduced one and a half to two times as compared with the normal. In all rats the metabolic activity in the epiphyseal part of bones was greater than in the diaphysis. It was concluded that the changes in the bones after external irradiation and upon exposure to deposited plutonium are similar. (ST)

<272>
Dushauskene-Duzh, N.P.P., E.D.P. Marchyulenene, V.B. Nyanishkene, R.I. Shulene, and G.G. Plikarpov, Institute of Botany, Vilnyus, USSR, 1972

Radionuclide Uptake by Some Freshwater Hydrbionts. Lietuvos TSR Mokslo Akademijos Darbai, Serija C, 3(59), 201-212 (Russian, English Summary)

Environmental sampling studies in 1967-1968 showed that the accumulation coefficients of Sr 90 and Pb 210 were the same in fish and mollusks, whereas that of Pb 210 in plants was an order lower than that of Sr 90. There appeared to be a positive correlation between Sr 90 and Pb 210 in fish. Accumulation coefficients depended on the ash content of aquatic organisms. Experimental results showed that Sr 90, Ce 144, Cs 137, and Ru 106 accumulated in phytoplankton and silt with maximum coefficients. Cerium 144 exhibited the greatest accumulation in aquatic organisms, while the accumulation of Cs 137 and Sr 90 was relatively low. The intense uptake of Cs 137, Ce 144, and Ru 106 by silt protected chironomid larvae from uptake of these radionuclides. The larvae accumulated the following percentages: Sr 90, 10%; Cs 137, 9%; Ce 144, 1%; and Ru 106, 6%. Year old carp assimilated 10% of the Ce 144 ingested with chironomid larvae. Fish of different trophic levels accumulated the same amount of Sr 90 and Pb 210. Uptake appeared to be primarily from the water if food was readily available. (ST)

<273>

Moskalev, Yu.I., L.N. Buldakov, N.A. Koshurnikova, A.P. Mifatov, and G.N. Reshetov, Not given. 1965

Combined Influence of Strontium 90, Cerium 144, and Plutonium 239 on the Rat Organism. AEC-tr-6603; Part of Radiobiology, (p. 85-93), 238 p.; Radiobiologiya, 5(6), 785-936

Rats were injected with the isotopes plutonium, strontium, and cerium separately and in pairs to study the biological effects of two isotopes with the same and different decay emissions and distribution within the organism. The elimination of strontium, cerium, and plutonium from the skeleton and liver within the time interval, for 16 to 918 days of observation, obeyed an exponential dependence, independent of whether the isotopes were introduced separately or in combination. In the case of joint administration of a pair of isotopes with the same and different types of distribution, the injuries not only were summed (cerium plus plutonium), but in a number of cases they also appeared earlier or in a larger percentage of cases (strontium plus cerium and strontium plus plutonium) than in the case of separate administration of the isotopes. The relative biological effectiveness of plutonium in comparison with beta emitters varied for various criteria, and, moreover, depended on the amounts of the isotopes incorporated. (Auth) (ST)

Table 2 shows the deposition and rate of elimination of strontium, cerium and plutonium in from the skeleton and liver. Table 3 shows the LD 50's for various periods and frequency of appearance of various injuries in rats after separate and combined administration of the isotopes.

<274>

Not given, E.I. du Pont de Nemours and Company, Savannah River Laboratory, Aiken, SC. 1973, September

Environmental Activities and Programs at the Savannah River Plant. DPST-73-436; 23 p.

The report briefly describes the purpose and operation of the Savannah River Plant activities and the funded programs to modify the impact of potential or actual releases to the environment. General descriptions of the results of the various emission controls, environmental research, and environmental monitoring programs, are given. For 1974 the operating budget for the plant site is about \$125 million; about 10% of this amount is spent for environmentally oriented activities. Activities of the plant are described under the headings: emission reduction activities in Savannah River Plant processes, monitoring, administrative process controls, and environmental research activities. Present controls and efforts to minimize the losses or inefficient uses of raw materials, intermediates, and final products at the nuclear fuel fabrication, nuclear reactor, chemical separations and supporting facilities are briefly described. Routine environmental monitoring includes continuous measurement of radionuclides in effluents at the points of release and systematic sampling of the environment. All operations are carried out within limitations established by extensive administrative controls. A number of research programs are underway to predict the fate and impact of pollutants on the environment. These include research on heated water effluents, transport studies of radioactive and nonradioactive effluents to aqueous and gaseous routes, and forest production. (ST)

<275>

Isaacson, R.E., and L.E. Brownell, Atlantic Richfield Hanford Company, Chemical Processing Division, Research and Development, Advanced Technology Development Section, Richland, WA. 1972, August 19

Ultimate Storage of Radioactive Wastes in Terrestrial Environments. ARH-SA-126; CONF-721107-4; Part of Proceedings of a Symposium on the Management of Radioactive Wastes from Fuel Reprocessing held in Paris, France, November 27-December 1, 1972, (33 p.)

New avenues are opened for the ultimate storage of radioactive wastes, Ce 137, Sr 90, and Pu 239, via the STOPPER and Thermalt processes. STOPPER is the Stone Process for Permanent Encapsulation of Radionuclides, a hydrothermal process. Thermalt is a pyrochemical process for fixing radionuclides in a basalt-like product. The products contain analogs of silicate and aluminosilicate minerals such as pollucite, strontium feldspar and plutonite--a structural analog of zircon. Ultimate storage will have been effected if these product forms are secured in geochemically compatible media where the authigenic precipitation of cation aluminosilicates will provide additional protection from transport by groundwater movements. (Auth)

<276>

<276>
 Eakins, J.D., and A. Morgan, Atomic Energy Research Establishment, Health Physics and Medical Division, Harwell, Didcot, England. 1964, October

The Role of Fecal Analysis in a Bioassay Program. CONF-448-9; STI/PUE/84; Part of Proceedings of a Symposium on the Assessment of Radioactive Body Burdens in Man held in Heidelberg, Germany, May 11-16, 1964, Vol. 1, (p. 231-244), 1067 p.

The role of fecal sampling and analysis in a bioassay program is discussed, with particular reference to the estimation of retained lung burdens of insoluble radioactive materials. Experience has shown that urine analysis alone cannot always be relied upon to give an adequate indication of exposure by inhalation of insoluble radioactive materials. The results obtained are affected by so many variables that they defy interpretation. The analysis of fecal samples, collected after an incident involving airborne contamination, can confirm whether or not a significant intake has occurred and will enable an initial estimate of the retained lung burden to be made by reference to one of the models describing the retention and elimination of inhaled particles. The subsequent fecal excretion pattern and particle size measurements on air filter samples representing the inhaled aerosol (if available) can be used to modify the initial estimate. At the Atomic Energy Research Establishment (AERE), Harwell, England, the sampling and analysis of fecal samples is used as a complement to urine analysis following cases of known or suspected exposure by inhalation. This method is considered to be the only satisfactory way of detecting and assessing lung burdens of insoluble compounds of Pu 239, which cannot be detected with adequate sensitivity by *in vivo* counting. Some examples of excretion patterns obtained from cases of accidental inhalation of insoluble compounds of plutonium and thulium are described. (Auth)

<277>

Jee, W.S.S., R.B. Dell, and E. Hashimoto, University of Utah, College of Medicine, Radiobiology Division, Department of Anatomy, Salt Lake City, UT. 1972, March 31

Quantitative Morphology of Vertebral Trabecular Bone in Beagles Injected with Plutonium. CCO-119-246; Part of Dougherty, T.P., Research in Radiobiology, Annual Report of Work in Progress in the Internal Irradiation Program, (199-217), 380 p.

As part of a study on histopathological lesions in bones induced by a single intravenous injection of plutonium citrate, results are reported on changes contributing to the alteration in percentage of the lumbar vertebral body occupied by trabecular bone and frequency distribution of trabecular widths in lumbar vertebral bodies. The percentage of trabecular bone within the cortical bone envelope of lumbar vertebral bodies of beagles diminished with age from a value of 25% at 500 days to a value of 16% at about 6000 days of age. Beagles injected with 2.7, 0.909, 0.301, 0.096, and 0.0485 uci of Pu 239/kg exhibited elevated percent trabecular bone values, but were within normal range for their respective age groups in the beagles injected with 0.0157 uci/kg. The dogs injected with 0.0157 to 2.7 uci Pu 239/kg showed increased trabecular widths. In general, the effect of a single intravenous dose of plutonium resulted in the inhibition of bone resorption leading to thicker or mosaic trabeculae. (Auth) (ST)

<278>

Jee, W.S.S., and J.S. Arnold, University of Utah, College of Medicine, Division of Radiobiology, Department of Anatomy, Salt Lake City, UT. 1961

The Toxicity of Plutonium Deposited in Skeletal Tissues of Beagles. 1. The Relation of the Distribution of Plutonium to the Sequence of Histopathologic Bone Changes. Laboratory Investigation, 10(4), 797-825

The relation of the distribution of plutonium to the sequence of histopathologic bone changes was studied using autoradiographic, microradiographic, histopathologic and vascular injection techniques in 5 control beagles and 20 others that died or were sacrificed from 1 to 1576 days following a single intravenous administration of 2.7 uci/kg of plutonium (⁶⁴u) citrate given at ages 14-19 months. The plutonium induced bone lesions by direct and indirect mechanisms: Early changes occurred in trabecular bone, resulting in transverse plates in spongyosa, acellular marrow cavities, peritrabecular fibrosis, abnormal bone resorption, and endosteal bone growth. The late changes affected cortical bone and were manifested by plugging of haversian canals, resulting in death of osteocytes, followed by disturbance in bone remodeling (large resorption cavities, bizarre-shaped and abnormally mineralized osteones) eroded periosteal surfaces, and fibrosis and spontaneous fractures. The late effect was the induction of osteogenic sarcomas. (Auth)

<279>

Jee, W.S.S., and J.S. Arnold, University of Utah, College of Medicine, Division of Radiobiology, Department of Anatomy, Salt Lake City, UT. 1960

Effect of Internally Deposited Radicisotopes Upon Blood Vessels of Cortical Bones.
Proceedings of the Society for Experimental Biology and Medicine, 105, 351-356

Adult beagle dogs were injected with Pu 239 (3.0 μ Ci/kg), Ra 226 (10.0 μ Ci/kg), and Th 228 (0.9 μ Ci/kg) to study the effect of internally deposited radioisotopes upon blood vessels of cortical bones. After an extensive latent period following acquisition of plutonium, radiothorium and radium in cortical bone, plugging of the haversian canals occurred which in turn resulted in bone necrosis. Investigation of this phenomenon with a vascular injection technique and a bone-seeking alpha emitter (plutonium) which deposits on surfaces of haversian canals and allows the remainder of the osteones and adjacent interstitial lamellae to be free of activity, showed that death of osteocytes was principally the result of disrupted blood supply rather than direct alpha ray killing. With radiothorium, concentration of alpha particles about haversian canals was sufficient to result in total plugging of the vascular tree within the haversian canals resulting in complete bone necrosis and inhibition of internal reconstruction of cortical bone. With radium and plutonium only about half of the canals were plugged, which allowed internal construction to proceed; however, the nature of the remodeling in this environment was abnormal (formation of large cavities and abnormal osteones). It is suggested that both devitalization of bone and occurrence of large cavities weakens the bone which in turn results in spontaneous fracturing of long bones. (Auth) (ST)

<280>

Mays, C.W., University of Utah, Radiobiology Division, Salt Lake City, UT. 1968, August 23

Bone-Seeking Radionuclides. CONF-670938; Part of Proceedings of a Symposium on Delayed Effects of Bone-Seeking Radionuclides held at Sun Valley, Idaho, September 12-14, 1967. Published in Science, 161, 814

Papers presented at the international symposium on delayed effects of bone seeking radionuclides are summarized. The incidence of tumors (primarily bone sarcomas), in humans and animals subjected to various doses of Ra 228, Ra 226, Ra 228, Sr 90, Pu 239 was discussed. In most cases tumor incidence was correlated with dose rate. The papers included studies of humans exposed to Ra; similarity of dose required to produce a given incidence of bone cancer in a variety of mammals including man; a review of the neoplasms induced by high doses of Sr 90; incidence of squamous cell carcinomas, liver tumors and eye melanomas in Ra, Pu, and Sr injected beagles; and the delayed effects of internally deposited radionuclides in rats. (ST)

<281>

Andrews, H.L., National Cancer Institute, Bethesda, MD. 1955, September 9

Radioactive Fallout from Bomb Clouds. Science, 122(3167), 453-456

The mechanisms by which fallout particles are produced and the biological implications of the radioactivity associated with the particles are discussed. During test operations at the Nevada Proving Ground an off-site monitoring program is maintained by the U.S. Public Health Service. Criteria laid down by the Atomic Energy Commission have been met. The fate of radioactive fallout from all test shots and its effect on the human population are discussed. (ST)

<282>

Bowen, V.T., and V.E. Noshkin, Woods Hole Oceanographic Institution, Woods Hole, MA. 1973

General Summary of Progress, 1972-1973, Plutonium Concentration Along Freshwater Food Chains of the Great Lakes, USA. COO-3568-3; 35 p.

The report summarizes sample collections made in Lake Ontario during the summer of 1972; analyses completed, since writing the 1971-1972 progress report, on the samples collected in 1971; analyses completed on the 1972 samples; and some preliminary attempts to compare and contrast the analytical data from the two years of sampling. Analyses of water, sediment, and biological samples for plutonium, strontium, and cesium are given in tabular form. Analyses and comparisons between years are discussed under the following headings: quality of data, water samples, sediment cores, and biological materials. (ST)

<283>

<283>
 Kelly, J.R., Oak Ridge National Laboratory, Oak Ridge, TN. 1973, July

Dynamics of Litter Decomposition, Microbiota Populations, and Nutrient Movement Following Nitrogen and Phosphorus Additions to a Deciduous Forest Stand. ORNL-4893; Ph.D. Thesis, University of Tennessee, 1971 p.

The objective of the study was quantification of the dynamics of litter decomposition, microbiota populations, and nutrient movement in response to nitrogen and phosphorus additions to a deciduous forest stand. Nitrogen (urea) was applied at rates of 0, 550, and 1100 kg/ha in combination with phosphorus (concentrated superphosphate) at rates of 0, 275, and 550 kg/ha. Total loss of organic material from white oak, red maple, and black gum litter bags over a 16-month period was 34, 35, and 45%, respectively. Phosphorus treatment retarded weight loss from litter bags of all species. Weight loss for the 0, 275, and 550 kg/ha levels of phosphorus averaged 23, 20, and 19% for white oak; 26, 25, and 25% for red maple; and 29, 27, and 26% for black gum. Weight losses were increased by a small amount (1 to 2%) or not at all by nitrogen treatment. The NP interaction weight loss means were intermediate to the main treatment means. The increase in decomposition associated with nitrogen was offset by the decrease associated with phosphorus. Litter and soil bacterial populations were significantly increased by nitrogen additions, while litter and soil fungi did not respond to nitrogen. Soil fungal populations were increased by phosphorus addition, while litter bacterial populations were reduced. Litter fungi and soil bacteria did not respond to phosphorus. Combined additions of nitrogen and phosphorus increased bacterial populations, though not as much as nitrogen alone. There was a good correlation (r equals 0.70) between bacterial population and litter weight loss. Invertebrate populations in white oak and red maple litter were reduced by nitrogen treatment; however, phosphorus treatment increased only the red maple invertebrate population. Invertebrates inhabiting black gum litter were not affected by fertilization. The change in invertebrate population appears to be in response to pH changes following fertilization. The shifts in invertebrate populations did not correlate with weight loss as well as the shifts in microbial populations did (r equals 0.35). The nitrogen content of the litter exhibited the same response pattern regardless of fertilizer treatment, although there were differences in the magnitudes of the responses. The dynamics of nitrogen in the litter correlated well with microbial population (r equals 0.85), while nitrogen loss from the litter and top 10 cm of the

soil via the soil solution appeared to be controlled by chemical rather than biological factors. The formation of insoluble calcium ammonium phosphate was the primary chemical regulator. Significantly less nitrogen was lost at the 550 kg/ha level of phosphorus in combination with nitrogen than at the 275 kg/ha level. Phosphorus and calcium losses in the soil solution support the calcium ammonium phosphate fixation hypothesis. Solubilized organic matter was estimated as contributing 25 g/m² of nitrogen loss. Volatilization losses were estimated to be as high as 26 g/m². Nitrogen treatment increased the amount of potassium, calcium, magnesium, and sodium in white oak litter, while phosphorus content was not altered. Phosphorus treatment increased the weight of phosphorus, calcium, and sodium, while reducing the weight of magnesium. Potassium content was not affected by phosphorus treatment. The alteration of microfloral populations by fertilization was the primary factor controlling nutrient dynamics in the decomposing litter. Nitrogen treatment significantly increased nitrogen and potassium losses from the litter and top 10 cm of the mineral soil via the soil solution. Phosphorus and calcium losses were unaltered. Phosphorus treatment increased the loss of all elements except nitrogen. (Auth)

<284>
 Kisielleski, W., and L. Woodruff, Not given.
 1947, November 1

Studies on the Distribution of Plutonium in the Rat. AECB-2009P; Part of Brues, A.M. (Ed.), Quarterly Report for August 1947-November 1947, (P. 86-93), 177 p. (Declassified May 12, 1948)

Adult male Sprague-Dawley rats were injected intramuscularly with the citrate and nitrate salts of plutonium in the +6 state at a dose level of 0.1 ug/g to study the distribution of plutonium over a period of one year. Most rats showed varying degrees of bronchopneumonia with abscesses at the time of autopsy. Animals were sacrificed at intervals from 7 to 420 days and the plutonium of the various tissues determined. The citrate salt was absorbed from the site of injection to a greater degree than the nitrate. The skeleton was the principal site of deposition regardless of the form. Liver was next and other soft tissues contained insignificant amounts. All of the tissues in the citrate injected rats showed a higher initial uptake than in the nitrate injected rats. The spleen contained a smaller percent of the injected dose, but in specific activity it was as high as liver or bone. (ST)

<285>
 Jee, W.S.S., University of Utah, College of Medicine, Department of Anatomy, Salt Lake City, UT. 1962

Histopathological Endpoints in Compact Bones Receiving Alpha Irradiation. Part of Dougherty, T.P., et al (Eds.), Proceedings of a Symposium on Some Aspects of Internal Irradiation held at the Homestead, Heter, Utah, May 8-11, 1961. Pergamon Press, Oxford, England, (p. 95-116), 529 p.

As part of a study of histopathological changes in bone as a consequence of long term effects of bone seeking alpha emitters, tibial diaphyses from controls and beagle dogs receiving a single intravenous injection of Pu 239, Ra 226, Ra 228, and Th 228 were studied. The results indicated that the turnover rate of the compacta of dogs between three and ten years old was slow and constant. Structural changes in compacta containing internally deposited alpha emitters appeared to be dose dependent. High radiation doses altered the circulation, produced bone necrosis and bizarre osteones, stimulated bone resorption and inhibited bone formation. The increased accumulations of these structures indicated a more rapid turnover rate for the radionuclide bearing dogs when compared to controls. The ratio of canal plugs to blocked vascular channels in damaged compacta was as high as 1:35 as compared to 1:9 for controls. The high ratio was due to damage to main arterial channels supplying cortical bone in the marrow cavities. Time played an important role in that many of the changes were cumulative. Two groups of dogs showed nearly identical damage, although the radiative doses and burden times of radionuclides were 1711 days, 760 rads and 1178 days, 1645 rads, respectively. The circulation factor was mainly responsible for the altered remodeling. The response of compact bone to partial ischemia was massive resorption and endosteal and periosteal bone proliferation resembling changes induced by internally deposited radionuclides in bone. (ST)

<286>
 Nickson, J.J. (Ed.), University of Chicago, Chicago, IL. 1945, July 23

Report of Conference on Plutonium, May 14th and 15th. CN-3167; 62 p. (Declassified December 22, 1952)

The distribution, retention, metabolism, toxicity, and excretion of plutonium following administration by different routes in humans and animals were discussed. The toxicity of plutonium as compared to polonium and radium was studied and the best method for decontamination of wounds was outlined. All of the nine papers presented at the conference were abstracted separately for the data base. (ST)

<287>
 Hepelmann, L.H., S.T. Cantril, J.P. Wirth, J.J. Nickson, and S.G. English, University of Chicago, Chicago, IL. 1945, July 23

Summary of Requests for Information Desired Concerning Plutonium. CN-3167; Part of Nickson, J.J. (Ed.), Report of Conference on Plutonium, May 14th and 15th, (p. 1-4), 62 p. (Declassified December 22, 1952)

Requests for information on plutonium contamination and metabolism were listed under the following headings: diagnosis and estimation of the amount of plutonium in the human body; absorption rate through the skin, gastrointestinal tract, wounds, and lung; permissible levels of plutonium in different parts of the body; metabolism as influenced by rate of intake and diet and rate of elimination from bone; pathology; therapy; protection; and plutonium-radium ratios. (ST)

<288>
 Finkle, R.D., University of Chicago, Chicago, IL. 1945, July 23

Distribution of Injected Plutonium. CN-3167; Part of Nickson, J.J. (Ed.), Report of Conference on Plutonium, May 14th and 15th, (p. 5-9), 62 p. (Declassified December 22, 1952)

The general biological reaction to administered plutonium appeared to be a deposition of 50% in the skeleton and early retention of 20-40% by the liver. In most cases the amount in the liver decreased to 5-10% within 64 days. The distribution in a dog 16 days after injection of a lethal dose of plutonyl nitrate was 44% in the skeleton, 31% in the liver, 8% in the muscle, and 3.5% in the spleen; 10% was excreted. Bone marrow was 13 times more active than an equal weight of compact bone. Plasma contained 80% of the plutonium in blood. In mice the liver retained 27% of the injected dose of plutonyl nitrate after 64 days, but only 7% of plutonyl citrate under the same conditions. Plutonium nitrates administered intramuscularly to rats resulted in small concentrations in the liver. Plutonyl nitrate and citrate injected intraperitoneally behaved similarly, with plutonyl nitrate being absorbed more slowly. (ST)

<289>

<289>
 Abrams, R., University of Chicago, Chicago, IL.
 1945, July 23

Retention of Inhaled Plutonium. CN-3167: Part of Nickson, J.J. (Ed.), Report of Conference on Plutonium, May 14th and 15th, (p. 10-11), 62 p. (Declassified December 22, 1952)

Data on the fate of inhaled and intubated plutonium particles in the form of nitrates (+3, +4, +6), oxide, cupferride, and citrates (+4 and +6) are summarized in tabular form. Greatest deposition was in the liver and skeleton. Deposition in the liver reached a maximum in one day, decreasing somewhat thereafter, especially with intubated citrate. Citrate accelerated the rate of transfer from the lung to the skeleton. (ST)

Lung retention, lung elimination half time, and liver and skeletal deposition of several plutonium compounds and valence states are given in tables 10 and 11.

<290>
 Barron, E.S.G., University of Chicago, Chicago, IL. 1945, July 23

The Metabolism of Tissues of Plutonium Treated Rats. CN-3167: Part of Nickson, J.J. (Ed.), Report of Conference on Plutonium, May 14th and 15th, (p. 12-15), 62 p. (Declassified December 22, 1952)

Rats administered intravenous injections of plutonium (2mg/kg) showed reduction in the size of the spleen and thymus after one week, accompanied by diminished O₂ uptake. The adrenal glands showed an increase in O₂ uptake followed by very low values after the fifth day postinjection. Thirty percent of the treated rats had elevated blood non protein bound nitrogen. Kidney damage was confirmed by lower measured rates of oxidation of glutamate and NH₃ formation. The liver appeared yellow and friable. Results were variable, but liver metabolic processes were generally inhibited to some degree. (ST)

<291>
 Murray, R., University of Chicago, Chicago, IL. 1945, July 23

Gross and Histopathology of Animals Treated with Plutonium. CN-3167: Part of Nickson, J.J. (Ed.), Report of Conference on Plutonium, May 14th and 15th, (p. 16-18), 62 p. (Declassified December 22, 1952)

Results of several studies on the gross and histopathologic changes in rats, mice, and dogs following treatment with plutonium are summarized. The following gross pathological changes were reported: rats inhaling plutonium showed lung changes characteristic of pneumonia; a dog treated intravenously with 0.36 ug/gm died after 16 days and showed pale bone marrow and hemorrhagic lymph nodes; mice and rats treated intramuscularly with plutonium citrate (2-12 ug/gm) showed degenerated and hemorrhagic areas in the kidneys and ulcerated local lesions; and mice

and rats treated intravenously (1.0 ug/gm) had smaller spleens and showed liver changes. At lower doses tumors and a bone fracture were observed. Histology studies made 6 hr to 6 weeks following injection of 1.25 ug/gm showed changes in the bone and bone marrow, lymph nodes, spleen, testes, and gastrointestinal tract. Following intravenous injection, rats showed damage earlier than in mice and at lower dose levels. Results within all groups of animals were variable. (ST)

<292>
 Brues, A.M., University of Chicago, Chicago, IL. 1945, July 23

Clinical Picture Following Plutonium Administration. CN-3167: Part of Nickson, J.J. (Ed.), Report of Conference on Plutonium, May 14th and 15th, (p. 19-26), 62 p. (Declassified December 22, 1952)

Clinical observations following intravenous injection of acute (0.36 mg/kg), subacute (0.286 mg/kg), and chronic (0.4 mg/kg intramuscularly) doses of plutonium nitrate (+6) were made on the dog. The most marked finding was a drop in white blood cell count involving heterophiles and lymphocytes. A progressive anemia was observed throughout the course of the experiment. Other clinical findings are listed in tabular form. Symptoms were similar but decreasingly less severe in dogs administered the subacute and chronic doses. These doses to dogs and rodents produced damage to the erythropoietic system, liver, spleen, kidneys, and bone. There was great variability of effects between groups of animals and results within a group were difficult to reproduce. Mice receiving plutonium nitrate (+6) intramuscularly and subcutaneously showed local greying of hair and skin ulceration. (ST)

<293>
 Langham, W., and E.R. Russell, University of Chicago, Chicago, IL. 1945, July 23

Excretion Studies. CN-3167: Part of Nickson, J.J. (Ed.), Report of Conference on Plutonium, May 14th and 15th, (p. 27-45), 62 p. (Declassified December 22, 1952)

Attempts to establish a method of sampling and analyzing urine for small amounts of plutonium and establish a relationship between the amount of plutonium in urine and the total body burden are summarized. A method for collecting and analyzing samples is given. Results of personnel monitoring and human excretion following injection of 4.7 ug of plutonium citrate (+4) are given in tabular form. Results of rat studies showed that the percent of the total injected dose excreted in urine was independent of the size of the dose administered. The excretion of plutonium by humans, dogs, rats, rabbits, and mice are shown in tabular form. The minimum amount of plutonium excreted daily was 0.01% of the retained amount. No comparisons between concentration in the blood and urinary excretion could be made. (ST)

Tables 18-25 contain plutonium excretion data for man and several apes.

<294>
Fink, R.M., and K.S. Cole, University of Chicago, Chicago, IL. 1965, July 23

Radium-Plutonium, Polonium-Plutonium Ratios. CN-3167; Part of Nickson, J.J. (Ed.), Report of Conference on Plutonium, May 14th and 15th, (p. 46-56), 62 p. (Declassified December 22, 1952)

To study the relative toxicities of radium, polonium and plutonium these radionuclides were administered to rats at dose levels of 20-8000, 50-170, and 19-190 uCi/kg body weight, respectively. Results are presented in the form of dosage-survival time charts. In terms of ³²Cr, polonium was three times as toxic as plutonium and plutonium was thirty times as toxic as radium for short survival periods. On the basis of equivalent alpha ray energy polonium was about twice as toxic as plutonium during a ten day survival period and increased in relative toxicity during longer survival periods. Plutonium to radium toxicity ratios were the same as those based on uCi. The relation of deposition site to toxicity was discussed. The toxicity of plutonium as related to route of administration, physicochemical form, experimental animal used, and specific organ effects is given in tabular form. (ST)

<295>
Nickson, J.J., University of Chicago, Chicago, IL. 1965, July 23

Therapeutic Experiments and Suggestions. CN-3167; Part of Nickson, J.J. (Ed.), Report of Conference on Plutonium, May 14th and 15th, (p. 57-62), 62 p. (Declassified December 22, 1952)

In preliminary experiments plutonium nitrate (+6) was introduced into skin lacerations on rats to study the rate of absorption of plutonium from the site of injury. The resultant data indicated that time after introduction of plutonium into a wound was the single most important condition affecting removal. Water was an effective washing agent. Administration of intravenous citrate increased urine plutonium excretion rate. (ST)

<296>
Ballou, J.E., General Electric Company, Hanford Laboratories, Biology Laboratory, Richland, WA. 1968

Distribution and Retention of Plutonium 239 and Neptunium 237 in the Rat Adrenal. Radiation Research, 22, 81-94

Sprague-Dawley rats were administered massive doses of plutonium or neptunium citrate intravenously to determine distribution and retention of these radionuclides in the adrenal gland. Tissue analyses at autopsy showed that the amount of plutonium or neptunium in the adrenal was always small compared to that retained in the total rat. Deposition in the adrenal cortex was

characterized by discrete zonal concentrations in areas of the zona glomerulosa and zona reticularis. Localized deposition in these areas was apparent by the third day postinjection and appeared to be more pronounced at later time intervals. Prolonged retention in the adrenal may be explained by the phagocytic capacity of this organ and/or metabolic reutilization of biological components containing these radionuclides. Estimated local radiation doses to the portion of the adrenal containing the majority of plutonium or neptunium were about five times as high as the average adrenal dose. (ST)

<297>
, International Atomic Energy Agency, Vienna, Austria. 1973

Regulations for the Safe Transport of Radioactive Materials. STI/PUB/323; Safety Series No. 6; 146p.

Standards of safety are set forth which provide an acceptable level of control of the radiation hazards to persons, property, and the environment that are associated with the transport of radioactive material. The regulations are described for packaging and package design requirements, low level solid radioactive material, activity limits for various types of packages, controls for transport and storage in transit, fissile materials such as U 233, U 235, Pu 238, Pu 239, and Pu 241, and test and inspection procedures. The administrative requirements are discussed such as occasions when approval by competent authorities is required. (PMM)

<298>
Not given, International Atomic Energy Agency, Vienna, Austria. 1973

Safe Handling of Radionuclides. STI/PUB/319; Safety Series No. 1; 91 p.

The Code of Practice is provided as a guide to the safe handling of radionuclides. The code contains a series of recommendations which should be interpreted with scientific judgement in their application to a particular problem. Basic safety standards are set forth which prescribe maximum permissible levels of exposure to radiation and fundamental operation principles. The manual covers monitoring of personnel and work areas, sealed and unsealed sources and their storage, transportation of radioactive material, accidents, decontamination, and radioactive waste control and disposal. In the appendices there are tables of derived concentration limits of radionuclides (including Pu 239, Am 241, Pu 238, U 235, and U 238) in air and water for occupational exposure and for maximum permissible levels for surface contamination. (PMM)

<299>

Hancitelli, L.A., R.W. Perkins, and A.D. Renzetti, Jr., Battelle Memorial Institute, Pacific Northwest Laboratories, Environmental and Life Sciences Division, Radiological Sciences Department, Richland, WA. 1969, June

The Multielement Analysis of Human Lung Tissue. BNWL-1051 (Part 2); Part of Pearce, D.S. (Ed.), Annual Report for 1968, (p. 6-9), 234 p.

Human lung tissue obtained from individuals with experience in copper ore processing, uranium mining, uranium processing, and heavy metals processing were analyzed by instrumental neutron activation analysis. The concentrations of 19 elements are reported in the lungs of these individuals and are compared with the concentrations measured in a normal individual. The uranium miner was found to have 2 ppm U and the uranium processor 27 ppm U, compared to 0.001 ppm U in the normal individual. The lung from the subject with a heavy element exposure had a normal uranium concentration but contained 8 times the normal Th. (Auth)

Table 1 shows trace element content of normal lung tissue. Table 2 shows trace element content of lung tissue of individuals with heavy element exposure.

<300>

Goldman, M.I., WES Corporation, Environmental Safeguards Division, Rockville, MD. 1972, September

Nuclear Power and a Protected Environment. ORP/SID-72-6; Part of Proceedings of the Southern Conference on Environmental Radiation Protection from Nuclear Power Plants, April 21-22, 1971, (p. 221-233), 246 p.

The future role of nuclear power in a protected environment is discussed. Two areas of concern to environmentalists, low level wastes from nuclear facilities and thermal effects, are given particular attention. The author suggests that present Atomic Energy Commission regulations are adequate, that the public is visinformed about radiation hazards, and that while more stringent regulations will be beneficial in some areas, they will in general result in little reduction of radiation dose to the public, increase the average radiation exposure of plant workers, and in some cases indirectly produce other hazardous conditions. (ST)

<301>

Bates, F.H., T.H. Boyd, and J.P. Clarke, British Nuclear Fuels Limited, Windscale and Calder Works, Technical Department, Risley, England. 1971

Rapid Determination of Plutonium in Urine: Separation from Baked Urine Residues Using Ion-Exchange. BNFL-Report-1(W); 21 p.

A method is given for the determination of plutonium in urine within 4 hours of receipt of a sample, excluding counting time. The method consists of evaporating 250 ml of sample to dryness with nitric acid and baking at 550 degrees C to remove organic matter, dissolution of the residue and removal of interfering condensed phosphates by boiling with a catalyst, isolation of the plutonium using an anion-exchange column and finally counting the plutonium on a tray in a low background counter. The method can be scaled up to cope with 1 l samples of urine. The interference of condensed phosphates with the ion-exchange process is studied. It has been shown that the presence of iron in the analytical process promotes good recovery of plutonium. (Auth)

<302>

Young, R.A., U.S. Geological Survey, Federal Center, Denver, CO. 1972

Water Supply for the Nuclear Rocket Development Station, at the U.S. Atomic Energy Commission's Nevada Test Site. Geological Survey Water-Supply Paper No. 1938; 19 p.

The Nuclear Rocket Development Station, in Jackass Flats, occupies about 123 square miles in the southwestern part of the U.S. Atomic Energy Commission's Nevada Test Site. Jackass Flats, an intermontane valley bordered by highlands on all sides except for a drainage outlet in the southwestern corner, has an average annual rainfall of 4 inches. Jackass Flats is underlain by alluvium, colluvium, and volcanic rocks of Cenozoic age and, at greater depth, by sedimentary rocks of Paleozoic age. The alluvium and the colluvium lie above the saturated zone throughout nearly all of Jackass Flats. The Paleozoic sedimentary rocks contain limestone and dolomite units that are excellent water producers elsewhere; however, these units are too deep in Jackass Flats to be economic sources of water. The only important water-producing unit known in the vicinity of the Nuclear Rocket Development Station is a welded-tuff aquifer, the Topcayah Spring Member of the Paintbrush Tuff, which receives no significant recharge. This member contains about 500 feet of highly fractured rock underlying an area 11 miles long and 3 miles wide in western Jackass Flats. Permeability of the aquifer is derived mostly from joints and fractures, however, some permeability may be derived from gas bubbles in the upper part of the unit. Transmissivity, obtained from pumping tests, ranges from 68,000 to 488,000 gallons per day per foot. Volume of the saturated part of the aquifer is about 3.5 cubic miles, and the average specific yield probably ranges from 1 to 5 percent. The volume of groundwater in storage is probably within the range of 37-187 billion gallons. This large amount of water should be sufficient to supply the needs of the Nuclear Rocket Development Station for many years. Water at the Nuclear Rocket Development Station is used for public supply, construction, test-cell coolant, exhaust cooling, and thermal shielding during nuclear reactor and engine testing, and washdown. Present (1967) average consumption of water is 520,000 gallons per day—all supplied by one well. This supply well and a standby well have a production capability of 1.6 million gallons per day—adequate for present needs. Water in the welded-tuff aquifer is of the sodium bicarbonate type. Dissolved-solids content of the water in Jackass Flats is in the general range 230 milligrams per liter in the western part to 890 milligrams per liter in the eastern part. Personal communication from the author dated March 16, 1973 relates the following: As the report was written in 1968, the data is not quite up-to-date. Well J-12 was deepened in August 1968 to 1,000 ft and will now produce 1,000 gallons per minute with less than 20 ft of drawdown. Further, when the pump was pulled in 1968, it was found that the water level was the same as in 1952 when the well was drilled, therefore, there is no decrease in storage as indicated in the report. Because the wells have been on stand-by since the National Rocket Development Station has been deactivated, a maximum amount of storage should be anticipated at this time. (Auth)

<303>

Michels, D.E., Dow Chemical Company, Rocky Flats Division, Golden, CO. 1973, April 27

Diagnosis of Plutonium Reentrained in Air. RFP-1927; 16 p.

A method (a posteriori) of combining diverse environmental data has been developed to estimate the absolute amount of plutonium reentrained into the air from contaminated soil. Measured concentrations of plutonium in air and soil, and wind data are used to compute the fraction of the soil inventory which became reentrained during a 14-month period at Rocky Flats Plant. (Auth)

<304>

Michels, D.E., Dow Chemical Company, Rocky Flats Division, Golden, CO. 1972

Plutonium Resuspension from Soil: How Measurable. RFP-1927; CONF-721076-1; Part of Proceedings of the National Industrial Hygiene Association Symposium held in Denver, Colorado, October 5-6, 1972, (24 p.)

During a 14-month period approximately 3 millicuries of plutonium were resuspended by wind from the Rocky Flats strewfield (120 km²). The estimate is based on diverse data taken routinely. Of the several technical difficulties in making this estimate, the most important concerned the correlations required between different kinds of measurements and the techniques used to interpret numerical data that are broadly distributed. The greatest current need relative to environmental studies concerns how the numbers can be related to concepts of public health in a valid and convincing way. (Auth)

<305>

Not given, National Environmental Research Center, Environmental Surveillance, Las Vegas, NV. 1973, February

Selected Census Information Around the Nevada Test Site. NERC-LV-539-8; 11 p.

The National Environmental Research Center-Las Vegas (NERC-LV), Environmental Protection Agency, conducts a comprehensive off-site radiological safety program in support of nuclear testing at the Nevada Test Site (NTS). To facilitate the planning and management of required surveillance and monitoring operations, and to assess potential and actual population exposures resulting from radioactive releases into the areas beyond the boundaries of the NTS, the NERC-LV collects and maintains census information in the area around the NTS. This census information, which includes the number and distribution of resident adults and children, family milk cows, and Grade A dairy cows located by azimuth and distance within a radius of 450 miles of Control Point 1 at approximately the center of the NTS, 36 degrees 15' N, 116 degrees 04' W is summarized. (Auth)

<306>

<306>
 Zalmanzon, Yu.E., and O.A. Chutkin, Scientific Research Institute of Instrument Construction, Moscow, USSR. 1972, July

Distribution of Absorbed Dose from Alpha-Active Aerosol Particles by Tissue Depth. *Meditinskaya Radiologiya*, 17(7), 69-72 (Russian)

Calculations of tissue absorbed dose dependence upon the distance from alpha-active isotope aerosol particle considering irregularity of linear losses of alpha radiation along the path and real energetic spectra of aerosol particles were carried out. The calculated results for Pu 239 are presented. It is shown that dose distribution by tissue depth is a highly variable function; this must be considered in assessment of alpha-active aerosol hazards for personnel. (Auth)

<307>
 Zalmanzon, Yu.E., and O.A. Chutkin, Union Scientific Research Instrument Engineering Institute, USSR. 1971, July 12

Radiation Absorbed Dose in the Lungs from Radioactive Aerosols. RPP-Trans-130; 10 p.: *Meditinskaya Radiologiya*, 17(4), 63-68

The variation in radiation dose in the lungs of personnel depending on the particle size of inhaled radioactive aerosols was studied. Calculations were made for the parameters of the distribution of aerosol particles according to measurements which are within the limits actually existing in practice, using recent international recommendations. Using Pu 239 as an example, it was indicated that with the same concentration of radioactive aerosols, the absorbed dose in the lungs can vary by a factor of several hundred. (Auth)

<308>
 Tregubenko, I.P., Akademiya Nauk SSSR, Trudy Instituta Biologii, Ural'skii Filial., Sverdlovsk, USSR. 1966

Experiments on the Effect of Some Substances on the Behavior of Plutonium in the Organism. AEC-tr-7169; Part of Metabolism of Radioisotopes in the Animal Organism, (p. 199-204), 220 p.

A study was made of the effects of different types of colloids as well as of a number of complex-forming substances on the behavior of plutonium in rats. Albino rats received intraperitoneal injections of plutonium citrate in a dose of 1 μ Ci, and ten to twenty minutes later one of the substances tested was injected. The animals were sacrificed by the fourth day and an assay was made of Pu levels in the tissues by radicometry. It was established that negatively charged colloids of zirconium and yttrium have a pronounced effect on deposition of Pu in the skeleton and soft tissues. Finely dispersed colloid zirconium elicits a significant increase in excretion of plutonium with urine; the larger particled zirconium citrate and particularly yttrium causes a marked increase in deposition of Pu in the liver as well as in the spleen. Of the complex-forming substances, it was found that a reliable decrease in deposition of Pu in the skeleton was induced only by cupferron, which also elicited a visible increase in plutonium content in the spleen. Sodium arsenate

doubled deposition of the emitter in the liver. All the other preparations had no effect. Complex-forming substances whose stability constants for the complexes produced are not too high have practically no effect on the behavior of plutonium, even when administered early. (Auth) (PMM)

Tables 1 and 2 show the effects of colloids and complex-forming substances on Pu levels in rat tissues on the 4th day after IP injection.

<309>
 Yelkina, N.I., Not given. 1971

Metabolic Processes in the Bone Tissue of Animals Damaged by Plutonium 239. AEC-tr-7387; Part of Moskalev, Yu.I. (Ed.), Remote Aftereffects of Radiation Damage, (p. 406-415), 574 p.

Bone tissue damage by Pu was compared in rabbits, dogs and rats. Plutonium citrate at 0.2 μ Ci/kg was administered to rabbits IV at 7 and 2 μ Ci/kg, to dogs IV at 2 μ Ci/kg and to rats IP at 1.9 μ Ci/kg. Calcium and phosphorus metabolism were investigated using Ca 45 and P 32. The results show that in the bones of rabbits 3-3.5 months old that were administered 7 μ Ci/kg of Pu, the Ca and P content was 11-13% higher during the first 30 days than in the controls. There were considerable changes in the activity of enzymes and the quantity of nucleic acids. With a greater dose, the changes in metabolic processes in the bones developed earlier. The greatest impairments were noted in the spongy matter of the bones. The degree of change in metabolism of bone tissue was dependent on the age of the animals at time of entry of the radioelement. Some experimental animals later developed osteosarcomas and the biochemical indices in tumorous tissues were compared with those of similar parts of the bones without tumors. It was shown that osteosarcomas arising under the influence of Pu are characterized by a considerable increase in the content of nucleic acids and the activity of phosphatases and also an increased rate of incorporation of Ca 45 and P 32 in comparison with similar regions of the bones. (PMM)

<310>
 Zlobin, V.S., and O.V. Mokanu, Polar Scientific Research Institute of Marine Fish Farming and Oceanography, Murmansk, USSR. 1970

Mechanisms of the Accumulation of Plutonium 239 and Polonium 210 by the Brown Alga ASCOPHYLLUM NODOSUM and Marine Phytoplankton. AEC-tr-7205; Part of Radiobiology, (p. 160-169); Radiobiologiya, 10(4), 584-589

The accumulation of Pu 239 by ASCOPHYLLUM NODOSUM and marine phytoplankton, as well as that of Po 210 by macrophytes under the influence of inhibitors of cellular respiration, was investigated. It was established that Pu and Po exist in seawater in the form of colloidal particles. Sodium cyanide induces uniform suppression of the accumulation of Pu 239 and Po 210 in plant cells, while ammonium chloride briefly stimulates accumulation. It is demonstrated that the accumulation of Pu 239 by marine algae is an active process, and it involves an energy expenditure by the cell. (Auth)

<311>
 Beach, S.A., National Radiological Protection Board, Research Division, Harwell, Didcot, Berkshire, England. 1973, January

SEBEACH, A Digital Computer Program for the Estimation of Body Content of Plutonium from Urine Data. *Health Physics*, 24, 9-16

The digital computer program SEBEACH allows estimation of the retained body content of plutonium from urine data. A function is given which relates the amount of plutonium found in a 24 hr urine sample at a time after intake, to the amount retained in the body. The method is based upon the trend of urine values. Two types of computation are carried out: first, as an upper bound, the calculated trend value is assumed to result from a single intake during the earliest possible period indicated by the urine record; second, the trend value is assumed to result from a constant and continuous intake over the whole exposed period. Two different clearance rates from the lung or wound to the blood are considered. The difficulties encountered in estimating the body content of plutonium are discussed in the light of the method of estimation programmed in SEBEACH. Comparison is made with other digital programs undertaking the same type of computation. A flow chart of the program is included. (Auth) (ST)

<312>
 Rizik, N.S., Academy of Sciences, Institute of Biology of Southern Seas, Ukrainian SSR. 1970

Uranium in Organism of Animals from the Adriatic Sea. *Vestnik Zoologii*, 4(2), 12-15 (Russian, English Summary)

To study the role of uranium on radioecological processes and its effect as an alpha emitter on living organisms, accumulation coefficients of some animals in the Adriatic Sea were determined. *MYTILOS CALLOPROVINCialis* concentrated uranium by factors of units and tens and *ARBACIA* sp. by a factor of hundreds. In *VERONICA AEROPHORA* microaggregations of uranium were found in which its concentration was higher by a factor of two-thirds as compared with the rest of the organism. (ST)

<313>
 Puglia, P.A., General Electric Company, Hanford Atomic Products Operation, Occupational Medical Operation, Richland, WA. 1965, April

Plutonium Absorption, Evaluation and Treatment. *Industrial Medicine and Surgery*, 34, 335-337; HW-SA-3730 (Rev.); 3p.

Possible methods of entry of plutonium into the body--wounds, skin contamination, inhalation, and ingestion; evaluation of the amount absorbed; and the most effective method of removal are discussed. The most common known absorption source is from contaminated wounds. These are treated by early excision of the entire wound if possible. DTPA is the most effective agent that binds and mobilizes plutonium for urinary excretion. Some of the most urgent diagnostic and evaluation needs that would facilitate treatment are described. (ST)

<314>
 Dougherty, T.P., University of Utah, College of Medicine, Radiobiology Division, Department of Anatomy, Salt Lake City, UT. 1973, March 31

Research in Radiobiology: Annual Report of Work in Progress in the Internal Irradiation Program. CCO-119-248; 400 p.

Progress on work begun in 1950 on the predictive toxicity of radionuclides, particularly plutonium, to man using effects observed in beagle dogs is reported. Studies on Ra 226, Pu 239, Ra 228, Th 228, Sr 90, and Am 241 are partially or fully completed, and work is continuing on Ra 226 and Pu 239 at low dose levels, Cf 249 and Cf 252, and other animals receiving various radionuclides of current interest. Fourteen papers were selected for separate abstracts. (ST)

<315>
 Jee, W.S.S., R.B. Dell, D. Kimmel, J.J. O'Toole, and L. Clark, Jr., University of Utah, College of Medicine, Radiobiology Division, Department of Anatomy, Salt Lake City, UT. 1973, March 31

Jee-Miller Detailed Neutron-Induced Autoradiography of Plutonium 239 Bones. CCO-119-248; Part of Dougherty, T.P., Research in Radiobiology, Annual Report of Work in Progress in the Internal Irradiation Program, (p. 244-254), 400 p.

Neutron induced autoradiography (NIAR) of bones from beagle dogs injected with as little as 0.0006 uci of Pu 239/kg body weight is being used to characterize the local deposition of Pu 239 in hard and soft tissues. Undecalcified 7 μ thick bone sections are affixed to Lexan film and irradiated with thermal neutrons for about one month. Recent improvements in developing techniques have given reproducible films showing fission fragment tracks upon a bone image. This method allows rapid, accurate localization of the Pu 239 in bones from animals receiving very small amounts of Pu 239. This is a pilot study that will be used to gain information on bone tumor production by radiation. (Auth) (ST)

<316>

Bruenger, F.W., B.J. Grube, D.R. Atherton, and W. Stevens, University of Utah, College of Medicine, Radiobiology Division, Department of Anatomy, Salt Lake City, UT. 1973, March 31

The Early Subcellular Distribution of Curium in Canine Livers. C00-119-248; Part of Dougherty, T.F., Research in Radiobiology, Annual Report of Work in Progress in the Internal Irradiation Program, (p. 186-200), 400 p.

Previous studies of the subcellular distribution of Pu 239, Am 241 and Cf 249-252 in canine livers were extended to include Cm 243-244. Beagles were injected with 3 uci of the nuclide in citrate solution of pH 3.5. Following injection, liver specimens were obtained at 0.092 and 47 days by surgical liver biopsy and at 6, 13 and 30 days at autopsy. As observed with other nuclides, curium in the liver was first associated with soluble liver proteins, mainly ferritin, and was found later in increasing concentrations in subcellular organelles. The highest concentration was found in the crude mitochondrial fraction and somewhat less in the crude lysosomal fraction. A considerable part of the nuclide remained in the cytosol. Sucrose density gradients showed a variable relation between the lysosomal enzyme marker activity and the nuclide concentration. Heavy subcellular organelles other than lysosomes (probably mitochondria) must, therefore, be involved in the binding of the nuclide. With respect to liver retention and subcellular distribution, curium occupies a position between Am(+3) and Cf(+3), but resembles Am(+3) more closely than Cf(+3).
(Auth)

<317>
Dougherty, T.F., University of Utah, College of Medicine, Radiobiology Division, Department of Anatomy, Salt Lake City, UT. 1973, March 31

Injection Tables. C00-119-248; Part of Dougherty, T.F., Research in Radiobiology, Annual Report of Work in Progress in the Internal Irradiation Program, (p. 9-109), 400 p.

Injection tables for adult beagles injected with one of the radionuclides, Ra 226, Pu 239, Ra 228, Th 228, Sr 90, and Am 241, in a single intravenous injection at 17 months of age, are given. Injection level 1 is the basis of the scheme and is 10 times the maximum permissible concentration of Ra 226 in man. Actual injection levels differ, but the desired retained activities are the same for all radionuclides except Sr 90, in which case they are greater by a factor of 10. Present measurements indicate that: average Ra 226 retention is 0.25 at about 271 days; average Pu 239 retention is 0.90 at about 6 days; average Ra 228 retention is 0.25 at about 214 days; average Th 228 retention is 0.90 at about 6 days; average Sr 90 retention is 0.25 at about 134 days; average Am 241 retention is 0.90 at about 6 days; average Cf 249 retention is 0.90 at about 1 day; average Cf 252 retention is 0.90 at about 1 day; and average Cm 243-244 retention is 0.90 at about 1 day. The injection tables include the calculated average dose in rads to the skeleton at death. (ST)

Tables 1 and 2 list the toxicity (animals maintained until sacrifice becomes a clinical necessity) and test animals (animals sacrificed as needed for special studies), respectively.

<318>
Atherton, D.R., and B.J. Stover, University of Utah, College of Medicine, Radiobiology Division, Department of Anatomy, Salt Lake City, UT. 1973, March 31

Retention of Plutonium 239 in the Ulna of the Beagle Compared with Retention in the Humerus and the Third Lumbar Vertebra. C00-119-248; Part of Dougherty, T.F., Research in Radiobiology, Annual Report of Work in Progress in the Internal Irradiation Program, (p. 299-243), 400 p.

The initial deposition of Pu 239 and the rate of decrease in retention are both higher in bones which have a relatively greater amount of trabecular bone. For this reason the ulna, which has relatively less trabecular bone, was chosen for an extensive comparison with the humerus and third lumbar vertebra. These three bones were obtained from 40 beagles at dose levels from 0.00064 to 0.095 uci Pu 239/kg (P0.1 to P2) and at times from 35 to 4549 days after injection. Analyses showed that the initial concentration of Pu 239 in the ulna was about 25% that in the other two bones. Retention of Pu 239 in the ulna was approximately constant over the 12.5 year period. In contrast, retention in both the humerus and third lumbar vertebra decreased during the first several years and then approached approximately constant values. A kinetic model for the observed retention has been formulated. (Auth)

<319>

Bruenger, F.W., B.J. Grube, D.R. Atherton, and W. Stevens, University of Utah, College of Medicine, Radiobiology Division, Department of Anatomy, Salt Lake City, UT. 1973, March 31

Binding of Americium 241 by Bone Protein. COO-119-248; Part of Dougherty, T.F., Research in Radiobiology, Annual Report of Work in Progress in the Internal Irradiation Program, (p. 213-228), 400 p.

A study to characterize some details involved in the binding of actinide elements to skeletal tissue has been initiated. The present studies have been limited to Am 241 as a model representative of the actinide series. Experiments were carried out first with mature skeletal tissue obtained from a beagle which had been injected with Am 241. A protein fraction of high but as yet undetermined molecular weight which was associated with Am 241 was extracted from the whole bone homogenate. Extracts were also prepared from embryonic or neonatal skeletal tissue of rats and beagles. These extracts were incubated in vitro with Am 241 and Sr 90. These experiments showed that beginning with the onset of ossification, a protein with a molecular weight of approximately 500,000 emerged which had a high affinity for Am 241. With increasing time after conception, another protein of very high molecular weight emerged to which the nuclide had an affinity which was even higher than the affinity for the protein of molecular weight of approximately 500,000. Sr 90 exhibited a much lower affinity for both of these proteins. Qualitative similarities existed between the uptake of Am 241 and Sr 90 by both of these proteins. The protein with a molecular weight of approximately 500,000 and the very high molecular weight protein both gave positive tests for glycoprotein and sialic acid. (Auth)

<320>

Casey, H.W., R.O. McClellan, W.J. Clarke, and L.K. Bustad, General Electric Company, Hanford Atomic Products Operation, Biology Laboratory, Richland, WA. 1973, January 15

Iodine 131 Labeled Rose Bengal Dye Blood Clearance as a Liver Function Test in Sheep. HW-76000; Part of Kornberg, H.A. and Swezea, E.G. (Eds.), Hanford Biology Research Annual Report for 1962, (p. 174-177), 269 p.

Blood clearance of I 131 labeled rose bengal dye was used to measure liver function in sheep. Two hepatotoxic agents, CCl sub 4 and Np 237, were used to determine the sensitivity of the test. Clearance rates differed only slightly for sheep of different age groups and in those placed in different body positions. (Auth)

<321>

Casey, H.W., R.O. McClellan, W.J. Clarke, and L.K. Bustad, General Electric Company, Hanford Atomic Products Operation, Biology Laboratory, Richland, WA. 1963, January 15

Acute Toxicity of Neptunium 237 and Its Relationship to Liver Function in Sheep. HW-76000; Part of Kornberg, H.A. and Swezea, E.G. (Eds.), Hanford Biology Research Annual Report for 1962, (p. 31-35), 269 p.

Deaths with lesions resembling heavy metal poisoning were observed in all sheep intravenously administered 12 mg of Np 237/kg body weight and in four out of five animals that received 6 mg/kg. Liver function was impaired in animals which received doses as low as 1.5 mg (1 uCi) per kg body weight. The LD 50 appeared to be slightly less than 6 mg/kg of body weight. (Auth)

<322>

Dougherty, J.H., and L.A. Woodbury, University of Utah, College of Medicine, Radiobiology Division, Department of Anatomy, Salt Lake City, UT. 1973, March 31

Hematologic Changes Following Plutonium 239 Injection in Adult St. Bernards and Immature Beagles. COO-119-248; Part of Dougherty, T.F., Research in Radiobiology, Annual Report of Work in Progress in the Internal Irradiation Program, (p. 317-335), 400 p.

The hematologic changes following a single intravenous injection of Pu 239 in young adult St. Bernards and 3 month old beagles are reported for the first year following injection. The amounts of Pu 239 injected ranged from 0.005 to 0.3 uCi/kg in the 12 St. Bernards and from 0.3 to 3.0 uCi/kg in the 20 beagle pups. The dose levels selected were comparable to those in the adult beagles injected in our laboratory. There were no significant alterations in erythrocytes in any of the dose levels in either the St. Bernards or beagle pups. A dose-dependent leukopenia was found in St. Bernards receiving the two highest dose levels (0.1 and 0.3 uCi/kg) which was sustained over the first year. The pattern and degree of cell depression was quite similar to that found in adult beagles. The beagle pups given the highest dose level (3.0 uCi/kg) had a leukopenia and lymphopenia which was not as marked as that found in adult beagles receiving the same amount of Pu 239. The increase in skeletal mass of the pups during growth, a more rapid burial of Pu 239 within bone volume, and perhaps, a greater capacity of the immature hematopoietic system to recover may be possible reasons for this difference in hematologic toxicity of the injected plutonium. (Auth)

<323>

<323>

Dougherty, T.P., University of Utah, College of Medicine, Division of Radiobiology, Department of Anatomy, Salt Lake City, UT. 1962

Incidence of Bone Cancer in Internally Irradiated Dogs. Part of Dougherty, T.P., et al (Eds.), Proceedings of a Symposium on Some Aspects of Internal Irradiation held at The Homestead, Heber, Utah, May 8-11, 1961. Pergamon Press, Oxford, England, (p. 47-61), 529 p.

As part of a study to compare the toxicity of internally deposited Ra 226, Pu 239, Ra 228, Th 228, and Sr 90, the incidence of bone tumors in beagles given a single intravenous injection was studied. Among the various types of cancers produced by these radionuclides, bone cancer (osteosarcoma) appeared to be most common. Injected doses ranged from 1.1 to 10 μ Ci/kg for Ra 226 and Ra 228, 0.096 to 2.8 μ Ci/kg for Pu 239, 0.096 to 0.90 μ Ci/kg for Th 228, and 100 μ Ci/kg for Sr 90. At the same radionuclide dose level there were differences in survival times and in the absorbed skeletal dose. Survival time decreased with increasing dose. The earliest incidence of cancer occurred with Th 228. (ST)

Table 1 lists the incidence of osteosarcomas, number of days from injection to death, and the average absorbed skeletal dose of adult beagles injected with radium, plutonium, strontium, radiothorium and strontium.

<324>

Christensen, W.R., C.C. Smith, C.E. Rehfeld, and G.N. Taylor, University of Utah, College of Medicine, Department of Radiology, Salt Lake City, UT. 1962

Radiographic Changes in Internally Irradiated Dogs. Part of Dougherty, T.P., et al (Eds.), Proceedings of a Symposium on Some Aspects of Internal Irradiation held at The Homestead, Heber, Utah, May 8-11, 1961. Pergamon Press, Oxford, England, (p. 63-77), 529 p.

Diagnostic criteria established as evidence of radionuclide injury to skeletal structures of dogs receiving intravenous injections of radium (0.34 to 10 μ Ci/kg), thorium (0.096 to 0.90 μ Ci/kg), and plutonium (0.096 to 2.8 μ Ci/kg) were: structural changes in the mandible, destructive changes in the teeth, pathological fractures—with and without healing, distortion of cortex of long bones, disturbance of metaphyseal trabeculation, osteolytic rarefaction, rib end demarcation, aseptic necrosis, and tumor formation. Alterations in the mandible were the earliest detectable and most consistently visualized evidences of injury. Earliest changes occurred in animals receiving the highest doses. There was no specificity or consistency in the skeletal changes produced and it was impossible to identify a specific nuclide on the basis of radiological evidence. Th 228 and Ra 228 appeared to produce pathological changes somewhat more rapidly than Pu 239 and Ra 226. Osteolytic resorption and irregular bone overgrowth appeared to follow vascular injury. Tumor incidence at high levels of toxicity was low because of early death from general radiation injury. Experimental results are still accumulating. (ST)

<325>

Dougherty, J.H., University of Utah, College of Medicine, Division of Radiobiology, Departments of Pathology and Anatomy, Salt Lake City, UT. 1962

Some Hematological Responses to Internal Irradiation in the Beagle. Part of Dougherty, T.P., et al (Eds.), Proceedings of a Symposium on Some Aspects of Internal Irradiation held at The Homestead, Heber, Utah, May 8-11, 1961. Pergamon Press, Oxford, England, (p. 79-93), 529 p.

The chronic hematological changes in beagles receiving intermediate and high level doses of Pu 239 (0.30 to 2.8 μ Ci/kg), Ra 226 (1.1 to 10 μ Ci/kg), Ra 228 (1.1 to 10 μ Ci/kg), Th 228 (0.30 to 2.8 μ Ci/kg), and Sr 90 (11 to 100 μ Ci/kg) were summarized. Dose levels were chosen so that retained amounts of radioactivity were closely related. A comparison of initial effects and recovery rate of blood cells indicated that Th 228 was the most toxic radionuclide. In general, there was a dose response effect on blood cells and particularly on polymorphonuclear neutrophils where the greatest initial effect was found. There was a lymphopenia in all dogs receiving high dose levels. Although there was a decrease in red cells and a reduced red cell volume with all nuclides, the pattern of change and dose level where changes occurred differed among them. Dogs receiving high level doses of plutonium and strontium showed transient anemia during the first months with plutonium dogs again developing progressive anemia after two years as they became terminal. The effects of metabolism of the radionuclides and its location in bone and soft tissues were discussed. A dose level effect on bone marrow myeloid to erythroid cell ratio was demonstrated. (ST)

<326>

Hess, J., and W.S.S. Jee, University of Utah, College of Medicine, Radiobiology Division, Department of Anatomy, Salt Lake City, UT. 1973, March 31

Plutonium 239 and the Stimulated Periodontal Ligament Cells. COO-119-248; Part of Dougherty, T.P., Research in Radiobiology, Annual Report of Work in Progress in the Internal Irradiation Program, (p. 308-316), 400 p.

Following a single intraperitoneal injection of 3.0 uCi Pu 239/kg body weight, the quantity of Pu 239 on the alveolar bone surface mesial to the periodontal ligament (PDL) of the maxillary first molar of male Sprague-Dawley rats increased from 1 to 9 days, then decreased by 15 days. At 15 days post-injection, the amount continued to decrease for 22 hours in both an orthodontically stimulated area and a nonstimulated area in the opposite jaw of the same animal. However, the amount continued to fall in the stimulated PDL until 48 hours poststimulation while the nonstimulated side remained constant from 22 to 48 hours. The labeling index of the stimulated PDL fibroblasts of control and Pu 239 injected female Sprague-Dawley rats rose to a peak of 12% at both 22 and 27 hours poststimulation. Regional analysis of labeling index divided the PDL fibroblasts into "at risk" and "safe" groups. The "at risk" cells showed a labeling index of 10% at 22 hours compared to the cells of the same area in a control animal whose labeling index was 22%. The "safe" cells showed a labeling index of 15% vs a labeling index of 10% in corresponding controls. In stimulated controls, the number of osteoblasts increased by three-fold after 48 hours, while the number of osteoclasts decreased to zero. In stimulated Pu 239 treated animals, the number of osteoblasts doubled in 48 hours, while the number of osteoclasts doubled also. (Auth)

<327>

Kornberg, H.A. (Ed.), and E.G. Sveeza (Ed.), General Electric Company, Hanford Atomic Products Operation, Biology Laboratory, Richland, WA. 1963, January 15

Hanford Biology Research Annual Report for 1962. HW-76000: 269 p.

Forty-three papers were included in the Hanford Biology Research Annual Report for 1962. Major topics covered were the toxicity and metabolism of radionuclides including transuranium and rare earth elements, radioiodine, strontium, other elements, and inhalation studies; modification of radionuclide deposition and radiation response; animal and cellular physiology; plant physiology; and ecology. Thirteen papers were selected for separate abstracts. (ST)

<328>

Dougherty, T.P., University of Utah, College of Medicine, Radiobiology Division, Department of Anatomy, Salt Lake City, UT. 1962

Study of the Long Term Biological Effects of Internal Irradiation in Adult Beagles. Part of Dougherty, T.P., et al (Eds.), Proceedings of a Symposium on Some Aspects of Internal Irradiation held at The Homestead, Heber, Utah, May 8-11, 1961. Pergamon Press, Oxford, England, (p. 3-6), 529 p.

In 1952 the Radiobiology Division of the Department of Anatomy, University of Utah, began a comparative study of the biological effects in adult beagles of the internal irradiation resulting from five different radionuclides, Ra 226, Pu 239, Ra 228, Th 228, and Sr 90. Eighteen month old beagles received a single intravenous injection of one radionuclide at a specific dose level related to the human maximum permissible level for Ra 226. Injected doses were selected so that the desired retained doses, with the exception of Sr 90, would be the same. Injected dose levels, designated 1 to 5, ranged from 0.057 to 10 uCi/kg for Ra 226 and Ra 228, 0.016 to 2.8 uCi/kg for Pu 239 and Th 228, and 0.57 to 100 uCi/kg for Sr 90. Incomplete results indicated that average Ra 226 retention is 0.25 after 330 days, average Pu 239 retention is 0.90 after 6 days, average Ra 228 retention is 0.25 after 235 days, average Th 228 retention is 0.90 after 6 days, and average Sr 90 retention is 0.25 after 150 days. (ST)

<329>

Mohlin, D.D., Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1965, January

Chemical Carcinogens and Radionuclide Metabolism. BNWL-122; Part of Thompson, R.C. and Woods, S.W. (Eds.), Hanford Biology Research Annual Report for 1964, (p. 91-93), 216 p.

Female rats were injected intravenously with Ce 144-Pr 144 or Pu 238. They were then fed a diet containing hepatocarcinogens, or a control diet. At the end of the experimental period (11 months), the animals were killed and livers and feces analyzed. The liver carcinogens, dimethylaminobenzene and diacetylaminofluorene were shown to increase the retention of Ce 144-Pr 144 and Pu 238 by the liver. These carcinogens appear to act by decreasing biliary excretion of the radionuclides. (Auth) (FMM)

<330>

Galibin, G.P., Not given. 1969

Distribution of Uranium in the Body of Rats Under a Single Administration of Ammonium Diuranate to the Stomach. AEC-tr-7195; Part of Moskalev, Yu.I. (Ed.), Radioactive Isotopes and the Body, (p. 147-152), 458 p.

Experiments were conducted on male rats with an initial weight of 150 g. Ammonium diuranate in a dose of 120 mg/kg, which was 18 mg/rat was administered to the rats in the stomach using a metal probe. The results show that uranium is not retained in more than 0.5% of the administered quantity (0.48%) under a single administration of ammonium diuranate in the stomach of rats. The half-life for the elimination of uranium for tissues of the gastrointestinal tract is short, 1 day, and several days for the liver, kidneys, and spleen. Besides in the bone tissue, the greatest quantity of uranium is retained in the kidneys. Uranium accumulates in the bones up to 4 days and then is slowly eliminated with a half-life of about 150-200 days. (Auth) (FMM)

Table 2 shows strontium concentration in 1 g of tissue of rats after administration to the stomach. Table 1 shows uranium content in organs of rats after administration to the stomach.

<331> Semenov, D.I., Not given. 1966

Behavior of Inseparated Solution of Uranium Fission Products in the Animal Organism. AEC-tr-7169; Part of Metabolism of Radioisotopes in the Animal Organism, (p. 15-32), 220 p.

An aged (2.5 year storage) solution of uranium fission products, with a pH of 3 was administered to albino rats in a dosage of 2.5 uCi/animal. It was shown that in the case of peroral administration, about 11% of the emitters contained in the solution was absorbed. Cesium making up 5% of the mixture was absorbed in its entirety, the radioactive pair of strontium 90--yttrium 90 constituting 35% of the mixture was 25% absorbed, and cerium and ruthenium, constituting 55% and 5% of the mixture respectively, were practically not absorbed. In the case of intravenous administration of the mixture, most was deposited in the bones (30%) and in the liver (21%). In the bones there was mainly strontium-yttrium and cerium, in the liver--cerium, and in the muscles almost exclusively cesium. Excretion of the mixture with urine and feces was rather rapid, since about 75% of incorporated radioactivity left the organism by the 120th day. A comparison of the data obtained with the results of experiments on incorporation of individual radioisotopes indicated that in the case of both intravenous and peroral administration of unseparated mixture of uranium fission products each of the emitters behaved in the organism quite independently, regardless of the presence of other emitters. The animals age had a marked effect on the behavior of the solution, thus uranium fission products accumulated much more in the bones of young animals and less in the liver and kidneys. (Auth) (FMM)

<332>

Wallace, A., Soil Science and Agricultural Engineering, Riverside, CA 92507; University of California, Laboratory of Nuclear Medicine and Radiation Biology, Los Angeles, CA. 1972, May 15; 1972, December

Effect of Soil pH and Chelating Agent (DTPA) on Uptake by and Distribution of Americium 241 in Plant Parts of Bush Beans. Radiation Botany, 12(6), 433-435; UCLA-34-P-51-35; Part of Wallace, A., Annual Progress Report, Behavior of Certain Synthetic Chelating Agents in Biological Soil Systems, (p. 42-66), 99p.

Bush bean (*PHASEOLUS VULGARIS* L. var. Improved Tendergreen) plants were grown with and without the chelating agent diethylenetriaminepentacetate (DTPA) in Yolo loam soil which had been amended to give a range of soil pH values. A level of 1.68 uCi Am 241 had been uniformly mixed with each 500 g quantity of soil. Highest amounts of Am 241 and highest leaf-stem ratios for the Am 241 were found in plant parts at soil pH around 7.7 with the DTPA. The results are interpreted as chelated Am 241 not only being available to the plants especially at pH 7.7 but also the Am 241 being transported through the plants as the metal chelate. (Auth)

Table 1 shows the Am 241 content of roots, stems and leaves of plants grown in contaminated soil in a glass-house.

<333>

Smith, V.H., M.T. Karagianes, and C.R. Watson, Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1968, May

Gastrointestinal Passage Time and Absorption of Plutonium 238 PuO₂ and Plutonium 239 PuO₂. BNWL-714; Part of Thompson, R.C. et al (Eds.) Annual Report for 1967, (p. 412-415), 253 p.

Both Pu 238 PuO₂ and Pu 239 PuO₂ microspheres were delayed in their passage through the intestinal tract of miniature swine. Times for 50 or 99% elimination of the two radionuclides were similar, but the total excretion pattern was quite different. Absorption varied widely among different animals but was generally greater for Pu 239 than for Pu 238. The maximum figures obtained would suggest that no more than one millionth of the ingested material would be absorbed and deposited in liver and skeleton. (Auth) (FMM)

Table 1 shows Pu distribution in liver, kidneys and skeleton of miniature swine 14 days after the ingestion of Pu 239 PuO₂ microspheres.

<334>
 Tuile, C.L., F.R. Gibb, and P.Z. Morrow,
 University of Rochester, School of Medicine and
 Dentistry, Department of Radiation Biology and
 Biophysics, Rochester, NY. 1970

Dose Related Local and Systemic Effects of
 Inhaled Plutonium 238 and Plutonium 239 Dioxide
 in Dogs. *Radiation Research*, 44, 821-834

Pulmonary and lymph node lesions and leukopenia which developed in dogs after plutonium 239 and 238 dioxide inhalation, have been related to various radiation dose parameters, over a wide range of postexposure time intervals (16-468 days). The degree of radiation pathology in lungs was found to increase with increasing accumulated alpha doses above 1500-2000 rads and up to about 15,000 rads. In general no damage to tracheobronchial lymph nodes was evident unless radiation changes were also present in the lungs. The degree and extent of the lymph node changes did not correlate well with estimates of total lymph node dose, but there was a relatively good relationship with dose rate (rads per day) to the lymph nodes adjacent to trachea and main bronchi. Radiation changes in both types of tissue, and due to both plutonium isotopes, were unrelated to length of postexposure period except for increasing fibrosis with time. In contrast, the leukopenia which developed was related to mean, postexposure, fixed tissue burdens but not to rad dose except in experiments of similar duration. The findings indicate that the lung lesions reflect total accumulated pulmonary doses while lymph nodes are more sensitive to dose rate. It is suggested that the leukopenia developed as a result of irradiation of circulating cells by localized deposits of plutonium in lymph nodes and probably lungs, rather than to depression of hematopoiesis and/or lymphopoiesis. (Auth)

See also Report UR-49-1242.

<335>
 Watson, G.M., Australian Atomic Energy
 Commission, Sydney, Australia. 1972

Environmental Monitoring Program at the AEC Research Establishment, Lucas Heights. CONF-710901; A/CONF.99/P-600; STI/PUB/300; Part of Proceedings of the 4th International Conference on the Peaceful Uses of Atomic Energy held in Geneva, Switzerland, September 6-16, 1971, Vol. II, (p. 341-353), 766 p.

The evolution, over the past ten years, of effluent discharge formulas, and the associated environmental monitoring at the Australia Atomic Energy Commission's Research Establishment near Sydney are described. The Establishment has a staff of 1200, and its major research facility is a 10 MW(th) heavy-water moderated and cooled materials testing reactor, which is also used for extensive radioisotope production. Possible sources of environmental contamination are (a) atmospheric, from isotope production facilities and reactor tritium, (b)

estuarine, from the discharge of low-level liquid effluent to a tidal stream, and (c) leaching, from a burial ground for low-level solid wastes. Discharge authorizations derive from critical group studies, with oyster consumption being the most significant pathway. Expressed as a fraction of ICRP derived limits, the levels of environmental activity found are trivial. (Auth)

Table 5 shows possible doses to members of the local population as a result of exposure to measured concentrations.

<336>
 Wheeler, H., B.L. Baker, and P. Hankey, University of Kentucky, Department of Plant Pathology, Lexington, KY; Colorado State University, Department of Botany and Plant Pathology, Fort Collins, CO. 1972, September

Pinocytosis in Root Cap Cells Exposed to Uranyl Salts. *American Journal of Botany*, 59(8), 858-868

In cap cells of intact plant roots exposed to 1M uranyl for 30 min or less, uranyl crystals were found only in cell walls and in secretory products which had been extruded from the protoplast. In roots exposed for 10-20 hr to 0.1 mM uranyl, packets of uranyl crystals bound to secretory products were found within the protoplasts of those exterior cells which contained accumulations of secretory products between the cell wall and protoplast. Although the evidence indicated that these packets of crystals entered the protoplast pinocytotically, results with these specialized exterior cells did not apply to the vast majority of root cap cells in which, after prolonged exposure to 0.1 mM uranyl, crystals were concentrated in vacuoles. In roots exposed to 1 or 5 mM uranyl for 1 hr, the plasmalemma of interior cap cells was much thicker (13.1 nm) than normal (8.2 nm), and many invaginations and vesicular structures were found near the protoplast surface. Crystals were confined to cell walls except for a few found in vesicles with thickened membranes. Serial sections indicated that most vesicular structures with thickened membranes were in contact with the cell wall, but a few, including some which contained uranyl crystals, were within the protoplast. These results provide evidence of pinocytotic activity in intact plant cells exposed to a toxic heavy metal. (Auth)

<337>
 Wheeler, H., and P. Hankey, University of Kentucky, Department of Pathology, Lexington, KY; Colorado State University, Department of Ectany and Plant Pathology, Fort Collins, CO. 1971, January 8

Pinocytosis and Membrane Dilation in Uranyl-Treated Plant Roots. *Science*, 171, 68-71

Electron-dense crystals formed in plant roots exposed to uranyl acetate have been used to identify binding sites and to follow the pinocytotic uptake of uranyl in the oat rootcap. Before uranyl enters the protoplast, the plasmalemma is greatly dilated. After uranyl is sequestered in vacuoles, the tonoplast is similarly dilated. (Auth)

<338>

Kalistratova, V.S., G.S. Oksentuk, and V.P. Kryuk, Not given. 1971

Change in Metabolism at Remote Times After Exposure to Radioactive Americium. AEC-tr-7387; Part of Moskalev, Yu.I. (Ed.), Remote Aftereffects of Radiation Damage, (p. 441-446), 574 p.

Several metabolic indices were studied in dogs receiving one intravenous injection of Am 241, in doses of 2.5 and 1 uCi/kg of weight. The results show a high effectiveness of the biological effect of americium, accompanied by impairments in fat and carbohydrate metabolism, which are characterized by hyperglycemia, hypercholesterolemia, beta-lipoproteinemia, hyperlipemia, hypolactacidemia, and a change in the activity of enzymes (alkaline phosphatase and diastase). All the changes had a wavelike character; periods of relative compensation were replaced by well-expressed pathological changes, evidence of a chronic course of the process. Only on the basis of individual indices was it possible to detect a dependence of effect on dose; this pertains primarily to enzymes. The impairments in metabolism caused by exposure to radioactive americium were not restored up to the 17th month of the investigation. (PMH)

<339>

Kudashova, N.P., Ministry of Public Health, Institute of Biophysics, Moscow, USSR. 1967

The Dynamics of Changes of the Morphological Composition of the Peripheral Blood in Rats, Following Inhalation of Plutonium 239. AEC-tr-6897; Part of Radiobiology, (p. 169-177), 275 p.; Radiobiologiya, 7(6), 900-905

Female Wistar rats weighing 150-180 g received 0.0047-1.028 uCi of Pu 239 by inhalation of plutonium citrate and ammonium plutonium pentacarbonate aerosols. At 1.028 and 0.33 uCi of Pu 239 in plutonium citrate, moderate changes were observed in the blood system. With 1.028 uCi the number of leukocytes declined 44%; with 0.33 uCi moderate leukopenia (75-60% of the control) was maintained during the life of the rats (480 days). Mild leukopenia was caused by 0.72 uCi of Pu 239 in ammonium plutonium pentacarbonates; the number of leukocytes was reduced to 83-87% of the control. After inhalation of the minimum quantities present in the lungs (0.0096-0.058 uCi of Pu citrate and 0.0047-0.060 uCi of ammonium plutonium pentacarbonate) leukocytosis with neutrophilosis and lymphocytosis was observed in the rats. (Auth)

<340>

Sanders, C.L., and W.J. Bair, Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1968, May

Effect of DTPA and Calcium on Intrapерitoneally Injected Plutonium 239 PuO₂ Particles. BNWL-714; Part of Thompson, R.C. et al (Eds.), Annual Report for 1967, (p. 6.17-6.19), 253 p.

Female rats were given intraperitoneal injections of 1.4 uCi Pu 239 PuO₂ (count median diameter, 0.12 microns), with or without accompanying intraperitoneal injections of CaCl₂ 2H₂O, MgCl₂ 6H₂O, or DTPA. Smears of saline washes from the peritoneal cavity were evaluated microscopically and autoradiographically at intervals following injection. It was shown that phagocytosis of PuO₂ particles and uptake by the peritoneal lymphatics were inhibited by DTPA and stimulated by calcium. It is suggested that the inhibitory action of DTPA is due to its chelation of calcium, and that the action of calcium in promoting phagocytosis of plutonium particles may be related to the known role of calcium ion in fibrin formation since the administration of fibrin also stimulated the uptake of plutonium by the peritoneal lymphatics. (PMH)

<341>

Korkisch, J., and I. Steffan, Analytisches Institut der Universität Wien, Abteilung: Rohstoffanalyse Nukleare Brennstoffe, 1090 Wien, Währingerstrasse 38, Vienna, Austria. 1973

Determination of Uranium in Urine Specimens Following their Separation through Anion Exchange. Mikrochimica Acta, 1973(2), 273-278 (German)

A separation method that is generally applicable for uranium in the analysis of urine specimens is described. This is based on the adsorption of the uranium on the strongly basic anion exchanger Dowex 1, X8 from human urine that has been strongly acidified with hydrochloric acid, whereby most of the organic components, phosphoric acid and most mineral urine components are removed. Thus it becomes possible to separate the uranium compounds rapidly and simply without prior evaporation of the urine and destruction of the organic compounds. If need be, the foreign ions that are adsorbed along with the uranium, such as iron and also adsorbed urine coloring materials, are removed through subsequent washing of the resin with a mixture of 50 volume percent tetrahydrofuran, 40 volume percent methylglycol and 10 volume percent 6 N hydrochloric acid, and the uranium is eluted with 1 N hydrochloric acid. The determination of the uranium in the eluate can then be conducted without interference by the fluorometric method. (Auth)

<342>
Dillley, J.V., Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1968, May

Heterophile Antibody Formation in Rats and Beagles After Plutonium 239 Pu02 Inhalation. BNWL-714; Part of Thompson, R.C. et al., (Eds.), Annual Report for 1967, (p. 3.17-3.20) 253 p.

Female rats were exposed to an aerosol of Pu 239 Pu02. They were injected with 10 (246) sheep red cells, sacrificed a week later and blood was taken for cell counts, antibody titers, serum electrophoresis and Pu 239 analysis of lung tissues. Heterophile antibodies were measured in beagle dogs that showed respiratory distress after inhaling Pu 238 Pu02. The results show that the ability of rats and beagle dogs to form heterophile antibodies against sheep red blood cells was impaired following inhalation of Pu 239 Pu02 and Pu 238 Pu02. Impaired antibody formation occurred in rats prior to the onset of lymphopenia. This suggests that those lymphoid cells concerned with antibody formation may be the most sensitive to radiation damage. (Auth) (PMN)

<343>
Cable, J.W., B.J. McClanahan, V.G. Horstman, D.H. Wood, and L.K. Bustad, General Electric Company, Hanford Atomic Products Operation, Biology Laboratory, Richland, WA. 1963, January 15

Effects of Plutonium in Skin and Its Removal. HW-76000; Part of Komberg, H.A. and Swerea, E.G. (Eds.), Hanford Biology Research Annual Report for 1962, (p. 149-155), 269 p.

One to two years after swine were intradermally injected with 0.0016 to 5 uci of Pu 239, scabs and indurated areas characterized many of the sites injected with 0.04 uci or more. Lesions caused by Pu 238 were less severe than those caused by Pu 239 and sites injected with 0.06 uci of Pu 237 showed no visible lesions. Within one week after intradermal injection of 1 uci Pu 239, regional lymph nodes contained up to 12% of the injected dose. Na3 Ca DTPA increased urinary excretion of Pu and reduced tissue deposition, but did not increase translocation of subcutaneously injected Pu. Surgical excision removed most of the Pu from the injection site. (Auth) (ST)

The distribution of Pu 239 in six tissues, one and seven days after intradermal injection of 1 uci, is shown in Table 3.

<344>
Foreman, H., Los Alamos Scientific Laboratory, Los Alamos, NM. 1956, August

Clinical Experiences in Removal of Radioelements from the Body. ANL-5586; Part of Rosenthal, M.W. (Ed.), Therapy of Radioelement Poisoning, Transcription of a Meeting on Experimental and Clinical Approaches to the Treatment of poisoning by Radioactive Substances held October 20-21, 1955, (p. 12-22), 175 p.

In three separate accidents at Los Alamos Scientific Laboratory, personnel accumulated

a body burden of plutonium or other actinides in sufficient amounts to warrant EDTA treatment to hasten excretion of these radionuclides. In all cases workers were immediately scrubbed and wounds, if present, were excised. Urinary excretion of radionuclides increased sharply with Ca EDTA treatment and decreased sharply when treatment was stopped. Body burdens were reduced by 25 and 90% in two of the cases. It was found that continuous high level doses of Ca EDTA produced kidney damage in the form of tubular nephrosis. This is a reversible lesion. It was concluded that the drug should be given in intermittent doses and daily urine analyses should be done on patients. (ST)

<345>
Eve, I.S., United Kingdom Atomic Energy Authority, Atomic Energy Research Establishment, Health and Safety Branch, Radiological Protection Division, Harwell, Berkshire, England. 1964, February

An Outline of the Metabolism of Inhaled and Ingested Insoluble Radionuclides. Part of Proceedings of a Symposium on the Metabolism of Biologically Important Radionuclides held January 25, 1963. Published in British Journal of Radiology, 37(434), 115-120

The fate of soluble radionuclides after inhalation is reviewed, with particular reference to the human case. The influence of deposition, clearance and translocation of particles in the lung is described. The clearance of radioactive particles from the lung by ciliary action leads to irradiation of the gastrointestinal tract, and this is also briefly discussed. (Auth)

<346>
Healy, J.W., General Electric Company, Hanford Laboratories, Richland, WA. 1957, September

Estimation of Plutonium Lung Burden by Urine Analysis. American Industrial Hygiene Quarterly, 18(1), 261-266

Inhaled insoluble plutonium compounds in the lung may be regarded as a pool of material isolated from the normal metabolism of the body but continually being transferred to the blood stream at a given rate over a period of time. A model is proposed that permits estimation by urine analysis of the quantity of material retained in the lung following initial clearance. Transfer to the gastrointestinal tract by ciliary action is about 10% of that removed to the blood stream. The equations derived should satisfy any condition wherein a slightly soluble compound exists as a pool in the body with slow transfer to the blood stream. (ST)

<347>

Baillou, J.E., General Electric Company, Hanford Atomic Products Operation, Biology Laboratory, Richland, WA. 1963, January 15

Excretion of Plutonium Into the Perfused Rat Intestine. HW-76000; Part of Kernberg, H.A. and Szeza, E.G. (Eds.), Hanford Biology Research Annual Report for 1962, (p. 18-21), 269 p.

Starved adult female rats were catheterized to permit separate perfusion of the duodenum, jejunum, and ileum. Following injection of Pu citrate into the tail vein, perfusates were collected for one hour. Plutonium was excreted into the duodenum to a greater extent than into other segments of the small intestine and the highest level of excretion occurred 30 to 40 minutes after injection. Following DTPA treatment, Pu increased twenty fold in the duodenum compared to relatively small increases in the remainder of the small intestine. The significance of bile as a source of Pu in the duodenum was discussed. (Auth) (ST)

<348>

Bair, W.J., and R.W. Perkins, Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1968, May

Plutonium-Amercium Ratios in Dogs After Inhalation of Plutonium 239 PuO₂. BNWL-714; Part of Thompson, R.C. et al (Eds.), Annual Report for 1967, (p. 312-314), 253 p.

The relative retention, translocation, and excretion of plutonium and americium were studied in dogs that inhaled Pu 239 aerosols containing Am 241 present as a contaminant. In dogs that inhaled the oxide prepared by heating the metal to 450 degrees C, there was a slightly increased Pu 239-Am 241 ratio in the lungs and the lymph nodes, suggesting a relatively greater clearance of Am 241. Dogs that inhaled Pu 239 Pu(NO₃)₄ showed an increased Pu 239-Am 241 ratio in lungs and lymph nodes and a decreased ratio in liver relative to the aerosol inhaled. Data obtained at much longer times following inhalation of Pu 239 PuO₂ prepared by calcining the oxalate at 350 degrees C, show that the Pu 239-Am 241 ratios in the tissues were not greatly different from those in the inhaled aerosol. There is little indication that Pu 239 and Am 241 are significantly separated in the body after inhalation of PuO₂ containing trace amounts of Am 241. However, since Am 241 was clearly translocated to the liver more rapidly than Pu 239 after inhalation of Pu(NO₃)₄, it cannot be concluded that americium is a valid tracer for Pu in all cases. (Auth) (PMM)

<349>

Stuart, B.O., and Y.M. Jones, Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1968, May

In Vivo Separation of Uranium and Thorium After Inhalation of Uranium Ore by Beagles. BNWL-714; Part of Thompson, R.C. et al (Eds.), Annual Report for 1967, (p. 323-334), 253 p.

Four beagle dogs were exposed to uranium ore dust aerosols (approximately 1 mg/liter, 26% U3O8) for 8 days. Two animals were sacrificed at 13 and 16 days following the last exposures and representative tissue and excreta samples were analyzed for U 238, Th 230 and Po 210. The results showed separation of U 238, Th 230, and Po 210 in the lungs, tracheobronchial lymph nodes, liver, kidneys, spleen, and urine and suggest that in vivo solubilization of uranium was greater than that of Th 230 and Po 210. (PMM)

Table 1 shows distribution of uranium 2 weeks after inhalation of uranium ore dust by beagle dogs. Table 2 shows concentrations of U 238, Th 230 and Po 210 in organs of beagle dogs 2 weeks after inhalation of uranium ore dust.

<350>

Semenov, D.I., and N.D. Borisova, Not given. 1966

Comparative Distribution of Aged Unseparated Solution of Uranium Fission Products in Dogs, Rabbits, Guinea Pigs and Rats. AEC-tr-7169; Part of Metabolism of Radioisotopes in the Animal Organism, (p. 33-54), 220p.

An aged unseparated solution of uranium fission products was administered intraperitoneally to dogs, rabbits, guinea pigs and rats. The solution contained 55-60% Ce 144-Pr 144, 25-30% Sr 90-Y 90, 5-10% Cs 137, about 5% Ru 106, and a significant quantity of inert admixtures. The animals were sacrificed at different intervals following administration of the solution, and radioactivity in the organs was analyzed. The results show that there was incomplete and uneven absorption of the components of the solution. While cesium, strontium and, to some extent, yttrium were well absorbed from the abdominal cavity, cerium was only partially absorbed. There was no appreciable difference in distribution of the unseparated solution in the organs in different species of animals. Dogs showed higher radioactivity in the bones and slower excretion from the liver. The fastest excretion of emitters from the organism in urine and feces was observed in rabbits, rats and guinea pigs, and it was much slower in dogs. There were rather substantial differences in radioactivity content, mainly in the liver and bones, in different breeds of dogs. Individual emitters behave very independently of one another in the organisms of different animals, when incorporated in the form of an unseparated solution. (Auth) (PMM)

<351>

Stover, B.J., D.R. Atherton, and C.W. Mays,
University of Utah, College of Medicine,
Radiobiology Division, Department of Anatomy,
Salt Lake City, UT. 1962

Studies of the Retention and Distribution of
Radium 226, Plutonium 239, Radium 228
(Mesothorium I) Thorium 228 (Radiothorium) and
Strontium 90 in Adult Beagles. Part of
Dougherty, T.P., et al (Eds.), Proceedings of a
Symposium on Some Aspects of Internal
Irradiation held at the Homestead, Heber, Utah,
May 8-11, 1961. Pergamon Press, Oxford,
England, (p. 7-25), 529 p.

The biological behavior of Ra 226, Pu 239, Th
228, and Sr 90 in young adult beagles for the
first 1000 days following a single
intravenous injection was studied. Plasma
concentration, excretion, fractional
retention, distribution, metabolic fate of
the decay products, if any, and the average
radiation dose rate to the skeleton were
determined. The results are considered in
terms of the nuclear and chemical
characteristics of the radionuclides and the
biological organism. The results for the
pair of alkaline earth radionuclides are, in
general, similar with interesting small
differences, and this pair differs markedly
from the pair of actinide element
radionuclides, which in turn show some
interesting similarities and dissimilarities.
The combined effect of nuclear and chemical
properties and the biological organism result
in markedly different average radiation dose
rates to the skeleton when compared on the
basis of equal injected activities. These
empirical relations are presented as useful
interpolation formulae to describe a specific
case. (Auth)

Table 4 shows concentrations of radionuclides in
eyes and plasma. Table 6 gives empirical
equations for retention, skeletal retention, and
skeletal dose for 10-1000 days after injection.

<352>

Dilley, J.V., and K.E. McDonald, Battelle
Memorial Institute, Pacific Northwest
Laboratories, Biology Department, Richland, WA.
1968, May

Removal of Inhaled Plutonium 239 PuF4 in
Beagles. BNWL-714; Part of Thompson, R.C. et al
(Eds.), Annual Report for 1967, (p. 6.11), 253 p.

Six beagle dogs were exposed to dry aerosols
of Pu 239 PuF4. Immediately after the
exposure, each animal was counted in the
whole body counter. Approximately 2 hr after
the exposure each of three dogs was injected
intraperitoneally with 0.5 g of DTPA. This
treatment was repeated after 1, 2, 4, 7, 11,
16, 18, 23, 37, 44, 51, and 58 days. Whole
body counts of treated and control animals
were made at frequent intervals. It was
observed that DTPA was not effective in
removing Pu from the dogs. (PMM)

<353>

Stuart, B.O., and M.D. Snyder, Battelle Memorial
Institute, Pacific Northwest Laboratories,
Biology Department, Richland, WA. 1968, May

A Constant Feed, Uniform Dispersion Device for
Large Particle Inhalation Studies. BNWL-714;
Part of Thompson, R.C. et al (Eds.), Annual
Report for 1967, (p. 47-48), 253 p.

A series of experiments to measure the
inhalation, deposition, and clearance of
large particles in beagle dogs required the
development of an instrument to uniformly
disperse these particles throughout an
exposure chamber. It was necessary to evenly
distribute a few milligrams of 50 micron
diameter Pu 239 PuO2 spheres (density >10)
over a 7 in. diameter cross-sectional area at
a constant rate during a 10-15 min exposure
period. The design of an instrument
developed for this purpose is described and
illustrated. (PMM)

<354>

<354>
 Tadmor, J., and H. Galron, Israel Atomic Energy Commission, Soreq Nuclear Research Centre, Yavne, Israel. 1966

Relative Hazards of Fission Products in the Environmental Hazards Evaluation of Nuclear Reactors. CONF-660920; Part of Snyder, W.S., et al (Eds.), Proceedings of the 1st International Congress of Radiation Protection held in Rome, Italy, September 5-10, 1966, Part 2. Pergamon Press, Oxford, England, (p. 929), 1623 p.

The fission products and their decay products which accumulate in the fuel during the operation of a nuclear reactor consist of about 300 isotopes of different physical, chemical and biological properties. However, only a relatively small number of these isotopes contribute significantly to the hazard to the population, in the event of an accidental release of fission products into the environment. The relative hazard of the fission products in the environmental hazards evaluation of nuclear reactors was calculated in order to ascertain which fission products must be taken into account. Consideration was given to (1) the various ways in which the population might be subjected to irradiation (external cloud radiation, external radiation from contaminated land, and internal irradiation due to inhalation); (2) the properties of the fission products (fission yield, percentage of release from the fuel in an accident, energy of radiation, physical and biological half-life, velocity of deposition); and (3) the critical organ in the human body in which the fission product concentrates. Although several studies deal with the relative hazards of various radioisotopes in general and of fission products in particular, no comprehensive study has been made so far concerning the specific aspect of environmental hazards evaluation of nuclear reactors. The relative hazards of the fission products were calculated for external cloud radiation, external radiation from contaminated land and internal radiation from inhalation, assuming a reactor power of 1 MW (th) and an accident occurring after 3 years of operation. The hazards were calculated for different times after the occurrence of the accident and for different distances from the point of release of the fission product. The importance of using the individual gamma energies rather than the average energy of all the fission products is shown and the contribution of the fission product daughters formed during the travel of the cloud is also evaluated. The study summarizes the sequence of importance of the different fission products in the framework of the hazards evaluation of nuclear reactors. (Auth) (Complete text)

<355>

Stuart, B.O., and W.J. Bair, Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1968, May

Comparative Toxicity of Inhaled Plutonium 238 PuO₂ and Plutonium 239 PuO₂ in Rats. BNWL-714; Part of Thompson, R.C. et al (Eds.), Annual Report for 1967, (p. 411-412), 253 p.

Approximately 250 rats, in groups of 12, inhaled aerosols of either Pu 239 PuO₂ or Pu 238 PuO₂ to determine the relative acute lethal toxicities of these radionuclides. The count median diameter for both materials was 0.1 micron. It was shown that inhaled Pu 238 PuO₂ and Pu 239 PuO₂ were equally effective, on a radioactive basis, in causing acute lethality in the animals. (Auth) (PMM)

<356>

Stuart, B.O., and T.M. Beasley, Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1965, January

Selective Tissue Accumulation of Uranium and Thorium in Rats After Inhalation of Uranium Ore Dust. BNWL-122; Part of Thompson, R.C. and Woods, S.W. (Eds.), Hanford Biology Research Annual Report for 1964, (p. 21-24), 216 p.

Groups of rats inhaled uranium ore aerosols semiweekly for two months. Th 230 activity levels in the lungs were twice those of U 238 by the end of exposures, increasing to nine times after four months due to selective removal of uranium. Levels of Th 230 in tracheobronchial lymph nodes were also higher than U 238. Uranium levels in the kidneys and femurs were initially higher than thorium, but by two months postexposure thorium activities were equal to or greater than those of uranium. This rapid *in vivo* separation of uranium and thorium is important for permissible limit considerations. (Auth)

<357>

Tombropoulos, E.G., and W.J. Bair, General Electric Company, Hanford Atomic Products Operation, Biology Laboratory, Richland, WA. 1963, January 15

Removal of Inhaled Radioactive Particles. HW-76000; Part of Kornberg, H.A. and Swartz, E.G. (Eds.), Hanford Biology Research Annual Report for 1962, (p. 136-142), 259 p.

Inhaled Ce 144 CeO₂ was removed from the lungs and body organs of rats and dogs by administering diethylenetriaminepentaacetic acid (DTPA) and, to a lesser degree, Pluronics F68. Pluronics was more effective than DTPA in increasing the clearance rate and urinary and fecal excretion of inhaled PuO₂, but neither decreased the body burden of PuO₂ to any appreciable extent. Other therapy agents tested include sodium polyacrylate sulfonate, triethylene-tetraminehexaacetic acid, sodium diethyldithiocarbamate, phenylephrine hydrochloride, and negative ions. (Auth) (FMM)

Table 2 shows distribution of Pu 239 in tissues of dogs 17 days after exposure to Pu 239 PuO₂ aerosols. Table 1 shows effect of different aerosol treatments on removal of inhaled Ce 144-pr 144 from rats.

<358>

Stannard, J.W., University of Rochester, School of Medicine and Dentistry, Rochester, NY. 1958

An Evaluation of Inhalation Hazards in the Nuclear Energy Industry. A/CONF.15/P-738; Part of Proceedings of the 2nd United Nations International Conference on the Peaceful uses of Atomic Energy held in Geneva Switzerland, September 7-13, 1958, Vol. 23, (p. 305-312)

Power reactors present potentially a much greater inhalation hazard than weapons fallout. While the external radiation hazard is important, conditions can be easily imagined where deposition of I 131 in thyroid, Sr 89 or Sr 90 in bone or of mixed fission product insoluble oxides in lung or lymph nodes would be limiting. In normal operations, mining and processing of uranium ore may involve the largest number of individuals and be the most likely source of radioactive inhalation hazard in nuclear energy work. Ventilation of mines and mills or respiratory protective equipment can aid greatly in relieving this hazard. It is unsafe to extrapolate from aerosol data on chemically toxic materials to radioactive

aerosols and also, to predict a minimum hazard from articles in the 0.2 to 0.3 u range. While the GI tract may at times contain more material than other organs, it is questionable if it should be made the critical organ on this basis alone. The accumulation of material in pulmonary lymph nodes, particularly after prolonged inhalation exposure, may greatly exceed that in the lungs. In fact, lymph nodes may limit exposure under many conditions. Requisite data for hazard evaluation are never available in toto. Approximations must be made. For example, variety of assumptions can be made covering meteorological conditions, particle sizes, activity released, deposition, resuspension, pulmonary deposition, clearance, turnover to other organs and excretion. By making very conservative assumptions the maximal hazard can be estimated; by making less conservative assumptions an average hazard can be arrived at. (Auth) (FMM)

<359>

Gilbert, R.O., and L.L. Eberhardt, Battelle Memorial Institute, Pacific Northwest Laboratories, Environmental and Life Sciences Division, Ecosystems Department, Richland, WA. 1973, March

Plutonium Studies at the Nevada Test Site. BNWL-1750 (Part 2); Part of Vaughan, B.E., et al, Annual Report for 1972, (p. 2.2-2.4), 105 p.

The Plutonium Environmental Studies Program has provided statistical input relating to the design of soil and vegetation sampling. A discussion of the "double sampling" design is given. The basic idea is to estimate a linear calibration equation between an inexpensive method and an expensive method of determining plutonium concentration. In the case of sampling soil for estimating inventory, the "inexpensive" method being used is a hand held gamma counter commonly called the FIDLER which reads the 60 KeV gamma rays emitted from Am 241; the expensive but accurate method is the laboratory determination of concentrations of Pu 239-Pu 240 using "wet chemistry" techniques. Two locations on the Nevada Test Site, namely, Area 13 and Area 4 (GMX) have been thoroughly surveyed with the FIDLER and isopleth lines have been drawn to establish strata within which the levels of soil concentration are relatively homogeneous. The design of the soil sampling protocol for the Eniwetok atoll survey planned for October 1972 was discussed. (FMM)

<360>

<360>
 Sullivan, M.F., P.L. Hackett, L.A. George, and
 R.C. Thompson, General Electric Company, Hanford
 Laboratories, Biology Operation, Richland, WA.
 1960

Irradiation of the Intestine by Radioisotopes.
Radiation Research, 17, 343-355

Experiments were done on rats weighing from 200 to 225 g. Radionuclides were administered by stomach tube to non-fasted rats in a single dose with Y 91 as the chloride at pH 3 (2 mCi/ml) and Pu 239 as the oxide suspended in water (6.2 mCi/ml). The results show that the LD 50 for orally administered Y 91 in the rat is about 17 mCi/kg, and the average survival time is 8.4 days. The calculated radiation dose from this amount of yttrium to the varicose segments of the intestine is: small intestine--1150 rads; ascending colon--2800 rads; and descending colon--4700 rads. Blood counts showed that lymphocytopenia, granulocytosis, and a mild anemia occurred after oral doses of Y 91. Fluid loss and hemorrhage were contributing factors to these changes. Pathologic changes due to Y 91 were primarily present in the large intestine owing to longer retention of intestinal contents in that segment. Damage was qualitatively similar to that observed previously after x irradiation. Quantities as high as 230 mCi/kg of the alpha-emitting isotope Pu 239 were administered by gavage to rats without causing death. A series of rats sacrificed at 3, 6, and 9 days showed only superficial epithelial damage at 3 days. No other evidence of injury was noted.
 (Auth) (PMM)

<361>
 Swinth, K.L., and W.J. Bair, Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1968, May

Use of In Vivo Counting to Determine Retention of Inhaled Plutonium 239 in Dogs. BNWL-714; Part of Thompson, R.C. et al (Eds.), Annual Report for 1967, (p. 3.8-3.10), 253 p.

Dogs were given a single exposure to Pu 239 puO₂ aerosole. Whole body burdens of Pu 239 in dogs determined by in vivo counting of the 17 KeV x ray from Pu 239 and the 60 KeV gamma ray from Am 241 compared closely with values obtained by alpha analyses of the total tissues. (Auth)

Table 1 shows results of in vivo counting of inhaled Pu 239 puO₂ with a comparison of values based on x ray and gamma counting and tissue radioanalysis.

<362>
 Sullivan, M.F., Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1973, April

DTPA Enhanced Plutonium Excretion via the Bile. BNWL-1750 (Part 1); Part of Thompson, R.C. (Ed.), Annual Report for 1972, (p. 60-61), 103 p.

Rats were injected with either monomeric or polymeric Pu 239 and a complete collection of bile was made. On the third day, DTPA was injected and bile collection continued. It was shown that DTPA enhanced the biliary excretion of both monomeric and polymeric Pu 239 and was almost twice as effective for monomeric. (Auth) (PMM)

<363>
 Zlobin, V.S., Not given. 1971

Active Phase of Assimilation of Plutonium 239 by the Marine Algae ASCOPHYLLUM NODOSUM. AEC-tr-7418; Part of Effect of Ionizing Radiation on the Organism, the Problem of the Effect of Radioactive Water Pollution on the Reproduction of Commercial Fishes, (p. 207-217), 217 p.

A study was made of the problem of accumulation of Pu 239 by the brown alga ASCOPHYLLUM NODOSUM during suppression of cell respiration. The inhibitors used were sodium cyanide in a concentration of 1 X 10(8-4) M, ammonium chloride 10 mM and 100 mM and cadmium chloride 2 mM. It was established that they cause a decrease in the Pu 239 accumulation factors in dependence on the substrate on which they act. A study was made of the mechanism of this phenomenon and it was possible to establish the dependence of the intensity of cell respiration and the accumulation factor. Hypotheses are given on the means and methods by which Pu 239 in a colloidal state penetrates through the cell membrane. (Auth)

<364>
Zlobin, V.S., and N.F. Perlyuk, Not given. 1971

Photosynthesis and the Mechanism of the Action of Cyanide on Cell Respiration and Plutonium 239 Accumulation by Marine Algae. AEC-tr-7418; Part of Effect of Ionizing Radiation on the Organism, the Problem of the Effect of Radioactive Water Pollution on the Reproduction of Commercial Fishes, (p. 195-206), 217 p.

Cultivation of the brown alga ASCOPHYLLUS NODOSUM in the control (addition of Pu 239 in a concentration $n \times 10^{-6}$ uCi) and experimental aquaria (plutonium in the same concentration and cyanide in a quantity $1 \times 10^{-2} \text{M}$) revealed a stable suppression of accumulation of an alpha-emitter by algae in the presence of an inhibitor. As a result of chromatographic separation of amino acids in plant hydrolysates the greatest activity was registered in serine-glycine (34.66%), histidine (31.93%) and alpha-alanine (10.49%). Quantitatively these acids also predominate. In the samples investigated it was established by the electrophoretic method that the tag is incorporated into hypoxanthine and adenosine monophosphoric acid. The introduction of the cell respiration inhibitor cyanide into the energy system of algae caused a decrease in plutonium accumulation by the plant cells. It is postulated that assimilation of colloid particles of plutonium occurs as a result of ultraphagocytosis. (Auth)

<365>
Van As, D., and C.W. Vleygaar, Pelindaba Atomic Energy Board, Isotopes and Radiation Division, Pretoria, South Africa. 1972, December

Environmental Radioactivity at the National Nuclear Research Center, Pelindaba. PEL-209; 21 p.

A revised environmental survey program, with the emphasis on monitoring of the critical paths of exposure of the general public, was introduced during 1970. Results of determinations of both gross radioactivity and individual nuclides in samples of fish and water (which are critical materials for liquid effluent releases) from the Hartbeespoort Dam and from the Crocodile River, are given and discussed. Results of gamma-spectrometric, I-131 and Sr-90 analyses of milk, the critical material for releases to the atmosphere, are presented. Results are given of regular investigations of the composition of effluent releases. These investigations are performed in order to be able to detect other possible critical nuclides. Levels of deposited and airborne activity from nuclear bomb tests are reported. (Auth)

Table 14 shows monthly activity in deposited fallout for Sr-90, Cs-137, Ce-141, Ru-106, Ba-140, Zr-95, Ru-103, and Ce-141. Table 15 shows monthly activity in air for Cs-137, Ce-141, Ru-106, Ba-140, Zr-95, Ru-103, Ce-141, and I-131.

<366>
Taylor, D.H., and P.D. Sowby, Institute of Cancer Research, Royal Cancer Hospital, Department of Physics, London, England; Department of National Health and Welfare, Radiation Protection Division, Ottawa, Ontario, Canada. 1962, July

The Removal of Americium and Plutonium from the Rat by Chelating Agents. Physics in Medicine and Biology, 7(1), 83-91

The effect of treatment with a number of different chelating agents on the retention of plutonium or americium was studied in rats. Am 241 was administered as the trivalent citrate complex at pH 6. Pu 239 was given as a solution of Pu(NO₃)₄ which was brought to pH 4 to 5 by the addition of sodium carbonate solution immediately prior to injection. The nuclides were injected intravenously, except in one experiment where Pu 239 was given intramuscularly; the activity administered ranged from 0.05 to 0.4 uCi. The chelating agents were generally administered by intraperitoneal injection in doses ranging from 0.75 to 3.0 mM/kg body weight. The content of Am 241 or Pu 239 in the samples of bone and soft tissue was determined. Diethylenetriaminepentaacetic acid (DTPA) was found to be the most effective reagent for the removal of both plutonium and americium. The effects of different times and patterns of treatment were investigated and it was shown that for both elements the greatest reduction in retention occurred when treatment was commenced very shortly after exposure. (Auth) (FMM)

Table 1 shows the effect of treatment with various chelating agents on the retention of Pu 239 in rats 28 days after IV injection. Table 2 shows the effect of EDTA and DTPA on distribution of Am 241 in rats. Table 7 shows the effects of treatment by IP injection of DTPA in the retention of Pu 239 at various times after intramuscular injection.

<367>
Willard, D.H., Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1968, May

Acute Toxicity of Inhaled Crushed Plutonium 239 PuO₂ Microspheres in Beagles. BNWL-710; Part of Thompson, R.C. et al (Eds.), Annual Report for 1967, (p. 4-9-4-10), 253 p.

Six female, 33 month old beagle dogs were exposed for 10 min to Pu 238 PuO₂ aerosols at concentrations of 0.016-0.039 uCi/cm³. The count median diameter of the aerosol was 0.52 μ (sigma g equals 1.66). Alveolar deposition ranged from 30-160 uCi. Death occurred in the dogs 50-106 days after alveolar deposition of Pu 238 PuO₂. Death was due to respiratory insufficiency and was preceded by lymphopenia and other changes similar to those seen after inhalation of acute lethal levels of Pu 238 PuO₂. At time of death the lungs and tracheobronchial lymph nodes contained about 98% of the body burden of Pu 238 which ranged from 33-160 uCi. The skeleton contained about 1% and the liver less than 1%. (Auth) (FMM)

Table 1 shows distribution of inhaled Pu 238 PuO₂ in dogs.

<368>

<368>
 Wood, D.H., J.L. Murray, and J.L. Palctay,
 Battelle Memorial Institute, Pacific Northwest
 Laboratories, Biology Department, Richland, WA.
 1965, January

Liver Damage from Neptunium 237 in Sheep.
 BNWL-122; Part of Thompson, R.C. and Woods, S.W.
 (Eds.), Hanford Biology Research Annual Report
 for 1964, (p. 75-78), 216 p.

There was a close correlation between rose
 Bengal liver function tests and the
 histopathologic changes found in serial liver
 biopsies from sheep following the intravenous
 administration of the hepatotoxic agent, Np
 237 (1.5 mg/kg). The most severe cellular
 damage and the slowest blood clearance of the
 dye occurred the fourth day postinjection.
 Cellular repair was evident by the sixth day
 and was almost complete by the tenth day.
 (Auth)

<369>

Zalikin, G.A., Yu.I. Moskalev, and I.K.
 Petrovich, Ministry of Public Health, Institute
 of Biophysics, Moscow, USSR. 1968

Distribution and Biological Effects of Americium
 241. AEC-tr-6950; Part of Radichiology, (p.
 107-118), 306 p.; Radiobiologiya, 8(1), 65-71

Americium 241 was administered in the form of
 the chloride intravenously and
 intratracheally (0.5 and 0.3 ml,
 respectively, 2 μ Ci/1) and perorally (1.0 ml,
 2 and 19 μ Ci/1) to white rats weighing an
 average of 200 g. At certain intervals the
 rats were killed and samples taken from the
 organs and tissues for determination of gamma
 radiation as % of the introduced activity.
 After intravenous administration, Am 241
 rapidly accumulated in the liver (about 57%)
 and skeleton (about 18%) and high
 accumulations were noted in the kidneys
 (1.1%), liver (7.1%), bones (1.4%), spleen
 (0.65%), thyroid gland (0.437%), adrenal
 glands (0.18%), and ovaries (0.13%). After
 intratracheal administration it was slowly
 absorbed from the lungs; the effective period
 of half-excretion of the excreted portion is
 66 days. In peroral administration not more
 than 0.03% was absorbed from the
 gastrointestinal tract. For Am 241
 administered intravenously in the form of the
 chloride, the acutely LD 50/15 and LD 50/30
 and subacutely LD 50/120 are 0.14, 0.11 and
 0.04 μ Ci, respectively. (Auth)

Table 1 shows content of Am 241 in the organs
 and tissues of rats at various periods after IV
 injection. Table 3 shows content of Am 241 in
 rat organs and tissues at various times after
 intratracheal injection.

<370>

Sailor, V.L., Brookhaven National Laboratory,
 Upton, Long Island, NY. 1972

Population Exposure to Radiation: Natural and
 Man Made. CONF-710716; Part of LeCam, L.M., et
 al (Eds.), Proceedings of the 6th Berkeley
 Symposium on Mathematical Statistics and
 Probability held at the Statistical Laboratory,
 University of California, April 9-12, June 16-21
 and July 19-22, 1971, Vol. 6. University of
 California Press, Berkeley, California, (p.
 291-311) 599 p.

Statistical studies which might be capable of
 demonstrating relationships between health
 effects and low level radiation pollutants in
 the environment will be difficult to design,
 because: 1) the pollutants are small by
 comparison with natural background radiation
 and with variations in natural backgrounds,
 2) the radiation burden of medical rays are
 about as large as natural background and thus
 large compared with the pollutants, and
 medical x-ray exposures for which no precise
 records are kept vary widely among
 individuals, and 3) the biological
 manifestations of radiation are not uniquely
 induced by radiation. Using a model, the
 population dose distribution in a 50-mile
 radius about a nuclear power plant is
 estimated. The core of 16 plants equally
 spaced on a 50 km radius surrounding a city,
 gives a maximum annual dose of approximately
 0.27 mrem provided the 5 mrem fence post
 limit is observed thus commercial nuclear
 power would not contribute a significant
 increment to the radiation environment of the
 population. (Auth) (FMM)

Table 1 shows typical whole body doses to
 standard man from natural sources.

<371>

Tashiro, S., Y. Wadachi, and M. Kusamatsu, Japan
 Atomic Energy Research Institute, Tokai-mura,
 Ibaraki-ken, Japan; Tokyo Metropolitan
 University, Setagaya, Tokyo, Japan. 1968, April

Skin Contamination by Radioisotopes, (5) Pig
 Skin Contamination by Plutonium 239. Journal of
 Nuclear Science and Technology, 5(4), 160-162

Samples of pig skin were prepared by cutting
 the hair, washing with synthetic detergent
 and cutting into pieces 2 cm X 2 cm. The
 contaminating solution was prepared by
 dissolving metallic Pu in hydrochloric acid
 to obtain a solution of 0.5 μ ci/ml and
 solutions of various pH values were prepared
 therefrom by the addition of sodium
 hydroxide. Immediately, a 0.1 ml aliquot of
 the solution was applied to the center of the
 sample. It was found that the
 contaminability of Pu was affected by the
 formation of colloidal substances in the
 contaminating solution, as in the case of Ra,
 Sr, Po and U. It was also found that 0.05%
 of the Pu penetrated through the pig skin
 with pH 1 solution after 60 min. (Auth) (FMM)

<372>
 Stuart, B.O., and P.J. Dionne, Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1968, May

Dynamic Simulation of Retention and Translocation of Inhaled Plutonium Oxide in Beagle Dogs. BNWL-714; Part of Thompson, R.C. et al (Eds.), Annual Report for 1967, (p. 3.5-3.8), 253 p.

A dynamic simulation model for inhaled plutonium oxide was constructed using hybrid computer facilities. Blood, tissue, and excretion data collected from more than 50 beagle dogs up to 7 years after inhaling Pu 239 PuO₂ were incorporated into a program for predicting long-term retention and translocation of inhaled insoluble plutonium. The long-term model predicts that 15 and 60% of the amount deposited in the deep lung remains in the deep lung and lymph nodes, respectively, 15 years after exposure, and that the whole body burden decreases less than 10% after the initial rapid clearance which occurs during the first 2 weeks after exposure. (Auth) (PMN)

<373>
 Blair, R.A., University of Rochester, School of Medicine and Dentistry, Department of Radiation Biology and Biophysics, Rochester, NY. 1968

Radiation Dose-Time Relations for Induction of Bone Tumors in the Dog and Skin Tumors in the Rat. Radiation Research, 34, 501-522

There are two mutually exclusive routes of tumor induction by radiation both in rat skin from brief doses of external beta radiation and in dog bone from Pu 239, Ra 226, or Th 228 injected at age 500 days. In the one process oncogenesis occurs directly on attainment of high radiation dose. In the other process oncogenesis follows a long latent period which is initiated by lower dose. Subsequent development time is the same in both cases. With protracted dosage the latent period is initiated at relatively low dose, but if exposure is continued the high-dose process will supersede the low if the high-dose threshold is exceeded during the latent period. Otherwise the low-dose process will govern. For these radioelements in the dog yielding relatively constant dose rates the data are represented by equations relating survival time, initiating high dose, development time and dose rate to the skeleton. The relative values of the initiating high dose provide a scale of toxicities. (Auth) (PMN)

<374>
 Bogatov, L.V., Not given. 1963

Reaction of the Blood Systems in Dogs to Heavy Blood Loss in Remote Periods Following Chronic Irradiation. Meditsinskaya Radiobiologiya, 6(2), 28-35 (Russian)

Investigations were carried out on 3 groups of dogs: (1) 18 months after external gamma-irradiation, 10 R/day, total dose of 1,300 R; 2) after four-fold plutonium administration, 0.05 uCi/kg for a period of 4 months; 3) 4 years after external gamma-irradiation, 18 R/day, total dose of 954 R. In all three groups there took place, the same as in nonirradiated animals, a reaction of the blood system to acute blood loss (33-39% of blood). Peripheral blood restoration occurred at the same time or even earlier than in controls. In contrast to controls, the blood regeneration in experimental animals occurred against the background of marked hyperplasia of the red series, while in animals of the first group posthemorrhagic reticulocytosis was absent. (Auth)

<375>
 Atherton, D.R., W. Stevens, and F.W. Bruenger, University of Utah, College of Medicine, Radiobiology Division, Department of Anatomy, Salt Lake City, UT. 1973, March 31

Early Retention and Distribution of Curium in Soft Tissues and Blood of the Beagle. CCO-19-248; Part of Dougherty, T.F., Research in Radiobiology, Annual Report of Work in Progress in the Internal Irradiation Program, (p. 178-185), 400 p.

Following intravenous administration of 2.6 uCi Cm/kg to beagle dogs, the concentration of the nuclide in circulating blood diminished very rapidly, and after 2 days the concentration was of the order of 0.4% per kg of blood. Soft tissue concentration was highest in the liver, followed by thyroid, kidney, dura mater, and lymph nodes. The concentration in other soft tissues was less by substantial factors. (Auth)

The retention and concentration of curium in soft tissues is shown in tables 1 and 2. Tables 3, 4, and 5 compare the retention concentrations of Th 228, Pu 239, Am 231, Cf 249, and Cm 243-Cm 244 at 1, 2, and 3 weeks in a variety of soft tissues.

<376>

<376>
 Ballou, J.E., General Electric Company, Hanford Atomic Products Operation, Biology Laboratory, Richland, WA. 1963, January 15

Comparative Toxicity of Plutonium 239 and Plutonium 238. HW-76000; Part of Kornberg, H.A. and Swerea, E.G. (Eds.), Hanford Biology Research Annual Report for 1962, (p. 11-17), 269 p.

On an equivalent microcurie basis, Pu 239 was significantly more toxic than Pu 238 when administered intravenously to rats over a dose range of approximately 80 to 180 μ Ci/kg. Toxicity was demonstrated by an abrupt loss of weight and early death following injection. Lower doses of Pu 238, Pu 239, and Np 237 followed by 500 R total body γ radiation showed no difference in lethal effect between Pu 238 and Pu 239 combined with γ radiation. The 520 μ g/kg level of Np 237 combined with γ radiation did not affect survival. Tissue distribution and retention of low doses (1 μ Ci/rat) of the two plutonium isotopes were similar but markedly different at higher doses (18 μ Ci/rat). The Pu 239 deposition pattern at the higher dose was characterized by a relatively high deposition in the liver, spleen, and other soft tissues and a correspondingly low relative deposition in bone. It was suggested that five-fold greater deposition in the spleen of Pu 239 was sufficient to overcome the protective function of this organ and the result was an earlier death than that observed with Pu 238. Thus results indicated that the difference in toxicity was related to the mass levels of heavy metal administered. (Auth) (ST)

Tables 2 and 3 list the tissue distribution of Pu 238 and Pu 239 expressed as percent dose/tissue for 1, 3, and 8 days post injection.

<377>
 Plasenbaum, W., J.S. McNeil, T.A. Kotchen, and A.J. Saladino, Walter Reed Army Institute of Research, Department of Nephrology, Washington, DC. 1972, November

Experimental Acute Renal Failure Induced by Uranyl Nitrate in the Dog. Circulation Research, 31, 682-698

Renal blood flow and renal function were studied serially for 96 hours after the administration of uranyl nitrate (10 μ g/kg IV) in unanesthetized dogs. Acute renal failure was induced by the uranyl nitrate and was characterized by a diminished inulin clearance, a progressively falling urine volume, an initial increase in urine sodium concentration, a decreased urine osmolality, rising blood urea nitrogen concentration, and altered renal hemodynamics. Inulin clearance and total renal blood flow decreased to 25 and 52% of control, by 6 hours and remained depressed. Plasma renin activity was elevated by 3 hours. Histological examination revealed minimal tubular change at 6 hours and widespread disruption at 96 hours. The decrease in renal blood flow prior to any significant tubular pathology suggested that alterations in renal hemodynamics, which may be mediated by the renin-angiotensin system, were responsible for the diminished renal function. (Auth) (ST)

<378>
 Kahn, B., B. Shleien, and C. Weaver, U.S. Environmental Protection Agency, Cincinnati, OH. 1972

Environmental Experience with Radioactive Effluents from Operating Nuclear Power Plants. CONY-710901; A/CONY.49/P; STI/PUB/300; Part of Proceedings of the 4th International Conference on the Peaceful Uses of Atomic Energy held in Geneva, Switzerland, September 6-16, 1971, Vol. 11, (p. 559-573), 766 p.

Radiological surveillance activities at the eight nuclear power stations and the nuclear-fuel reprocessing plant under routine commercial operation in the USA are described, and current results are summarized. At each facility the operator or his contractor monitors the environment and presents findings in periodic reports to the USNRC. The appropriate state agency for public health or environmental protection also performs radiological measurements in the neighborhood of the plant, usually as part of a state-wide monitoring program. The USNRC sponsors a program of independent measurements at several stations and periodic aerial radiation surveillance of the environment. New York University and the Essex Marine Laboratory are evaluating possible thermal and radiological effects of liquid effluents from two of these plants on aquatic life in the Hudson and Connecticut rivers, respectively. Studies to develop environmental surveillance guidelines have been conducted at operating facilities since 1967 by the Division of Environmental Radiation (formerly of the Public Health Service, Bureau of Radiological Health). The field studies, which were initially undertaken at a fuel reprocessing plant, a boiling-water reactor, and a pressurized-water reactor that had been in operation for several years, have now been extended to include the newer and larger light-water nuclear power stations. Concurrent measurements of individual radionuclides are made within the station, at points of waste discharge, in the immediate environment, and at points of possible human exposure. Thus the magnitude of the source, the importance of paths to and through the environment, and the extent of radionuclide dispersion or concentration are indicated. Specific procedures have been suggested for collecting appropriate samples and measuring radiation and radionuclide concentrations in environmental media at the usual extremely low levels. The major observations have been the feasibility, given sufficiently sensitive techniques, of measuring directly the critical radiation exposure pathway and the desirability of basing environmental surveillance programs on release rates of individual radionuclides measured at the source. (Auth)

Table 5 gives the concentration of several radionuclides found in discharged water, clams, algae, fish, sediment and vegetables at various nuclear facilities. Table 6 shows several radionuclides including Pu 238 and Pu 239 found in environmental samples.

<379>
Lyubchanskii, E.R., Not given. 1966

Using Na3Ca DTPA (Pentacin) to Eliminate Plutonium 239 from the Organisms of the Rat with Inhalation Poisoning. AEC-tr-6944; Part of Moskalev, Yu.I., Distribution and Biological Effects of Radioactive Isotopes, (p. 592-598), 718 p.

Male rats of the Wistar line were exposed to a single 20-minute inhalation of Pu 239 citrate (pH equals 6.5). Some of the animals were treated with aerosols of the trisodium calcium salt of DTPA obtained on atomizing a 10% solution in a special generator. Others were intravenously injected with DTPA (2.5 and 25 mg/rat) 30 minutes prior to inhalation of Pu. The rats of both series were killed five days after the administration of DTPA and the lungs, liver, femurs, and kidneys were analyzed. It was found that single-dose prophylactic inhalation of pentacin in the amount of 1.8 mg prevents to a large degree the deposition in rats of the inhaled plutonium. As the interval of time between the inhalation of plutonium and of pentacin increases, the effectiveness of the latter diminishes. Administration of small amounts of pentacin (1.8 and 3.6 mg) 40 days following the inhalation of plutonium does not affect the content of this isotope in the rat. By contrast with inhalation, prophylactic intravenous administration of pentacin in the amount of 2.5 mg does not reduce the activity in the lungs and skeleton following the penetration of Pu 239 into the respiratory pathways. (Auth) (PMH)

<380>
McClellan, R.O., U.S. Atomic Energy Commission, Division of Biology and Medicine, Medical Research Branch, Washington, DC. 1966

Use of Swine in Radionuclide Toxicity Studies. CONF-65-718; Part of Bustad, L.K., et al (Eds.), Proceedings of a Symposium on Swine in Biomedical Research held in Richland, Washington, July 19-22, 1965, (p. 447-462), 825 p.

Increased use has been made of swine as experimental animals in radionuclide toxicity studies. An important stimulus to their increased use has been the availability of strains of miniature swine. Their body and skeletal size, diet, gastrointestinal tract, skin characteristics, and relatively long lifespan have been pertinent factors favoring their use because of the importance of these criteria when experimental results are extrapolated to man. Three types of experiments are discussed that illustrate the current use of swine: (1) long-term chronic radionuclide ingestion studies with a significant fallout radionuclide (Sr 90), (2) short-term metabolism studies with radionuclides that predominate in nuclear industry operations and/or may have special applications as in "Systems for Nuclear Auxiliary Power," and (3) acute and chronic studies of the metabolism and effects of plutonium deposited in or in the skin. (Auth)

<381>
Menot, J.C., M. Morin, W. Skvaril, J. Lefuss, Commissariat à l'Energie Atomique, Fontenay-aux-Roses, France.

Experimental Removal of Cerium 144, Americium 241, Curium 242 and Plutonium 238 from the Rat Skeleton. Health Physics, 23, 635-640

The therapeutic effectiveness of DTPA on bone deposits of lanthanide or transuranic elements can be appreciable when the greater part of the activity is to be found in bone. This was obtained after 3 weeks time following the administration by inhalation of Ce 144 and Am 241 and by intramuscular injection of Cs 242 and Pu 238. DTPA therapy starting after this delay decreased bone burdens by a factor from 1/2 to 1/3 in 3 months. There probably exist two different compartments which can be cleared, under the influence of DTPA, with a half-life of 2 months for the former and very slowly for the latter. The effectiveness of DTPA on the second compartment could not be estimated. (Auth)

Table 2 shows the distribution of Ce 144, Am 241, Cs 242 and Pu 238 salts in bone, liver, urine and feces of rats following IM injection or inhalation and DTPA treatment.

<382>
Kudashova, N.P., Not given. 1969

On the State of the Blood System in Rats Under Inhalation Affection by Plutonium 239. AEC-tr-7195; Part of Moskalev, Yu.I. (Ed.), Radionuclides and the Body, (p. 347-353), 458 p.

The morphological composition of the blood and bone marrow following single and chronic inhalation of Pu 239 was studied in rats. It was shown that with a single inhalation of a plutonium carbonate complex in the quantity 0.024 uci/lung and also with chronic inhalation for 160 days with a daily deposition of 0.02 uci/lung, no changes were found in the blood system. Under the action of a plutonium citrate complex in quantities shortening the natural life span of rats, moderately expressed changes in the blood system were found. After a single inhalation in the quantity 0.64 uci/lung there was a tendency toward a certain lowering of the total number of leukocytes at the end of the life of the rats. During chronic inhalation for 60 days with daily deposition of 0.004 uci/lung, a moderate depression of erythropoiesis, leukopoiesis and lymphopoiesis developed. The number of leukocytes dropped by a factor of 1 1/2-2. Restoration of the number of leukocytes in the peripheral blood was noted in the bone marrow under conditions of depressed leukopoiesis. (Auth) (PMH)

<383>

<383>
 Koranda, J.J., J.R. Martin, and R.W. Wikkerink, Lawrence Radiation Laboratory, Medical Division, Livermore, CA. 1970

Leaching of Radionuclides at Sedan Crater. Part of Radionuclides in the Environment, Advances in Chemistry Series No. 93, (p. 97-117)

The distribution of tritium and long-lived gamma radioactivity was studied in crater ejecta from the Sedan detonation (July 1962). Tritium concentrations were determined in soil water extracted from crater ejecta samples collected from the surface to 6 feet, and at distances of 3000 feet from the crater from 1966-1968. Tritium distribution was very obviously modified by postshot environmental effects, especially rainfall leaching. Tritium maximum concentrations were found below the strata in which they were deposited. Gamma radionuclides exhibited limited movement in the crater ejecta strata or in preshot soil covered by crater ejecta. A subtle leaching of Cs-137 was demonstrated by considering the Cs-137/Mg-26 ratios in the ejecta strata. (Auth)

<384>
 Salmon, B., and S.H. Hulett, Goodyear Atomic Corporation, Industrial Relations Division, Industrial Hygiene and Health Physics Department, Piketon, OH. 1970, September 10

Environmental Radiation Levels and Concentration, First Half 1970. GAT-628; 10 p.

The average environmental radiation levels for the Goodyear Atomic Corporation gaseous diffusion plant, for the first half of 1970, are summarized. For the first half of 1970, the water alpha and beta-gamma, and the air alpha decreased when compared with the 1969 calendar year values. For the first half of 1970, the air beta-gamma increased when compared with the 1969 calendar year values. It is assumed that the gross alpha activity is due to highly enriched uranium and the beta-gamma activity is from its daughter product, thorium-232. Penetrating background dose rates for the first half of 1970 remained essentially the same when compared with the 1969 calendar year values. Previously environmental radiation levels and concentration reports have reflected air sample results, for both alpha and beta-gamma, taken at twenty-one off-site locations. These samples were taken once per month at each location. In April 1970, the Atomic Energy Commission requested that Goodyear Atomic Corporation report only the results of air samples taken from a minimum of four off-site sampling locations. Sampling at these locations should be at a frequency of at least three, 1000 ft³ samples per week. In selecting sample locations, the prevailing wind direction and the locations with the highest concentrations should be considered as indicated in past reports. The air sample results in this report reflect this request. (Auth)

<385>
 Budakov, L.A., Z.I. Kalmykova, N.P. Kudashova, E.R. Lyubchanskiy, and Ye.P. Ucharenko, Not given. 1971

Biological Effect of Plutonium 239 Administered by Inhalation. AEC-tr-7387; Part of Moskalev, Yu.T. (Ed.), Remote Aftereffects of Radiation Damage, (p. 323-333), 574 p.

Experiments were done on rats of the Wistar line weighing 120-180 g. The animals inhaled aerosols of solutions of Pu citrate and ammonium Pu pentacarbonate and the initial Pu 239 content in the lungs varied from 0.0047-1.46 uCi. The results show that the differences in the biological effect of the two plutonium compounds are small. The LD 50 values differ insignificantly. A reliable decrease in lifetime in the rats occurs after inhalation administration of plutonium in a quantity of 0.11 uCi per animal or 0.00073 uCi/g; the "safe" plutonium quantities are 0.0001-0.00027 uCi/g. The shortening of lifetime of the rats by 1 rad of dose in the lungs increases linearly with an increase in dose intensity from 0.35-0.40 to 15-20 rad/day. A further increase in pulmonary dose intensity is not accompanied by an increase in shortening of lifetime per 1 rad of dose. A change in respiration rate of the rats occurs with deposition of 0.28 uCi of Pu 239 in the lungs; this is 0.0018 uCi/g of body weight; the respiration depth already changes with 0.047 uCi of Pu 239 in the lungs or 0.00033 uCi/g; hypoxemia is observed with 0.004 uCi/lungs, or 0.00032 uCi/g; the shifts in the acid erythrogram were noted with 0.066 uCi/lungs or 0.00046 uCi/g of body weight. (Auth) (PMH)

<386>
 Becker, V.J., J.H. Bennett, and O.K. Manuel, University of Missouri, Department of Chemistry, Rolla, MO. 1972, April

Iodine and Uranium in Sedimentary Rocks. Chemical Geology, 9(2), 133-136

The abundance of iodine and uranium in sedimentary rocks was determined by neutron activation analyses. The iodine content is higher in the sediments than in igneous rocks and the iodine concentrations follow the same general pattern as chlorine and bromine in sedimentary rocks and deep-sea sediments. The uranium concentrations in these sediments are in good agreement with previous estimates, except for two uranium-rich sandstones. (Auth)

Table 1 gives a comparison of the iodine and uranium content of sedimentary rocks with previously estimated limits.

<387>
Koshchennikova, N.A., E.R. Lyubchanskiy, R.A. Yerzhkin, and A.A. Puzyrev, Not given. 1971

Effect of Some Drugs on the Remote Aftereffects of Inhalation of Soluble Plutonium 239 Compounds. AEC-tr-7387; Part of Moskalev, Yu.I., (Ed.), *Remote Aftereffects of Radiation Damage*, (p. 416-424), 574 p.

The effects of pentazine, prednisolone and streptomycin on the latent effects of inhalation of plutonium 239 compounds were tested in rats. The results show that with inhalation damage by soluble plutonium compounds the prophylactic breathing of pentazine reduces content of the isotope in the organs where most deposition occurs and leads to a decrease in the dissemination of pneumosclerosis, and accordingly results in a lengthening of the lifespan. The value of streptomycin for treating plutonium-induced pneumosclerosis was proven in all cases of inhalation damage; there is a decrease in the degree of expression of pneumosclerosis and an increase in lifespan of the experimental animals. With damage by plutonium in quantities causing a chronic form of damage the administration of prednisolone decreases the degree of expression of the pathological processes in the lungs, the frequency of osteosarcomas and leukoses, but does not increase the lifespan of the experimental animals. There is an increased frequency of malignant pulmonary tumors and pathological changes characteristic of extreme old age. (Auth)

<388>
Taylor, G.N., and C.W. Mays, University of Utah, College of Medicine, Radiobiology Division, Salt Lake City, UT. 1972, March 31

Bone Sarcoma Induction in the St. Bernard, A Pilot Study in Dogs of High Natural Incidence. COO-119-246; Part of Dougherty, T.P., Research in Radiobiology, Annual Report of Work in Progress in the Internal Irradiation Program, (p. 282-283), 380 p.

As part of a pilot study of dogs with a high natural incidence of bone sarcoma, young adult St. Bernard dogs were given a single intravenous injection of 0.3 uCi Pu 239/kg body weight. The appearance time of radiation induced osteosarcomas was approximately 1/2 of that observed in beagles injected at the same dose level. (ST)

<389>
Hamada, G.H., and P. Kruger, Hazleton-Nuclear Science Corporation, Palo Alto, CA; Stanford University, Civil Engineering Department, Stanford, CA. 1965

Methods of Assessing Fallout. Part of Fowler, E.B., (Ed.), *Radioactive Fallout, Soils, Plants, Foods*, Han. Elsevier Publishing Company, New York, New York, (p. 287-303)

Some of the analytical methods of assessing radioactivity in ecological systems are reviewed. Particular attention is given to the problems of radiochemical preparation for soils and vegetation. These problems include the precautions necessary for adequate and representative sampling, pretreatment of samples, chemical or physical preparations for radioactivity measurements, and choice of analytical methods for specific radionuclides. Under the headings soil and vegetation and foods, radiochemical analyses for Sr 90, Ce 144, Pu 239, Ru 106, and Cs 137 are described. Milk is discussed separately and radiochemical analyses for Sr 89 and I 131 are included here. Some of the more common techniques for analysis of stable elements are also described. (ST)

<390>
Not given, Hanford Laboratories, Facilities Engineering and Finished Products Technology Personnel, Hanford, WA. 1960, August 19

Predicted Z Plant Radiation Exposure Levels vs Plutonium Isotopic Concentration of Products. RW-66675; 22 p. (Declassified November 3, 1971)

The report contains seven charts that show the anticipated relationship between whole body exposure levels encountered in the Z plant of the Hanford Laboratories and the plutonium isotopic concentration of the product. The charts are based on gamma ray and neutron studies made in the Z plant in the course of normal plutonium production activities, basic decay characteristics of plutonium isotopes, and time and action studies made throughout the plutonium processing and fabrication areas. The first three charts show the anticipated effect of high density shielding glass placed around all operating equipment. Charts 1, 2, 3, and 7 show expected whole body doses due to neutrons as a function of Pu 240 concentration in the product. Charts 4 through 7 deal with anticipated experience associated with several operations. (ST)

<391>

Not given, Western Environmental Research Laboratory, Las Vegas, NV; U. S. Atomic Energy Commission, Nevada Operations Office, Las Vegas, NV, 1972, July

Offsite Surveillance Around the Nevada Test Site, January-June 1958. Radiation Data and Reports, 13(7), 417-419

During January through June 1958, 18 announced nuclear tests were conducted in Nevada by the U.S. Atomic Energy Commission. Radioactive material was released offsite following one underground nuclear event and after two Plowshare cratering experiments. These were Humpmobile on January 18, Cabriolet on January 26, and Buggy I on March 12. Two power operations of the Phoetus 2A nuclear rocket reactor released radioactive material detected offsite on June 8 and June 26. The maximum concentration of gross beta in air was 33,000 pCi/m³ at Stone Cabin Ranch about 16 miles west and 5 miles north of Wamsutter, Wyoming. This activity was released by the Cabriolet experiment. The maximum external gamma radiation level measured at a populated location during this period was 65 mR/h following Cabriolet on January 26. Surveillance did not indicate that any individual in an offsite area received an exposure which exceeded the guides established by the AEC and/or recommended by the Federal Radiation Council. (ST)

This is a summary of Report SWRRL-81r. Results of air and milk samplings and ground monitoring are given in tabular form.

<392>

Not given, Western Environmental Research Laboratory, Las Vegas, NV, Nevada Operations Office, Las Vegas, NV, 1972, April

Offsite Surveillance Around the Nevada Test Site, July-December 1966. Radiation Data and Reports, 13(4), 227-236

During July through December 1966, 10 announced underground nuclear tests were conducted by the U.S. Atomic Energy Commission at their Nevada Test Site as a part of Operation Latchkey. The Western Environmental Research Laboratory, EPA, conducted a program of radiological monitoring and environmental sampling in the offsite areas surrounding the restricted areas enclosed within the Nevada Test Site, Nuclear Rocket Development Station, and the Wellis Air Force Range. This report describes the methods and equipment used and summarizes the data collected during the 6-month period. Operational procedures consisted of ground monitoring, aerial cloud tracking, air sampling, milk and water sampling, vegetation sampling, and dosimetry measurements of offsite residents. Only the Derringer Event of September 12, 1966 resulted in a release of radioactive effluent which was detected offsite. Ground monitoring showed two readings slightly above background in unpopulated areas. Results indicated that no individual in the offsite area received an exposure, resulting from Nevada Test Site operations, which exceeded the guides established by the AEC and/or recommended by the FRC and the NCRP. (ST)

This article is a summary of Report SWRRL-38r.

<393>

Wilson, R.H., and J.L. Terry, University of Rochester, Atomic Energy Project, Rochester, NY, 1968, September 26

Operation Roller Coaster, Project 4.1, Plutonium Uptake by Animals Exposed to a Non-Nuclear Detonation of a Plutonium Bearing Weapon Simulant. POR-2512; WT-2512; 161 p.

Eighty-four dogs, 132 sheep, and 84 burros were allowed to breathe from the cloud generated by the high-explosive detonation of a plutonium-bearing nuclear weapon simulant. No nuclear yield was present in the explosion. Animals were sacrificed serially from 1 hour to 2 1/2 years later to quantitate initial tissue burdens, to establish lung clearance kinetics, and to determine extent of translocation to other organs. Ten dogs and ten sheep were exposed in a similar trial in which more explosive was used and the weapon simulants were housed in a typical earth-covered high-explosive storage magazine, to establish in a limited way if the admixed earth in any way effected the clearance kinetics. Half of those animals were sacrificed on the third day, the remainder on the seventh. Calculated initial depositions in the animals were found to encompass the deposition postulated for man exposed to a similar aerosol, although the estimate of deposition in animals is somewhat sensitive to the mathematical treatment used in analyzing the data. Clearance in dogs and burros was found to be somewhat more rapid than similar measurements on laboratory dogs exposed to pure PuO₂; clearance in sheep was much more rapid, and the usefulness of this species is questionable. No translocation was observed except in those animals exposed to the largest amounts of plutonium, and in these buildup occurred only in lymph nodes. In burros, the species for which results are most reliable, lymph node concentration reached twenty percent of initial lung concentration in 456 days. Initial lung concentrations were shown to be quite closely comparable among the three species if exposed to the same cloud integral of respirable aerosol, and it is proposed that these species in particular and probably other large animals can serve as monitors of exposure if sacrificed soon after an accident. The presence of large amounts of inert dust in the storage magazine trial resulted in a three-fold reduction in lung burden as compared to the dirt-free trial. This may be conservative, but the scarcity of data and the short duration of this phase of the studies preclude any more precise estimate of the benefit of earth-covered storage. It is believed that the altered clearance kinetics are those of the inert dust for which the plutonium serves as a tracer. (Auth)

Tables 3.4 show lung burdens of the various animals as percent of respirable fractions. Tables 3.1 through 3.7 show various tissue burdens. Table 3.8 gives median plutonium levels found in urine and feces of sheep sacrificed at 2 and 1/2 years. Table 3.9 shows median total deposition for the three species. Table 3.10 shows median lung burdens expressed as percent of respirable aerosol for Double Tracks and Clean Slate II dogs and sheep.

<394>

Bennet, J.P.M., D.M. Taylor, and P.D. Sowby,
Institute of Cancer Research, Department of
Biophysics, Sutton, Surrey, England. 1965,
December

The Carcinogenic Effects of Americium 241 and
Plutonium 239 in the Rat. *British Journal of
Radiobiology*, 38(456), 920-925

A comparison was made of the relative
radiotoxicities of Pu 239 and Am 241 in terms
of tumor production and, in particular, of
bone tumor production in rats. For
approximately equivalent microcurie doses of
the two nuclides, Am 241 is far less
effective in producing bone tumors than Pu
239. Fractionation of a single dose of Pu
239 did not increase the number of tumors
though there was a slight increase in the
number of leukemias. The fact that fewer
bone tumors appear for equivalent microcurie
doses of the two nuclides suggests that
maximum permissible levels for Am 241 might
well be reconsidered. (Auth)

<395>

Balabukha, V.S., A.T. Ivannikov, L.I.
Razbitnaya, N.O. Razumovsky, L.I. Tikhonova, and
L.M. Baranovskaya, Ministry of Public Health,
Institute of Biophysics, Moscow, USSR. 1973

Polyaminepolyalkylphosphonic Acids as Effective
Ligands for Binding and Eliminating Uranium and
Its Fission Products from the Body.
CONF-720503; Part of Budoso, E. (Ed.), *Health
Physics Problems of Internal Contamination*,
Proceedings of the IRPA 2nd European Congress on
Radiation Protection held in Budapest, Hungary,
May 3-7, 1972, (p. 293-298), 655p.

Chelating processes of various
aminealkylphosphonic acids with uranium and
Ca 45, Y 91, Ce 144, Zr 95, Nb 95, and Ru 106
radionuclides were studied by the methods of
spectrometry, electrophoresis, potentiometry
and ion exchange. It was established that
the stability of the complex compounds with
uranium, Zr 95, Nb 95 and Ru 106 is higher
than that of polyaminepolycarbonic acids
while the stability of compounds with Y 91,
Ce 144 and particularly with Ca 45 is lower.
All compounds tested on dogs and rats were
shown to be efficient in accelerating
elimination and decreasing deposition of Zr
95, Nb 95 and particularly uranium. They
enhance animal survival and reduce the
deleterious effect of uranium on the kidneys
and on the animal as a whole. For the
elimination of Y 91 and Ce 144, these acids
are inferior to the corresponding
polyaminepolycarbonic acids. (Auth)

Table 1 shows the effect of aminealkylphosphonic
acids on elimination of uranium from rats.

<396>

Beacock, G., and D.S. Popplewell, United Kingdom
Atomic Energy Authority, Atomic Weapons Research
Establishment, Aldermaston, Berkshire, England.
1965, October 16

Distribution of Plutonium in Serum Proteins
Following Intravenous Injection into Rats.
Nature, 203(5007), 282-283

The distribution of tetravalent Pu (NO₃)₄ in
the blood serum of rats was measured 30
minutes after intravenous injection of 0.1
uCi. Following protein separation by gel
filtration, the plutonium was found bound to
the transferrin proteins. (ST)

See also Report AWRE-O-06/65, 17 p.

<397>

Baird, W.J., General Electric Company, Hanford
Laboratories, Biology Operation, Richland, WA.
1960

Radionisotope Toxicity: From Pulmonary
Absorption. Part of Caldecott, R.S. and Snyder,
L.A. (Eds.), *Proceedings of a Symposium on
Radionisotopes in the Biosphere held at
University of Minnesota, Minneapolis, Minnesota,
1959*, (p. 431-448), 527 p.

The physiological behavior and biological
effects of several radionisotopes following
inhalation are described. Studies on
deposition, retention, and translocation of
various radionuclides in several animals and
factors influencing these physiological
processes are reviewed. Inhalation of
strontium and iodine in rats and mice was
generally followed by rapid lung clearance
and translocation to tissues that accumulate
the isotope after its entry to the body by
other routes. Very insoluble compounds such
as Pu 239 PuO₂ were retained in the lung for
a long period with slow translocation to
other tissues and slow excretion. Pu 239
showed major translocation to
tracheobronchial lymph nodes in both dogs and
mice. Retention differed in dogs and mice.
Mice surviving 500 days after inhalation of
Pu 239 PuO₂ or Ru 106 RuO₂ showed lymphatic
pathology and minor pulmonary pathology.
Doses greater than 0.3 uCi of PuO₂ resulted
in early mortality. Histological examinations
showed no malignant pulmonary tumors. Limited
histologic studies of tracheobronchial lymph
nodes from dogs after intratracheal
deposition of 20 uCi of Pu 239 PuO₂ showed
characteristic radiation damage two years
later. Autoradiograms confirmed a greater
deposition of Pu 239 in tracheobronchial lymph
nodes than in the lungs following inhalation
of 2 uCi. Circulating lymphocyte count was
decreased. Chronic inhalation by mice of
10(8-5) uCi Sr 90 SrSO₄/cc of air and less,
caused minor hematologic changes but no
increase in leukemia after two years. (ST)

Table 1 gives the distribution of radioactive
PuO₂ and PuO₂ in mice and dogs following
inhalation. Table 2 reviews pulmonary retention
of radioisotopes in several animals and man.
Table 3 gives translocation of inhaled PuO₂ and
RuO₂ to various tissues at various times. Table
5 gives the effects of inhaled radionuclides in
mice. Tables 6 and 7 give hematological changes
observed in mice after inhalation of SrSO₄.

<398>

<398>

Alexander, L.T., E.P. Hardy, Jr., and H.L. Hollister, U. S. Department of Agriculture, Soil Survey Laboratory, Beltsville, MD; Health and Safety Laboratory, New York, NY; U.S. Atomic Energy Commission, Division of Biology and Medicine, Washington, DC. 1960

Radioisotopes in Soils: particularly with reference to Strontium 90. Part of Caldecott, R.S. and Snyder, L.A. (Eds.), Proceedings of a Symposium on Radioisotopes in the Biosphere held at University of Minnesota, Minneapolis, Minnesota, 1959. (p. 3-22), 597 p.

The distribution of Sr 90 on a global basis from the standpoint of soil measurements and in relation to latitude and rainfall was studied. A detailed picture of Sr 90 distribution along two approximately constant rainfall lines in the United States was obtained along with information on some "hot spots" in the United States. The contribution of rainfall, world wide fallout and fallout from the Nevada Test Site to these values is discussed. Other fission products in soils measured by gamma spectrometry were discussed with regard to isotope ratios. (ST)

Tables 3-7 give Sr 90 soil sampling data at various global latitudes between 1953 and 1958. Table A in the appendix contains global Sr 90 soil sampling in relation to rainfall (1959); table B lists Sr 90 in United States soils at various locations.

<399>

Kelani, D.K., Industrial Toxicology Research Center, Lucknow, India. 1972, October

Analysis of Indian Monozite Sand in Animal Tissues, Part 2. Indian Medical Journal, 66(10), 1975-1976

The feasibility of using a direct colorimetric method for the analysis of mineral samples for uranium content was investigated. The method is based on the yellow color produced by uranyl ions and NH₄SCN in dilute mineral acid solution. Results of monozite sand analysis for rare earths, thorium, cerium, phosphorus and uranium are given. (ST)

<400>

Not given, Argonne National Laboratory, Argonne, IL, 1962, October

Biological and Medical Research Division Semiannual Report, July through December 1962. ANL-6790; 236 p.

Thirty-eight papers are included in the ANL Biological and Medical Research Division semiannual report. Two articles concerning plutonium removal were abstracted separately for the data base. The types of studies done concern gamma and x radiation effects, immune mechanisms, radionuclide toxicity, carcinogenesis, biochemistry, cell fractionation, genetics, microscopy techniques, metabolism, and physiology. The studies cover plants, microorganisms and laboratory animals. (ST)

<401>

Atherton, D.R., and R.D. Lloyd, University of Utah, College of Medicine, Radiobiology Division, Department of Anatomy, Salt Lake City, UT. 1972, March 31

The Distribution and Retention of Californium 249 in Beagle Soft Tissue. CCO-119-246; Part of Dougherty, T.F., Research in Radiobiology, Annual Report of Work in Progress in the Internal Irradiation Program, (p. 299-305), 380 p.

Beagles injected intravenously with Cf 249 (2.8 μ Ci/kg) in citrate buffer of pH 3.5 were sacrificed 7 days and 3 weeks after injection. As with americium, the concentration of californium in the liver was highest of all soft tissue but the total was about 1% to 20%, whereas the beagle liver retains about 50% of injected americium at comparable times. Concentrations in other soft tissue ranged from 70% of that in the liver downward. The thyroid, kidney, spleen, lymphatic tissue and dura mater showed significant concentrations. The presence of californium was ubiquitous but in very low concentrations throughout all other soft parts; the brain, lungs, heart, gastrointestinal tract, pancreas, gonads, thyroids, pituitary, and adrenals being measured specifically, as were large samples of fat, muscle and peri. From these initial studies it is seen that of the soft tissues, liver, thyroid, and kidneys will be at greatest risk following administration of Cf 249. (Auth)

See also Health Physics, 22(6), 675-677

<402>

Atherton, D.R., B.J. Stover, W.S.S. Joe, W. Stevens, and F.W. Bruenger, University of Utah, College of Medicine, Radiobiology Division, Department of Anatomy, Salt Lake City, UT. 1972, March 31

Skeletal Retention and Distribution of Polymeric and Monomeric Actinon 239 in Beagles. CCO-119-246; Part of Dougherty, T.F., Research in Radiobiology, Annual Report of Work in Progress in the Internal Irradiation Program, (p. 126-136), 380 p.

Plutonium 239(+4) was given intravenously to beagles in: 1) the Pu-transferrin complex (Pu-T sub f), 2) the 0.08 M citrate buffer (Pu-H), and 3) as a suspension of near colloid size particles (Pu-P) at pH approximately 6. As expected, the overall distribution of the polymeric form of plutonium does not resemble that observed when it is administered as the monomeric complex with citrate or transferrin. The skeletal retention of plutonium, when injected in a monomeric form, is 50% of the injected dose. The retention of Pu-P in the skeleton was less than 1/20 that seen in Pu-H or Pu-T(f) at comparable times. The uniformity of skeletal distribution of Pu-P from bone to bone is markedly less than that seen with the two monomeric forms. Reduced skeletal retention in animals injected with Pu-P indicates a different skeletal retention mechanism in animals injected with polymeric plutonium. Autoradiographs clarify this point. (Auth)

<403>
Hempelmann, L.H., W.H. Langham, C.R. Richmond, and G.L. Voelz, Los Alamos Scientific Laboratory, Health Division, Los Alamos, NM. 1973, November

Manhattan Project Plutonium Workers, a Twenty-Seven Year Follow-Up Study of Selected Cases. *Health Physics*, 25, 461-479

Twenty-five male subjects who worked with plutonium during World War II under extraordinarily crude working conditions have been followed medically for a period of 27 yr. Within the past year, 21 of these men have been examined at the Los Alamos Scientific Laboratory, and three more will be studied in 1973. In addition to physical examinations and laboratory studies (complete blood count, blood chemistry profile and urinalysis), roentgenograms were taken of the chest, pelvis, knee and teeth. The chromosomes of lymphocytes cultured from the peripheral blood and cells exfoliated from the pulmonary tract were also studied. Urine specimens assayed for plutonium gave a calculated current body burden (excluding the lungs) ranging from 0.005 to 0.42 uCi, and low-energy radiation emitted by internally deposited transuranic elements in the chest disclosed lung burdens probably of less than approximately 0.01 uCi. To date, none of the medical findings in the group can be attributed definitely to internally deposited plutonium. The bronchial cells of several of the subjects showed moderate to marked metaplastic change, but the significance of these changes is not clear. Diseases and physical changes characteristic of a male population entering its sixth decade were observed. Because of the small body burdens on the order of the maximum permissible level in these men so heavily exposed to plutonium compounds, we conclude that the body has protective mechanisms which are effective in discriminating against these materials following some types of occupational exposures. This is presumably explained by the insolubility of many of its compounds. Plutonium is more toxic than radium if deposited in certain body tissues, especially bone; however, from the practical point of view, plutonium seems to be less hazardous to handle. (Auth)

<404>
Fowler, E.B., J.L. Warren, R.H. Pashman, and J.W. Healy, Los Alamos Scientific Laboratory, Los Alamos, NM. 1973, May

Transuranic Waste Research and Development Program. LA-5281-MS; 26 p.

The progress of the Transuranic Waste Research and Development Program at the Los Alamos Scientific Laboratory for the period November 1, 1972-March 1, 1973 is reviewed. The results of a survey of transuranic waste streams and waste management practices at six major AEC installations indicated the wide variety of wastes and waste handling practices in existence and the need for some uniformity in record keeping. Preliminary

results of experimental studies of corrosion sources and mechanisms using 17C 55-gallon drums suggest that unrelieved stress may be a major contributor to the corrosion of the drum. Combustion studies of typical waste types demonstrated the production of large quantities of smoke and gases but failed to produce flame at temperatures up to 450 degrees C. Leaching studies showed that plutonium is removed from the wastes by water at a rate that decreases after the first few hours of contact. Progress on the development of an assay system to detect radioactive contaminants in very low concentrations in waste is reported. (Auth)

<405>
Hackett, P.L., W.J. Clarke, V.G. Horstman, and L.K. Bustad, General Electric Company, Hanford Atomic Products Operation, Biology Laboratory, Richland, WA. 1961, January 10

Blood Constituents in Pitman-Moore, Palouse and Horsel Swine. HW-69500; Part of Hungate, F.P. and Swzeza, E.G. (Eds.), Hanford Biology Research Annual Report for 1960, (p. 188-186), 195 p.

A summary of data on blood constituents compiled from sampling normal swine that are being used as control animals in studies of the biological effects of various radionuclides, including I 131, Sr 90-y 90, Ba 226, and Pu 239, is given. The values for serum and cellular constituents are summarized in tabular form and are compared with reported values for man. The ratio of neutrophils to lymphocytes in Horsel swine was greater than unity compared with that in Pitman-Moore and Palouse swine. No other differences in blood constituents between the breeds were detected during the period of study. (ST)

<406>
Babb, A.L., University of Washington, Nuclear Reactor Laboratories, Seattle, WA. 1972, August 29

Plutonium Contamination Incident of June 13, 1972. DOCKET-50139-2; 38 p.

The second part of a description of the plutonium contamination incident of June 13, 1972 which occurred at the Nuclear Reactor Laboratories, University of Washington is reported. Included are: description of air sampling; area surveys and environmental samples; cleaning methods; Au 239 and U 233 target analyses; personnel dosimetry; and conclusions about the cause of the incident, personnel exposures, and factors affecting discovery suppression, and recovery operations. Reactor root, environmental, and personnel sampling data are given in appendices. (ST)

<407>

<407>
 Jackson, P.O., and B.O. Stuart, Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1969, June

The Determination of Trace Levels of Uranium, Thorium 230, Lead 210, and Polonium 210 in Soft Tissues. BNWL-105 (Part 2); Part of Annual Report for 1968, (p. 1-6), 234 p.

A method for the determination of trace concentrations of U, Th 230, Pb 210, and Po 210 in soft tissues of animals exposed to airborne uranium ore dust has been developed. The techniques have been applied to such tissue samples as lung, liver, spleen, kidney, and lymph node, as well as bioassay material such as urine. (Auth)

<408>
 Havens, R., and K.C. Dean, Salt Lake City Metallurgy Research Center, Bureau of Mines, Salt Lake City, UT. 1969, August

Chemical Stabilization of the Uranium Tailings at Tuba City, Arizona. BM-RI-7208; 12 p.

Acidic and basic uranium leach plant residues located on the Navajo Indian Reservation, Tuba City, Arizona, were successfully stabilized against wind erosion using a relatively low-cost chemical method. An elastomeric polymer chemical was applied to the dike areas and a calcium magnesium lignosulfonate to the beach areas of three tailings ponds. The water-soluble chemicals were applied with an automated sprinkling system. The stabilization cost was \$335 per acre for the 34.5-acre tract. (Auth)

<409>
 Ansbaugh, L.R., P.L. Phelps, G. Holladay, S.R. Bishop, J.C. Taylor, V.G. Fowler, K.O. Hamby, and W.E. Bell, Lawrence Radiation Laboratory, Biomedical Division, Livermore, CA. 1969, July 22

Distribution and Redistribution of Airborne Debris from the Schooner Event. UCRL-50718; Part of the Biomedical Division Preliminary Report for Project Schooner, (p. 6-28), 75 p.

Following the Schooner Event radioactivity concentrations in the air were monitored with air sampling equipment activated by a predetermined radiation level to study whether redistribution occurs under the influence of changing meteorological conditions and to what extent it occurs. Data from these studies will be used to evaluate the biological hazards of radioactive particulate to man from redistribution of nuclear debris following a cratering event. The results showed that significant redistribution of debris occurred on site and that high levels of activity occurred off-site. Analysis of radionuclides present in the air filter samples showed that the most predominant activities at fairly early times were due to the isotopes of

tungsten. Comparisons of data and air activity between stations indicated that the activity over extended time periods was due to resuspension from the fallout field. The air activity at close-in locations remained high for long periods of time after detonation. Secondary peaks of air activity were seen as late as two to four days postshot and amounted to as much as 30% of the initial activity. It was concluded that long term ecological studies on biological availability are feasible at these contaminated areas. (ST)

Table 3 lists air activities of radionuclides at a typical station from one to one and one-half hours postshot. Table 4 gives peak air activities at a station as compared to the maximum permissible air concentration for continuous exposure of occupational workers.

<410>
 Hammond, S.E., C.R. Lagerquist, and J.R. Mann, Dow Chemical Company, Rocky Flats Division, Golden, CO. 1968, January-February

Americium and Plutonium Urine Excretion Following Acute Inhalation Exposures to High-Fired Oxides. CONF-680503; Part of Proceedings of the American Industrial Hygiene Symposium held in Chase-Park Plaza, St. Louis, Missouri, May 13-17, 1968. Published in American Industrial Hygiene Association Journal, 29(1), 169-172

Twenty-five persons incurred measurable inhalation exposures during a plutonium fire in 1965. Exposures ranged up to 17 times the maximum permissible lung burden as estimated by whole body counting. Urine excretion of americium and plutonium was studied for six months following the accident. The ratio of plutonium to americium alpha activity in the urine averaged 1.5-1. The exposure material initially contained an alpha ratio of 11-1, plutonium to americium. There was no apparent change in this ratio with time during the period of study. Typical excretion curves for subjects treated with DTPA and for nontreated subjects are discussed. (Auth)

<411>
 Hayden, J.A., Dow Chemical Company, Rocky Flats Division, Golden, CO. 1973

Tracking Plutonium at Rocky Flats. CONF-730960; Part of Proceedings of the 19th Annual Analytical Chemistry Symposium held in Jackson Hole, Wyoming, September 3, 1973, (12 p.)

The fission track method was used to measure PuO₂ particles inside work areas, in effluent air and in biological tissue. Extremely small particles were found inside a work area, 70% of the particles were 0.07 m or less. Extrapolation indicates a count median diameter of 0.02 to 0.03 m. PuO₂ particles in stack effluents were measured over a 6 month period. The count median diameter (CMD) was consistently around 0.09 m. A number of particles (0.07 to 0.15 m) were located and measured in lymph node tissue. (Auth)

<412>

Cassarett, G.W., University of Rochester, School of Medicine and Dentistry, Department of Radiation Biology and Biophysics, Rochester, NY. 1973, June

Pathogenesis of Radionuclide Induced Tumors. CONF-720505; AEC Symposium Series No. 29; Part of Sanders, C.L., et al (Eds.), Proceedings of the 12th Annual Hanford Biology Symposium on Radionuclide Carcinogenesis held at Richland, Washington, May 10-12, 1972 (p. 1-14), 500 p.

The general aspects of the mechanisms of carcinogenesis, the contribution of radiation injury to these mechanisms, and the general principles of radiation carcinogenesis with respect to the question of threshold dose, dose-incidence relationships, influence of dose rate and radiation quality, and relevant dose are reviewed. These considerations are followed by a general discussion of the carcinogenic pathogenesis of various radioisotopes. The distribution and the degree of radiation effects, including neoplastic effects, in the body from internal radioactive isotopes are conditioned by: physical-chemical form; amount administered; route of administration; changing tissue distribution and rate of excretion; radioactive decay of the isotope and its daughters, type and energy of radiations, linear energy transfer, and relative biological effectiveness; and radiosensitivity and neoplastic susceptibility of the irradiated tissues. Pituitary, thyroid, bone, lung, and soft tissue tumor induction by various radionuclides are discussed. Specific attention is given to the mechanism of tumor induction in each of the tissues. (ST)

<413>

Clarke, R.H., Berkeley Nuclear Laboratories, Central Electricity Generating Board, Berkeley, Gloucestershire, England. 1972, October

PISP. A Comprehensive Computer Program for Generating Fission Product Inventories. Health Physics, 23, 565-572

The PISP program produces number densities and activities of fission products for any type of reactor fuel after any irradiation history, together with beta-heating within the fuel and multigroup gamma-spectra for shielding calculations. The program considers all the radioactive and stable nuclides between Zn 72 and Dy 161, their yields being tabulated for thermal and fast fission in U 235, Pu 239 and Pu 241 and for fast fission in U 238. The program uses several novel features in the evaluation of the fission product inventory which makes it extremely fast and simple to use. PISP is written in Fortran IV (H) and takes about 0.4 sec per case on the IBM 360/85 computer. The program is in use with the United Kingdom Atomic Energy Association and Design Companies in the United Kingdom as well as the Central Electricity Generating Board. (Auth)

<414>

Saenger, E.L., University of Cincinnati, Cincinnati, OH. 1971

Care of Patients Involved in Radiation Accidents, Recent Advances. CONF-700671; Part of Proceedings of the 11th Symposium of the German Medical Radiologists Protection Association held in Zurich, Switzerland, June 19-20, 1970, (25p.); Part of Braun, H., et al (Eds.), Radiation Accidents and their Treatment, Diagnosis, Pathology, Therapy, and Prophylaxis. Georg Thieme Verlag, Stuttgart, Germany, (p. 53-78), 133 p.; Strahlenschutz Forschung und Praxis, 11, 54-78

The recommendations set forth in the paper enable the physician, and to some degree the health physicist, to prepare and have ready an adequate medical program for the care of employees, visitors, and the general public who might be exposed to or injured by radiation in a given installation under any possible circumstance. The principles described are applicable to civilian and military situations both for high and low levels of radiation and for short and long term external and internal contamination. (ST)

<415>

Taylor, D.M., and C.J. Danpure, Institute of Cancer Research, Department of Biophysics, Sutton, Surrey, England. 1969

Lysosomal Uptake of Actinide Elements. Part of Proceedings of the 49th Meeting of the Biochemical Society held at Queen's University, Belfast, Ireland, September, 4-5, 1969, (p. 53)

Male Marshall-August hybrid rats were injected intravenously with 0.5-2 uCi of Pu 239, Am 241, or Ac 227 in the citrate or nitrate form and killed from one hr to 90 days later. Solutions were filtered before injection to remove polymeric material. At one hr after injection, most of the plutonium or americium in liver or testes was in the soluble fraction, but at longer time intervals most was in the lysosomes. Similar results were obtained in limited studies of actinium distribution in liver. The results showed that lysosomal uptake of plutonium, americium and actinium occurs in liver and/or testes within a relatively short time after injection of the metals in a soluble form. (ST)

<416>

<416>
 Holzer, A., Lawrence Radiation Laboratory, Livermore, CA. 1971, July

Plowshare and the Environment. Nuclear Technology, 11, 315-322

Some of the environmental aspects of using nuclearly stimulated natural gas in the production of electric power are analyzed and the consequences are compared with those resulting from a similar use of coal and oil. A valid basis of comparing the effects of SO₂ emitted by coal and oil fired power plants with the effect of tritium and Kr 85 emitted by a plant using gas derived from nuclear stimulation is developed. Results of gas analysis for radionuclides from the Plowshare Program's Gasbuggy and Bullfrog Projects are reviewed. Emissions from a hypothetical 1000 MW plant using coal, oil, or nuclearly stimulated gas are compared. Tritium and Kr 85 concentrations are computed, converted to dose, and compared with doses from natural and manmade radioactive sources. (ST)

<417>

Iskra, A.A., N.V. Kulikov, and V.G. Bakhurov, Academy of Sciences of the USSR, Institute of Ecology of Plants and Animals, Urals Branch, USSR. 1970, March-April

Role of Freshwater Vegetation in Processes of Migration and Distribution of Natural Radioactive Elements in the Reservoir. Ecology (USSR), 2, 157-162

The accumulation of uranium 238, radium 226, and thorium 232 by various species of freshwater plants and the distribution of these elements among the principal components of a noncirculating reservoir were studied under experimental conditions. The coefficients of accumulation and concentration fluctuated from tens to hundred thousands of units depending on the plant species and the physicochemical properties of the element. For each element several plant species were specific accumulators. In a model system of freshwater reservoirs consisting of water and plants, the migrational ability of the elements in decreasing order was uranium, radium and thorium. In a model system consisting of water, soil, and plants, uranium accumulated predominantly in the plants, thorium in detritus and soil, and radium was distributed evenly among the components. (ST)

Table 1 gives the accumulation coefficients of radioactive elements for 27 species of aquatic plants (dry wt). Table 2 gives the concentration coefficients of radioactive elements calculated on ashed residue.

<418>

Sanders, C.L., Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1967, July

Phagocytosis of Plutonium 239 PuO₂ Particles. BNWL-480; Part of Thompson, R.C. and Sweeney, E.G. (Eds.), Annual Report for 1966, (p. 103-105), 207 p.

Phagocytosis of carbon particles by peritoneal macrophages of the rat was more rapid than phagocytosis of Pu 239 PuO₂

particles. Phagocytosis of Pu 239 PuO₂ was maximal at 1 and 4 hr after administration, when determined by visual and autoradiographic counting, respectively. Larger particles were more rapidly phagocytized than were smaller particles. Smaller particles were more rapidly cleared from the peritoneal cavity than were the larger particles. DTPA inhibited phagocytosis when given simultaneously with particles. (Auth) (ST)

<419>

Schiager, K.J., University of Michigan, Ann Arbor, MI. 1965

Alpha-Active Fallout Particles - Physical Characteristics Related to Pulmonary Exposure. Ph.D. Thesis, University of Michigan, 132 p. (Dissertation Abstracts, 25(8), 7214-7215)

Samples of atmospheric dust were collected during the two and one-half year period following the Russian series of atmospheric weapons tests in September, 1961, to determine certain physical characteristics of the alpha-active fallout particles and to provide a basis for assessing their biological significance. The size of fallout particles ranged from one to four microns in diameter. Plutonium was found to be the only alpha-active element of biological importance. Its solubility was 9% after 300 days under conditions approximating the lung environment. Air concentration of plutonium averaged $2 \times 10^{(2-3)}$ pCi/m³ of air. From these determinations the following assessments were made: approximately equal quantities of fallout would deposit in the upper respiratory tract and deeper portions of the lungs; removal of fallout plutonium from the lungs by physical dissolution would be negligible; and the average quantity of plutonium retained in the lungs of exposed individuals was estimated to be approximately 2 to 6 pCi. This lung burden is greater by a factor of three to ten than that predicted by other investigators. Reasons for this higher estimate are discussed. (ST)

<420>

Schall, W.R., University of Washington, Seattle, WA. 1971

Gas Counting of Tritium. CONF-710809; Part of McGhissi, A.A. and Carter, H.W. (Eds.), Proceedings of a Symposium on Tritium held in Las Vegas, Nevada, August 30-September 2, 1971. Messenger Graphics, Publishers, Las Vegas, Nevada, (p. 113-126), 807 p.

The paper reviews information on techniques of tritium measurement by gas counting and indicates how some practical problems of calibration and standardization can be simplified by the use of appropriate procedures. Gas counting by ionization chambers and proportional and Geiger counters are discussed. Techniques of sample preparation, including enrichment techniques, are reviewed. Emphasis is given to methods for measuring low levels of radioactivity. (ST)

<421>
 Branca, G., P. Breuer, A.A. Cigna, and R. Amatis, Comitato Nazionale per l'Energia Nucleare, Laboratorio di Ingegneria Sanitaria, Rome, Italy; Commission of the European Communities, Luxembourg, Belgium. 1973, January 18

Applications of a Derived Formula for the Discharge of Radioactive Liquid Wastes. EUR-4897-e; 36 p.

A mathematical (compartment) model of a receiving environment is used to evaluate the behavior of radionuclides discharged into a watercourse used for drinking purposes; a watercourse used for irrigation; a lake used for fishing and the supply of drinking water; from different nuclear installations into the same hydrological system; and as gaseous wastes into the atmosphere. The radionuclides considered are tritium, plutonium 239, cerium 144, cesium 137, strontium 90, ruthenium 106, cobalt 60, and iodine 131. An application of the model is also proposed to non-radioactive pollution problems. (ST)

<422>
 Not given, University of Chicago, Lemont, IL. 1972, May

Environmental Levels of Radionuclarity at Atomic Energy Commission Installations. I. Argonne National Laboratory, January-June 1971. Radiation Data and Reports, 13(5), 311-318

Results of environmental sampling of air and water for radioactivity both on and off the Argonne National Laboratory site are given for January-June, 1971. Argonne's contribution to the environmental radioactivity was primarily limited to tritium, argon 41, cobalt 60, and barium 140 in the air on the site and to tritium in waters on the site and two streams offsite. The concentrations were low and did not constitute a health hazard. (ST)

<423>
 Not given, U.S. Environmental Protection Agency, Office of Radiation Programs, Washington, DC. 1972, July

Plutonium in Airborne Particulates, October-December 1971. Radiation Data and Reports, 13(7), 412

Results of analyses for plutonium in airborne particulates samples from 11 nationwide Radiation Alert Network stations (October-December 1971) are given in tabular form. (ST)

<424>
 Miyake, Y., Y. Sugimura, and T. Uchida, Meteorological Research Institute, Koenji-kita, Sugimami, Tokyo, Japan; Tokyo Kyoiku University, Ohtsuka, Bunkyo, Tokyo, Japan. 1972, March

A New Method of Spectrophotometric Determination of Uranium in Seawater and Uranium Content with Uranium 234/Uranium 238 Ratio in the Pacific Water. Records of Oceanographic Works in Japan, 11(2), 53-63

A new method of determination of uranium in seawater is described. The uranium is adsorbed on a chelating resin (Dowex A-1 or

Chelex 100) under the presence of CyDTA at pH 3, and then eluted with 5 M HCl. For the spectrophotometric determination of uranium, Arsenazo-III is used at pH 1. Uranium forms 1 : 1 complex with Arsenazo-III which has a maximum absorption at 650 m μ . The average recovery of uranium in seawater is 99.7 plus or minus 0.5%. By using the above method and alpha-ray spectrometry, the content of uranium of 3.31×10^{18} g/l and the activity ratio U 234/U 238 of 1.13 were obtained on the average in seawater in the western North Pacific off Japan and the Japan Sea. (Auth)

<425>
 Burson, Z.G., EG&G, Inc., Las Vegas, NV. 1974, January

Environmental and Fallout Gamma Radiation Protection Factors Provided by Civilian Vehicles. Health Physics, 26, 41-44

Environmental and fallout gamma radiation protection factors (PF's) were estimated for a variety of civilian transportation vehicles using measurements of the natural terrestrial radiation as a source. The PF values are below 2 in light vehicles, truck beds, or trailers; from 2.5 to 3 in the cabs of heavy trucks and in a railway guard car; and from 3.0 to 3.5 in the engineer's seat of heavy locomotives. This information can be useful in planning the possible movement of personnel from or through areas contaminated either by a wartime incident or a peacetime accident. The information may also be useful for studying the reduction of exposure to the natural terrestrial radiation environment provided by vehicles. (Auth)

Fallout protection factor (PF) is defined as the ratio of the exposure rate 3 ft above an infinite smooth plane of 1 hr fission products to the exposure rate at the point in question.

<426>
 Burton, I.K., and J.S. Cole, Central Electricity Generating Board, Berkeley Nuclear Laboratories, Berkeley, Gloucestershire, England. 1967

Environmental radioactivity and Body Burden. CCNF-555; Part of Fish, B.R. (Ed.), Proceedings of an International Symposium on Surface Contamination held in Gatlinburg, Tennessee, June, 1964. Pergamon Press, Oxford, England, (p. 309-316), 423 p.

At Berkeley Nuclear Laboratories an experimental program is being set up to investigate the development of instruments to provide a rapid measure of the contamination due to specific radionuclides and the internal dose to the individual from given contamination levels. The program should result in data on air and surface contamination values from conventional techniques, air activity from personal air samplers, some urine and fecal activities, and body burdens that will be used to obtain information on the relevance of the present working limits of contamination to the hazard to the individual. An air monitor instrument (impactor) is discussed in terms of technical assessment, particle size selection, performance, and counting efficiency. (ST)

<427>

<427>
McClelland, J. (Comp.), Los Alamos Scientific Laboratory, Los Alamos, NM. 1955, August

The Determination of Tritium in Urine and Water. LA-1858; Part of Analytical Procedures of the Industrial Hygiene Group, Chapter 26, [p. 140-154], 173 p.

The sample is prepared for counting in a vacuum line. Urine or water is dropped onto metallic calcium, and hydrogen and tritium are evolved. The gas flowing into the evacuated system is passed through liquid nitrogen cooled traps to remove unreacted water and condensable gases. The gas is allowed to flow into a tube similar to a Geiger-Muller tube until a pressure of 15 cm of mercury is attained. Ethylene and argon are added to give a total pressure of 22 cm of mercury. The beta activity is counted with a scaling circuit having an input sensitivity of 1/4 volt. A tube similarly filled with inert hydrogen is counted simultaneously to determine the environmental background. The ground count is subtracted from the sample count to obtain the true sample count. The method has an efficiency of approximately 40% and a precision of plus or minus 5% between the range of 1 to 250 uCi/liter of tritium. Samples with higher concentrations may be determined with appropriate dilutions. The tolerance for tritium in urine used at LASL is 250 uCi/liter. The biological half-life of tritium is about 10 days. This may be decreased by increasing the fluid intake of the individual. (Auth)

<428>
Moreira, L., and C. Lalou, University Federal, Salvador, Brazil; CNRS, Centre des Faibles Radioactivites, Gif-sur-Yvette, France. 1972, March

Experimental Study of the Ratio Uranium 234/Uranium 238 in Natural Waters Having Passed through Different Types of Rocks. *Anais da Academia Brasileira de Ciencias* (Brazil), 54(1), 13-18 (French, English Summary)

Alpha-ray spectrometry measurements of the ratio U 234/U 238 and of the U 238 content were made in water samples prepared by percolating through various kinds of rocks. Uranium content in the same rocks was measured by gamma-ray spectrometry. The uranium 238 content found in water samples seems to be a function of the soluble uranium content in the rock and for this reason, of its state of weathering. The U 234/U 238 ratio in the water samples after percolation is in general greater than one, which proves the greater solubility of U 238 in nature. We found a greater radioactive disequilibrium in water samples after percolating igneous rocks than after percolating sedimentary rocks. (Auth)

<429>
McClelland, J. (Comp.), Los Alamos Scientific Laboratory, Los Alamos, NM. 1955, August

Analytical Procedures of the Industrial Hygiene Group. LA-1858; 173 p.

Analytical procedures used by the Industrial Hygiene Group of the Los Alamos Scientific Laboratory have been compiled. The report includes a wide variety of analyses, principally on urine and air samples, but also on water, blood, oil, and other materials. Along with each procedure for the analysis of an air sample, the currently accepted maximum allowable concentration is given when available. The following determinations are given by chapter: acetone in air; americium in urine; anthracene in air; arsenic and antimony in air and water; barium in air; beryllium in air or swipe samples; boric acid and boric acid salts in air; cadmium in air, water, and general; chlorinated hydrocarbons; cyanide in air; fluorides in air; iron in air; lead in air, urine, and general; lithium in air; mercury in air and urine; methanol in air; naphthalene in air; nitrogen oxides; cutting oil mists in air; phosphorus in air; plutonium in urine; polonium in urine; sodium hydroxide in air; sulfate ratio in urine; trinitrotoluene in air; tritium in urine and water; uranium in urine and air; and zinc in air. Four of the chapters have been selected for separate abstracts for the data base. (ST)

<430>
Zirkle, R.E. (Ed.), University of Chicago, Institute of Radiobiology and Biophysics, Chicago, IL. 1951

Effects of External Beta Radiation. National Nuclear Energy Series, Division 4, Plutonium Project Record, Volume 22E. McGraw-Hill Book Company, Inc., New York, New York, First Edition, 242 p.

This volume is one of a series which has been prepared as a record of the research work done under the Manhattan Project and the Atomic Energy Commission. The work reported was part of an intensive radiobiological program carried out during World War II at Clinton Laboratories, Oak Ridge, Tennessee. The main topics covered are: techniques of external radiation with beta rays, gross effects of beta radiation on restricted surface of rabbits and total surface of mice, rats and rabbits; comparative lethal effects of beta radiation and rate of recovery from whole body beta radiation; additivity of lethal effects of external beta and gamma irradiation; effects of beta radiation on metabolism in rats and on peripheral blood of rabbits; histopathological effects of whole body beta irradiation in mice; reactions of human skin to single doses of beta rays; delayed effects of single exposures to external beta rays; effects of periodic whole body beta irradiation; and occurrence of cutaneous and subcutaneous tumors and tissue abnormalities in rats following exposure to beta radiation from P 32 sources. Information on the tumor inducing action of superficial radiation is reviewed. (FMM)

<431>
Not given, Argonne National Laboratory, Argonne, IL. 1972

Program and Abstracts: Eighteenth Annual Conference on Bioassay, Environmental, and Analytical Chemistry, October 10-11, 1972. ANL-8014; 39 p.

Abstracts are given for the papers presented at the conference. Some of the individual papers will be included later in the Data Base. The main topics covered at the conference are: impact statements for nuclear facilities; Pu fallout; distribution of tritium in environmental samples; radionuclides in benthic materials and radioactivity levels in wild deer; excretion of Po 210 and Pu following inhalation; and U, Pu, and Ra in man and human dose from tritiated luminous watches. Some sessions dealt mainly with analytical methods and among those mentioned are isotope dilution analysis, electrostatic separation, liquid scintillation counting, autoradiography, methods for evaluating Pu 239-Am 241 in soil samples, determination of I 129 in milk and water, and scintillation counting for determination of Am 241 in liver and skull bones of baboons. (PMM)

<432>
Pink, R.M. (Ed.), University of California, School of Medicine, Los Angeles, CA. 1950

Biological Studies with Polonium, Radium and Plutonium. National Nuclear Energy Series, Manhattan Project, Division 8. McGraw-Hill Book Company, Inc., New York, New York, 411 p.

This volume is one of a series which has been prepared as a record of the research work done under the Manhattan Project and the Atomic Energy Commission. It reports the experimental studies carried out by the Biological Chemistry Section of the Division of Radioactivity in the Manhattan Department of the University of Rochester. The general problem undertaken was a comparison of the biological effects of three elements, polonium, plutonium, and radium, which had the common property of radioactive decay with emission of alpha particles. The report on the work carried out can be divided rather naturally into three main parts. Part 1 deals with the distribution and excretion of polonium in man and animals; part 2 discusses the distribution and excretion of radium; and Part 3 deals with the comparative toxicities of polonium, plutonium, and radium in rats. The Manhattan Project reports on these subjects have been condensed and correlated, and, wherever feasible, pertinent data obtained subsequent to the writing of the original reports have been included. The three elements investigated proved to be very interesting ones for comparison studies in that they differ widely in their half-lives, distribution in the body, and rate of excretion. These differences appear to be reflected in their relative toxicities. (PMM)

<433>
Pinkel, M.P., Argonne National Laboratory, Biology Division, Chicago, IL. 1947

The Transmission of Radiostrontium and Plutonium from Mother to Offspring in Laboratory Animals. Physiological Zoology, 20, 405-421

Mice which were injected with 5.0 or 2.5 uci/ga of Sr 89 before conception produced a smaller number of litters than did the controls. Treatment during pregnancy with 10 or 5 uci/ga of Sr 89 or 0.06, 0.03, or 0.016 uci/ga of plutonium increased the percentage of totally stillborn deliveries, as well as the number of stillborn young in viable litters. The mice which were treated during pregnancy with either Sr 89 or Pu lived longer, on the average, than did similarly treated nonpregnant female mice. In addition, radiation damage was less severe among the Pu-treated mothers than it was among nonmothers. The amount of Sr 89 retained by the mothers immediately after parturition was the same as that retained by virgin adult females at comparable time intervals after injection. A portion of the material that would ordinarily have been excreted was lost through the placenta. The percentage of the maternal dose of either Sr 89 or Pu that was found in the young at birth varied with the injection-delivery interval. The Sr 89 activity per gram of body weight of the newborn mouse exceeded that of the mother at the time of delivery if parturition occurred within the first 4 days after administration. At the levels studied, the concentration of Pu in the young never exceeded 8 percent of the concentration in the mother. Treatment of the young animals was continued during the period of suckling by the transfer of both Pu and Sr 89 through the breast milk. The initial excretion of Sr 89 by very young mice is considerably lower than is the initial excretion by adults. The animals which were treated in utero and before weaning with Sr 89 have shown retardation of growth, malformation of the long bones, anemia, and osteogenic sarcoma. The animals of the Pu series have developed no pathologic conditions to date. There is no indication that fetal and very young tissues are either more or less sensitive to Sr 89 and to Pu than are adult tissues. (Auth)

<434>
Christensen, W.R., University of Utah, College of Medicine, Radiobiology Laboratory, Salt Lake City, UT. 1957, March 31

Radiology Report. AECU-3522; Part of Annual Progress Report, (p. 55-56), 177 p.

Routine, periodic studies of normal and poisoned animals have been continued in an effort to detect minimal changes of heavy metal injury at the earliest possible date and to ascertain the general skeletal effects induced by the materials under test. (LCB)

<435>

435>
 Cochran, T.H., University of Utah, College of Medicine, Radiobiology Laboratory, Salt Lake City, UT. 1977, March 31

Histopathological Findings. AECU-3522; Part of Annual Progress Report, (p. 73-85), 177 p.

The soft tissue histopathology of 51 toxicity beagle dogs are described. The acute toxicity changes are most evident in the kidney, liver, and intestine in plutonium injected animals. The long term plutonium animals show regenerative nodules of the liver. Partial destruction or atrophy of lymphoid tissue is seen as early as 28 hours after injection of plutonium and this moderate atrophy persists to a relative degree throughout the duration of the studies. Reticuloendothelial response, namely extramedullary hematopoiesis and hemosiderin deposition, is most evident in long term 4 level plutonium and 4 level thorium animals. (Auth) (CW)

Table 1 gives the relative sites of blood formation in toxicity dogs with the categories in the table being time post injection in days, vertebral marrow, femoral marrow, hematopoiesis spleen, hematopoiesis liver and hemosiderin spleen.

<436>

Cohen, W., and M.Z. Brenn, New York University Medical Center, Institute of Environmental Medicine, New York, NY. 1973

Metabolic Characteristics of Americium 241 in the Adult Baboon. Radiation Research, 55(1), 129-143

The metabolism of Am 241 injected intravenously as the citrate was studied in four adult female baboons for periods ranging up to 6 months postinjection. In vivo retention measurements were made with beta-scintillation detectors positioned over the whole body and over various specific organ sites. In addition, Am 241 concentrations were measured in urine, feces, blood, and biopsy samples of liver and the frontal bone of the calvarium to determine the rates and routes of deposition and excretion. By these techniques and from data obtained at sacrifices at 1 and 3 months postinjection, it was determined that the major early sites of deposition of Am 241 in the baboon are in bone (approximately or equal to 45%) and liver (approximately or equal to 25%). Furthermore, the elimination rate of Am 241 from bone was considerably slower ($T_{1/2}$ eff. equals several years) than that from the liver ($T_{1/2}$ eff. from 1.5-6 months). The activity present in the liver appears to be almost totally excreted via the fecal route. (Auth)

<437>

437>
 Dahlman, O., The Research Institute of National Defense, Stockholm, Sweden. 1973, June

Seismic Source and Transmission Functions from Underground Nuclear Explosions with Known Yields at Nevada Test Site. FOA-4-4345-A-1; 38 p.

A model is presented for the simultaneous determination of the relative variation in transmission properties to different stations and of the relative differences between the seismic sources for closely spaced underground nuclear explosions recorded by a fixed seismological station network. The model is applied to shortperiod data reported from 24 globally distributed stations from 12 underground nuclear explosions with known yields at Nevada Test Site. The obtained transmission functions vary within a factor of 10 between the different stations and show a weak decrease with epicenter-distance and little correlation with Gutenberg amplitude-distance curve. The relative source functions for 10 explosions in tuff and rhyolite, with yields in the range 16-1200 kt are with good correlation proportional to explosion yield to 0.9. Two theoretical models, one by Haskell and one by Mueller-Murphy, are compared with each other and they agree well for frequencies around 1 Hz and for yields in the range 3-300 kt. The Haskell model for tuff is modified to be more compatible with the models for salt, granite and alluvium. The Haskell model predicts stronger amplitude variation with frequency and yield than the Mueller-Murphy model. The observed relative source functions are compared with the relative amplitudes obtained from the two source models. The agreement is fairly good when some modifications of the parameters in the Haskell models are made. (Auth)

<438>

438>
 Davies, C.W., London School of Hygiene and Tropical Medicine, London, England. 1964, July 25

Inhaled Radioactive Particles and Gases. Part of Proceedings of the 3rd Hanford Biology Symposium held in Richland, Washington, May 4-6, 1964; Nature, 203(4983), 352-355

The risks of inhaled radioactive particles and gases from nuclear auxiliary power units, and nuclear-powered rocket engines were discussed at the third Hanford Biology Symposium. Handling aerosols of mixed fission products and generation of laboratory clouds of aerosol sprays were also discussed. The problems relating from exposure to various particle sizes were subjects in the symposium. Phases of lung clearance were identified and lung studies involving dogs, rats, rabbits and man were included. (HP)

<439>
 Dilley, J.V., Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA 99352. 1972

The Origin of Urinary Taurine Excretion During Chronic Radiation Injury. Radiation Research, 50, 191-196

Increased urinary taurine levels were observed in dogs that had a chronic lymphopenia for 1 1/2 to 3 years after inhaling Pu 239 PuO₂ aerosols. A correlation between the onset of lymphopenia and increased taurine excretion was also noted in dogs within three months after inhaling Pu 239 PuO₂. Rats undergoing extracorporeal irradiation for the treatment of chronic lymphocytic leukemia demonstrated an increased urinary taurine level which correlated well with the reduction in the number of circulating lymphocytes. These data lend support to the hypothesis that the increased taurine excretion following chronic partial body irradiation originates from the destruction of circulating lymphocytes. (Ruth)

<440>
 Dilley, J.V., Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1966, January

Taurine Excretion Following Plutonium Oxide Inhalation. BNWL-280; Part of Thompson, R.C. and Svezas, E.G. (Eds.), Annual Report for 1965, (p. 67-89), 139 p.

A decrease in circulating lymphocytes is usually correlated with an increased excretion of taurine in the urine of beagle dogs exposed to aerosols of Pu 239 PuO₂. Twenty-four hour urine samples were collected from a control dog and from each of five lymphopenic dogs that had inhaled Pu 239 PuO₂ three years previously. Taurine was separated on a resin column, purified by paper chromatography and spectrophotometrically determined. The results show that in four of the five exposed beagles, taurine excretion was higher than in the control dog. It is suggested that the increased level of urinary taurine originates from, and reflects the destruction of, circulating lymphocytes. (Ruth) (PMM)

<441>
 Dougherty, J.M., and R. Seymour, University of Utah, College of Medicine, Radiobiology Laboratory, Salt Lake City, UT. 1957, March 31

Hematology Report. ABCD-3522; Part of Annual Progress Report, (p. 57-72), 177 p.

Work in progress since the last annual report is discussed. In the routine hematology program on the toxicity dogs, three control examinations are made during the month prior to injection. The hematological values determined are hematocrit (VPPC), hemoglobin, PBC, sedimentation rate, reticulocyte count, WBC, direct eosinophil count, differential count of 400 cells and direct platelet count. To give trends and permit comparison of the effects of different isotopes on the hematopoietic system, tables are presented giving mean values of selected hematological determinations at yearly intervals for as many groups of dogs as have been on experiment for four years for each isotope.

The isotopes used were Pu 239, Ra 226, Ra 228, Th 228 and Sr 90. Terminal hematology values for 7 of 9 dogs that died or have been sacrificed since the September 1956 report are tabulated and a summary of the findings is presented. Bone marrow studies on a series of 5-level test-run Pu dogs sacrificed at intervals of 1 day to 2 years are tabulated and summaries of the findings are given. Additional toxicity dogs have been added to the blood volume studies and repeat determinations have been made on toxicity dogs which have shown a change in venous hematocrit since their last determination. A discussion is presented of the studies on concentration of steroids in blood and urine, and catabolism of 4C 14 Cottisol by osteosarcoma cells. The group working in the Cancer Research Laboratory, Department of Anatomy has shown that 1) malignant cells of certain types have a steroid conversion metabolism which differs from their normal cellular counterparts and, 2) certain of these conversion products appear in blood and urine and may be of diagnostic and prognostic significance. (LCW)

A table is included on hematological determinations of 1 to 5 level Pu 239 injected dogs. Tables are presented on pre-sacrifice blood findings and bone marrow myeloid-erythroid ratios on 5-level test-run Pu dogs. A table on the blood volume studies of toxicity dogs is also included.

<442>
 Dougherty, J.M., J.Z. Bowers, R.C. Bay, and P. Keyanonda, University of Utah, College of Medicine, Radiobiology Laboratory, Salt Lake City, UT. 1956, August

Comparison of Hematologic Effects of Internally Deposited Radium and Plutonium in Dogs. Part of Proceedings of the 30th Annual Meeting of the Radiological Society of North America held in Los Angeles, California, December 5-10, 1956. Published in Radiology, 65(2), 253-259.

Hematologic alterations observed during the first year following intravenous injection of Pu and Ra into beagle dogs are reported. About 90% of the Pu 239 is retained in the body and most of this is fixed on periosteal and endosteal surfaces of the bone. Approximately 25% of the Ra 226 is retained and is deposited diffusely in the bone. Hematologic responses were similar in degree when comparable amounts of the radionuclides are retained in the body. Only in erythrocyte response could any greater effect be noted for Pu. The reason for more consistent depression of red cell values was not apparent at the present stage of the study. Blood lymphocytes decreased significantly in number during the first year. (BBM)

<443>

<443>
 Dougherty, J.H., and L.S. Rosenthal, University of Utah, College of Medicine, Division of Radiobiology, Department of Anatomy, Salt Lake City, UT. 1971

Long-Term Hematological Effects of Internal Emitters in Beagles. *Radiation Research*, 68, 319-331

The hematological effects of five internal emitters namely, Ra 226, Pu 239, Ra 228, Th 228 and Sr 90 injected into adult beagles have been analyzed for 8 years postinjection. Five to seven dose levels were utilized per radionuclide ranging from near permissible levels to levels causing bone tumors. The main hematological alterations were depression of granular leukocytes and, to a lesser extent, erythrocytes. The depressions of leukocytes were dose dependent. Some recovery was noted at higher levels for polymorphonuclear leukocytes but not for lymphocytes. Transient depressions of blood cells were seen at lower dose levels. For any type of cell, minimal values were similar for all radionuclides and at comparable dose levels. Relative toxicities of the radionuclides to the hematopoietic system were related to deposition patterns and type of particle emission. (Auth)

<444>

Durakovic, A.B., J.G. Hollins, and M.C. Storr, National Research Council of Canada, Division of Biological Sciences, Ottawa, Ontario, Canada. 1973, May

The Influence of Age and Sex on the Metabolism of Americium by Rats. *Health Physics*, 24, 541-546

The retention of Am 241 by the whole body and tissues was studied in male and female rats of four ages after intravenous injection of americium in the form of citrate. Significant variations of the metabolism of americium with age and sex were demonstrated in kidney, liver, and bone. The concentration of americium by kidney and liver was positively correlated with age, while the concentration by bone was negatively correlated with age. The concentration of americium by kidney and bone was greater in male than in female rats, but the concentration by liver was greater in the female rats. The radiotoxicological implications of these results are discussed. (Auth)

<445>

Belyaev, Yu.L., Not given. 1969

Americium 241 Distribution in Rats and the Effect of Complexing Substances on Its Elimination. AEC-tr-7195; Part of Moskalev, Yu.I. (Ed.), *Radioactive Isotopes and the Body*, (p. 168-174), 458 p.

The distribution of americium in the body of rats after 1, 3, 14, 30, 90 and 180 days following intraperitoneal injection of americium chloride (1.2 uCi/rat) was studied. About 55% of the isotope is retained in the liver and 20-25% in the skeleton. While americium is gradually eliminated from the liver (1% of administered quantity remains after 6 months), its content in the skeleton

remains constant over a half year. Americium disappears fairly rapidly from the blood: 50% of the administered dose is noted in the blood after 3 minutes and only 4% after 2 hours. DTPA and a mixture of α -aminopolycarboxylic acids have a strong effect on the elimination of americium. Tetracycline is least effective, lowering the americium content preferentially in soft tissues. (Auth)

Table 1 shows Am 241 content in organs and excreta of rats in % of administered dose at different periods after IP administration of Am 241 AmCl_3 .

<446>

Garner, R.J., U.S. Environmental Protection Agency, Radiation Office, Rockville, MD. 1972

Transfer of Radioactive Materials from the Terrestrial Environment to Animals and Man. The Chemical Rubber Company, CRC Press, Cleveland, Ohio, 57 p.

Nuclides which present a problem in the foreseeable future in transfer from the terrestrial environment to man and animals are tritium, Kr 85, I 129, I 131 and Pu 239. The data for many long-lived nuclides are inadequate to permit a valid assessment of the consequences of build-up in the environment and hence inadequate to permit little more than speculation on the significance of the impact of man's current activities upon future generations. The data necessary to make reasonable predictions of the impact of the short-lived nuclides that would predominate under circumstances of peaceful uses of atomic energy or a nuclear accident and the subsequent behavior, possibly over several decades, of many of the associated long lived nuclides are available. (NP)

Part of book on plutonium 239 abstracted separately in this data base.

<447>

Garner, R.J., U.S. Environmental Protection Agency, Radiation Office, Rockville, MD. 1972

Plutonium 239. Part of Transfer of Radioactive Materials from the Terrestrial Environment to Animals and Man. The Chemical Rubber Company, CRC Press, Cleveland, Ohio, (p. 41), 57 p.

Resuspension may become the limiting hazard to man and animals from deposited Pu 239. The criterion of hazard will be the degree of suspension of dust in the respirable size range. Although in experimental studies conducted at the Nevada Test Site little or no resuspension of Pu 239 occurred except from heavy gusts of wind or mechanical disturbance, it must be borne in mind that deposited material may become weathered or suffer disintegration to a respirable size during the process of resuspension. No studies are available to indicate if weathering increases the biological activity of Pu 239.

Whole book is abstracted separately in this data base.

<448>
 Goldthorpe, H.C., S. Bennett, and R.A. Olsen,
 University of Utah, College of Medicine,
 Radiobiology Laboratory, Salt Lake City, UT.
 1957, March 31

Biochemical Report. AECU-3522; Part of Annual
 Progress Report, (p. 115-131), 177 p.

The report is divided into four parts. The first part presents the basic clinical chemistry following radioisotope injection. The basic clinical chemistry work of this group is reported in the same manner as in previous reports, that is at thirty and sixty days, six months and at yearly intervals postinjection. Plutonium shows more blood chemistry changes than radium, radiothorium or mesothorium but the average days of life after injection with plutonium before having to be sacrificed are longer than with any of the other isotopes being studied. As the number of dogs involved in each isotope series increases the striking changes seen in the values of the various serum constituents are less pronounced. There are still individual dogs showing striking changes but they become modified in the average values obtained with comparably treated dogs. Changes in the blood chemistry values from normal do not necessarily mean that the isotope is more toxic than another one showing smaller changes in values. The next part discusses the effects of aging on the glycoprotein and seromucoid levels in the serum. A graph is presented showing the results of the study. In part three the effects of injected radioisotopes on the blood serum glycoprotein and seromucoids are discussed. Data is tabulated for Pu, Ra, Mth, RnTh and Sr, giving the glycoprotein and seromucoid values in mg/100 ml serum. The final part in the report discusses glycoprotein and seromucoid blood serum levels of sacrificed dogs with data tabulated for individual dogs. (LCW)

Tables are included which give the serum chemistry values and the glycoprotein and seromucoid values in mg/100 ml serum for dogs injected with Pu 239, Ra 226, Ra 228, Th 228 and Sr 90. Another table gives the glycoprotein and seromucoids values in mg/100 ml serum for sacrificed dogs.

<449>
 Hamilton, E.I., Radiological Protection Service,
 Sutton, Surrey, England, 1972, February

The Concentration of Uranium in Man and His
 Diet. Health Physics, 22, 149-153

From measurements of the concentration of uranium in normal human tissues, it is estimated that a 70-kg man (ICRP Standard Man) contains a minimum of approximately 100 ug U and a maximum of approximately 125 ug U. The concentration of uranium in items of food and prepared diet from the United Kingdom suggests a daily intake of approximately 1 ug U. (Auth)

Table 1 shows the concentration of uranium in human organs and tissues. Tables 2a and 3 show the concentration of uranium in various items of diet.

<450>
 Hamilton, E.I., Radiological Protection Service,
 Sutton, Surrey, England, 1970, October

The Concentration of Uranium in Air from
 Contrasted Natural Environments. Health
 Physics, 19, 511-520

The concentration of uranium in the air was determined by the fission track method, using polycarbonate detectors, from two contrasted natural environments, namely, the Radiological Protection Service site at Sutton, U.K., and during an ocean traverse from Belgium to Antarctica. A modal concentration of 20×10^{12} g U/m³ air and 45 ug of dust/m³ air was obtained for the Sutton site which is equivalent to a modal concentration of 0.4 ppm U in the air particulate matter. A mean concentration of 4.1×10^{12} ug U/m³ air was obtained for Atlantic ocean air sampled in the Northern Hemisphere; in the Southern Hemisphere, no uranium was detected in many of the samples, but a mean concentration of 3×10^{12} g U/m³ air was obtained for air sampled on the land mass of Antarctica. Various sources are considered to account for the presence of uranium in the air. A correlation between the periodicity of fission products in the air and the concentration of uranium is noted. It is concluded that uranium present in the air at a particular site consists of local debris, together with distant debris transported as a result of world wide meteorological conditions. (Auth)

Figure 3 shows the variations in the concentration of uranium in a soil profile at Sutton, United Kingdom.

<451>
 Harley, J.H. (Ed.), Health and Safety
 Laboratory, New York, NY, 1972

HASL Procedures Manual. HASL-300, (S-1): 103 p.

The first section of the procedures Manual discusses radioactivity fundamentals, counting (detectors) and statistics. The next section is devoted to sampling principles and methods. The properties of aerosols are described, as well as instrumentation for accurate measurement of sample volume, air movers (positive displacement pumps and centrifugal pumps), application of air sampling in the evaluation and control of the occupational environment, and details of soil sampling (abstracted separately for the data base and includes some measurements for Pu 239 at various sites). Procedures are outlined for the radiochemical determination of several radionuclides including Cs 134, Cs 137, Po 210, Po 214, tritium, P 32 and Sr 90. (PMN)

<452>

<452>
 Hardy, E.P., Jr., Health and Safety Laboratory, Environmental Studies Division, New York, NY. 1973, January 1

Health and Safety Laboratory, Fallout Program Quarterly Summary Report (September 1, 1972 through December 1, 1972). HASL-268; 172 p.

Current data is presented from the HASL Fallout Program, the National Radiation Laboratory in New Zealand, and the EURATOM Joint Nuclear Research Center at Ispra, Italy. The initial section consists of interpretive reports on strontium 90 fallout over the Atlantic, fallout tritium and dose commitment, and quality control analyses of surface air, fallout, diet, and bone analyses during 1971. Subsequent sections include tabulations of radionuclide levels in fallout, surface air, stratospheric air, milk, and tap water. A bibliography of recent publications related to radionuclide studies, is also presented. (Auth)

Tables of Pu 238 and Pu 239 concentrations in surface air during 1965-1972 for several countries are given in the appendix.

<453>
 Harley, J.W. (Ed.), Health and Safety Laboratory, New York, NY. 1972

Soil Sampling. HASL-300(S-1); Part of HASL Procedures Manual, (p. 43-53), 103 p.

The sampling of soil is a useful approach to determining the accumulated amounts of airborne long-lived radioactive contaminants and stable contaminants that deposit on the ground. Soil sampling is of little value in attempting to estimate small increments over a period of a few years or less and is not a good routine method of environmental monitoring except in pre-operational surveys. Collections of deposition or of airborne material are much more specific and give much more information with respect to the time when contamination occurred. Soil samples should only be used after a plant is in operation when the proper measurements have not been made beforehand and it is necessary to salvage some information after a contamination has occurred. The various purposes for which soil sampling has been adopted are described. They include deposit inventories such as the estimation of total amount of Pu released from the Rocky Flats Plant, deposition increment, agricultural availability, resuspension availability, and distribution of contaminant. The mechanical procedures recommended for sampling and for preparation of the sample are given. The procedures described include the core method, template method and depth profile. The reproducibility of sampling is discussed. (FMS)

Table 1 shows the comparison of estimates of radionuclides (Sr 90, Cs 137 and Pu 239) at nearby sites.

<454>
 Hempelmann, L.H., C.R. Richmond, and G.L. Foelz, University of Rochester, School of Medicine and Dentistry, Department of Radiology, Rochester, NY; Los Alamos Scientific Laboratory, Los Alamos, NM. 1973, January

A Twenty-Seven Year Study of Selected Los Alamos Plutonium Workers. LA-5148-MS; 31 p.

Twenty-five male subjects who worked with plutonium during World War II under extraordinarily crude working conditions have been followed medically for a period of 27 years. Within the past year, 21 of these men have been examined at the Los Alamos Scientific Laboratory, and 3 more will be studied in 1973. In addition to physical examinations and laboratory studies (complete blood count, blood chemistry profile, and urinalysis), roentgenograms were taken of the chest, pelvis, knee, and teeth. The chromosomes of lymphocytes cultured from the peripheral blood and cells exfoliated from the pulmonary tract were also studied. Urine specimens assayed for plutonium gave a calculated current body burden (excluding the lungs) ranging from 0.005 to 0.42 uCi, and low-energy radiation emitted by internally deposited transuranic elements in the chest disclosed lung burdens probably of less than approximately 0.01 uCi. To date, none of the medical findings in the group can be attributed definitely to internally deposited plutonium. The bronchial cells of several of the subjects showed moderate to marked metaplastic change, but the significance of these changes is not clear. Diseases and physical changes characteristic of a male population entering its sixth decade were observed. Because of the small body burdens on the order of the maximum permissible level in these men as heavily exposed to plutonium compounds, it is concluded that the body has protective mechanisms which are effective in discriminating against these materials following some types of occupational exposures. This is presumably explained by the insolubility of many of its compounds. Plutonium is more toxic than radium if deposited in certain body tissues, especially bone; however, from the practical point of view, plutonium seems to be less hazardous to handle. (Auth)

Appendix B gives a urine assay method and equations for estimating body burden. Table 4 shows Pu body burden estimates for man following exposure. Table 5 shows accumulated average organ doses for persons exposed to Pu by inhalation.

<455>
 Hillyer, R.F., and G.E. Dagle, Dow Chemical Company, Rocky Flats Division, Golden, CO. 1973, June 15

Electron Diffraction Study of Plutonium Oxide Particulates in Dog Lymph Tissue. RPP-2054; 7 p.

Folpital lymph-node sections from beagle dogs were examined with the electron microscope in order to define localized particulates. By means of autoradiography, particulates in the lymph tissue had been determined previously to be alpha emitters (radioactive). However, with electron diffraction, the particulates have been identified as plutonium oxide (PuO₂). (Auth)

<456>
Hodge, V.P., T.R. Polson, and D.R. Young,
Scripps Institution of Oceanography, La Jolla,
CA. 1973

Retention of Fallout Constituents in Upper Layers of the Pacific Ocean as Estimated from Studies of a Tuna Population. COMP-720708-10; IAEA/SME-158/15; STY/PUB/313; Part of Proceedings of a Symposium on the Interaction of Radioactive Contaminants with the Constituents of the Marine Environment held in Seattle, Washington, July 10-14, 1972, (p. 263-276), 786 p.

Repeated measurements of cobalt 60, zinc 65, manganese 54, cesium 137, silver 110s, silver 108s, and plutonium 239 in several organs of albacore tuna suggest that the upper layers of the north Pacific Ocean can retain large fractions of several species of trace elements for periods of a decade or more. For example, cesium 137 concentrations in the liver and muscle tissues of North Pacific albacore caught from 1965-1971 decreased to half in about 10 years. In comparison, the reported rate of input from fallout during this period decreased more rapidly, closer to half in one year. This suggests a strong retention of cesium 137 in the upper water masses which are accessible to the fish. It is of interest to note that long environmental persistences in the upper oceanic layers are also indicated for some other nuclides that are much more highly accumulated by organisms than is cesium. For example, cobalt 60 and silver 108s concentrations in albacore liver tissues fell to half during this period in 2.6 and 7.1 years respectively. Plutonium 239 concentrations in the livers decreased to half in about 3.5 years. The attenuation rate of zinc 65 was discontinuous between 1965 and 1968. This fact, along with observation of comparatively high ratios of zinc 65 to cobalt 60 in tunas of the southern hemisphere following 1968, suggests that new large weapons were tested that gave off relatively large amounts of zinc 65. (Auth)

Figure 7 shows the concentrations of Pu 239 in liver tissues of albacore tuna caught off the coast of San Diego from 1964-1971.

<457>
Edmundson, E., Jr., V. Schultz, and A.W. Klement, Jr., U.S. Environmental Protection Agency, Seattle, WA; Washington State University, Department of Zoology, Pullman, WA. 1972

Marine Radioecology. A Selected Bibliography of Non-Russian Literature. TID-3917 (Suppl. 1); 76 p.

The 845 references contain author, publication date, title, publication description and secondary source. No abstracts or indexes are included. (EP)

<458>
Elwood, J.W., Oak Ridge National Laboratory, Nuclear Safety Information Center, Oak Ridge, TN. 1971, July-August

Ecological Aspects of Tritium Behavior in the Environment. Nuclear Safety, 12(4), 326-337

Review of the literature indicates that tritium can be taken in by plants and animals and organically bound, regardless of means of exposure. However, there appears to be no concentration factor relative to hydrogen at any level of food chains analyzed to date. Isotope effects apparently do not significantly alter tritium behavior compared with that of stable hydrogen in natural ecosystems. Turnover times of tritium in coupled ecosystem compartments are dependent on climatic, hydrological, and meteorological factors and these are site specific for each ecosystem. Half-times are much longer in a desert ecosystem compared with those in a tropical rain forest. The total ecosystem will have a half-time of retention at least as long as the compartment with the longest half-time. Tritium body burden is dependent on the pathways of exposure; tissue-bound fractions arise primarily from organically bound tritium in food. Biological half-lives of tissue-bound fractions are longer than the half-life of the body-water component and may be as long as one-third of the organism's life-span. Tritium in all compartments in a chronically contaminated ecosystem would be expected to be uniformly labeled with H 3, with the tritium ratio being dependent on release levels. (Auth) (EP)

<459>

<459>

Zrokhin, R.K., N.A. Kosurnikova, V.K. Lemberg, P.B. Lyubchanski, and G.M. Neshetov, Not given. 1966

Content and Microdistribution of Plutonium 239 and Morphological Changes in the Lungs of Rats Intratracheally Administered This Isotope.
AEC-tr-6944; Part of Noskalev, Yu.I., Distribution and Biological Effects of Radioactive Isotopes, (p. 122-130), 718 p.

The behavior of Pu 239 in the lungs when intratracheally administered in the form of various salts is chiefly determined by the physicochemical form of the compound administered. The Pu 239 content of the lungs following the administration of the nitrate salt of plutonium is 5-10 times as high as following the administration of sodium plutonyltriacetate. The elimination of Pu 239 following its administration in the form of the above mentioned salts obeys the exponential law, except that on administration of sodium plutonyltriacetate the elimination occurs at a much more rapid rate. The microdistribution of Pu 239 in the lungs of rats in the early stages beginning with the 3rd-4th day is relatively uniform but subsequently it becomes focal, around vessels and bronchi. A large amount of Pu 239 is transported from the lungs by the macrophages to the regional lymphatic nodes. Histological changes in the lungs depend on the pattern of microdistribution of Pu 239 and arise chiefly in the foci of build-up of the radioisotope. The earliest changes are dystrophy and desquamation of the bronchial and alveolar epithelium as well as perivascular edema. This is followed by chronic inflammation. The pathological process results in the onset of pneumosclerosis and occasionally lung cancer. The sclerotic process begins with proliferation of connective-tissue cellular elements with formation of fibrous structures. At a later stage this is accompanied by direct acellular sclerosis against a background of lympho and hemodynamic disorders and hypoxia. (Auth)

<460>

Heward, E.B., Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1970, December

The Morphology of Experimental Lung Tumors in Beagle Dogs. COMY-700501; AEC Symposium Series No. 21; Part of Nettesheim, P. et al (Eds.), Proceedings of a Symposium on Morphology of Experimental Respiratory Carcinogenesis held in Gatlinburg, Tennessee, May 13-16, 1970, (p. 147-160), 483 p.

The results of a long-term study to evaluate the pathologic effects in the lungs following Pu 239 PuO₂ particle inhalation, using beagle dogs as the experimental animals are described. Of 40 dogs exposed to Pu 239 PuO₂ particles having a count median diameter of 0.1 to 0.5 μ , 22 died with primary lung neoplasia 38 to 110 months postexposure, 8 died of pulmonary fibrosis, 5 were killed for radionuclide distribution measurements, and 5 are still alive over 9 years post exposure. Initial alveolar deposition ranged from 0.5 to 3.5 μ ci, and accumulated radiation dose was 2500 to 12,000 rads. Most lung tumors were found to be bronchiole-alveolar carcinomas of peripheral origin, with two peripheral squamous cell carcinomas and three epidermoid carcinomas. Also in this group of dogs there were three thoracic sarcomas and two dogs with malignant lymphomas. (Auth)

<461>

Pair, W.J., J.P. Herring, and L.A. George, General Electric Company, Hanford Atomic Products Operation, Biology Laboratory, Richland, WA. 1962, January 15

Retention, Translocation, and Excretion of Inhaled Plutonium. HW-72500; Part of Kornberg, H.A. and Sweeney, E.C. (Eds.), Hanford Biology Research Annual Report for 1961, (p. 61-66), 180 p.

The retention, translocation, and excretion of plutonium in dogs are compared for inhalation of six different plutonium dioxide aerosols and for plutonium nitrate. The translocation and excretion of Pu 239 were significantly greater after inhalation of Pu 239 Pu O₂ aerosol with a count median diameter (CMD) of 0.12 μ than after inhalation of aerosols with CMD's of 0.3 μ to 0.60 μ . The rate of urinary excretion expressed as percent of the body burden was about five times greater after inhalation than after intravenous injection of plutonium nitrate, although the same total amount was excreted over a 30-day period. (Auth)

Table 1 shows excretion, retention, and translocation of inhaled plutonium dioxide in dogs. Table 2 shows the fate of Pu thirty days after administration of plutonium nitrate.

<462>
Not given, Nevada Operations Office, Las Vegas,
NV, 1972, June

Clean-up Summary Report, Tatum Dome Test Site,
Mississippi. NVO-129; 16 p.

All Tatum Dome Test Site radiation dose levels which might be potentially hazardous to present and future human surface use have been reduced to the lowest practicable levels, consistent with the applicable guides. The cleanup was accomplished by (1) sampling and analyzing of soil, water, vegetation, and indigenous animal life from on-site work areas and contiguous off-site areas, (2) excavating and placing all contaminated soil and pumping all contaminated water and other accumulated contaminated fluids into the Tatum Salt Dome nuclear cavity, (3) sealing the cavity by plugging all drilled entry holes with cement, and (4) transporting for disposal at NTS all remaining solids (including several types of material), equipment, debris, and other personal property either contaminated or suspected of contamination. The post-clean-up radiological status of the site was determined by analyses of samples of water, soils, garden produce and environmental samples from man's food web including rabbit, squirrel, quail, garden produce, chicken, eggs, pecans and white-tailed deer. Migration of radionuclides to man through resuspension in air and water was determined to be negligible. Twenty-four hour air samples collected after decontamination at several locations indicated no significant activity above background levels i.e. $10(2-15-10(2-18))$ uCi/cc gamma, $10(2-15-10(2-14))$ uCi/cc Sr 90, and $10(2-17)-10(2-15)$ uCi/cc Pu 239. (PMN)

Table 7 shows radionuclide (including Pu 238, Pu 239) content of tissues of several animals, fish and quail. Table 5 shows radionuclide content of vegetation, soil and air samples.

<463>
Smith, A.E., and W.E. Moore, Western Environmental Research Laboratory, Office of Dose Assessment and Systems Analysis, Las Vegas, NV, 1972, January

Report of the Radiological Clean-up of Bikini Atoll. SWRRL-111r; 45 p.

The Atoll of Bikini was the subject of an intensive clean-up effort in 1969 by a joint AEC-DASA task force. The task force was responsible for rehabilitating the Islands of Bikini and Enyu in preparation for the resettlement of the Bikinian people to their home islands. Objectives of the clean-up effort were: removal of all debris from the islands; determination of existing radiation levels on each island; analysis of available food items for radionuclide distribution; and clearing of vegetation from land for agricultural redevelopment. Upon completion of these objectives, the islands were turned over to the Trust Territories for the agricultural phase of the program. The radiological conditions detected before,

during and following the clean-up effort are described. The highest exposure-rate measured on the islands of Bikini and Enyu was 120 uR/hr. The mean exposure-rate for the proposed village area on Bikini was 44 uR/hr. Integral dose calculations involving theoretical time periods spent in various areas of the island and on the lagoon and considering shielding values from coral aggregate in the village area were made. The projected external whole body dose for a person born on Bikini in 1970 and living there for 70 years would be less than 10 rad. (Muth)

Several figures of background survey results are given. Tables 1 and 2 show mean Cs 137 and Sr 90 concentration in food from Bikini and Enyu Islands. Table 4 shows levels of Pu 239, Pu 240, Pu 238 and Am 241 in soil. Table 7 shows composite Pu 239 in air results for Bikini Island 1970. Table 8 shows composite Pu 239 in air results for Enyu Island 1970.

<464>
Dilley, J.V., Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA, 1968, May

In vivo and In Vitro Chelation of Plutonium by Alpha-Lipoic Acid and DTPA. BNWL-714: Part of Thompson, R.C., et al (Eds.). Annual Report for 1967, (p. 6.12-6.13), 253 p.

Experiments were performed comparing the in vitro chelating ability of 6,8-epi-dithiooctanoic acid (alpha-lipoic acid) and diethylenetriaminepentacetic acid (DTPA), and their in vivo applicability as therapeutic agents for plutonium removal. Glass columns were packed with Sephadex G-25 and loaded with 40 uCi of Pu 239 PuO2 (0.3 u CiD). After flushing with water, the columns were treated with either 1.0 g DTPA or 0.1 g alpha-lipoic acid and washed with additional water until plutonium was no longer detectable in the eluate. About 0.3% of the plutonium was removed from the column with alpha-lipoic acid treatment; about 0.1% was removed with DTPA treatment. Female rats were intravenously injected with 1.0 uCi Pu 239 (N03)4 and then randomized into three groups of six animals each. One group received 30 mg/kg alpha-lipoic acid, the second group received 0.1 mg DTPA per animal, the third group received 0.1 propylene glycol and served as controls. All treatments were given intraperitoneally at 3, 24, 48, and 96 hr after plutonium injection. Urine and feces were collected and the animals were sacrificed for plutonium tissue analysis on the tenth day. The results show that in leaching PuO2 from a Sephadex column, alpha-lipoic acid was more effective than DTPA but was ineffective in removing plutonium from rats. The alpha-lipoic acid however, alters the distribution of plutonium so that greater concentrations are present in liver, kidney, and viscera at the expense of the skeletal burden. (TMK)

<465>

Dilley, J.V., and K.E. McDonald, Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1968, May

Removal of Inhaled Plutonium 239 PuO₂ in Rats. BNWL-714; Part of Thompson, R.C., et al (Eds.), Annual Report for 1967, (p. 6.9-10), 253 p.

Female Sprague-Dawley rats (150-200 g) were exposed to aerosols of Pu 239 PuO₂. After exposure the animals were randomized into groups of five animals each and treated with the test agents. All animals were sacrificed 18 days after exposure. The trachea, lungs, heart, and all thoracic lymphatic tissues were analyzed for Pu 239 content. The results show that progesterone, chlorpromazine, and Sephadex G-25 were the most promising of the agents tested for the ability to stimulate removal of inhaled Pu 239 PuO₂. (PMH)

<466>

Saenger, P.L. (Ed.), University of Cincinnati, College of Medicine, Cincinnati, OH. 1963, February

Medical Aspects of Radiation Accidents, A Handbook for Physicians, Health Physicists and Industrial Hygienists. TID-16867; 357 p.

The handbook presents pertinent, tested and useful information needed by anyone faced with a radiation emergency. The design is such that the simplest instructions are presented on the frontpiece. A group of rules then elaborates on these instructions in the first section. The remaining sections examine various possible accidents and techniques for coping with them. In relation to Pu 239 the recommended therapy following contamination is discussed. Washing is suggested for removing contamination or treatment with potassium permanganate followed by sodium bisulfite. For plutonium within the body, DTPA treatment is recommended. The hazards to the human body from Pu and the safety precautions to be taken following an accident are outlined. (PMH)

Table 18.82 shows the radionuclides that may be encountered in accidents and gives the critical organ and maximum permissible body burden. Tables 18.83 and 18.84 show maximum permissible concentration of unidentified radionuclides in water and air.

<467>

Lagerquist, C.R., S.E. Hammond, D.L. Bokowski, and D.B. Hylton, Dow Chemical Company, Rocky Flats Division, Golden, CO. 1972, May 1; 1973, December

Distribution of Plutonium and Americium in Occupationally Exposed Humans as Found from Autopsy Samples. CONP-720614-6; RPP-1849; Part of Proceedings of the 17th Annual Meeting of the Health Physics Society held in Las Vegas, Nevada, June 12-16, 1972, (11 p.); Health Physics, 25, 581-584

Nineteen cases are discussed where tissues were obtained from autopsy and analyzed radiochemically for plutonium and americium. Distribution patterns varied greatly from case to case, depending on: the mode of

entry, the chemical form, the length of time since exposure, and perhaps many other parameters as well. A typical distribution was not found, but on the average the lung and tracheal-bronchial lymph nodes had the highest concentration of material followed by the liver, the bones and finally the other tissues. (Auth)

Table 1 shows concentrations of Pu 239 and Pu 240 in dis/min/g in human autopsy tissues. Table 2 shows concentrations of Am 241 in dis/min/g in human autopsy tissues. Table 3 shows the comparison between the systemic burden calculated from urine analyses and the extrapolated amount found at autopsy.

<468>

Scalding, R.F., and W.M. Sackett, Texas A & M University, Department of Oceanography, College Station, TX. 1972, February 11

Uranium in Runoff from the Gulf of Mexico Distributive Province: Anomalous Concentrations. Science, 175, 629-631

Uranium concentrations in North American rivers are higher than those reported 20 years ago. The increase is attributed to applications to agricultural land of larger amounts of phosphate fertilizer containing appreciable concentrations of uranium. Experiments showing a constant phosphorous-uranium ratio for various types of fertilizers and for the easily solubilized fraction of 0-46-0 fertilizers support this view. (Auth)

Figure 1 shows uranium concentrations for 22 samples taken from 15 different rivers that flow into the Gulf of Mexico.

<469>

Sczenenblick, B.P., Rutgers University, Newark, NJ. 1972, February

Low and Very Low Dose Influences of Ionizing Radiations on Cells and Organisms, Including Man: A Bibliography. BRH/DBE-72-1; DHEW (FDA) -72-6029; 325 p.

The bibliography lists a massive literature pertaining to the influence of low and very low doses of ionizing radiations (arbitrarily defined) on a wide range of cells, organelles, and intracellular macromolecules on diverse organisms and populations. More than 3400 numbered citations are listed in eleven categories, with some inevitable overlapping. The categories are human studies, mammalian studies, other vertebrate studies, invertebrate studies, plant studies, microorganism studies, macromolecule studies, dose studies, space studies, natural background studies, and general studies. The general category includes books and monographs, review articles, editorials, essays, and studies and reports of national and international commissions concerned with aspects of the problem of radiation protection for the general public and for those occupationally exposed. A separate list of the reports utilizing very low dose levels is included. (PMH)

<470>
Hollingsworth, R.E., U.S. Atomic Energy Commission, Washington, DC. 1972, April

Environmental Statement, Contaminated Soil Removal Facility, Richland, Washington. WASH-1520; 36 p.

The Environmental Statement was prepared in accordance with the National Environmental Policy Act and in support of the Atomic Energy Commission's proposal for legislative authorization and appropriations for the design, construction and operation of the Contaminated Soil Removal Facility at Richland, Washington. The U.S. Atomic Energy Commission plans to remove plutonium contaminated soil from the floor of an existing enclosed trench (Z-9) used between July 1955 and June 1962 as a subsurface disposal facility for plutonium contaminated liquids from the Plutonium Finishing Plant on the Hanford Reservation near Richland, Washington. It is estimated that the soil to be removed contains approximately 100 kilograms of plutonium in a volume of approximately 1800 cubic feet. It is believed that more than three-fourths of the plutonium in the soil (worth approximately \$3,000,000) can be economically recovered in the nearby Plutonium Finishing Plant. The proposed operation will permit extensive evaluation of soil dissolution and plutonium extraction techniques. Residues from the extraction operations and contaminated soil with insufficient plutonium to permit economical extraction will be packaged in plastic bags, placed in steel drums and stored in a new Underground Storage Vault. The proposed operation will also permit the extensive evaluation of techniques for contaminated soil removal, and for measuring the plutonium content of the contaminated soil. The Contaminated Soil Removal Facility and the Underground Storage Vault will discharge air through high efficiency filters which will release less than one uci of plutonium per day to the atmosphere of a controlled area at a concentration estimated to be less than three percent of the concentration guide for a controlled area as defined in applicable federal standards. In assessing and balancing the benefits to be obtained from removing plutonium contaminated soil from the Z-9 enclosed trench against the environmental and economic costs, and after considering the range of alternatives and their environmental impact, the Atomic Energy Commission has concluded that the proposed action should be undertaken. (Auth)(FMM)

<471>
Not given, U.S. Atomic Energy Commission, Washington, DC. 1972, December

Draft Environmental Statement, Transuranium Solid Waste Development Facility, Los Alamos Scientific Laboratory, New Mexico. WASH-1527, (Draft); 65 p.

The environmental impact of constructing and operating a Transuranium Solid Waste Development Facility at the Los Alamos Scientific Laboratory (LASL) in New Mexico is estimated. The present annual generation of solid radioactively-contaminated wastes is about 70,000 cubic feet, most of which is contaminated with transuranium radionuclides. A portion of this volume will be sent to the development facility; however, administrative

procedures will limit the radioactive inventory in the facility at any one time to 100 g of Pu 239 and 10 mci of mixed fission products. The proposed project provides for construction of a building with equipment for demonstrating solid waste volume reducing processes such as sorting, compaction and incineration. Improvements to land, filtration for airborne effluents, accidents such as fires and the eventual decontamination and removal of the buildings are considered. In assessing and balancing the anticipated benefits against the environmental and economic costs of the proposed facility, and after considering the range of alternatives and their environmental impacts, the AEC has concluded that the proposed solid radioactive waste volume reduction facility should be designed and constructed. (FMM)

<472>
Schulz, W.W., and G.E. Benedict, Atlantic Richfield Hanford Company, Richland, WA. 1972, October

Neptunium 237, Production and Recovery. TID-25955; 85 p.

Modified Purex processes are operated at the U.S. Atomic Energy Commission's Hanford and Savannah River plants to recover kilogram amounts of Np 237 from irradiated uranium metal. The Savannah River Purex process is operated to force all the Np 237 (as inextractable Np⁽⁺⁵⁾) into the first-extraction-cycle aqueous raffinate, from which it is recovered by sorption on an anion-exchange resin. In the Hanford scheme Np⁽⁺⁶⁾, produced by HNO₃ catalyzed nitrate oxidation of Np⁽⁺⁵⁾, is coextracted with uranium and plutonium in the first cycle; neptunium is subsequently separated from uranium in the second uranium cycle. Variables that affect the equilibrium and kinetics of the HNO₃ catalyzed oxidation step are enumerated and described; careful control of these parameters is critical to satisfactory operation of the Hanford recovery scheme. At both the Hanford plant and the Savannah River plant, anion-exchange processes are used to concentrate and purify the recovered Np 237. Updated chemical flow sheets for these main-line production-scale Np 237 recovery and purification processes are provided and discussed. Projections summarized in the review indicate that by 1990 as much as 3500 kg of Np 237 could be available each year for recovery from power reactors in the United States. If anticipated demands for Pu 238 in medical and space applications materialize, recovery of the major part of this Np 237 will be mandatory. Behavior of Np in several nonaqueous (fluoride-volatility and pyrochemical) fuel-reprocessing methods is examined in the concluding chapter. Preparation, properties, and reactions of NpF₆ and its separation from UF₆, PuF₆, and fission-product fluorides are emphasized. (Auth)

<473>

Thomson, B.J., and A. Walton, Yale University, Department of Geology and Geophysics, New Haven, CT; Bedford Institute, Atlantic Oceanographic Laboratory, Dartmouth, Nova Scotia, Canada. 1972

Natural Radioactive Decay Series Elements in the Oceans and Sediments. Royal Society of Edinburgh, Series B, 72, 167-182

A review is presented of studies of the three naturally occurring radioactive decay series (Th 232, U 238 and U 235) daughter radionuclides in the oceans and sediments. The origin of high radium concentrations in sediments and the migration of radium in sediments are discussed. Studies of thorium and protactinium are reviewed under the following headings: analytical advances--direct measurements of U, Th and Pa isotopes; the thorium isotope ratio (Th 230/Th 232) approach; the thorium/protactinium (Th 230/Pa 231) approach; the uranium isotope ratio (U 234/U 238) deviation; leaching versus solution of sediments; and comparisons of age determination methods. (PMM)

<474>

Thompson, R.C. (Comp.), Battelle Memorial Institute, Pacific Northwest Laboratories, Richland, WA. 1973, September

Biology of the Transuranium Elements, A Bibliography. BNWL-1782; 126 p.

The bibliography is a simple listing, alphabetical by senior author, of over 1000 literature citations. The biological behavior and biological effect of the transuranium elements have been covered--"biological" being broadly interpreted to include behavior and effect within natural ecosystems and work locations as well as within discrete organisms. In areas where complete coverage is attempted, the coverage extends only to publications in scientific and technical journals, books, and the published proceedings of scientific meetings. Coverage includes articles abstracted in Nuclear Science Abstracts through the issue of June 30, 1973. (PMM)

<475>

Tasura, T., E.R. Eastwood, and C.M. Sealand, Oak Ridge National Laboratory, Environmental Sciences Division, Oak Ridge, TN. 1973, February

Applied Soils and Waste Management Studies. ORNL-4848; Part of Annual Progress Report for Period Ending September 30, 1972, (p. 49-51), 127 p.

Progress is reported on the characterization of Pu-contaminated soil from Nevada Test Site and in the development of plugs to be used as sealants in the salt mine repository. In the Pu study the results of extraction from four surface soil samples are presented. The samples permit determination of Pu on different size and mineral fractions. The results show that about 75% of the Pu is extractable with nitric acid in three of the four samples. (PMM)

<476>

Stannard, J.N., University of Rochester, Rochester, NY. 1973

Biomedical Aspects of Plutonium: Discovery, Development, Projections. Part of Hodge, H.C., et al (Eds.), Handbook of Experimental Pharmacology, Uranium, Plutonium, the Transplutonics, Chapter 8. Springer-Verlag, New York, New York, (40 p.)

The chapter provides an historical and prospective overview of Pu and covers the primary features of Pu toxicology. First produced in 1941 in less than microgram quantity, grams were available in a remarkably short time and this was followed within months by kilogram quantities. As for the future, about 20,000 kilograms of the isotope Pu 239 are expected to be needed by 1980, 50,000 kilograms in the decade 1980-90, and 80,000 kilograms in the 1990-2000 decade. Pu is a most effective agent in producing long-term effects in the body. Its general toxicology is that of a "bone-seeker". Because of its tendency to be a "surface seeker" rather than a "volume seeker" it is markedly more effective than radium on an activity basis in producing damage such as the induction of osteogenic sarcoma. The question of chemical toxicity is discussed. The development of biomedical information on Pu is presented under the following headings: early beginnings; the "Pu Project" years; the Stan Project; inhalation studies; information from experience with man; therapeutic removal; and work abroad. The chapter concludes with a short review of prospective newer uses of plutonium isotopes in the space program and in medicine. (PMM)

<477>

Spiers, P.W., University of Leeds, Department of Medical Physics, General Infirmary, Leeds, Yorkshire, England. 1968

Radioisotopes in the Human Body: Physical and Biological Aspects. Academic Press, New York, New York, 346 p.

The physical and biological factors that affect the dose delivered by an internally absorbed radioisotope to the human body are discussed. Metabolic pathways are considered as well as modes of entry, distribution of the radionuclide in the body, relative biological effectiveness (RBE) and linear energy transfer (LET), measurement of radioactivity in tissues and determination of maximum permissible levels of radioisotopes in the body. A portion of the monograph has been devoted especially to bone structure and the irradiation of bone including dosimetry and radioautography studies, since many of the available radioisotopes are deposited in bone and because of the importance of bone in relation to potential radiation damage. (PMM)

Table 2.6 has biological data relating to organ uptake for several elements including U, Pu and Am. Table 4.5 shows the location of elements (including Pu and Am) in bone.

<478>

Lewis, R.S., J. Wilson, and E. Rabinowitch (Ed.); State University of New York, Albany, NY; Los Alamos Scientific Laboratory, Experimental Physics Division, Los Alamos, NM. 1971

Alamogordo Plus Twenty-Five Years. The Viking Press, New York, New York, 287 p.

Twenty-five years ago, on July 16, 1945 at the so-called Trinity site near Alamogordo in the desert country of New Mexico, was first unleashed a nuclear explosion. Twenty-five years later the most one can say of mankind in the age of the atom bomb is that it has so far survived. The articles in the book deal on the factual level with events and developments of the first quarter-century of the nuclear age. Part 1 of the book covers projection and recollection, for example, the nuclear future--1995 is projected by Glenn T. Seaborg and the recollections of July 16, 1945 are presented by Lt. Gen. Leslie R. Groves. Part 2 deals with the international atom, nuclear energy in Japan, Britain and Western Europe. Part 3 covers application and research with a discussion on nuclear energy and the environment, nuclear power in industry and plowshare. Part 4 discusses the military atom such as disarmament problems, nuclear weapons and the decision to bomb Japan. (PMH)

<479>

Bair, W.J., B.C. Stuart, J.F. Park, and W.J. Clarke, Hanford Laboratories, Richland, WA. 1964

Factors Affecting Retention, Translocation and Excretion of Radioactive Particles. CONF-104-51; HW-SA-3161; Part of Proceedings of a Symposium on Radiological Health and Safety in Mining and Milling of Nuclear Materials held in Vienna, Austria, August 26-31, 1963, Vol. 1, (p. 253-274)

Published data are cited demonstrating that the behavior of many inhaled radioactive aerosols cannot be predicted on the basis of their known chemical properties. For example, the uptake of I-131 by the thyroid was equally rapid following inhalation of I-131 vapor and the less water-soluble Ag I-131 particles, and Sr-90 SrSO4 was absorbed from the lungs at a rate comparable to that of the more soluble Sr-90 Cl2. The pulmonary retention of soluble CeCl3 and insoluble CeO2 were similar but much greater for insoluble CeO3. The pulmonary retention of soluble and insoluble forms of Eu-152, Co-60, U-238, and Pu-239 are also compared. The results of plutonium studies also illustrate the effect of a further complicating variable, particle size of the aerosol. When inhaled as an aerosol with a mass median diameter (MMD) of 0.2 μ m, "insoluble" Pu-239 PuO2 was cleared from the lung at a rate comparable to that observed for the more soluble plutonium nitrate, i.e., retention half time of about 30 d. Retention half time values of greater than 100 d were obtained when the MMD of the Pu-239 PuO2 aerosol was 2-7 μ m. The rapid clearance of Pu-239 PuO2 inhaled as extremely small particles, substantiated by autoradiographic studies, was reflected in higher rates of excretion and translocation to other tissues. These results were applied to the problem of inhaled uranium ore where the chemical species and physical characteristics of the dust may determine whether or not uranium remains in secular equilibrium with its daughter products after deposition in the lung. (Auth)

Table 1 shows pulmonary retention and translocation of inhaled radioactive aerosols of several chemical species.

<480>

<480>
 Corley, J.P., Battelle Memorial Institute,
 Pacific Northwest Laboratories, Richland, WA.
 1973

Environmental Surveillance at Hanford for
 CY-1970. BNWL-1669; 66 p.

The 1970 Hanford environmental surveillance program indicated continued compliance of the Hanford contractors and their operations with applicable environmental standards. Most of the environmental radiation dose for people living in the Hanford environs was due to natural sources and regional fallout rather than to Hanford operations. The largest source of radioactivity released to man's immediate environment from Hanford continued to be reactor cooling water discharged from the Columbia River. The surveillance program included sampling and analysis on a routine basis of river water, municipal drinking water, groundwater, air, milk, foodstuffs, fish, shellfish, and gamebirds. Measurements were made of external gamma exposure rates at land stations and in and around the river. Contamination surveys were made at selected ground plots and along public highways adjacent to the Hanford site. Columbia River water and Richland drinking water were routinely sampled for chemical and biological analysis, and air quality measurements were made at locations adjacent to the site boundaries. In 1970, average river concentrations of radionuclides were less than 3% of the Concentration Guides, and transport rates of radionuclides in the river were much reduced from 1969. The radionuclide showing the highest average percentage of its Concentration Guide in treated water at the Richland water plant was Na 24 at 2.1%. Unusually high concentrations of P 32 were found in four of fifteen ducks collected at two trenches receiving undiluted reactor cooling water. Immediate consumption of a normal meal of the fowl with the highest P 32 concentration in muscle, 0.16 uCi/g, could theoretically have resulted in a radiation dose to skeletal bone of about 6 rem, four times the applicable standard. For 1970, the calculated GI tract and bone doses to the average Richland resident were 2% of the standard of 500 rem per year for this population group. The whole body dose was estimated to be about 1% of the standard of 170 rem per year. The thyroid dose to the average Richland infant was calculated to be about 7% of the standard of 500 rem per year. A detailed review of airborne radioactivity data is given. It is shown that Pu alpha accounted for less than 1% of the total alpha activity and Sr 90 for about 2% of the gross beta activity. (PRM)

Table 10 shows radioactivity (gross beta, total alpha, I 131) in air, 1970. Table 11 shows radioactivity (gross average beta, Sr 90, average total alpha, Pu-alpha) in air, quarterly average. Table 9 shows radionuclide concentrations in local milk and foods, 1970. Table 6 shows concentrations of radionuclides including Pu 239 and tritium in the Columbia River, 1970.

<481>
 Hardy, E.P., Jr., Health and Safety Laboratory,
 Environmental Studies Division, New York, NY.
 1973, April 1

Euratom Joint Nuclear Research Center, Japan
 Establishment Quarterly Report. HASL-273; Part
 of Fallout Program Quarterly Summary Report,
 December 1, 1972-March 1, 1973, (p. III-29 -
 III-33), 227 p.

Data are presented for air radioactivity and fallout deposition in 1972 at the Euratom
 Ispra Establishment located in Northern Italy
 58 Km NE from Milan and 18 Km W from Varese.
 The activity levels given represent world
 wide fallout, and do not reflect any
 contamination from the site. The sampling
 methods for air, wet and dry deposition and
 milk are described as well as the chemical
 procedures and counting techniques used for
 Sr 90, Cs 137, gamma emitting nuclides, Pu
 238 and Pu 239. The Pu 239 concentration in
 air varied from 0.8×10^{12} pCi/m³ to $1.4 \times$
 10^{12} pCi/m³ and the Pu 239 content of
 fallout deposition varied from 0.11 uCi/Km²
 to 0.25 uCi/Km². (PRM)

Tables show air radioactivity and fallout
 deposition of Sr 90, Sr 89, Cs 137, Pu 239, Pu
 238 at Ispra, Northern Italy, in 1972.

<482>
 Naghissai, A.A., U.S. Environmental Protection
 Agency, Radiation Office, Las Vegas, NV. 1973,
 December

Methodology. CONF-710562; BRN/ORO-72-2; Part of
 3rd Annual National Conference on Radiation
 Control held in Scottsdale, Arizona, May 2-6,
 1971, (p. 305-308), 350 p.

Techniques for counting krypton 85 and for
 separating krypton from ambient air are
 described. A coprecipitation technique for
 determining Pu in environmental samples is
 outlined. Gamma spectroscopy is briefly
 discussed and different types of radiation
 detectors are compared. (PRM)

<483>
Bair, W.J., and T.M. Beasley, Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1967, July

Plutonium-Americium Ratios in Dogs After Inhalation of Plutonium 239 Pu02. BNWL-480; Part of Thompson, R.C. and Swetzer, E.G. (Eds.), Annual Report for 1966, (p. 61-63), 207 p.

Pu 239 to Am 241 ratios in tissue samples from dogs exposed to plutonium oxide aerosols were compared with the ratios in samples of the aerosol. Preliminary results from dogs sacrificed 3 months after inhalation of Pu02 indicate that Am 241 remained in equilibrium in all dogs with the possible exception of those which inhaled the oxide prepared from the delta form of the metal at 450 degrees centigrade. In this case there were increased ratios of Pu 239 to Am 241 in both lung and lymph nodes. Ratios of Pu 239 to Am 241 determined from tissues of dogs which died 3-1/2 to over 6 years after inhaling Pu02 indicated disequilibrium in the bronchial lymph nodes but not in the lung. No clear pattern of change can be discerned from the limited number of dogs thus far studied. (PMH)

<484>
Campbell, I.R., and E.G. Mergard, University of Cincinnati, College of Medicine, Netterring Laboratory, Department of Environmental Health, Cincinnati, OH. 1972, May

Biological Aspects of Lead: An Annotated Bibliography, Literature from 1950 through 1964. AB-104 (Parts 1-2); 933 p.

The material included in the bibliography represents the scientific periodical literature covered by the principal abstracting and indexing services. Inclusion of works on analytical methodology is limited to those concerned with the determination of lead in air, biological materials, foods and beverages, drugs, and water, and to those concerned with the analysis of metabolic indicators of adverse effects (e.g., porphyrins). Section 1 includes abstracts of books, historical publications, proceedings of conferences, and general reviews. Specific reviews and discussions are included in the sections dealing with those aspects (e.g., reviews of signs, symptoms, and cases of clinical poisoning appear in Section 4, Man). Section 2 covers lead in the environment, including contamination of food by utensils and pesticides, and contamination of home water supplies by lead pipes, cisterns, etc. Abstracts of reports on industrial atmospheres and occupational exposure are given in Section 5; related medical information (case reports, medical surveys, etc.) is covered in Section 4. Section 6 includes pollution by lead of air, soil, and water, and the effects of such pollution on humans, animals, and plants under actual (field) conditions of exposure. Section 7 covers legal matters, regulations, and recommendations for threshold concentrations, maximum allowable concentrations, drinking water standards, and tolerance limits for food products. Section 10 is confined to chemical reviews, reviews of technological developments, and works dealing with specific chemical properties and syntheses of new compounds. (PMH)

<485>
Phillips, C.R., U.S. Environmental Protection Agency, Radiation Office, Las Vegas, NV. 1971, December

Levels Measured in the Environment. CCNF-710562; BRH/ORG-72-2; Part of 3rd Annual National Conference on Radiation Control held in Scottsdale, Arizona, May 2-6, 1971, (p. 309-317), 390 p.

The level of most fallout nuclides has decreased since the cessation of main atmospheric weapons testing in the early 1960's. To illustrate this the results of the pasteurized milk network are cited. The nuclides of primary concern in the milk samples are I 131, Sr 89, Sr 90 and Cs 137. Cesium 137 reached a nationwide peak concentration in June 1963 at about 160 pCi/l. At the present time the national average is below 10 pCi/l. The levels of tritium in surface water and in precipitation are discussed. Pu in air is continuously monitored from samples collected throughout the United States as well as in the Pan American Health Organization Air Network from the South American countries. The levels of these samples are shown, and the difference in levels of Pu 239 for the Northern Hemisphere (89-123 aci/m³) to the Southern Hemisphere (17-30 aci/m³) is noted. Kr 85 levels in air are also presented. (PMH)

Table 3 shows a comparison of Pu 238 and Pu 239 in air from locations in the northern and southern hemispheres.

<486>

Borisova, N.D., Academy Nauk SSSR, Ural'skii Filial, Trudy Institute Biology, Sverdlovsk, USSR. 1966

The Effect of Various Diets on the Behavior of Yttrium 91 and Unseparated Solution of Uranium Fission Products. AEC-tr-7169; Part of Metabolism of Radioisotopes in the Animal Organism, (p. 137-152), 220 p.

The effects of various diets on the behavior of Y 91 in rats following oral and intravenous administration, and on the behavior of unseparated solution of U fission products following intraperitoneal administration were studied. Concurrently the effects of complexones and folliculin on excretion of the emitters were tested. The results show that diets that affect organic metabolism (proteinfree, carbohydrate, and fatty) induce negligible changes in the behavior of yttrium mainly in soft organs, whereas diets that affect mineral metabolism (rachitogenic, calcium and carrot) variously alter the yttrium content in soft tissues and the faeces. With all three diets, the liver shows a decrease in yttrium content, whereas the bones show a rise with the rachitogenic diet, decline with the calcium diet, and no change with the carrot diet. Addition of phosphorus to the rachitogenic diet somewhat increases the yttrium content not only in bones (by 1.3 times as compared to the control, and 1.1 times as compared to the rachitogenic diet without phosphorus) but also in the liver (100% more than on the rachitogenic diet without added phosphorus). The fatty, carbohydrate, and proteinfree diets diminish and the high protein diet increases reabsorption of yttrium from the gastrointestinal tract. A maximum effect with respect to eliminating yttrium from the organism is obtained by administration of Na2-EDTA in the case of a rachitogenic diet, however, with other diets Na4-EDTA yielded a somewhat greater effect than with an ordinary diet. Administration of triethylphosphate (TEP) and folliculin had almost no effect on the behavior of yttrium with all diets tested. These diets also had no effect on the behavior of unseparated solution of uranium fission products, with the exception of the fatty diet and control diet with added phosphorus, with which there is a marked rise in radioactivity of the liver. (Auth) (FMM)

Table 2 shows yttrium content in rat tissues 6 hr and 16 days after IV injection, as related to preliminary diet. Table 3 shows yttrium content in rat tissues 6 hr and 16 days after oral ingestion, as related to preliminary diet.

<487>

Hardy, E.P., Jr., Health and Safety Laboratory, Environmental Studies Division, New York, NY. 1973, April 1

Pollutant Program Quarterly Summary Report, December 1, 1973 through March 1, 1973. HASL-273; 227 p.

Current data is presented from the HASL Pollutant Program; The Laboratory of Radiation Ecology, University of Washington; and the EURATOM Joint Nuclear Research Center at Ispra, Italy. The initial section consists of interpretive reports on radon daughter products (Po 210, Pb 210) and stable lead in marine organisms, inventories of

radionuclides in the stratosphere, strontium 90 in diet, and the tropospheric baseline concentration of lead. Subsequent sections include tabulations of radionuclide levels in fallout, surface air, stratospheric air, foods, milk, and tap water. Numerous tables are given for global atmospheric Pu 239 and Pu isotopic ratios for 1959-1970. A bibliography of recent publications related to radionuclide studies, is also presented. (Auth)

<488>

McLean, P.C., and A.M. Budy, University of Chicago, Department of Physiology, Chicago, IL. 1964

Radiation, Isotopes, and Bone. Academic Press, New York, New York, 216 p.

The book deals with radiation in all its aspects in relation to bone. A considerable amount of material concerning the physiology and biochemistry of skeletal tissue is included. The pathology of the effects of radiation, as well as the use of tracer amounts of radioisotopes in the study of pathological physiology are given consideration. The properties that lead radioisotopes to seek bone and to remain deposited therein are discussed. A few isotopes, more particularly some of the alkaline earths, including Ra, Sr and several of the isotopes of Ca, may substitute for stable Ca in the mineral of the bone and once deposited there may remain fixed indefinitely. Others, such as Pu, T, and Th are deposited in the bone matrix rather than in the mineral, but they also may remain in the skeleton for long periods of time. Natural radioactivity, radioactive fallout and removal of radionuclides, including Pu, Th, T, and Ce, from bone by chelates or carriers are also discussed. (FMM)

<489>

Boulay, P., Commissariat à l'Energie Atomique, Centre d'études de Bruyères-le-Châtel, France. 1976

Direct Measurement of Pulmonary Plutonium Contamination. CONF-701112; STI/PUB/269; IAEA-SM-143/49; Part of Proceedings of a Symposium on New Developments in Physical and Biological Radiation Detectors held in Vienna, Austria, November 23-27, 1970, (p. 287-297), 766 p. (French)

For the direct measurement of pulmonary Pu contamination the following three conditions must all be met: the detector used must have a suitable window surface and efficiency; the background noise should be very low; and it must be possible to reduce the error due to morphology. The counter proposed has a useful diameter of 190 mm and a mean efficiency of 60% for Pu 239 x rays. The background noise is reduced by lead shielding, 10 cm thick, covered with 1 mm of stainless steel, an anti-coincidence circuit and a pulse rise-time discriminator. Under these conditions the sensitivity threshold can be estimated at 5 nCi of Pu 239 for a "standard man". A method of internal calibration of the individual based on additional Pa 233 overloading is proposed. (Auth)

<490>
McClelland, J. (Comp.), Los Alamos Scientific Laboratory, Los Alamos, NM. 1955, August

The Fluorophotometric Determination of Uranium in Urine and Air. LA-1858; Part of Analytical Procedures of the Industrial Hygiene Group, Chapter 27, (p. 155-157), 173 p.

The method is based on the intense yellow-green fluorescence (the principal line of which is reported to be at 555 m μ) produced by traces of uranium fused in sodium fluoride. It is sensitive to concentrations of uranium from $10(E-5)$ to $5 \times 10(E-10)$ g per 0.25 g of sodium fluoride, with a precision of plus or minus 10%. The tolerance for normal uranium in urine used at LASL is 100 μ g per liter. Air for the determination of uranium is sampled by filtration, impingement or impaction. Glass or molecular filters are usually used and with special extraction methods, HV-70 paper may be used. Ten percent nitric acid is used as the collecting medium for impinger samples. The air tolerance for normal uranium used at LASL is 50 μ g per cubic meter, which is approximately 66 d/m 3 . (Auth)

<491>
Hardy, E.P., Jr., Health and Safety Laboratory, Environmental Studies Division, New York, NY, 1973, April 1

Global Atmospheric Plutonium 239 and Plutonium Isotopic Ratios for 1959-1970. HASL-273; Part of Fallout Program Quarterly Summary Report, December 1, 1972-March 1, 1973, (p. III-2 - III-28), 227 p.

A program of atmospheric sampling and radiochemical analysis was undertaken from 1959 through 1970 to determine the distribution of nuclear debris by means of filter collection of airborne radioactive particulate matter on IPC-1478 paper carried by aircraft. The isotopic concentrations of plutonium 239 and the plutonium isotopic ratios Pu 240/Pu 239, Pu 241/Pu 239 and Pu 242/Pu 239 obtained from these samples are reported. Aircraft sampling was normally conducted in the vicinity of four latitudes: 70 degrees N, 35 degrees N, 10 degrees N and 40 degrees S. Altitudes sampled varied from approximately 15,000 to 70,000 feet. These data were collected as part of a cooperative effort by the U.S. Department of Defense, Atomic Energy Commission and the National Oceanic and Atmospheric Administration. (FMP)

Numerous tables are given for Pu 239 concentrations and Pu ratios at various latitudes and altitudes.

<492>
Belyaev, Yu.A., Not given. 1959

The Physico-Chemical State of Plutonium (Plutonium 239) in the Blood Upon Its Intravenous Administration. Meditsinskaya Radiobiologiya, 4(9), 45-51 (Russian)

The physico-chemical state of Pu 239 was studied in the blood upon its intravenous administration to rats in the form of nitrate of quadrivalent plutonium and a citrate complex. It was found that the speed of disappearance of plutonium from the blood is lesser for the complex salt than for plutonium nitrate. Up to 90-95% of plutonium circulating in the blood is bound with proteins; in the plasma the content of plutonium is 5 times higher than in the cellular elements. The electrodialysis of the serum of rats given plutonium showed that in the blood approximately 10% of plutonium is in an ionogenic condition, in the form of negatively charged ions. Determination of the plutonium content in individual protein fractions carried out by the method of paper electrophoresis, did not produce satisfactory results. (Auth)

<493>
Belyaev, Yu.A., Not given. 1963

Chemical Forms of Plutonium (Plutonium 239) in the Liver and Spleen of the Rat. ?TD-tt-63-559 (Translated Edition); Part of Lebedinsky, A.V. and Moskalev, Yu.I. (Eds.), Plutonium 239: Its Distribution, Biological Effects and Accelerated Elimination, (p. 58-69), 267 p.

Rats were injected intraperitoneally with plutonium nitrate or citrate (3.6-4.9 μ Ci/kg) to identify the chemical forms in which plutonium is retained in the liver and spleen. Results showed that plutonium exists in the liver in the form of a protein complex. About 50% was bound to the globulins of the cytoplasm. In the nuclear fraction, 17-24% was bound to the desoxyribonucleoprotein fraction, 12-16% with the acid protein, and 1.5-4% with the residual protein. Plutonium content in the protein fractions of the liver did not vary within the time interval of 1 day to 2 months after administration, but in animals sacrificed at 7 1/2 to 9 months following administration an increase in the plutonium content of the residual protein was observed. Chemical form had no effect on distribution to the various fractions. In the spleen the plutonium level was lower (5-8%) in the desoxyribonucleoprotein fraction and higher in residual protein (20%) than in the liver. Plutonium complexes with nucleic acids, formed in vivo, were isolated. Of the total liver plutonium, 1.9-3% was bound with DNA and 0.2-0.8% with RNA. Methods of cell fraction separation were discussed. (ST)

<494>

<494>
Tseveleva, I.A., Not given. 1963

Plutonium Content in Protein Fractions of Bone.
FTD-tt-63-559 (Translated Edition); Part of
Lebedinsky, A.V. and Moskalev, Yu.I. (Eds.),
Plutonium 239: Its Distribution, Biological
Effects and Accelerated Elimination, (p. 70-76),
267 p.

Rats were injected intraperitoneally with 1.9 uCi of plutonium citrate 7-14 days prior to sacrifice and rabbits were injected intravenously with 7 uCi of plutonium nitrate 30 days prior to sacrifice to study plutonium distribution in various protein fractions of tubular bone diaphysis. Up to 90% of the plutonium was fixed in the organic (protein) fraction. Collagen, albumoids, mucoids, and residual protein which constituted 90, 2.0, 1.6, and 6.9%, respectively, of the bone protein contained 65-80, 15, 4, and 5%, respectively, of the total plutonium. Proteins with a high metabolic rate (albumoids) bound 4-10 times as much plutonium, per 1 mg of nitrogen, as did collagen and residual proteins. The relative specific activity of mucoids exceeded that of collagen by a factor of two, probably due to the participation by the S04 group of chondroitin sulfate in plutonium fixation. Techniques of bone decalcification and protein separation are given. (ST)

<495>
Elkina, N.I., and I.A. Tseveleva, Not given.
1963

Mineral and Protein Metabolism in Bone Tissue of
Plutonium-Injected Rats. FTD-tt-63-559
(Translated Edition); Part of Lebedinsky, A.V.
and Moskalev, Yu.I. (Eds.), Plutonium 239: Its
Distribution, Biological Effects and Accelerated
Elimination, (p. 77-87), 267 p.

Plutonium nitrate and citrate were administered to rats in doses causing subacute (20 uCi/kg) and chronic (1.9 uCi/kg) injuries and the metabolism of bone mineral and nitrogenous substances in the bones was studied. Metabolic processes were studied with the aid of radiotracers P 32, Ca 45, and glycine tagged with C 14. Calcium, phosphorus, and nitrogen metabolism, and phosphatase activity in the epiphysis and diaphysis of control and experimental rats were studied. The epiphyseal portion of bone differed from the diaphyseal part both in the content of the substances under consideration and in the intensity of metabolic processes. No appreciable changes were noted in the bone tissue content of phosphorus, calcium, and nitrogenous substances at different times following plutonium administration. Alkaline phosphatase activity following administration in amounts causing chronic injury, declined in both diaphysis and epiphysis, by about 25% after one year and by about 50% after 18 months. Incorporation of P 32 and Ca 45 into the epiphyseal portion was considerably lower in the experimental animals as compared with controls. In the diaphysis Ca 45 incorporation was also lowered. In chronic injuries, incorporation rate of labeled glycine into proteins of the epiphysis was reduced by a factor of 1 1/2 to 2 as compared with normal values. (ST)

<496>
Konstantinova, V.V., Not given. 1963

Content and Regeneration of Nucleic Acids in Rat
Liver Following Plutonium Injury. FTD-tt-63-559
(Translated Edition); Part of Lebedinsky, A.V.
and Moskalev, Yu.I. (Eds.), Plutonium 239: Its
Distribution, Biological Effects and Accelerated
Elimination, (p. 92-103), 267 p.

Four groups of rats were injected intraperitoneally with a solution of plutonium nitrate to study the effect of plutonium on nucleic acid metabolism in the liver. The four dose levels were 20, 6.2, 3.7, and 1.9 uCi/kg. To determine the rate of nucleic acid regeneration, the animals were injected with a P 32 labeled Na2HPO4 solution at a dose of 4-6 uCi/100 g of body weight. The 20 uCi/kg dose was lethal to all rats within six to seven months; the 6.2 uCi/kg dose was lethal to 58% within nine months; and in the third and fourth groups, fatalities were 40 and 30%, respectively, over a one year period. Leukopenia was observed in all groups and erythropenia was observed at the three higher dose levels. Both content and specific activity of RNA increased at one and two months following injection in the first group. The rate of P 32 incorporation into DNA increased over all observation periods following administration of the 20 uCi/kg dose and reached a peak value after two months. Concentration of DNA phosphorus fell below control values after two weeks. At chronic dose levels the most conspicuous changes in nucleic acid metabolism were at the level of 6.2 uCi/kg (calculated per single nucleus). At this dosage level, content and incorporation rate of RNA and DNA phosphorus increased over a period up to three months. (ST)

<497>
Libinzon, R.Ye., and V.V. Konstantinova, Not given. 1963

Effect of Plutonium on Nucleic Acid Metabolism in the Liver and Bone Marrow of the Rabbit. FTD-tt-63-559 (Translated Edition); Part of Lebedinsky, A.V. and Moskalev, Yu.I. (Eds.), Plutonium 239: Its Distribution, Biological Effects and Accelerated Elimination, (p. 104-112), 267 p.

Six to eight month old rabbits were injected intravenously with a plutonium nitrate solution (7 μ Ci/kg) to study the metabolism of nucleic acids in the liver and bone marrow over an extended period of time. The animals were sacrificed at intervals of 1-6 days and 1-6 months postinjection. To determine the rate of nucleic acid regeneration, the rabbits were injected subcutaneously four hours before sacrifice with T^{32} labeled Na_2HPo_4 solution. The results showed an increase of RNA and DNA phosphorus concentration of 50% and 37.5%, respectively in the liver. At six months the amount of DNA declined 21% below normal level. In bone marrow, RNA and DNA phosphorus concentration increased, but DNA decreased somewhat at six months postinjection. Average RNA and DNA content, calculated per nucleus, began to increase at one month and reached a peak value at 4 1/2 months after the poisoning. Average RNA and DNA content per bone marrow cell rose substantially beginning with the 30th day of experimentation. A marked increase in specific activity, for liver RNA, was first noted at 3 months after the poisoning. The DNA regeneration rate began to rise on the first day of observation. At 6 months following Pu administration it reached a peak value, 7.1 times the normal level. The specific activity of bone marrow RNA and DNA showed a distinct decline after one week, but began to increase consistently after months. (Auth) (ST)

<498>
Libinzon, R.Ye., and V.V. Konstantinova, Not given. 1963

Activity of Tissue Phosphatases in Rats Suffering from Subacute or Chronic Plutonium Injury. FTD-tt-63-559 (Translated Edition); Part of Lebedinsky, A.V. and Moskalev Yu.I. (Eds.), Plutonium 239: Its Distribution, Biological Effects and Accelerated Elimination, (p. 113-121), 267 p.

Plutonium nitrate solution was administered intraperitoneally to rats in amounts causing subacute (20 μ Ci/kg) and chronic (6.2, 3.7, and 1.9 μ Ci/kg) injuries to test the effect on tissue phosphatases. At all dose levels acid phosphatase activity in the liver was stimulated at 2, 6, and 9 months following injection. The activity of alkaline liver phosphatase increased 2-5 times above control level during the same observation periods. A rise in alkaline phosphatase activity occurred in the bone marrow and spleen only in the case of subacute injury. A sharp decline of alkaline phosphatase activity, in both subacute and chronic injury, was noted for the kidneys and intestinal mucosa during all observation periods. Activity was reduced by a factor of 2-3 in the kidneys and by a factor of 2-5 in the intestines, as compared to control values. Ionization doses absorbed by the liver were calculated. (ST)

<499>
Moskalev, Yu.I., L.A. Buldakov, and V.N. Strel'tsova, Not given. 1963

Effect of Plutonium 239 on Rat Body. FTD-tt-63-559 (Translated Edition); Part of Lebedinsky, A.V. and Moskalev, Yu.I. (Eds.), Plutonium 239: Its Distribution, Biological Effects and Accelerated Elimination, (p. 122-132), 267 p.

Following a single dose of plutonium citrate (1.25, 2.5, 5, 10, 20, 40, and 80 μ Ci/kg) the survival time of male and female rats was reduced with progressively higher doses. Doses below 5 μ Ci/kg did not appreciably reduce the mean survival time. Doses that reduced survival time (10-20 μ Ci/kg) but caused no acute pathology caused the weight of experimental animals to lag behind that of controls. A loss of body weight was noted for doses exceeding 40 μ Ci/kg. A lowering of the leukocyte count was observed at every dosage level with the severity depending on the dose. The drop in leukocyte count at doses of 2.5-80 μ Ci was irreversible. The erythrocyte count for doses ranging from 2.5-5 μ Ci/kg initially increased and then stabilized at the control level. At higher dosage levels erythrocyte count was reduced by the 14-30th day and remained low over the entire survival period. The change in haemoglobin content nearly paralleled that of the erythrocyte count. The formation of erythrocytes by spleen, liver, and other organs as a compensatory mechanism following bone marrow injury is discussed. The incidence of any particular pathological symptom (tumors), as revealed by autopsy, was higher for a specific radioactive dose. (ST)

Tables 1-4 list survival time, weight dynamics, blood cell counts, and erythrocyte and haemoglobin levels, in rats following a single dose of Pu 239 (1.25-80 μ Ci/kg).

<500>

<500>
 Leberg, V.K., N.A. Kosurnikova, and K.M. Klyzhuk, Not given. 1963

Changes in the Blood System of Rabbit Effected by Plutonium 239. PTD-tt-63-559 (Translated Edition); Part of Lebedinsky, A.V. and Moskalev, Yu.I. (Eds.), Plutonium 239: Its Distribution, Biological Effects and Accelerated Elimination, (p. 133-149), 267 p.

Rabbits were injected intravenously with a plutonium nitrate solution at dose levels of 7 and 2 μ ci/kg body weight and the resultant hematologic changes were evaluated in the light of histological data and plutonium microdistribution patterns from histautoradiograms. Peripheral changes in the two groups of animals are given in tabular and graphical forms. Results showed that the incorporated plutonium caused distinct changes in the blood system and the extent of such changes depended directly on dose, the post injection time interval, and the characteristic microdistribution pattern of the radioisotope. Bone marrow and spleen contained the highest amounts of plutonium and the plutonium was retained preferentially by the reticuloendothelial elements in the marrow. The characteristic pattern of distribution in the bone marrow, along with its aggregation in the reticular cells within a few isolated areas, noted at one week and later, led to nonuniformity of irradiation and focally restricted injuries. Microdistribution in the spleen (red pulp) and lymph nodes (reticuloendothelial elements) was conducive to preservation of lymphatic tissue. Thus the absence of distinct changes in peripheral blood was due to the limited nature of injury and to a high rate of regeneration in the blood forming organs. (ST)

<501>
 Bogatov, L.V., Z.I. Kalaykova, N.P. Kudashova, and S.A. Rogacheva, Not given. 1963

Peculiarities in the Course and Outcome of Radiation Sickness in Dogs Injected Intravenously with the Nitrate of Plutonium 239. PTD-tt-63-559 (Translated Edition); Part of Lebedinsky, A.V. and Moskalev, Yu.I. (Eds.), Plutonium 239: Its Distribution, Biological Effects and Accelerated Elimination, (p. 150-172), 267 p.

Plutonium nitrate was administered intravenously in a fractionated dose (0.2 μ ci/kg total dose) to ten adult mongrel dogs and the functioning of various systems and organs was observed. Over a period of nearly five years the pulse rate, respiration, arterial pressure, condition of the nervous system, gastric secretion, some blood coagulation indices, and the cellular composition of blood were tested at regular intervals. Chronic radiation sickness developed in the dogs and the clinical symptoms passed through three stages: the appearance of progressive changes, partial compensation and stabilization of clinical symptoms at a reduced level, and the outcome. In the first stage of chronic radiation sickness, which lasted a year following the

final plutonium injection, the clinical symptoms involved moderate changes in the nervous, cardiovascular and digestive systems, as well as in hemopoiesis and blood coagulation. In the second stage (2nd-4th year) the functioning of the cardiovascular, digestive and nervous systems was almost completely normalized, as was the process of blood coagulation, but the impairment of hemopoiesis persisted. The final stage set in at the end of 2 years 7 months to 4 years and 7 months after the last plutonium injection. The most frequent outcome of the disease stricken dogs was the development of osteosarcomas, observed in 75% of cases. The average latent period for bone tumor formation, under conditions of Pu 239 administration, was 3 years and 10 months. (Kuth) (ST)

Table 3 lists the effects of cumulation radiation dose from plutonium nitrate in dogs as shown by symptoms of radiation sickness and development of tumors.

<502>
 Strel'tsova, V.N., Not given. 1963

Pathological Anatomy of Plutonium 239 Sickness. PTD-tt-63-559 (Translated Edition); Part of Lebedinsky, A.V. and Moskalev, Yu.I. (Eds.), Plutonium 239: Its Distribution, Biological Effects and Accelerated Elimination, (p. 173-193), 267 p.

Rats were injected intravenously with a plutonium citrate solution in doses ranging from 1.25-250 μ ci/kg and intramuscularly with doses ranging from 1.25-50 μ ci/kg and dogs were injected intra muscularly with doses ranging from 1.25-3 μ ci/kg to study the characteristic morphological changes in animals suffering from acute, subacute or chronic radiation sickness. Symptoms were noted primarily in the blood forming organs, bone tissue and liver and were correlated with the distribution of plutonium 239 in the body. In acute injuries the pathological processes were characterized by circulatory disorders including massive multiple hemorrhages and perivascular edemas, destruction of blood forming tissue, and similar developments in the parenchymatous organs and gastrointestinal mucosa. In the subacute stage the pathological processes were more variable. In rats the regeneration of blood forming tissue in the bone marrow was incomplete; lymphopoiesis was restored; and ulcers and necrosis in the colon along with precirrhotic and cirrhotic changes in the liver and cessation of spermatogenesis were noted. Rats and dogs suffering from chronic radiation injury developed cirrhoses of the liver hyper- and hypoplastic changes in the blood forming tissue, nephrosclerosis, intraspecific inflammatory processes, and malignant neoplasms in blood forming tissue and bones. In dogs the same pathological symptoms were induced by doses that were 10 times less than those administered to rats. Vascular angina developed in some of the dogs. Rats injected with doses insufficient to shorten the natural life span did not develop neoplasms. (ST)

<503>

Nifatov, A.P., Not given. 1963

Morphological Changes in Rabbit and Dog Liver Induced by Plutonium 239. FTD-tt-63-559 (Translated Edition); Part of Lebedinsky, A.V. and Moskalev, Yu.I. (Eds.), Plutonium 239: Its Distribution, Biological Effects and Accelerated Elimination, (p. 194-214), 267 p.

Rabbits were injected intravenously with the nitrate salt of plutonium in doses of 21, 14, 7, and 2 μ Ci/kg and rats were injected intraperitoneally with a single dose of 7 μ Ci/kg to study the morphologic changes in the liver following plutonium injury. In addition sodium plutoniu triacetate was administered intraperitoneally to rats in a single dose of 6.3 μ Ci/kg. An attempt was made to evaluate quantitative changes in the liver by making a differential count of the various liver cells. The animals were sacrificed at various intervals up to one year postinjection. Morphologic changes in the liver following plutonium injury developed in a definite sequence and depended on the physico-chemical state of the isotope at the time of administration, on the dose, and on the species of experimental animals. The majority of rabbits injected with plutonium nitrate, in doses of 21, 14 and 7 μ Ci/kg, developed liver cirrhoses after 3-6 months. At the dosage level of 2 μ Ci/kg a moderate number of the animals showed late symptoms of cirrhosis at the end of 9 months. In animals injected with 2 μ Ci/kg of plutonium, 9 months after administration, the destructive processes were succeeded by regeneration, including the formation of regenerative hepatomas and adenomas of the bile ducts. Morphological changes in rats induced by plutonium nitrate (7 μ Ci/kg) were much less pronounced than in rabbits, and were, characterized by simultaneous dystrophic and regenerative processes leading to some rebuilding of the liver structure. Plutonium administered to the rat in the form of a complex salt, sodium plutoniu triacetate, caused less damage to the liver than did plutonium nitrate. (Auth) (ST)

<504>

Bukhtoyarova, Z.M., Not given. 1963

Dynamic Changes of Bone Tissue in Rabbits Poisoned with Plutonium 239. FTD-tt-63-559 (Translated Edition); Part of Lebedinsky, A.V. and Moskalev, Yu.I. (Eds.), Plutonium 239: Its Distribution, Biological Effects and Accelerated Elimination, (p. 215-229), 267 p.

Following intravenous injection of plutonium nitrate (21, 14, 7, and 2 μ Ci/kg), into six to eight month old rabbits, the proximal epiphysis of the femur, tibia and humerus; the distal epiphyses of the femur; ribs 3 to 6; thoracic vertebrae; sternum; and occipital bones were examined. The three higher doses of plutonium caused a shortening of the animals' survival time, changes in the peripheral blood, and a sharp drop in body weight. In acute and subacute radiation

sickness (21, 14, and 7 μ Ci/kg) destructive processes, associated with bone marrow aplasia, predominated. In chronic injuries destructive changes were less distinct. New tissue formation accompanied by pretumorous changes were apparent by the third month. At the dosage level of 2 μ Ci/kg tumors were present in 51.5% of the animals. Tumors were located in the spinal column (41.2%) and long bones (11.7%). (ST)

<505>

Belyaev, Yu.A., Not given. 1963

Effect of Ion Exchange Resins and Complexons on Distribution of Plutonium Introduced into the Gastrointestinal Tract. FTD-tt-63-559 (Translated Edition); Part of Lebedinsky, A.V. and Moskalev, Yu.I. (Eds.), Plutonium 239: Its Distribution, Biological Effects and Accelerated Elimination, (p. 230-236), 267 p.

Experimental data are reported on the effectiveness of some ion exchange resins and one chelating agent (DTPA) on plutonium removal from the gastrointestinal tract of the rat. Following administration of plutonium nitrate or citrate solutions (120-270 μ Ci/kg) through a feeding tube, the experimental animals received per os an aqueous suspension of an ion exchange resin or an intravenous injection of DTPA. The animals were sacrificed 72 hours later and skeletal and liver plutonium determinations were made. Both cation and anion exchange resins reduced plutonium absorption from the intestines and skeletal liver content by a factor of 2 1/2-10. Anion exchange resins were more effective than cation. Effectiveness declined with time postinjection and was related to the rate of plutonium absorption from the gastrointestinal tract. Injected CaNa3DTPA was effective at later times, when ion exchange resins proved no longer effective. (ST)

<506>

Belyaev, Yu.A., Not given. 1963

Effect of Some Complexons on Plutonium Removal in Rats. FTD-tt-63-559 (Translated Edition); Part of Lebedinsky, A.V. and Moskalev, Yu.I. (Eds.), Plutonium 239: Its Distribution, Biological Effects and Accelerated Elimination, (p. 237-245), 267 p.

The results of testing the effects of five complexons on plutonium removal in rats following intraperitoneal injection of 4.4 μ Ci/kg of plutonium citrate are reported. The compounds studied were 1,2-diaminocyclohexanetetracetic acid (DCTA), ethyl ester of diaminotetracetic acid (EDTA), diethylenetriaminopentacetic acid (DTPA), di-N-carboxymethylenediamino-bis-methyl phosphinic acid (EDPA) and EDTA. EDTA and DTPA showed both early and late effects and reduced the plutonium level in the skeleton and parenchymatous organs. DTPA was superior to EDTA, especially in acute experiments. The calcium diammonium salt of EDPA had no effect on plutonium excretion except in acute experiments and was fairly inactive when administered 24 hours after plutonium administration. DCTA and EDTA were the least effective. (ST)

<507>

<507>
Ferguson, J.M., U.S. Naval Radiological Defense Laboratory, San Francisco, CA. 1963, May 7

Ground Roughness Effects for Fallout-Contaminated Terrain: Comparison of Measurements and Calculations. USNRDL-TR-685; AD-410413; 24 p.

The effect of ground roughness on the radiation field above fallout-contaminated ground was studied at the Nevada Test Site. Measurements were made by five different field projects on four different shots (Operation Teapot, Operation Plumbcb, Operation Jangle and Operation Sunbeam) over different ground, and at different times after detonation. At past weapons tests, the dose rate over fallout-contaminated ground has been measured as a function of height and angle. Those measurements are compared with calculations of the same quantities for 1.12-hr fission products uniformly distributed on a smooth plane. None of the experiments is detailed enough to lead to firm conclusions about the ground roughness effect. However, the data indicate that the ground roughness effect can be simulated by assuming that the fallout is buried under a thin layer of material. For desert terrain this thickness of material is equivalent to about 25 plus or minus 10 ft of air. At 3 ft above the ground this corresponds to a reduction in dose rate by a factor of 0.6 to 0.7, compared to what would be received over a smooth plane. (Auth) (FNN)

<508>
Wilkinson, P.N., and F.E. Hoecker, University of Kansas, Lawrence, KS. 1953

Selective Placental Transmission of Radioactive Alkaline Earths and Plutonium. Transactions of the Kansas Academy of Science, 56(3), 341-363

A series of experiments is described in which the placental transmission of several of the alkaline earth metals and plutonium is investigated in rats. On the 15th day of gestation the pregnant females were injected intraperitoneally with the radionuclide. Results are presented which demonstrate the existence of significant differences in the physiological activity of these elements. It was found that the arrangement of these compounds in order of the magnitude of transmission is ca 45 > Ba 140 > Pu 239 > Ra 226. A discussion of the possible significance of these results and the results obtained by other workers is presented. It was concluded that the placental transmission of the compound investigated is dependent upon the molecular weight of the cation and that analogies between the known properties of one member of the group and those of another member should be made with extreme caution. It was conjectured that the results were indicative of a fundamental difference in metabolic handling of these substances by the animal organism and that similar differences might exist in the mechanism of deposition of these elements in mammalian bone. (Auth)

Figure 4 shows litter average values of fetal and placental activity measurements for Pu 239.

<509>
West, J.E., and W.J. Bair, General Electric Company, Hanford Laboratories, Biology Laboratory, Richland, WA. 1964

Plutonium Inhalation Studies. 5. Radiation Syndrome in Beagles After Inhalation of Plutonium Dioxide. Radiation Research, 22, 489-506

The clinicopathologic changes in beagles after a single inhalation exposure to about 2 mci of Pu 239 PuO₂ aerosol are described. Death occurred in 4 of 5 dogs within 96 days. The earliest clinical change was a progressive depression of lymphocytes beginning within 1 week after exposure. Radiation damage to the lungs was first evidenced by increased respiratory rates at 3 weeks after exposure. Respiratory rates of over 200 per minute, a tenfold increase above the normal breathing rate, occurred before death. Cyanosis, a concomitant finding at later stages, was an additional indication of injury to the lungs. Other important signs included anorexia, dehydration, and progressive weight loss of up to 25% of pre-exposure values. Tissue changes were limited to the lungs and associated lymph nodes which contained 99% of the body burden of plutonium. (Auth)

Figure 1 shows urinary and fecal excretion of Pu 239 after inhalation of Pu 239 PuO₂. Table 1 shows Pu content of tissues and excreta.

<510>
Weeks, M.H., J. Katz, W.D. Oakley, J.E. Ballou, L.A. George, L.N. Bustad, R.C. Thompson, and H.A. Kornberg, General Electric Company, Radiological Sciences Department, Biology Section, Richland, WA. 1956

Further Studies on the Gastrointestinal Absorption of Plutonium. Radiation Research, 4, 339-347

In chronic-feeding experiments the concentration of plutonium in the solution fed had no effect on the fraction absorbed from the gastrointestinal tract of rats over the range 10(2-5) ug/ml to 1 ug/ml. The average absorption from a pH 2 Pu(+6) nitrate solution was 0.0028%. In single-feeding experiments the absorption of plutonium (pH 2 Pu(+6) nitrate solution) from the gastrointestinal tract of 3 pigs averaged 0.0022%. This figure did not differ significantly from results obtained from single-feeding and chronic-feeding experiments on rats. Plutonium in more acidic solutions and Pu(+6) were absorbed to a considerably greater extent. Excretion of plutonium in the urine of rats during the first 9 days after intragastric administration amounted to about 20% of the total plutonium absorbed. Less than 1% of plutonium fed to rats remained in the gastrointestinal tract 2 days after feeding. (Auth)

<511>

Wagner, V., J. Andrikova, and J. Sevc, Czechoslovak Academy of Sciences, Otorhinolaryngological Laboratory, Prague, Czechoslovakia; Institute of Industrial Hygiene in Uranium Industry, Pribram, Czechoslovakia; Institute of Hygiene and Epidemiology, Department of Radiation Hygiene, Prague, Czechoslovakia. 1973

Investigation of Immunoglobulin Levels in Blood-Serum of Uranium Miners After a Higher Exposure to Ionizing Radiation. CO97-720503; Part of Budjoso, E. (Ed.), Health Physics Problems of Internal Contamination, Proceedings of the IAEA 2nd European Congress on Radiation Protection held in Budapest, Hungary, May 3-5, 1972, (p. 341-347), 655 p.

The influence of 7.35×10^{20} R/W/M mean exposure of ionizing radiation on levels of immunoglobulins (Ig) was followed in a group of 35 uranium miners compared with a control group with lower exposure to mean 4.7×10^{20} R/W working level months. The levels of Ig were ascertained in the group with higher exposure at the time of starting work and after 1 year of exposure. The Ig levels in the group with lower exposure were tested after 1 year of exposure and were compared with a control group of non-exposed persons. The IgG levels were reduced in 85%, the IgM levels in 61% of the cases in the higher exposure group. The reduction reached the hypogammaglobulinemic levels in some miners and was followed by a propensity to infections of the respiratory tract. The IgA levels rose slightly in many cases. The dependence of the Ig levels on the rate of exposure was not absolute and showed great variations. (Auth)

<512>

Volchok, H.L., B. Knuth, and M.I. Kleinsman, Health and Safety Laboratory, Environmental Studies Division, New York, NY. 1974, January 1

The Respirable Fraction of Strontium 90, Plutonium 239 and Lead in Surface Air. HASL-278; Part of Hardy, E.P., Jr., Fallout Program Quarterly Summary Report, September 1, 1973 through December 1, 1973, (p. I-36 - I-50), 163 p.

Equipment has been developed to obtain samples of airborne dust closely approximating the particle characteristics of the respirable fraction. One such device, the horizontal elutriator, removes all of the larger particles in a series of horizontal, closely spaced, plates. A back-up filter collects the respirable particles. Using a small horizontal elutriator, the respirable fractions of airborne Sr 90, Pu 239 and stable lead were obtained for surface air in and near New York City. The mean results were greater than or equal to 0.96, 0.84 and 0.87 respectively.

<513>

Vaskov, L.S., Joint Research Institute of Hygiene and Labour Safety, Sofia, Bulgaria. 1973

Comparative Clinical Studies on the Occupational Hazards from Inhaled Radon Daughters in Workers of Non-Uranium Mines and Mineral Baths. CO97-720503; Part of Budjoso, E. (Ed.), Health Physics Problems of Internal Contamination, Proceedings of the IAEA 2nd European Congress on Radiation Protection held in Budapest, Hungary, May 3-5, 1972, (p. 605-650), 555 p.

Clinical, laboratory, functional respiratory, and sputum cytological studies in 585 workers of non-uranium metal mines and 238 workers in mineral baths with similar atmospheric concentration of radon daughters were reported. No significant radiation alterations in the radon workers were found, except a tendency to increase the percentage of "atypical" cells in sputum. Further interventional studies at different levels of "pure" radon daughters exposures are necessary in order to find more exactly the dose-effect relationships. (Auth)

<514>

Ullberg, S., A. Nelson, H. Kristoffersson, and A. Engstrom, Royal Veterinary College, Department of Pharmacology, Stockholm, Sweden; Research Institute of National Defense, Medical Division, Sundbyberg, Sweden; Karolinska Institutet, Department of Medical Physics, Stockholm, Sweden. 1962, February

Distribution of Plutonium in Mice. An Autoradiographic Study. Acta Radiologica, 58, 459-471

The distribution of plutonium 239 was investigated by whole body autoradiography in male mice, and pregnant as well as non-pregnant female mice, at 5 min up to 128 days after administration. The plutonium was accumulated predominantly in the hard tissues but an uptake and retention was also observed in certain soft tissues such as the liver, ovarian follicles, fetal membranes and mammary glands. (Auth)

<515>

Tsakropoulou, E.G., C.E. Breckinridge, Jr., W.J. Bair, and K.E. McDonald, General Electric Company, Hanford Atomic Products Operation, Biology Laboratory, Richland, WA. 1964, January 15

Attempts to Remove Inhaled Plutonium. HW-80500; Part of Kornberg, H.A. and Swersey, E.G. (Eds.), Hanford Biology Research Annual Report for 1963, (p. 44-65), 282 p.

DTPA decreased the total body burden of Pu in rats but not the amount retained in the lung after plutonium nitrate inhalation. Attempts to remove Pu after the inhalation of PuO₂ were unsuccessful. Drugs that increased sputum secretion in the respiratory tract, e.g., KI, tend to reduce the clearance of PuO₂ and bronchodilators, e.g., isoproterenol hydrochloride (Isuprel) tend to accelerate the clearance rate. (Auth)

<516>

<516>
Lebedinsky, A.V., and Yu.I. Moskalev, Not given. 1963

Plutonium 239: Its Distribution, Biological Effect and Accelerated Elimination. PTD-tt-63-559 (Translated Edition); 267 p.

The symposium covers a wide range of topics relating to plutonium 239 toxicity. The scope of investigation covers standard plutonium compounds and the peculiarities of distribution and biological activity displayed by recently synthesized compounds such as Na plutonyl triacetate. Topics covered include plutonium nitrate accumulation and retention, variation of plutonium 239 distribution with species, plutonium transfer from mother to fetus, and physicochemical state of plutonium in the blood and binding to cellular fractions. The second part of the symposium contains data on the specific biological effects of plutonium as dependent on the introduced activity and the animal species. Clinical symptoms, pathological-anatomic changes, and metabolic impairments following administration to the dog are outlined and, where possible, correlated with microdistribution. The effect of five complex building compounds on excretion and gastrointestinal tract absorption was studied. Twenty-one papers were delivered at the symposium; all were abstracted separately for the data base. (ST)

<517>
Belyaev, Yu.A., T.V. Konstantinova, and N.I. Yelkina, Not given. 1963

Plutonium Distribution in Rabbits. PTD-tt-63-559 (Translated Edition); Part of Lebedinsky, A.V. and Moskalev, Yu.I. (Eds.), Plutonium 239: Its Distribution, Biological Effects and Accelerated Elimination, (p. 1-7), 267 p.

Male and female rabbits were injected with Pu 239 Pu(NO₃)₄ solution at doses of 7 and 2 uCi/kg body weight to study the characteristic pattern of plutonium distribution. Animals were sacrificed at 1-14 days and 1-12 months postinjection and the amounts of plutonium deposited in the skeleton, liver, kidneys, spleen, lungs, muscles, bone marrow, and gastrointestinal tract were determined. Up to 70% of the total dose accumulated in the liver during the first days following injection. At 6 and 12 months 43 and 22%, respectively were retained in the liver. Skeletal content increased from 20-30% in the first few days to 45% after six months. Substantial amounts were retained by the bone marrow. The effect of the type of compound administered and physicochemical state in the blood on distribution is discussed. (ST)

<518>
Rysina, T.N., and R.A. Yerokhin, Not given. 1963

Distribution and Excretion of Plutonium in Dogs at Long Intervals Following Administration. PTD-tt-63-559 (Translated Edition); Part of Lebedinsky, A.V. and Moskalev, Yu.I. (Eds.), Plutonium 239: Its Distribution, Biological Effects and Accelerated Elimination, (p. 8-18), 267 p.

Dogs were injected intravenously with a solution of Pu(NO₃)₄ four times at one month intervals to study plutonium distribution and excretion at long intervals following administration. The total dose amounted to 0.2 uCi/kg. Several of the dogs were also exposed to external irradiation from a cobalt source in daily doses of 10 R over a five month period. At three months 73% of the administered plutonium was retained by the body. Skeletal and liver retention were 40 and 30% respectively. The rate of excretion from the body varied with different tissues. The effective half-life for the skeleton was 4000 days. No consistent decline of liver activity was observed. The highest rate of excretion (1.42-0.19% per day) was recorded in the first three to four days following injection. After two years the rate of excretion fell to 0.005% daily. During the first six months, nearly equal amounts of plutonium were excreted in the urine and feces; thereafter, rate of excretion through the kidneys was higher. External irradiation had no appreciable effect on plutonium distribution or excretion. (ST)

<519>
Belyaev, Yu.A., N.I. Yelkina, V.V. Konstantinova, and I.A. Tseveleva, Not given. 1963

Toxicologic Properties of Sodium Plutonyl Triacetate and Its Distribution in the Rat Body. PTD-tt-63-559 (Translated Edition); Part of Lebedinsky, A.V. and Moskalev, Yu.I. (Eds.), Plutonium 239: Its Distribution, Biological Effects and Accelerated Elimination, (p. 19-24), 267 p.

Adult rats were injected intraperitoneally with 21, 11, 6.3, 3.3 and 1.6 uCi/kg of sodium plutonyl triacetate, Na PuO₂(CH₃COO)₃, to study the long term distribution, excretion, toxic effect, and carcinogenic doses of this salt. The distribution pattern resembled that of plutonium citrate and plutonyl nitrate. Fifty to sixty percent of the administered dose accumulated in the skeleton and 15-18% in the liver. Distribution did not depend on dosage level. Skeletal plutonium content decreased to 42 and 27% of the administered dose after 9 and 18 months. The dosage levels of 3.3 and 1.6 uCi/kg were found to be most carcinogenic. The dose level of 1.6 uCi/kg had no effect on mean survival time. Excretion with the urine proceeded at a higher rate than with other plutonium compounds. Erythrocyte count was reduced at all doses and leucocyte count at the three higher dose levels. (ST)

<520>

Lemberg, V.K., and A.P. Nifatov, Not given. 1963

Microdistribution of Plutonium in Rabbit and Rat Liver. PTD-tt-63-559 (Translated Edition); Part of Lebedinsky, A.V. and Moskalev, Yu.I. (Eds.), Plutonium 239: Its Distribution, Biological Effects and Accelerated Elimination, (p. 25-38), 267 p.

The dynamics of microdistribution of plutonium 239 in rabbit and rat liver was studied using the technique of histautoradiography. Rabbits were injected intravenously and rats intraperitoneally with plutonium nitrate in a single dose of 7 $\mu\text{Ci}/\text{kg}$. Additional rats were injected with 6.3 $\mu\text{Ci}/\text{kg}$ of sodium plutonyl triacetate. Plutonium nitrate preferentially accumulated in the reticuloendothelial cells of the liver. Sodium plutonyl triacetate was retained by the liver to a lesser extent and was uniformly distributed throughout all the structural elements. Species differences were noted in the dynamics of microdistribution of plutonium nitrate in the liver. (ST)

<521>

Lemberg, V.K., and Z.M. Bukhtyarova, Not given. 1963

Histoautoradiography Data on Plutonium Distribution in the Bones of Rat and Rabbit. PTD-tt-63-559 (Translated Edition); Part of Lebedinsky, A.V. and Moskalev, Yu.I. (Eds.), Plutonium 239: Its Distribution, Biological Effects and Accelerated Elimination, (p. 39-51), 267 p.

Histoautoradiography was used to study plutonium distribution in the bones of rats and rabbits injected with 7 $\mu\text{Ci}/\text{kg}$ of plutonium nitrate. Animals were sacrificed from one day to 7 1/2 months postinjection. Plutonium administered in the nitrate form was deposited largely in the skeleton and predominantly in the endosteum, periosteum, and bone marrow and, to a lesser extent, in bone tissue proper. Numerous species differences were observed. In rabbits the plutonium content was maintained at a maximum value from the seventh day through 4 1/2 months. In rats it reached a maximum after three days followed by a gradual decrease in the bone marrow. Rabbits showed a marked aggregation of plutonium particles in the bone marrow reticuloendothelial cells. In both species the endosteum and periosteum showed an affinity for plutonium 239 hr following administration. In rats it reached a fixed level after three to seven days; in rabbits it increased for a period of 4 1/2 to six months after administration. (ST)

<522>

Rysina, T.N., and I.A. Tseveleva, Not given. 1963

Transmission of Plutonium to Offspring. PTD-tt-63-559 (Translated Edition); Part of Lebedinsky, A.V. and Moskalev, Yu.I. (Eds.), Plutonium 239: Its Distribution, Biological Effects and Accelerated Elimination, (p. 52-57), 267 p.

Pregnant and lactating dogs received four intravenous injections of plutonium nitrate at one month intervals to study the transmission of plutonium to offspring. The total administered dose was 0.2 $\mu\text{Ci}/\text{kg}$. The amounts of plutonium transmitted to the fetus were minute. The specific activity in newborn puppies was of the order of $10(8-5)$ to $10(8-6)\%$ of the dose received by the mother. Plutonium concentration in the tissues of pups three to seven months old was less by a factor of 20-50 as compared with newborn puppies. Specific activity values obtained for the bones were higher than those recorded for the liver. Ionization doses calculated for the vertebrae of newborns ranged from 0.2 rem/day during the plutonium administration stage to 0-0.045 rem/day at later observation periods. (ST)

<523>

Finkel, M.P., Argonne National Laboratory, Division of Biological and Medical Research, Lemont, IL. 1959

Late Effects of Internally Deposited Radionuclides in Laboratory Animals. Radiation Research, Supplement 1, 265-279

The late effects of moderate and low doses of radioisotopes are reduction in life span and induction of tumors. These responses are influenced by the type and energy of the radiations, by the amount of material that remains in the body, and by the location of the retained material. Comparisons of the effects of intravenous injections of Ra 226, Pu 239, U 233, Po 210, Sr 90, and Ca 45 in mice can contribute to an understanding of the many factors involved in the long-term effects of internal emitters. On an injected microcurie basis, the alpha-particle emitters are more toxic than the beta-particle emitters. Radium is the least effective of the former in reducing life span, and its potency as a skeletal carcinogen is less than that of Pu 239 but slightly greater than that of U 233. The differences in effectiveness between injected microcurie doses of Sr 90 and Ca 45 are largely due to differences in beta-ray energy. In addition to the induction of soft tissue tumors by Po 210 and the induction of malignant bone tumors by the other isotopes, all influenced the tumors of the blood-forming tissues. Since these neoplasms seemed to be affected by levels of Sr 90 that produced no change in life span or in number of osteogenic sarcomas, and since they show certain similarities to the human leukemias, they are an important subject for further study. (Auth)

<528>

<524>
 Fabrikant, J.I., and C.L.D. Smith, Institute of Cancer Research, Physics Department, Sutton, Surrey, England. 1960, January

Radiographic Changes Following the Administration of Bone-Seeking Radionuclides.
British Journal of Radiology, 37(433), 53-62

During investigations on the carcinogenic effects of alpha and beta emitting radionuclides, serial radiographs of rats injected with single and repeated doses of P^{32} , Pu^{239} , or Am^{241} were studied to record the development of radioinduced changes. Among the lesions observed were failure of longitudinal bone growth, abnormal bone moulding, pathological fractures, and the production of sclerosing, lytic, and mixed forms of osteosarcoma. The induction of bone tumors could be identified early and the development followed closely; radiographic changes were described. (Auth)

<525>
 Fioratti, M.P., and S.R. Piermattei, Comitato Nazionale per l'Energia Nucleare, Laboratorio Dosimetria e Standardizzazioni, Rome, Italy. 1973

Evaluation of Activity in Lung and Lymph Nodes Following Inhalation of Radioactive Insoluble Aerosols. CONF-720503; Part of Bujdosó, E. (Ed.), **Health Physics Problems of Internal Contamination**, Proceedings of the IRPA 2nd European Congress on Radiation Protection held in Budapest, Hungary, May 3-5, 1972, (p. 65-76), 655 p.

Data available in the literature for the period 1962-1972 on the elimination of insoluble Pu compounds from the lungs and retention in lymph nodes of experimental animals following inhalation are examined. Using the Kotrapa expression the absorbed dose from lymph nodes is also evaluated. On the basis of the experimental data it is concluded that for the elimination of insoluble material existing in the lung a component with a half-life of about 257 days exists, and a fraction $p = 0.0086$ of this material is transferred to lymph nodes. Considering in the analysis of data only particles with a count median diameter less than or equal to less than 0.5 μ , a long-life component for the elimination of plutonium from lung appears, but its existence is rather questionable owing to the lack of experimental data. Functions are given which can be used to obtain information on the fraction of insoluble compounds released from lung and on the build-up of this material to lymph nodes in the range to about 3,000 days after inhalation. (PMH)

Table 1 shows experimental values of the ratio of Pu content in the lymph nodes to that in the lung.

<526>
 McWood, W.D., General Electric Company, Hanford Atomic Products Operation, Health Operation, Richland, WA. 1962, August

Radioactive Material in the Body: Detection and Treatment. *Archives of Environmental Health*, 5, 81-86

Methods of identifying and determining the amount of radionuclide in the body, evaluating the hazard involved, and decontamination treatments are reviewed. (ST)

<527>
 Tsambropoulos, E.G., and B.O. Stuart, Battelle Memorial Institute, Pacific Northwest Laboratories, Biology Department, Richland, WA. 1967, July

Effect of Plutonium 239 Pu02 Inhalation on Lung Tissue. BNWL-480; Part of Thompson, R.C. and Sveeza, E.G. (Eds.), *Annual Report for 1966*, (p. 80-81), 207 p.

Ninety-six 4-month-old female rats were exposed to six different levels of plutonium oxide aerosols resulting in initial lung burdens ranging from 0.3 to 8 μCi . Within 2-1/2 months after exposure, lungs from 24 animals representing all groups were analyzed for total lipid, lipid phosphorus, collagen, and elastin content. Tissue samples were also taken for histopathology. It was shown that inhaled Pu^{239} Pu02 caused an increase in collagen associated with a decrease in elastin and neutral lipids of lung tissue. Histologically, lungs of the Pu^{239} Pu02 rats generally exhibited a thickening of alveolar walls and a deposition of fibrinous material within the alveoli. These observations agree with the biochemical findings. (PMH)

Table 1 shows rat lung collagen, elastin and lipid content after inhalation of Pu^{239} Pu02.

<528>
 Taylor, G.H., T.P. Dougherty, and L. Shabestari, University of Utah, College of Medicine, Radiobiology Division, Department of Anatomy, Salt Lake City, UT. 1963, September 30

Non-Skeletal Tumor Incidence Observed in Beagles with Retained Burdens of Radium 226, Radium 228, Thorium 228, Plutonium 239 or Strontium 90. CCC-228; Part of Dougherty, T.P., *Research in Radiobiology, Semi annual Report of Work in Progress on the Chronic Toxicity Program*, (p. 95-108), 185 p.

Beyond six to seven years age, a significant number of non-skeletal tumors have been observed in beagles receiving a single intravenous injection of Ra 226, Ra 228, Th 228, Pu 239, or Sr 90. Comparison with the control animals has tentatively indicated that most of these were naturally occurring tumors and were not radiation induced. The debility and premature deaths arising from this naturally occurring factor have been successfully minimized by early surgical care. Such measures to limit the losses from this and other non-radiation induced causes have become especially important at the lower dose levels where long latent periods are anticipated for some of the radiation induced lesions. (Auth)

AUTHOR INDEX

- Abrams, R. 268, 289
 Ackerman, T.L. 8
 Adas, R.R. 217
 Albert, R.E. 269
 Alexander, L.T. 398
 Allred, D.M. 136, 260
 Amato, A.J. 258
 Anavas, R. 421
 Anders, E. 189
 Andersen, B.V. 84
 Anderson, J.R. 137
 Andrews, R.L. 281
 Andrikova, J. 511
 Anspaugh, L.R. 17, 22, 23, 138, 208, 409
 Antoshchenko, G.P. 242
 Aoki, I. 3, 24
 Archer, V.E. 139
 Aristov, V.P. 178
 Arnold, J.S. 278, 279
 Astley, C. 141
 Atherton, D.R. 95, 97, 174, 218, 316, 318, 319, 351, 375, 401, 402
 Au, F.H.P. 11
 Axelrod, D. 228, 225
 Babb, A.L. 406
 Bair, W.J. 61, 86, 146, 209, 340, 346, 355, 357, 361, 397, 461, 479, 483, 509, 515
 Baker, B.L. 336
 Bakhurov, V.G. 417
 Salebukha, V.S. 395
 Ballou, J.E. 37, 80, 185, 186, 175, 248, 296, 347, 376, 510
 Ballou, J.E. (Ed.) 45
 Bamberg, S.A. 8
 Baranovskaya, L.S. 395
 Barber, A.J. 228
 Barron, E.S.G. 490
 Barth, J. 12
 Bartholomew, G.A. 238, 235
 Barton, C.J. 261
 Bata, L.C. 177
 Bates, T.H. 301
 Baumgartner, W.V. 147
 Baxter, D.W. 83, 148, 149
 Bay, R.C. 1442
- Beach, S.B. 195, 311
 Beal, J. 69
 Beamer, J.L. 204
 Beasley, T.M. 356, 403
 Beck, D.E. 260
 Becker, E. (Comp.) 42
 Becker, V.J. 386
 Bell, W.E. 409
 Belyaev, Yu.A. 519
 Belyaev, Yu.A. 885, 492, 493, 505, 506, 517
 Benedict, G.E. 472
 Bennett, J.H. 386
 Bennett, S. 448
 Bentz, J.P.M. 394
 Bernard, S.R. 38, 76
 Bishop, S.R. 409
 Bistline, E.W. 90
 Blair, M.A. 150, 373
 Blies, W.L. 28
 Bloom, S.G. 27
 Bogatov, I.V. 378, 501
 Bokowski, D.L. 467
 Boocock, G. 396
 Booth, H.G. 18
 Boransky, R. 39
 Borg, I.Y. 151
 Borisov, V.P. 152
 Borisova, N.D. 350, 466
 Buss, H.E. 153
 Boulay, R. 489
 Bowen, V.T. 262
 Bowers, J.E. 442
 Boyd, G.A. 158, 155
 Boyd, H.A. 119
 Boyd, T.H. 301
 Bradley, W.G. 15
 Brady, D.H. 24
 Branson, F.E. 156
 Branca, G. 321
 Breckinridge, C.B. Jr. 515
 Bretthauer, R.W. 18, 109
 Breuer, P. 421
 Brewer, L.H. 43
 Brewer, L.W. (Ed.) 157, 158, 159, 160, 321, 405, 479
 Brightwell, J. 161
 Brinkton, R.P. 260
 Brodsky, A. 162
 Brooks, A.L. 99
 Brown, G.W., Jr. (Ed.) 227
 Brownell, L.E. 275
 Bruegger, F.W. 30, 96, 97, 210, 316, 319, 375, 402
 Bruce, A.M. 292
 Buday, A.R. 488
 Bukhotoyarova, Z.N. 191, 283, 504, 521
 Buldakov, L.A. 118, 192, 240, 281, 285, 273, 385, 499
 Burson, S.G. 425
 Burton, L.K. 426
 Busch, R.W. 86
 Busch, R.W. (Ed.) 85
 Buschbom, R.L. 294
 Bustad, L.K. 197, 198, 199, 320, 321, 333, 405, 510
 Button, J.C.E. (Comp.) 163
 Cable, J.W. 343
 Caldwell, R. 162
 Campbell, R. 287
 Campbell, I.R. 488
 Castrill, S.T. 287
 Carfagno, D.G. 170
 Carpenter, B.S. 211
 Casarett, G. 154, 195
 Casarett, G.W. 412
 Case, A.C. 175
 Casey, H.W. 199, 320, 321
 Chepman, T.J. 171
 Chiacchierini, B.P. 169
 Childrens, J.D. 8
 Chladek, R. 149
 Christensen, W.B. 262, 328, 438
 Church, B.W. 28
 Chatkin, O.A. 306, 307
 Cigna, A.A. 421
 Clark, L., Jr. 315
 Clarke, J.P. 301
 Clarke, R.H. 413
 Clarke, W.J. 475, 197, 198, 320, 321, 405, 479

AUTHOR INDEX

- Cloke, E.R. 103
 Cloudley-Thompson, J.L. 228
 Cochran, T.M. 435
 Cohen, M. 115, 435
 Coles, G.A. 236
 Cole, J.S. 326
 Cole, R.S. 298
 Corley, J.P. 156, 480
 Craig, D.R. 29, 91, 213, 286
 Crandall, D.G. 70
 Crook, G.H. 187
 Crowley, J. 224, 225
 Dagle, G.E. 455
 Dahlgren, O. 437
 Danpure, C.J. 415
 Davies, C.H. 638
 Davis, J.S. 107
 Dawson, W.R. 234, 235
 Dean, R.G. 408
 Decker, J.R. 91
 Dell, R.B. 60, 98, 277, 315
 Dillie, J.V. 60, 342, 352, 439,
 460, 464, 465
 Dionne, P.J. 32, 372
 Djuric, D. 33
 Dockum, W.L. 38, 197
 Dolphin, G.W. 198, 199, 195
 Dougherty, J.H. 257, 262, 322,
 325, 441, 462, 483
 Dougherty, T.P. 85, 249, 251, 262,
 318, 317, 323, 328, 528
 Donaway, P.B. (Ed.)
 Dorakovic, A.B. 116, 486
 Durbin, P.W. 103
 Dushauskene-Dush, W.P.V. 272
 Dutton, J.W.R. 57
 Eakin, J.D. 276
 Eastwood, E.R. 875
 Eberhardt, L.L. 16, 27, 259
 Edmundson, E. Jr. 457
 Elkins, W.T. 277, 895
 Elwood, J.W. 458
 English, S.G. 267
 Engstrom, A. 514
 Erkhan, M.A. 459
 Esington, E.B. 2
 et al 36, 58
 Evans, R.D. 210
 Eve, I.S. 385
 Fabrikant, J.I. 88, 528
 Fairhall, L.T. 31
 Fedorayava, L.A. 286
 Ferguson, J.M. 507
 Fink, R.H. 150, 155, 294
 Fink, R.H. (Ed.) 432
 Finkel, H.P. 433, 523
 Finkle, R.D. 288
 Fioratti, M.P. 525
 Fisher, R. 228
 Flamenbaum, W. 377
 Folson, T.R. 456
 Foreman, R. 344
 Forker, L. 268
 Fowler, E.B. 2, 404
 Fowler, V.G. 409
 Frankel, A. 155
 Fried, J.P. 182
 Fuqua, P.A. 313
 Galatin, G.P. 132, 246, 330
 Galron, R. 354
 Garland, T.R. 73
 Garner, B.D. 486, 407
 Gene, P.J. (Comp.) 57
 George, L.R. 144, 360, 461, 510
 Gibb, P.H. 334
 Gibson, W.M. 167
 Gilbert, W.O. 68, 8, 359
 Goates, H.A. 249
 Golchert, M.W. 228
 Goldsman, M.I. 300
 Goldthorpe, H.C. 262, 276, 448
 Goluba, P.W. 19
 Gomez, L.S. 105
 Greenberg, D. 268
 Grimbart, J.L. 265
 Grindler, J.E. 59
 Grossman, B.P. 258
 Grove, D.B. 244
 Gruber, H.J. 316, 319
 Grossman, W.R. 134, 142
 Hackett, P.Z. 360, 405
 Hakanson, T.Z. 266
 Hamada, G.H. 389
 Hamby, K.O. 208, 409
 Hawel, D.W. 26
 Hamilton, E.T. 449, 450
 Hamilton, J.G. 224, 225
 Hammond, S.E. 410, 467
 Hammons, S., Jr. 171
 Hanley, P. 336, 337
 Hardy, E.P., Jr. 398, 452, 481,
 487, 491
 Harley, J.H. (Ed.) 451, 453
 Hashimoto, K. 277
 Havens, R. 408
 Hayden, J.A. 411
 Healy, J.W. 346, 404
 Heid, K.R. 84
 Hespelmann, L.H. 287, 403, 454
 Heppleston, A.G. 161
 Herring, J.P. 29, 104, 461
 Hess, J. 326
 Higuma, T. 129
 Hillyer, R.F. 445
 Hobbs, F.D. 153
 Hodge, V.P. 456
 Roacker, P.E. 508
 Hogdahl, O.T. 176
 Holladay, G. 208, 409
 Hollingsworth, R.E. 470
 Hollins, J.G. 116, 404
 Hollister, H.L. 398
 Holloway, C.P. 76
 Holzer, A. 416
 Holzer, B.E. 212
 Horovitz, M.H. 103
 Horstman, V.G. 363, 405
 Howard, E.B. 61, 204, 460
 Hsu, T.H.S. 88
 Hucksbay, G.W. 138
 Bulett, S.H. 384
 Huth, G.C. 207
 Hylton, D.B. 50, 467
 Igarashi, T. 129
 Imai, T. 56

AUTHOR INDEX

- Isaacson, R.E. 275
 Ishiguro, H. 129
 Istra, A.A. 417
 Ito, T. 128
 Ivanikov, A.T. 152, 395
 Jackson, P.O. 239, 407
 Jackson, T.A. 79
 Jacobson, L.O. 268
 Jech, J.J. 64
 Jee, W.S.S. 80, 98, 113, 262, 277, 278, 279, 285, 315, 326, 402
 Jessup, G.L. 169
 Jockey, P. 265
 Johnson, A.W. 231
 Johnson, L.J. 266
 Jones, B.S. 58
 Jones, Y.M. 239, 349
 Joshima, H. 101, 183
 Kach, A.Z. 256
 Kahn, B. 378
 Kalani, D.K. 399
 Kalistratov, V.S. 338
 Kalmon, B. 384
 Kalmykova, Z.I. 240, 385, 501
 Karagianes, M.T. 333
 Kashima, H. 77, 101, 183
 Katz, J. 510
 Kawin, B. 38
 Kayha, H.J. 3
 Keane, A.T. 210
 Keder, W.E. 175
 Kelly, J.M. 263
 Kennedy, H.C. 18
 Keyanonda, P. 882
 Kilibarda, H. 33
 Kimmel, D. 315
 Kinnear, J.Z. 8
 Kinoshita, H. 129
 Kirby, H.H. 166
 Kistelecki, W. 284
 Kleinman, H.T. 512
 Klement, A.H., Jr. 457
 Klyshuk, R.W. 500
 Knudson, D.H. 48
 Knuth, R. 512
- Konstantinova, V.F. 496, 497, 498, 517, 519
 Koranda, J.J. 68, 383
 Korkisch, J. 381
 Kornberg, B.A. 36, 227, 310
 Kornberg, B.B. (Ed.) 321
 Koshegnikova, N.A. 78, 187, 191, 242, 273, 387, 459, 500
 Kotchen, T.A. 377
 Kotrappa, P. 119
 Koval, J.S. 21
 Kristoffersson, B. 514
 Kruger, P. 389
 Kryuk, V.K. 338
 Kudashova, N.P. 335, 382, 385, 501
 Kulikov, N.V. 417
 Kunzle-Lutz, H. 265
 Kurshaynski, H. 130
 Kuvana, K. 131
 Lafuma, J. 93, 267, 381
 Lagerquist, C. 50
 Lagerquist, C.R. 410, 467
 Lalou, C. 428
 Langham, W. 293
 Langham, W.H. 403
 Langmead, W.A. 133
 Lanz, H.C. 225
 Larson, H.V. 167
 Leavitt, W.D. 6
 Lebedinsky, A.V. 516
 Lebel, J.L. 87, 90, 105
 Leedricotte, G.W. 168, 177, 178, 180
 Leedit, T.R. 118
 Lee, D.H.K. 238
 Lee, K.D. 43
 Leedit, S.C. 53
 Leiberg, W.K. 78, 118, 167, 459, 500, 520, 521
 Leventhal, L. 185
 Levine, B. 74
 Lewis, R.S. 478
 Libinzon, R.Ya. 497, 498
 Lindenbaum, A. 108, 112, 118, 189, 149, 165, 182
 Lisco, H. 268
 Lloyd, B. 49
- Lloyd, R.D. 94, 95, 173, 201
 Logan, R.P. 229
 Loger, R.H. 153
 Lotz, W.E. 71
 Loy-Beur, Adele 63, 92
 Lundin, Y.E. 139
 Lyaginskaya, A.N. 160
 Lynn, B.L. 70
 Lyubchanskii, B.R. 118, 282, 379, 459
 Lyubchanskiy, B.R. 187, 191, 192, 193, 385, 387
 MacNider, Wade E. 35
 Nahman, D.D. 77, 100, 175, 186, 197, 201, 202, 329
 Nahman, D.D. (Ed.) 45
 Nahum, S.S. 62
 Naisin, J.R. 196
 Major, W.J. 9, 185
 Mann, J.R. 410
 Manuel, O.K. 386
 Marchyulene, E.D.P. 272
 Marinsky, J.A. 181
 Harley, W.G. 268
 Marshall, J.H. 49
 Martin, J.B. 68, 383
 Martin, W.E. 27
 Masae, R. 93, 180
 Matsumoto, K. 128
 Matsuoaka, O. 101, 183
 Mayhew, W.E. 239
 Mays, C.W. 85, 94, 48, 174, 251, 262, 280, 351, 388
 McCleahan, B.J. 203, 208, 209, 206, 303
 McCleary, J.A. 232
 McClellan, R.O. 88, 99, 197, 198, 199, 320, 321, 380
 McClelland, J. 172, 173
 McClelland, J. (Comp.) 427, 429, 490
 McDonald, W.E. 200, 252, 465, 515
 McFarland, S.S. 174
 McInroy, J.P. 287
 McKenney, J.R. 197
 McLean, P.C. 488
 McNeill, J.S. 377
 Melgaard, R. 8, 185

AUTHOR INDEX

- Bergard, E.G. 828
 Betzalff, E.G. 150, 155
 Betsveer, H. 125
 Bessinney, J.A. 99
 Bichelm, D.H. 153, 303, 308
 Bikhailovich, S.M. 152
 Biller, C.L. 309
 Biller, L.G. 180
 Binto, W.L. 150, 155
 Binton, S.A., Jr. 237
 Bisham, J. 123, 124
 Mitchell, R.T. 67
 Miyake, Y. 628
 No, T. 1253
 Moghissi, A.A. 109, 482
 Mokana, O.V. 310
 Moldovsky, P.J. 207
 Moor, R.S. 15
 Moore, W.E. 863
 Moreira, L. 226
 Moretti, E. 108, 189
 Morgan, A. 276
 Morin, M. 193, 267, 381
 Morris, P.F. 338
 Morris, W.G. 185, 146
 Mostalev, Yu.I. 87, 102, 280, 283, 273, 369, 499, 516
 Mullen, A.A. 32, 16
 Mullen, R.K. 70
 Mullins, W.T. 168, 180
 Murasabu, M. 371
 Murray, J.L. 368
 Murray, R. 291
 Muskhacheva, G.S. 76
 Nakata, K. 129, 131
 Nakaura, M. 66
 Nelson, A. 514
 Nelson, W.S. 169
 Nenota, J.C. 43, 267, 381
 Newton, C.E., Jr. 50, 187
 Nickson, J.S. 207, 295
 Nickson, J.J. (Ed.) 286
 Nikiforov, A.P. 273, 503, 520
 Noda, Y. 101, 183
 Nolibe, D. 265
 Norcross, J.A. 50
 Norwood, W.D. 50, 526
 Noshiki, Y.E. 106, 282
 Not given 65, 68, 72, 75, 120, 122, 180, 183, 226, 274, 288, 305, 390, 391, 392, 400, 422, 523, 531, 462, 471
 Novak, L.J. 33
 Nyaniukhene, V.B. 272
 O'Toole, J.J. 315
 Oakley, W.D. 40, 510
 Oen, C.J. 29
 Okhentuk, G.S. 338
 Olsen, R.A. 440
 Cuchi, S. 130
 Ovcharenko, E.P. 117
 Ovcharenko, Yu.P. 164, 385
 Palmer, R.F. 29
 Palotay, J.L. 368
 Panov, N. 33
 Parfenov, Yu.D. 132
 Park, J.P. 61, 86, 91, 213, 248, 279
 Parker, R.G. 92
 Pashman, F.A. 804
 Payne, D.W. 258
 Payne, J.H., Jr. 109
 Perkins, R.W. 299, 346
 Perlyuk, N.P. 364
 Perov, V.S. 256
 Pesternikov, V.N. 118
 Petrovich, T.K. 369
 Phelps, E.L. 17, 22, 138, 208, 409
 Phillips, C.B. 485
 Piermattei, S.R. 525
 Platt, R.B. 63
 Polikarpov, G.G. 272
 Poplyko, M.G. 78
 Popplewell, D.S. 496
 Pozzyev, A.A. 387
 Rabinowitch, E. (Ed.) 378
 Sagan, H.A. 203, 208, 206, 288
 Rancitelli, L.A. 299
 Razbitnaya, L.I. 395
 Razumovsky, N.O. 395
 Rehfeld, C.E. 262, 328
 Reichman, J.M. 20
 Bennett, A.D., Jr. 299
 Beshetov, G.N. 273, 459
 Shoads, W.A. 10, 63, 70, 255
 Richardson, C.H. 403, 454
 Risik, W.S. 312
 Roesser, J.J. 73
 Rogacheva, S.I. 501
 Romney, B.H. 8, 107, 255
 Rosen, J.C. 115
 Rosenblatt, L.S. 257, 443
 Rosenthal, M.W. 108, 112, 188, 189, 187
 Russell, E.R. 223
 Russell, J.J. 104, 114, 189
 Russell, S. 78
 Rysina, T.W. 516, 522
 Saccoccane, G. 55
 Sackett, W.H. 253, 468
 Saenger, E.L. 814
 Saenger, E.L. (Ed.) 466
 Sagan, L.A. 56
 Sailor, V.L. 370
 Sakagishi, S. 125, 126, 127
 Sakanoue, M. 66
 Saladien, A.J. 377
 Salutsky, E.L. 166
 Sanders, C.L. 46, 79, 113, 181, 214, 215, 216, 217, 248, 340, 418
 Sanders, C.L. (Ed.) 45
 Sanders, C.L., Jr. 219
 Sanders, S.H., Jr. 52, 53
 Sant, W.H. 73
 Sayeg, J.A. 162
 Schell, W.R. 250, 420
 Schiager, R.J. 419
 Schneider, R. 74
 Schubert, J. 182, 223
 Schultz, V. 457
 Schulz, J.W. 472
 Schwendian, L.C. 123, 124
 Scott, K. 220
 Scott, K.G. 225
 Sealander, O.H. 475
 Sedlet, J. 28
 Seibert, H.C. 268
 Seidel, A. 82

AUTHOR INDEX

- Senenov, D.I. 256, 331, 350
 Sevc, J. 511
 Seymour, K. 889
 Shabestari, L. 98, 528
 Shanahan, W.H. 210
 Shearer, S.D. 197
 Shleien, B. 378
 Shulien, R.I. 272
 Sikov, M.R. 62, 77, 100, 186, 150
 Silberstein, H.E. 155
 Simons, J.L. 268
 Simon-Vermot, A. 265
 Skupinski, W. 267, 381
 Smith, A.E. 363
 Smith, C.C. 328
 Smith, C.L.D. 48, 528
 Smith, D.D. 13, 58
 Smith, R.T.D. 230
 Smith, V.H. 41, 81, 213, 221, 222, 223
 Smyth, R.A. 164
 Snyder, M.D. 353
 Sonnenblick, B.P. 469
 Sowby, F.D. 366, 394
 Spalding, R.P. 468
 Spiers, F.W. 477
 Stanley, R.E. 18
 Stannard, J.H. 358, 476
 Steen, A.J. 255
 Steffan, I. 381
 Steinberg, E.P. 179
 Stevens, W. 30, 96, 97, 218, 316, 319, 375, 402
 Stewart, K. 220
 Storr, R.C. 880
 Stover, B.J. 30, 69, 218, 262, 318, 351, 402
 Strelnitskova, Y.N. 87, 200, 256, 499, 502
 Stuart, B.C. 479
 Stuart, B.O. 32, 263, 349, 353, 355, 356, 372, 407, 527
 Stuber, C.E. 252
 Sugimura, Y. 828
 Sullivan, B.P. 83, 360, 362
 Sundersan, D.W. 188
 Suter, G.B. 155
 Suttle, A.D. 259
 Sutton, W.W. 14
 Sweger, E.G. (Ed.) 327
 Swinth, R.L. 367
 Tadros, J. 354
 Tait, G.H.C. 69
 Tamura, T. 5, 871
 Tashiro, S. 371
 Taylor, B.T. 88
 Taylor, D.H. 110, 366, 394, 415
 Taylor, G.W. 98, 99, 324, 389, 528
 Taylor, J.C. 409
 Taylor, L.S. 51
 Telles, R.C. 169
 Terry, J.L. 393
 Thomas, J.M. 91
 Thompson, R.C. 360, 510
 Thompson, F.C. (Comp.) 475
 Thomson, B.J. 473
 Tiedeman, D.V. 158
 Tikhonova, L.I. 395
 Todachine, T. 138
 Tombropoulos, E.G. 357, 515, 527
 Tompkins, E. 169
 Townley, C.S. 188
 Tregentko, I.P. 256, 308
 Tscheleva, I.A. 78, 271, 494, 495, 519, 522
 Tsivoglou, E.C. 137
 Uchida, T. 424
 Ullberg, S. 518
 Van Ass, D. 365
 Vaskov, L.S. 513
 Vlasov, P.A. 286
 Vleugelman, C.H. 365
 Vodz, G.I. 803, 858
 Vogt, G.S. 198
 Volchok, H.I. 512
 Wolf, V. 82
 Yukotic, M. 33
 Wedachi, Y. 371
 Weger, R.W. 41
 Wagner, B.A. (Chairman) 121
 Wagner, V. 511
 Wagner, J.K. 139
 Wald, M. 162
 Wallace, A. 8, 108, 332
 Walton, A. 473
 Warren, J.L. 404
 Watsch, C.R. 333
 Watson, G.H. 335
 Watters, R.L. 87, 90, 105
 Weaver, G. 378
 Wechsler, B. 162
 Weeks, M.H. 510
 Weissman, B.A. 9, 185
 West, J.E. 509
 Westendorff, W.H. 170
 Wheeler, H. 336, 337
 White, H.G. (Ed.) 1
 Higgins, A.B. 209
 Wikkerink, R.W. 583
 Wilkinson, C.J. 119
 Wilkinson, P.W. 508
 Willard, D.H. 164, 367
 Williams, A. 154
 Williams, J.L. 94, 98, 178
 Wilson, J. 578
 Wilson, R.H. 220, 393
 Wiresen, D.L. 3
 Wirth, J.E. 287
 Wood, D.H. 303, 368
 Wood, R.A. 255
 Woodbury, L.A. 322
 Woodruff, L. 204
 Wood, R.E. 115, 436
 Wright, G.P. 169
 Wright, S.R. 92
 Yaeger, D.J. 92
 Yang, K.L.C. 250
 Yaniv, S.S. 135
 Yelkina, N.I. 309, 517, 519
 Yerokhin, N.A. 387, 518
 Yerde, R.J. Jr. 27
 Young, D.R. 456
 Young, R.A. 302
 Vaille, C.L. 338
 Zaitsev, G.I. 369
 Zalmanzon, Yu.C. 306, 307
 Kirkle, R.E. (Ed.) 430
 Zlobin, V.S. 310, 363, 364

SUBJECT CATEGORY INDEX

- Biological Aspects** 1, 10, 11, 12, 13, 14, 15, 16, 25, 29, 30, 32, 35, 36, 37, 38, 39, 40, 41, 45, 46, 47, 48, 49, 54, 60, 61, 62, 63, 64, 76, 77, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 107, 108, 110, 111, 112, 113, 115, 116, 117, 118, 127, 130, 132, 141, 144, 145, 146, 148, 149, 150, 152, 154, 155, 161, 162, 165, 169, 171, 174, 175, 182, 183, 184, 185, 186, 187, 190, 191, 193, 194, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 209, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 240, 241, 242, 243, 245, 246, 248, 249, 251, 252, 255, 256, 257, 252, 265, 267, 268, 269, 270, 271, 273, 277, 278, 279, 280, 284, 285, 286, 288, 289, 290, 291, 292, 293, 294, 295, 296, 308, 309, 310, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 329, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 336, 337, 338, 339, 340, 342, 343, 345, 347, 348, 349, 350, 351, 352, 355, 356, 357, 360, 361, 362, 363, 364, 366, 367, 368, 369, 371, 372, 373, 374, 375, 376, 377, 379, 380, 381, 382, 385, 387, 388, 393, 394, 395, 396, 397, 400, 401, 402, 405, 412, 415, 417, 418, 430, 431, 432, 433, 434, 435, 436, 438, 439, 440, 441, 442, 443, 444, 445, 448, 455, 459, 460, 461, 466, 465, 469, 476, 479, 483, 484, 486, 488, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 508, 509, 510, 516, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 527, 528, 474
- Chemical Aspects** 2, 5, 12, 59, 76, 157, 158, 159, 160, 166, 167, 168, 172, 173, 175, 177, 178, 179, 180, 181, 188, 189, 211, 213, 252, 301, 341, 386, 389, 399, 407, 424, 427, 429, 431, 484, 490
- Ecological Aspects** 1, 4, 8, 15, 58, 106, 107, 109, 130, 136, 137, 180, 182, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 255, 259, 260, 266, 272, 283, 312, 327, 421, 447, 456, 457, 458
- Energy** 71, 244, 354, 358, 478
- Environmental Assessment** 143, 163, 416, 431, 446, 463, 468, 473, 484
- Explosive Devices** 70, 151, 208, 226, 416, 437
- Geological Aspects** 4, 227, 230, 302, 386
- Instrumentation** 19, 20, 42, 69, 135, 207, 353, 420, 426, 489, 512
- Legal and Political Aspects** 297
- Medical Aspects** 25, 27, 30, 31, 34, 45, 49, 50, 51, 53, 55, 56, 61, 84, 88, 105, 126, 135, 139, 147, 162, 169, 194, 195, 196, 210, 223, 238, 261, 263, 264, 276, 280, 381, 286, 287, 293, 299, 301, 306, 307, 311, 313, 384, 345, 346, 390, 403, 406, 410, 414, 419, 430, 431, 438, 439, 449, 458, 466, 467, 469, 476, 477, 488, 511, 513, 526
- Monitoring, Measurement and Analysis** 1, 3, 5, 7, 9, 17, 18, 21, 22, 23, 24, 25, 28, 33, 42, 43, 44, 63, 64, 65, 66, 67, 68, 69, 72, 78, 75, 80, 101, 114, 119, 120, 122, 123, 124, 125, 126, 129, 131, 133, 134, 135, 138, 153, 156, 170, 207, 208, 212, 239, 247, 250, 253, 258, 258, 274, 276, 281, 282, 286, 293, 300, 303, 304, 305, 311, 335, 359, 365, 378, 383, 384, 391, 392, 398, 406, 409, 411, 413, 419, 422, 423, 426, 428, 450, 451, 453, 456, 462, 480, 481, 482, 485, 487, 489, 491, 507, 512
- Physical Aspects** 211, 252
- Production** 57, 121, 128, 252, 390, 472
- Radiation Safety and Control** 71, 73, 192, 297, 298, 370, 408, 425, 466
- Waste Disposal and Management** 67, 128, 275, 300, 404, 408, 470, 471, 475

KEYWORD INDEX

- ABERRATIONS 99
- ABSORPTION 11, 16, 37, 40, 83, 100, 152, 175, 196, 224, 245, 295, 306, 307, 313, 333, 350, 369, 479, 486, 510, 516
- ACCIDENTS 52, 67, 147, 162, 276, 298, 313, 344, 406, 410, 419, 466
- ACCIDENTS, POTENTIAL 65, 71, 123, 354, 446
- ACCIDENTS, SIMULATED 295
- ACCUMULATION 29, 32, 62, 90, 130, 132, 148, 149, 190, 191, 193, 201, 203, 221, 224, 225, 241, 310, 316, 331, 333, 356, 363, 364, 382, 385, 387, 395, 417, 436, 444, 455, 459, 460, 514, 516, 517, 519, 520
- ACTINIDES 93, 112, 157, 158, 252, 267, 319, 351, 381, 415
- ACTINIUM NITRATES 415
- ACTIVATION ANALYSIS 181
- ADAPTATION 238
- ADRENAL GLANDS 175, 190, 201, 296, 369, 441
- AEROSOLS 17, 22, 29, 32, 88, 91, 93, 119, 123, 133, 144, 145, 193, 219, 220, 225, 246, 248, 256, 263, 306, 307, 339, 342, 348, 349, 352, 355, 356, 357, 358, 361, 367, 379, 385, 393, 439, 440, 451, 461, 465, 479, 483, 509, 525, 527
- AGE 37, 47, 111, 186, 191, 209, 231, 277, 309, 319, 322, 331, 433, 444, 473
- AGING 100, 448, 270
- AGRICULTURE 264, 463
- AIR 1, 17, 18, 19, 20, 21, 23, 28, 33, 34, 58, 69, 72, 73, 74, 75, 123, 129, 133, 153, 156, 156, 162, 170, 192, 208, 212, 254, 258, 276, 298, 303, 335, 365, 384, 406, 409, 419, 421, 422, 426, 429, 450, 451, 452, 462, 463, 466, 470, 480, 481, 484, 487, 490, 491, 507, 512
- AIR ATMOSPHERE 125
- AIR SAMPLERS 19, 20, 21
- AIRCRAFT 491
- ALKALINE 364
- ALBUMINS 30, 494
- ALKALI 137, 232, 310, 363, 364, 376
- ALKALINE BATHS 351, 488, 508
- ALPHA PARTICLES 47, 48, 69, 88, 92, 113, 124, 131, 133, 153, 156, 217, 239, 249, 251, 257, 265, 273, 279, 285, 298, 306, 312, 326, 384, 410, 419, 432, 480, 523, 528
- ALUMINUM 26, 250
- AMERICIUM 13, 45, 90, 104, 110, 112, 114, 135, 153, 173, 174, 252, 348, 410, 429, 474, 477
- AMERICIUM CHLORIDES 445
- AMERICIUM CITRATES 117, 415, 94
- AMERICIUM 241, 2, 7, 8, 9, 15, 17, 30, 48, 67, 82, 85, 87, 89, 93, 98, 99, 102, 108, 115, 116, 117, 157, 162, 168, 169, 218, 239, 250, 267, 298, 317, 319, 332, 338, 340, 361, 366, 369, 381, 394, 431, 436, 444, 445, 463, 467, 483, 524
- AMERICIUM 243, 9
- AMINO ACIDS 271, 364, 495
- AMMONIUM CHLORIDES 310, 363
- AMMONIUM URANATES 246
- AMPHIBIANS 227, 233, 237
- ANEMIA 240, 268, 292, 360, 441
- ANIMALS 1, 13, 14, 15, 16, 29, 30, 31, 32, 35, 36, 37, 38, 40, 41, 45, 46, 47, 48, 49, 54, 58, 60, 61, 62, 68, 69, 70, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 108, 109, 107, 109, 110, 111, 112, 113, 114, 115, 116, 117, 119, 127, 132, 141, 185, 186, 148, 149, 150, 152, 154, 155, 161, 164, 165, 169, 170, 171, 174, 175, 182, 183, 184, 185, 186, 187, 190, 191, 192, 193, 194, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 209, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 227, 236, 237, 239, 240, 241, 242, 243, 245, 246, 248, 249, 251, 252, 256, 257, 259, 260, 262, 265, 266, 267, 268, 269, 270, 271, 272, 273, 277, 278, 279, 280, 282, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 308, 312, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 333, 334, 338, 339, 340, 342, 343, 347, 348, 349, 350, 351, 352, 353, 355, 356, 357, 360, 361, 362, 366, 367, 368, 369, 371, 372, 373, 374, 375, 376, 377, 378, 382, 387, 388, 393, 394, 395, 396, 397, 400, 401, 402, 405, 407, 415, 418, 421, 430, 431, 432, 433, 434, 435, 436, 438, 439, 440, 441, 442, 443, 444, 445, 448, 455
- ANIMALS, WILD, SMALL 260
- ANTIBODIES 342
- ANTIDOTES 152
- ANTIMONY 299
- ANTIMONY 125, 138, 255
- ANTS 136, 228
- AQUATIC ORGANISMS 137, 272
- AQUATIC SYSTEMS 43, 75, 134, 156, 272, 365, 68
- ARGON 41, 422
- ARSENIC 158
- ASTEROPODS 136, 227, 228
- ASBESTOS 46, 215
- ASHING 9, 15
- AUTOPSIES 50, 210, 467
- BABOONS 115, 431, 436
- BACKGROUND 44, 65, 137, 370, 384, 462, 463, 469
- BACTERIA 283
- BALLOONS 72
- BANEERRY EVENT 138
- BARIUM 429
- BARIUM 140, 58, 255, 365, 422, 508
- BATS 228
- BEANS 108, 130, 332
- BEETLES 136, 228
- BEHAVIOR 140, 233, 235, 238
- BENTHOS 236, 431
- BENZOPYRENES 46
- BERKELIUM 252, 474
- BERKELIUM 249, 98
- BERYLLOIUM 429
- BERYLLOIUM 10, 250
- BETA PARTICLES 47, 48, 63, 80, 122, 134, 156, 207, 251, 269, 273, 373, 384, 391, 430, 462, 480, 481, 523, 524
- BIBLIOGRAPHY 42, 57, 143, 226, 252, 452, 457, 469, 474, 480

KEYWORD INDEX

- BILE 12, 112, 161, 320, 329, 347, 362
- BILE DUCT 503
- BINDING 30, 97, 103, 112, 218, 316, 319, 337, 395, 492, 493, 498, 516
- BIOASSAY 276
- BIOCHEMISTRY 78, 252, 400, 448, 488, 527
- BIOGEOCHEMISTRY 106
- BIOLOGICAL HALF-LIFE 16, 87, 92, 112, 115, 132, 148, 151, 193, 228, 261, 273, 330, 369, 381, 432, 456, 479, 518, 525
- BIOLOGICAL MATERIALS 211, 484
- BIOLOGY 227, 252
- BIOSPHERE 65
- BIOSYNTHESIS 496, 497
- BIOTA 15
- BIRDS 15, 156, 227, 234, 462, 480
- BISMUTH NITRATES 152
- BITTERBUSH, DESERT 58
- BLOOD 14, 32, 77, 85, 95, 96, 97, 103, 112, 115, 126, 184, 146, 147, 149, 158, 195, 199, 211, 246, 270, 293, 320, 338, 339, 360, 368, 372, 374, 375, 382, 385, 403, 429, 430, 436, 441, 445, 492, 504, 505
- BLOOD CELLS 30, 240, 262, 385, 397, 403, 405, 492
- BLOOD CELLS, RED 286, 268, 322, 325, 382, 374, 382, 435, 441, 442, 443, 496, 499, 500, 501, 519
- BLOOD CELLS, WHITE 61, 197, 246, 257, 268, 292, 322, 325, 339, 360, 382, 401, 442, 443, 499, 500, 501
- BLOOD PLASMA 146, 199, 288, 351, 441, 492
- BLOOD PLATELETS 441
- BLOOD PRESSURE 377, 501
- BLOOD SERUM 30, 146, 396, 405, 448, 492, 511, 270
- BLOOD-VESSELS 78, 155, 225, 279, 377, 435
- BODY 115, 137, 141, 149, 183, 196, 223, 238, 264, 354, 441, 445, 463, 466, 474, 476, 477, 480
- BODY BURDEN 29, 32, 42, 61, 69, 135, 144, 145, 162, 179, 182, 194, 195, 196, 210, 219, 220, 276, 311, 334, 344, 357, 361, 367, 372, 381, 403, 410, 426, 454, 458, 451, 464, 467, 509, 515, 527
- BONE FRACTURES 278, 279, 324, 430,
- BONE FRACTURES 524
- BONE MARROW 99, 104, 154, 155, 243, 288, 291, 325, 302, 441, 497, 498, 500, 502, 504, 517, 521
- BONE REMODELING 49
- BONES 13, 15, 32, 34, 37, 39, 47, 48, 49, 50, 61, 62, 80, 81, 83, 86, 87, 93, 98, 102, 103, 104, 106, 110, 111, 112, 115, 116, 118, 132, 137, 141, 144, 145, 146, 149, 154, 155, 165, 178, 175, 182, 185, 186, 190, 191, 193, 197, 198, 204, 207, 209, 210, 219, 221, 222, 224, 225, 241, 243, 245, 248, 251, 257, 262, 268, 268, 271, 273, 277, 279, 279, 280, 285, 288, 289, 291, 292, 308, 309, 315, 318, 319, 324, 326, 328, 330, 331, 333, 350, 351, 356, 366, 367, 369, 373, 376, 379, 381, 394, 402, 412, 431, 433, 438, 436, 441, 443, 444, 445, 452, 454, 464, 467, 476, 477, 480, 486, 488, 494, 495, 502, 504, 505, 506, 518, 517, 519, 518, 519, 521, 522, 523, 524
- BORON 211
- BRAIN 175, 375
- BRAY EVENT 250
- BROMINE 299, 386
- BUCKWHEAT, DESERT 58
- BUGGY I EVENT 391
- BUILDINGS 471
- BURDEN 13, 60, 61, 91, 93, 104, 114
- BURIAL 335
- BURNING 404
- CABRIOLET EVENT 63, 391
- CADMIUM 429
- CADMIUM CHLORIDES 363
- CALCIUM 253, 270, 271, 340, 486, 488, 495
- CALCIUM CHLORIDES 340
- CALCIUM DTEA 82, 101, 505
- CALCIUM EDTA 52, 344, 506
- CALCIUM 45 199, 309, 395, 508, 523
- CALCULATIONS 23, 76, 135, 192, 195, 223, 303, 304, 306, 307, 311, 463, 507
- CALIFORNIUM 174, 252, 474
- CALIFORNIUM CITRATES 94, 99
- CALIFORNIUM 249, 85, 94, 95, 96, 97, 98, 218, 249, 317, 801
- CALIFORNIUM 252 85, 88, 94, 95, 96, 99, 218, 249, 317, 267
- CAMELS 228
- CARBONYLATES 140, 486
- CARBON 253
- CARBON 14 250
- CARCINOGENESIS 45, 48, 79, 102, 104, 215, 219, 269, 315, 400, 412, 519, 524
- CARCINOGENS 329, 523
- CARCINOMAS 85, 86, 102, 118, 139, 280, 460
- CASE HISTORIES 403, 454
- CASTRATION 201
- CATTLE 1, 58, 109, 171, 228
- CATTLE, DAIRY 14, 305
- CATTLE, RANGE 13
- CELL NUCLEI 202
- CELL ULTRASTRUCTURE 97, 202, 217, 218, 316, 469, 493, 520
- CELLS, ALVEOLAR 184, 367, 459
- CELLS, BIOLOGICAL 35, 38, 48, 99, 149, 161, 218, 217, 243, 278, 279, 285, 310, 326, 368, 418, 459, 469, 503, 513
- CENSUS 15, 305
- CENTIPEDES 237
- CERIUM 331, 399
- CERIUM 141 255, 365, 451
- CERIUM 144 58, 122, 134, 240, 255, 272, 273, 365, 380, 381, 389, 395, 421
- CESIUM 282, 299, 331, 488
- CESIUM CHLORIDES 479
- CESIUM FLUORIDES 479
- CESIUM OXIDES 357, 479
- CESIUM 138 138, 255
- CESIUM 136 255
- CESIUM 137 44, 106, 125, 126, 134, 138, 149, 155, 158, 255, 264, 272, 275, 350, 365, 383, 389, 421, 438, 451, 453, 456, 463, 481, 485
- CESIUM 144 329, 350, 357
- CHEESE 109, 109
- CHELATES 52, 60, 81, 82, 83, 84, 87, 93, 101, 108, 106, 148, 182, 183, 205, 206, 213, 216, 221, 222, 223, 313, 322, 340, 343, 346, 347, 352, 366, 379, 381, 395, 410, 445, 464, 466, 476, 486, 488, 505, 506
- CHELATION 505, 506, 516

KEYWORD INDEX

- CHEMICAL ANALYSIS 2, 5, 31, 65, 157, 159, 160, 172, 173, 175, 185, 247, 301, 361, 359, 399, 407, 427, 529, 881, 888
- CHEMICAL FORM 31, 184, 183, 190, 202, 237, 242, 288, 402, 417, 479, 492, 493, 503, 516, 517
- CHEMICAL PROPERTIES 166, 167, 168, 176, 177, 178, 179, 180, 188, 189, 252, 351, 459, 479, 488
- CHEMICAL TOXICITY 34, 321, 476
- CHEMICALS 31, 408
- CHEMISTRY 252, 454
- CHEST 162, 450
- CHICKENS 1, 16
- CHIGGERS 259
- CHILDREN 305
- CHLORINE 386
- CHLORPROMAZINE 465
- CHOLESTEROL 338
- CHROMATOGRAPHY 95, 96
- CHROMIUM 159, 299
- CHROMOSOMES 99, 454
- CIRCULATORY SYSTEM 238, 285, 346, 502
- CIRRHOSIS 502, 503
- CITRATES 295, 401, 402
- CLAMS 378
- CLEAN SLATE 1 4
- CLEAN SLATE 2 4, 10
- CLEAN SLATE 3 4, 10
- CLEARANCE 54, 77, 86, 113, 115, 132, 149, 184, 199, 224, 241, 311, 320, 345, 346, 348, 356, 357, 368, 372, 395, 397, 445, 464, 465, 488, 492, 515, 525
- CLIMATE 227, 229, 230, 236
- CLINICAL STUDIES 30, 33, 34, 44, 49, 50, 52, 53, 55, 126, 135, 139, 147, 162, 225, 238, 276, 293, 299, 307, 313, 344, 403, 410, 419, 430, 432, 438, 439, 454, 466, 467, 476, 477, 480, 489
- CLOUDS 208, 281
- CLOUDS, RADIOACTIVE 212, 354
- COAGULATION 501
- COAL 416
- COBALT 177, 299
- COBALT 60 138, 255, 335, 421, 422, 456, 479
- COCARCINOGENS 46
- COLLAGEN 39, 498, 527
- COLLOIDS 308, 310, 371
- COMBINED EFFECTS 273, 376
- COMPARTMENTS 27
- COMPLEXES 308, 493, 503
- COMPUTER PROGRAMS 32, 135, 248, 311, 372, 413
- CONCENTRATION 37, 38, 401
- CONCENTRATION FACTOR 65, 130, 137, 312, 417
- CONTAMINATION 1, 8, 10, 13, 15, 43, 65, 107, 127, 129, 133, 183, 186, 183, 196, 204, 258, 265, 266, 298, 303, 313, 371, 406, 426, 453, 462, 466, 470, 471, 475, 480, 484, 489, 507
- CONTAMINATION, AIRBORNE 276
- CONTENT 1, 5, 6, 8, 9, 11, 13, 15, 16, 17, 28, 29, 33, 38, 39, 43, 117, 128, 130, 132, 138, 135, 137, 138, 185, 189, 153, 156, 160, 162, 170, 171, 174, 185, 192, 193, 194, 204, 206, 209, 218, 222, 283, 245, 246, 267, 253, 255, 256, 256, 288, 299, 303, 311, 330, 332, 349, 350, 359, 361, 375, 378, 383, 385, 386, 387, 401, 402, 417, 435, 448, 449, 449, 450, 453, 459, 465, 468, 470, 473, 480, 481, 485, 486, 490, 491, 492, 509, 510, 519, 525
- CONTROL 405
- COPPER 299
- CORALS 66
- CORN 336
- CORROSION 404
- COST-BENEFIT 470, 471
- CRATERING 63, 64, 208
- CRATERS 151, 250, 383
- CRAYFISH 130
- CREEP 20
- CRITICISM 51
- CULTURE MEDIA 11
- CURIUM 110, 252, 344, 375, 474
- CURIUM 242 67, 82, 93, 381, 267
- CURIUM 243 174, 316, 317
- CURIUM 244 88, 102, 157, 174, 199, 316, 317
- CYTOTOLOGY 184, 218, 231, 336, 337, 513
- CYTOSOL 218, 316
- DCTA 506
- DEBRIS 409
- DECAY, RADIOACTIVE 473
- DECOMPOSITION 283
- DECONTAMINATION 36, 40, 60, 82, 107, 127, 147, 148, 152, 200, 267, 286, 295, 298, 313, 814, 454, 462, 466, 505, 506, 526
- DEER 431, 462
- DEFEROXAMINE 222
- DENSITY 19, 263
- DEPOSITION 14, 37, 49, 50, 65, 81, 82, 84, 85, 86, 87, 91, 93, 94, 98, 103, 104, 111, 112, 113, 114, 147, 156, 175, 203, 209, 216, 220, 221, 224, 225, 242, 259, 255, 263, 279, 284, 289, 296, 308, 315, 318, 327, 327, 345, 358, 365, 367, 376, 393, 395, 397, 434, 453, 481, 517, 523
- DESERTS 4, 64, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 238, 458, 507
- DESIGN 19, 20, 21, 129, 131, 353, 359, 470, 489
- DIAGNOSIS 313
- DIAMOX 60
- DIET 58, 126, 201, 329, 486
- DIFFUSION 72, 263
- DIMETHYLSULFOXIDE 200
- DISEASES 240, 242, 243, 246, 324, 334, 339, 360, 387, 433, 454, 502, 503, 511
- DISINCE 11
- DISTRIBUTION 1, 5, 7, 8, 14, 16, 29, 61, 64, 89, 97, 141, 189, 153, 174, 190, 193, 196, 202, 205, 208, 216, 218, 220, 227, 233, 236, 241, 243, 245, 256, 264, 266, 273, 286, 287, 288, 305, 306, 330, 332, 350, 351, 357, 381, 383, 396, 398, 401, 402, 431, 432, 445, 450, 459, 463, 464, 467, 477, 488, 493, 494, 500, 503, 514, 516, 517, 518, 519, 521
- DISTRIBUTION, GEOGRAPHIC 122, 260
- DISTRIBUTION, SEASONAL 259
- DITURIL 60
- DNA 309, 493, 496, 497
- DOGS 35, 49, 105, 112, 146, 150, 169, 185, 200, 207, 210, 243, 280, 288, 291, 292, 293, 309, 322, 334, 338, 348, 350, 357, 361, 373, 374, 377, 388, 393, 395, 397, 434, 435, 438, 441, 448, 461, 483, 501, 502, 518, 522
- DOGS, BEAGLE 29, 30, 32, 61, 80, 85, 86, 87, 88, 89, 90, 91, 94,

KEYWORD INDEX

- DOGS, BEAGLE 95, 96, 97, 98, 111, 119, 146, 148, 149, 174, 194, 218, 248, 249, 251, 257, 262, 270, 277, 278, 279, 285, 314, 315, 316, 317, 318, 319, 322, 323, 324, 325, 328, 342, 349, 351, 352, 353, 367, 372, 375, 401, 402, 435, 439, 440, 441, 442, 443, 455, 460, 509, 528
- DONKEYS 185, 220, 393
- DOSE DEPENDENCE 164, 257, 265, 285, 292, 321, 322, 323, 324, 325, 376, 499, 503, 504, 519
- DOSE RATE 42, 49, 113, 248, 262, 280, 294, 317, 334, 373, 390, 412, 416, 507, 522
- DOSIMETERS 63
- DOUBLE TRACK 4
- DRUGS 60, 387, 465, 484, 515
- DTPA 60, 81, 83, 84, 87, 90, 92, 93, 101, 108, 145, 146, 147, 148, 162, 182, 183, 200, 205, 206, 213, 216, 221, 222, 223, 267, 313, 332, 340, 343, 347, 352, 357, 362, 366, 379, 381, 410, 418, 445, 464, 506, 515
- DUCKS 480
- DUST 33, 349, 356, 450, 479, 512
- DUST, AIRBORNE 407
- ECOLOGY 1
- ECONOMICS 121, 470, 471
- ECOSYSTEMS ANALYSIS 283, 458
- EDDHA 108
- EDPA 506
- EDTA 127, 223, 366, 486
- EDDTA 506
- EFFLUENTS 128, 134, 140, 153, 335, 365, 378, 471
- EGGS 1, 16, 156, 462
- EINSTEINIUM 252, 474
- EINSTEINIUM 253 92
- ELASTIN 527
- ELECTRODEPOSITION 9
- ELECTRON DIFFRACTION 455
- ELECTRON MICROSCOPY 78, 455
- ELECTROSTATIC PRECIPITATORS 212
- ELEMENTS 389
- ELEMENTS, STABLE 158, 170, 389
- ELIMINATION 112, 115
- EMBRYOS 117
- EMERGENCIES 67, 466
- EMISSIONS 75
- ENVIRONMENT 6, 24, 25, 27, 43, 65, 67, 74, 75, 107, 138, 143, 143, 163, 170, 260, 264, 266, 272, 276, 297, 300, 303, 335, 356, 359, 365, 370, 378, 384, 406, 416, 421, 425, 450, 452, 470, 471, 478, 480, 484
- ENZYMES 12, 270, 271, 309, 338, 377, 495, 498
- EQUATIONS 150, 241, 244, 306, 307, 311, 318, 351, 373, 437, 450, 525
- EQUATIONS, DERIVED 76, 346
- EROSION 408
- ESOPHAGUS 207
- ESTRADIOL 50, 201
- ESTUARIES 335
- EUROPIUM 152 138, 255, 479
- EUROPIUM 153 138, 255
- EUROPIUM 155 138
- EVALUATION 6, 20, 26, 44, 125, 138, 147, 165, 211, 239, 304, 313, 358, 380, 394, 395, 453, 507
- EVOLUTION 231
- EXCAVATIONS 72
- EXCRETION 14, 32, 33, 36, 52, 83, 86, 92, 93, 94, 103, 126, 141, 149, 167, 149, 162, 171, 176, 182, 191, 194, 195, 196, 205, 215, 216, 222, 223, 224, 256, 267, 276, 286, 287, 293, 295, 308, 311, 313, 327, 329, 331, 333, 343, 344, 347, 348, 349, 351, 357, 362, 369, 372, 393, 410, 426, 431, 432, 433, 436, 439, 440, 444, 445, 454, 461, 479, 486, 506, 509, 510, 516, 518, 519, 519
- EXPERIMENTAL STUDIES 28, 119, 123, 124, 128, 129, 131, 157, 159, 160, 172, 173, 211, 213, 301, 303, 306, 341, 399, 428, 451
- EXPLOSIONS, NUCLEAR 25, 63, 74, 75, 208, 212, 259, 260, 266, 365, 383, 409, 456, 478, 485, 507
- EXPLOSIONS, NUCLEAR, ATMOSPHERIC 65, 107, 281, 419
- EXPLOSIONS, NUCLEAR, SOVIET 419
- EXPLOSIONS, NUCLEAR, UNDERGROUND 107, 136, 151, 226, 258, 391, 392, 416, 437
- EXPOSURE, EXTERNAL 414
- EXPOSURE, INTERNAL 410, 414
- EXPOSURE, OCCUPATIONAL 45, 50, 69, 115, 133, 139, 163, 192, 298, 390, 403, 454, 469, 474, 486, 511, 513
- EXPOSURE, POPULATION 45, 65, 74, 210, 281, 370, 419
- EXTRACTION, METHODS 319
- EYES 207, 351
- FABRICATION PLANTS, NUCLEAR 403, 410
- FABRICATION, FUEL ELEMENT 128, 390
- PALLOUT 58, 63, 65, 138, 140, 156, 160, 265, 281, 335, 365, 389, 398, 409, 425, 431, 452, 456, 481, 485, 487, 488, 491, 507
- PASTING 216
- FATS 201, 338, 486
- FEATHERS 16
- FECEES 14, 52, 98, 103, 112, 115, 126, 131, 141, 144, 149, 162, 165, 171, 174, 185, 221, 222, 276, 331, 349, 350, 357, 381, 436, 461, 466, 509, 518
- FEDERAL LEVEL 51
- FERMIUM 252
- FERNS 232
- FERRITIN 218, 316
- FERTILITY 117
- FERTILIZERS 468
- FETUSES 62, 117, 508, 518, 516, 522
- FIBRIN 340
- FIDLER 3, 7, 359
- FIELD STUDIES 1, 4, 11, 13, 15, 20, 21, 22, 24, 33, 43, 58, 63, 64, 66, 68, 70, 72, 75, 120, 122, 130, 134, 136, 137, 138, 151, 153, 156, 170, 171, 199, 208, 212, 228, 231, 232, 234, 235, 236, 237, 250, 253, 254, 259, 260, 266, 272, 283, 302, 312, 365, 378, 383, 386, 391, 392, 393, 398, 409, 422, 423, 424, 450, 456, 462, 463, 468, 475, 480, 481, 485, 491
- FILTERS 19, 74, 122, 129, 491, 512
- FIRES 123, 410, 471
- FISH 130, 137, 140, 156, 236, 272, 282, 335, 365, 378, 456, 457, 480
- FISSION PRODUCTS 65, 120, 225, 249, 331, 335, 350, 354, 358, 395, 398, 413, 450, 471, 486, 507
- FLIES 137, 228
- FLUIDS 12
- FLUORESCENCE 160, 341, 490
- FOOD 14, 107, 156, 170, 171, 233, 378, 389, 449, 452, 463, 480, 484, 487
- FOOD CHAINS 65, 107, 282, 462
- FORAGING 1, 13

KEYWORD INDEX

- FORESTS 274, 283
 FOSSIL FUELS 416
 FOXES 228
 FRACTIONATION 47, 48, 501
 FRESHWATER SYSTEMS 417, 68
 FUEL ELEMENTS 121, 129, 261, 413
 FUNGI 11, 232
 GASBUGGY EVENT 226, 416
 GASEOUS DIFFUSION 388
 GASES 31, 416
 GASTRIC JUICE 501
 GASTROINTESTINAL TRACT 12, 15, 71, 83, 154, 175, 185, 224, 225, 291, 330, 333, 345, 346, 358, 360, 369, 480, 486, 505, 510, 517
 Gavage 141, 360, 505, 510
 GREGGER-MUELLED COUNTERS 420
 GENETICS 56, 99, 400
 GEOLOGY 227, 230
 GERMANIUM 181
 GERMINATION 232
 GLASS 211
 GLOBULINS 493, 511
 GLOVE BOXES 162
 GLUCAN 148
 GLUCOSE 201, 246, 338
 GLYCINE 364
 GOATS 13, 109
 GOLD 198 77
 GONADS 110, 117
 GRANITES 151, 437
 GRASSES 8, 58, 232, 266
 GRASSES, INDIAN RICE 58
 GRASSES, SQUIRRELTAIL 58
 GRASSHOPPERS 228
 GROUNDWATER 156, 244, 302, 480
 GROWTH 111, 269, 433
 GUINEA PIGS 350
 HAIR 15, 269
 HALOTESTIN 60
 HAMSTERS 88, 99
 HANDLING 298
 HANES 52
 BARES 228
 HAZARD ANALYSIS 27, 31, 36, 71, 125, 133, 143, 163, 206, 210, 226, 252, 261, 264, 281, 297, 306, 350, 358, 409, 466, 526
 HEAD 225
 SEALING 35, 368, 374, 449, 500, 502, 503, 504
 HEALTH PHYSICS 414
 HEART 465, 502
 HEAT 123
 HEMATOCRIT 481
 HEMATOLOGY 154, 155, 246, 360, 447, 443, 454
 HEMATOPOIETIC SYSTEM 155, 292, 322, 325, 435, 481, 483, 499, 500, 502, 523
 HEMOGLOBINS 246, 499
 HIPPURIC ACID 246
 HISTIDINE 364
 HISTOLOGY 48, 117, 175, 191, 198, 262, 277, 291, 368, 377, 397, 430, 435, 488, 500, 504, 520, 521, 527
 HORMONES 60, 201, 441, 465, 486
 HOSTS 259, 260
 HOT SPOTS 98, 113, 215
 HUMIDITY 18, 229, 238
 HUMMOBILE EVENT 391
 HYDROGEN SULFIDE 152
 HYDROLASES 338
 HYDROLOGY 227, 230
 HYPOXANTHINE 364
 ICE 229
 IMMUNE RESPONSE 35, 161
 IMPACT STATEMENTS 431
 IMPACTION 263, 426
 IMPLANTS 87, 90
 INFANTS 77, 100, 480, 522
 INFORMATION 1, 25, 26
 INGESTION 1, 13, 14, 16, 27, 196, 197, 201, 224, 313, 331, 333, 369, 380, 486, 505, 510
 INHALATION 27, 29, 32, 44, 60, 61, 71, 74, 78, 81, 84, 86, 88, 91, 93, 101, 102, 111, 113, 119, 144, 145, 161, 162, 184, 187, 192, 193, 194, 196, 200, 207, 209, 219, 225, 239, 242, 246, 248, 256, 263, 267, 276, 289, 297
 INHALATION 313, 327, 334, 339, 342, 345, 346, 348, 349, 351, 354, 355, 356, 357, 358, 361, 367, 372, 379, 381, 382, 385, 387, 397, 406, 410, 431, 439, 440, 454, 460, 461, 465, 476, 479, 483, 509, 513, 515, 525, 527
 INHIBITION 161, 163, 368
 INJECTION 58, 84, 92, 96, 99, 111, 117, 181, 190, 195, 195, 217, 223, 285, 362, 373, 433, 443, 528, 501
 INJECTION, INTRADERMAL 204, 343
 INJECTION, INTRANUSCULAR 93, 224, 267, 284, 288, 291, 292, 366, 381
 INJECTION, INTRAPERITONEAL 79, 101, 182, 183, 191, 214, 216, 221, 240, 241, 273, 268, 308, 309, 326, 340, 350, 352, 366, 418, 445, 466, 486, 493, 494, 495, 496, 498, 503, 506, 508, 519, 520, 521
 INJECTION, INTRATRACHEAL 41, 146, 187, 268, 289, 369, 459
 INJECTION, INTRAVENOUS 30, 38, 85, 94, 97, 98, 102, 103, 109, 115, 118, 144, 146, 148, 149, 154, 164, 174, 182, 183, 186, 190, 196, 197, 198, 199, 201, 202, 205, 218, 221, 222, 224, 243, 245, 251, 257, 262, 270, 277, 278, 279, 285, 288, 290, 291, 292, 294, 296, 309, 317, 318, 321, 322, 323, 324, 325, 328, 329, 331, 338, 347, 351, 366, 368, 369, 375, 376, 379, 388, 396, 401, 415, 435, 436, 441, 442, 444, 448, 461, 464, 486, 492, 498, 497, 500, 501, 503, 504, 514, 518, 520, 521, 522, 523, 528
 INJECTION, SUBCUTANEOUS 35, 101, 102, 203, 205, 206, 224, 292, 343
 INJURIES 35, 78, 273, 284, 291, 292, 321, 412, 500, 502, 503, 504, 516
 INSECTS 137, 227, 237
 INTESTINES 152, 155, 245, 347, 360, 435, 498, 502, 505
 INVERTEBRATES 106, 469
 IODINE 327, 386
 IODINE 125, 207
 IODINE 129, 431, 446
 IODINE 131, 58, 156, 255, 320, 365, 389, 421, 446, 479, 485
 ION EXCHANGE 9, 30, 284, 301, 341, 472
 ION EXCHANGE RESINS 28, 185, 505

KEYWORD INDEX

- IONIZATION CHAMBERS 42, 420
 IRON 103, 299
 IRON 55 250, 451
 IRON 59 30, 104, 451
 ISOTOPE RATIO 7, 239, 266, 356, 398, 473, 489, 487, 491
 JERBOAS 228
 KIDNEYS 32, 38, 37, 54, 97, 98, 115, 130, 132, 148, 155, 175, 185, 190, 191, 198, 202, 203, 206, 221, 226, 267, 290, 291, 292, 330, 331, 333, 349, 356, 369, 375, 377, 379, 395, 401, 435, 440, 464, 498, 502, 517
 KINETICS 48, 241
 KRYPTON 40 125
 KRYPTON 85 416, 446, 482, 485
 LABORATORY STUDIES 1, 9, 11, 12, 13, 16, 29, 30, 32, 35, 36, 37, 38, 39, 40, 41, 46, 47, 48, 49, 53, 54, 56, 61, 62, 77, 78, 79, 80, 82, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 104, 105, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 127, 130, 132, 141, 146, 145, 146, 148, 149, 150, 152, 154, 155, 161, 164, 165, 174, 175, 182, 183, 184, 186, 187, 190, 191, 193, 197, 198, 200, 201, 202, 203, 205, 206, 207, 209, 214, 215, 216, 217, 218, 219, 221, 222, 223, 224, 225, 239, 240, 241, 242, 243, 245, 246, 248, 249, 251, 255, 256, 257, 265, 267, 268, 269, 270, 271, 273, 277, 278, 279, 284, 285, 288, 289, 290, 291, 292, 293, 294, 295, 296, 308, 309, 310, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 333, 334, 336, 337, 338, 339, 340, 342, 343, 347, 348, 349, 351, 352, 353, 355, 356, 357, 360, 361, 362, 363, 364, 366, 367, 368, 369, 371, 374, 375, 376, 377, 379, 381, 382, 385, 387, 388, 394, 395, 396, 400, 401, 402, 405, 415, 417, 418, 427, 429, 430, 432, 433, 434, 435, 436, 438, 439, 440, 441, 442, 443, 444, 445, 448, 455, 459, 460, 461, 464, 465, 479, 483, 486, 490, 492, 204 262
 LACTATION 116, 199, 522
 LAKES 236
 LANTHANIDES 381
 LARVAE 137, 272
 LAWRENCIUM 252
 LEACHING 5, 383, 404, 473
 LEAD 120, 167, 429, 480, 487, 512
 LEAD 210 33, 272, 407, 487
 LEAVES 108, 130, 211, 332
 LEGAL ASPECTS 484
 LEGISLATION 470
 LET 48, 477
 LETHAL DOSE 154, 430, 496
 LETHAL DOSE 50 31, 155, 321, 360, 369, 385
 LEUKEMIA 394, 439, 441
 LEUKOPENIA 197, 240, 257, 322, 334, 339, 496, 499, 519
 LIBRARIES 1, 26
 LICHENS 232
 LIFE SPAN 56, 192, 209, 240, 248, 387, 523
 LIPIDS 175, 338, 527
 LIPOIC ACID 464
 LITHIUM 211
 LITTERS 117, 433, 508
 LIVER 13, 32, 35, 37, 61, 77, 81, 82, 83, 85, 86, 87, 94, 97, 98, 99, 101, 102, 103, 105, 106, 110, 112, 114, 115, 116, 132, 161, 164, 168, 189, 194, 195, 165, 174, 175, 182, 185, 190, 191, 201, 202, 203, 204, 206, 211, 214, 218, 221, 222, 241, 263, 286, 288, 273, 284, 288, 289, 290, 291, 292, 308, 316, 320, 321, 329, 330, 331, 333, 348, 349, 350, 367, 368, 369, 375, 376, 379, 381, 401, 415, 431, 435, 436, 444, 445, 454, 456, 464, 467, 486, 493, 496, 497, 498, 502, 503, 505, 506, 514, 517, 518, 519, 520, 522, 266
 LIZARDS 15, 228, 233, 237
 LUMINOUS PAINT 431
 LUNGS 29, 32, 44, 50, 55, 60, 61, 71, 78, 79, 81, 82, 86, 88, 91, 98, 113, 115, 118, 132, 139, 144, 145, 148, 149, 154, 161, 162, 184, 185, 197, 193, 194, 195, 200, 207, 209, 215, 219, 220, 224, 225, 242, 246, 248, 263, 265, 266, 268, 276, 289, 291, 299, 307, 334, 339, 362, 387, 346, 348, 356, 357, 357, 358, 367, 369, 372, 379, 382, 385, 387, 393, 397, 403, 406, 410, 412, 419, 438, 454, 459, 460, 461, 465, 467, 479, 483, 489, 504, 515, 517, 525, 527, 349
 LUTETIUM 174 136
 LYMPH NODES 50, 61, 79, 86, 87, 90, 105, 148, 149, 154, 155, 185, 194, 203, 204, 206, 207, 225, 246, 291, 336, 349, 389, 395, 356, 358, 367, 372, 375, 393, 397, 411, 435, 455, 459, 461, 465, 467, 483, 500, 509, 525
 LYMPH SYSTEM 32, 61, 105, 214, 380
 LYMPHOCYTES 217, 339, 360, 382, 435, 439, 440, 454, 509
 LYMPHOMAS 460
 LYMPHOPEMIA 61, 86, 246, 268, 322, 325, 342, 367, 439, 441, 502
 LYOSOMES 97, 110, 217, 218, 316, 415
 MACROPHAGES 184, 418
 MAGNESIUM CHLORIDES 340
 MALFORMATIONS 433
 MAMMALS 112, 227, 235, 469
 MAMMARY GLANDS 219, 441, 514
 MAN 30, 31, 33, 34, 46, 49, 50, 51, 52, 53, 56, 71, 81, 84, 88, 95, 96, 105, 126, 133, 135, 139, 143, 147, 150, 156, 163, 169, 172, 173, 192, 194, 195, 196, 210, 220, 225, 227, 237, 238, 247, 251, 252, 263, 264, 264, 276, 280, 281, 286, 287, 293, 297, 299, 301, 305, 307, 311, 313, 341, 344, 345, 346, 390, 403, 406, 410, 411, 414, 419, 430, 431, 432, 438, 439, 449, 454, 458, 462, 463, 465, 467, 469, 474, 476, 477, 480, 484, 489, 511, 513, 526
 MANGANESE 140, 253
 MANGANESE SULFATES 108
 MANGANESE 53 250
 MANGANESE 54 125, 138, 255, 383, 456
 MANTIDS 228
 MARINE ORGANISMS 312
 MARINE SEDIMENTS 253
 MARINE SYSTEMS 68, 106, 253, 310, 312, 363, 364, 424, 456, 457, 487
 MAXIMUM PERMISSIBLE BODY BURDEN 34, 150
 MAXIMUM PERMISSIBLE CONCENTRATION 17, 31, 32, 192, 466, 484
 MAXIMUM PERMISSIBLE DOSE 100, 264, 477
 MAXIMUM PERMISSIBLE VALUE 298, 454
 MEASUREMENT 3, 9, 10, 18, 29, 33, 39, 65, 90, 126, 163, 165, 195, 230, 252, 276, 293, 320, 398, 407, 424, 426, 454, 463, 470, 473, 488, 489, 490
 MEAT 156
 MEDICINE 476
 MEMBRANES 363, 514
 MERCURY 158, 299, 429
 MERDELEVIUM 252

KEYWORD INDEX

- METABOLISM 1, 14, 36, 88, 93, 94, 101, 115, 116, 132, 174, 175, 192, 196, 224, 238, 262, 264, 271, 286, 287, 290, 309, 325, 327, 329, 338, 351, 380, 400, 430, 436, 461, 464, 478, 477, 486, 488, 495, 496, 497, 516
- METALS 299
- METAPLASIA 403
- METEOROLOGY 18, 21
- METHODS 2, 3, 9, 10, 15, 28, 31, 33, 41, 53, 66, 78, 80, 92, 119, 125, 128, 135, 138, 157, 158, 159, 160, 165, 166, 167, 168, 172, 173, 176, 177, 178, 179, 180, 181, 185, 188, 189, 211, 239, 247, 250, 253, 256, 271, 293, 301, 303, 320, 341, 389, 391, 392, 404, 406, 407, 408, 409, 410, 411, 420, 424, 427, 429, 430, 451, 453, 454, 457, 470, 481, 484, 490, 494
- MICE 68, 92, 101, 104, 112, 114, 149, 150, 161, 165, 169, 182, 183, 209, 269, 288, 291, 292, 293, 347, 430, 433, 514, 523
- MICROORGANISMS 1, 11, 263, 400, 469
- MICROSOMES 202
- MICROSPHERES 333
- MILK 14, 68, 75, 109, 117, 156, 171, 199, 335, 389, 391, 431, 433, 452, 480, 481, 485, 487
- MILLING 137
- MILLIPEDES 237
- MILTON 60
- MINERAL WATERS 274, 513
- MINERALS 211, 271, 399, 488, 495
- MINING 33, 55, 57, 139, 143, 163, 299, 358, 511, 513
- MITES 259
- MITOCHONDRIA 97, 202, 218, 316
- MITOSIS 164
- MODELS 1, 32, 49, 140, 147, 169, 194, 210, 253, 258, 263, 346, 370, 372, 416, 417, 437
- MODELS, MATHEMATICAL 17, 27, 103, 195, 244, 250, 318, 421
- MOISTURE 254
- MONGOOSES 228
- MONIQUE EVENT 151
- MONITORING 65, 67, 69, 73, 75, 129, 133, 147, 153, 163, 250, 254, 264, 274, 281, 293, 298, 327, 335, 365, 378, 391, 392, 406, 409, 422, 423, 426, 463, 485
- MONKEYS 265
- MONOMERS 62, 77, 85, 101, 104, 148, 149, 182, 183, 186, 190, 362, 402
- MORPHOLOGY 164, 232, 235, 242
- MORTALITY 62, 86, 89, 117, 321
- MUCUS 515
- MUSCLES 13, 130, 148, 245, 246, 288, 331, 456, 480, 517
- NATURAL GAS 226
- NEOPLASMS 46, 61, 117, 161, 164, 169, 186, 187, 207, 210, 219, 243, 251, 280, 373, 387, 390, 430, 443, 448, 459, 460, 488, 499, 501, 504, 523, 524, 528
- NEOPLASMS, MALIGNANT 55, 56, 139, 264, 412, 434, 502
- NEPTUNIUM 474
- NEPTUNIUM CITRATES 202, 296
- NEPTUNIUM NITRATES 117, 118, 202
- NEPTUNIUM OXALATES 118
- NEPTUNIUM 237 93, 102, 117, 118, 157, 175, 201, 202, 221, 267, 296, 320, 321, 343, 368, 376, 472
- NEPTUNIUM 239 221
- NERVOUS SYSTEM 47, 501
- NEUTRON ACTIVATION 253, 299, 386
- NEUTRONS 211, 390
- NIOBIUM 179, 438
- NIOBIUM 95 122, 125, 395
- NITRATES 267
- NITRIC ACID 40
- NITROGEN 211, 246, 270, 271, 283, 290, 495
- NOSE 185
- NUCLEAR FACILITIES 43, 125, 274, 474
- NUCLEAR POWER 478
- NUCLEAR TRACKS 211
- NUCLEAR WARFARE 478
- NUCLEIC ACIDS 496, 497
- NUTRIENTS 285
- OAKS, GAMBEL 59
- OATS 336, 337
- OBELIUM 252
- OCCURRENCE 252, 259
- OCEANS 473
- OILS 416, 429
- OPERATION HARDTACK 250
- OPERATION JAGGLE 507
- OPERATION LATCHKEY 392
- OPERATION PLUMBOB 507
- OPERATION RIO BLANCO 226
- OPERATION ROLLER COASTER 10, 220, 393
- OPERATION ROVER 71
- OPERATION RULISON 226, 254, 416
- OPERATION SUNBEAM 507
- OPERATION TEAPOT 507
- OPERATION TUMBLER-SNAPPER 212
- ORANGES 108
- ORES 57, 143, 299, 349, 356, 479
- ORGANIC ACIDS 395
- ORGANS 27, 50, 100, 130, 191, 193, 239, 349, 350, 354, 357, 358, 369, 387, 445, 454, 456, 461, 467, 474, 477, 486
- ORTHOPTERANS 136
- OSMIUM 178
- OVARIES 37, 154, 164, 201, 369, 514
- OXIDASES 97
- OXIDATION 261, 290
- OXYGEN 385
- OYSTERS 156, 335
- PALAQUIN EVENT 63
- PALAEONTOLOGY 231
- PALLADIUM 176
- PARASITES 259, 260
- PARTICLE SIZE 5, 17, 21, 22, 29, 34, 41, 71, 88, 119, 123, 124, 133, 144, 220, 256, 261, 263, 289, 307, 345, 355, 358, 367, 402, 411, 418, 419, 438, 450, 460, 461, 479, 512, 525
- PARTICLES 74, 101, 124, 208, 261, 263, 276, 289, 306, 340, 353, 455, 512
- PARTICLES, AIRBORNE 21, 22, 23, 423
- PATHOLOGY 48, 145, 150, 155, 164, 187, 198, 200, 204, 214, 215, 242, 246, 263, 291, 334, 338, 360, 368, 387, 412, 430, 435, 459, 460, 488, 499, 502, 503, 509, 516, 524, 527
- PERITONEAL CAVITY 214, 340
- PERMEABILITY 371
- PERSONNEL 31, 162, 172, 173, 216, 293, 298, 307, 348, 390, 403, 406, 410, 411, 414, 466, 511, 513

KEYWORD INDEX

- pH 4, 12, 76, 332, 371
- PHAGOCYTOSIS 112, 113, 149, 214, 217, 340, 418
- PHANTOMS 44, 135, 469
- PHENEGAN 60
- PHOSPHATASES 97, 270, 309, 495, 498
- PHOSPHATES 338, 468, 486
- PHOSPHORUS 168, 270, 271, 283, 486, 495, 496, 497, 527
- PHOSPHORUS 32 48, 207, 309, 430, 451, 460, 524
- PHOTOGRAPHS, AERIAL 10
- PHOTOSYNTHESIS 236
- PHYSICAL FORM 183, 190, 417, 459, 492
- PHYSICAL PROPERTIES 167, 180, 252, 419, 508
- PHYSIOLOGY 112, 232, 233, 234, 235, 238, 327, 488, 508
- PILEDRIVER EVENT 151
- PINOCYTOSIS 336, 337
- PINSTRIPE EVENT 75
- PITUITARY 201, 412
- PLACENTAS 62, 117, 433, 508
- PLANKTON 140, 236, 272, 282, 310, 457
- PLANT-SOIL INTERACTION 108
- PLANTS 1, 3, 4, 8, 9, 10, 11, 36, 43, 58, 63, 75, 107, 108, 130, 140, 153, 156, 158, 170, 227, 228, 231, 232, 236, 255, 259, 260, 266, 274, 282, 310, 327, 332, 335, 336, 337, 359, 363, 368, 378, 389, 417, 421, 457, 458, 462, 469, 484
- PLANTS, INDUSTRIAL 31, 470
- PLOWSHARE 226, 254, 255, 391, 416, 478
- PLURONICS 357
- PLUTONIUM 1, 3, 5, 6, 10, 24, 25, 31, 36, 37, 38, 39, 40, 41, 43, 45, 52, 66, 74, 76, 78, 81, 83, 84, 86, 90, 95, 96, 100, 101, 103, 105, 106, 107, 110, 112, 113, 114, 121, 123, 124, 126, 128, 129, 131, 135, 145, 146, 147, 153, 154, 155, 156, 172, 174, 175, 183, 194, 195, 196, 220, 223, 224, 225, 247, 252, 251, 271, 276, 280, 282, 286, 287, 290, 291, 293, 294, 301, 303, 304, 308, 311, 344, 346, 352, 371, 378, 380, 381, 388, 390, 393, 400, 403, 404, 406, 410, 419, 429, 431, 432, 433, 438, 470, 472, 474, 475, 476, 477, 482, 488, 515, 525
- PLUTONIUM CARBONATES 187, 242, 339, 382, 384
- PLUTONIUM CITRATES 12, 14, 16, 75, 103, 115, 117, 146, 187, 241, 242, 271, 277, 278, 284, 289, 296, 309, 309, 339, 347, 379, 382, 385, 415, 492, 493, 494, 495, 495, 499, 502, 505, 506, 94
- PLUTONIUM FLUORIDES 40, 352, 525
- PLUTONIUM NITRATES 12, 76, 83, 87, 90, 144, 145, 146, 202, 203, 204, 206, 268, 271, 284, 286, 289, 292, 295, 348, 366, 396, 459, 461, 464, 492, 493, 494, 495, 496, 497, 498, 500, 501, 503, 504, 505, 510, 515, 516, 517, 518, 520, 521, 522, 525
- PLUTONIUM OXIDES 5, 12, 14, 16, 29, 32, 41, 46, 61, 79, 86, 87, 90, 91, 105, 119, 144, 161, 194, 203, 206, 209, 213, 214, 215, 216, 248, 261, 265, 289, 333, 334, 340, 342, 348, 353, 357, 361, 367, 372, 397, 410, 411, 418, 439, 440, 455, 460, 461, 464, 465, 479, 483, 509, 515, 525, 527, 355
- PLUTONIUM 236 9, 185
- PLUTONIUM 238 11, 16, 17, 86, 91, 93, 109, 120, 141, 170, 190, 213, 214, 219, 222, 239, 248, 250, 266, 267, 297, 298, 329, 333, 334, 342, 343, 345, 353, 367, 376, 378, 381, 423, 442, 462, 463, 481, 485, 510
- PLUTONIUM 239 2, 8, 9, 13, 15, 17, 19, 22, 23, 27, 28, 29, 30, 32, 44, 46, 47, 48, 49, 50, 58, 60, 61, 62, 65, 67, 69, 77, 79, 80, 82, 85, 86, 87, 88, 89, 91, 93, 98, 102, 104, 106, 111, 117, 120, 127, 134, 140, 142, 144, 148, 149, 150, 157, 158, 161, 162, 165, 182, 184, 185, 186, 187, 191, 192, 193, 197, 198, 200, 202, 203, 205, 206, 207, 209, 210, 214, 215, 216, 217, 218, 221, 222, 239, 240, 241, 242, 243, 245, 248, 250, 251, 257, 262, 264, 266, 267, 270, 273, 275, 278, 279, 285, 296, 297, 298, 306, 307, 309, 310, 314, 315, 317, 318, 322, 323, 324, 325, 326, 328, 333, 334, 339, 340, 342, 343, 348, 351, 355, 359, 360, 361, 362, 363, 364, 366, 373, 376, 378, 379, 382, 385, 387, 389, 390, 402, 406, 418, 421, 423, 435, 439, 440, 481, 483, 486, 487, 488, 451, 453, 454, 456, 459, 460, 461, 462, 463, 464, 465, 466, 467, 471, 479, 480, 481, 483, 485, 487, 489, 491, 492, 499, 500, 501, 502, 504, 506, 509, 510, 512, 514, 516, 517, 520, 523, 524, 527, 528, 508
- PLUTONIUM 240 2, 8, 17, 67, 135, 239, 359, 390, 463, 467, 487, 491
- PLUTONIUM 241 297, 487, 491
- PLUTONIUM 242 487, 491
- PLUTONIUM, METALLIC 261, 289, 371
- PLUTONYL ACETATES 503, 516, 519, 520
- PLUTONYL CITRATES 288
- PLUTONYL NITRATES 288
- PNEUMOSCLEROSIS 187, 242, 387
- POLONIUM 154, 155, 286, 294, 429, 431, 432, 438
- POLONIUM NITRATES 152
- POLONIUM 210 33, 152, 170, 310, 349, 407, 487, 523
- POLONIUM 231 157
- POLYMERS 76, 77, 101, 104, 149, 182, 183, 190, 223, 362, 402
- POPULATION 71, 75, 107, 247, 305, 335, 358, 469
- POTASSIUM 126, 299
- POTASSIUM PERMANGANATES 466
- POTASSIUM 40 44, 438
- POULTRY 156
- POWER PLANTS 416, 457
- POWER PLANTS, NUCLEAR 51, 140, 261, 300, 370, 378
- PRASEODYMIUM-140 329, 350, 357
- PRECIPITATION 18, 229, 234, 236, 383, 398, 485
- PRECIPITATION, CHEMICAL 28, 172, 173, 482
- PREDICTIONS 23, 27, 72, 121, 372, 476, 478
- PREGNANCY 62, 186, 433, 508, 514, 522
- PROCESSING PLANTS 390, 411, 472
- PROCESSING PLANTS, NUCLEAR 124, 384, 403
- PROGENY 197
- PROGESTERONE 60, 465
- PROJECT FAULTLESS 70
- PROJECT SHOAL 70
- PROJECT 57 8
- PROMAZINE HCL 60
- PROMETHIUM 147 199, 380
- PROPORTIONAL COUNTERS 42, 135, 172, 173, 420
- PROTACTINIUM 225
- PROTACTINIUM 231 473
- PROTACTINIUM 233 267, 469
- PROTEINS 30, 85, 95, 96, 97, 103,

KEYWORD INDEX

- PROTEINS 110, 112, 246, 270, 271, 319, 338, 380, 396, 486, 492, 493, 494, 495
- PROTEINS, GLYCO 270, 319, 488
- PULSE ANALYZERS 185, 239
- RABBITS 187, 293, 309, 350, 430, 438, 462, 488, 497, 500, 503, 504, 517, 520, 521
- RADIATION DETECTORS 42, 48, 59, 67, 129, 131, 138, 166, 167, 168, 176, 177, 178, 179, 180, 181, 185, 188, 189, 207, 208, 211, 239, 359, 420, 431, 450, 451, 454, 482
- RADIATION DOSE 1, 14, 27, 33, 86, 47, 48, 51, 62, 63, 75, 86, 89, 102, 114, 118, 150, 156, 164, 169, 186, 187, 193, 210, 219, 220, 251, 268, 306, 307, 334, 335, 351, 360, 370, 378, 384, 385, 394, 431, 443, 452, 454, 460, 463, 469, 477, 480, 525
- RADIATION DOSIMETRY 42, 183, 187, 163, 477
- RADIATION EFFECTS 45, 48, 49, 56, 63, 78, 86, 88, 112, 118, 136, 140, 143, 150, 154, 155, 161, 164, 169, 175, 197, 198, 210, 217, 249, 251, 257, 262, 264, 268, 269, 271, 277, 278, 290, 309, 317, 325, 327, 334, 360, 368, 370, 373, 376, 385, 388, 397, 403, 412, 432, 433, 434, 435, 439, 440, 441, 442, 448, 454, 469, 474, 476, 486, 497, 499, 500, 509, 511, 513, 516, 524, 527
- RADIATION EFFECTS, ACUTE 191, 380, 430, 502, 504
- RADIATION EFFECTS, CHRONIC 99, 191, 284, 374, 380, 382, 430, 495, 498, 501, 502, 509, 518, 519
- RADIATION EFFECTS, LATENT 186, 246, 279, 338, 374, 380, 387, 430, 443, 523
- RADIATION EFFECTS, MAMMALS 280
- RADIATION EFFECTS, SUBACUTE 495, 498, 502, 504
- RADIATION PROTECTION 51, 88, 194, 226, 298, 466, 469
- RADIATION SICKNESS 414, 501, 502, 516
- RADIATION, COSMIC 18
- RADIATION, GAMMA 7, 44, 70, 72, 135, 138, 156, 207, 255, 361, 369, 374, 383, 384, 390, 391, 400, 413, 425, 430, 462, 480, 518
- RADIATION, LOW LEVEL 51, 56, 210, 370, 469
- RADIATION, NEUTRON 400
- RADIATION, PHOTON 211, 239
- RADIATION, PROTON 269
- RADIATION, X 48, 135, 155, 207, 239, 269, 361, 370, 376, 400, 489
- RADIOACTIVITY 23, 25, 43, 208, 250, 254, 269, 266, 281, 350, 365, 391, 409, 413, 416, 422, 423, 431, 477, 481, 488
- RADIOACTIVITY, NATURAL 335, 370, 488
- RADIOAUTOGRAPHY 38, 48, 53, 58, 77, 80, 101, 114, 149, 214, 217, 225, 262, 278, 296, 300, 402, 418, 431, 435, 477, 479, 514
- RADIOBIOLOGY 36, 488
- RADIOCHEMICAL ANALYSIS 28, 59, 166, 168, 176, 177, 178, 180, 181, 189, 191, 193, 389, 431, 451, 467, 491
- RADIOCHEMISTRY 9, 54, 59, 166, 167, 168, 176, 177, 178, 179, 180, 181, 188, 189, 398
- RADIOGRAPHY 48, 315, 324, 524
- RADIONUCLIDE CYCLING 266
- RADIONUCLIDE RATIO 2, 7, 8, 17, 294, 348, 383, 410
- RADIONUCLIDES 1, 25, 36, 42, 43, 45, 47, 59, 65, 67, 100, 122, 125, 140, 156, 158, 166, 167, 168, 176, 177, 178, 179, 180, 181, 188, 189, 199, 208, 210, 244, 250, 251, 252, 255, 257, 262, 263, 264, 272, 280, 282, 285, 297, 298, 314, 317, 324, 328, 329, 345, 350, 365, 370, 371, 378, 380, 383, 389, 395, 400, 405, 409, 412, 413, 421, 426, 434, 457, 462, 463, 466, 471, 477, 480, 485, 487, 488, 523, 524, 526, 275
- RADIOSENSITIVITY 100, 117, 217, 264, 269, 342, 388
- RADIUM 33, 154, 155, 166, 264, 280, 286, 294, 431, 432, 473, 488
- RADIUM 226 30, 49, 65, 137, 150, 169, 197, 198, 199, 210, 251, 257, 262, 264, 270, 285, 317, 323, 324, 325, 328, 351, 373, 417, 435, 441, 442, 443, 448, 508, 523, 528
- RADIUM 228 210, 251, 257, 262, 270, 285, 317, 323, 324, 325, 351, 328, 373, 435, 441, 443, 448, 528
- RADON 33
- RADON DAUGHTERS 139, 511, 513
- RATES 49, 51
- RATS 31, 36, 37, 38, 40, 46, 47, 48, 54, 60, 62, 76, 77, 79, 81, 82, 83, 93, 103, 113, 116, 117, 132, 141, 145, 152, 154, 155, 164, 175, 184, 186, 187, 190, 191, 192, 193, 200, 201, 202, 205, 206, 214, 215, 216, 217, 219, 221, 222, 223, 224, 225, 290, 241, 242, 246, 248, 256, 267, 268, 269, 271, 273, 280, 288, 289, 290, 291, 293
- RATS 294, 295, 296, 308, 309, 319, 326, 329, 330, 331, 339, 340, 342, 347, 350, 355, 356, 357, 360, 362, 366, 369, 373, 376, 379, 381, 382, 385, 387, 394, 395, 396, 415, 418, 430, 432, 438, 440, 445, 459, 464, 465, 486, 492, 493, 494, 495, 496, 498, 499, 502, 503, 505, 506, 508, 510, 515, 519, 520, 521, 524, 527
- RATS, KANGAROO 64, 259
- REACTORS 335, 354, 378, 413, 466, 480
- REACTORS, POWER 358
- REACTORS, RESEARCH 406
- RECOMMENDATIONS 169, 298, 414
- RECOVERY 430
- REDISTRIBUTION 6, 22, 208, 250, 255, 258, 304, 409
- REGULATIONS 163, 297, 300
- RELATIVE BIOLOGICAL EFFECTIVENESS 49, 251, 257, 273, 477
- REPROCESSING PLANTS, NUCLEAR 378, 472
- REPRODUCTION 100, 117, 233, 238
- REPTILES 227
- RESORPTION 49, 277, 278, 318
- RESPIRATION 91, 220, 310, 363, 364, 367, 385, 501, 508, 512
- RESPIRATORY SYSTEM 139, 263, 511, 513, 515
- RESUSPENSION 1, 6, 17, 20, 22, 23, 107, 208, 303, 304, 409, 407, 453
- RETENTION 32, 76, 83, 89, 92, 94, 100, 112, 113, 115, 116, 117, 132, 144, 154, 169, 176, 175, 182, 183, 204, 205, 206, 216, 220, 221, 222, 224, 225, 248, 265, 286, 288, 289, 296, 316, 318, 328, 329, 330, 348, 351, 352, 357, 366, 372, 376, 397, 402, 433, 436, 445, 459, 461, 479, 488, 493, 510, 515, 516, 517, 518, 520, 525
- RETICULOENDOTHELIAL SYSTEM 243, 435, 500, 520, 521
- REVIEW 51, 56, 59, 84, 102, 103, 106, 111, 113, 133, 166, 167, 168, 169, 176, 177, 178, 179, 180, 181, 188, 194, 196, 210, 231, 261, 263, 280, 345, 380, 389, 397, 404, 412, 416, 420, 446, 447, 458, 472, 473, 484, 526
- RHODIUM 101 138
- RHODIUM 102 138, 255
- RHODIUM 90 256
- RICE 130
- RIVERS 138, 335, 468, 480, 485

KEYWORD INDEX

- RNA 309, 493, 496, 497
- ROCKS 151, 302, 386, 428
- RODENTS 15, 70, 235, 259, 260, 266
- ROOTS 109, 130, 255, 332, 336, 337
- RUBIDIUM 299
- RUMEN 12
- RUTHENIUM 37, 41, 331
- RUTHENIUM OXIDES 397
- RUTHENIUM 103 255, 365
- RUTHENIUM 106 58, 122, 134, 138, 199, 255, 256, 272, 365, 389, 395, 421
- SAGEBRUSH 63
- SALINITY 236, 265
- SALT REPOSITORIES 475
- SALTATION 20
- SAMPLES 9, 13, 399, 428
- SAMPLING 3, 6, 7, 17, 18, 19, 20, 21, 22, 23, 24, 43, 50, 73, 74, 75, 129, 133, 156, 195, 208, 220, 250, 253, 266, 276, 282, 293, 335, 359, 378, 383, 389, 389, 391, 392, 405, 406, 411, 419, 450, 451, 452, 453, 462, 463, 480, 481, 485, 490, 491, 512
- SANDS 20, 335, 399
- SARCOMAS 46, 79, 210, 243, 433, 460, 476
- SARCOMAS, LYMPHO 841
- SARCOMAS, OSTEO 47, 48, 85, 89, 111, 118, 150, 169, 187, 192, 240, 251, 262, 270, 278, 280, 309, 323, 324, 387, 388, 441, 501, 502, 504, 524
- SCANDIUM 299
- SCANDIUM 46 255
- SCANNING 7
- SCHOONER EVENT 208, 409
- SCINTILLATION COUNTERS 42, 165, 431, 436
- SCLEROSIS 78, 459
- SCORPIONS 136, 228, 237
- SEAS 128
- SEASONS 15
- SEAWATER 66, 106, 125, 310, 312, 424, 457
- SEDAW EVENT 64, 136, 138, 255, 383
- SEDIMENTATION 140, 263, 441
- SEDIMENTS 66, 106, 292, 378, 386, 457, 473
- SEISMOLOGY 437
- SELENIUM 299
- SEPARATION PROCESSES 2, 5, 9, 59, 66, 67, 128, 159, 166, 167, 168, 176, 177, 178, 179, 180, 181, 185, 188, 189, 341, 388, 395, 431, 440, 470, 472, 475, 482
- SEPHADEX G-25 460, 465
- SERINE 364
- SEROMUCOIDS 448
- SEX 47, 186, 444
- SHAPE 263, 507
- SHEEP 36, 185, 199, 220, 320, 321, 342, 368, 393
- SHIELDING 390, 425
- SHRIMP 180
- SHRUBS 4, 8
- SIALIC ACIDS 319
- SILICA 184
- SILT 137, 170, 272
- SILVER 188
- SILVER 108 456
- SILVER 110 456
- SIMULATION 12, 21, 90, 105, 393
- SITE EVALUATION 142, 255
- SKIN 40, 71, 127, 196, 204, 205, 207, 238, 269, 343, 371, 373, 380, 430, 466
- SMOKE, CIGARETTE 55, 139
- SNAKES 15, 228, 233, 237
- SNAP 71, 244, 380
- SNAP-19 68
- SNAP-9A 120
- SODIUM 299
- SODIUM CHLORIDES 200
- SODIUM CYANIDES 310, 363, 364
- SODIUM HYPOCHLORITE 127
- SODIUM PHOSPHATES 152
- SODIUM SULFITES 466
- SODIUM 24 480
- SOIL PROFILE 8
- SOILS 1, 2, 3, 4, 5, 6, 7, 8, 11, 17, 23, 24, 43, 64, 66, 68, 108, 125, 153, 156, 158, 160, 170, 211, 230, 258, 266, 303, 304, 332, 359, 383, 389, 398, 417, 431, 450, 451, 453, 462, 463, 470, 475, 480
- SOILS, CALCAREOUS 108
- SOILS, SANDY LOAM 4
- SOLPUGIDS 136
- SOLUBILITY 2, 12, 194, 346, 419, 428, 479, 213, 410
- SOLUTIONS 59, 265
- SOYBEANS 108
- SPACE FLIGHT 469, 476
- SPECIFIC ACTIVITY 496, 497, 498
- SPECTROSCOPY 74, 157, 165, 239, 299
- SPECTROSCOPY, ALPHA 28, 66, 157, 424, 428
- SPECTROSCOPY, GAMMA 9, 122, 398, 428, 482
- SPIDERS 136, 228, 237
- SPLAEN 61, 97, 105, 144, 148, 149, 154, 155, 165, 175, 182, 190, 203, 206, 221, 222, 284, 288, 290, 291, 292, 308, 330, 349, 369, 376, 493, 498, 500, 502, 517
- SPORES 11
- SPUTUM 513
- SQUIRRELS 228
- STACK EMISSIONS 124, 274, 406, 411, 416
- STANDARD MAN 27, 449, 489
- STANDARDS 51, 56, 133, 163, 192, 297, 298, 488, 490
- STATISTICS 1, 6, 7, 125, 220, 451
- STEMS 108, 332, 68
- STEROIDS 387, 441
- STOMACH 330
- STORAGE 274, 275, 297, 298, 404, 470
- STRATOSPHERE 467
- STRONTIUM 140, 280, 282, 327, 397, 488
- STRONTIUM CHLORIDES 479
- STRONTIUM SULFATES 479
- STRONTIUM 89 255, 389, 433, 461, 485
- STRONTIUM 90 66, 85, 106, 120, 126, 134, 150, 156, 158, 197, 198, 199, 210, 223, 251, 255, 256, 257, 262, 264, 272, 273, 275, 317, 319, 323, 325, 328, 331, 350, 351, 365, 380, 389, 398, 421, 435, 441, 443, 448, 451, 452, 453, 462, 463, 479, 480, 481, 485, 487, 512, 523, 528

KEYWORD INDEX

- SULFUR DIOXIDE 140, 416
 SULFUR 35 38
 SULKY EVENT 72
 SURGERY 52, 105, 201, 313, 343, 348, 528
 SURVEYS 75, 121, 404, 415
 SURVIVAL TIME 61, 136, 150, 154, 175, 183, 190, 219, 242, 246, 251, 268, 294, 323, 355, 360, 367, 373, 385, 395, 431, 460, 499, 504, 509
 SWINE 36, 40, 127, 245, 343, 371, 405, 510
 SWINE, MINIATURE 197, 198, 203, 204, 206, 333, 380
 SYNERGISM 215, 222, 240, 273, 430
 TAILINGS 408
 TANTALUM 179
 TAURINE 439, 440
 TECHNETIUM 189
 TEETH 434, 488
 TEMPERATURE 18, 140, 229, 234, 235, 236, 238, 261, 274
 TERRAIN 507
 TERRESTRIAL SYSTEMS 8, 28, 43, 58, 63, 70, 75, 107, 136, 137, 156, 170, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 250, 259, 260, 266, 283, 302, 398, 462, 463, 468
 TESTES 117, 148, 155, 201, 291, 415
 TESTOSTERONE 201
 TESTI 281, 456
 THEORETICAL STUDIES 27, 31, 67, 73, 76, 103, 125, 135, 192, 195, 220, 244, 282, 307, 311, 346, 359, 370, 372, 373, 390, 413, 421, 425, 426, 437, 453, 466, 482
 THERAPY 52, 60, 81, 83, 84, 87, 88, 90, 93, 105, 147, 148, 152, 162, 182, 183, 196, 221, 222, 223, 265, 267, 344, 352, 357, 362, 366, 381, 410, 414, 439, 468, 466, 476, 484, 501
 THISTLES, RUSSIAN 58
 THORIUM 211, 223, 299, 399, 438, 488
 THORIUM 228 85, 257, 262, 270, 279, 285, 317, 323, 324, 325, 328, 351, 373, 435, 441, 443, 448, 528
 THORIUM 230 157, 349, 356, 407, 473
 THORIUM 232 125, 417, 473
 THORIUM 234 384
 THORIUM 278 251
 THOLIUM 276
 THYMUS 290
 THYROID 98, 174, 201, 369, 375, 401, 412, 479, 480
 TICKS 260
 TIME FACTOR 23, 27, 49, 64, 150, 248, 265, 285, 288, 318, 326, 366, 373, 379, 388, 409, 415, 501, 517, 521
 TISSUES 13, 14, 16, 35, 98, 103, 114, 135, 141, 144, 145, 148, 149, 155, 165, 174, 190, 193, 196, 203, 204, 205, 206, 214, 219, 223, 245, 247, 252, 262, 264, 266, 284, 290, 306, 308, 330, 333, 342, 349, 351, 356, 357, 361, 366, 369, 372, 393, 401, 407, 411, 412, 430, 432, 444, 445, 449, 461, 464, 465, 467, 474, 477, 483, 486, 498, 509, 514, 518, 521, 523
 TORTOISES 228
 TOXICITY 31, 35, 85, 88, 89, 102, 111, 112, 113, 137, 150, 152, 154, 155, 169, 175, 183, 190, 192, 196, 197, 198, 210, 221, 237, 246, 257, 267, 268, 280, 296, 290, 292, 298, 314, 317, 327, 355, 368, 373, 376, 377, 394, 432, 443, 449, 519, 523
 TOXICOLOGY 31, 476, 484
 TRACE ELEMENTS 140, 299
 TRACER STUDIES 104, 185, 320, 321, 348, 407, 488, 495, 496, 497
 TRACERS 9
 TRACHEA 185, 465
 TRANSACTINIDE ELEMENTS 252
 TRANSFERRIN 30, 95, 96, 103, 396, 402
 TRANSLOCATION 60, 77, 86, 90, 92, 97, 98, 101, 104, 105, 112, 115, 116, 144, 203, 205, 206, 248, 289, 318, 343, 345, 366, 348, 372, 393, 397, 459, 461, 479, 525
 TRANSPLUTONIUM ELEMENTS 252
 TRANSPORT 1, 16, 27, 62, 103, 108, 109, 266, 470, 473, 480, 508, 522
 TRANSPORTATION 123, 274, 297, 298, 425
 TRANSURANIUM ELEMENTS 81, 88, 106, 113, 119, 174, 252, 327, 381, 404, 454, 471, 478
 TREES 140, 232, 266
 TRINITY SHOT 266
 TRITIUM 64, 170, 254, 335, 383, 416, 420, 421, 422, 427, 431, 446, 451, 452, 458, 480, 485
 TROPOSPHERE 212, 487
 TROUT, RAINBOW 137
 TTHA 357
 TUFF 302, 437
 TUMORIGENESIS 269, 812
 TUNA 456
 TUNGSTEN 180, 409
 TUNGSTEN 181 208, 255
 TUNGSTEN 185 255
 TURNOVER 49
 TURTLES 233
 ULTRAFILTRATION 213
 ULTRASONICS 221
 UPTAKE 8, 11, 14, 77, 93, 107, 108, 110, 130, 137, 170, 272, 311, 332, 336, 337, 340, 343, 375, 415, 477, 479, 514
 URANIUM 13, 25, 31, 33, 54, 55, 57, 59, 66, 128, 130, 137, 139, 143, 153, 156, 158, 159, 160, 163, 171, 207, 211, 225, 246, 252, 256, 299, 312, 330, 331, 341, 349, 350, 358, 384, 386, 395, 399, 407, 408, 429, 431, 438, 449, 450, 468, 472, 477, 486, 490, 511
 URANIUM FLUORIDES 132
 URANIUM NITRATES 35
 URANIUM OXIDES 132
 URANIUM 233 157, 199, 267, 297, 406, 523
 URANIUM 234, 424, 428, 473
 URANIUM 235 253, 297, 298, 473
 URANIUM 238 125, 152, 298, 349, 356, 417, 424, 428, 473, 479
 URANIOL, NATURAL 34
 URANYL ACETATES 336, 337
 URANYL NITRATES 152, 377
 UREA 270
 URETHANE 161, 221
 URINE 14, 33, 38, 52, 53, 83, 84, 93, 94, 103, 115, 126, 131, 132, 141, 148, 149, 157, 158, 159, 160, 162, 165, 171, 172, 173, 174, 185, 194, 195, 205, 221, 222, 223, 246, 276, 293, 301, 308, 311, 331, 341, 343, 344, 346, 349, 350, 357, 377, 381, 403, 407, 410, 427, 429, 436, 439, 440, 441, 454, 461, 464, 467, 490, 509, 510, 518, 519

KEYWORD INDEX

VALENCE 76, 93, 94, 103, 110, 175, 196, 205, 218, 222, 223, 224, 267, 268, 284, 286, 289, 292, 295, 316, 396, 402, 492
 VEGETABLES 462
 VELOCITY 18
 VENOMS 227, 237
 VERTEBRATES 15, 106, 469
 VITAMINS 486
 WAGON WHEEL EVENT 226
 WASHING 81, 88, 147, 200, 205, 265, 466
 WASPS 228
 WASTE DISPOSAL 67, 134, 275, 298, 404, 462, 470, 471, 475
 WASTE TREATMENT 120, 137, 275, 404, 406, 471
 WASTES, ORGANIC 137
 WASTES, RADIOACTIVE 43, 128, 130, 137, 143, 163, 274, 298, 300, 335, 404, 408, 421, 471, 275

 WATER 6, 28, 34, 43, 64, 67, 75, 127, 138, 137, 153, 158, 160, 170, 171, 200, 213, 227, 229, 230, 235, 236, 282, 295, 298, 302, 365, 378, 383, 384, 404, 417, 421, 422, 427, 428, 429, 431, 452, 462, 466, 480, 484, 485, 487
 WATER, SURFACE 156, 234
 WEAPONS, NUCLEAR 120, 456, 478
 WEATHER 409
 WEATHERING 230, 447
 WEIGHT 154, 155, 183, 190, 499, 503, 504, 509
 WELLS 302
 WHOLE BODY COUNTERS 92, 162, 174, 352, 361, 406, 410, 436
 WHOLE BODY IRRADIATION 430
 WIND 6, 17, 18, 72, 123, 125, 229, 230, 258, 303, 304, 384, 408, 409
 WOUNDS 84, 90, 105, 147, 195, 205, 295, 313, 344
 WOUNDS, PUNCTURE 52
 YTTRIUM 308, 488
 YTTRIUM 88 255
 YTTRIUM 90 256, 331, 350
 YTTRIUM 91 360, 395, 486
 ZINC 299
 ZINC DTPA 82

Adriatic Sea 312
Africa 234
Africa (N), Sahara Desert 229
Africa (NC), Sudan (NE), Markhiyat Jebels 228
Africa (NE), Arabian Desert 229
Africa (NE), Jordan, Desert Region 229
Africa (NE), Syrian Desert 229
Africa (S), Crocodile River, Hartbeespoort Dam 365
Africa (S), Crocodile River 365
Africa (S), Desert Regions 232
Africa (S), Republic of South Africa (NC), Kalahari Desert 229
Africa (SW), Algeria, Sahara Test Site, Hoggar Mountains 151
Africa (SW), Namib Desert 229
Antarctica, Base Roi Baudouin 450
Asia (C), Desert Regions 232
Asia (E), Japan (S), Kyushu (SW), Nagasaki 66
Asia (E), Japan (SC), Ibaraki, Tokai Works 130
Asia (E), Japan (SC), Shinkawa River 130
Asia (E), Japan (SE), Tokai 125
Asia (S), Pakistan (W), Desert Region 229
Asia (SW), Iraq (W), Desert Region 229
Asia (W), Afghanistan (S), Desert Region 229
Asia (W), Baluchistan (SW), Desert Region 229
Asia (W), Iran, Desert Region 229
Atlantic Ocean 450, 452
Australia 57, 274
Australia (S), 31st Parallel, Desert Regions 229
Australia, Desert Regions 232
Australia, Lucas Heights, Australian Atomic Energy Commission Research Establishment 335
Canada (SC), Ontario, Ottawa River 142
East China Sea, 30 degrees 40' north, 129 degrees 30' East 66
Europe (S), Italy (N), Ispra 481
Europe (SE), Yugoslavia 33
Latitude 10 N 491
Latitude 35 N 491
Latitude 40 S 491
Latitude 70 N 491

Mexico (NW), Baja California, Pacific Coast 229
Mexico, Sonoran Desert 229
North America (SE), Gulf of Mexico 469
Pacific Ocean (E) 66
Pacific Ocean (N) 456
Pacific Ocean (NE) 68
Pacific Ocean (NW), Japanese Coast 424
Pacific Ocean (NW), Sea of Japan 424
Pacific Ocean (W), Marshall Islands (NW), Bikini Atoll 250, 463
Pacific Ocean (W), Marshall Islands (NW), Eniwetok Atoll 250, 359
Pacific Ocean (W), Marshall Islands (SE), Enyu Atoll 463
Pacific Ocean (W), Marshall Islands, Pacific Proving Ground 212
Pacific Ocean, 39 degrees 02 North, 169 degrees 57 west 66
South America (SC), Argentina, Desert Region 229
South America (SW), Chile (NC), Atacama Desert 229
South America, Desert Regions 232
United Kingdom (S), England, Surrey, Sutton 450
United States 234
United States (NC), Wisconsin, Two Creeks, Point Beach Nuclear Power Plant 140
United States (NE), Illinois, Argonne, Argonne National Laboratory 422
United States (NE), Lake Michigan 140
United States (NE), Lake Superior 140
United States (NE), New York, New York City 512
United States (NE), Ohio, Miamisburg, Mound Laboratory 170
United States (NE), Ohio, Portsmouth, Goodyear Atomic Corporation Gaseous Diffusion Plant 384
United States (NW), Washington, Richland 156, 470
United States (NW), Washington, Richland, Columbia River 156, 480
United States (NW), Washington, Richland, Hanford Operations 156
United States (NW), Washington, Richland, Hanford Plant 472, 480
United States (SE), Mississippi, Tatum Dome Test Site 462
United States (SE), South Carolina, Aiken, Savannah River Plant 472
United States (SE), Tennessee (E), Oak Ridge, AEC Reservation, Walker Branch Watershed 283

GEOGRAPHIC LOCATION INDEX

- United States (SW), Arizona, Desert Region 229
- United States (SW), California (S), Mojave Desert 229, 231
- United States (SW), California (SE), Colorado Desert 231
- United States (SW), California (SE), Furnace Creek 122
- United States (SW), California (SE), Shoshone 122
- United States (SW), California (SW), Vandenberg Air Force Base, SLC-2 East 68
- United States (SW), California (SW), Santa Barbara Channel, 5 miles north of San Miguel Island 68
- United States (SW), Colorado, Animas River 137
- United States (SW), Colorado, Garfield County, Project Rulison Site 258
- United States (SW), Colorado, Golden, Rocky Flats 411
- United States (SW), Colorado, Golden, Rocky Flats Plant 153, 303, 363
- United States (SW), Colorado, Larimer County 171
- United States (SW), Great Basin 232
- United States (SW), Nevada (SW), Lathrop Wells 122
- United States (SW), Nevada (SW), Scotty's Junction 122
- United States (SW), Nevada, Churchill County, Fallon Nuclear Test Site 70
- United States (SW), Nevada, Great Basin Desert 229
- United States (SW), Nevada, Mercury 17
- United States (SW), Nevada, Nevada Test Site 6, 10, 15, 21, 22, 24, 64, 75, 122, 136, 138, 206, 305, 391, 392, 409, 437, 462, 475, 5C7, 63
- United States (SW), Nevada, Nevada Test Site (C) 70
- United States (SW), Nevada, Nevada Test Site (SW), Jackass Flats, Nuclear Rocket Development Station 302
- United States (SW), Nevada, Nevada Test Site, Area 11 4
- United States (SW), Nevada, Nevada Test Site, Area 11, Plutonium Valley 3
- United States (SW), Nevada, Nevada Test Site, Area 13 2, 3, 4, 5, 7, 8, 11, 13, 15, 17, 359
- United States (SW), Nevada, Nevada Test Site, Area 18 13, 58
- United States (SW), Nevada, Nevada Test Site, Area 18, Buckboard Mesa 72
- United States (SW), Nevada, Nevada Test Site, Area 4 359
- United States (SW), Nevada, Nevada Test Site, Area 5 5, 7
- United States (SW), Nevada, Nevada Test Site, Area 5, GMX Area 3
- United States (SW), Nevada, Nevada Test Site, GMX Area 4, 17, 18
- United States (SW), Nevada, Nevada Test Site, Nye County 259, 260
- United States (SW), Nevada, Nevada Test Site, Filedriver Site 157
- United States (SW), Nevada, Nevada Test Site, Yucca Flat 255
- United States (SW), Nevada, Roller Coaster Area 13
- United States (SW), Nevada, Searchlight 13
- United States (SW), Nevada, Tonopah Test Range 4, 7, 10
- United States (SW), Nevada, Tonopah Test Range, Area 52 3
- United States (SW), New Mexico (S), Trinity Site 266
- United States (SW), New Mexico, Alamogordo, Trinity Site 476
- United States (SW), New Mexico, Albuquerque, Sandia Laboratories 43
- United States (SW), New Mexico, Animas River 137
- United States (SW), New Mexico, Los Alamos, Los Alamos Scientific Laboratory 471
- United States (SW), Utah, Great Basin Desert 229
- 80th Meridian, 76 degrees North to 90 degrees South 120

#Environmental Monitoring Program at the Pu02 with Chrysotile Asbestos or Benzpyrene in the Rat. of the Effects of Transuranic Elements on Reproductive Studies Using the Artificial Human and Simulated Tissue Depth*	AEC Research Establishment, Lucas Heights*	000335	
#Distribution of Radiation	Abdominal Cavity* #Carcinogenesis of Plutonium 239 Ability* An Experimental Evaluation	000046 000117	
#Gastrointestinal Effect of Age on the #Gastrointestinal Passage Time and #Further studies on the Gastrointestinal #Radioisotope Toxicity: From Pulmonary	Aerosol and Intestinal Fluids* In Vitro Plutonium Absorbed Dose from Alpha-Active Aerosol Particles by Absorbed Dose in the Lungs from Radioactive Aerosols* Absorption and Decontamination of Plutonium on Rats* Absorption and Retention of Plutonium Chelates* Absorption of Plutonium and Ruthenium* Absorption of Plutonium 238 Pu02 and Plutonium 239 Pu02* Absorption of Plutonium*	000012 000306 000307 000040 000040 000037 000333 000510 000397 000397 00014 000313 000431 000516 000466 000474 000364 000310 000356 000464 000497 000395 000496 000035 000415 000267 000157 000306 000419 000363 000274 000003 000024 000002 000118 000525 000387 000498 000079 000410 000377 000183 000367 000268 000321 000280 000161 000385 000208 000203 000459 000243 000330 000524 000256 000292 000518 000101 000492 000218 000296 000312 000115 000436 000328 000351 000322 000414 000026 000010 000091 000306 000021 000091 000119 000029 000307 000263 000252 #Deposition of Inhaled	#Deposition of Inhaled
Nodes Following Inhalation of Radioactive Insoluble the State of the Blood System in Rats Under Inhalation Compounds* #Effect of Some Drugs on the Remote Compound*	Aerosols* #Evaluation of Activity in Lung and Lymph Infection by Plutonium 239* #On After-effects of Inhalation of Soluble Plutonium 239 After-effects of Inhalation of Soluble Plutonium 239 After-effects of Killing Rats Using Ammonium Diurantate* Age and Sex on the Metabolism of Americium by Rats* Age on the Absorption of Plutonium and Ruthenium* Age-Related Effects of Plutonium in Rats*	000382 000387 000167 000246 000448 000037 000266	

- in Dogs, Rabbits, Guinea Pigs
Permissible Amounts of Natural Uranium in the Body
of Plutonium 239 in the Human Organism and in the Use of Nevada Test Site Data and Experience to Predict Ultra High Volume Analysis and Data Reduction of Environmental Monitoring of the Worker and His Environment December 1969* Surface
- #Diagnosis of Plutonium Reentrained in Fluorophotometric Determination of Uranium in Urine and of Strontium 90, Plutonium 239 and Lead in Surface #The Integrating Impactor, a Monitor for #Distribution and Redistribution of #Distribution and Redistribution of #Plutonium in #Plutonium in #Studies on
- Yugoslav Uranium Mine* Overheating Incidents*
- #A Twenty-Seven Year Study of Selected Los Alamos Solid Waste Development Facility, Los Alamos, New Mexico, Phase of Assimilation of Plutonium 239 by the Marine Respiratory and Plutonium 239 Accumulation by Marine in Granitic Rock Recovered from the Monique Event. #Selective Placental Transmission of Radioactive #The Tumorigenic Action of Beta, Proton, and Americium 241 in Autoradiographic Determination of #Low Level #The Integrating Impactor, a Monitor for Airborne #Histopathological Endpoints in Compact Bones Receiving #Radiogenic Effects in Man of Long-Term Skeletal #Distribution of Absorbed Dose from Characteristics Related to Pulmonary Exposure* #In Vivo and In Vitro Chelation of Plutonium by Resistance of Fixed Tissue Cells Morphologically Beagle Dogs as a Function of Respiratory and Aerosol of Inhaled Plutonium and Silica on the Behavior of the #In Situ Optical Particle Size Analysis of #The Evolution of Desert Vegetation in Western North Inhalation Exposures to High-Pinged Oxides* #The Removal of #The Influence of Age and Sex on the Metabolism of #A Study of Translocation Dynamics of Plutonium and #The Metabolism of #Deposition Patterns and Toxicity of Plutonium and from Autopsy Samples* #Distribution of Plutonium and #Analytical Method for #The Measurement and Management of Insoluble Plutonium-Spectral Analysis* #Plutonium and #The Determination of Plutonium to 239 Pu02* #Plutonium-239 Pu02* #Plutonium-239 of the Intracellular Distribution of Plutonium 239, of Neptunium 237, Plutonium 238, Plutonium 239, #The Carcinogenic Effects of #Spindling of DTPA* #Increased Uptake of #Short-Term Metabolism of #Metabolic Characteristics of Observations* Spectrometry* #Determination of Plutonium 239 and Vegetation Sample# Determination of Plutonium 239 and activity by Variable Exposure to Plutonium 239 and Chelating Agent (DTPA) on Uptake by and Distribution of Rats* #Effect of Complexing Substances on Its Elimination* #Distribution and Biological Effects of Rat Skeletons* #Experimental Removal of Cerium 144, of Single and Fractionated Doses of Plutonium 239, at Remote Times After Exposure to Radioactive in the Body of Rats Under a Single Administration of #Remote Aftereffects of Killing Rats Using Conditions* #Rapid Methods for Specific Radionuclide #Improvements in Radiochemical #The Role of Fecal #In Situ Optical Particle Size #The Multilevel
- Aged Unseparated Solution of Uranium Fission Products Aging and Internal Emitters on Blood Chemistry* Air and Drinking Water Radon on Human Experimental Data* Air from Contrasted Natural Environments* Air of Work Premises of the Maxium Permissible Content Air Concentrations of Plutonium Due to Resuspension on Air Sampler* Air Sampler* #Improvements in Radiochemical #Air Sampling as Part of an Integrated Program of Air Sampling Program, 80th Meridian Network, January- Air Surveillance Network, July 1971* Air* #The Respirable Fraction Airborne Alpha Emitters* Airborne Debris from the Schooner Event* Airborne Particulates from the Schooner Cratering Event* Airborne Particulates, November 1965-March 1966* Airborne Particulates, October-December 1971* Airborne Radioactive Contamination of Minerals in a Airborne Release of Plutonium and Its Compounds During Alamosgordo Plus Twenty-Five Years* Alamos Plutonium Workers* Alamos Scientific Laboratory, New Mexico* Statement, Alga ASCOPHYLLUM MOBOSUM and Marine Phytoplankton* Algae ASCOPHYLLUM MOBOSUM* Algae* The Mechanism of the Action of Cyanide on Cell Nigeria, and the Piledriver Event, Nevada Test Site* Alkaline Earths and Plutonium* Alpha and Electron Radiation on the Rat Skin* Alpha Activity by Variable Exposure to Plutonium 239 Alpha Counting System with Six Solid State Detectors* Alpha Emitters* Alpha Irradiation* Alpha Irradiation* Alpha-Active Aerosol Particles by Tissue Depth* Alpha-Active Fallout Particles - Physical Alpha-Lipoic Acid and DTPA* Altered through Processes of Repair. 1. The Liver Alveolar Deposition of Plutonium 239 Pu02 Aerosols in Alveolar Macrophages* Cytological Study of the Effect of the Aerosol on the Lung of the Rat* Americium and Plutonium from the Rat by Chelating Agents Americium and Plutonium Urine Excretion Following Acute Americium by Rats* Americium from Simulated Puncture Wounds in Beagle Dogs* Americium in Lactating Rats* Americium in Liver* Americium in Occupationally Exposed Humans as Found Americium in Urine* Americium Inhalation in Man* Americium Measurement in Humans by X and Gamma-Ray Americium Ratios in Biological Specimens* Americium Ratios in Dogs After Inhalation of Plutonium Americium Ratios in Dogs After Inhalation of Plutonium Americium 241 and California 249 in Livers After Americium 241 and Curium 242 in Bone* of the Behavior Americium 241 and Plutonium 239 in the Rat* Americium 241 by Bone Protein* Americium 241 by Plants Caused by the Chelating Agent Americium 241 in the Adult Baboon* Americium 241 in the Blood In Vivo and In Vitro Americium 241 in Animal Tissues by Liquid Scintillation Americium 241 in Large Nevada Applied Ecology Group Americium 241 in House Liver* Determination of Alpha Americium 241 in Plant Parts of Bush Beans* Soil pH and Americium 241 on the Histopathology of the Ovaries of Americium 241 Distribution in Rats and the Effect of Americium 241* Americium 241, Curium 242 and Plutonium 238 from the Americium 241, Phosphorus 32, and X Rays on the Americium* #Change in Metabolism Americium Diuranate to the Stomach* of Uranium Americium Diuranate* Amphibians and Reptiles* Analysis and their Application to Aquatic Emergency Analysis and Data Reduction of Environmental Air Samples Analysis in a Bioassay Program* Analysis of Ambient Aerosol* Analysis of Human Lung Tissue* Analysis of Indian Monzite Sand in Animal Tissues, Analysis of Plutonium in Soil at the Nevada Test Site* Analysis of Vegetation Cover in Certain Plutonium Analysis* Plutonium and Americium Analysis: Resuspension Element Status Report* Analytical Chemistry, October 10-11, 1972* Eighteenth Annual Conference on Bioassay, Environmental, and

Laboratory*	
	*Pathological
of Plutonium 239 Pu02 Aerosols Generated for	
Inseparated Solution of Uranium Fission Products in the	
Determination of Plutonium 239 and Americium 241 in	
*Analysis of Indian Monozite Sand in	
Plutonium in the Developing	
Physical Properties and Physiological State of the	
Materials from the Terrestrial Environment to	
Uranium in Organisms of	
*Metabolic Processes in the Bone Tissue of	
Koller Coaster, Project 4.1, Plutonium Take by	
*Gross and Histopathology of	
Venoms of Desert	
of Internally Deposited Radioisotopes in Laboratory	
and Plutonium 239 Mother to Calfspring in Laboratory	
of Uranium Mill Wastes on Biological Tissue of the	
in Urine Specimens Following their Separation through	
1968* Biological Aspects of Lead: An	
Analytical Program and Abstracts: Eighteenth	
Plant, January through December 1972, Including	
1972*	
Stanford Biology Research	
Irradiation Program* Research in Radiobiology:	
Describe the Flow of a Radioactive Iodine in Groundwater,	
*Radiological and Environmental Research Division	
*Biology Research	
Rivers from the Gulf of Mexico Distributive Province:	
239 Pu02 Inhalation* Heterophile	
of Nevada Test Site Data and Experience to Predict Air	
of Off-Site Surveillance for the Pin Stripe Event,	
Specific Radionuclide Analysis and their Application to	
*Ecological Aspects of Plutonium Dissemination in	
239 Pu02* Preparation of	
and Plutonium Contents of Perennial Vegetation in	
Botanical Composition of the Diet of Cattle Grazing the	
Grazing Studies on Selected Plutonium Contaminated	
Studies of Vertebrates in Plutonium Contaminated	
*Soil Surveys of Five Plutonium-Contaminated	
of Vegetation Cover in Certain Plutonium Contaminated	
at Atomic Energy Commission Installations. 1.	
Human Adaptations to	
Topics on the Physical and Biological Aspects of	
Stabilization of the Uranium Tailings at Tuba City.	
*Effects of a Nuclear Detonation on	
Plutonium *In Vitro Plutonium Studies Using the	
*Carcinogenic Effect of Plutonium 239 Pu02 and	
*Carcinogenesis of Plutonium 239 Pu02 with Chrysotile	
of Plutonium 239 and Polonium 210 by the Brown Alga	
of Assimilation of Plutonium 239 by the Marine Algae	
ASCOPHYLUM NODOSUM* Methods of	
Liquid Transuranium Concentration of Fishes and Plants	
Radionuclides* Radiobiological Hazards	
for 1959-1970* Global	
Report of the Radiological Clean-up of Bikini	
of Plutonium Due to Resuspension on the Enewetak	
Lived Radionuclides Produced at Bikini and Eniwetok	
National Environmental Levels of Radioactivity at	
for the Nuclear Rocket Development Station, at the U.S.	
Vegetation in Area (Nevada Applied Ecological	
Uranium Mining and Processing in	
Cases* in Occupationally Exposed Humans as Found from	
Variable Exposure to Plutonium 239 and Americium 241	
Pat Kidney* Microscopic and	
Affected by Its Physicochemical State and Whole-Body	
*Distribution of Plutonium in Mice, in	
High Resolution Neutron-Induced	
Beagle-Billiar Detailed Neutron-Induced	
Reports	
*Short Term Metabolism of Americium 241 in the Adult	
Metabolic Characteristics of Americium 241 in the Adult	
Determination of Plutonium in Urine: Separation from	
Daughters in Workers of Non-Uranium Mines and Mineral	
in Beagle Dog Studies with Transuranium Elements at	
Third Retention of Plutonium 239 in the Ulna of the	
Battelle-Northwest* Progress in	
Alveolar Deposition of Plutonium 239 Pu02 Aerosols in	
The Morphology of Experimental Lung Tumors in	
and Translocation of Inhaled Plutonium Oxide in	
and Americium from Simulated Puncture Wounds in	
The Distribution and Retention of Californium 249 in	
The Distribution and Retention of Californium 249 in	
Progress in the	
	Analytical Method for Americium in Urine
	*Analytical Procedures for the Environmental Health
	Analytical Procedures of the Industrial Hygiene Group
	Anatomy of Plutonium 239 Sickness*
	Animal Inhalation Experiments* and Size Distribution
	Animal Organisms* Behavior of
	Animal Tissues by Liquid Scintillation Spectrometry*
	Animal Tissues, Part 2*
	Animal*
	Activity of Radionuclides on their
	Animals and Man* Transfer of Radioactive
	Animals from the Adriatic Sea*
	Animals Damaged by Plutonium 239*
	Animals Exposed to a Non-Nuclear Detonation of a
	Animals Treated with Plutonium*
	Animals*
	Late Effects
	*The Transmission of Radiostrontium
	Animals River (Colorado-New Mexico)* Effects
	Anion Exchange* Determination of Uranium
	Annotated Bibliography, Literature from 1950 through
	Annual Conference on Bioassay, Environmental, and
	Annual Environmental Monitoring Report, Rocky Flats
	Annual Environmental Monitoring Report, Calendar Year
	Annual Report for 1962*
	Annual Report of Work in Progress in the Internal
	Annual Report, December 1, 1966 to February 20, 1967 to
	Annual Report, Ecology, January-December 1972*
	Annual Report, 1956*
	Anomalous Concentrations*
	Antibody Formation in Rats and Beagles After Plutonium
	Antidote Therapy of Uranium and Polonium Poisoning*
	Appendix 4, Resuspension Element Status Report: Use
	April 25, 1966* Final Report
	Aquatic Emergency Conditions* Rapid Methods for
	Aqueous Suspensions of Ruthenium 106 and Plutonium
	Area (Nevada Applied Ecology Group Vegetation Studies)*
	Area 18 Range of the Nevada Test Site, 1966-1974, and
	Areas in Nevada*
	Areas of the Nevada Test Site*
	Areas on the Test Range Complex in Nevada* Ecological
	Areas Using Aerial Photography* Analysis
	Argonne National Laboratory, January-June 1971*
	Arid Environments*
	Arid Regions* Desert Biology, Special
	Arizona* Chemical
	Arthropods at the Nevada Test Site*
	Artificial Rain and Simulated Abnormal and Intestinal
	Asbestos in the Lung*
	Asbestos or Benzopyrene in the Rat Abdominal Cavity*
	ASCOPHYLUM NODOSUM and Marine Phytoplankton*
	ASCOPHYLUM NODOSUM* Active Phase
	Assessing Fallout*
	Assimilation of Plutonium 239 by the Marine Algae
	Associated with the Discharges of the Low Level Uranium
	Associated with Internal Contamination of the Body by
	Atmospheric Electrical Effects of Nuclear Explosions*
	Atmospheric Plutonium 239 and Plutonium Isotopic Ratios
	Atolls*
	Atom* Data and Experience to Predict Air Concentrations
	Atoms. 1.* Long-
	Atomic Energy Commission Installations. 1. Argonne
	Atomic Energy Commission's Nevada Test Site* Supply
	Attributes and Plutonium Contents of Perennial
	Australia*
	Autopsy Findings in United States Transuranium Registry
	Autopsy Samples* Distribution of Plutonium and Americium
	Autoradiographic Determination of Alpha Activity by
	Autoradiographic Studies of Uranium Distribution in the
	Autoradiographic Studies on Plutonium Metabolism as
	Autoradiographic Study*
	Autoradiography of Bone Containing Plutonium 239*
	Available in Povshare Open File*
	Beagles*
	Beaks*
	Baked Urine Residues Using Ion-Exchange*
	Rapid
	Baths* on the Occupational Hazards from Inhaled Radon
	Battelle-Northwest* Progress
	Beagle Compared with Retention in the Numerus and the
	Beagle Dog Studies with Transuranium Elements at
	Beagle Dogs as a Function of Respiration and Aerosol
	Beagle Dogs*
	Dynamic Simulation of Retention
	Beagle Dogs* of Translocation Dynamics of Plutonium
	Beagle Soft Tissue*
	Beagle Soft Tissue*
	Beagle Studies at the University of Utah*

#Reaction of the Blood System in Dogs to Heavy Periods Following Chronic Irradiation*	#Reaction of the Blood System in Dogs to Heavy Periods Following Chronic Irradiation*	000374
#In the State of the Plutonium 239*	#In the State of the Plutonium 239*	000382
#Changes in the Chemical State of Plutonium (Plutonium 239) in the Effect of Internally Deposited Radionuclides Upon	#Changes in the Chemical State of Plutonium (Plutonium 239) in the Effect of Internally Deposited Radionuclides Upon	000500
#Chelatability of Plutonium in and Californium 252 with Constituents of Dog and Human to Ionizing	#Chelatability of Plutonium in and Californium 252 with Constituents of Dog and Human to Ionizing	000492
#Investigation of Immunoglobulin Levels in	#Investigation of Immunoglobulin Levels in	000146
#Americium 241 in the Hazards Associated with Internal Contamination of the Behavior of a Citrate Complex of Plutonium 239 in the Biurate to the Stomach*	#Americium 241 in the Hazards Associated with Internal Contamination of the Behavior of a Citrate Complex of Plutonium 239 in the Biurate to the Stomach*	000096
#Distribution of Uranium in the as Affected by Its Physicochemical State and	#Distribution of Uranium in the as Affected by Its Physicochemical State and	000311
#Environmental Radioactivity and	#Environmental Radioactivity and	000101
#Determination of Plutonium A Digital Computer Program for the Estimation of	#Determination of Plutonium A Digital Computer Program for the Estimation of	000194
#Effect of Plutonium 239 on Pat Experiences in Removal of Radionuclides from the Plutonyl Triacetate and Its Distribution in the Rat	#Effect of Plutonium 239 on Pat Experiences in Removal of Radionuclides from the Plutonyl Triacetate and Its Distribution in the Rat	000195
#Eliminating Uranium and Its Fission Products from the Maximum Permissible Amounts of Natural Uranium in the Radioactive Material in the	#Eliminating Uranium and Its Fission Products from the Maximum Permissible Amounts of Natural Uranium in the Radioactive Material in the	000276
#Radioisotopes in the Human	#Radioisotopes in the Human	000330
#Radioactive fallout from #Quarantine Morphology of Vertebral Trabecular	#Radioactive fallout from #Quarantine Morphology of Vertebral Trabecular	000323
#Incidence of Beagles*	#Incidence of Beagles*	000199
#Plutonium to the Sequence of Histopathologic High Penetration Neutron-Induced Autoradiography of	#Plutonium to the Sequence of Histopathologic High Penetration Neutron-Induced Autoradiography of	000348
#Cytogenetic Effects of Californium 252 on Liver and Plutonium on Nucleic Acid Metabolism in the Liver and	#Cytogenetic Effects of Californium 252 on Liver and Plutonium on Nucleic Acid Metabolism in the Liver and	000519
#Binding of Americium 241 by Study in Dogs of High Natural Incidence*	#Binding of Americium 241 by Study in Dogs of High Natural Incidence*	000395
#Dynamic Changes of Metabolic Processes in the Mineral and Protein Metabolism in Mineral and Protein Metabolism in	#Dynamic Changes of Metabolic Processes in the Mineral and Protein Metabolism in Mineral and Protein Metabolism in	000034
#Radiation Dose-Time Relations for Induction of Plutonium in Man and The Effect of the Reseeding of	#Radiation Dose-Time Relations for Induction of Plutonium in Man and The Effect of the Reseeding of	000526
#Radiation, Isotopes, and Plutonium Content in Protein Fractions of	#Radiation, Isotopes, and Plutonium Content in Protein Fractions of	000577
#Distribution and Toxicity of Plutonium 239 in 238, Plutonium 239, Americium 241 and Curium 242 in	#Distribution and Toxicity of Plutonium 239 in 238, Plutonium 239, Americium 241 and Curium 242 in	000281
#Radiographic Changes Following the Administration of	#Radiographic Changes Following the Administration of	000277
#Data on Plutonium Distribution in the Histopathological Endpoints in Compact Neutron-Induced Autoradiography of Plutonium 239 Deposited Radionuclides Upon Blood Vessels of Cortical Area 18 Range of the Radionuclide Concentrations and Accumulation of Plutonium 239 and Curium 242 by the Estimation of Plutonium Lung	#Data on Plutonium Distribution in the Histopathological Endpoints in Compact Neutron-Induced Autoradiography of Plutonium 239 Deposited Radionuclides Upon Blood Vessels of Cortical Area 18 Range of the Radionuclide Concentrations and Accumulation of Plutonium 239 and Curium 242 by the Estimation of Plutonium Lung	000323
#Mice and Dogs and their Bearing on Maximal Permissible Environmental Radioactivity and Body Determination of Plutonium Body	#Mice and Dogs and their Bearing on Maximal Permissible Environmental Radioactivity and Body Determination of Plutonium Body	000319
#Plutonium Inhalation Model Simulates the Long-Term Tumor Incidence Observed in Beagles with Retained by and Distribution of Americium 241 in Plant Parts of PuO ₂ Particles*	#Plutonium Inhalation Model Simulates the Long-Term Tumor Incidence Observed in Beagles with Retained by and Distribution of Americium 241 in Plant Parts of PuO ₂ Particles*	000388
#Effect of DTPA and Treatment with Zirconium Citrate and Edathamil Annual Environmental Monitoring Report: with Californium 249 or Californium 252*	#Effect of DTPA and Treatment with Zirconium Citrate and Edathamil Annual Environmental Monitoring Report: with Californium 249 or Californium 252*	000500
#Microscopic Distribution of Dog and Human Blood*	#Microscopic Distribution of Dog and Human Blood*	000309
#Interaction of The Distribution and Retention of	#Interaction of The Distribution and Retention of	000495
#The Distribution and Retention of	#The Distribution and Retention of	000271
#Intracellular Distribution of Distribution of Plutonium 239, Americium 241 and Excretion and Retention by Beagles Injected with Hamster*	#Intracellular Distribution of Distribution of Plutonium 239, Americium 241 and Excretion and Retention by Beagles Injected with Hamster*	000373
#The In Vivo Cytogenetic Effects of	#The In Vivo Cytogenetic Effects of	000049
#Interaction of Californium 249 and Retention by Beagles Injected with Californium 249 or	#Interaction of Californium 249 and Retention by Beagles Injected with Californium 249 or	000049
#Incidence of Bone Lung	#Incidence of Bone Lung	000049
#Bone Beagles*	#Bone Beagles*	000049
#Intracellular Distribution of Californium 249 in The Early Subcellular Distribution of Curium in	#Intracellular Distribution of Californium 249 in The Early Subcellular Distribution of Curium in	000095
#Pinocytosis in Root	#Pinocytosis in Root	000081
#Radionuclide Doses of Plutonium 239, in the Rat*	#Radionuclide Doses of Plutonium 239, in the Rat*	000097
#Effect of LET on Radiation	#Effect of LET on Radiation	000218
#The Chemical Recent Advances*	#The Chemical Recent Advances*	000098
#Chemical of Human Urinary Excretion of Plutonium for	#Chemical of Human Urinary Excretion of Plutonium for	000098
Blood Loss in Remote Periods Following Chronic Blood System in Dogs to Heavy Blood Loss in Remote	Blood Loss in Remote Periods Following Chronic Blood System in Dogs to Heavy Blood Loss in Remote	000139
Blood System in Dogs Under Inhalation Affecting by Blood System in Dogs Under Inhalation Affecting by	Blood System in Dogs Under Inhalation Affecting by Blood System in Dogs Under Inhalation Affecting by	000251
Blood System of Rabbit Affected by Plutonium 239*	Blood System of Rabbit Affected by Plutonium 239*	000219
Blood Upon Its Intravenous Administration* The Physico- Blood Vessels of Cortical Bones*	Blood Upon Its Intravenous Administration* The Physico- Blood Vessels of Cortical Bones*	000329
Blood* Interaction of Californium 241	Blood* Interaction of Californium 241	000329
Blood-Serum of Uranium Miners After a Higher Exposure	Blood-Serum of Uranium Miners After a Higher Exposure	000094
Blood: In Vivo and In Vitro Observations*	Blood: In Vivo and In Vitro Observations*	000193
Body by Radionuclides* Radiological	Body by Radionuclides* Radiological	000101
Body of Rats After Stopping Chronic Inhalation*	Body of Rats After Stopping Chronic Inhalation*	000194
Body of Rats Under a Single Administration of Americium Autoradiographic Studies on Plutonium Metabolism	Body of Rats Under a Single Administration of Americium Autoradiographic Studies on Plutonium Metabolism	000101
Body Burdens*	Body Burdens*	000276
Body Burdens from Measurements of Daily Urine Excretion*	Body Burdens from Measurements of Daily Urine Excretion*	000195
Body Content of Plutonium from Urine Data* SEBEACP*	Body Content of Plutonium from Urine Data* SEBEACP*	000311
Body Content Following Inhalation of Insoluble Plutonium	Body Content Following Inhalation of Insoluble Plutonium	000194
Body*	Body*	000199
Body* Clinical	Body* Clinical	000348
Body* Toxicologic Properties of Sodium Acids as Effective Ligands for Binding and	Body* Toxicologic Properties of Sodium Acids as Effective Ligands for Binding and	000519
Body, Air and Drinking Water Based on Human Detection and Treatment*	Body, Air and Drinking Water Based on Human Detection and Treatment*	000034
Body: Physical and Biological Aspects*	Body: Physical and Biological Aspects*	000526
Bomb Clouds*	Bomb Clouds*	000281
Bone in Beagles Injected with Plutonium*	Bone in Beagles Injected with Plutonium*	000277
Bone Cancer in Internally-Irradiated Dogs*	Bone Cancer in Internally-Irradiated Dogs*	000251
Bone Changes* 1. The Relation of the Distribution	Bone Changes* 1. The Relation of the Distribution	000278
Bone Containing Plutonium 239*	Bone Containing Plutonium 239*	000082
Bone Marrow of the Chinese Hamster* <i>In Vivo</i>	Bone Marrow of the Chinese Hamster* <i>In Vivo</i>	000099
Bone Marrow of the Rabbit* Effect of	Bone Marrow of the Rabbit* Effect of	000497
Bone Protein*	Bone Protein*	000319
Bone Sarcoma Induction in the St. Bernard, A Pilot	Bone Sarcoma Induction in the St. Bernard, A Pilot	000388
Bone Tissue in Rabbits Poisoned with Plutonium 239*	Bone Tissue in Rabbits Poisoned with Plutonium 239*	000500
Bone Tissue of Animals Damaged by Plutonium 239*	Bone Tissue of Animals Damaged by Plutonium 239*	000309
Bone Tissue of Plutonium-Injected Rats*	Bone Tissue of Plutonium-Injected Rats*	000495
Bone Tissue of Rats in Plutonium Injury*	Bone Tissue of Rats in Plutonium Injury*	000271
Bone Tumors in the Dog and Skin Tumors in the Rat*	Bone Tumors in the Dog and Skin Tumors in the Rat*	000373
Bone Upon the Relative Toxicities of Radium and	Bone Upon the Relative Toxicities of Radium and	000049
Bone*	Bone*	000688
Bone*	Bone*	000696
Bone*	Bone*	000111
Bone* Study of the Behavior of Neptunium 237, Plutonium 238 and Bone-Seeking Radionuclides in Miniature Swine*	Bone* Study of the Behavior of Neptunium 237, Plutonium 238 and Bone-Seeking Radionuclides in Miniature Swine*	000093
Bone-Seeking Radionuclides*	Bone-Seeking Radionuclides*	000524
Bone-Seeking Radionuclides*	Bone-Seeking Radionuclides*	000286
Bone of Rat and Rabbit* Histoautoradiography	Bone of Rat and Rabbit* Histoautoradiography	000521
Bones Receiving Alpha Irradiation*	Bones Receiving Alpha Irradiation*	000281
Bones*	Bones*	000311
Bones* <i>In Vivo</i> Detailed	Bones* <i>In Vivo</i> Detailed	000279
Botanical Composition of the Diet of Cattle Grazing the Brown Alga ASCOPHYLLUM NODOSUM and Marine Phytoplankton*	Botanical Composition of the Diet of Cattle Grazing the Brown Alga ASCOPHYLLUM NODOSUM and Marine Phytoplankton*	000059
Burden by Urine Analysis*	Burden by Urine Analysis*	000346
Burden of Strontium 90 in Man* of Osteosarcoma in	Burden of Strontium 90 in Man* of Osteosarcoma in	000150
Burden*	Burden*	000626
Burdens from Measurements of Daily Urine Excretion*	Burdens from Measurements of Daily Urine Excretion*	000195
Burdens of the Deep Lung and Systemic Organs*	Burdens of the Deep Lung and Systemic Organs*	000032
Burdens of Radium 226, Radium 228, Thorium 228,	Burdens of Radium 226, Radium 228, Thorium 228,	000528
Bush Beans* Soil pH and Chelating Agent (DTPA) or Uptake	Bush Beans* Soil pH and Chelating Agent (DTPA) or Uptake	000332
Calcium in Intrapitoneally Injected Plutonium 239	Calcium in Intrapitoneally Injected Plutonium 239	000340
Calcium-Diiodure* Plutonium Excretion, Study Following	Calcium-Diiodure* Plutonium Excretion, Study Following	000052
Calendar Year 1972*	Calendar Year 1972*	000170
Californium Excretion and Retention by Beagles Injected	Californium Excretion and Retention by Beagles Injected	000094
Californium 249 and Berkelium 249 in the Soft Tissues	Californium 249 and Berkelium 249 in the Soft Tissues	000098
Californium 249 and Californium 252 with Constituents	Californium 249 and Californium 252 with Constituents	000096
Californium 249 in Beagle Soft Tissue*	Californium 249 in Beagle Soft Tissue*	000095
Californium 249 in Beagle Soft Tissue*	Californium 249 in Beagle Soft Tissue*	000081
Californium 249 in Canine Liver*	Californium 249 in Canine Liver*	000097
Californium 249 in Liver After Intravenous	Californium 249 in Liver After Intravenous	000218
Californium 249 or Californium 252* California	Californium 249 or Californium 252* California	000098
Californium 252 on Liver and Bone Marrow of the Chinese	Californium 252 on Liver and Bone Marrow of the Chinese	000099
Californium 252 with Constituents of Dog and Human Blood	Californium 252 with Constituents of Dog and Human Blood	000096
Californium 252 Pilot Studies in Beagles*	Californium 252 Pilot Studies in Beagles*	000249
Californium 252* California Excretion and	Californium 252* California Excretion and	000098
Cancer in Internally Irradiated Dogs*	Cancer in Internally Irradiated Dogs*	000323
Cancer Among Uranium Miners in the United States*	Cancer Among Uranium Miners in the United States*	000139
Cancer Induced by Internally-Deposited Emitters in	Cancer Induced by Internally-Deposited Emitters in	000251
Canine Liver*	Canine Liver*	000097
Canine Livers*	Canine Livers*	000316
Cap Cells Exposed to Uranyl Salts*	Cap Cells Exposed to Uranyl Salts*	000336
Carcinogenesis*	Carcinogenesis*	000045
Carcinogenesis: Comparison of Single and Fractionated	Carcinogenesis: Comparison of Single and Fractionated	000048
Carcinogenic Effects of Americium 241 and Plutonium 239	Carcinogenic Effects of Americium 241 and Plutonium 239	000398
Carcinogenicity of Inhaled Plutonium 238 in the Rat*	Carcinogenicity of Inhaled Plutonium 238 in the Rat*	000219
Carcinogens and Radionuclide Metabolism*	Carcinogens and Radionuclide Metabolism*	000329
Care of Patients Involved in Radiation Accidents, Cases Treated with DTPA*	Care of Patients Involved in Radiation Accidents, Cases Treated with DTPA*	000614
#Interpretation	#Interpretation	000064

Autopsy Findings in United States Transuranium Registry	Preliminary
Concentrations and Botanical Composition of the Diet of	000050
Distribution, and Excretion of Plutonium by Dairy	000053
Concerning Uranium Content of Ingesta and Excreta of	000058
Chrysotile Asbestos or Benzpyrene in the Rat Abdominal	000074
and the Mechanism of the Action of Cyanide on	000171
Between Transuranium Elements and the Components of	000046
Pinocytosis in Root Cap	000365
#A Study of the Acquired Resistance of Feline Tissue	000469
#Plutonium 239 and the Stimulated Periodontal Ligament	000110
Selected	000336
#Radiation Joint Nuclear Research	000035
the Time Factor in Separate and Combined Infection with	000326
#Combined Influence of Strontium 90,	000305
from the Rat Skeleton	000881
1973, Plutonium Concentration Along Freshwater Food	000365
Sites	000240
#Distribution and	000273
Plutonium Processing Plant Exhaust System*	000381
#Transfer of Plutonium from Milk into	000282
Cheese*	000005
#Gastrointestinal Absorption and Retention of Plutonium	000128
Americium 241 in Plant Parts of	000146
Uptake of Americium 241 by Plants Caused by a	000109
of Monomeric and Polymeric Plutonium as Modified by a	000213
The Removal of Americium and Plutonium from the Rat by	000081
#In Vivo and In Vitro	000182
Liver and Spleen of the Rat*	000332
City, Arizona*	000366
Blood Upon Its Intravenous Administration* The Physico-	000629
The Effects of Aging and Internal Emitters on Blood	000329
Conference on Bioassay, Environmental, and Analytical	000492
#Distribution of Ingested Plutonium in	000270
of Californium 252 on Liver and Bone Marrow of the	000431
of Plutonium 239 in the Body of Rats After Stopping	000016
of the Skeleton and Liver of Rats Under Single and	000099
Dogs to Heavy Blood Loss in Remote Periods Following	000661
Tissue Phosphatases in Rats Suffering from Subacute or	000193
#The Origin of Urinary Taurine Excretion During	000378
Cavity* #Carcinogenesis of Plutonium 239 PuO2 with	000698
Excretion, Study Following Treatment with Zirconium	000539
After Stopping Chronic Inhalation* #Behavior of a	000468
#Chemical Stabilization of the Uranium Tailings at Tuba	000193
Fallout Gamma Radiation Protection Factors Provided by	000408
Report of the Radiological	000425
Mississippi*	000463
#Iodine 131 Labeled Rose Bengal Eye Blood	000462
Causes,	000320
the Body*	000229
Inhaled Radon Daughters in Workers of Non-	000384
#Beta Radiation Damage to Vegetation from	000292
#Radioactive Fallout from Bomb	000513
of the Biological Measurements on Operation Roller	000663
Exposed to a Non-Nuclear Detonation #Operation Roller	000226
#The Radiochemistry of	000393
Asbestos or Benzpyrene in the Rat Abdominal Cavity*	000177
Asbestos in the Lung*	000446
#Progress in the Beagle Studies at	000215
Mill Waters on Biological Fauna of the Animas River	000218
#Environmental Levels of Radioactivity at Atoms Energy	000339
Rocket Development Station, at the U.S. Atomic Energy	000087
The Berkhiyat Jebels: A Desert	000137
#Histopathological Endpoints in	000422
Hazards from Inhaled Radon Daughters in Workers of Non-	000042
Plutonium and Silica on the Behavior of the Alveolar	000302
of Uranium Fission Products in Dogs, Rabbits, Guinea	000228
Plutonium 238, Plutonium 239,	000265
Plutonium 239 PuO2 in Rats*	000265
Thorium 228, Padium 226, and Strontium 90 to	000188
Plutonium 239*	000188
of Five Plutonium-Contaminated Areas on the Test Range	000004
Stopping Chronic Inhalation* #Behavior of a Citrate	000004
#Americium 241 Distribution in Rats and the Effect of	000005
the Gastrointestinal #Effect of Ion Exchange Resins and	000005
Effect of Some	000006
#Interactions Between Transuranium Elements and the	000110
Range of the #Radioisotope Concentrations and Botanical	000058
#The Dynamics of Changes of the Morphological	000033
Aftereffects of Inhalation of Soluble Plutonium 239	000045
Airborne Release of Plutonium and Its	000005
Inhalation Study on Metabolism of Inhalable Uranium	000123
Compounds*	000132

Inhalation Model Simulates the Long-Term Burdens of the Gamma Exposure Rates at the Nevada Test Site. A Relation of the Distribution of the Toxicity of Plutonium	Plutonium	000032
#Bone Cancer Induced by Internally	Demonstration Study*	000138
#Removal of Internally	Concentrations and External	000278
#Translocation of Subcutaneously	Deposited in Skeletal Tissues of Beagles. 1. The	000251
#Late Effects of Internally	Deposited in Beagles*	000222
Bones*	Deposited Plutonium*	000206
#Comparison of Hematologic Effects of Internally	Deposited Radioisotopes in Laboratory Animals*	000523
#Removal of Internally	Deposited Radioisotopes Upon Blood Vessels of Cortical	000279
#Therapeutic Removal of Internally	Deposited Radium and Plutonium in Dogs*	000442
Plutonium 239 in the Mouse. Estimated by Use of Marrow	Deposited Transuranium Elements by Zinc DTPA*	000082
#The Treatment and Evaluation of Internal	Deposited Transuranium Elements*	000081
#Long-Term Effects of DTPA Treatment of Plutonium	Deposition and Distribution of Monomeric and Polymeric	000104
Dogs as a Function of Respiration and Aerosol	Deposition from a Plutonium Wound*	000147
#Plutonium	Deposition in Rats*	000145
Elements in Lung*	#Deposition of Inhaled Aerosols*	000263
Americium in Liver*	Deposition of Plutonium 239 PuO2 Aerosols in Beagle	000091
#Prevention of Plutonium and Neptunium	Deposition Kinetics in the Rat*	000103
Dose from Alpha-Active Aerosol Particles by Tissue	#Deposition Patterns and the Toxicity of Transuranium	000113
Annual	Deposition Patterns and Toxicity of Plutonium and	000112
#The Development of Theoretical Equations to	Deposition*	000221
#Biology of	Depth*	000306
#Venoms of	#Distribution of Absorbed	
Biological Aspects of Arid Regions*	Describe the Flow of a Radioactive Ion in Groundwater,	
#Temperature Regulation and Water Economy of	Desert Amphibians and Reptiles*	000284
#The Merkhiyat Jebels: A	Desert Animals*	000233
Progress Report as of	Desert Biology. Special Topics on the Physical and	000227
#The Dynamics of Plutonium in	Desert Birds*	000234
#Temperature Regulation in	Desert Community*	000228
#The Biology of	Desert Environments, Nevada Applied Ecology Group	000001
#The Evolution of	Desert Mammals*	000236
#Causes, Climates, and Distribution of	Desert Plants*	000235
#Geologic and Geomorphic Aspects of	Desert Vegetation in Western North America*	000231
#Summary of Requests for Information	Deserts*	000229
#Radioactive Material in the Body:	Deserts*	000230
#Plutonium Dust Monitor Using a Solid State	Desired Concerning Plutonium*	000287
#Low Level Alpha Counting System with Six Solid State	Detection and Treatment*	000526
#Physicochemical Form as a	Detectors*	000129
#Use of In Vivo Counting to	Development	
1. Plutonium Uptake by Animals Exposed to a Non-Nuclear	Determinant of the Toxicity of Plutonium 238 in the Rat*	000131
Effects of a Nuclear	Determine Retention of Inhaled Plutonium 239 in Dogs*	000361
Grown on Ejecta from the Sedan Thermonuclear Cratering	Detonation of a Plutonium Bearing Weapon Simulant*	000393
to Vegetation from Close-In Fallout from Two Nuclear	Detonation on Arthropods at the Nevada Test Site*	000136
#Plutonium in the	Detonation* "Concentration of Radionuclides by Plants	000255
#A Constant Feed, Uniform Dispersion	Detonations*	000063
Concentrations and Botanical Composition of the	#Bet Radiation Damage	
#The Concentration of Uranium in Man and His	Developing Animal*	000100
#Induced Fatty Livers*	Device for Large Particle Inhalation Studies*	000353
#Effect of	Diagnosis of Plutonium Reentrained in Air*	000303
#Solution of Uranium Fission	Diet of Cattle Grazing the Area 18 Range of the Nevada	000052
#The Effect of Various	Diet*	000449
#Dog Lymph Tissue*	Dietary and Hormonal Manipulations on Neptunium 237	000201
#Electron	Diets on the Behavior of Tritium 91 and Unseparated	000486
#Content of Plutonium from Urine Data*	Diffraction Study of Plutonium Oxide Particulates in	000455
#Pinocytosis and Membrane	Digital Computer Program for the Estimation of Body	000311
#Effects of Inhaled Plutonium 238 and Plutonium 239	Dilation in Uranyl-Treated Plant Roots*	000337
#The Effect of Lymph Node Removal on Plutonium	Dioxide in Dogs* "Dose Related Local and Systemic	000338
#Life Span of Mice Following Inhalation of Plutonium	Dioxide*	000105
#Translocation and Excretion of Inhaled Plutonium 239	Dioxide*	000209
#Syndrome in Beagles After Inhalation of Plutonium	#Retention,	
#Applications of a Derived Formula for the	Dioxide* "Plutonium Inhalation Studies. 5. Radiation	000509
#Concentrations of Fishes and Plants Associated with the	Discharge of Radioactive Liquid Wastes*	000421
#Biomedical Aspects of Plutonium:	Discharges of the Low Level Uranium Liquid Waste*	000130
#Treatment with Zirconium Citrate and Edathamil Calcium	Discovery, Development, Projections*	000676
#The Hazard of	Disodium* "Plutonium Excretion, Study Following	000052
#A Constant Feed, Uniform	Dispersed Plutonium Particles*	000261
#Experience on Scrap Recovery and Waste	Dispersion Device for Large Particle Inhalation Studies*	000353
#Ecological Aspects of Plutonium	Disposal in the Plutonium Fuels Development Laboratory*	000129
#Ecological Aspects of Plutonium	Dissemination in Aquatic Environments*	000106
from Nevada Test Site*	Dissemination in Terrestrial Environments*	000107
#Intervals Following Administration*	Distribution and Biological Effects of Americium 241*	000369
Test Site and Off Nevada Test Site*	Distribution and Characterization of Plutonium in Soils	000015
Particulates from the Schooner Cratering Event*	Distribution and Excretion of Plutonium in Dogs at Long	000518
the Schooner Event*	Distribution and Excretion of Plutonium*	000038
Soft Tissue*	Distribution and Inventory Pleasant Activities On Nevada	000024
Soft Tissue*	Distribution and Redistribution of Airborne Debris from	000208
#Plutonium 237 in the Rat Adrenal*	Distribution and Redistribution of Airborne Debris from	000009
#Histoautoradiography Data on Plutonium	Distribution and Retention of California 249 in Beagle	000041
#Properties of Sodium Plutonyl Triacetate and Its	Distribution and Retention of California 249 in Beagle	000095
#Microscopic and Autoradiographic Studies of Tissues	Distribution and Toxicity of Plutonium 239 in Bone*	000111
Substances on Its Elimination*	Distribution in the Bones of Rat and Rabbit*	000521
#Particles by Tissue Depth*	Distribution in the Rat Body*	000519
#Fission Products in Dogs, Rabbits, Guinea	Distribution in the Rat Kidney*	000058
#Comparative	Distribution in Rabbits*	000517
#Soil pH and Chelating Agent (DTPA) on Uptake by and	Distribution in Rats and the Effect of Complexing	000445
#the Soft Tissues of Beagles*	Distribution of Absorbed Dose from Alpha-Active Aerosol	000326
#Microscopic	Distribution of Aged Unseparated Solution of Uranium	000350
#Intracellular	Distribution of Americium 241 in Plant Parts of Bush	000332
	Distribution of Californium 249 and Berkelium 249 in	000098
	Distribution of Californium 249 in Canine Liver*	000097

Beagle*	#The Early Subcellular #Early Retention and #Causes, Climates, and	Distribution of Curium in Canine Livers* 000316	
Site Ecosystem After 27 Years*	#Causes, Climates, and	Distribution of Curium in Soft Tissues and Blood of the 000375	
Subsequent Transport to Eggs*		Distribution of Deserts* 000229	
Modified by a Chelating Agent*	#Tissue in the House, Estimated by Use of Freshwater Vegetation in Processes of Migration and Occupationally Exposed Humans as Found from Autopsy	Distribution of Environmental Plutonium in the Trinity 000266	
Study*	#Studies on the	Distribution of Injected Plutonium* 00016	
Intravenous Injection into Rats*		Distribution of Monomeric and Polymeric Plutonium as 000288	
in Skeletal Tissues of Beagles. 1. The Relation of the #Effect of Ion Exchange Resins and Complexons on of Rats and Kinetics of Its Elimination Depending on Suspension Concentration, Concentration and Size Californium 249 in	#Comparison of the Intracellular #Skeletal Retention and Mesothorium 1) Thorium #Studies of the Retention and Single Administration of Ammonium Diuranate to the #Curium Excretion, Retention, and	Distribution of Monomeric and Polymeric Plutonium 239 000182	
Elimination*	#Absorption, #Plutonium 239: Its	Distribution of Natural Radioactive Elements in the 000104	
in Sedan Crater Zjecta*		Distribution of Plutonium and Americium in 000417	
#Uranium in Runoff from the Gulf of Mexico		Distribution of Plutonium in the Rat* 000288	
Body of Rats Under a Single Administration of Ammonium		Distribution of Plutonium in Mice, An Autoradiographic 000514	
#Remote Aftereffects of Killing Rats Using Ammonium		Distribution of Plutonium in Serum Proteins Following 000396	
#Radiological and Environmental Research		Distribution of Plutonium to the Sequence of 000278	
249 and Californium 252 with Constituents of		Distribution of Plutonium Introduced into the 000505	
#Comparison of Monomeric and Polymeric Plutonium in the		Distribution of Plutonium 239 in the Skeleton and Liver 000241	
Dose-Time Relations for Induction of Bone Tumors in the		Distribution of Plutonium 239 Pu02 Aerosols Generated 000029	
#Decorporation of Monomeric Plutonium from the		Distribution of Plutonium 239, Americium 241 and 000218	
#Morphological Changes in Rabbit and		Distribution of Polymeric and Monomeric Plutonium 239 000402	
Diffraction Study of Plutonium Oxide Particulates in		Distribution of Radium 226, Plutonium 239, Radium 228 (000351
Northwest*	#Progress in Beagle	Distribution of Uranium in the Body of Rats Under a 000330	
Acute Renal Failure Induced by Uranyl Nitrate in the		Distribution Studies in Beagles* 000174	
Relative Toxicities of Radium and Plutonium in Man and		Distribution, and Excretion of Plutonium by Dairy Cattle 000018	
Relations for Induction of Osteosarcoma in Mice and		Distribution, Biological Effect and Accelerated 000516	
Deposition of Plutonium 239 Pu02 Aerosols in Beagle		Distribution, Residence Time, and Inventory of Tritium 000064	
Distribution and Excretion of Plutonium in		Distributive Province: Anomalous Concentrations* 000468	
Sarcoma Induction in the St. Bernard, A Pilot Study in		Diuranate to the Stomach*Distribution of Uranium in the 000330	
Chronic Irradiation* #Reaction of the Blood System in		Diuranate* 000246	
239 and the Histopathology of the Liver and Skeleton of		Division Annual Report, Ecology, January-December 1972* 000140	
#Plutonium-Americium Ratios in		Division Semiannual Report, July through December 1962* 000400	
#Plutonium-Americium Ratios in		Dog and Human Blood* #Interaction of Californium 000096	
in the Course and Outcome of Radiation Sickness in		Dog and Mouse* 000149	
The Morphology of Experimental Lung Tumors in Beagle		Dog and Skin Tumors in the Rat* #Radiation 000373	
#Dose-Effect Studies with Inhaled Plutonium in Rats and		Dog by Glucan and/or DTPA* 000148	
#Incidence of Bone Cancer in Internally Irradiated		Dog Liver Induced by Plutonium 239* 000503	
#Radiographic Changes in Internally Irradiated		Dog Lymph Tissue* #Electron 000455	
to Determine Retention of Inhaled Plutonium 239 in		Dog Studies with Transuranium Elements at Battelle- 000086	
Effects of Internally Deposited Radium and Plutonium in		Dog* #Experimental 000377	
and Translocation of Inhaled Plutonium Oxide in Beagle		Dogs and their Bearing on Maximal Permissible Burden of 000150	
of Inhaled Plutonium 238 and Plutonium 239 Dioxide in		Dogs as a Function of Respiration and Aerosol Parameters 000091	
and Americium from Simulated Puncture Wounds in Beagle		Dogs at Long Intervals Following Administration* 000518	
Unseparated Solution of Uranium Fission Products in		Dogs of High Natural Incidence* #Bone 000388	
#Cleanup Summary Report, Tatum		Dogs to Heavy Blood Loss in Remote Periods Following 000374	
#Pilot Studies on the Intravenous Lethal		Dogs to Intravenous Administration of the Isotope* 000243	
#Simultaneous Studies on the Intravenous Lethal		Dogs After Inhalation of Plutonium 239 Pu02* 000348	
Rates and Kinetics of Its Elimination Depending on the		Dogs After Inhalation of Plutonium 239 Pu02* 000483	
#Distribution of Absorbed		Dogs Injected Intravenously with the Nitrate of 000501	
Dose*		Dogs* 000460	
Dogs*		Dogs* 000288	
Dogs*		Dogs* 000323	
Dogs*		Dogs* 000324	
Dogs*	#Use of In Vivo Counting #Comparison of Hematologic	Dogs* 000361	
Dogs*	#Dynamic Simulation of Retention	Dogs* 000842	
Dogs*	#Dose Related Local and Systemic Effects	Dogs* 000372	
Dogs*	#A Study of Translocation Dynamics of Plutonium	Dogs* 000334	
Dogs, Rabbits, Guinea Pigs and Rats*		Dogs, Rabbits, Guinea Pigs and Rats* 000090	
Dose Test Site, Mississippi*		of Aged 000350	
Dosage of Polonium, Plutonium and Radium in Rats*		Dose Test Site, Mississippi* 000462	
Dosage of Polonium, Plutonium, and Radium in Rats*		Dosage of Polonium, Plutonium and Radium in Rats* 000155	
Dose and Rhythms of the Isotopes* Skeleton and Liver of		Dosage of Polonium, Plutonium and Radium in Rats* 000154	
Dose from Alpha-Active Aerosol Particles by Tissue Depth		Dose from Alpha-Active Aerosol Particles by Tissue Depth 000241	
Dose in the Lungs from Radioactive Aerosol*		Dose in the Lungs from Radioactive Aerosol* 000306	
Dose Estimation Model* Applied Ecology Group Plutonium		Dose Estimation Model* Applied Ecology Group Plutonium 000027	
Dose Influences of Ionizing Radiations on Cells and		Dose Influences of Ionizing Radiations on Cells and 000469	
Dose Related Local and Systemic Effects of Inhaled		Dose Related Local and Systemic Effects of Inhaled 000338	
Dose-Effect Studies with Inhaled Plutonium in Rats and		Dose-Effect Studies with Inhaled Plutonium in Rats and 000248	
Dose-Time Relations for Induction of Bone Tumors in the		Dose-Time Relations for Induction of Bone Tumors in the 000373	
Doses of Plutonium 239, Americium 241, Phosphorus 32,		Doses of Plutonium 239, Americium 241, Phosphorus 32, 000048	
Doses of Soluble Plutonium 239 Compounds*#Morphological		Doses of Soluble Plutonium 239 Compounds*#Morphological 000242	
Draft Environmental Statement, Transuranium Solid Waste		Draft Environmental Statement, Transuranium Solid Waste 000471	
Drinking Water Based on Human Experimental Data*		Drinking Water Based on Human Experimental Data* 000034	
Drugs on the Remote Aftereffects of Inhalation of		Drugs on the Remote Aftereffects of Inhalation of 000387	
DTPA (Pentacin) to Eliminate Plutonium 239 from the		DTPA (Pentacin) to Eliminate Plutonium 239 from the 000379	
DTPA and Calcium on Intraperitoneally Injected		DTPA and Calcium on Intraperitoneally Injected 000380	
DTPA Enhanced Plutonium Excretion via the Bile*		DTPA Enhanced Plutonium Excretion via the Bile* 000362	
DTPA Treatment of Plutonium Deposition in Rats*		DTPA Treatment of Plutonium Deposition in Rats* 000145	
DTPA Treatment on Acute Toxicity in Mice*		DTPA Treatment on Acute Toxicity in Mice* 000183	
DTPA*	#Resoval	DTPA* 000216	
DTPA*	#Decorporation	DTPA* 000082	
DTPA*	#In Vivo and In	DTPA* 000148	
DTPA*	#Increased Uptake of	DTPA* 000108	
DTPA*	#Interpretation of Human	DTPA* 000088	
DTPA) on Uptake by and Distribution of Americium 241 in		DTPA) on Uptake by and Distribution of Americium 241 in 000332	
Dust Monitor Using a Solid State Detector*		Dust Monitor Using a Solid State Detector* 000129	
Duct*	#Selective Tissue Accumulation of Uranium	Duct* #Selective Tissue Accumulation of Uranium 000356	

Plutonium 239	#Iodine 131 Labeled Rose Bengal	Dye Blod Clearance as a Liver Function Test in Sheep*	000320
Inhaled Plutonium Oxide in Beagle Dogs*	the Peripheral Blood in Rats, Following Inhalation *The	Dynamic Changes of Bone Tissue in Babbits Poisoned with	000504
Populations, and Nutrient Movement Following Nitrogen	Puncture Wounds in Beagle Dogs* A Study of Translocation	Dynamic Simulation of Retention and Translocation of	000272
Applied Ecology Group Progress Report as of	Applied Ecology Group Progress Report as of	Dynamics of Changes of the Morphological Composition of	000339
Tissues and Blood of the Beagle*	The	Dynamics of Litter Decomposition, Microbiota	000283
livers*	The	Dynamics of Plutonium and Americium from Simulated	000099
Placental Transission of Radioactive Alkaline	Terrestrial Environments*	Dynamics of Plutonium in Desert Environments, Nevada	000001
Aquatic Environments*	Perennia) Vegetation in Area (Nevada Applied	Early Retention and Distribution of Curium in Soft	000275
Office*	Contaminated Areas of the Nevada Test Site*	Early Subcellular Distribution of Curium in Canine	000316
Plutonium Transport and Dose Estimation	Nevada Applied	Earths and Plutonium*	000368
of Plutonium in Desert Environments, Nevada Applied	Ecological Aspects of Plutonium Dissemination in	Selective	
Plutonium 239 and Americium 241 in Large Nevada Applied	Ecological Aspects of plutonium Dissemination in		
of Perennial Vegetation in Area (Nevada Applied	Ecological Aspects of Tritium Behavior in the		
Information Support for the Nevada Applied	Ecological Studies of Vertebrates in Plutonium		
and Sample Logistics in Support of the Nevada Applied	Ecology Group Library Services at AEC Nevada Operations		
and Environmental Research Division Annual Report,	Ecology Group Plutonium Study Modeling Program:		
of Environmental Plutonium in the Trinity Site	Ecology Group Progress Report as of January 1974*		
Study Following Treatment with Zirconium Citrate and	Ecology Group Vegetation Samples* Determination of		
Changes in the Blood Systems of Rabbit	Ecology Group* Plutonium Contents		
and Its Fission	Ecology Group* RECO Field Activities		
Biological	Ecology, January-December 1972*	Radiological	
Liquid	Economy of Desert Birds*		
Effected by Plutonium 239*	Ecosystems After 27 Years*		
Effective Ligands for Binding and Eliminating Uranium	Edathamil Calcium-Disodium* Distribution		
Effectiveness of Neptunium 237*	Effectuated by Plutonium 239*	Plutonium Excretion,	
Effluent Monitoring*	Effectuated by Plutonium 239*		
Effluent Monitoring*	Effluent Monitoring*		
Effluents from Operating Nuclear Power Plants*	Effluents from Operating Nuclear Power Plants*		
Eggs*	Eggs* Distribution of Ingested		
Environmental Experience with Radioactive	Eighteenth Annual Conference on Bioassay,		
Plutonium in Chickens and Subsequent Transport to	Einstein 253 in Mice*		
Environmental, and Analytical	Ejecta from the Sedan Thermonuclear Cratering Detonation		
Program and Abstracts*	Ejecta*		
The Metabolism of	Effectuated by Plutonium 239*		
Concentration of Radionuclides by Plants Grown on	Electrical Effects of Nuclear Explosions		
Time, and Inventory of Tritium in Sedan Crater	Electron Diffraction Study of Plutonium Oxide		
Atmospheric	Electron Radiation on the Rat Skin*		
Particulates in Dog Lymph Tissues*	Eliminate Plutonium 239 from the Organism of the Rat		
The Tumorigenic Action of Beta, Proton, Alpha and	Eliminating Uranium and Its Fission Products from the		
with Inhalation	Elimination, Depending on the Dose and Rhythms of the		
Acids as Effective Ligands for Binding and	Elimination*		
in the Skeleton and Liver of Rats and Kinetics of Its	Elimination* Americium 241 Distribution		
Its Distribution, Biological Effect and Accelerated	Emergency Conditions* Rapid Methods for Specific		
in Rats and the Effect of Complexing Substances on Its	Emitters in Beagles*		
Radionuclide Analysis and their Application to Aquatic	Emitters in Beagles*		
Long-Term Hematological Effects of Internal	Emitters in Blood Chemistry*		
Zone Cancer Induced by Internally-Deposited	Emitters*		
The Effects of Aging and Internal	In Endpoints in Compact Bones Receiving Alpha Irradiation*		
*The Integrating Impactor, a Monitor for Airborne Alpha	Energy Commission Installations, I. Argonne National		
Vivo Measurement of Plutonium and Other Very Low Energy	Energy Commission's Nevada Test Site* Supply for the		
Biological	Energy Emitters*		
Environmental Levels of Radioactivity at Atomic	Energy Industry		
Nuclear Rocket Development Station, at the U.S. Atomic	Eniwetok Atoll* Site Data and Experience to Predict Air		
In Vivo Measurement of Plutonium and Other Very Low	Excretion of Plutonium Excretion via the Bile		
Concentrations of Plutonium Due to Resuspension on the	Eniwetok Atolls, I.*		
Long-Lived Radionuclides Produced at Bikini and	Enriched Uranium in Urine*		
The Determination of	entry Portion of Phase 3*		
December 1972, Including Estimates of Releases to the	Environment from Plant Operations*		
Transfer of Radioactive Materials from the Terrestrial	Environment to Animals and Man		
Plowshare and the	Environment*		
Ecological Aspects of Tritium Behavior in the	Environment		
Levels Measured in the	Environment*		
Nuclear Power and a Protected	Environment*		
Integrated Program of Monitoring of the Worker and His	Environment*		
Factors Provided by Civilian Vehicles*	Environmental and Fallout Gamma Radiation Protection		
Mining and Processing of Uranium*	Environmental and Radiological Safety Aspects of the		
River Plants*	Environmental Activities and Programs at the Savannah		
in Radiochemical Analysis and Data Reduction of	Environmental Air Samples*		
from Operating Nuclear Power Plants*	Environmental Experience with Radioactive Effluents		
Relative Hazards of Fission Products in the	Environmental Hazards Evaluation of Nuclear Reactors		
Commission Installations. I. Argonne National	Environmental Levels of Radioactivity at Atomic Energy		
May 9, 1973*	Environmental Metals in Man, Interlaboratory Meeting,		
Establishment, Lucas Heights*	Environmental Monitoring Program at the AEC Research		
From 1968 through 1972*	Environmental Monitoring Report for Sandia Laboratories		
January through December 1972, Including	Environmental Monitoring Report, Rocky Flats Plant,		
After 27 Years*	Environmental Monitoring Report: Calendar Year 1972*		
Half 1970*	Environmental Plutonium in the Trinity Site Cosavates		
Research Center, Pelindaba*	Environmental Plutonium Studies*		
January-December 1972*	Environmental Radiation Levels and Concentration, First		
	Environmental Radioactivity and Body Burden*		
	Environmental Radioactivity at the National Nuclear		
	Environmental Research Division Annual Report, Ecology,		
	Environmental Samples*		

Facility, Richland, Washington*	Environmental Statement, Contaminated Soil Removal	000470
Development Facility, Los Alamos Scientific	Environmental Statement; Transuranium Solid Waste	000471
	Environmental Surveillance at Hanford for CY-1970*	000480
	Environmental Surveillance at Hanford for CY-1972*	000156
	Environmental Survey*	000125
	Environmental Water Samples*	000626
	Environmental, and Analytical Chemistry, October 10-11,	000431
	Environments*	000238
	Environments*	000275
	Environments*	000490
	Environments*	000106
	Environments*	000107
	Environments, Nevada Applied Ecology Group Progress	000001
	Epithelial Repair Which Imparts to the Liver Resistance	000035
	Equations to Describe the Flow of a Radioactive Ion in	000244
	Establishment Quarterly Report*	000481
	Establishment, Lucas Heights*	000335
	Estimated by Use of Iron 59*Deposition and Distribution	000104
	Estimated from Studies of a Tuna Population* of Fallout	000456
	Estimates for the Sulky Event*	000072
	Estimates of f sub 1 for Plutonium Compounds*	000076
	Estimates of Releases to the Environment from Plant	000153
	Estimation of Body Content of Plutonium from Urine Data*	000311
	Estimation of Body Content Following Inhalation of	000194
	Estimation of Plutonium Lung Burden by Urine Analysis*	000346
	Estimation Model-Nevada Applied Ecology Group Plutonium	00027
	Euratom Joint Nuclear Research Center, Japan	000481
	Event*	000409
	Event, Lucas Heights*	000072
	Event, Piledriver*	000208
	Event, Algeria, and the Piledriver Event, Nevada Test	000151
	Event, April 25, 1966*	000075
	Event, Nevada Test Site* in Granitic Rock Recovered	000151
	Evolution of Desert Vegetation in Western North America*	000231
	Excreta of Cattle*	000171
	Excretion and Retention by Beagles Injected with	000094
	Excretion of Inhaled Plutonium 239 Dioxide*	000144
	Excretion of Inhaled Plutonium*	000461
	Excretion of Injected Plutonium 238*	000741
	Excretion of Plutonium by Dairy Cattle*	000014
	Excretion of Plutonium for Cases Treated with DTPA*	000086
	Excretion of Plutonium in Dogs at Long Intervals	000518
	Excretion of Plutonium into the Perfused Rat Intestine*	000347
	Excretion of Plutonium*	000038
	Excretion of Radioactive Particles*	000479
	Excretion via the Bile*	000362
	Excretion During Chronic Radiation Injury*	000439
	Excretion Following Acute Inhalation Exposures to High-	000410
	Excretion Following Plutonium Oxide Inhalation*	000440
	Excretion Studies*	000293
	Excretion, Retention, and Distribution Studies in	000195
	Excretion, Study Following Treatment with Zirconium	000052
	Exhaust System*	000124
	Experience on Scrap Recovery and Waste Disposal in the	000128
	Experience to Predict Air Concentrations of Plutonium	000023
	Experiences with Radioactive Effluents from Operating	000378
	Experiences in Removal of Radionuclides from the Body*	000349
	Explosions with Known Yields at Nevada Test Site-Source	000437
	Explosions*	000212
	Exposed in Vivo to Plutonium 239 PuO2 Particles*	000217
	Exposed to a Non-Nuclear Detonation of a Plutonium	000393
	Exposed to Uranyl Salts*	000336
	Exposed Humans as Found from Autopsy Samples*	000467
	Exposure to Ionizing Radiation*	000511
	Exposure to Plutonium 239 and Americium 241 in Mouse	000114
	Exposure to Radiation: Natural and Man Made*	000370
	Exposure to Radioactive Americium*	000336
	Exposure Levels vs Plutonium Isotopic Concentration of	000390
	Exposure Rates at the Nevada Test Site, A Demonstration	000138
	Exposure*	000126
	Exposures to Alpha-Active Fallout Particles*	000419
	Exposures to High-Fired Oxides*	000410
	External Beta Radiation*	000430
	External Gamma Exposure Rates at the Nevada Test Site,	000136
	Facility, Los Alamos Scientific Laboratory, New Mexico*	000471
	Facility, Richland, Washington*	000470
	Failure Induced by Uranyl Nitrate in the Dog*	000377
	Fallout from Bomb Cloud*	000281
	Fallout from Two Nuclear Detonations*	000663
	Fallout Constituents in Upper Layers of the Pacific	000456
	Fallout Gamma Radiation Protection Factors Provided by	000425
	Fallout Particles - Physical Characteristics Related to	000419
	Fallout Program Quarterly Summary Report (September 1,	000452
	Fallout Program Quarterly Summary Report, December 1,	000487
	Fallout Trays and in Soil, Urine, and Water*	000160
	Fallout*	000389
	Fallout-Contaminated Terrain: Comparison of	000507
	Fasting on Removal of Plutonium by DTPA*	000216

Materials and Fission Products and their Subsequent and Hormonal Manipulations on Neptunium 237 Induced Spectra in the Vicinities of Projects Shoal and Effects of Uranium Mill Wastes on Biological	Fate in Rats and Man* on the Inhalation of Fissionable Fatty Livers* Effect of Dietary Faultless* James Radiation	000225 000201
Inhalation Studies* Nevada Applied Ecology Group* Measurements on Operation Roller Coaster (Joint US/UK Concentrations and External Gamma Exposure Rates at Reports Available in Plowshare Open Operation Roller Coaster (Joint US/UK Field Stripe Event, April 25, 1966*	Field Activities and Sample Logistics in Support of the Field Experiments* Final Evaluation of the Biological Field Spectrometric Measurements of Radionuclide File* Final Evaluation of the Biological Measurements on Final Report of Off-Site Surveillance for the Pin Findings in United States Transuranium Registry Cases* Findings* Fired Oxides* Americium and Plutonium Urine	000070 000137 000276 000353 000003 000220 000138 000226 000220 000075 000050 000835
Excretion Following Acute Inhalation Exposures to High-Low Level Uranium Liquid Waste* Uranium Concentration of Fission Product Inventories* EPISP, A Comprehensive Computer Program for Generating Studies on the Inhalation of Fissionable Materials and Ligands for Binding and Eliminating Uranium and Its Behavior of Inseparated Solution of Uranium Evaluation of Nuclear Reactors* Relative Hazards of Distribution of Aged Unseparated Solution of Uranium Administration of Unseparated Solution of Uranium of Yttrium 91 and Unseparated Solution of Uranium Subsequent Fate in Rats Studies on the Inhalation of Processes of An Annual Environmental Monitoring Report, Rocky	Fission Products and their Subsequent Fate in Rats and Fission Products in the Animal Organism* Fission Products in the Environmental Hazards Fission Products in Dogs, Rabbits, Guinea Pigs and Rats* Fission Products to Rats by Inhalation* Fission Products* of Various Diets on the Behavior Fissionable Materials and Fission Products and their Fixed Tissue Cells Morphologically Altered through Plateau Plan*, January through December 1972, Including Plates* Flow of a Radioactive Ion in Groundwater, Annual Fluids* In Vitro Plutonium Studies Using the Fluorophotometric Determination of Uranium in Urine and Follow-Up Study of Selected Cases* Manhattan Food Chains of the Great Lakes, USA* of Progress, Forest Stand* and Nutrient Movement Following Form as a Determinant of the Toxicity of Plutonium 238 Fecillation in Rats and Eagles After Plutonium 239 Pu02 Fossils of Plutonium (Plutonium 239) in the Liver and Formula for the Discharge of Radioactive Liquid Wastes* Foundation* Progress Fraction of Strontium 90, Plutonium 239 and Lead in Fractionated Doses of Plutonium 239, Americium 241, Fractions of Bone* Freshwater Food Chains of the Great Lakes, USA* Summary Freshwater Hydrobionts* Freshwater Vegetation in Processes of Migration and Freshwater Development Laboratory* Experience Function in Sheep* Fate Function of Respiration and Aerosol Parameters* Function Test in Sheep* Iodine Functions from Underground Nuclear Explosions with Gamma Exposure Rates at the Nevada Test Site, A Gamma Radiation Protection Factors Provided by Civilian Gamma Radiation Spectra in the Vicinities of Projects Gamma-Ray Spectral Analysis* Gas Counting of Tritium* Gases* Gases, Statement on the Problem* Gastrointestinal Absorption and Retention of Plutonium Gastrointestinal Absorption of Plutonium* Gastrointestinal Passage Time and Absorption of Gastrointestinal Tract* Exchange Resins and Complexons Generated for Animal Inhalation Experiments* Generating Fission Product Inventories* Geologic and Geomorphic Aspects of Deserts* Geomorphic Aspects of Deserts* Germanium* Global Atmospheric Plutonium 239 and Plutonium Isotopic Glucan and/or DTPA* Granitic Rock Recovered from the Monique Event, Grazing the Area 18 Range of the Nevada Test Site, 1966-67 Grazing Studies on Selected Plutonium Contaminated Gross and Histopathology of Animals Treated with Groundwater, Annual Report, December 1, 1966 to Grown on Ejecta from the Sudan Thermonuclear Cratering Guinea Pigs and Rats* Distribution of Aged Unseparated Gulf of Mexico Distributive Province* Anomalous Half 1970* Hamster* The In Vivo Cytogenetic Effects of Handbook for Physicians, Health Physicists and Hanford for CY-1970* Hanford for CY-1972* Hanford Biology Research Annual Report for 1962* Hanford Procedures Manual* Hazard of Dispersed Plutonium Particles* Hazards from Inhaled Radon Daughters in Workers of Non-Hazards in the Nuclear Energy Industry* Hazards of Fission Products in the Environmental	000130 000413 000225 000395 000331 000354 000350 000256 000486 000225 000035 000153 000411 000244 00012 000490 000463 000282 000283 000190 000342 000493 000421 000088 000512 000048 000494 000282 000272 000417 000128 000321 000091 000320 000437 000138 000425 000070 000135 000420 000438 000071 000081 000510 000339 000505 000029 000413 000230 000230 000181 000491 000148 000151 000013 000291 000507 000255 000350 000463 000384 000099 000480 000156 000327 000451 000513 000158 000354
Plutonium 238 Pu02 and Plutonium 239 Pu02* on Distribution of Plutonium Introduced into the and Size Distribution of Plutonium 239 Pu02 Aerosols EPISP, A Comprehensive Computer Program for	Geologic and The Pedicchemistry of Ratios for 1959-1970* Decontamination of Fissionable Plutonium from the Dog by Algeria, and the Comparison of Shock Effects in and Botanical Composition of the Diet of Cattle Areas in Nevada* Plutonium* Terrain: Comparison of Measurements and Calculations* Equations to Describe the Flow of a Radioactive Ion in Detonation* Concentration of Radionuclides by Plants Solution of Uranium Fission Products in Dogs, Rabbits, Concentrations* Uranium in Runoff from the Environmental Radiation Levels and Concentration, First Californium 252 on Liver and Bone Marrow of the Chinese Industrial *Medical Aspects of Radiation Accidents, A Environmental Surveillance at Environmental Surveillance at	000130 000137 000276 000353 000003 000220 000138 000226 000220 000075 000050 000835
The Comparative Clinical Studies on the Occupational An Evaluation of Inhalation Hazards Evaluation of Nuclear Reactors* Relative	Relative	

- Body by Radionuclides* #Radiological Hazards Associated with Internal Contamination of the Human Organism* #Radiological Hazards of Fission Products in the Environmental Treatment, A Bibliography* #Radiological Health and Safety Aspects of Uranium Mining and Ore Summary Report (September 1, 1972 through December 1, 1972) #Analytical Procedures for the Environmental Health of Radiation Accidents, A Handbook for Physicians, #Uranium Miners Irradiation* #Reaction of the Blood System in Dogs to Irradiation Program at the AEC Research Establishment, Lucas in Adult St. Bernards and Immature Beagles* #Comparison of Plutonium in Dogs* #Long-Term Beagle* #Some After Plutonium 239 Pu02 Inhalation* #Levels in Blood-Serum of Uranium Miners After a #The Concentration of Uranium in Man and an Integrated Program of Monitoring of the Worker and the Bones of Rat and Rabbit* #Behavior of Plutonium 239 and the Intravenous #Microdistribution of Plutonium 239 and the of the distribution of Plutonium to the Sequence of Alpha Irradiation* #Effect of Americium 241 on the #Gross and #Blood Constituents in Pitman-Moore, Palouse and Livers* #Induction of Mesotheliomas and Sarcomas from 249 and Californium 252 with Constituents of Dog and #Radiotopes in the Uranium in the Body, Air and Drinking Water Based on #The Multielement Analysis of the Maximum Permissible Content of Plutonium 239 in the with DTPA* #Interpretation of #Plutonium and Americium in Occupationally Exposed #Plutonium and Americium Measurement in the Ulna of the Beagle Compared with Retention in the #Radionuclide Uptake by Some Freshwater #Analytical Procedures of the Industrial for Physicians, Health Physicists and Industrial Plutonium 239 Injection in Adult St. Bernards and and Effect of Monomeric and Polymeric Plutonium in the After a Higher Exposure to Ionizing #Investigation of #The Integrating A Consideration of the Type of Epithelial Repair Which Radium 226, Radium 228, Thorium 230-Skeletal Tumor in the St. Bernard, A Pilot Study in Dogs of High Natural #Plutonium Contamination of Plutonium and Its Compounds During Overheating #Analysis of #Analytical Procedures of the A Handbook for Physicians, Health Physicists and Evaluation of Inhalation Hazards in the Nuclear Energy On the Role of the Time Factor in Separate and Combined Organisms, Including Man: A #Low and Very Low Dose #Selected Census #Summary of Requests for * #Some Observations Concerning Uranium Content of #An Outline of the Metabolism of Inhaled and to Eggs* #Distribution of and Management of Insoluble Plutonium-Americium Products and their Subsequent Fate in #Studies on the #Estimation of Body Content Following #Morphological Changes in the Lungs of Rats After #Life Span of Mice Following Studies, 5. Radiation Syndrome in Beagles After #Plutonium-Americium Ratios in Dogs After #Plutonium-Americium Ratios in Dogs After Composition of the Peripheral Blood in Rats, Following of Activity in Lung and Lymph Nodes Following #Remote Aftereffects of #Effect of Some Drugs on the Remote Aftereffects of #In Vivo Separation of Uranium and Thorium after Accumulation of Uranium and Thorium in Rats after #Effect of Plutonium 239 Pu02 #On the State of the Blood System in Rats Under of Plutonium 239 Pu02 Aerosols Generated for Animal Aerosols of Oxides of Transuranic Element for Americium and Plutonium Urine Excretion Following Acute Deep Lung and Systemic Organs* #Plutonium Plutonium 239 from the Organs of the Rat with After Inhalation of Plutonium Dioxide* #Plutonium Hazards Evaluation of Nuclear Reactors* #Relative Health and Safety Aspects of Uranium Mining and Ore Health and Safety Laboratory, Fallout Program Quarterly Health Laboratory* #Health Physicists and Industrial Hygienists* #Health Hazards Evaluation of Nuclear Reactors* #Relative Health and Safety Aspects of Uranium Mining and Ore Health and Safety Laboratory, Fallout Program Quarterly Health Laboratory* #Health Physicists and Industrial Hygienists* #Health Heavy Blood Loss in Remote Periods Following Chronic Heights* #Environmental Monitoring #Hematologic Changes Following Plutonium 239 Injection #Veno-arterial Effects of Internally Deposited Radium and #Hematological Effects of Internal Raditers in Beagles* #Hematological Response to Internal Irradiation in the #Hematology Report* #Hemophilia Antibody Formation in Pats and Beagles #Higher Exposure to Ionizing Radiation* #Immunoglobulin Fis Diet* #Air Sampling as Part of #Interoptoradiography Data on Plutonium Distribution in #Histological Picture of Injury of the Skeleton and Histopathology of the Liver and Skeleton of Dogs to #Histopathologic Bone Changes* #Beagles. I. The Relation #Histopathological Endpoints in Compact Bones Receiving #Histopathological Findings* #Histopathology of the Ovaries of Rats* #Histopathology of Animals Treated with Plutonium Hormel Swine* #Formal Manipulations on Neptunium 237 Induced Pu-#Hot Spots* of Plutonium 239 Pu02 Activity* #Human Adaptations to Arid Environments* #Human Blood* #Interaction of Californium Human Body: Physical and Biological Aspects* #Human Experimental Data* #Permissible Amounts of Natural Human Lung Tissue* #Human Organisms and in the Air of Work Premises* #Human Radiation Effects, An Overview* #Human Urinary Excretion of Plutonium for Cases Treated Humans as Found from Autopsy Samples* #Distribution Curans by X and Gamma-Ray Spectral Analysis* #Humerus and the Third Lumbar Vertebra* #Plutonium 239 in Hydrobionts* #Hygiene Group* #Hygienists* #Aspects of Radiation Accidents, A Handbook Immature Beagles* #Hematologic Changes Following Immature Rat Liver* #Metabolism Immunoglobulin Levels in Blood-Serum of Uranium Miners Impactor, a Monitor for Airborne Alpha Eitters* #Impacts to the Liver Resistance Against Subsequent Incidence of Bone Cancer in Internally Irradiated Dogs* #Incidence Observed in Beagles with Potassium Burdens of Incidence* #Bone Sarcoma Induction in Incident of June 13, 1972* #Airborne Release Indian Monozite Sand in Animal Tissues, Part 2* #Industrial Hygiene Group* #Industrial Hygienists* #Aspects of Radiation Accidents, Industrial Toxicology* #Industry* #An Infection with Cerium 144 and Plutonium 239* #Influences of Ionizing Radiations on Cells and Information Around the Nevada Test Site* #Infrasound Desired Concerning Plutonium* #Information Support for the Nevada Applied Ecology Group #Ingesta and Excreta of Cattle* #Ingested Insoluble Radionuclides* #Ingested Plutonium in Chickens and Subsequent Transport Inhalation in Man* #The Measurement Inhalation of Fissionable Materials and Fission Inhalation of Insoluble Plutonium* #Inhalation of Large Doses of Soluble Plutonium 239 Inhalation of Plutonium Dioxide* #Plutonium Inhalation Inhalation of Plutonium 239 Pu02* #Plutonium 239 Pu02* #Inhalation of Plutonium 239* #The Morphological Inhalation of Radioactive Insoluble Aerosols* #Evaluation Inhalation of Soluble Plutonium 239 Compound* #Inhalation of Soluble Plutonium 239 Compounds* #Inhalation of Uranium Ore by Beagles* #Inhalation of Uranium Ore Dust* #Selective Tissue Inhalation of Lung Tissue* #Inhalation Affection by Plutonium 239* #Inhalation Experiments* #Size Distribution Inhalation Experiments* #the Production of Nondisperse Inhalation Exposures to High-Fired Oxides* #Inhalation Hazards in the Nuclear Energy Industry* #Inhalation Model Simulates the Long-Term Burdens of the Inhalation Poisoning* #a3Ca DTPA (Pentacin) to Eliminate Inhalation Studies. #Radiation Syndrome in Beagles

Feed, Uniform Dispersion Device for Large Particle Compounds*	Inhalation Studies*	#A Constant	000353
#Biological Effect of Plutonium 239 Administered by Taurine Excretion Following Plutonium Oxide Formation in Rats and Beagles after Plutonium 239 PuO ₂ Solution of Uranium Fission Products to Rats by 239 in the Body of Beagles After Stopping Chronic	Inhalation Study on Metabolism of Insoluble Uranium	000132	
#An Outline of the Metabolism of Beagles*	Inhalation*	000385	
#Comparative Cytological Study of the Effect of Dose-Effect Studies with Dynamic Simulation of Retention and Translocation of Dose Related Local and Systemic Effects of Radiation	Inhalation*	000440	
#Carcinogenicity of Radiation*	Inhalation* #Heterophile Antibody	000342	
#Comparative Toxicity of Radiation*	Inhalation* #Administration of Unrepared Behavior of a Citrate Complex of Plutonium	000256	
#Use of In Vivo Counting to Determine Retention, Translocation and Excretion of Radiation*	Inhaled and Ingested Insoluble Radionuclides*	000193	
#Removal of Chronic Effects of Radiation*	Inhaled Aerosols*	000345	
#Inhibition of Urethane-Induced Pulmonary Adenomas by Radiation*	Crushed Plutonium 239 PuO ₂ Microspheres in Plutonium and Silica on the Behavior of the	000263	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Inhaled Plutonium in Rats and Dogs*	000188	
#Removal of Chronic Effects of Radiation*	Inhaled Plutonium Oxide in Beagle Dogs*	000248	
#Removal of Radiation*	Inhaled Plutonium 238 and Plutonium 239 Dioxide in Dogs*	000372	
#Retention of Attempts to Resolve the Problem*	Inhaled Plutonium 238 in the Rat*	000334	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Inhaled Plutonium 238 PuO ₂ and Plutonium 239 PuO ₂ in Dogs*	000219	
#Retention of Attempts to Resolve the Problem*	Inhaled Plutonium 239 in Dogs*	000355	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Inhaled Plutonium 239 Dioxide*	000361	
#Retention of Attempts to Resolve the Problem*	Inhaled Plutonium 239 PuO ₂ in Beagles*	000352	
#Retention of Attempts to Resolve the Problem*	Inhaled Plutonium 239 PuO ₂ in Beagles*	000061	
#Retention of Attempts to Resolve the Problem*	Inhaled Plutonium 239 PuO ₂ in Rats*	000465	
#Retention of Attempts to Resolve the Problem*	Inhaled Plutonium 239*	000161	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Inhaled Plutonium*	000461	
#Retention of Attempts to Resolve the Problem*	Inhaled Plutonium*	000060	
#Retention of Attempts to Resolve the Problem*	Inhaled Plutonium*	000289	
#Retention of Attempts to Resolve the Problem*	Inhaled Plutonium*	000515	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Inhaled Radioactive Particles and Gases*	000438	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Inhaled Radioactive Particles and Gases, Statement on	000071	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Inhaled Radioactive Particles*	000357	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Inhaled Padon Daughters in Workers of Non-Uranium Mines	000513	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Inhibition of Urethane-Induced Pulmonary Adenomas by California	000161	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Injected with California 249 or California 252*	000094	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Injected with Plutonium*	000277	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Injected Intravenously with the Nitrate of Plutonium 239	0003501	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Injected Plutonium 238*	000141	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Injected Plutonium 239 PuO ₂ and Plutonium 238 PuO ₂	000214	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Injected Plutonium 239 PuO ₂ "particles"	000340	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Injected Plutonium*	000288	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Injected Rats*	000495	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Injection in Adult St. Bernards and Immature Beagles*	000322	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Injection into Rats*	000396	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Injection Tablets*	000317	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Injury of the Skeleton and Liver of Rats Under Single	000191	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Injury Induced by Uranium Nitrate. A Consideration of	000035	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Injury*	000439	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Injury*	000271	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Injury*	000496	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Injury*	000498	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Inseparable Solution of Uranium Fission Products in the Insoluble Aerosols*	000351	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Evaluation of Activity in Lung	000525	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Insoluble Plutonium*	000198	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Insoluble Plutonium-Americium Inhalation in Man*	000162	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Insoluble Radionuclides*	00045	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Insoluble Uranium Compounds*	000132	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Installations, 1. Argonne National Laboratory, January-Intake of the Isotope-Histological Picture of Injury of the Skeleton and Liver c. Rats Under Single and Chronic Environment*	000422	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Integrated Program of Monitoring of the Worker and His Environment*	000191	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Integrating Impactor, a Monitor for Airborne Alpha	000133	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Interaction of California 249 and California 252 with	000069	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Interactions Between Transuranium Elements and the	000095	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Intercellular Binding of Neptunium and Plutonium*	000110	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Interlaboratory Meeting, May 9, 1973*	000202	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Internal Contamination and Its Treatment*	000247	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Internal Contamination of the Body b, Radionuclides*	000223	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Internal Deposition from a Plutonium Wound*	000264	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Internal Emitters in Beagles*	000147	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Internal Emitters on Blood Chemistry*	000063	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Internal Exposure*	000270	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Internal Irradiation from Plutonium 239*	000125	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Internal Irradiation in the Beagle*	000089	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Internal Irradiation in Adult Beagles*	000325	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Internal Irradiation Program*	000328	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Internally Deposited Plutonium from Rats*	000222	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Internally Deposited Radionuclides in Laboratory Animals	000523	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Internally Deposited Radionuclides Upon Blood Vessels	000279	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Internally Deposited Radium and Plutonium in Dogs*	000642	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Internally Deposited Transuranium Elements by Zirc DTPA*	000082	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Internally Deposited Transuranium Elements*	000081	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Internally Irradiated Dogs*	000324	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Internally-Deposited Emitters in Beagles*	000323	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Interpretation of Human Urinary Excretion of Plutonium	000251	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Intervals Following Administration*	000084	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Intestinal Fluids*	000518	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	#In Vitro Plutonium Studies	000012	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Intestine by Radioisotopes*	000360	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Intoxications*	000347	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Type of Epithelial Repair Which Imparts	000035	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Intracellular Distribution of Californium 249 in Canine Liver*	000097	
#Retention, Translocation, and Excretion of Therapeutic Removal of Radiation*	Intracellular Distribution of Plutonium 239, Americium	000218	

Plutonium 238 Pu02	#Phagocytosis and Translocation of Plutonium 238 in the Lungs of Rats	#Late Effects of Plutonium 238 and Morphological Changes in the Lungs of Rats	000264
	#Effect of DTPA and Calcium on the Distribution of Plutonium 238 in the Blood Upon Its Administration to Dogs	#Effect of DTPA and Calcium on the Distribution of Plutonium 238 in the Blood Upon Its Administration to Dogs	000214
239, Americium 241 and Californium 249 in Liver After Radium in Rats*	#Simultaneous Studies on the Intravenous Administration of Plutonium 239, Americium 241 and Californium 249 in Liver After Radium in Rats*	#Simultaneous Studies on the Intravenous Administration of Plutonium 239, Americium 241 and Californium 249 in Liver After Radium in Rats*	000340
Podium in Rats*	#Pilot Studies on the Intravenous Administration of Plutonium 239 in the Serum Proteins Following Administration of Plutonium 239*	#Pilot Studies on the Intravenous Administration of Plutonium 239 in the Serum Proteins Following Administration of Plutonium 239*	000459
Podium in Rats*	#Simultaneous Studies on the Intravenous Administration of Plutonium 239, Thorium 228, Radium 226, and Strontium 90 to Dogs Injected with the Nitrate of Plutonium 238*	#Simultaneous Studies on the Intravenous Administration of Plutonium 239, Thorium 228, Radium 226, and Strontium 90 to Dogs Injected with the Nitrate of Plutonium 238*	000283
and Outcome of Radiation Sickness in Dogs Injected with the Nitrate of Plutonium 238*	#Acute Toxicity of Computer Program for Generating Fission Product Distribution, Residence Time, and Off Nevada Test Site*	#Acute Toxicity of Computer Program for Generating Fission Product Distribution, Residence Time, and Off Nevada Test Site*	000218
Liver Function Test in Sheep*	#Equations to Describe the Flow of a Radioactive Plutonium Introduced into the Urine: Separation from Baked Urine Residues Using Series of Uranium Miners After a Higher Exposure to Man: A Bibliography	#Effect of Radioactive Plutonium 239 in the Urine: Separation from Baked Urine Residues Using Series of Uranium Miners After a Higher Exposure to Man: A Bibliography	000492
Effect of Radioactive Plutonium 239 in the Urine: Separation from Baked Urine Residues Using Series of Uranium Miners After a Higher Exposure to Man: A Bibliography	#Effect of Radioactive Plutonium 239 in the Urine: Separation from Baked Urine Residues Using Series of Uranium Miners After a Higher Exposure to Man: A Bibliography	#Effect of Radioactive Plutonium 239 in the Urine: Separation from Baked Urine Residues Using Series of Uranium Miners After a Higher Exposure to Man: A Bibliography	000396
Effect of Radioactive Plutonium 239 in the Urine: Separation from Baked Urine Residues Using Series of Uranium Miners After a Higher Exposure to Man: A Bibliography	#Effect of Radioactive Plutonium 239 in the Urine: Separation from Baked Urine Residues Using Series of Uranium Miners After a Higher Exposure to Man: A Bibliography	#Effect of Radioactive Plutonium 239 in the Urine: Separation from Baked Urine Residues Using Series of Uranium Miners After a Higher Exposure to Man: A Bibliography	000755
#Simultaneous Studies on the Intravenous Administration of Plutonium 239, Thorium 228, Radium 226, and Strontium 90 to Dogs Injected with the Nitrate of Plutonium 238*	#Simultaneous Studies on the Intravenous Administration of Plutonium 239, Thorium 228, Radium 226, and Strontium 90 to Dogs Injected with the Nitrate of Plutonium 238*	#Simultaneous Studies on the Intravenous Administration of Plutonium 239, Thorium 228, Radium 226, and Strontium 90 to Dogs Injected with the Nitrate of Plutonium 238*	000154
and Outcome of Radiation Sickness in Dogs Injected with the Nitrate of Plutonium 238*	#Simultaneous Studies on the Intravenous Administration of Plutonium 239, Thorium 228, Radium 226, and Strontium 90 to Dogs Injected with the Nitrate of Plutonium 238*	#Simultaneous Studies on the Intravenous Administration of Plutonium 239, Thorium 228, Radium 226, and Strontium 90 to Dogs Injected with the Nitrate of Plutonium 238*	000501
Acute Toxicity of Computer Program for Generating Fission Product Distribution, Residence Time, and Off Nevada Test Site*	#Simultaneous Studies on the Intravenous Administration of Plutonium 239, Thorium 228, Radium 226, and Strontium 90 to Dogs Injected with the Nitrate of Plutonium 238*	#Simultaneous Studies on the Intravenous Administration of Plutonium 239, Thorium 228, Radium 226, and Strontium 90 to Dogs Injected with the Nitrate of Plutonium 238*	000268
Inventory*	#FISP, A Comprehensive Inventory of Tritium in Sedan Crater Ejecta*	#FISP, A Comprehensive Inventory of Tritium in Sedan Crater Ejecta*	000413
Iodine and Uranium in Sedimentary Rocks*	#Inventory Element Activities on Nevada Test Site and Iodine and Uranium in Sedimentary Rocks*	#Inventory Element Activities on Nevada Test Site and Iodine and Uranium in Sedimentary Rocks*	000064
Iodine 131 Labeled Rose Bengal Dye Blood Clearance as a Function of Time*	#Inventory Element Activities on Nevada Test Site and Iodine and Uranium in Sedimentary Rocks*	Iodine 131 Labeled Rose Bengal Dye Blood Clearance as a Function of Time*	000386
Ion in Groundwater, Annual Report, December 1, 1966 to Ion Exchange Resins and Complexons on Distribution of Ion-Exchange*	#Inventory Element Activities on Nevada Test Site and Iodine and Uranium in Sedimentary Rocks*	Ion in Groundwater, Annual Report, December 1, 1966 to Ion Exchange Resins and Complexons on Distribution of Ion-Exchange*	000286
Ion-Exchange*	#Rapid Determination of Plutonium Ion-Exchange*	#Rapid Determination of Plutonium Ion-Exchange*	000505
Ionizing Radiation* of Immunoglobulin Levels in Blood*	#Rapid Determination of Plutonium Ion-Exchange*	Ionizing Radiation* of Immunoglobulin Levels in Blood*	000301
Ionizing Radiations on Cells and Organisms, Including Iron 59*	#Rapid Determination of Plutonium Ion-Exchange*	Ionizing Radiations on Cells and Organisms, Including Iron 59*	000459
Iron 59* and Distribution of Monomeric and Polymeric Irradiated Dogs*	#Rapid Determination of Plutonium Ion-Exchange*	Iron 59* and Distribution of Monomeric and Polymeric Irradiated Dogs*	000104
Irradiated Dogs*	#Rapid Determination of Plutonium Ion-Exchange*	Irradiated Dogs*	000324
Irradiation from Plutonium 239*	#Rapid Determination of Plutonium Ion-Exchange*	Irradiation from Plutonium 239*	000323
Irradiation in the Beagle*	#Rapid Determination of Plutonium Ion-Exchange*	Irradiation in the Beagle*	000089
Irradiation in Adult Beagles*	#Rapid Determination of Plutonium Ion-Exchange*	Irradiation in Adult Beagles*	000325
Irradiation of the Intestine by Radioisotopes*	#Rapid Determination of Plutonium Ion-Exchange*	Irradiation of the Intestine by Radioisotopes*	000360
Irradiation Program* Research in Radiobiology*	#Rapid Determination of Plutonium Ion-Exchange*	Irradiation Program* Research in Radiobiology*	000314
Irradiation*	#Rapid Determination of Plutonium Ion-Exchange*	Irradiation*	000210
Irradiation* #Intopathological Reaction of the Blood System in Dogs	#Intopathological Reaction of the Blood System in Dogs	Irradiation* #Intopathological Reaction of the Blood System in Dogs	000265
Isotope* Picture of Injury of the Skeleton and Isotopes* of Plutonium 239 and Morphological Changes	#Intopathological Reaction of the Blood System in Dogs	Isotope* Picture of Injury of the Skeleton and Isotopes* of Plutonium 239 and Morphological Changes	000374
Isotopes* 239 and the Histopathology of the Liver and Isotopes* the Skeleton and Liver of Rats and Kinetics of Isotopes, and Bone*	#Intopathological Reaction of the Blood System in Dogs	Isotopes* 239 and the Histopathology of the Liver and Isotopes* the Skeleton and Liver of Rats and Kinetics of Isotopes, and Bone*	000459
Isotopic Concentration of Products* #Predicted Isotopic Ratios for 1959-1970*	#Predicted Isotopic Ratios for 1959-1970*	Isotopic Concentration of Products* #Predicted Isotopic Ratios for 1959-1970*	000390
January through December 1972, Including Estimates of January 1974* of Plutonium in Desert Environments, January-December 1969*	#Predicted Isotopic Ratios for 1959-1970*	January through December 1972, Including Estimates of January 1974* of Plutonium in Desert Environments, January-December 1969*	000151
January-December 1972*	#Predicted Isotopic Ratios for 1959-1970*	January-December 1972*	000120
January-June 1968*	#Predicted Isotopic Ratios for 1959-1970*	January-June 1968*	000140
January-June 1971* at Atomic Energy Commission Japan Establishment Quarterly Report*	#Predicted Isotopic Ratios for 1959-1970*	January-June 1971* at Atomic Energy Commission Japan Establishment Quarterly Report*	000391
Joint* A Desert Community*	#Predicted Isotopic Ratios for 1959-1970*	Joint* A Desert Community*	000481
Joint Nuclear Detailed Neutron-Induced Autoradiography of Joint Nuclear Research Center, Japan Establishment Joint US/UK Field Experiments)*#Final Evaluation of the July through December 1962*	#Predicted Isotopic Ratios for 1959-1970*	Joint Nuclear Detailed Neutron-Induced Autoradiography of Joint Nuclear Research Center, Japan Establishment Joint US/UK Field Experiments)*#Final Evaluation of the July through December 1962*	000315
July 1971*	#Predicted Isotopic Ratios for 1959-1970*	July 1971*	000228
July-December 1966*	#Predicted Isotopic Ratios for 1959-1970*	July-December 1966*	000392
June 1968*	#Predicted Isotopic Ratios for 1959-1970*	June 1968*	000436
June 1968* offsite Kangaroo Rats at the Nevada Test Site*	#Predicted Isotopic Ratios for 1959-1970*	June 1968* offsite Kangaroo Rats at the Nevada Test Site*	000391
Kidney* #Microscopic and Autoradiographic Killing Rats Using Ammonium Bicarbonate*	#Predicted Isotopic Ratios for 1959-1970*	Kidney* #Microscopic and Autoradiographic Killing Rats Using Ammonium Bicarbonate*	000422
Kinetics in the Rats	#Predicted Isotopic Ratios for 1959-1970*	Kinetics in the Rats	000259
Kinetics of Its Plutonium Depending on the Dose and Labeled Rose Bengal Dye Blood Clearance as a Liver	#Predicted Isotopic Ratios for 1959-1970*	Kinetics of Its Plutonium Depending on the Dose and Labeled Rose Bengal Dye Blood Clearance as a Liver	000320
Laboratories from 1968 through 1972*	#Predicted Isotopic Ratios for 1959-1970*	Laboratories from 1968 through 1972*	000063
Laboratory Animals* #The Transmission of Radiostrontium	#Predicted Isotopic Ratios for 1959-1970*	Laboratory Animals* #The Transmission of Radiostrontium	000103
Laboratory* #Experience on Scrap Recovery	#Predicted Isotopic Ratios for 1959-1970*	Laboratory* #Experience on Scrap Recovery	000158
Laboratory, Fall Out Program Quarterly Summary Report	#Predicted Isotopic Ratios for 1959-1970*	Laboratory, Fall Out Program Quarterly Summary Report	000422
Laboratory, January-June 1971* Radioactivity at Atomic Laboratory, New Mexico* Statement, Transuranium	#Predicted Isotopic Ratios for 1959-1970*	Laboratory, January-June 1971* Radioactivity at Atomic Laboratory, New Mexico* Statement, Transuranium	000422
Lactating Rats*	#Predicted Isotopic Ratios for 1959-1970*	Lactating Rats*	000471
Lakes, USA* Summary of Progress, 1972-1973, Plutonium	#Predicted Isotopic Ratios for 1959-1970*	Lakes, USA* Summary of Progress, 1972-1973, Plutonium	000262
Late Effects of Internally Deposited Radioisotopes in and Plutonium from Mother to Offspring in Analytical Procedures for the Environmental Health and Waste Disposal in the Plutonium Fuel Development	#Predicted Isotopic Ratios for 1959-1970*	Late Effects of Internally Deposited Radioisotopes in and Plutonium from Mother to Offspring in Analytical Procedures for the Environmental Health and Waste Disposal in the Plutonium Fuel Development	000523
September 1, 1972 through December 1973 Health and Safety Energy Commission Installations, 1. Argonne National Solid Waste Development Facility, Los Alamos Scientific	#Predicted Isotopic Ratios for 1959-1970*	September 1, 1972 through December 1973 Health and Safety Energy Commission Installations, 1. Argonne National Solid Waste Development Facility, Los Alamos Scientific	000204
#The Metabolism of Ascorbic Acid Concentration Along Freshwater Food Chains of the Great Lakes, USA* Summary of Progress, 1972-1973, Plutonium	#Predicted Isotopic Ratios for 1959-1970*	#The Metabolism of Ascorbic Acid Concentration Along Freshwater Food Chains of the Great Lakes, USA* Summary of Progress, 1972-1973, Plutonium	000668
Laboratory animals*	#Predicted Isotopic Ratios for 1959-1970*	Laboratory animals*	000200
Swine*	#Predicted Isotopic Ratios for 1959-1970*	Swine*	000265
#Removal of Plutonium by Pulmonary Oxide*	#Predicted Isotopic Ratios for 1959-1970*	Lavage: Therapy of Pulmonary Contamination by Plutonium Layers of the Pacific Ocean as Estimated from Studies	000456
#Retention of Fall Out Constituents in Upper of a Tuna	#Predicted Isotopic Ratios for 1959-1970*	Leaching of Radionuclides at Sedan Crater	000383
Respirable Fraction of Strontium 90, Plutonium 239 and Determination of Trace Levels of Uranium, Thorium 230, and Thorium 228*	#Predicted Isotopic Ratios for 1959-1970*	Lead in Surface Air*	000512
through 1964*	#Predicted Isotopic Ratios for 1959-1970*	Lead in Surface Air* and Polonium 210 in Soft Tissues*	000467
and Fractionation of Doses of Plutonium 239, Thorium 228, and Strontium 90 to	#Predicted Isotopic Ratios for 1959-1970*	Lead*	000167
#Biological Aspects of	#Predicted Isotopic Ratios for 1959-1970*	Leads: An Annotated Bibliography, Literature from 1950	000484
#Pilot Studies on the Intravenous Administration of Plutonium 239, Thorium 228, and Strontium 90 to Dogs Injected with the Nitrate of Plutonium 238*	#Predicted Isotopic Ratios for 1959-1970*	LET on Radiation Carcinogenesis: Comparison of Single Lethal Dosage of Polonium, Plutonium and Radium in Rats	000048
#Simultaneous Studies on the Intravenous Administration of Plutonium 239, Thorium 228, and Strontium 90 to Dogs Injected with the Nitrate of Plutonium 238*	#Predicted Isotopic Ratios for 1959-1970*	Lethal Dosage of Polonium, Plutonium, and Radium in Rats	000155
#Nevada Applied Ecology Group	#Predicted Isotopic Ratios for 1959-1970*	Leukocytes of Beagles: Toxicity of Radium 226, Plutonium	000257
	#Predicted Isotopic Ratios for 1959-1970*	Literary Service* at AEC Nevada Operations Office*	000026

Plutonium 239*	Life Shortening Consequent to Internal Irradiation from	000089
Dioxide*	Life Span of Mice Following Inhalation of Plutonium	000209
#Plutonium 239 and the Stimulated Periodontal	Ligament Cells*	000326
#Polyaminepolyalkylphosphonic Acids as Effective	Ligands for Binding and Eliminating Uranium and Its	000395
Desert	Limonology*	000236
#In Vivo and In Vitro Chelation of Plutonium by Alpha-	Lipoic Acid and DTPA*	000464
of Plutonium 239 and Americium 241 in Animal Tissues by	Liquid Effluent Monitoring*	000142
Associated with the Discharges of the Low Level Uranium	Liquid Scintillation Spectrometry* Determination	000165
of a Derived Formula for the Discharge of Radioactive	Liquid Waste-Uranium Concentration of Fishes and Plants	000130
#Biological Aspects of Lead: An Annotated Bibliography,	Liquid Wastes* Applications	000421
Radioecology, A Selected Bibliography of Non-Russian	Literature from 1950 through 1964*	000488
Nutrient Movement Following Nitrogen and Sulfur	Literature* Marine	000057
Atolls. 1,*	Litter Decomposition, Microbiota Populations, and	000283
#The In Vivo Cytogenetic Effects of Californium 252 on	Lived Radionuclides Produced at Bikini and Eniwetok	000250
#Effect of Plutonium on Nucleic Acid Metabolism in the	Liver and Bone Marrow of the Chinese Hamster*	000099
Chemical Forms of Plutonium (Plutonium 239) in the Skeleton and	Liver and Bone Marrow of the Rabbit*	000497
the Histological Picture of Injury of the Skeleton and	Liver and Skeleton of Dogs to Intravenous	000243
#Content and Regeneration of Nucleic Acids in Rat	Liver and Spleen of the Rat*	000493
Acute Toxicity of Neptunium 237 and Its Relationship to	Liver of Rats and Kinetics of Its Elimination Depending	000241
Iodine 131 Labeled Rose Bengal Dye Blood Clearance as a	Liver of Rats Under Single and Chronic Intake of the	000191
#Morphological Changes in Rabbit and Dog	Liver Damage from Neptunium 237 in Sheep*	000368
Altered through Processes of Repair. 1. The	Liver Following Plutonium Injury*	000496
of the Type of Epithelial Repair Which Imparts to the	Liver Function in Sheep*	000321
#Microdistribution of Plutonium in Rabbit and Rat	Liver Function Test in Sheep*	000320
Intracellular Distribution of Plutonium 239 in Canine	Liver Induced by Plutonium 239*	000503
Patterns and Toxicity of Plutonium and Americium in	Liver Injury Induced by Uranium Nitrate. A	000035
Monomeric and Polymeric Plutonium in the Isotope Rat	Liver Resistance Against Subsequent Uranium	000035
Exposure to Plutonium 239 and Americium 241 in Mice	Liver*	000520
of Plutonium 239, Americium 241 and Californium 249 in	Liver*	000097
The Early Subcellular Distribution of Curium in Canine	Liver*	000112
Hormonal Manipulations on Neptunium 237 Induced Fatty	Liver* Metabolism and Effect of	000077
Plutonium 239 Dioxide in Dogs*	Livers After Intravenous Administration* Distribution	000218
#REBEC Field Activities and Sample	Liver*	000201
#A Twenty-Seven Year Study of Selected	Local and Systemic Effects of Inhaled Plutonium 238 and	000338
Transuranium Solid Waste Development Facility.	Logistics in Support of the Nevada Applied Ecology Group	000003
#Reaction of the Blood System in Dogs to Heavy Blood	Los Alamos Plutonium Workers*	000454
#Progress in Studies with Transuranic Elements at the	Los Alamos Scientific Laboratory, New Mexico* Statement,	000471
on Cells and Organisms, Including Man: A Bibliography*	Loss in Remote Periods Following Chronic Irradiation*	000374
Organisms, Including Man: A Bibliography* Low and Very	Low and Very Low Dose Influences of Ionizing Radiations	000088
#In Vivo Measurement of Plutonium and Other Very	Low Dose Influences of Ionizing Radiations on Cells and	000469
Detectors*	Low Energy Emitters*	000207
Fishes and Plants Associated with the Discharges of the	Low Level Alpha Counting System with Six Solid State	000131
#What We Do Know About	Low Level Uranium Liquid Waste-Uranium Concentration of	000130
Monitoring Program at the AAMC Research Establishment,	Lucas Heights* Environmental	000335
compared with Retention in the Humerus and the Third	Lumbar Vertebrae* Plutonium 239 in the Ulna of the Beagle	000318
Radioactive Insoluble	Lung and Lymph Nodes Following Inhalation of	000525
Model Simulates the Long-Term Burdens of the Deep	Lung and Systemic Organs* Plutonium Inhalation	000032
#Estimation of Plutonium	Lung Burden by Urine Analysis*	000346
#The Multielement Analysis of Human	Lung Cancer Among Uranium Miners in the United States*	000139
Effect of Plutonium 239 PuO2 Inhalation	Lung Tissue*	000299
The Morphology of Experimental	Lung Tissue*	000527
Patterns and the Toxicity of Transuranic Elements in	Lung Tumors in Beagle Dogs*	000460
Effect of Plutonium 239 PuO2 and Asbestos in the	Lung* Deposition	000113
Soluble Plutonium 239	Lungs from Radioactive Aerosols* Cocarcinogenic	000215
#Morphological Changes in the	Lungs of Rats After Inhalation of Large Doses of	000307
of Plutonium 239 and Morphological Changes in the	Lungs of Rats Intratracheally Administered This Isotope*	000242
Insoluble Aerosols* #Evaluation of Activity in Lung and	Lymph Node Removal on Plutonium Dioxide Translocation*	000459
Study of Plutonium Oxide Particulates in Dog	Lymph Nodes Following Inhalation of Radioactive	000105
plutonium and Silica on the Behavior of the Alveolar	Lysosomal Uptake of Actinide Elements* Electron Diffraction	000455
#Temperature Regulation in Desert	Macrophages* Cytological Study of the Effect of Inhaled	000415
Upon the Relative Toxicities of Radium and Plutonium in	Emulsions*	000188
The Concentration of Uranium in	Man and Dogs* The Effect of the Remodeling of Bone	000049
#Radiogenic Effects in	Man and His Diet*	000449
Population Exposure to Radiation: Natural and	Man of Long-Term Skeletal Alpha Irradiation*	000210
of Insoluble Plutonium-Americium Inhalation in	Man*	000370
from the Terrestrial Environment to Animals and	Man* The Measurement and Management	000162
Fission Products and their Subsequent Fate in Rats and	Transfer of Radioactive Materials	000486
on Maximal permissible Burden of Strontium 90 in	Man* on the Inhalation of Fissionable Materials and	000225
#Plutonium and Environmental Metals in	Man* of Osteosarcoma in Mice and Dogs and their Bearing	000150
of Ionizing Radiations on Cells and Organisms, Including	Man, Interlaboratory Meeting, May 9, 1973*	000297
in Man	Man: A Bibliography* Low and Very Low Dose Influences	000469
#The Measurement and	Management of Insoluble Plutonium-Americium Inhalation	000162
Applied Soils and Waste	Management Studies*	000475
Year Follow-Up Study of Selected Cases*	Ranhattan Project Plutonium Workers, a Twenty-Seven	000403
#Effect of Dietary and Hormonal	Manipulations on Neptunium 237 Induced Fatty Livers*	000201
#HASL Procedures	Manual*	000451
Quarterly Summary Report, December 1, 1973 through	March 1, 1973* Fallout Program	000487
#Plutonium in Airborne Particulates, November 1965-	March 1966* Marine Algae ASCOPHYLLUM NODOSUM*	000078
Active Phase of Assimilation of Plutonium 239 by the	Marine Algae and the Mechanism of the Action of Cyanide	000363
on Cell Respiration and Plutonium 239 Accumulation by	Marine Phytoplankton* Accumulation of Plutonium 239 and	000364
Poisonous 210 by the Brown Alga ASCOPHYLLUM NODOSUM and	Marine Radioecology, A Selected Bibliography of Non-	000310
Russian Literature*		000457

#Uranium Concentrations in Effects of Californium 252 on Liver and Bone on Nucleic Acid Metabolism in the Liver and Bone Polymeric Plutonium 239 in the Mouse, Estimated by Use of Radioactive	Marine Sediments*	000253
Fate in Rats #Studies on the Inhalation of Fissionable and Man*	Marrow of the Chinese Hamster* #The In Vivo Cytogenetic Effect of Plutonium	000099
#Regulations for the Safe Transport of Radioactive of Osteosarcoma in Mice and Dogs and their Bearing on Body, Air and Drinking Water Based on Human Human #On the Experimental Substantiation of the Plutonium Resuspension from Soil: How Levels	Marine Deposition and Distribution of Monomeric and Material in the Body: Detection and Treatment*	000104
Americium Inhalation in Man* The Analysis* #Plutonium and Americium Emissars*	Materials and Fission Products and their Subsequent Materials from the Terrestrial Environment to Animals	000225
Effects for Fall-out-Contaminated Terrain: Comparison of Determination of Plutonium Body Burdens from External Gamma Exposure Rates at Field Spectrometric Field Experiments)* #Final Evaluation of the Biological and Plutonium 239 Accumulation #Photosynthesis and the Sclerosis*	Maximal Permissible Burden of Strontium 90 in Man*	000150
Polonium 210 by the Brown Alga ASCOPHYLLUM HEDGESUM and Physicians, Health Physicists and Industrial Hygienists* through December 1962*	Maximal Permissible Amounts of Natural Uranium in the Human Environment*	000034
and Plutonium 239 Accumulation #Biological and Environmental Metals in Man, Interlaboratory Surface Air Sampling Program, 80th	Maximal Permissible Content of Plutonium 239 in the Human Environment*	000192
Plutonium 239 Pu02 Activity Distribution of Radium 226, Plutonium 239, Radium 228 Effects of Radium 226, Plutonium 239, Radium 228 Baboon*	Measured in the Environment*	000304
Damaged by Plutonium 239*	Measurement and Management of Insoluble Plutonium- Measurement in Humans by X and Gamma-Ray Spectral	000162
Plutonium in the Immature Rat Liver*	Measurement of Plutonium and Other Very Low Energy	000207
Route #Whole-Body Autoradiographic Studies on Plutonium Radioactive Americium*	Measurement of Plutonium 239 In Vivo*	000084
#Effect of Plutonium on Nucleic Acid #Mineral and Protein #Mineral and Protein The Influence of Age and Sex on the Short Term	Measurement of Pulmonary Plutonium Contamination*	000489
Radionuclides*	Measurements and Calculations* #Ground Roughness	000507
#Chemical Carcinogens and Radionuclides #Plutonium and Environmental Measurements of Daily Urine Excretion*	Measurements of Daily Urine Excretion*	000195
bit-ogen and #Distribution of Plutonium in the Environment*	Measurements of Radioecological Parameters*	000118
Histopathology of the Liver and Skeleton of Dogs to Changes in the Lungs of Rats #Content and Role of Soil Distribution in the Rat Kidney*	Measurements of Radionuclide Concentrations and	000138
Berkelium 249 in the Soft Tissues of Beagles*	Measurements on Operation Roller Coaster (Joint US/UK	000220
#Acute Toxicity of Inhaled Crushed Plutonium 239 Pu02 Elements and of Freshwater Vegetation in Processes of Transfer of Plutonium from Colorado-New Mexico*	Measuring Radioactivity in the Environment*	000065
Plutonium 239 Bones* #Effects of Uranium Contamination of Miners in a Yugoslav Uranium Plutonium-Injected Rats*	Mechanism of the Action of Cyanide on Cell Respiration	000364
in Plutonium Injury*	Mechanism of Development of Plutonium-Induced Pulmonary	000076
Radon Daughters in Workers of Non-Uranium Mines and Studies on Airborne Radioactive Contamination of #Lung Cancer Among Uranium of Immunoglobulin Levels in Blood-Serum of Uranium from Inhaled Radon Daughters in Workers of Non-Uranium	Mechanisms of the Accumulation of Plutonium 239 and Medical Aspects of Radiation Accidents, A Handbook for Medical Research Division Semiannual Report, July Meeting, May 9, 1973*	000310
Bones-Seeking Radionuclides in	Meeting, May 9, 1973*	000466
	Plutonium Membrane Dilution in Uranyl-Treated Plant Roots*	000400
	Merdian Network, January-December 1969*	000287
	Merkhiyat Jebel: A Desert Community*	000120
	Mesotheliomas and Sarcomas from "Hot Spots" of Mesothorium II, Thorium 228 (Radiothorium) and Strontium (Mesothorium I), Thorium 229 (Radiothorium), and	000228
	Metabolic Characteristics of Americium 241 in the Adult	000079
	Metabolic Processes in the Bone Tissue of Animals	000436
	Metabolism and Effect of Monomeric and Polymeric	000309
	Metabolism and Toxicity of Neptunium 237 in the Fat*	000077
	Metabolism and Toxicity of Plutonium*	000175
	Metabolism as Affected by Its Physicochemical State and Metabolism at Remote Times After Exposure to	000196
	Metabolism in the Liver and Bone Marrow of the Rabbit*	000038
	Metabolism in Bone Tissue of Plutonium-Injected Rats*	000495
	Metabolism in Bone Tissues of Rats in Plutonium Injury*	000271
	Metabolism of Americium by Rats*	000446
	Metabolism of Americium in Lactating Rats*	000116
	Metabolism of Americium 241 in the Adult Baboon*	000115
	Metabolism of Bismuth 253 in Mice*	000092
	Metabolism of Inhaled and Ingested Insoluble	000365
	Metabolism of Insoluble Uranium Compounds*	000132
	Metabolism of Plutonium in Rats*	000228
	Metabolism of Tissues of Plutonium Treated Rats*	000290
	Metabolism*	000329
	Metals in Man, Interlaboratory Meeting, May 9, 1973*	000247
	Metereological Parameters*	000018
	Methodology*	000432
	Mexico Distributive Province: Anomalous Concentrations*	000468
	Mexico Statement, Transuranium Solid Waste Development	000471
	Mexico* #Effects of Uranium Mill Wastes	000137
	Mice and Dogs and their Bearing on Maximal Permissible Mice Following Inhalation of Plutonium Oxide*	000150
	Mice*	000209
	Mice*	000183
	Mice, An Autoradiographic Study*	000092
	Microbiota Populations, and Nutrient Movement Following	000514
	Microdistribution of Plutonium in Rabbit and Rat Liver*	000263
	Microdistribution of Plutonium 239 and the	000520
	Microdistribution of Plutonium 239 and Morphological	000283
	Microorganisms in the Movement of Plutonium*	000059
	Microscopic and Autoradiographic Studies of Uranium	000111
	Microscopic Distribution of Californium 249 and	000058
	Microspheres in Beagles*	000098
	Migration and Distribution of Natural Radioactive	000367
	Milk into Cheese*	000417
	Milk*	000109
	Milk Wastes on Biological Fauna of the Animas River (000199
	Miller Detailed Neutron-Induced Autoradiography of	000137
	Mine*	000315
	Studies on Airborne Radioactive	000033
	Mineral and Protein Metabolism in Bone Tissue of	000425
	Mineral Baths* on the Occupational Hazards from Inhaled	000271
	Miners in a Yugoslav Uranium Mine*	000113
	Mines in the United States*	000023
	Miners After a Higher Exposure to Ionizing Radiation*	000139
	Miners Health*	000511
	Wires and Mineral Baths* on the Occupational Hazards	000055
	Miniatute Swine*	000513
		000197

#Radiological Health and Safety Aspects of Uranium	Mining and Ore Treatment, A Bibliography*	000163
#Uranium	Mining and Processing in Australia*	000057
#Environmental and Radiological Safety Aspects of the	Mining and Processing of Uranium*	000143
#Cleanup Summary Report, Tatum Dome Test Site,	Mississippi*	000467
and Systemic Organs*	#Plutonium Inhalation	000259
#Program: Plutonium Transport and Dose Estimation	Model Simulates the Long-Term Burdens of the Deep Lung*	000032
#Nevada Applied Ecology Group Plutonium Study	Model* Applied Ecology Group Plutonium Study Modeling	000027
of Shock Effects in Granitic Rock Recovered from the	Modeling Program: Plutonium Transport and Dose	000027
#The Integrating Impactor, a	"Outline Event, Algeria, and the Piledriver Event,	000151
#Development of Plutonium Dust	Monitor for Airborne Alpha Emitters*	000069
#Air Sampling as Part of an Integrated Program of	Monitor Using a Solid State Detector*	000129
Lucas Heights*	Monitoring of the Worker and His Environment*	000133
through 1972*	Monitoring Program at the AEC Research Establishment*	000135
December 1972, Including	Monitoring Report for Sandia Laboratories from 1964	000043
	Monitoring Report, Rocky Flats Plant, January through	000153
	Monitoring Report: Calendar Year 1972*	000170
	Monitoring*	000142
for Inhalation	#Liquid Effluent	000134
#Technology for the Production of	Nonradioactive Aerosols of Oxides of Transuranic Elements	000110
Cleaving Agents*	Monoseric and Polymeric Plutonium as Modified by a	000182
	Monoseric and Polymeric Plutonium in the Dog and Mouse*	000149
Liver*	Monoseric and Polymeric Plutonium in the Immature Rat	000077
#Metabolism and Effect of	Monoseric and Polymeric Plutonium 239 in the Mouse*	000108
Estimated by Use of Marrow Deposition and Distribution of	Monoseric Plutonium from the Dog by Glucur and/or DTPA*	000148
	Mononuclear Phagocytes Exposed in vivo to Plutonium 239	000042
#Skeletal Retention and Distribution of Polymeric and	Monoxide Sand in Animal Tissues, Pt 2*	000399
PuO ₂ Particles*	Morphological Changes in the Lungs of Pigs	000059
	Morphological Changes in the Lungs of Rats After	000282
	Morphological Changes in Rabbit and Dog Liver Induced	000053
	Morphological Composition of the Peripheral Blood in	000039
	Morphologically Altered through Processes of Repair. I.	000035
	Morphology of Experimental Lung "Tumors" in Beagle Dogs*	000460
	Morphology of Vertebral Trabecular Bone in Seagulls	000277
	Mother to Offspring in Laboratory Animals*	000033
	Mother Liver* Determination of Alpha Activity by	000014
	Mouse* Comparison	000149
Injected with Plutonium*	Mouse, Estimated by Use of Iron 59* and Distribution	000104
	Movement of Plutonium*	000011
	Movement Following Nitrogen and Phosphorus Additions to	000283
	Multi-element Analysis of Human Lung Tissue*	000299
	National Laboratory, January-June 1974* of Radioactivity*	000422
	National Nuclear Research Center, Pelindaba*	000376
	Natural and Man Made*	000370
	Natural Environments*	000456
	Natural Incidence*	000368
	Natural Radioactive Decay Series Elements in the Oceans	000473
	Natural Radioactive Elements in the Reservoir*	000417
	Natural Uranium in the Body, Air and Drinking Water	000038
	Natural Waters Having Passed through Different Types of	000428
	NeBuCa DTPA (Pentac) to Eliminate Plutonium 239 from	000379
	NeBuLizer Suspension Concentration, Concentration and	000029
	Neptunium and Plutonium*	000202
	Neptunium Deposition*	000221
	Neptunium 237 and Its Relationship to Liver Function in	000321
	Neptunium 237 in the Rat Adrenal*	000226
	Neptunium 237 in the Rat*	000175
	Neptunium 237 in Sheep*	000368
	Neptunium 237 Induced Fatty Livers*	000201
	Neptunium 237*	000118
	Neptunium 237, Plutonium 238, Plutonium 239, Americium	000093
	Neptunium 237, Production and Recovery*	000472
	Network, January-December 1969*	000120
	Network, July 1974*	000122
	Neutron-Induced Autoradiograph of Bone Containing	000080
	Neutron-Induced Autoradiograph of Plutonium 239 Bones*	000315
	Nevada Applied Ecology Group Library Services at AEC	000026
	Nevada Applied Ecology Group Plutonium Study Modeling	000027
	Nevada Applied Ecology Group Progress Report as of	000001
	Nevada Applied Ecology Group Vegetation Samples*	000009
	Nevada Applied Ecology Group Vegetation Studies*	000008
	Nevada Applied Ecology Group*	000025
	Nevada Operations Office*	000003
	Nevada Test Site and Off Nevada Test Site*	000026
	Nevada Test Site Data and Experience to Predict Air	000029
	Nevada Test Site Data*	000023
	Nevada Test Site*	000305
	Nevada Test Site*	000359
	Nevada Test Site*	000136
	Nevada Test Site*	000260
	Nevada Test Site*	000259
	Nevada Test Site*	000005
	Nevada Test Site*	000015
	Nevada Test Site* Distribution and Inventory	000024
	Nevada Test Site* Ecological Studies	000015
	Nevada Test Site* in Granitic Rock Recovered from	000151
	Nevada Test Site* for the Nuclear Rocket Development	000302
	Nevada Test Site* Source and Transmission Functions from	000037
	Nevada Test Site--Some Results*	000007

Concentrations and External Gamma Exposure Rates at the Offsite Surveillance Around the Offsite Surveillance Around the of the Diet of Cattle Grazing the Area 18 Range of the Studies on Selected Plutonium Contaminated Areas in Contaminated Areas on the Test Range Complex in Radiological Surveillance*	Nevada Test Site, A Demonstration Study of Radionuclide	070138
	Nevada Test Site, January-June 1968*	000391
	Nevada Test Site, July-December 1966*	000392
	Nevada Test Site, 1966-1970* and Botanical Composition	000058
		Grazing
	Nevada*	000013
	Soil Surveys of Five Plutonium	000008
	Habas-D/WAP-19 Launch, May 18, 1969, Off-Site	000068
	Nickel and Tantalum*	000179
	Ni-rate in the Dog*	000377
	Nitrate of Plutonium 239 and Outcome of Radiation	000501
	Nitrate, A Consideration of the Type of Epithelial	000003
	Nitrogen and Phosphorus Additions to a Deciduous Forest	000283
	Node Removal on Plutonium Dioxide Translocation*	000125
	Nodes Following Inhalation of Radioactive Insoluble	000525
	Wastes* and Marine Phytoplankton* of Plutonium	000310
	NUCGO-1* Active Phase of Assimilation	000363
	Non-Nuclear Detonation of a Plutonium Bearing Weapon	000393
	Non-Brassian Literature*	000457
	Non-Skeletal Tumor Incidence Observed in Beagles with Non-Uranium Mines and Mineral Baths on the Occupational	000528
	North America*	000513
	Northwest* Progress in Beagle	000231
	November 1966-March 1966*	000086
	November 30, 1967* to Describe the Flow of a Radioactive	000244
	Nuclear Detonation of a Plutonium Bearing Weapon	000393
	Nuclear Detonation on Arthropods at the Nevada Test Site	000135
	Nuclear Detonations* Beta Radiation	000063
	Nuclear Energy Industry*	000358
	Nuclear Explosions with Known Yields at Nevada Test Site	000437
	Nuclear Explosions*	000212
	Nuclear Power and a Protected Environment*	000300
	Nuclear Power Plants* Environmental	000378
	Nuclear Reactors* Relative Hazards of Fission	000354
	Nuclear Research Center, Japan Establishment Quarterly	000081
	Nuclear Rocket Development Station, at the U.S. Atomic	000365
	Nuclear Science and Technology*	000302
	Nuclear Tract Technique*	000042
	Nucleic Acid Metabolism in the Liver and Bone Marrow of	000211
	Nucleic Acids* in Rat Liver Following Plutonium Injury*	000497
	Nutrient Movement Following Nitrogen and Phosphorus	000496
	Occupational Hazards from Inhaled Radon Daughters in	000283
	Occasionally Exposed Humans as Found from Autopsy	000513
	Oceans as Estimated from Studies of a Tuna Population*	000467
	Oceans and Sediments*	000456
	October 10-11, 1972* Eighteenth Annual Conference	000473
	October, 1972-September, 1973*	000431
	Office* Nevada Applied	00002
	Offsite Radiological Safety Program for Project Bullion	000254
	Offsite Surveillance Around the Nevada Test Site,	000391
	Offsite Surveillance Around the Nevada Test Site, July-	000392
	Offspring in Laboratory Animals* The "Transmission	000433
	Offspring*	000522
	Opal File*	000226
	Operating Nuclear Power Plants* Environmental	000370
	Operation Roller Coaster (Joint US/UK Field Experiments)	000227
	Operation Roller Coaster, "Project 4.1, Plutonium Uptake	000393
	Operations Office* Nevada	000226
	Operations* January through December 1972, Including	00153
	Optical Particle Size Analysis of Ambient Aerosol*	000201
	Ore by Beagles* In Vivo Separation	000349
	Ore Dust* Selective Tissue Accumulation of	000356
	Ore Treatment, A Bibliography* Radiological	000183
	Organism and in the Air of Work Premises* of the Maximum	000192
	Organism of the Rat with Inhalation Poisoning*	000379
	Organism of Animals from the "British Seas"	000312
	Organisms* Combined Influence of	000273
	Organisms* Behavior of Inseparately	000331
	Organisms, Including Man: A Bibliography* Slow and Very	000308
	Organisms* Plutonium Inhalation Model Simulates	000469
	Origin of Urinary Caudine Excretion During Chronic	000032
	Osmium*	000439
	Osteosarcoma in Mice and Dogs and their Bearing on	000178
	Osteosarcomas in Pats* Doses of Plutonium 239, Americium	000150
	Osteosarcomogenic Activity of Radionuclides on their	000046
	Outcome of Radiation Sickness in Dogs Injected	000047
	Outline of the Metabolism of Inhaled and Ingested	000501
	Ovaries of Pats*	000345
	Overheating Incidents*	000160
	Overviews*	000123
	Oxide in Beagle Dogs* Dynamic Simulator	000056
	Oxide Inhalation*	000480
	Oxide Particulates in Dog Lymph Tissue*	000455
	Oxide*	000213
	Oxides of Transuranic Elements for Inhalation Pulmonary	000265
	Oxides* Americium and Plutonium Urine Excretion	000119
	Oxides*	000410

of Fallout Constituents in Upper Layers of the Content with Uranium 234/Uranium 238 Ratio in the	Pacific Ocean as Estimated from Studies of a Tuna	000456
#The Radiochemistry of	Pacific Water* of Uranium in Seawater and Uranium	000424
#Blood Constituents in Pitman-Moore,	Palladium*	000176
#Measurements of Meteorological	Palouse and Hormel Swine*	000405
in Beagle Dogs as a Function of Respiration and Aerosol	Parameters*	000018
#A Constant Feed, Uniform Dispersion Device for Large	Deposition of Plutonium 239 Pu02 Aerosols	000091
#In Pulmonary Exposure*	Particle Inhalation Studies*	000353
#Alpha-Active Fallout	Particle Size Analysis of Ambient Aerosol*	000021
#Inhaled Radioactive	Particles - Physical Characteristics Related to	000419
Distribution of Absorbed Dose from Alpha-Active Aerosol	Particles and Gases*	000438
#Characterization of Radioactive	Particles and Gases, Statement on the Problem*	000071
#Removal of Inhaled Radioactive	Particles by Tissue Depth*	000306
#Phagocytosis of Plutonium 239 Pu02	Particles in a Plutonium Processing Plant Exhaust System	000124
#The Hazard of Dispersed Plutonium	Particles*	000357
Retention, Translocation and Excretion of Radioactive	Particles*	000418
#Intraperitoneally Injected Plutonium 239 Pu02	Particles*	000261
#Injected Plutonium 239 Pu02 and Plutonium 238 Pu02	Particles*	000479
#Phagocytes Exposed in Vivo to Plutonium 239 Pu02	Particles* and Translocation of Intraperitoneally	000340
#Distribution and Redistribution of Airborne	Particularly with Reference to Strontium 90*	000214
#Electron Diffraction Study of Plutonium Oxide	Particulates from the Schooner Cratering Event*	000398
#Plutonium in Airborne	Particulates in Dog Lymph Tissue*	000455
#Plutonium in Airborne	Particulates, November 1965-March 1966*	000456
Plutonium 239 Pu02*	Particulates, October-December 1971*	000423
#Gastrointestinal	Passage Time and Absorption of Plutonium 238 Pu02 and	000333
#Ratio Uranium 234/Uranium 238 in Natural Waters Having	Passed through Different Types of Rocks* Study of the	000428
#Advances*	Pathogenesis of Radionuclide Induced Tumors*	000412
#Lung*	Pathological Anatomy of Plutonium 239 Sickness*	000502
#Liver*	Patients Involved in Radiation Accidents, Recent	000414
Sickness in Dogs Injected Intravenously with the	Patterns and the Toxicity of Transuranium Elements in	000113
#Radioactivity at the National Nuclear Research Center,	Patterns and Toxicity of Plutonium and Americium in	000112
#of the Rat with Inhalation Poisoning*#Using Na3Ca DTPA	Peculiarities in the Course and Outcome of Radiation	000501
#Some Ecological Attributes and Plutonium Contents of	Pelindaba*	000365
#Excretion of Plutonium Into the	Pentacide to Eliminate Plutonium 239 from the Organism	000379
#Plutonium 239 and the Stimulated	Perennial Vegetation in Area (Nevada Applied Ecology	000098
the Blood System in Dogs to Heavy Blood Loss in Remote	Perfused Rat Intestine*	000347
#Of Changes of the Morphological Composition of the	Periodontal Ligament Cells*	000326
#Plutonium 239 Pu02 Particles*. #The Ultrastructure of	Periods Following Chronic Irradiation* #Reaction of	000374
#and Drinking Water Based on Human Experimental #Maximum	Peripheral Blood in Rats, Following Inhalation of	000339
#in Mice and Dogs and their Bearing on Maximal	Peritoneal Mononuclear Phagocytes Exposed in Vivo to	000217
#On the Experimental Substantiation of the Maximum	Permissible Amounts of Natural Uranium in the Body, Air	000038
#Distribution of Americium 241 in Plant #Effect of Soil	Permissible Burden of Strontium 90 in Man* Osteosarcoma	000150
#Particles*#The Ultrastructure of Peritoneal Mononuclear	Permissible Content of Plutonium 239 in the Human	000192
#Injected plutonium 239 Pu02 and Plutonium 238 Pu02	pH and Chelating Agent (DTPA) on Uptake by and	000332
#Algae ASCOPHYLLUM NODOSUM*	Phagocytes Exposed in Vivo to Plutonium 239 Pu02	000217
#Safety Program for Project Rulison Re-entry Portion of	Phagocytosis and Translocation of Intraperitoneally	000214
#Plutonium Injury*	Phagocytosis of Plutonium 239 Pu02 Particles*	000418
#Activity of Tissue	Phase of Assimilation of Plutonium 239 by the Marine	000363
#and Nutrient Movement Following Nitrogen and	Phase 3* #Offsite Radiological	000254
#and Fractionated Doses of Plutonium 239, Americium 241,	Phosphatases in Rats Suffering from Subacute or Chronic	000498
#The Radiochemistry of	Phosphorus Additions to a Deciduous Forest Stand*	000263
#in Certain Plutonium Contaminated Areas Using Aerial	Phosphorus 32, and X Pays on the Production of	000048
#Cyanide on Cell Respiration and Plutonium 239	Phosphorus*	000168
#Desert Biology, Special Topics on the	Photography* #Analysis of Vegetation Cover	000010
#Radioisotopes in the Human Body:	Photosynthesis and the Mechanism of the Action of	000364
#Alpha-Active Fallout Particles -	Physical and Biological Aspects of Arid Regions*	000227
#of Osteosarcomogenic Activity of Radionuclides on their	Physical and Biological Aspects*	000477
#Medical Aspects of Radiation Accidents, A Handbook for	Physical Characteristics Related to Pulmonary Exposure*	000419
#Radiation Accidents, A Handbook for Physicians, Health	Physical Properties and Physiological State of the	000047
#the Blood Upon Its Intravenous Administration*	Physicians, Health Physicists and Industrial Hygienists*	000466
#The of plutonium 238 in the Rat*	Physicians and Industrial Hygienists* Medical Aspects of	000466
#Studies on Plutonium Metabolism as Affected by Its	Physico-Chemical State of Plutonium (Plutonium 239) in	000492
#of Radionuclides on their Physical Properties and	Physicochemical Form as a Determinant of the Toxicity	000190
#210 by the Brown Alga ASCOPHYLLUM NODOSUM and Marine	Physiological State and Route of Administration*	000101
#Under #Behavior of Plutonium 239 and the Histological	Physiological State of the Animal* Activity	000047
#Clinical	Phytoplankton* of Plutonium 239 and Polonium	000310
#Skin Contamination by Radioisotopes, (5)	Picture of Injury of the Skeleton and Liver of Rats	000191
#of Uranium Fission Products in Dogs, Rabbits, Guinea	Pig Skin Contamination by Plutonium 239*	000292
#The Behavior of Plutonium (Pu 239) in Young	Pigs and Rats* Distribution of Aged Unseparated Solution	000350
#Rock Recovered from the Monique Event, Algeria, and the	Piledriver Event, Nevada Test Site Effects in Granitic	000151
#California 252	Pilot Studies in Beagles	000245
#Polonium, Plutonium and Radium in Rats*	Pilot Studies on the Intravenous Lethal Dosage of	000155
#Bone Sarcoma Induction in the St. Bernard, A	Pilot Study in Dogs of High Natural Incidence*	000388
#Final Report of Off-Site Surveillance for the	Pin Stripe Event, April 25, 1966*	000075
#Plant Roots*	Pinocytosis and Membrane Dilatation in Uranyl-Treated	000337
#Blood Constituents in	Pinocytosis in Root Cap Cells Exposed to Uranyl Salts*	000336
#Plutonium in the	Pitman-Moore, Palouse and Hormel Swine*	000405
#and plutonium*	Placenta*	000062
#of Radioactive Particles in a Plutonium Processing	Placental Transmission of Radioactive Alkaline Earths	000508
#Including Estimates of Releases to the Environment from	Plant Exhaust System* #Characterization	000124
#DTPA) on Uptake by and Distribution of Americium 241 in	Plant Operations* Plant, January through December 1972,	000153
#Concentration of Products*	Plant Parts of Bush Beans* Soil pH and Chelating Agent	000332
#Pinocytosis and Membrane Dilatation in Uranyl-Treated	Plant Radiation Exposure Levels vs Plutonium Isotopic	000390
#Activities and Programs at the Savannah River	Plant Roots*	000337
#Annual Environmental Monitoring Report, Rocky Flats	Plant, January through December 1972, Including	000153

Uranium Liquid	#Uranium Concentration of Fishes and	Plants Associated with the Discharges of the Low Level	000130
Cratering Detonation*	#Increased Uptake of Americium 241 by	Plants Caused by the Chelating Agent DTPA*	000108
with Radioactive Effluents from Operating Nuclear Power	#Concentration of Radionuclides by	Plants Grown on Ejecta from the Sedan Thermonuclear	000255
Intravenous	#The Biology of Desert	Plants*	000232
the Rat*	#Alamogordo	#Environmental Experience	000378
in Beagle Dogs*	#The Physico-Chemical State of	Plowshare and the Environment*	000416
Husans as Found from Autopsy Samples*	#Chemical Forms of	Plowshare Open File*	000226
Interlaboratory Meeting, May 9, 1973*	#The Behavior of	Plus Twenty-Five Years*	000478
*	#A Study of Translocation Dynamics of	Plutonium (Plutonium 239) in the Blood Upon Its	000492
#Deposition Patterns and Toxicity of	#Distribution of	Plutonium (Pu 239) in the Liver and Spleen of	000493
#Gamma-Ray Spectral Analysis*	#Gamma-Ray Spectral Analysis*	Plutonium and Americium from Simulated Puncture Wounds	000245
#Airborne Release of	#Distribution of	Plutonium and Americium in Liver*	000090
#Prevention of	#Fractionation	Plutonium and Americium in Occupationally Exposed	000112
Studies on the Intravenous Lethal Dosage of Polonium,	#In Vivo Measurement of	Plutonium and Americium Measurement in Humans by X and	000135
#Effect of Age on the Absorption of	#Effect of Fasting on Removal of	Plutonium and Environmental Radicals in Man,	000247
#Comparative Cytological Study of the Effect of Inhaled	#Effect of Fasting on Removal of	Plutonium and Its Compounds During Overheating Incidents	000123
#Tissue Distribution of Monomeric and Polymeric	#Fractionation	Plutonium and Neptunium Deposition*	000221
Samples*	#In Vivo and In Vitro Chelation of	Plutonium and Other Very Low Energy Emitters*	000207
#Absorption, Distribution, and Excretion of	#Rescal of	Plutonium and Radium in Rats*	000155
#Interpretation of Human Urinary Excretion of	#Rescal of	Plutonium and Ruthenium*	000037
#Decorporation of Monomeric	#Routine Determination of	Plutonium and Silica on the Behavior of the Alveolar	000184
#The Removal of Americium and	#Routine Determination of	Plutonium as Modified by a Chelating Agent*	000182
*	#Transfer of	Plutonium at Rocky Flats*	000411
#The Transmission of Radiosfrontium and	#Transfer of	Plutonium by Alpha-Lipoic Acid and DTPA*	000464
Computer Program for the Estimation of Body Content of	#Transfer of	Plutonium by DTPA*	000216
#Comparison of Monomeric and Polymeric	#Transfer of	Plutonium by Pulmonary Lavage*	000200
on the Effect of Some Substances* on the Behavior of	#Transfer of	Plutonium by Tracer Techniques in Large Biological	000185
1966*	#Studies on the Distribution of	Plutonium for Cases Treated with DTPA*	000084
1971*	#Distribution of Environmental	Plutonium from the Dog by Glucan and/or DTPA*	000148
	#Chelatability of	Plutonium from the Rat by Chelating Agents*	000366
	#Distribution of Ingested	Plutonium from Milk into Cheese*	000109
Ecology Group Progress Report as of	#The Dynamics of	Plutonium from Mother to Offspring in Laboratory Animals	000433
Administration*	#Distribution and Excretion of	Plutonium from Rats*	000222
Hematologic Effects of Internally Deposited Radium and	#Distribution and Excretion of	Plutonium from Urine Data*	000311
#Radiochemical Determination of	#Distribution and Excretion of	#SEBEACH, A Digital	000100
of Bone Upon the Relative Toxicities of Radium and	#Distribution and Excretion of	Plutonium in the Developing Animal*	000189
#Microdistribution of	#Distribution and Excretion of	Plutonium in the Dog and Mouse*	000077
#Dose-Effect Studies with Inhaled	#Distribution and Excretion of	Plutonium in the Immature Rat Liver*	000308
#Metabolism of	#Distribution and Excretion of	Plutonium in the Organism*	000062
Injection into Rats*	#Age-Related Effects of	Plutonium in the Placenta*	000284
	#Distribution of	Plutonium in the Rat*	000266
	#Effects of	Plutonium in the Trinity Site Ecosystems After 27 Years*	000423
	#Statistical Analysis of	Plutonium in Airborne Particulates, November 1965-March	000074
#Distribution and Characterization of	#Effects of	Plutonium in Airborne Particulates, October-December	000186
#Late Effects of Intradermally Administered	#Effects of	Plutonium in Blood*	000001
Residues Using Ion-Exchange*	#The Determination of	Plutonium in Chickens and Subsequent Transport to Eggs*	000518
Bone Marrow of the Rabbit*	#Effect of	Plutonium in Desert Environments, Nevada Applied	000442
#Absorption and Decontamination of	#Effect of	Plutonium in Dogs at Long Intervals Following	000066
of Beagles. 1. The Relation of the Distribution of	#Effect of	Plutonium in Dogs*	00028
#The Determination of	#Effect of	Plutonium in Environmental Samples*	000049
#Transmission of	#Effect of	Plutonium in Environmental Water Samples*	000519
	#Clinical Picture Following	Plutonium in Man and Dog & The Effect of the Remodeling	000248
Excretion*	#Determination of	Plutonium in Mice, An Autoradiographic Study*	000228
#Gastrointestinal Absorption and Retention of	#Determination of	Plutonium in Rabbit and Rat Liver*	000186
the Great	#Estimates of $f_{sub 1}$ for	Plutonium in Rats and Dogs*	000172
	#Grazing Studies on Selected	Plutonium in Rats*	000396
	#Ecological Studies of Vertebrates in	Plutonium in Serum Proteins Following Intravenous	000343
	#Analysis of Vegetation Cover in Certain	Plutonium in Skin and Its Removal*	000007
	#Direct Measurement of Pulmonary	Plutonium in Soil at the Nevada Test Site--Some Results*	000005
Nevada Applied Ecology	#Some Ecological Attributes and	Plutonium in Soils from Nevada Test Site*	000204
The Relation of the Distribution of	#The Toxicity of	Plutonium in Swine*	000172
#Long-Term Effects of DTPA Treatment of	#The Toxicity of	Plutonium in Urine: Separation from Baked Urine	000301
	#The Effect of Lymph Node Removal on	Plutonium on Nucleic Acid Metabolism in the Liver and	000497
	#Life Span of Mice Following Inhalation of	Plutonium on Rats*	000040
		Plutonium to the Sequence of Histopathologic Bone	000278
		Plutonium to Americium Ratios in Biological Specimens*	000239
		Plutonium to Offspring*	000522
		Plutonium Absorption, Evaluation and Treatment*	000313
		Plutonium Administration*	000292
		Plutonium Bearing Weapon Simulant*, Plutonium Uptake	000393
		Plutonium Body Burdens from Measurements of Daily Urine	000195
		Plutonium Chelates*	000083
		Plutonium Compounds*	000076
		Plutonium Concentration Along Freshwater Food Chains of	000282
		Plutonium Contaminated Areas in Nevada*	000013
		Plutonium Contaminated Areas of the Nevada Test Site*	000015
		Plutonium Contaminated Areas Using Aerial Photography*	000010
		Plutonium Contamination Incident of June 13, 1972*	000406
		Plutonium Contamination*	000489
		Plutonium Content in Protein Fractions of Bone*	000008
		Plutonium Contents of Perennial Vegetation in Area (000278
		Plutonium Deposited in Skeletal Tissues of Beagles. 1.	000145
		Plutonium Deposition in Rats*	000103
		Plutonium Deposition Kinetics in the Rat*	000105
		Plutonium Dioxide Translocation*	000209
		Plutonium Dioxide*	

5. Radiation Syndrome in Beagles After Inhalation of	Plutonium Dioxide*	Plutonium Inhalation Studies.	000509
Ecological Aspects of	Plutonium Dissemination in Aquatic Environments	000106	
Ecological Aspects of	Plutonium Dissemination in Terrestrial Environments	000107	
Histautoradiography Data on	Plutonium Distribution in the Bones of Rat and Rabbit	000521	
Data and Experience to Predict Air Concentrations of	Plutonium Distribution in Rabbits*	000517	
Development of	Plutonium Due to Resuspension on the Fnewetak Atoll	000023	
DTPA Enhanced	Plutonium Dust Monitor Using a Solid State Detector	000129	
Zirconium Citrate and Edathamil Calcium-Diiodine*	Plutonium Excretion via the Bile*	000362	
*Experience on Scrap Recovery and Waste Disposal in the	Plutonium Excretion, Study Following Treatment with	000032	
Burden of the Deep Lung and Systemic Organs*	Plutonium Fuel Development Laboratory*	000032	
Beagles After Inhalation of Plutonium Dioxide*	Plutonium Inhalation Model Simulates the Long-Term	000509	
and Protein Metabolism in Bone Tissues of Rats in	Plutonium Inhalation Studies. 5. Radiation Syndrome in	000271	
Regeneration of Nucleic Acids in Rat Liver Following	Plutonium Injury*	000271	
Phosphates in Rats Suffering from Subacute or Chronic	Plutonium Injury*	000496	
Excretion of	Plutonium Injury	000498	
Ion Exchange Resins and Complexons on Distribution of	Plutonium Into the Perfused Rat Intestine*	000347	
Predicted 2 Plant Radiation Exposure Levels vs	Plutonium Introduced into the Gastrointestinal Tract	000505	
Global Atmospheric Plutonium 239 and	Plutonium Isotopic Concentration of Products	000390	
State and Route Whole-Body Autoradiographic Studies on	Plutonium Isotopic Ratios for 1959-1970*	000191	
Simulation of Retention and Translocation of Inhaled	Plutonium Lung Burden by Urine Analysis*	000346	
*Taurine Excretion Following	Plutonium Metabolism as Affected by Its PhysicoChemical	000101	
Electron Diffraction Study of	Plutonium Oxide in Beagle Dogs	000372	
Pulmonary Lavage: Therapy of Pulmonary Contamination by	Plutonium Oxide Inhalation*	000440	
The Hazard of Dispersed	Plutonium Oxide Particulates in Dog Lymph Tissue	000455	
Characterization of Radioactive Particles in a	Plutonium Oxide	000213	
Plutonium, Polonium-	Plutonium Oxide	000265	
Diagnosis of	Plutonium Particles	000261	
Effect of Some Complexons on	Plutonium Processing Plant Exhaust System	000124	
Simulated Abomasal and Intestinal Fluids*	Plutonium Ratios*	000294	
General Statistical Considerations in Environmental	Plutonium Reentrained in Air	000303	
and Dose Estimation Model*#Nevada Applied Ecology Group	Plutonium Removal in Rats*	000506	
Applied Ecology Group Plutonium Study Modeling Program:	Plutonium Resuspension from Soil: Not Measurable*	000304	
The Metabolism of Tissues of	Plutonium Studies at the Nevada Test Site	000359	
Detonator of a Operation Teller Coaster, Project 4.1,	Plutonium Studies Using the Artificial Human and	000012	
A New Procedure for	Plutonium Studies	000006	
Exposures to High-Fired Oxides*	Plutonium Study Modeling Program: Plutonium Transport	000027	
A Twenty-Seven Year Study of Selected Los Alamos	Plutonium Survey, 1964	000121	
of Selected Cases*	Plutonium Transport and Dose Estimation Model: Nevada	000027	
Manhattan Project	Plutonium Treated Rats	000290	
Treatment and Evaluation of Internal Deposition from a	Plutonium Uptake by Animals Exposed to a Non-Nuclear	000393	
Dose Related Local and Systemic Effects of Inhaled	Plutonium Urinalysis	000053	
Removal of Cerium 144, Americium 241, Curium 242 and	Plutonium Urine Excretion Following Acute Inhalation	000140	
Carcinogenicity of Inhaled	Plutonium Workers, a Twenty-Seven Year Follow-Up Study	000403	
Form as a Determinant of the Toxicity of	Plutonium Wound*	000147	
Comparative Toxicity of Inhaled	Plutonium 238 and Plutonium 239 Dioxide in Dogs	000334	
Gastrointestinal Passage Time and Absorption of	Plutonium 238 from the Rat Skeleton	000301	
of Intraperitoneally Injected Plutonium 239 Pu2 and	Plutonium 238 in the Rat*	000190	
Comparative Toxicity of Plutonium 239 and	Plutonium 238 from the Rat	000355	
Biliary Excretion of Injected	Plutonium 238 Pu02 and Plutonium 239 Pu02	000337	
Comparative Study of the Behavior of Neptunium 237,	Plutonium 238 Pu02 Particles* and Translocation	000216	
the Skeleton and Liver of Rats Under	Plutonium 238*	000376	
*Behavior of	Plutonium 238, Plutonium 239, Americium 241 and Curium	000141	
Skeleton of Dogs to Intravenous	Plutonium 239 and the Histological Picture of Injury of	000093	
Cells*	Plutonium 239 and the Histopathology of the Liver and	000191	
Liquid Scintillation Spectrometry*	Plutonium 239 and the Stimulated Periodontal Ligament*	000243	
Ecology Group Vegetation Samples	Plutonium 239 and Americium 241 in Animal Tissues by	000326	
Determination of Alpha Activity by Variable Exposure to	Plutonium 239 and Americium 241 in Large Nevada Applied	000165	
The Respirable Fraction of Strontium 90,	Plutonium 239 and Americium 241 in Mouse Liver	000099	
Rats Intratracheally	Plutonium 239 and Lead in Surface Air*	000114	
*Content and Microdistribution of	Plutonium 239 and Morphological Changes in the Lungs of	000512	
Distribution and Retention of	Plutonium 239 and Neptunium 237 in the Rat Adrenal	000459	
1970*	Plutonium 239 and Plutonium Isotopic Ratios for 1959-	000296	
Global Atmospheric	Plutonium 239 and Plutonium 239	000091	
ASCOPHYLLUM NODOSUM* #Mechanism of the Accumulation of	Plutonium 239 and Polonium 210 by the Brown Alga	000376	
Active Phase of Assimilation of	Plutonium 239 by the Marine Alga ASCOPHYLLUM NODOSUM	000310	
Inhalation	Plutonium 239 from the Organism of the Rat with	000379	
*Using Na2Ca DTPA (Pentacin) to Eliminate	Plutonium 239 in the Body of Rats After Stopping	000193	
Chronic Inhalation*	Plutonium 239 in the Human Organism and in the Air of	000182	
Behavior of a Citrate Complex of	Plutonium 239 in the House, Estimated by Use of Iron 59	000104	
Substantiation of the Maximal Permissible Content of	Plutonium 239 in the Rat*	000394	
Decosition and Distribution of Americium and Polonium	Plutonium 239 in the Skeleton and Liver of Rats and	000241	
*The Carcinogenic Effects of Americium 241 and	Plutonium 239 in the Uina of the Beagle Compared with	000318	
Kinetics of Its Elimination Depending on Retention in the Humerus and the Third	Plutonium 239 in Beagles*	000402	
Retention and Distribution of Polymeric and Monomeric	Plutonium 239 in Bone*	000117	
Distribution and Toxicity of	Plutonium 239 in Dogs	000261	
of In Vivo Counting to Determine Retention of Inhaled	Plutonium 239 on the Rat Organism*	000273	
Combined Influence of Strontium 90, Cerium 144, and	Plutonium 239 on Rat Body	000499	
*Burders of Radium 226, Radium 228, Thorium 228,	Plutonium 239 or Strontium 90 in Beagle with Retained	000528	
of the Action of Cyanide on Cell Respiration and	Plutonium 239 Accumulation by Marine Algae* Mechanism	000764	
Biological Effect of	Plutonium 239 Administered by Inhalation	000385	
Jee-Millor Detailed Neutron-Induced Autoradiography of	Plutonium 239 Bonos	000315	
Remote Aftereffects of Inhalation of Soluble	Plutonium 239 Compound	000187	
of Rats After Inhalation of Large Doses of Soluble	Plutonium 239 Compound*	000242	
on the Remote Aftereffects of Inhalation of Soluble	Plutonium 239 Compounds*	000387	
Local and Systemic Effects of Inhaled Plutonium 238 and	Changes in the Lungs	000287	
Retention, Translocation and Excretion of Inhaled	Plutonium 239 Dioxide in Dogs	000334	
	Plutonium 239 Dioxide*	000184	

Immature Beagles*	#Measurement of Hematologic Changes Following Removal of Inhaled and Translocation of Intraperitoneally Injected Chronic Effects of Inhaled	Plutonium 239 In Vivo*	000044
	Carcinogenic Effect of Function of Respiration and Concentration, Concentration and Size Distribution of Acute Toxicity of Inhaled Crushed of DTPA and Calcium on Intraperitoneally Injected of Aqueous Suspensions of Ruthenium 106 Ru02 and Removal of Inhaled of Mesotheliomas and Sarcomas from "Hot Spots" of	Plutonium 239 Injection in Adult St. Bernards and Plutonium 239 Pu02 in Beagles	000322
	of DTPA and Calcium on Intraperitoneally Injected of Aqueous Suspensions of Ruthenium 106 Ru02 and Removal of Inhaled of Mesotheliomas and Sarcomas from "Hot Spots" of	Plutonium 239 Pu02 and Asbestos in the Lung*	000352
	Antibody Formation in Rats and Beagles After Phagocytosis of Peritoneal Mononuclear Phagocytes Exposed in Vivo to Translocation of Subcutaneously Administered Plutonium-Americium Ratios in Dogs After Inhalation of Plutonium-Americium Ratios in Dogs After Inhalation of Passage Time and Absorption of Plutonium 238 Pu02 and	Plutonium 239 Pu02 and Plutonium 238 Pu02 Particles*	000215
	Pathological Anatomy of Changes in the Blood Systems of Rabbit Effected by Comparative Toxicity of Strontium 90, Radium 226, and Dynamic Changes of Bone Tissue in Rabbits Poisoned with Life Shortening Consequent to Internal Irradiation from Processes in the Bone Tissue of Animals Damaged by of Urethane-Induced Pulmonary Adenomas by Inhaled Changes in Rabbit and Dog Liver Induced by Neutron-Induced Autoradiography of Bone Containing the Blood System in Rats Under Inhalation Affection by by Radioisotopes, (5) Pig Skin Contamination by in Separate and Combined Infection with Cerium 144 and the Peripheral Blood in Rats, Following Inhalation of in Dogs Injected Intravenously with the Nitrate of Administration#The Physico-Chemical State of Plutonium Livers #Comparison of the Intracellular Distribution of Study of the Behavior of Neptunium 237, Plutonium 238, Comparison of Single and Fractionated Doses of of the Retention and Distribution of Radium 226, #Studies of the Biological Effects of Radium 226, 90 to #The Comparative Toxicity of Radium 226, Accelerated Elimination	Plutonium 239 Pu02 in Rats*	000061
	Attempts to Remove Inhaled #Retention, Translocation, and Excretion of Inhaled #Further Studies on the Gastrointestinal Absorption of #Gross and Histopathology of Animals Treated with #Distribution of Injected #Acute Toxicity of Intubated #Summary of Requests for Information Desired Concerning #Retention of Inhaled #Collagen Reactivity with Therapeutic Removal of Inhaled #The Role of Soil Microorganisms in the Movement of #Distribution and Excretion of #Translocation of Subcutaneously Deposited #Metabolism and Toxicity of #Intercellular Binding of Neptunium and #Biological Studies with Polonium, Radium and of Body Content Following Inhalation of Insoluble #Transmission of Radioactive Alkaline Earths and of Vertebral Trabecular Bone in Beagles Injected with #The Measurement and Management of Insoluble Plutonium 239 Pu02 Plutonium 239 Pu02*	Plutonium 239 Pu02 in Beagles*	000355
	#Soil Surveys of Five #Mechanism of Development of Mineral and Protein Metabolism in Bone Tissue of Studies on the Intravenous Lethal Dosage of Polonium, #Report of Conference on #Radium- #Toxicologic Properties of Sodium #Dynamic Changes of Bone Tissue in Rabbits #Antidote Therapy of Uranium and Polonium 239 from the Organism of the Rat with Inhalation #Antidote Therapy of Uranium and Polonium #Mechanisms of the Accumulation of Plutonium 239 and of Trace Levels of Uranium, Thorium 230, Lead 210, and #Radium-Plutonium, #Pilot Studies on the Intravenous Lethal Dosage of Studies on the Intravenous Lethal Dosage of #Biological Studies with	Plutonium 239 Pu02 with Chrysotile Asbestos or Plutonium 239 Pu02 Aerosols Generated for Animal Plutonium 239 Pu02 Microspheres in Beagles* Plutonium 239 Pu02 Particles*	000086
		Plutonium 239 Pu02 with Chrysotile Asbestos or Plutonium 239 Pu02 Aerosols Generated for Animal Plutonium 239 Pu02 Microspheres in Beagles* Plutonium 239 Pu02 Particles*	000091
		Plutonium 239 Pu02*	000367
		*Effect Preparation	000340
		Plutonium 239 Pu02*	000465
		Plutonium 239 Pu02 Activity*	000079
		Plutonium 239 Pu02 Inhalation on Lung Tissue*	000527
		Plutonium 239 Pu02 Inhalation*	000392
		Plutonium 239 Pu02 Particles*	000418
		Plutonium 239 Pu02 Particles*	000217
		Plutonium 239 Pu02*	000203
		Plutonium 239 Pu02*	000348
		Plutonium 239 Pu02*	000483
		Plutonium 239 Sickness*	000332
		Plutonium 239*	000502
		Plutonium 239*	000487
		Plutonium 239*	000500
		Plutonium 239*	000198
		Plutonium 239*	000504
		Plutonium 239*	000089
		Plutonium 239*	000309
		Plutonium 239*	00161
		Plutonium 239*	000503
		Plutonium 239*	000080
		Plutonium 239*	000382
		Plutonium 239*	000371
		Plutonium 239*	000240
		Plutonium 239*	000339
		Plutonium 239*	000501
		Plutonium 239*	000492
		Plutonium 239*	000493
		Plutonium 239, Americium 241 and Californium 249 in	000218
		Plutonium 239, Americium 241 and Curium 242 in Bone*	000093
		Plutonium 239, Americium 241, Phosphorus 32, and X Rays	000048
		Plutonium 239, Radium 226 (Mesothorium I), Thorium 228 (000351
		Plutonium 239, Radium 228 (Mesothorium I), Thorium 228 (000262
		Plutonium 239, Thorium 228, Radium 228, and Strontium	000257
		Plutonium 239: Its Distribution, Biological Effect and	000516
		Plutonium 239: Problems of Its Biological Effect*	000102
		Plutonium*	000515
		Plutonium*	000461
		Plutonium*	000510
		Plutonium*	000291
		Plutonium*	000288
		Plutonium*	000268
		Plutonium*	000287
		Plutonium*	000289
		Plutonium*	000039
		Plutonium*	000060
		Plutonium*	000011
		Plutonium*	000038
		Plutonium*	000206
		Plutonium*	000196
		Plutonium*	000202
		Plutonium*	000432
		Plutonium*	000194
		Plutonium*	000508
		Plutonium*	000277
		Plutonium-Americium Inhalation in Man*	000162
		Plutonium-Americium Ratios in Dogs After Inhalation of	000483
		Plutonium-Americium Ratios in Dogs After Inhalation of	000348
		Plutonium-Contaminated Areas on the Test Range Complex	000008
		Plutonium-Contaminated Wound Studies*	000205
		Plutonium-Induced Pulmonary Sclerosis*	000078
		Plutonium-Injected Rats*	000495
		Plutonium, and Radium in Rats*	000154
		Plutonium, May 14th and 15th*	000286
		Plutonium, Polonium-Plutonium Ratios*	000294
		Plutonium: Discovery, Development, Projections*	000476
		Plutonium Triacetate and Its Distribution in the Rat Body	000519
		Poisoned with Plutonium 239*	000504
		Poisoning* Na3Ca DTPA (Pentacin) to Eliminate Plutonium	000379
		Polonium Poisoning*	000152
		Polonium 210 by the Brown Alga ASCOPHYLLUS NODOSUM and	000310
		Polonium 210 in Soft Tissues*	000407
		Polonium-Plutonium Ratios*	000294
		Polonium, Plutonium and Radium in Rats*	000155
		Polonium, Plutonium, and Radium in Rats* #Simultaneous Polonium, Radium and Plutonium*	000154
		000432	

for Binding and Eliminating Uranium and Its Fission	#Polyaminepolyalkylphosphonic Acids as Effective Ligands	000395
#Skeletal Retention and Distribution of	Polymeric and Monomeric Plutonium 239 in Beagles*	000402
#Tissue Distribution of Monomeric and	Polymeric Plutonium as Modified by a Chelating Agent*	000182
#Comparison of Monomeric and	Polymeric Plutonium in the Dog and Mouse*	000149
#Metabolism and Effect of Monomeric and	Polymeric Plutonium in the Immature Rat Liver*	000077
of Marrow Deposition and Distribution of Monomeric and	Polymeric Plutonium 239 in the Mouse, Estimated by Use	000104
the Pacific Ocean as Estimated from Studies of a Tuna	Population* of Fallout Constituents in Upper Layers of	000370
and	Populations, and Nutrient Movement Following Nitrogen	000456
#Dynamics of Litter Decomposition, Microbiota	Portion of Phase 3* #Offsite Radiological	000283
Safety Program for Project Rulison Re-entry	Power and a Protected Environment*	000258
with Radioactive Effluents from Operating Nuclear	Environmental Experience	000300
The Use of Nevada Test Site Data and Experience to	Predict Air Concentrations of Plutonium Due to	000023
Plutonium Isotopic Concentration of Products*	Predicted Z Plant Radiation Exposure Levels vs	000390
Sulky Event*	Prediction and Surface Radiation Estimates for the	000072
Transuranium Registry Cases*	Preliminary Autopsy Findings in United States	000050
239 in the Human Organism and in the Air of Work	Premises* the Maximum Permissible Content of Plutonium	000192
on the Inhalation of Fissionable Materials and Fission	#Prevention of Plutonium and Neptunium Deposition*	000221
for Binding and Eliminating Uranium and Its Fission	Products and their Subsequent Fate in Rats and Man*	000225
#Behavior of Unseparated Solution of Uranium Fission	Products from the Body* Acids as Effective Ligands	000395
Nuclear Reactors*	Products in the Animal Organism*	000331
#Relative Hazards of Fission	Products in the Environmental Hazards Evaluation of	000354
of Aged Unseparated Solution of Uranium Fission	Products in Dogs, Rabbits, Guinea Pigs and Rats*	000350
of Unseparated Solution of Uranium Fission	Products to Rats by Inhalation* #Administration	000256
Exposure Levels vs Plutonium Isotopic Concentration of	Products* #Predicted Z Plant Radiation	000390
Yttrium 91 and Unseparated Solution of Uranium Fission	Products* The Effect of Various Diets on the Behavior of	000486
#Environmental Activities and	Programs at the Savannah River Plant*	000274
University*	Progress in the Beagle Studies at the University of Utah	000085
#Research in Radiobiology: Annual Report of Work in	Progress in the Beagle Studies at Colorado State	000087
Elements at Battelle-Northwest*	Progress in the Internal Irradiation Program*	000314
Lovelace Foundation*	Progress in Beagle Dog Studies with Transuranium	000086
in Desert Environments, Nevada Applied Ecology Group	Progress in Studies with Transuranium Elements at the	000088
Freshwater Food Chains of the Great #General Summary of	Progress Report as of January 1974* of Plutonium	000001
Up Study of Selected Cases*	Progress, 1972-1973, Plutonium Concentration Along	000282
#Offsite Radiological Safety Program for	Project Plutonium Workers, a Twenty-Seven Year Follow-	000403
Non-Nuclear Detonation of a #Operation Roller Coaster,	Project Rulison Re-entry Portion of Phase 3*	000254
Aspects of Plutonium: Discovery, Development,	Project 4.1, Plutonium Uptake by Animals Exposed to a	000393
#Gamma Radiation Spectra in the Vicinities of	Projections* #Biomedical	000476
#Nuclear Power and a	Projects Shoal and Faultless*	000070
#Environmental and Fallout Gamma Radiation	Protected Environment*	000300
#Plutonium content in	Protection Factors Provided by Civilian Vehicles*	000425
Rats*	Protein Fractions of Bone*	000494
Injury*	Protein Metabolism in Bone Tissue of Plutonium-Injected	000495
#Binding of Americium 241 by Bone	Protein Metabolism in Bone Tissues of Rats in Plutonium*	000271
#Distribution of Plutonium in Serum	Protein*	000319
#The Tumorigenic Action of Beta,	Proteins Following Intravenous Injection into Rats*	000396
and Fallout Gamma Radiation Protection Factors	Proton, Alpha and Electron Radiation on the Rat Skin*	000269
#Uranium in Runoff from the Gulf of Mexico Distributive	Provided by Civilian Vehicles* #Environmental	000425
The Behavior of Plutonium (Province: Anomalous Concentrations*	000468
#Removal of Inhaled Plutonium 239	Pu239) in Young Pigs*	000247
#Radioisotope Toxicity: From	Pulmonary Absorption*	000317
#Inhibition of Urethane-Induced	Pulmonary Adenomas by Inhaled Plutonium 239*	000161
#Pulmonary Lavage: Therapy of	Pulmonary Contamination by Plutonium Oxide*	000265
Pallout Particles - Physical Characteristics Related to	Pulmonary Exposure* #Alpha-Active	000419
Plutonium Oxide*	Pulmonary Lavage*	000200
#Direct Measurement of	Pulmonary Lavage: Therapy of Pulmonary Contamination by	000265
Mechanism of Development of Plutonium-Induced	Pulmonary Plutonium Contamination*	000489
Dynamics of plutonium and Americium from Simulated	Pulmonary Sclerosis*	000078
#Cocarcinogenic Effect of Plutonium 239	Puncture Wounds in Beagle Dogs* Study of Translocation	000090
of Intraperitoneally Injected Plutonium 239	Pu02 and Asbestos in the Lung*	000215
#Comparative Toxicity of Inhaled Plutonium 239	Pu02 and Plutonium 238 Pu02 Particles* and Translocation	000214
Passage Time and Absorption of Plutonium 238	Pu02 and Plutonium 239 Pu02 in Rats*	000355
#Chronic Effects of Inhaled Plutonium 239	Pu02 and Plutonium 239 Pu02* #Gastrointestinal	000333
of Inhaled Plutonium 238 Pu02 and Plutonium 239	Pu02 in Beagles*	000061
Abdominal Cavity* #Cocarcinogenesis of Plutonium 239	Pu02 in Rats* #Comparative Toxicity	000355
Respiration and #Alveolar Deposition of Plutonium 239	Pu02 with Chrysotile Asbestos or Benzpyrene in the Rat	000046
Concentration and Size Distribution of Plutonium 239	Pu02 Aerosols in Beagle Dogs as a Function of	000091
#Acute Toxicity of Inhaled Crushed Plutonium 239	Pu02 Aerosols Generated for Animal Inhalation	000029
and Calcium on Intrapерitoneally Injected Plutonium 239	Pu02 Microspheres in Beagles*	000367
Injected Plutonium 239 Pu02 and Plutonium 238	Pu02 Particles* #Effect of DTPA	000340
Suspensions of Ruthenium 106 Pu02 and Plutonium 239	Pu02 Particles* and Translocation of Intrapерitoneally	000214
#Removal of Inhaled Plutonium 239	Pu02* #Preparation of Aqueous	000041
and Sarcomas from "Hot Spots" of Plutonium 239	Pu02 in Rats*	000465
#Effect of Plutonium 239	Pu02 Activity* #Induction of Mesotheliomas	000079
Formation in Rats and Beagles After Plutonium 239	Pu02 Inhalation on Lung Tissue*	000527
#Phagocytosis of Plutonium 239	Pu02 Inhalation* #Heterophile Antibody	000342
Mononuclear Phagocytes Exposed in Vivo to Plutonium 239	Pu02 Particles*	000418
of Subcutaneously Administered Plutonium 239	Pu02 Particles* #The Ultrastructure of Peritoneal	000217
Ratios in Dogs After Inhalation of Plutonium 239	Pu02* #Translocation	000203
Ratios in Dogs After Inhalation of Plutonium 239	Pu02* #Plutonium-Americium	000348
and Absorption of Plutonium 238 Pu02 and Plutonium 239	Pu02* #Plutonium-Americium	000483
* Beagles Injected with Plutonium*	Pu02* #Gastrointestinal Passage Time	000333
Joint Nuclear Research Center, Japan Establishment	Quantitative Applications of the Nuclear Track Technique	000211
December #Health and Safety Laboratory, Fallon Program	Quantitative Morphology of Vertebral Trabecular Bone in	000277
March 1, 1973*	Quarterly Report* #Furatom	000481
	Quarterly Summary Report (September 1, 1972 through	000452
	Quarterly Summary Report, December 1, 1973 through	000487
	Febbit and Dog Liver Induced by Plutonium 239*	000503

#Microdistribution of Plutonium in Data on plutonium Distribution in the Bones of Rat and Acid Metabolism in the Liver and Bone Marrow of the	Rabbit and Rat Liver* Rabbit* Effect by Plutonium 239* Rabbit* #Histoautoradiography	000520 000500
#Dynamic Changes of Bone Tissue in Solution of Uranium Fission Products in Dogs. Tumorigenic Action of Beta, Proton, Alpha and Electron Aerosols*	Rabbits Poisoned with Plutonium 239* Rabbits* Rabbits, Guinea Pigs and Rats* of Aged Unseparated	000497 000504
Physicists and Industrial Hygienists#Medical Aspects of Fractionated doses of Plutonium 239, #Effect of IEP on from Two Nuclear Detonations*	Pedication on the Rat Skin* Radiation Accidents, A Handbook for Physicians, Health	000517 000269
Osteosarcoma in Mice and Dogs and their Bearing on Tumors in the Dog and Skin Tumors in the Rat*	Radiation Accidents, Recent Advances* Radiation Carcinogenesis: Comparison of Single and Radiation Damage to Vegetation from Close-In Fallout	000466 000419
#Human Concentration of Products* #Predicted Z Plant #The Origin of Urinary Taurine Excretion During Chronic	Radiation Dose-Time Relations for Induction of Radiation Dose-Time Relations for Induction of Bone	000448 000373
Vehicles* #Environmental and Fallout Gamma the Nitrate Peculiarities in the Course and Outcome of and Faultless* #Gamma Plutonium Dioxide* #Plutonium Inhalation Studies, 5. #What We Do Know About Low-Level	Radiation Effects, An Overview* Radiation Estimates for the Sulky Event* Radiation Exposure Levels vs Plutonium Isotopic	000356 000307
#Effects of External Beta of Uranium Miners After a Higher Exposure to Ionizing	Radiation Levels and Concentration, First Half 1970* Radiation Protection Factors Provided by Civilian	000384 000425
#Population Exposure to Low and Very Low Dose Influences of Ionizing	Radiation Sickness in Dogs Injected Intravenously with Radiation Spectra in the Vicinities of Projects Shoal	000501 000070
#Radiation Absorbed Dose in the Lungs from #Selective Placental Transmission of	Radiation Syndrome in Beagles After Inhalation of	000509 000051
#Change in Metabolism at Remote Times After Exposure to Uranium Mine* #Studies on Airborne Sediments* #Natural Plants*	Radiation* Radiation* of Immunoglobulin Levels in Blood-Serum	000430 000411
#Environmental Experience with in Processes of Migration and Distribution of Natural	Radiation, Isotopes, and Bone* Radiations: Natural and Man Made*	000488 000370
#in Lung and Lymph Nodes Following Inhalation of of Theoretical Equations to Describe the Flow of a	Radiations on Cells and Organisms, Including Man: A	000469
#Applications of a Derived Formula for the Discharge of Treatment* to Animals and Man*	Radioactive Aerosols* Radioactive Alkaline Earths and Plutonium*	000307 000508
#Transfer of #Regulations for the Safe Transport of	Radioactive Americium* Radioactive Contamination of Miners in a Yugoslav	000338 000033
Problem* #Symposium of Inhaled Exhaust System*	Radioactive Decay Series Elements in the Oceans and Radioactive Effluents from Operating Nuclear Power	000473 000378
#Characterization of #Removal of Inhaled	Radioactive Elements in the Reservoir* Vegetation	000417
Affecting Retention, Translocation and Excretion of	#Radioactive Fallout from Bomb Clouds* Radioactive Insoluble Aerosols* #Evaluation of Activity	000281 000525
#Ultimate Storage of #Environmental	Radioactive Ion in Groundwater, Annual Report, December	000284
Pelindaba* #Environmental Installations. 1. Argonne #Environmental Levels of	#Radioactive Liquid Wastes* Radioactive Material in the Body: Detection and	000421 000526
Internal Irradiation Program* #Rapid Methods for Measuring	Radioactive Materials from the Terrestrial Environment	000446
Environmental Air Samples* #Research in	Radioactive Materials* Radioactive Particles and Gases*	000297 000438
Environmental Water Samples*	#Characterization of #Removal of Inhaled	000071
#The	Radioactive Particles in Plutonium Processing Plant	000124
Literature* #Clinical Experiences in Removal of Irradiation*	Radioactive Particles* Radioactive Particles* #Factors	000357 000479
Bone-Seeking Radionuclides*	#Radioactive Waste Treatment and Decontamination* Radioactive Wastes in Terrestrial Environments*	000275
Biological Aspects*	Radioactivity and Body Burden* Radioactivity at the National Nuclear Research Center,	000426
#Late Effects of Internally Deposited Strontium 90*	Radioactivity at Atomic Energy Commission	000365
#Effect of Internally Deposited Irradiation of the Intestine by	Radioactivity in the Environment* Radiobiology: Annual Report of Work in Progress in the	000422 000065
239* #Skin Contamination by Report, Ecology, January-December 1972*	#Research in Radiochemical Analysis and Data Reduction of	000314
#Report of the	#Improvements in Radiochemical Determination of Plutonium in	000073
Contamination of the Body by Radionuclides* Mining and Ore Treatment, A Bibliography*	#The	000028
Processing of Uranium*	Radiochemistry of Cobalt* Radiochemistry of Germanium*	000177 000181
#Environmental and	#The #The #The #The #The #The #The #The #The	000167
entry Portion of Phase 3*	Radiochemistry of Niobium and Tantalum* Radiochemistry of Osmium*	000179 000178
#Report of the	#The #The #The #The #The #The #The #The #The	000176
Nimbus-B/SNAP-19 Launch, May 18, 1968, Off-Site	Radiochemistry of Palladium* Radiochemistry of Phosphorus*	000168 000166
	#The #The #The #The #The #The #The #The #The	000188
	Radiochemistry of Radium* Radiochemistry of Silver*	000189
	#The #The #The #The #The #The #The #The #The	000180
	Radiochemistry of Technetium* Radiochemistry of Tungsten*	000059
	#The #The #The #The #The #The #The #The #The	000059
	Radioecology, A Selected Bibliography of Non-Russian	000457
	Radioelements from the Body*	000344
	#Radiogenic Effects in Man of Long-Term Skeletal Alpha	000210
	#Radiographic Changes in Internally Irradiated Dogs*	000324
	#Radioisotope Toxicity: From Pulmonary Absorption*	000524
	#Radioisotopes in the Human Body: Physical and	000397
	#Radioisotopes in Laboratory Animals*	000477
	#Radioisotopes in Soils: Particularly with Reference to	000523
	#Radioisotopes Upon Blood Vessels of Cortical Bones*	000398
	#Radioisotopes*	000360
	#Radiological and Environmental Research Division Annual	000379
	#Radiological Clean-up of Bikini Atoll*	000463
	#Radiological Hazards Associated with Internal	000266
	#Radiological Health and Safety Aspects of Uranium	000163
	#Radiological Safety Aspects of the Mining and	000143
	#Radiological Safety Program for Project Halison Re-	000254
	#Radiological Surveillance*	000058

Emergency Conditions*	#Rapid Methods for Specific	#Radiology Reports*	000434
of the Diet of Cattle Grazing the Area 18 Range of the	#Field Spectrometric Measurements of	#Radiolytic Effects on Chelatability of Plutonium Oxide*	000213
Rates at the	#Pathogenesis of	#Radionuclide Analysis and their Application to Aquatic	000067
	#Chemical Carcinogens and	#Radionuclide Carcinogenesis*	000045
	#Use of Swine in	#Radionuclide Concentrations and Botanical Composition	000058
		#Radionuclide Concentrations and External Gamma Exposure	000138
		#Radionuclide Induced Tumors*	000412
		#Radionuclide Metabolism*	000329
		#Radionuclide Toxicity Studies*	000380
Thermonuclear Cratering Detonation*	#Concentration of	#Radionuclide Uptake by Some Freshwater Hydrobionts*	000272
	#Bone-Seeking	#Radionuclides at Sedan Crater*	000383
	#Dependence of Osteosarcomagenic Activity of	#Radionuclides by Plants Grown on Ejecta from the Sedan	000255
	#Transfer of Some	#Radionuclides in Miniature Swine*	000197
	#Long-Lived	#Radionuclides on their Physical Properties and	000047
	#Bone-Seeking	#Radionuclides to Milk*	000199
	#Safe Handling of	#Radionuclides Produced at Bikini and Eniwetok Atolls. 1.	000250
of the Metabolism of Inhaled and Ingested Insoluble		#Radionuclides*	000280
Changes Following the Administration of Bone-Seeking		#Radionuclides*	000298
Associated with Internal Contamination of the Body by		#Radionuclides*	000345
in Laboratory Animals*	#The Transmission of	#Radionuclides*	000524
	Plutonium 239, Radium 228 (Mesothorium I), Thorium 228	#Radiological Hazards	000264
Plutonium 239, Radium 228 (Mesothorium I), Thorium 228	#Radiotritium and Plutonium from Mother to Offspring	000033	
of Hematologic Effects of Internally Deposited	#Radiothorium and Strontium 90 in Adult Beagles*	000351	
the Remodeling of Bone Upon the Relative Toxicities of	#Radiothorium, and Strontium 90* Effects of Radium 226,	000262	
#Biological Studies with Polonium,	Radium and Plutonium in Dogs*	#Comparison	000442
Intravenous Lethal Dosage of Polonium, Plutonium and	Radium and Plutonium in Man and Dog*	#The Effect of	000049
Intravenous Lethal Dosage of Polonium, Plutonium, and	Radium and Plutonium*	Radium in Rats*	000432
	#A Review of	#Pilot Studies on the	000155
	#Comparative Toxicity of Strontium 90,	#Simultaneous Studies on the	000154
Thorium 228 #Studies of the Retention and Distribution of	Radium 226, and Plutonium 239*	Radium Toxicity Studies*	000169
Strontium 90 to Leukocytes #The Comparative Toxicity of	Radium 226, Plutonium 239, Radium 228 (Mesothorium I)	Radium 226, and Plutonium 239*	000198
Incidence Observed in Beagles with Retained Burdens of	Radium 226, Plutonium 239, Radium 228 (Mesothorium I),	Radium 226, Plutonium 239, Radium 228 (Mesothorium I)	000351
and Distribution of Radium 226, Plutonium 239,	Radium 226, Plutonium 239, Thorium 228, Radium 228, and	Radium 226, Plutonium 239, Radium 228 (Mesothorium I)	000262
of the Biological Effects of Radium 226, Plutonium 239,	Radium 226, Radium 228, Thorium 228, Plutonium 239 or	Radium 226, Plutonium 239, Thorium 228 (Radiothorium)	000257
Toxicity of Radium 226, Plutonium 239, Thorium 228,	Radium 228 (Mesothorium I), Thorium 228 (Radiothorium),	Radium 226, and Strontium 90 to Leukocytes of Beagles*	000351
in Beagles with Retained Burdens of Radium 226,	Radium 228, Thorium 228, Plutonium 239 or Strontium 90*	Radium 226, Thorium 228, Plutonium 239 or Strontium 90*	000262
#The Radiochemistry of	Radium*	Radium*	000166
	#Studies on the Occupational Hazards from Inhaled	#Plutonium, Polonium-Plutonium Ratios*	000298
from Baked Urine Residues Using Ion-Exchange*	#Radon Daughters in Workers of Non-Uranium Mines and	Rat Daughters in Workers of Non-Uranium Mines and	000513
Environment*	#Rapid Determination of Plutonium in Urine: Separation	Rat Daughters in Workers of Non-Uranium Mines and	000301
their Application to Aquatic Emergency Conditions*	#Rapid Methods for Measuring Radioactivity in the	Rat Daughters in Workers of Non-Uranium Mines and	000065
	#Rapid Methods for Specific Radionuclide Analysis and	Rat Daughters in Workers of Non-Uranium Mines and	000067
	Rat and Rabbit*	Rat and Rabbit*	000521
	#Histoautoradiography	#Histoautoradiography	000366
	Rat by Chelating Agents*	Rat by Chelating Agents*	000379
	Rat with Inhalation Poisoning*	Na3Ca DTPA (Pentacin)	000446
	Rat Abdominal Cavity*	#Carcinogenesis of Plutonium	000296
	Rat Adrenal*	#Distribution	000499
	Rat Body*	#Toxicologic Properties of	000519
	Rat Intestine*	Rat Intestine*	000347
	Rat Kidney*	#Microscopic and	000054
	Rat Liver Following Plutonium Injury*	Rat Liver Following Plutonium Injury*	000496
	Rat Liver*	Rat Liver*	000520
	Rat Liver*	#Metabolism and Effect	000077
	Rat Organism*	#Co.Bined Influence	000273
	Rat Skeleton*	#Experimental Removal of Cerium 144,	000381
	Rat Skin*	#The Tumorigenic Action	000269
	Rat*	Rat*	000284
	Rat*	Rat*	000103
	Rat*	Rat*	000219
	Rat*	Rat*	000175
	Rat*	#The Carcinogenic	000394
	Rat*	#Physicochemical Form as	000190
	Rat*	Chemical Forms of Plutonium	000493
	Rat*	#Radiation Dose-Time Relations for Induction	000373
	Rates at the Nevada Test Site, A Demonstration Study*	Rates at the Nevada Test Site, A Demonstration Study*	000138
	Ratios for 1959-1970*	Ratios for 1959-1970*	000491
	Ratios in Biological Specimens*	Ratios in Biological Specimens*	000239
	Ratios in Dogs After Inhalation of Plutonium 239 Pu02*	Ratios in Dogs After Inhalation of Plutonium 239 Pu02*	000483
	Ratios in Dogs After Inhalation of Plutonium 239 Pu02*	Ratios in Dogs After Inhalation of Plutonium 239 Pu02*	000348
	Ratios*	Ratios*	000294
	Rats and the Effect of Complexing Substances on Its	Rats and the Effect of Complexing Substances on Its	000445
	Rats and Beagles After Plutonium 239 Pu02 Inhalation*	Rats and Beagles After Plutonium 239 Pu02 Inhalation*	000342
	Rats and Dogs*	Rats and Dogs*	000248
	Rats and Kinetics of Its Elimination Depending on the	Rats and Kinetics of Its Elimination Depending on the	000241
	Rats and Man on the Inhalation of Fissionable Materials	Rats and Man on the Inhalation of Fissionable Materials	000225
	Rats at the Nevada Test Site*	Rats at the Nevada Test Site*	000259
	Rats by Inhalation*	Rats by Inhalation*	000256
	Rats in Plutonium Injury*	Rats in Plutonium Injury*	000271
	Rats After Inhalation of Large Doses of Soluble	Rats After Inhalation of Large Doses of Soluble	000242
	Rats After Inhalation of Uranium Ore Dust*	Rats After Inhalation of Uranium Ore Dust*	000356
	Rats After Stopping Chronic Inhalation*	Rats After Stopping Chronic Inhalation*	000193
	Rats Intratracheally Administered This Isotope*	Rats Intratracheally Administered This Isotope*	000459
	Rats Suffering from Subacute or Chronic Plutonium Injury	Rats Suffering from Subacute or Chronic Plutonium Injury	000498
	Rats Under a Single Administration of Ammonium	Rats Under a Single Administration of Ammonium	000330
	Rats Under Inhalation Affection by Plutonium 239*	Rats Under Inhalation Affection by Plutonium 239*	000382

Picture of Injury of the Skeleton and Liver of	Rats Under Single and Chronic Intake of the Isotope*	000-1
#Remote Aftereffects of Killing	Rats Using Ammonium Diuranate*	000240
#The Metabolism of Tissues of Plutonium Treated	Rats*	000290
#Age-Related Effects of Plutonium in	Rats*	000186
#Metabolism of Plutonium in	Rats*	000224
#Removal of Internally Deposited Plutonium from	Rats*	000222
#Effect of Some Complexons on Plutonium Removal in	Rats*	000506
#Removal of Inhaled Plutonium 239 PuO ₂ in	Rats*	000465
#The Metabolism of Americium in Lactating	Rats*	000116
#Absorption and Decontamination of Plutonium on	Rats*	000440C
Americium 241 on the Histopathology of the Ovaries of	Rats*	000164
Effects of DTPA Treatment of Plutonium Deposition in	Rats*	000145
Protein Metabolism in Bone Tissue of Plutonium-Injected	Rats*	000495
of Age and Sex on the Metabolism of Americium by	Rats*	000444
of Inhaled Plutonium 238 PuO ₂ and Plutonium 239 PuO ₂ in	Rats*	000355
in Serum Proteins Following Intravenous Injection into	Rats*	000396
Lethal Dosage of Polonium, Plutonium and Radium in	Rats*	000155
Fission Products in Dogs, Rabbits, Guinea Pigs and	Rats*	000350
Lethal Dosage of Polonium, Plutonium, and Radium in	Rats*	000154
32, and X Rays on the Production of Osteosarcomas in	Rats*	000048
Morphological Composition of the Peripheral Blood in	Rats*	000334
and Americium Measurement in Humans by X and Gamma-	Rats*	000135
of Plutonium 239, Americium 241, Phosphorus 32, and X	Rats*	000048
Offsite Radiological Safety Program for Project Rulison	Rats*	000254
Loss in Remote Periods Following Chronic Irradiation*	Rats*	000374
#Collagen	Rats*	000039
in the Environmental Hazards Evaluation of Nuclear	Rats*	000354
#Histopathological Endpoints in Compact Bones	Rats*	000285
#Comparison of Shock Effects in Granitic Rock	Rats*	000151
Event*	#Distribution and	000409
Schooner Cratering Event*	#Distribution and	000208
	#Wind Effect	000258
	#Diagnosis of Plutonium	000073
Plutonium Injury*	#Content and	000003
	#Topics on the Physical and Biological Aspects of Arid	000303
	Autopsy Findings in United States Transuranium	000496
	#Temperature	000227
	#Temperature	000050
Materials*	#Temperature	000234
Concentration, Concentration and Size Distribution of	#Relationships Between Nebulizer Suspension	000235
Overheating Incidents*	#Release of Plutonium and Its Compounds During	00029
	January through December 1972, Including Estimates of	000123
Radium and Plutonium in Man and Dog*	#The Effect of the	000153
239 Compound*	#Remote Aftereffects of Inhalation of Soluble Plutonium	000049
239 Compounds*	#Remote Aftereffects of Inhalation of Soluble Plutonium	000187
	#Remote Aftereffects of Killing Rats Using Americium	000387
Diuranate*	#Remote Periods Following Chronic Irradiation*	000246
	#Reaction	000374
of the Blood System in Dogs to Heavy Blood Loss in	#Remote Times After Exposure to Radioactive Americium*	000338
	#Change in Metabolism at	000515
	#Attempts to	00035
	#Experimental Acute	000377
Nitrate. A Consideration of the Type of Epithelial	#Renal Failure Induced by Granular Nitrate in the Dog	000035
Cells Morphologically Altered through Processes of	#Repair Which Imparts to the Liver Resistance Against	000035
Evaluation of the Effects of Transuranic Elements on	Repair. 1. The Liver Injury Induced by Uranium Nitrate.	000117
	#Reproductive Ability*	000233
#Biology of Desert Amphibians and	#An Experimental	000287
	#Reptiles*	000404
	Requests for Information Desired Concerning Plutonium*	000318
Progress in the Internal Irradiation Program*	Research and Development Program*	000267
Solutions*	Research in Radiobiology: Annual Report of Work in	000327
	Research on the Treatment of Contaminations by Actinide	000336
	Research Annual Report for 1962*	00036
	Research Annual Report, 1956*	000481
	Research Center, Japan Establishment Quarterly Report*	000365
	Research Center, Japan Establishment Quarterly Report*	000365
	Research Center, Pelindaba*	000365
	Research Division Annual Report, Ecology, January-	000140
	Research Division Semiannual Report, July through	000400
	Research Establishment, Lucas Heights*	000335
	Reservoir* Vegetation in Processes of Migration	000417
	Residence Time, and Inventory of Tritium in Sedan	000064
	Residues Using Ion-Exchanges*	000301
	#Rapid Determination	000505
	Resins and Complexons on Distribution of Plutonium	000035
	Resistance of Fixed Tissue Cells Morphologically	000035
	Resistance Against Subsequent Uranium Intoxications-the	000035
	Resolution Neutron-Induced Autoradiography of Bone	000080
	Respirable Fraction of Strontium 90, Plutonium 239 and	000512
	Respiration and Aerosol Parameters*	000091
	of Plutonium	000368
	Respiration and Plutonium 239 Accumulation by Marine	000325
	Responses to Internal Irradiation in the Beagle*	000304
	Resuspension from Soil: How Measurable*	000023
	Resuspension on the Enewetak Atoll: Data and Experience	000022
	Resuspension Element Status Report*	000017
	Resuspension Element Status Report: The Use of Nevada	000023
Test Site Data and Experience to Predict	Retained Burdens of Radium 226, Radium 228, Thorium	000523
#Non-Skeletal Tumor Incidence Observed in Beagles with	Retention and Distribution of Curium in Soft Tissues	000375
and Blood of the Beagle*	Retention and Distribution of Polymeric and Monomeric	000402
Plutonium 239 in Beagles*	Retention and Distribution of Badium 226, Plutonium	000351
239, Badium 228 (Mesothorium 2) Thorium: Studies of the	Retention and Translocation of Inhaled Plutonium Oxide	000372
in Beagle Dogs*	Retention by Beagles Injected with Californium 249 or	000094
Californium 252*		

Plutonium 239 in the Ulna of the Beagle Compared with the Distribution and the Distribution and the Pacific Ocean as Estimated from Studies of a Tuna, #Use of In Vivo Counting to Determine	Retention in the Humerus and the Third Lumbar Vertebra* Retention of California 249 in Beagle Soft Tissue* Retention of California 249 in Beagle Soft Tissue* Retention of Fallout Constituents in Upper Layers of Retention of Inhaled Plutonium 239 in Dogs* Retention of Inhaled Plutonium* Retention of Plutonium Chelates* Retention of Plutonium 239 and Neptunium 237 in the Rat Retention of Plutonium 239 in the Ulna of the Beagle Retention, and Distribution Studies in Beagles* Retention, Translocation and Excretion of Inhaled Retention, Translocation and Excretion of Radioactive Retention, Translocation, and Excretion of Inhaled Review of Radium Toxicity Studies* Rhythms of the Isotope* Skeleton and Liver of Rats and Richland, Washington* Environmental Effects of River (Colorado-New Mexico)* Effects of River Plant* Rock Recovered from the Monique Event, Algeria, and the Rocket Development Station, at the U.S. Atomic Energy Rocks* Study of the Ratio Uranium 234/Uranium 238 in Rocky Flats Plant, January through December 1972, Rocky Flats* Roller Coaster (Joint US/UK Field Experiments)* Final Roller Coaster, Project 4.1, Plutonium Uptake by Root Cap Cells Exposed to Uranyl Salts* Roots* Spinocytosis Rose Bengal Dye Blood Clearance as a Liver Function Roughness Effects for Fallout-Contaminated Terrain: Route of Administration* Studies on Plutonium Rulison Reentry Portion of Phase 3* Rusen and Simulated Abomasal and Intestinal Fluids* Runoff from the Gulf of Mexico Distributive Province; RuO ₂ and Plutonium 239 PuO ₂ * Russian Literature* Ruthenium 106 RuO ₂ and Plutonium 239 PuO ₂ * Ruthenium* Safe Handling of Radionuclides* Safe Transport of Radioactive Materials* Safety Aspects of the Mining and Processing of Uranium* Safety Aspects of Uranium Mining and Ore Treatment, A Safety Laboratory, Fallout Program Quarterly Summary Safety Program for Project Rulison Re-entry Portion of Salivation and Creep Sampler* Salts* Sampler* Sampler* Sampling as Part of an Integrated Program of Monitoring Sampling Program, 80th Meridian Network, January- Sampling* Sand in Animal Tissues, Part 2* Sandia Laboratories from 1964 through 1972* Sarcoma Induction in the St. Bernard, A Pilot Study in Sarcomas from "Hot Spots" of Plutonium 239 PuO ₂ Activity Savannah River Plant* Schooner Cratering Event* Distribution Schooner Event* Distribution Science and Technology* Scientific Laboratory, New Mexico* Transuranium Scintillation Spectrometry* Determination of Plutonium Sclerosis* Scrap Recovery and Waste Disposal in the Plutonium Sea* Seawater and Uranium Content with Uranium 234/Uranium SEBEACH, A Digital Computer Program for the Estimation Sedan Crater Ejecta* Distribution, Sedan Crater* Sedan Thermonuclear Cratering Detonation* Concentration Sedimentary Rocks* Sediments* Sediments* Seeking Radionuclides in Miniature Swine* Natural Seeking Radionuclides* Radiographic Seismic Source and Transmission Functions from Selected Bibliography of Non-Russian Literature* Selected Cases* Manhattan Project Plutonium Selected Census Information Around the Nevada Test Site* Selected Los Alamos Plutonium Workers* Selected Plutonium Contaminated Areas in Nevada* Selective Placental Transmission of Radioactive Selective Tissue Accumulation of Uranium and Thorium in Semianual Report, July through December 1962* Separate and Combined Infection with Cerium 144 and Separation from Baked Urine Residues Using Ion-Exchange* Separation of Uranium and Thorium After Inhalation of Separation through Anion Exchange* Determination Separation through Anion Exchange* Determination September 1, 1972 through December 1, 1972* and Safety	000318 000095 000401 000456 000361 000289 000083 000295 000318 000174 000148 000479 000461 000169 000241 000479 000137 000274 000151 000302 000386 000428 000153 000411 000220 000393 000336 000337 000320 000507 000101 000254 000012 000468 000041 000457 000041 000037 000298 000297 000143 000163 000452 000254 000020 000336 000019 000020 000133 000120 000453 000399 000043 000388 000079 000274 000208 000409 000042 000471 000165 000078 000128 000312 000424 000311 000064 000383 000255 000386 000253 000473 000197 000280 000524 000437 000457 000403 000305 000452 000013 000508 000356 000400 000240 000301 000349 000341 000452
Adrenals #Gastrointestinal Absorption and Compared with Retention in the Humerus and the Third Scutum Excretion, Plutonium 239 Dioxide Particles* Plutonium* Kinetics of Its Elimination Depending on the Dose and Statement, Contaminated Soil Removal Facility, Uranium Mill Wastes on Biological Fauna of the Animals #Environmental Activities and Programs at the Savannah Piledriver #Comparison of Shock Effects in Granitic Commission's Nevada Test Water Supply for the Nuclear Natural Waters Having Passed through Different Types of Including #Annual Environmental Monitoring Report, #Tracking Plutonium at Evaluation of the Biological Measurements on Operation Animals Exposed to a Non-Nuclear Detonation #Operation and Membrane Dilation in Uranyl-Treated Plant Test in Sheep #Iodine 131 Labeled Comparison of Measurements and Calculations* #Ground Metabolism as Affected by Its Physicochemical State and #Offsite Radiological Safety Program for Project #In Vitro Plutonium Studies Using the Artificial Anomalous Concentrations* #Preparation of Aqueous Suspensions of Ruthenium 106 #Marine Radioscience, A Selected Bibliography of Non- #Preparation of Aqueous Suspensions of #Effect of Age on the Absorption of Plutonium and #Regulations for the #Environmental and Radiological Bibliography* #Radiological Health and Report (September 1, 1972 through December #Health and Phase 3* #Offsite Radiological #Pinocytosis in Root Cap Cells Exposed to Uranyl #Ultra High Volume Air #Salivation and Creep of the Worker and His Environment* #Surface Air December 1969* #Soil #Analysis of Indian Monozite #Environmental Monitoring Report for Dogs of High Natural Incidence* #Bone #Induction of Mesotheliomas and #Environmental Activities and Programs at the and Redistribution of Airborne Particulates from the and Redistribution of Airborne Debris from the #Bibliographies in Nuclear Solid Waste Development Facility, Los Alamos 239 and Americium 241 in Animal Tissues by Liquid Mechanism of Development of Plutonium-Induced Pulmonary Fuels Development Laboratory* #Experience on #Uranium in Organism of Animals from the Adriatic of Spectrophotometric Determination of Uranium in of Body Content of Plutonium from Urine Data* #Residence Time, and Inventory of Tritium in #Leaching of Radionuclides at of Radionuclides by Plants Grown on Ejecta from the #Iodine and Uranium in #Uranium Concentrations in Marine Radioactive Decay Series Elements in the Oceans and #Bone- Changes Following the Administration of Bone- Underground Nuclear Explosions with Known Yields at #Marine Radioscience, A Workers, a Twenty-Seven Year Follow-Up Study of #A Twenty-Seven Year Study of #Grazing Studies on Alkaline Earths and Plutonium* #Bats After Inhalation of Uranium Ore Dust* #Biological and Medical Research Division Plutonium 239* #On the Role of the Time Factor in #Rapid Determination of Plutonium in Urine: Uranium Ore by Beagles* #In Vivo of Uranium in Urine Specimens Following their Laboratory, Fallout Program Quarterly Summary Report (September 1, 1972 through December 1, 1972* and Safety	000318 000095 000401 000456 000361 000289 000083 000295 000318 000174 000148 000479 000461 000169 000241 000479 000137 000274 000151 000302 000386 000428 000153 000411 000220 000393 000336 000337 000320 000507 000101 000254 000012 000468 000041 000457 000041 000037 000298 000297 000143 000163 000452 000254 000020 000336 000019 000020 000133 000120 000453 000399 000043 000388 000079 000274 000208 000409 000042 000471 000165 000078 000128 000312 000424 000311 000064 000383 000255 000386 000253 000473 000197 000280 000524 000437 000457 000403 000305 000452 000013 000508 000356 000400 000240 000301 000349 000341 000452	

#Soils Element Activities, October, 1972-	September, 1973*	000002
1. The Relation of the Distribution of Plutonium to the #Natural Radioactive Decay	Sequence of Histopathologic Bone Changes* of Beagles. 000278	
#Investigation of Immunoglobulin Levels in Blood	Series Elements in the Oceans and Sediments* 000473	
#Distribution of Plutonium in	Serum of Uranium Miners After a Higher Exposure to 000511	
#Nevada Applied Ecology Group Library	Serum Proteins Following Intravenous Injection into Rats 000396	
#The Influence of Age and	Services at AEC Nevada Operations Office* 000026	
#Liver Damage from Neptunium 237 in	Sex on the Metabolism of Americium by Rats* 00044	
Neptunium 237 and Its Relationship to Liver Function in	Sheep* 000368	
Bengal Dye Blood Clearance as a Liver Function Test in	Sheep* "Acute Toxicity of 000321	
#Gamma Radiation Spectra in the Vicinities of Projects	Sheep* Iodine 131 Labeled Rose 000320	
Monique Event, Algeria, and the	Shoal and Faultless* 000070	
Plutonium 239*	Shock Effects in Granitic Rock Recovered from the 000151	
#Life	Shortening Consequent to Internal Irradiation from 000089	
#Peculiarities in the Course and Outcome of Radiation	Sickness in Dogs Injected Intravenously with the 0000501	
#Pathological Anatomy of Plutonium 239	Sickness* 000502	
#Study of the Effect of Inhaled Plutonium and	Silica on the Behavior of the Alveolar Macrophages* 000184	
#The Radiochemistry of	Silver* 000188	
a Non-Nuclear Detonation of a Plutonium Bearing Weapon	Simulant* 4.1, Plutonium Uptake by Animals Exposed to 000393	
Vitro Plutonium Studies Using the Artificial Rumen and	Simulated Abomasal and Intestinal Fluids* "In 000012	
Translocation Dynamics of Plutonium and Americium from	Simulated Puncture Wounds in Beagle Dogs* #A Study of 000090	
Systemic Organs* #Plutonium Inhalation Model	Simulates the Long-Term Burdens of the Deep Lung and 000032	
Plutonium Oxide in Beagle Dogs* #Dynamic	Simulation of Retention and Translocation of Inhaled 0000372	
of Polonium, Plutonium, and Radium in Rats* #	Simultaneous Studies on the Intravenous Lethal Dosage 000154	
#Injury of the Skeleton and Liver of Rats Under	Single and Chronic Intake of the Isotope* Picture 000191	
#LET on Radiation Carcinogenesis: Comparison of	Single and Fractionated Doses of Plutonium 239* 000048	
#Distribution of Uranium in the Body of Rats Under a	Single Administration of Ammonium Diuranate to the 000230	
#and Inventory Element Activities on Nevada Test	Site and Off Nevada Test Site* #Distribution 000024	
#Element Status Report: The Use of Nevada Test	Site Data and Experience to Predict Air Concentrations 000023	
#Distribution of Environmental Plutonium in the Trinity	Site Ecosystems After 27 Years* 000266	
#Nimbus-B/SNAP-19 Launch, May 18, 1968, Off-	Site Radiological Surveillance* 000068	
1966* #Final Report of Off-	Site Surveillance for the Pin Stripe Event, April 25, 000075	
#Mites on Kangaroo Rats at the Nevada Test	Site* 000259	
#Ticks of the Nevada Test	Site* 000260	
#Selected Census Information Around the Nevada Test	Site* 000305	
#Plutonium Studies at the Nevada Test	Site* 000359	
a Nuclear Detonation on Arthropods at the Nevada Test	Site* #Effects of 000136	
Characterization of Plutonium in Soils from Nevada Test	Site* #Distribution and 000005	
#in Plutonium Contaminated Areas of the Nevada Test	Site* #Ecological Studies of Vertebrates 000015	
#Activities On Nevada Test Site and Off Nevada Test	Site* #Distribution and Inventory Element 000024	
Event, Algeria, and the Piledriver Event, Nevada Test	Site* in Granitic Rock Recovered from the Monique 000151	
Nuclear Explosions with Known Yields at Nevada Test	Site* Source and Transmission Functions from Underground 000037	
#at the U.S. Atomic Energy Commission's Nevada Test	Site* Supply for the Nuclear Rocket Development Station, 000302	
#Analysis of Plutonium in Soil at the Nevada Test	Site--Some Results* #Statistical 000007	
#and External Gamma Exposure Rates at the Nevada Test	Site, A Demonstration Study#Radionuclide Concentrations 000138	
#Offsite Surveillance Around the Nevada Test	Site, January-June 1968* 000391	
#Offsite Surveillance Around the Nevada Test	Site, July-December 1966* 000392	
#Cleanup Summary Report, Tatum Dome Test	Site, Mississippi* 000462	
#of Cattle Grazing the Area 18 Range of the Nevada Test	Site, 1966-1970* and Botanical Composition of the Diet 000058	
#In	Situ Optical Particle Size Analysis of Ambient Aerosol* 000021	
#Radiogenic Effects in Man of Long-Term	Skeletal Alpha Irradiation* 000210	
Monomeric Plutonium 239 in Beagles*	Skeletal Retention and Distribution of Polymeric and 000402	
Distribution of #The Toxicity of Plutonium Deposited in	Skeletal Tissues of Beagles. 7. The Relation of the 000278	
Retained Burdens of Radium 226, Radium 228, #Non-	Skeletal Tumor Incidence Observed in Beagles with 000528	
Elimination #Distribution of Plutonium 239 in the	Skeleton and Liver of Rats and Kinetics of Its 000261	
#239 and the Histological Picture of Injury of the	Skeleton and Liver of Rats Under Single and Chronic 000191	
#of plutonium 239 and the Histopathology of the Liver and	Skeleton of Dogs to Intravenous Administration of the 000243	
#241, Cerium 242 and Plutonium 238 from the Rat	Skeleton* #Experimental Removal of Cerium 134, Americium 000361	
#Effects of Plutonium in	Skin and Its Removal* 000343	
#Skin Contamination by Radicisotopes, (5) Pig	Skin Contamination by Plutonium 239* 000371	
Contamination by Plutonium 239* #	Skin Contamination by Radicisotopes, (5) Pig Skin 000371	
#Relations for Induction of Bone Tumors in the Dog and	Skin Tumors in the Rat* #Radiation Dose-Time 000373	
#Beta, Proton, Alpha and Electron Radiation on the Rat	SNAP-19 Launch, May 18, 1968, Off-Site Radiological 000269	
Surveillance*	Sodium Plutonyl Triacetate and Its Distribution in the 000068	
Rat Body*	Soft Tissue* #The 0000519	
#Toxicologic Properties of	Soft Tissue* #The 000401	
Distribution and Retention of California 249 in Beagle	Soft Tissues and Blood of the Beagle* 000095	
Distribution and Retention of California 249 in Beagle	Soft Tissues of Beagles* #Microscopic Distribution 000375	
#Early Retention and Distribution of Curium in	Soft Tissues* #The Determination of Trace Levels 000098	
#of California 249 and Berkelium 249 in the	Soil at the Nevada Test Site--Some Results* 000407	
#of Uranium, Thorium 230, Lead 210, and Polonium 210 in	Soil pH and Chelating Agent (DTPA) on Uptake by and 000007	
#Statistical Analysis of Plutonium in	Soil Microorganisms in the Movement of Plutonium* 000332	
Distribution of Americium 241 in Plant Parts #Effect of	Soil Removal Facility, Richland, Washington* 000011	
#The Role of	Soil Sampling* 000050	
#Environmental Statement, Contaminated	Soil Surveys of Five Plutonium-Contaminated Areas on 000004	
the Test Range Complex in Nevada*	Soil, Urine, and Water* #The 000160	
Determination of Total Uranium on Fallout Trays and in	Soil: Not Measurable* 000304	
#Plutonium Resuspension from	Soils and Waste Management Studies* 000475	
#Applied	Soils from Nevada Test Site* 000005	
#Distribution and Characterization of Plutonium in	Soil Element Activities, October, 1972-September, 1973* 000002	
#Radioisotopes in	Soils: Particularly with Reference to Strontium 90* 000398	
#Development of Plutonium Dust Monitor Using a	Solid State Detector* 000129	
#Low Level Alpha Counting System with Six	Solid State Detectors* 000131	
#Draft Environmental Statement, Transuranium	Solid Waste Development Facility, Los Alamos Scientific 000187	
#Remote Aftereffects of Inhalation of	Soluble Plutonium 239 Compounds* #Effect of 000387	
Some Drugs on the Remote Aftereffects of Inhalation of	Soluble Plutonium 239 Compounds* #Morphological Changes 000242	
#in the Lungs of Rats After Inhalation of Large Doses of	Solution of Uranium Fission Products in the Animal 000331	
Organisms*	Solution of Uranium Fission Products in Dogs, Rabbits, 000350	
#Behavior of Inseparable	Guinea #Comparative Distribution of Aged Unseparated	

Inhalation*	#Administration of Unseparated	Solution of Uranium Fission Products to Rats by	000256
Diets on the Behavior of	Ittrium 91 and Unseparated	solution of Uranium Fission Products* Effect of Various	000486
Research on the Treatment of Contaminations by Actinide		Solutions*	000267
Nuclear Explosions with Known Yields at Nevada	#Skeletal	Experimental	000437
#Life		Source and Transmission Functions from Underground	000209
Exchanges*	#Determination of Uranium in Urine	Span of Mice Following Inhalation of Plutonium Dioxide*	000341
of Plutonium to Americium Ratios in Biological	#Gamma Radiation	Specimens Following their Separation through Anion	000239
Faultless*	and Americium Measurement in Humans by X and Gamma-Ray	Spectra in the Vicinities of Projects Shoal and	000070
Concentrations and External Gamma Exposure Rates* #Field		Spectral Analysis*	000135
Americium 241 in Animal Tissues by Liquid Scintillation	#Determination of Plutonium 239 and	#Plutonium	000135
and Uranium Content with Uranium 238/ #A New Method of	Spectrometric Measurements of Radionuclides	000138	
Forms of Plutonium (Plutonium 239) in the Liver and	Spectroscopy*	#Determination of Plutonium 239 and	000165
#Induction of Mesotheliomas and Sarcomas from "Hot	Spectrophotometric Determination of Uranium in Seawater	000424	
Incidence"	#Chemical	Spleen of the Rat*	000493
Bone Sarcoma Induction in the	Spots of Plutonium 239 Pu02 Activity*	000079	
Changes Following Plutonium 239 Injection in Adult	St. Bernard, A Pilot Study in Dogs of High Natural	000388	
Arizona*	Chemical	St. Bernards and Immature Beagles*	000322
Nitrogen and Phosphorus Additions to a Deciduous Forest	Stabilization of the Uranium Tailings at Tuba City,	000408	
Symposium of Inhaled Radioactive Particles and Gases,	Stand Populations, and Nutrient Movement Following	000283	
Richland, Washington*	Statement on the Problem*	000071	
*Environmental	Statement, Contaminated Soil Removal Facility,	000470	
Facility, Los Alamos Scientific	Statement, Transuranium Solid Waste Development	000471	
*Draft Environmental	Statement, at the U.S. Atomic Energy Commission's Nevada	000302	
Test Site* Water Supply for the Nuclear Rocket Development	Statistical Analysis of Plutonium in Soil at the Nevada	000007	
Test Site--Some Results*	Statistical Considerations in Environmental Plutonium	000006	
Studies*	Status Report*	000022	
*Results and Data Analysis: Resuspension Element	Status Report: The Use of Nevada Test Site Data and	000017	
#Resuspension Element	Stimulated Periodontal Ligament Cells*	000326	
Experience to Predict #Appendix A, Resuspension Element	Stomach* of Uranium in the Body of Rats Under	000330	
#Plutonium 239 and the	Stopping Chronic Inhalation* Behavior of a Citrate	000193	
*Single Administration of Ammonium Diuranate to the	Storage of Radioactive Wastes in Terrestrial	000275	
Complex of Plutonium 239 in the Body of Rats After	Stripes Event, April 25, 1966*	000075	
Environments*	Strontium 90 in Adult Beagles* Plutonium 239, Radium	000351	
Final Report of Off-Site Surveillance for the Pin	Strontium 90 in Man of Osteosarcoma in Mice and	00150	
228 (Mesothorium I), Thorium 228 (Radiothorium) and	Strontium 90 to Leukocytes of Beagles* Toxicity of	000257	
Dogs and their Bearing on Maximal Permissible Burden of	Strontium 90* in Beagles with Retained Burdens of	000398	
Radium 226, Plutonium 239, Thorium 228, Radium 228, and	Strontium 90* of Radium 226, Plutonium 239, Radium	000528	
*Radioisotopes in Soils: Particularly with Reference to	Strontium 90, Cerium 144, and Plutonium 239 on the Rat	000262	
Radium 226, Radium 228, Thorium 228, Plutonium 239 or	Strontium 90, Plutonium 239 and Lead in Surface Air*	000273	
228 (Mesothorium I), Thorium 228 (Radiothorium), and	Strontium 90, Radium 226, and Plutonium 239*	000512	
Organisms*	sub 1 for Plutonium Compounds*	000198	
Combined Influence of	Subacute or Chronic Plutonium Injury	000076	
The Respirable Fraction of	Subcellular Distribution of Curium in Canine Livers	000316	
Comparative Toxicity of	Subcutaneously Administered Plutonium 239 Pu02	000203	
#Activity of Tissue Phosphatases in Rats Suffering from	Subcutaneously Deposited Plutonium*	000206	
The Early	Substances on the Behavior of Plutonium in the Organism	000208	
#Translocation of	Substances on Its Elimination*	000445	
*Translocation of	Americium	000445	
*Experiments on the Effect of Some	Substantiation of the Maximum Permissible Content of	000192	
241 Distribution in Rats and the Effect of Complexing	Suffering from Subacute or Chronic Plutonium Injury*	000498	
Plutonium 239 in the Human	Sulky Event* #Weather	000072	
*On the Experimental	Summary of Progress, 1972-1973, Plutonium Concentration	000262	
Prediction and Surface Radiation Estimates for the	Summary of Requests for Information Desired Concerning	000287	
Along Freshwater Food Chains of the Great	Summary Report (September 1, 1972 through December 1,	000452	
Plutonium*	Summary Report, December 1, 1973 through March 1, 1973*	000467	
Health and Safety Laboratory, Fallout Program Quarterly	Supply for the Nuclear Rocket Development Station, at	000302	
Fallout Program Quarterly	Support for the Nevada Applied Ecology Group	000025	
the U.S. Atomic Energy Commission's Nevada Test	Support of the Nevada Applied Ecology Group*	000003	
*Information	Surface Air Sampling Program, 90th Meridian Network,	000120	
#RERCO Field Activities and Sample Logistics in	Surface Air* The Respirable	000512	
January-December 1969*	Surface Contamination*	000258	
Fraction of Strontium 90, Plutonium 239 and Lead in	Surface Radiation Estimates for the Sulky Event*	000072	
Wind Effect Redistribution of	Surveillance at Hanford for CY-1970	000480	
#Weather Prediction and	Surveillance at Hanford for CY-1972*	000156	
Environmental	Surveillance for the Pin Stripe Event, April 25, 1966	000075	
*Environmental	Surveillance Around the Nevada Test Site, January-June	000391	
*Final Report of Off-Site	Surveillance Around the Nevada Test Site, July-December	000392	
Offsite	Surveillance Network, July 1971*	000122	
Offsite	#Nimbus- Survey*	000068	
Air	Survey, 1964*	000125	
B/SHAP-19 Launch, May 16, 1968, Off-Site Radiological	Surveys of Five Plutonium-Contaminated Areas on the	000121	
#Environmental	Suspension Concentration, Concentration and Size	000004	
#Plutonium	Suspensions of Ruthenium 106 Pu02 and Plutonium 239 Pu02	000029	
Test Range Complex in Nevada*	Swine in Radionuclide Toxicity Studies*	000380	
#Soil	Swine*	000405	
Distribution of	Swine*	000197	
*Relationships Between Neobulizer	#Symposium of Inhaled Radioactive Particles and Gases,	000204	
*Preparation of Aqueous	Syndrome in Beagles After Inhalation of Plutonium	000071	
Use of	System in Dogs to Heavy Blood Loss in Remote Periods	000509	
*Blood Constituents in Pitman-Moore, Palouse and Hormel	System in Rats Under Inhalation Affection by Plutonium	000374	
Bone-Seeking Radionuclides in Miniature	System of Rabbit Affected by Plutonium 239	000500	
Lato Effects of Intradermally Administered Plutonium in	System with Six Solid State Detectors*	000131	
Statement on the Problem*	System*	000124	
Dioxide* #Plutonium Inhalation Studies, 5. Radiation	#Characterization of Radioactive	000334	
Following Chronic Irradiation*	Systemic Effects of Inhaled Plutonium 238 and Plutonium	000334	
On the State of the Blood	Systemic Organs	000032	
239*	#Plutonium Inhalation Model	000032	
Changes in the Blood	Tables	000317	
*Low Level Alpha Counting			
Particles in a Plutonium Processing Plant Exhaust			
239 Moxide in Dogs*			
Simulates the Long-Term Burdens of the Deep Lung and			
Injection			

#Chemical Stabilization of the Uranium Oxides of Transuranic Elements for Inhalation	Tailings at Tuba City, Arizona*	000408
The Radiochemistry of Nickel and #Cleanup Summary Report, #The Origin of Urinary	Tantalus*	000179
*The Radicchemistry of #Bibliographies in Nuclear Science and *	Tatus Dose Test Site, Mississippi*	000462
Adult Beagles* #Study of the Long- #Plutonium Inhalation Model Simulates the Long- #Long- #Long- #Short	Taurine Excretion During Chronic Radiation Injury*	000439
in Rats* Beagles*	Tauroine Excretion Following Plutonium Oxide Inhalation*	000440
#Radiogenic Effects in Man of Long- #Ground Roughness Effects for Fallout-Contaminated #Transfer of Radioactive Materials from the #Ecological Aspects of Plutonium Dissemination in #Ultimate Storage of Radioactive Wastes in Radioactive Ion in Groundwater, #The Development of Transuranium Elements*	Technology for the Production of Monodisperse Aerosols	000119
#Pulmonary Lavage: #Antidote	Technology*	000042
Radionuclides by Plants Grown on Ejecta from the Sedan Beagle Compared with Retention in the Humerus and the #Selective Tissue Accumulation of Uranium and Radium 226, Plutonium 239, Radium 228 (Resothorium I) Radium 226, Plutonium 239, Radium 228 (Resothorium II), with Retained Burdens of Radium 226, Radium 228, #The comparative Toxicity of Radium 226, Plutonium 239, #The Determination of Trace Levels of Uranium, 239 Pu02*	Temperature Regulation and Water Economy of Desert Birds	000234
Cerium 144 and Plutonium 239* and Skin Tumors in the Rat* and Dogs and their Bearing on Maximal #Radiation Dose- #Distribution, Residence #Dynamic Changes of Bone	Temperature Regulation in Desert Mammals*	000235
After Inhalation of Uranium Ore Dust* #Mineral and Protein Metabolism in Bone of Repair. #A Study of the Acquired Resistance of Fixed of Absorbed Dose from Alpha-Active Aerosol Particles by Plutonium as Modified by a Chelating Agent*	Ter Biological Effects of Internal Irradiation in Tissue Burdens of the Deep Lung and Systemic Organs*	000328
of Chronic Plutonium Injury* #Effect of Plutonium 239 Inhalation on Lung #The Multielement Analysis of Human Lung and Retention of Californium 249 in Beagle Soft and Retention of Californium 249 in Beagle Soft Study of plutonium Oxide Particulates in Dog Lymph	Ter Effects of DTPA Treatment of Plutonium Deposition	000165
Early Retention and Distribution of Curium in Soft of plutonium 239 and Americium 241 in Animal #The Toxicity of Plutonium Deposited in Skeletal Tissues of Californium 249 and Berkelium 249 in the Soft	Ter Hematological Effects of Internal Emitters in Tissue Metabolism of Americium 241 in the Adult Baboon*	000403
Transuranium Elements and the Components of Cells and Thorium 230, Lead 210, and Polonium 210 in Soft Tissues*	Ter Skeletal Alpha Irradiation*	000115
#Analysis of Indian Monozite Sand in Animal Regions* #The Effect of the Remodeling of Bone Upon the Relative #The Effect of DTPA Treatment on Acute Microspheres in Beagles* 239 Pu02 in Rats*	Terrain: Comparison of Measurements and Calculations*	000507
Function in Sheep*	Terrestrial Environment to Animals and Man*	000446
#Metabolism and #Deposition Patterns and Beagles. 1. The Relation of the Distribution of, #Physicochemical Form as a Determinant of the	Terrestrial Environments*	000107
Radium 228, and Strontium 90 to #The Comparative #Comparative #Deposition Patterns and the #A Review of Radium Use of Swine in Radionuclide	Terrestrial Environments*	000275
and Its distribution in the Rat Body*	Theoretical Equations to Describe the Flow of a Therapeutic Experiments and Suggestions*	000244
#Quantitative Morphology of Vertebral Polonium 210 in Soft Tissues* #The Determination of #Routine Determination of Plutonium by Quantitative Applications of the Nuclear	Therapeutic Removal of Inhaled Plutonium*	000063
	Therapeutic Removal of Internally Deposited Therapy of Pulmonary Contamination by Plutonium Oxide*	000281
	Thermonuclear Cratering Detonation*	000152
	#Concentration of Third Lumbar Vertebra* Plutonium 239 in the Urine of the Thorium in Rats After Inhalation of Uranium Ore Dust*	000255
	Thorium After Inhalation of Uranium Ore by Beagles*	000318
	Thorium 228 (Resothorium) and Strontium 90 in Adult Thorium 228 (Resothorium), and Strontium 90*Effects of Thorium 228, Plutonium 239 or Strontium 90* in Beagles	000351
	Thorium 228, Radium 226, and Strontium 90 to Leukocytes Thorium 230, Lead 210, and Polonium 210 in Soft Tissues*	000262
	Ticks of the Nevada Test Site*	000407
	Time and Absorption of Plutonium 238 Pu02 and Plutonium Time Factor in Separate and Contined Infection with	000333
	Time Relations for Induction of Bone Tumors in the Dog	000240
	Time Relations for Induction of Osteosarcoma in Mice	000373
	Time, and Inventory of Tritium in Sedan Crater Ejecta*	000150
	Tissue in Rabbits Poisoned with Plutonium 239*	000064
	Tissue of Animals Damaged by Plutonium 239*	000504
	Tissue of Plutonium-Injected Rats*	000495
	Tissue Accumulation of Uranium and Thorium in Rats	000356
	Tissue Cells Morphologically Altered through Processes	000035
	Tissue Depth* #Distribution	000326
	Tissue Distribution of Monomeric and Polymeric	000182
	Tissue Phosphatases in Rats Suffering from Subacute or Tissue*	000498
	Tissue*	000257
	Tissue*	000299
	Tissue*	000095
	Tissue*	000401
	Tissue*	000455
	Tissues and Blood of the Beagle* Tissues by Liquid Scintillation Spectrometry*	000375
	Tissues of Beagles. 1. The Relation of the Distribution of Beagles*	000165
	Tissues of Plutonium Treated Rats*	000278
	Tissues of Rats in Plutonium Injury*	000098
	Tissues* #Interactions Between Tissues* #The Determination of Trace Levels of Uranium, Tissues, Part 2*	000110
	Toxicities of Radium and Plutonium in Man and Dog*	000307
	Toxicities in Mice*	000199
	Toxicity of Inhaled Crushed Plutonium 238 Pu02	000227
	Toxicity of Inhaled Plutonium 238 Pu02 and Plutonium	000149
	Toxicity of Intubated Plutonium*	000168
	Toxicity of Neptunium 237 and Its Relationship to Liver	000121
	Toxicity of Neptunium 237 in the Rat*	000175
	Toxicity of Plutonium and Americium in Liver*	000112
	Toxicity of Plutonium Deposited in Skeletal Tissues of	000278
	Toxicity of Plutonium 238 in the Rat*	000190
	Toxicity of Plutonium 239 and Plutonium 238*	000376
	Toxicity of Plutonium 239 in Bone*	000111
	Toxicity of Plutonium*	000196
	Toxicity of Radium 226, Plutonium 239, Thorium 228, Strontium 90, Radium 226, and Plutonium 239*	000257
	Toxicity of Transuranium Elements in Lung*	000198
	Toxicity Studies*	000113
	Toxicity: From Pulmonary Absorption*	000169
	Toxicologic Properties of Sodium Plutonyl Triacetate	000169
	Toxicology*	000380
	Trabecular Bone in Beagles Injected with Plutonium*	000031
	Trace Levels of Uranium, Thorium 230, Lead 210, and	000277
	Tracer Techniques in Large Biological Samples*	000407
	Track Technique*	000185
		000211

of Plutonium Introduced into the Gastrointestinal Environment to Animals and Man*	Tracking Plutonium at Rocky Flats*	000411
Dioxide*	Tract* Exchange Resins and Complexons on Distribution	000505
#Retention, #Factors Affecting Retention,	Transfer of Plutonium from Milk into Cheese*	00109
#Dynamic Simulation of Retention and 239 PuO ₂ and Plutonium 238 PuO ₂	Transfer of Radioactive Materials from the Terrestrial	000446
239 PuO ₂ *	Transfer of Some Radionuclides to Milk*	001199
#Phagocytosis and	Translocation and Excretion of Inhaled Plutonium 239	000144
Simulated Puncture Wounds in Beagle Dogs* #A Study of #The Effect of Lymph Node Removal on Plutonium Dioxide	Translocation and Excretion of Radioactive Particles*	000479
#Retention,	Translocation of Inhaled Plutonium Oxide in Beagle Dogs*	000372
Plutonium* #Selective Placental Mother to Offspring in Laboratory Animals*	Translocation of Intraperitoneally Injected Plutonium	000214
#The Explosions with Known Yields at #Seismic Source and	Translocation of Subcutaneously Administered Plutonium	000203
Group Plutonium Study Modeling Program: Plutonium #Regulations for the Safe	Translocation of Subcutaneously Deposited Plutonium*	000206
of Ingested Plutonium in Chickens and Subsequent #Progress in Studies with	Translocation Dynamics of Plutonium and Americium from	000090
the Production of Monodisperse Aerosols of Oxides of #An Experimental Evaluation of the Effects of	Translocation*, and Excretion of Inhaled Plutonium*	000105
Tissues* #Interactions Between #Progress in Beagle Dog Studies with	Transmission of Plutonium to Offspring*	000467
#Removal of Internally Deposited #Deposition Patterns and the Toxicity of	Transmission of Radioactive Alkaline Earths and	000508
#Therapeutic Removal of Internally Deposited #Biology of the	Transmission of Radiostrontium and Plutonium from	000433
#Preliminary Autopsy Findings in United States, #Draft Environmental Statement,	Transmission Functions from Underground Nuclear	000437
Alamos Scientific #The Determination of Total Uranium on Fallout	Transplutonium Elements, A Bibliography*	000252
#Toxicologic Properties of Sodium Plutonyl #Transport and Dose Estimation Model*, Applied Ecology	Transport of Radioactive Materials*	000027
#Distribution of Environmental Plutonium in the #Transport to Eggs*	#Distribution	000297
#Distribution, Residence Time, and Inventory of #Transuranic Elements at the Lovelace Foundation*	Transuranic Elements for Inhalation Experiments* for	000088
#The Determination of #Transuranic Elements on Reproductive Ability*	Transuranic Elements on Reproductive Ability*	000119
#Ecological Aspects of #Transuranic Waste Research and Development Program*	Transuranic Elements and the Components of Cells and	000040
#Gas Counting of #Transuranic Elements at Battelle-Northwest*	Transuranic Elements at Battelle-Northwest*	000110
#Chemical Stabilization of the Uranium Tailings at #Transuranic Elements by Zinc DTPA*	Transuranic Elements by Zinc DTPA*	000086
Burdens of Radium 226, Radium 228, #Non-Skeletal	Transuranic Elements in Lung*	000113
Radiation on the Rat Skin*	Transuranic Elements, A Bibliography*	000474
#Radiation Dose-Time Relations for Induction of Bone #Transuranic Registry Cases*	Transuranic Registry Cases*	000050
for Induction of Bone Tumors in the Dog and Skin #Transuranic Solid Waste Development Facility, Los	Transuranic Solid Waste Development Facility, Los	000471
#The Morphology of Experimental Lung #Trays and in Soil, Urine, and Water*	Trays and in Soil, Urine, and Water*	000160
#Pathogenesis of Radionuclide Induced #Triacetate and Its Distribution in the Rat Body*	Triacetate and Its Distribution in the Rat Body*	000519
of the Pacific Ocean as Estimated from Studies of a #Trinity Site Ecosystem After 27 Years*	Trinity Site Ecosystem After 27 Years*	000266
#The Radichemistry of #Tritium in Sedan Crater Ejecta*	Tritium in Sedan Crater Ejecta*	000064
#Gainsgord Plus #Tritium in Urine and Water*	Tritium in Urine and Water*	000427
#Manhattan Project Plutonium Workers, a #Tritium Behavior in the Environment*	Tritium Behavior in the Environment*	000458
Plutonium Workers* #Tuba City, Arizona*	Tritium*	000420
#Measurements on Operation Roller Coaster (Joint US/ #Tumor Incidence Observed in Beagles with Retained	Tuba City, Arizona*	000408
Humerus and the #Retention of Plutonium 239 in the #Tumorigenic Action of Beta, Proton, Alpha and Electron	Tumor Incidence Observed in Beagles with Retained	000528
Environments*	Tumors in the Dog and Skin Tumors in the Rat*	000269
Exposed in Vivo to Plutonium 239 PuO ₂ Particles* #Tumors in the Rat* #Radiation Dose-Time Relations	Tumors in the Rat* #Radiation Dose-Time Relations	000373
#Seismic Source and Transmission Functions from #Tumors in Beagle Dogs*	Tumors in Beagle Dogs*	000460
Studies*	Tuna Population of Fallout Constituents in Upper Layers	000412
#A Constant Feed, #Tungsten*	Tuna Population of Fallout Constituents in Upper Layers	000456
#Preliminary Autopsy Findings in #Twenty-Five Years*	Tungsten*	000180
#Lung Cancer Among Uranium Miners in the #Twenty-Seven Year Follow-Up Study of Selected Cases*	Twenty-Five Years*	000470
#Progress in the Beagle Studies at the #Twenty-Seven Year Study of Selected Los Alamos	Twenty-Seven Year Follow-Up Study of Selected Cases*	000603
Dogs, Rabbits, Guinea #Comparative Distribution of Aged #UK Field Experiments)* #Evaluation of the Biological	Twenty-Seven Year Study of Selected Los Alamos	000454
Rats by Inhalation* #Administration of	UK Field Experiments)* #Evaluation of the Biological	000220
#Retention of Various Diets on the Behavior of Yttrium 91 and #Ulna of the Beagle Compared with Retention in the	Ulna of the Beagle Compared with Retention in the	000318
Studies of a Tuna* #Retention of Fallout Constituents in #Ultimate Storage of Radioactive Wastes in Terrestrial	Ultimate Storage of Radioactive Wastes in Terrestrial	000275
Parts #Effect of Soil pH and Chelating Agent (DTPA) on #Ultra High Volume Air Sampler*	Ultra High Volume Air Sampler*	000019
of a #Operation Roller Coaster, Project 4.1, Plutonium #Ultrastructure of Peritoneal Mononuclear Phagocytes	Ultrastructure of Peritoneal Mononuclear Phagocytes	000217
#Radionuclide #Underground Nuclear Explosions with Known Yields at	Underground Nuclear Explosions with Known Yields at	000437
Chelating Agent DTPA, #Increased	Uniform Dispersion Device for Large Particle Inhalation	000353
#Acids as Effective Ligands for Binding and Eliminating #United States Transuranium Registry Cases*	United States Transuranium Registry Cases*	000050
Ore Dust* #Selective Tissue Accumulation of #Administration of	United States*	000139
Beagles* #In Vivo Separation of #Uranium*	University of Utah*	000085
Administration of Ammonium Dicarboxylate #Distribution of #Unseparated Solution of Uranium Fission Products in	University*	000087
Huuan #Maximum Permissible Amounts of Natural #Unseparated Solution of Uranium Fission Products to	Unseparated Solution of Uranium Fission Products in	000350
#The Concentration of #Radionuclides	Unseparated Solution of Uranium Fission Products to	000256
#The Concentration of #Lysosomal	Unseparated Solution of Uranium Fission Products*	000486
Province: Anomalous Concentrations* #Antidote Therapy of #Uptake by and Distribution of Americium 241 in Plant	Upper layers of the Pacific Ocean as Estimated from	000456
#A New Method of Spectrophotometric Determination of #Uptake by Animals Exposed to a Non-Nuclear Detonation	Uptake by and Distribution of Americium 241 in Plant	000332
#Iodine and #Uptake by Some Freshwater Hydrobionts*	Uptake by Animals Exposed to a Non-Nuclear Detonation	000393
The Fluorophotometric Determination of #Uptake of Actinide Elements*	Uptake by Some Freshwater Hydrobionts*	000272
through Anion Exchange* #Determination of #Uptake of Americium 241 by Plants Caused by the	Uptake of Actinide Elements*	000415
#The Determination of Enriched #Uranium and Its Fission Products from the Body*	Uptake of Americium 241 by Plants Caused by the	000108
#The Determination of Total #Uranium and Polonium Poisoning*	Uranium and Its Fission Products from the Body*	000395
#Uranium and Thorium in Rats After Inhalation of Uranium #Uranium and Thorium in Rats After Inhalation of Uranium	Uranium and Polonium Poisoning*	000152
#Uranium and Thorium After Inhalation of Uranium Ore by #Uranium and Thorium in Rats After Inhalation of Uranium	Uranium and Thorium in Rats After Inhalation of Uranium	000356
#Uranium in the Body of Rats Under a Single #Uranium in the Body of Rats Under a Single	Uranium and Thorium After Inhalation of Uranium Ore by	000349
#Uranium in the Body, Air and Drinking Water Based on #Uranium in the Body, Air and Drinking Water Based on	Uranium in the Body of Rats Under a Single	000330
#Uranium in Air from Concentrated Natural Environments*	Uranium in the Body, Air and Drinking Water Based on	000034
#Uranium in Organisms of Animals from the Adriatic Sea*	Uranium in Air from Concentrated Natural Environments*	000450
#Uranium in Runoff from the Gulf of Mexico Distributive #Uranium in Organisms of Animals from the Adriatic Sea*	Uranium in Organisms of Animals from the Adriatic Sea*	000449
#Uranium in Seawater and Uranium Content with Uranium #Uranium in Runoff from the Gulf of Mexico Distributive	Uranium in Organisms of Animals from the Adriatic Sea*	000512
#Uranium in Sedimentary Rocks*	Uranium in Runoff from the Gulf of Mexico Distributive	000668
#Uranium in Urine and Air*	Uranium in Seawater and Uranium Content with Uranium	000386
#Uranium in Urine Specimens Following their Separation #Uranium in Urine and Air*	Uranium in Seawater and Uranium Content with Uranium	000386
#The Determination of Enriched #Uranium in Urines*	Uranium in Urine Specimens Following their Separation	000361
#The Determination of Total #Uranium in Urines*	Uranium in Urines*	000159
#Uranium on Fallout Trays and in Soil, Urine, and Water*	Uranium on Fallout Trays and in Soil, Urine, and Water*	000160

#Inhalation Study on Metabolism of Insoluble with the Discharges of the Low Level Uranium Liquid	Uranium Compounds*	000132
#Some Observations Concerning Determination of Uranium in Seawater and Microscopic and Autoradiographic Studies of Behavior of Unseparated Solution of Distribution of Aged Unseparated Solution of Administration of Unseparated Solution of the Behavior of Tritium 93 and Unseparated Solution of Imparts to the Liver Resistance Against Subsequent Plants Associated with the Discharges of the Low Level River (Colorado-New Mexico)*	Uranium Concentration of Fishes and Plants Associated with the Discharges of the Low Level Uranium Liquid	000130
#Effects of Radioactive Contamination of Miners in a Yugoslav Lung Cancer Among of Immunoglobulin Levels in Blood-Serum of Hazards from Inhaled Radon Daughters in Workers of Non-Radiological Health and Safety Aspects of Processes of Repair. 1. The Liver Injury Induced by Separation of Uranium and Thorium After Inhalation of of Uranium and Thorium in Rats After Inhalation of Chemical Stabilization of the through Different Experimental Study of the Ratio of Uranium in Seawater and Uranium Content with Different Experimental Study of the Ratio Uranium 238/ in Seawater and Uranium Content with Uranium 238/	Uranium Concentrations in Marine Sediments*	000253
#The Radiochemistry of Safety Aspects of the Mining and Processing of Soft Tissues*	Uranium Content of Ingesta and Excreta of Cattle*	000171
#Experimental Acute Renal Failure Induced by pinocytosis in Root Cap Cells Exposed to pinocytosis and Membrane Dilatation in Plutonium 239*	Uranium Content with Uranium 234/Uranium 238 Ratio in	000424
#The Determination of Tritium in Estimation of Plutonium Lung Burden by for the Estimation of Body Content of Plutonium from High-Fired Oxides*	Uranium Distribution in the Rat Kidney*	000054
DTPA*	Uranium Fission Products in the Animal Organism*	000331
Injury*	Uranium Fission Products in Dogs, Rabbits, Guinea Pigs	000350
The Fluorophotometric Determination of Uranium in Urine and Water*	Uranium Fission Products to Rats by Inhalation*	000256
#Estimation of Plutonium Lung Burden by for the Estimation of Body Content of Plutonium from High-Fired Oxides*	Uranium Fission Products: The Effect of Various Diets on	000886
of Plutonium Body Burdens from Measurements of Daily of Plutonium in Urine: Separation from Baked Anion Exchange*	Uranium Intoxications* Type of Epithelial Repair Which	000035
#Analytical Method for Americium in The Determination of Enriched Uranium in The Determination of Plutonium in The Determination of Actinides in of Total Uranium on Fallout Trays and in Soil, Exchange*	Uranium Liquid Waste* Concentration of Fishes and	000130
Measurements on Operation Roller Coaster (Joint Along Freshwater Food Chains of the Great Lakes. Progress in the Beagle Studies at the University of #Autoradiographic Determination of Alpha Activity by Detonations*	Uranium Mill Wastes on Biological Fauna of the Animals	000137
Attributes and plutonium contents of Perennial of Natural Radioactive Elements in Circle of Freshwater Areas Using Aerial Photography*	Uranium Mine* Studies on Airborne	000033
#The Evolution of Desert Vegetation in Area (Nevada Applied Ecology Group Gamma Radiation Protection Factors Provided by Civilian with Retention in the Humerus and the Third Lumbar Plutonium*	Uranium Miners in the United States*	000139
Nevada Test Site*	Uranium Miners After a Higher Exposure to Ionizing	000511
Effect of Internally Deposited Radioisotopes Upon Blood DTPA*	Uranium Miners Health*	000055
#Americium 241 in the Blood: In Vivo and In Simulated Abomasal and Intestinal Fluids*	Uranium Mines and Mineral Baths* on the Occupational	000513
Lipoic Acid and DTPA*	Uranium Mining and Ore Treatment: A Bibliography*	000163
#Americium 241 in the Blood: In of Peritoneal Mononuclear Phagocytes Exposed in Plutonium 239 in Dogs*	Uranium Mining and Processing in Australia*	000057
and Bone Marrow of the Chinese Hamster*	Uranium Nitrate. A Consideration of the Type of	000035
Emitters*	Uranium Ore by Beagles* #In Vivo	000349
of Uranium Ore by Beagles*	Uranium Ore Dust* #Selective Tissue Accumulation	000356
#Experimental Study of the Ratio of Uranium in Seawater and Uranium Content with Different Experimental Study of the Ratio Uranium 238/ in Seawater and Uranium Content with Uranium 238/	Uranium Tailings at Tuba City, Arizona*	000408
#The Determination of Tritium in Estimation of Plutonium Lung Burden by for the Estimation of Body Content of Plutonium from High-Fired Oxides*	Uranium 234/Uranium 238 in Natural Waters Having Passed	000428
of Plutonium Body Burdens from Measurements of Daily of Plutonium in Urine: Separation from Baked Anion Exchange*	Uranium 238/Uranium 238 Ratio in the Pacific Water*	000424
#Analytical Method for Americium in The Determination of Enriched Uranium in The Determination of Plutonium in The Determination of Actinides in of Total Uranium on Fallout Trays and in Soil, Exchange*	Uranium 238 in Natural Waters Having Passed through	000828
Measurements on Operation Roller Coaster (Joint Along Freshwater Food Chains of the Great Lakes. Progress in the Beagle Studies at the University of #Autoradiographic Determination of Alpha Activity by Detonations*	Uranium 238 Ratio in the Pacific Water* for Uranium	000424
Attributes and plutonium contents of Perennial of Natural Radioactive Elements in Circle of Freshwater Areas Using Aerial Photography*	Uranium*	000059
#The Evolution of Desert Vegetation in Area (Nevada Applied Ecology Group Gamma Radiation Protection Factors Provided by Civilian with Retention in the Humerus and the Third Lumbar Plutonium*	#Environmental and Radiobiological	000143
Nevada Test Site*	Uranium, Thorium 230, Lead 210, and Polonium 210 in	000467
Effect of Internally Deposited Radioisotopes Upon Blood DTPA*	Uranium Nitrate in the Dog*	000377
#Americium 241 in the Blood: In Vivo and In Simulated Abomasal and Intestinal Fluids*	Uranyl Salts*	000336
Lipoic Acid and DTPA*	Uranyl-Treated Plant Roots*	000337
#Americium 241 in the Blood: In of Peritoneal Mononuclear Phagocytes Exposed in Plutonium 239 in Dogs*	Urethane-Induced Pulmonary Adenomas by Inhaled	000161
and Bone Marrow of the Chinese Hamster*	Urinalysis*	000053
Emitters*	Urinary Excretion of Plutonium for Cases Treated with	000084
of Uranium Ore by Beagles*	Urinary Taurine Excretion During Chronic Radiation	000439
#Measurement of Plutonium 239 in the Ulna of the Beagle Compared with the Ulna of the Dog	Urine and Air*	000490
#Ecological Studies of Effect of Internally Deposited Radioisotopes Upon Blood DTPA*	Urine and Water*	000427
#Gamma Radiation Spectra in the Urine*	Urine Analysis*	000346
#Ecological Studies of Effect of Internally Deposited Radioisotopes Upon Blood DTPA*	Urine Data* MSEBACH, A Digital Computer Program	000311
#Gamma Radiation Spectra in the Urine*	Urine Excretion Following Acute Inhalation Exposures to	000410
DTPA*	Urine Excretion* Determination	000195
#Gamma Radiation Spectra in the Urine*	Urine Residues Using Ion-Exchange* #Rapid Determination	000301
DTPA*	Urine Specimens Following their Separation through	000341
#Gamma Radiation Spectra in the Urine*	Urine*	000173
DTPA*	Urine*	000159
#Gamma Radiation Spectra in the Urine*	Urine*	000172
DTPA*	Urine*	000157
#Gamma Radiation Spectra in the Urine*	Urine, and Water*	000160
DTPA*	The Determination	000301
#Gamma Radiation Spectra in the Urine*	Urine: Separation from Baked Urine Residues Using Ion-US/UK Field Experiments* Evaluation of the Biological	000220
DTPA*	US/UK Field Experiments* Evaluation of the Biological	000282
#Gamma Radiation Spectra in the Urine*	Utah* of Progress, 1972-1973, Plutonium Concentration	000085
DTPA*	Variable Exposure to Plutonium 239 and Americium 241 in	000114
#Gamma Radiation Spectra in the Urine*	Vegetation from Close-In Fallout from Two Nuclear	000063
DTPA*	Vegetation in Area (Nevada Applied Ecology Group	000008
#Gamma Radiation Spectra in the Urine*	Vegetation in Processes of Migration and Distribution	000417
DTPA*	Vegetation in Western North America*	000231
#Gamma Radiation Spectra in the Urine*	Vegetation Cover in Certain Plutonium Contaminated	000010
DTPA*	Vegetation Samples* #Determination of Plutonium 239	000009
#Gamma Radiation Spectra in the Urine*	Vegetation Studies)* and Plutonium Contents of Perennial	000008
DTPA*	Vegetables* #Environmental and Fallout	000425
#Gamma Radiation Spectra in the Urine*	Venoms of Desert Animals*	000237
DTPA*	Vertebrae* 239 in the Ulna of the Beagle Compared	000218
#Gamma Radiation Spectra in the Urine*	Vertebral Trabecular Bone in Beagles Injected with	000277
DTPA*	Vertebrates in Plutonium Contaminated Areas of the	000015
#Gamma Radiation Spectra in the Urine*	Vessels of Cortical Bones*	000279
DTPA*	Vicinities of Projects Shoal and Faultless*	000070
#Gamma Radiation Spectra in the Urine*	Vitro Chelation of Plutonium by Alpha-Lipoic Acid and	000464
DTPA*	Vitro Observations*	000030
#Gamma Radiation Spectra in the Urine*	Vitro Plutonium Studies Using the Artificial Russen and	000012
DTPA*	Vivo and In Vitro Chelation of Plutonium by Alpha-	000064
#Gamma Radiation Spectra in the Urine*	Vivo and In Vitro Observations*	000030
DTPA*	Vivo to Plutonium 239 PuO2 Particles* The Ultrastructure	000217
#Gamma Radiation Spectra in the Urine*	Vivo Counting to Determine Retention of Inhaled	000361
DTPA*	Vivo Cytogenetic Effects of Californium 252 on Liver	000099
#Gamma Radiation Spectra in the Urine*	Vivo Measurement of Plutonium and Other Very Low Energy	000207
DTPA*	Vivo Separation of Uranium and Thorium After Inhalation	000349
#Gamma Radiation Spectra in the Urine*	Volume Air Sampler*	000044
DTPA*	Washington* #Environmental Statement,	000019
#Gamma Radiation Spectra in the Urine*	Waste Development Facility, Los Alamos Scientific	000470
DTPA*	Waste Disposal in the Plutonium Fuels Development	000471
#Gamma Radiation Spectra in the Urine*	Waste Management Studies*	000128
DTPA*	Waste Research and Development Program*	000475
#Gamma Radiation Spectra in the Urine*	Waste Treatment and Decontamination*	000127
DTPA*	Waste* Concentration of Fishes and Plants Associated	000130

Colorado-New Mexico)*	Ultimate Storage of Radioactive	Wastes in Terrestrial Environments	000275
Derived Formula for the Discharge of Radioactive Liquid	Effects of Uranium Mill	Wastes on Biological Fauna of the Animas River (000137
of Natural Uranium in the Body, Air and Drinking	Wastes*	Applications of a	000421
Temperature Regulation and	Water Based on Human Experimental Data*	Amounts	000034
Determination of Plutonium in Environmental	Water Economy of Desert Birds*		000234
Station, at the U.S. Atomic Energy Commission's Nevada	Water Samples*	Radiochemical	000028
The Determination of Tritium in Urine and	Water Supply for the Nuclear Rocket Development		000302
Total Uranium on Fallout Trays and in Soil, Urine, and	Water*		000427
with Uranium 234/Uranium 238 Ratio in the Pacific	Water*	The Determination of	000160
Study of the Ratio Uranium 234/Uranium 238 in Natural	of Uranium in Seawater and Uranium Content		000424
to a Non-Nuclear Detonation of a Plutonium Bearing	Waters Having Passed through Different Types of Rocks*		000428
the Sulky Event*	We Do Know About Low-Level Radiation*		000051
The Evolution of Desert Vegetation in	Weapon Simulant*, Plutonium Uptake by Animals Exposed		000393
#Research in Radiobiology: Annual Report of	Weather Prediction and Surface Radiation Estimates for		00072
plutonium 239 in the Human Organism and in the Air of	Western North America*		000231
as Part of an Integrated Program of Monitoring of the	Wind Effect Redistribution of Surface Contamination*		000258
Occupational Hazards from Inhaled Radon Daughters in	Work in Progress in the Internal Irradiation Program*		000314
Seven Year Study of Selected Los Alamos Plutonium	Work Premises* of the Maximum Permissible Content of		000192
Selected Cases*	Worker and His Environment*	Air Sampling	000133
#Manhattan Project Plutonium	Workers of Non-Uranium Mines and Mineral Baths* on the		000513
#Plutonium-Contaminated	Workers*, A Twenty-Seven Year Follow-Up Study of		000454
and Evaluation of Internal Deposition from a Plutonium	Wound Studies*		000403
of Plutonium and Americium from Simulated Puncture	Wound*	The Treatment	000205
Alamogordo Plus Twenty-Five	Wounds in Beagle Dogs* A Study of Translocation Dynamics		000197
Plutonium in the Trinity Site Ecosystem After 27	Years*		000090
from Underground Nuclear Explosions with Known	Years*	Distribution of Environmental	000266
Projects* The Effect of Various Diets on the Behavior of	Yields at Nevada Test Site* and Transmission Functions		000437
on Airborne Radioactive Contamination of Miners in a	Yttrium 91 and Unseparated Solution of Uranium Fission		000486
of Internally Deposited Transuranium Elements by	Yugoslav Uranium Mine*	Studies	000311
Plutonium Excretion, Study Following Treatment with	Zinc DTPA*	Removal	000382
	Zirconium Citrate and Edatamil Calcium-Dinosinum*		000052

TAKON INDEX

AMMOSPERMOPHYLLUS LEUCIJUS 15
ARBACIA sp. 312
ARISTIDA 232
ARTEMESIA 232
ARTEMISIA ARBUSCULA 63
ARTEMISIA SPINESCENS 4, 8
ARTEMISIA TRIDENTATA 63
ASCOPHYLLUM NODOSUM 310, 363, 374
ASPERGILLUS sp. 11
ASTPAGALUS 232
ASTPDBLA 232
ATFIDLEX 232
ATRIPLEX CANESCENS 4, 8
ATRIPLEX CONFERTIFOLIA 8
AUCH OPHILA KORDOFANIS 228
CALLISYRUS DRACONOIDES 15
CAJASTONUS COMPRESSO 137
CAMPIDOPHORUS TIGRIS 1
COTTUS sp. 137
CROTAPHYTUS WISLIZENII 15
DEMATIACFAE 11
DIPODOMYS MERRIMANII 68
DIPODOMYS MICROPS 15, 68
DIPODOMYS ORDOVI 64
DIPODOMYS MPPREMI 15
EPHZDRA 232
EUROTIA LANATA 4, 8
FRANSESTA DUMOSA 4
GILA ROBUSTA 137
GRAYIA SPINOSA 8
HELARIA JAMPSII 58
HIPISCUS MICRANTHUS 228
ICHNEUMIA ALBICAUDA 228
FOCHIA AMERICANA 8
LABREA DIVARTICATA 4
LEIUPUS QUINQUESTRIATUS 228
LYCIUM ANDERSONII 8
MAERUA CRASSIFOLIA 228
MPTACYCTOPS MINUTOS 228
MICRODIPODOPS MEGACEPHALUS 15
MOINA DUBIA 228
MUCOTALE 11
MYTILUS GALLOPROVINCIALIS 312
NAJA HAJE 228

201

ORYZOPSIS HYMENOIDES 58
ORYZOPSIS LYMENOIDES 8
OVERCUS GAMBELII 58
PAETIO CYNOCEPHALUS (ABUDIS) 436
PERICILLIUM 11
PEROGNATHUS LONGIEMBRI 15
PEROGNATHUS PARVUS 15
PHASEOLUS VULCANIS 332
PIMEPHALES PROMELAS 137
PUSHPHA GLANDULOSA 58
PYTHON SEIRE 228
RHINOCHTRES MOBIUS 137
SALMO TROUTTA 137
SALSOLA 232
SALSOLAKALI 58
SITAVICIN HISTRIX 58
STERNOCEERA CASTANEA 228
STIPA 232
THUNNUS ALAZANINGA 456
TRIODIA 232
TRIOPS CANCTIFORMIS 228
TRIOPS GRANARIUS 228
UTA STANSBULIANA 15
VPHONGIA AEROPHORA 312
VULPES FALITDA 228

PUBLICATION DESCRIPTION INDEX

203

- A/CONF.15/P-730 358
- A/CONF.49/P 378
- A/CONF.49/P-800 335
- AAEC-LIB/BIB-349 57
- AAEC/E-272 143, 163
- Academic Press, New York, New York, Vols. 1-2, 635 p. 227
- Academic Press, New York, New York, 216 p. 488
- Academic Press, New York, New York, 346 p. 477
- Acta Radiologica, 58, 459-471 514
- AD-410413 507
- AEC Symposium Series No. 21 460
- AEC Symposium Series No. 29 45, 46, 47, 48, 49, 50, 412
- AEC-tr-5425 241
- AEC-tr-6603 273
- AEC-tr-6891 339
- AEC-tr-6944 152, 192, 379, 459
- AEC-tr-6950 245, 369
- AEC-tr-7024 242
- AEC-tr-7169 256, 308, 331, 350, 486
- AEC-tr-7195 191, 193, 240, 243, 330, 382, 445
- AEC-tr-7205 310
- AEC-tr-7387 164, 187, 246, 309, 338, 385, 387
- AEC-tr-7418 363, 364
- AECD-2009P 284
- AECL-4075 142
- AECL-4360 134
- AECU-3522 434, 435, 441, 448
- AED-C-21-10 42
- AERE-PR/HPM-9 44
- American Industrial Hygiene Quarterly, 18(1), 261-266 346
- American Journal of Botany, 59(8), 858-868 336
- Anais da Academia Brasileira de Ciencias (Brazil), 44(1), 13-18 428
- ANL-5580 344
- ANL-6790 400
- ANL-7960 (Part 3) 140
- ANL-7970 149
- ANL-8014 431
- AP-104 (Parts 1-2) 484
- Archives of Environmental Health, 2, 474-483 52
- Archives of Environmental Health, 5, 81-86 526
- Archives of Internal Medicine, 131, 60-73 263
- ARR-SA-126 275
- ARR-SA-29 73
- AWRE-0-76/67 220
- Bioscience, 21(22), 1121-1125 63
- Brigham Young University Science Bulletin, Biological Series, 3(4), 14p. 259
- BN-RI-7288 408
- BNPL-Report-1(W) 301
- BNWL-SA-1540 32
- BNWL-SA-39 147
- BNWL-SA-4659 219
- BNWL-SA-4810 6
- BNWL-SA-4815 7
- BNWL-105 (Part 2) 407
- BNWL-1051 (Part 2) 299
- BNWL-122 201, 203, 222, 329, 356, 368
- BNWL-1306 (Part 1) 60, 61, 62
- BNWL-1651 (Part 1) 123, 124
- BNWL-1669 480
- BNWL-1727 156
- BNWL-1750 (Part 1) 41, 145, 146, 186, 200, 213, 215, 216, 248, 362
- BNWL-1750 (Part 2) 359
- BNWL-1782 474
- BNWL-280 206, 440
- BNWL-480 418, 483, 527
- BNWL-714 190, 204, 205, 214, 217, 239, 333, 340, 342, 348, 349, 352, 353, 355, 361, 367, 372, 464, 465
- BRH/DBE-70-5 169
- BRH/DBE-72-1 469
- BRH/DBE-72-2 482, 485
- Brigham Young University Science Bulletin, Biological Series, 18(4), 1-20 136
- Brigham Young University Science Bulletin, Biological Series, 4(1), 12p. 260
- British Journal of Radiology, 37(433), 53-62 524
- British Journal of Radiology, 38(456), 920-925 394
- British Journal of Radiology, 46(543), 180-182 161
- CEA-CCNF-2070 267
- CH-3875 268
- Chemical Geology, 9(2), 133-136 386
- Circulation Research, 31, 682-698 377
- CN-3167 286, 287, 288, 289, 290, 291, 292, 293, 294, 295
- CONF-104-51 479

NOTE: Our computer counts in an unorthodox manner. You will find BNWL-280 listed after BNWL-1782; everything that begins with the digit two will be listed after everything that begins with the digit one. The machine reads and numbers material beginning at the left instead of the usual way of beginning at the right of a series of digits.

BLANK PAGE

PUBLICATION DESCRIPTION INDEX

CONF-448-10	194	C00-1862-4	55
CONF-448-11	195	C00-228	528
CONF-448-9	276	C00-3380-1	269
CONF-555	426	C0C-3568-3	282
CONF-65-718	380	D.Sc. Thesis, University of Pittsburgh,	183 p. 135
CONF-660005	255	DHEW (FDA) -72-8029	469
CONF-660920	162, 354	DOCKET-50139-2	406
CONF-670938	280	DPST-73-436	274
CONF-680502-1	32	Ecology (USSR), 2,	157-162 417
CONF-680503	410	EBI-65-41	121
CONF-690404	251	EGG-1183-2255	70
CONF-690605-3	73	EUR-4897-e	421
CONF-700501	460	FOA-4-4545-A-1	437
CONF-700671	414		
CONF-700716	165		
CONF-700931	132, 133, 184	PTD-tt-63-559 (Translated Edition)	, 493, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 516, 517, 518, 519, 520, 521, 522, 494
CONF-701106-5	208	GAT-628	384
CONF-701112	207, 489	Gecchimica et Cosmochimica Acta, 37,	35-51 253
CONF-710562	482, 485	Geological Survey Water-Supply Paper No. 1938	302
CONF-710705	65, 66, 67	HASL-268	452
CONF-710716	370	HASL-273	481, 487, 491
CONF-710809	420	HASL-278	512
CONF-710901	335, 378	HASL-300(S-1)	453
CONF-710910	96	HASL-300,(S-1)	451
CONF-710919	77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119	Health Physics, 1,	288-305 34
CONF-711227	143, 163	Health Physics, 10,	1059-1064 33
CONF-720503	264, 267, 395, 511, 513, 525	Health Physics, 10,	279-282 69
CONF-720505	45, 46, 47, 48, 49, 50, 412	Health Physics, 10,	863-866 71
CONF-720614-5	467	Health Physics, 10,	957-965 185
CONF-720708-10	456	Health Physics, 19,	511-520 450
CONF-721076-1	304	Health Physics, 21,	827-833 56
CONF-721107-8	275	Health Physics, 22,	149-153 449
CONF-730577-1	247	Health Physics, 23,	565-572 413
CONF-730603-2	219	Health Physics, 23,	635-640 381
CONF-730907	266	Health Physics, 23,	759-765 150
CONF-730960	411	Health Physics, 24,	541-546 488
CONF-731048	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27	Health Physics, 24,	637-644 29
C00-119-243	218	Health Physics, 24,	9-16 311
C00-119-246	96, 97, 289, 277, 389, 401, 402	Health Physics, 25,	351-371 139
C00-119-248	174, 314, 315, 316, 317, 318, 319, 322, 326, 375	Health Physics, 25,	461-479 403
		Health Physics, 25,	581-588 467
		Health Physics, 26,	41-44 425
		Health Physics,	6, 189-197 53

PUBLICATION DESCRIPTION INDEX	
Health Physics, 8, 639-649	144
Health Physics, 9, 79-81	171
HW-SA-3161	479
HW-SA-3730 (Rev.)	313
HW-47500	36, 37, 38, 39, 40, 41
HW-66675	390
HW-69500	405
HW-72500	461
HW-76000	144, 175, 198, 199, 202, 209, 221, 320, 321, 327, 343, 347, 357, 376
HW-80500	515
IAEA-SM-118/3	251
IAEA-SM-143/33	207
IAEA-SM-143/49	489
IAEA-SM-148	65
IAEA-SM-148/13	67
IAEA-SM-168/54	66
IAEA/SM-158/15	456
Indian Medical Journal, 66(10), 191-195	399
Industrial Medicine and Surgery, 34, 335-337	313
JAERI-5017	125, 126, 127
Journal Belge de Radiologie, 51, 274-283	196
Journal of European de Toxicologie, 4(1), 53-59	265
Journal of Geophysical Research, 77(30), 5845-5855	212
Journal of Nuclear Science and Technology, 5(b), 160-162	371
Journal of Pharmacology and Experimental Therapeutics, 56, 359-372	35
JPRS-11242	271
LA-1858	173
LA-UR-73-1291	266
LA-1858	172, 427, 429, 490
LA-5148-MS	450
LA-5281-MS	804
LA-5445-C	247
Laboratory Investigation, 10(4), 757-825	278
Lietuvos TSR Mokslo Akademijos Darbai, Serija C, 3(59), 201-212	272
MDDC-1018	224
MDDC-1276	225
Meditinskaya Radiobiologiya, 17(4), 63-68	307
Meditinskaya Radiobiologiya, 17(7), 69-72	306
Meditinskaya Radiobiologiya, 4(9), 45-51	492
Meditinskaya Radiobiologiya, 6(3), 58-63	271
Meditinskaya Radiobiologiya, 8(2), 28-35	374
Mikrochimica Acta, 1973(2), 273-278	381
MLB-2028	170
NAS-NS-3021	189
NAS-NS-3039	179
NAS-NS-3040	167
NAS-NS-3041	177
NAS-NS-3042	180
NAS-NS-3043	181
NAS-NS-3046	178
NAS-NS-3047	188
NAS-NS-3050	59
NAS-NS-3052	176
NAS-NS-3056	168
NAS-NS-3057	166
National Nuclear Energy Series, Division 4, Plutonium Project Record, Volume 22E. McGraw-Hill Book Company, Inc., New York, New York, First Edition, 242 p.	430
National Nuclear Energy Series, Manhattan Project, Division 8. McGraw-Hill Book Company, Inc., New York, New York, 411 p.	432
Nature, 203(4943), 352-355	438
Nature, 203(5007), 282-283	396
NERC-LV-539-14	254
NERC-LV-539-28	4
NERC-LV-539-8	305
NIRS-Fu-7	183
Nuclear Safety, 12(4), 326-337	458
Nuclear Safety, 7(4), 468-473	261
Nuclear Technology, 11, 315-322	416
Nuclear Technology, 11, 459-463	64
NVO-129	462
NVO-142	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27
NVO-86 (Rev. 2)	226
ORNL-3347	58
ORNL-3849	76
ORNL-4848	875
ORNL-4893	283
ORO-4394-1	258
ORE/SID-72-4	300
Part of Aberg, B. and Hungate, F.P. (Eds.), Proceedings of an International Symposium on Radiceological Concentration Processes held in Stockholm, Sweden, April 25-29, 1966, (p. 391-398), 1051 p.	
	255

PUBLICATION DESCRIPTION INDEX

- Part of Activities in the Division of Health Physics and Safety, April 1, 1967-March 31, 1968, (p. 131-139), 177 p. 125
- Part of Activities in the Division of Health Physics and Safety, April 1, 1967-March 31, 1968, (p. 143-153), 177 p. 126
- Part of Activities in the Division of Health Physics and Safety, April 1, 1967-March 31, 1968, (p. 163-165), 177 p. 127
- Part of Analytical Procedures for the Environmental Health Laboratory, (p. 13-1 - 13-3), 147 p. 159
- Part of Analytical Procedures for the Environmental Health Laboratory, (p. 3-1 - 3-2), 147 p. 157
- Part of Analytical Procedures for the Environmental Health Laboratory, (p. 33-1 - 33-5), 147 p. 160
- Part of Analytical Procedures of the Industrial Hygiene Group, Chapter 2, (p. 10-13), 173 p. 173
- Part of Analytical Procedures of the Industrial Hygiene Group, Chapter 21, (p. 121-124), 173 p. 172
- Part of Analytical Procedures of the Industrial Hygiene Group, Chapter 26, (p. 140-154), 173 p. 427
- Part of Analytical Procedures of the Industrial Hygiene Group, Chapter 27, (p. 155-157), 173 p. 490
- Part of Annual Progress Report for Period Ending September 30, 1972, (p. 49-51), 127 p. 475
- Part of Annual Progress Report for the Period Ending June 30, 1972, (p. 33), 103 p. 108
- Part of Annual Progress Report, (p. 115-131), 177 p. 448
- Part of Annual Progress Report, (p. 55-56), 177 p. 434
- Part of Annual Progress Report, (p. 57-72), 177 p. 441
- Part of Annual Progress Report, (p. 73-85), 177 p. 435
- Part of Annual Report for 1968, (p. 1-6), 231 p. 407
- Part of Annual Report, 1972, (p. 126), 236 p. 149
- Part of Anspaugh, L.R., et al, Resuspension of Plutonium, A Progress Report, (p. 1-16), 111 p. 17
- Part of Anspaugh, L.R., et al, Resuspension of Plutonium, A Progress Report, (p. 17-23), 111 p. 18
- Part of Anspaugh, L.R., et al, Resuspension of Plutonium, A Progress Report, (p. 24-32), 111 p. 19
- Part of Anspaugh, L.R., et al, Resuspension of Plutonium, A Progress Report, (p. 33-43), 111 p. 20
- Part of Anspaugh, L.R., et al, Resuspension of Plutonium, A Progress Report, (p. 44-54), 111 p. 21
- Part of Anspaugh, L.R., et al, Resuspension of Plutonium, A Progress Report, (p. 55-93), 111 p. 22
- Part of Anspaugh, L.R., et al, Resuspension of Plutonium, A Progress Report, (p. 94-111), 111 p. 23
- Part of Biology and Health Physics Division Progress Report, July 1 to September 30, 1972, (p. 36), 65 p. 134
- Part of Braun, H., et al (Eds.), Radiation Accidents and their Treatment, Diagnosis, Pathology, Therapy, and Prophylaxis. Georg Thieme Verlag, Stuttgart, Germany, (p. 53-78), 133 p. 910
- Part of Brown, G.W., Jr. (Ed.), Desert Biology, Vol. 1, Chapter 1. Academic Press, New York, New York, (p. 1-20), 635 p. 228
- Part of Brown, G.W., Jr. (Ed.), Desert Biology, Vol. 1, Chapter 10. Academic Press, New York, New York, (p. 487-516), 635 p. 237
- Part of Brown, G.W., Jr. (Ed.), Desert Biology, Vol. 1, Chapter 11. Academic Press, New York, New York, (p. 517-556), 635 p. 238
- Part of Brown, G.W., Jr. (Ed.), Desert Biology, Vol. 1, Chapter 2. Academic Press, New York, New York, (p. 21-50), 635 p. 229
- Part of Brown, G.W., Jr. (Ed.), Desert Biology, Vol. 1, Chapter 3. Academic Press, New York, New York, (p. 51-100), 635 p. 230
- Part of Brown, G.W., Jr. (Ed.), Desert Biology, Vol. 1, Chapter 4. Academic Press, New York, New York, (p. 101-140), 635 p. 231
- Part of Brown, G.W., Jr. (Ed.), Desert Biology, Vol. 1, Chapter 5. Academic Press, New York, New York, (p. 141-190), 635 p. 232
- Part of Brown, G.W., Jr. (Ed.), Desert Biology, Vol. 1, Chapter 6. Academic Press, New York, New York, (p. 195-355), 635 p. 233
- Part of Brown, G.W., Jr. (Ed.), Desert Biology, Vol. 1, Chapter 7. Academic Press, New York, New York, (p. 387-394), 635 p. 234
- Part of Brown, G.W., Jr. (Ed.), Desert Biology, Vol. 1, Chapter 8. Academic Press, New York, New York, (p. 395-422), 635 p. 235
- Part of Brown, G.W., Jr. (Ed.), Desert Biology, Vol. 1, Chapter 9. Academic Press, New York, New York, (p. 423-486), 635 p. 236
- Part of Brues, A.H. (Ed.), Quarterly Report for August 1947-November 1947, (p. 86-93), 177 p. 284
- Part of Bujdosó, E. (Ed.), Health Physics Problems of Internal Contamination, Proceedings of the IAEA 2nd European Congress on Radiation Protection held in Budapest, Hungary, May 3-5, 1972, (p. 293-298), 655 p. 395
- Part of Bujdosó, E. (Ed.), Health Physics Problems of Internal Contamination, Proceedings of the IAEA 2nd European Congress on Radiation Protection held in Budapest, Hungary, May 3-5, 1972, (p. 341-347), 655 p. 511
- Part of Bujdosó, E. (Ed.), Health Physics Problems of Internal Contamination, Proceedings of the IAEA 2nd European Congress on Radiation Protection held in Budapest, Hungary, May 3-5, 1972, (p. 645-650), 655 p. 513
- Part of Bujdosó, E. (Ed.), Health Physics Problems of Internal Contamination, Proceedings of the IAEA 2nd European Congress on Radiation Protection held in Budapest, Hungary, May 3-5, 1972, (p. 65-76), 655 p. 525

- Part of Bufjoso, E. (Ed.), *Proceedings of the IRPA 2nd European Congress on Radiation Protection Health Physics of Internal Contamination*, held in Budapest, Hungary, May 3-5, 1972, (p. 317-320), 655p. 267
- Part of Bustad, L.K., et al (Eds.), *Proceedings of a Symposium on Swine in Biomedical Research*, held in Richland, Washington, July 19-22, 1965, (p. 467-462), 625 p. 380
- Part of Caldecott, R.S. and Snyder, L.A. (Eds.), *Proceedings of a Symposium on Radioisotopes in the Biosphere held at University of Minnesota, Minneapolis, Minnesota, 1959*, (p. 3-22), 597 p. 398
- Part of Caldecott, R.S. and Snyder, L.A. (Eds.), *Proceedings of a Symposium on Radioisotopes in the Biosphere held at University of Minnesota, Minneapolis, Minnesota, 1959*, (p. 431-448), 597 p. 397
- Part of Dougherty, T.P., et al (Eds.), *Proceedings of a Symposium on Some Aspects of Internal Irradiation held at The Homestead, Heber, Utah, May 8-11, 1961*, Pergamon Press, Oxford, England, (p. 3-6), 529 p. 328
- Part of Dougherty, T.P., et al (Eds.), *Proceedings of a Symposium on Some Aspects of Internal Irradiation held at The Homestead, Heber, Utah, May 8-11, 1961*, Pergamon Press, Oxford, England, (p. 341-348), 529 p. 197
- Part of Dougherty, T.P., et al (Eds.), *Proceedings of a Symposium on Some Aspects of Internal Irradiation held at The Homestead, Heber, Utah, May 8-11, 1961*, Pergamon Press, Oxford, England, (p. 47-64), 529 p. 323
- Part of Dougherty, T.P., et al (Eds.), *Proceedings of a Symposium on Some Aspects of Internal Irradiation held at The Homestead, Heber, Utah, May 8-11, 1961*, Pergamon Press, Oxford, England, (p. 63-77), 529 p. 324
- Part of Dougherty, T.P., et al (Eds.), *Proceedings of a Symposium on Some Aspects of Internal Irradiation held at The Homestead, Heber, Utah, May 8-11, 1961*, Pergamon Press, Oxford, England, (p. 7-25), 529 p. 351
- Part of Dougherty, T.P., et al (Eds.), *Proceedings of a Symposium on Some Aspects of Internal Irradiation held at The Homestead, Heber, Utah, May 8-11, 1961*, Pergamon Press, Oxford, England, (p. 79-93), 529 p. 325
- Part of Dougherty, T.P., et al (Eds.), *Proceedings of a Symposium on Some Aspects of Internal Irradiation held at The Homestead, Heber, Utah, May 8-11, 1961*, Pergamon Press, Oxford, England, (p. 95-113), 529 p. 285
- Part of Dougherty, T.P., et al (Eds.), *Proceedings of a Symposium on Some Aspects of Internal Irradiation held at The Homestead, Heber, Utah, May 8-11, 1961*, Pergamon Press, Oxford, England, (p. 117-129), 529 p. 270
- Part of Dougherty, T.P., *Research in Radiobiology, Annual Report of Work in Progress in the Internal Irradiation Program*, (p. 126-136), 380 p. 402
- Part of Dougherty, T.P., *Research in Radiobiology, Annual Report of Work in Progress in the Internal Irradiation Program*, (p. 163-177), 400 p. 174
- Part of Dougherty, T.P., *Research in Radiobiology, Annual Report of Work in Progress in the Internal Irradiation Program*, (p. 178-185), 400 p. 375
- Part of Dougherty, T.P., *Research in Radiobiology, Annual Report of Work in Progress in the Internal Irradiation Program*, (p. 186-200), 400 p. 316
- Part of Dougherty, T.P., *Research in Radiobiology, Annual Report of Work in Progress in the Internal Irradiation Program*, (p. 201-212), 400 p. 218
- Part of Dougherty, T.P., *Research in Radiobiology, Annual Report of Work in Progress in the Internal Irradiation Program*, (p. 213-228), 400 p. 319
- Part of Dougherty, T.P., *Research in Radiobiology, Annual Report of Work in Progress in the Internal Irradiation Program*, (p. 244-254), 400 p. 315
- Part of Dougherty, T.P., *Research in Radiobiology, Annual Report of Work in Progress in the Internal Irradiation Program*, (p. 282-283), 380 p. 388
- Part of Dougherty, T.P., *Research in Radiobiology, Annual Report of Work in Progress in the Internal Irradiation Program*, (p. 287-288), 380 p. 249
- Part of Dougherty, T.P., *Research in Radiobiology, Annual Report of Work in Progress in the Internal Irradiation Program*, (p. 299-243), 400 p. 310
- Part of Dougherty, T.P., *Research in Radiobiology, Annual Report of Work in Progress in the Internal Irradiation Program*, (p. 309-306), 380 p. 401
- Part of Dougherty, T.P., *Research in Radiobiology, Annual Report of Work in Progress in the Internal Irradiation Program*, (p. 307-318), 380 p. 97
- Part of Dougherty, T.P., *Research in Radiobiology, Annual Report of Work in Progress in the Internal Irradiation Program*, (p. 308-316), 400 p. 326
- Part of Dougherty, T.P., *Research in Radiobiology, Annual Report of Work in Progress in the Internal Irradiation Program*, (p. 317-335), 400 p. 322
- Part of Dougherty, T.P., *Research in Radiobiology, Annual Report of Work in Progress in the Internal Irradiation Program*, (p. 319-330), 380 p. 96
- Part of Dougherty, T.P., *Research in Radiobiology, Annual Report of Work in Progress in the Internal Irradiation Program*, (p. 9-109), 400 p. 317
- Part of Dougherty, T.P., *Research in Radiobiology, Annual Report of Work in Progress in the Internal Irradiation Program*, (p. 199-217), 380 p. 277
- Part of Dougherty, T.P., *Research in Radiobiology, Semi annual Report of Work in Progress on the Chronic Toxicity Program*, (p. 95-108), 185 p. 528
- Part of Dunaway, P.B. and White, M.G. (Eds.), *The Dynamics of plutonium in Desert Environments, Proceedings of the NAG Plutonium Environmental Studies Program Symposium held in Las Vegas, Nevada, October 2-3, 1973*, (p. 43-49), 369 p. 6
- Part of Dunaway, P.B. and White, M.G. (Eds.), *The dynamics of Plutonium in Desert Environments, Proceedings of the NAG Plutonium Environmental Studies Program Symposium held in Las Vegas, Nevada, October 2-3, 1973*, (p. 91-106), 369 p.

PUBLICATION DESCRIPTION INDEX

PUBLICATION DESCRIPTION INDEX

- Part of Effect of Ionizing Radiation on the Organism, the Problem of the Effect of Radioactive Water Pollution on the Reproduction of Commercial Fishes, (p. 195-206), 217 p. 364
- Part of Effect of Ionizing Radiation on the Organism, the Problem of the Effect of Radioactive Water Pollution on the Reproduction of Commercial Fishes, (p. 207-217), 217 p. 363
- Part of Environmental Monitoring at Major U.S. Atomic Energy Commission Contractor Sites, Calendar Year 1972, (p. 197-224), 1217 p. 153
- Part of Environmental Monitoring at Major U.S. Atomic Energy Commission Contractor Sites, Calendar Year 1972, (p. 231-283), 1217 p. 43
- Part of Environmental Monitoring at Major U.S. Atomic Energy Commission Contractor Sites, Calendar Year 1972, (p. 97-128), 1217 p. 170
- Part of Fallout Program Quarterly Summary Report, December 1, 1972-March 1, 1973, (p. III-2 - III-28), 227 p. 491
- Part of Fallout Program Quarterly Summary Report, December 1, 1972-March 1, 1973, (p. III-29 - III-33), 227 p. 481
- Part of Pink, R.M. (Ed.), Biological Studies with Polonium, Radium, and Plutonium, Chapter 7. McGraw-Hill Book Company, Inc., New York, New York, (p. 211-294), 411 p. 155
- Part of Pink, R.M. (Ed.), Biological Studies with Polonium, Radium, and Plutonium, Chapter 8. McGraw-Hill Book Company, Inc., New York, New York, (p. 295-404), 411 p. 154
- Part of Fish, B.R. (Ed.), Proceedings of an International Symposium on Surface Contamination held in Gatlinburg, Tennessee, June, 1964. Pergamon Press, Oxford, England, (p. 309-316), 423 p. 426
- Part of Fowler, E.B., (Ed.), Radioactive Fallout, Soils, Plants, Foods, Man. Elsevier Publishing Company, New York, New York, (p. 287-303) 389
- Part of Hardy, E.P., Jr., Fallout Program Quarterly Summary Report, September 1, 1973 through December 1, 1973, (p. I-36 - I-40), 163 p. 512
- Part of HASL Procedures Manual, (p. 43-53), 103 p. 453
- Part of Health Physics Division Annual Progress Report for Period Ending July 31, 1965, (p. 212-213), 263 p. 76
- Part of Hearings on Safety and Health Standards, (13 p.) 55
- Part of Hodge, H.C., et al (Eds.), Handbook of Experimental Pharmacology, Uranium, Plutonium, the Transplutonics, Chapter 8. Springer-Verlag, New York, New York, (40 p.) 476
- Part of Horrocks, D.L. and Peng, C.T. (Eds.), Proceedings of the International Conference on Organic Scintillators and Liquid Scintillation Counting held in San Francisco, California, July 7-10, 1970. Academic Press, New York, New York, (p. 951-963), 1078 p. 165
- Part of Hungate, F.P. and Szeza, E.G. (Eds.), Hanford Biology Research Annual Report for 1960, (p. 144-146), 195 p. 405
- Part of Johnston, J.E. (Ed.), Health Physics and Medical Division Research Progress Report, January-December, 1965, (p. 25), 17 p. 44
- Part of Kline, A.B., Jr., The Environmental and Ecological Forum, 1970-1971, (p. 168-186), 186 p. 51
- Part of Kornberg, H.A. and Szeza, E.G. (Eds.), Hanford Biology Research Annual Report for 1961, (p. 61-66), 180 p. 461
- Part of Kornberg, H.A. and Szeza, E.G. (Eds.), Hanford Biology Research Annual Report for 1962, (p. 1-10), 269 p. 198
- Part of Kornberg, H.A. and Szeza, E.G. (Eds.), Hanford Biology Research Annual Report for 1962, (p. 11-17), 269 p. 376
- Part of Kornberg, H.A. and Szeza, E.G. (Eds.), Hanford Biology Research Annual Report for 1962, (p. 115-117), 269 p. 209
- Part of Kornberg, H.A. and Szeza, E.G. (Eds.), Hanford Biology Research Annual Report for 1962, (p. 126-135), 144
- Part of Kornberg, H.A. and Szeza, E.G. (Eds.), Hanford Biology Research Annual Report for 1962, (p. 136-142), 269 p. 357
- Part of Kornberg, H.A. and Szeza, E.G. (Eds.), Hanford Biology Research Annual Report for 1962, (p. 143-148), 269 p. 221
- Part of Kornberg, H.A. and Szeza, E.G. (Eds.), Hanford Biology Research Annual Report for 1962, (p. 149-155), 269 p. 343
- Part of Kornberg, H.A. and Szeza, E.G. (Eds.), Hanford Biology Research Annual Report for 1962, (p. 174-177), 269 p. 320
- Part of Kornberg, H.A. and Szeza, E.G. (Eds.), Hanford Biology Research Annual Report for 1962, (p. 18-21), 269 p. 307
- Part of Kornberg, H.A. and Szeza, E.G. (Eds.), Hanford Biology Research Annual Report for 1962, (p. 22-30), 269 p. 175
- Part of Kornberg, H.A. and Szeza, E.G. (Eds.), Hanford Biology Research Annual Report for 1962, (p. 31-35), 269 p. 321
- Part of Kornberg, H.A. and Szeza, E.G. (Eds.), Hanford Biology Research Annual Report for 1962, (p. 36-38), 269 p. 202
- Part of Kornberg, H.A. and Szeza, E.G. (Eds.), Hanford Biology Research Annual Report for 1962, (p. 98-108), 269 p. 199
- Part of Kornberg, H.A. and Szeza, E.G. (Eds.), Hanford Biology Research Annual Report for 1963, (p. 44-46), 242 p. 515
- Part of Kornberg, H.A., et al, Biology Research Annual Report, 1956, (p. 142-145), 237 p. 40
- Part of Kornberg, H.A., et al, Biology Research Annual Report, 1956, (p. 157-159), 237 p. 41
- Part of Kornberg, H.A., et al, Biology Research Annual Report, 1956, (p. 25-29), 237 p. 37
- Part of Kornberg, H.A., et al, Biology Research Annual Report, 1956, (p. 30-35), 237 p. 38
- Part of Kornberg, H.A., et al, Biology Research Annual Report, 1956, (p. 36-41), 237 p. 39
- Part of Lebedinsky, A.V. and Mostalev Yu.I. (Eds.), Plutonium 239: Its Distribution, Biological Effects and Accelerated Elimination, (p. 113-121), 267 p. 498

- Part of Lebedinsky, A.V. and Moskalev, Yu.I. (Eds.), Plutonium 239: Its Distribution, Biological Effects and Accelerated Elimination, (p. 1-7), 267 p. 517
- Part of Lebedinsky, A.V. and Moskalev, Yu.I. (Eds.), Plutonium 239: Its Distribution, Biological Effects and Accelerated Elimination, (p. 104-172), 267 p. 497
- Part of Lebedinsky, A.V. and Moskalev, Yu.I. (Eds.), Plutonium 239: Its Distribution, Biological Effects and Accelerated Elimination, (p. 122-132), 267 p. 499
- Part of Lebedinsky, A.V. and Moskalev, Yu.I. (Eds.), Plutonium 239: Its Distribution, Biological Effects and Accelerated Elimination, (p. 133-149), 267 p. 500
- Part of Lebedinsky, A.V. and Moskalev, Yu.I. (Eds.), Plutonium 239: Its Distribution, Biological Effects and Accelerated Elimination, (p. 150-172), 267 p. 501
- Part of Lebedinsky, A.V. and Moskalev, Yu.I. (Eds.), Plutonium 239: Its Distribution, Biological Effects and Accelerated Elimination, (p. 173-193), 267 p. 502
- Part of Lebedinsky, A.V. and Moskalev, Yu.I. (Eds.), Plutonium 239: Its Distribution, Biological Effects and Accelerated Elimination, (p. 19-24), 267 p. 519
- Part of Lebedinsky, A.V. and Moskalev, Yu.I. (Eds.), Plutonium 239: Its Distribution, Biological Effects and Accelerated Elimination, (p. 194-214), 267 p. 503
- Part of Lebedinsky, A.V. and Moskalev, Yu.I. (Eds.), Plutonium 239: Its Distribution, Biological Effects and Accelerated Elimination, (p. 215-229), 267 p. 504
- Part of Lebedinsky, A.V. and Moskalev, Yu.I. (Eds.), Plutonium 239: Its Distribution, Biological Effects and Accelerated Elimination, (p. 230-236), 267 p. 505
- Part of Lebedinsky, A.V. and Moskalev, Yu.I. (Eds.), Plutonium 239: Its Distribution, Biological Effects and Accelerated Elimination, (p. 237-245), 267 p. 506
- Part of Lebedinsky, A.V. and Moskalev, Yu.I. (Eds.), Plutonium 239: Its Distribution, Biological Effects and Accelerated Elimination, (p. 25-38), 267 p. 520
- Part of Lebedinsky, A.V. and Moskalev, Yu.I. (Eds.), Plutonium 239: Its Distribution, Biological Effects and Accelerated Elimination, (p. 39-51), 267 p. 521
- Part of Lebedinsky, A.V. and Moskalev, Yu.I. (Eds.), Plutonium 239: Its Distribution, Biological Effects and Accelerated Elimination, (p. 52-57), 267 p. 522
- Part of Lebedinsky, A.V. and Moskalev, Yu.I. (Eds.), Plutonium 239: Its Distribution, Biological Effects and Accelerated Elimination, (p. 58-69), 267 p. 493
- Part of Lebedinsky, A.V. and Moskalev, Yu.I. (Eds.), Plutonium 239: Its Distribution, Biological Effects and Accelerated Elimination, (p. 70-76), 267 p. 494
- Part of Lebedinsky, A.V. and Moskalev, Yu.I. (Eds.), Plutonium 239: Its Distribution, Biological Effects and Accelerated Elimination, (p. 77-87), 267 p. 495
- Part of Lebedinsky, A.V. and Moskalev, Yu.I. (Eds.), Plutonium 239: Its Distribution, Biological Effects and Accelerated Elimination, (p. 8-18), 267 p. 518
- Part of Lebedinsky, A.V. and Moskalev, Yu.I. (Eds.), Plutonium 239: Its Distribution, Biological Effects and Accelerated Elimination, (p. 92-103), 267 p. 496
- Part of LeCam, L.M., et al (Eds.), Proceedings of the 6th Berkeley Symposium on Mathematical Statistics and Probability held at the Statistical Laboratory, University of California, April 9-12, June 16-21 and July 19-22, 1971, Vol. 6. University of California Press, Berkeley, California, (p. 291-370)
- Part of Medical Radiology, (p. 126-134), 190 p. 271
- Part of Metabolism of Radioisotopes in the Animal Organism, (p. 137-152), 220 p. 486
- Part of Metabolism of Radioisotopes in the Animal Organism, (p. 15-32), 220 p. 331
- Part of Metabolism of Radioisotopes in the Animal Organism, (p. 199-204), 220 p. 308
- Part of Metabolism of Radioisotopes in the Animal Organism, (p. 33-54), 220 p. 350
- Part of Metabolism of Radioisotopes in the Animal Organism, (p. 55-66), 220 p. 256
- Part of Moghissi, A.A. and Carter, H.W. (Eds.), Proceedings of a Symposium on Tritium held in Las Vegas, Nevada, August 30-September 2, 1971. Messenger Graphics, Publishers, Las Vegas, Nevada, (p. 113-126), 807 p. 420
- Part of Morgan, K.Z., Health Physics Division Annual Progress Report for Period Ending July 31, 1962, (p. 128-141), 180 p. 54
- Part of Moskal'ev, Yu. I., Distribution and Biological Effects of Radioactive Isotopes, (p. 548-560), 718 p. 192
- Part of Moskalev, Yu.I. (Ed.), Radioactive Isotopes and the Body, (p. 147-152), 458 p. 330
- Part of Moskalev, Yu.I. (Ed.), Radioactive Isotopes and the Body, (p. 153-160), 458 p. 193
- Part of Moskalev, Yu.I. (Ed.), Radioactive Isotopes and the Body, (p. 168-174), 458 p. 445
- Part of Moskalev, Yu.I. (Ed.), Radioactive Isotopes and the Body, (p. 339-346), 458 p. 240
- Part of Moskalev, Yu.I. (Ed.), Radioactive Isotopes and the Body, (p. 347-353), 458 p. 382
- Part of Moskalev, Yu.I. (Ed.), Radioactive Isotopes and the Body, (p. 364-375), 458 p. 243
- Part of Moskalev, Yu.I. (Ed.), Radioactive Isotopes and the Body, (p. 376-387), 458 p. 191
- Part of Moskalev, Yu.I. (Ed.), Remote Aftereffects of Radiation Damage, (p. 214-224), 574 p. 246
- Part of Moskalev, Yu.I. (Ed.), Remote Aftereffects of Radiation Damage, (p. 323-333), 574 p. 385
- Part of Moskalev, Yu.I. (Ed.), Remote Aftereffects of Radiation Damage, (p. 334-343), 574 p. 187
- Part of Moskalev, Yu.I. (Ed.), Remote Aftereffects of Radiation Damage, (p. 406-415), 574 p. 309

PUBLICATION DESCRIPTION INDEX

- Part of Moskalev, Yu.I. (Ed.), Remote Aftereffects of Radiation Damage, (p. 441-446), 574 p. 338
- Part of Moskalev, Yu.I. (Ed.), Remote Aftereffects of Radiation Damage, (p. 455-462), 574 p. 168
- Part of Moskalev, Yu.I., Distribution and Biological Effects of Radioactive Isotopes, (p. 122-130), 718 p. 459
- Part of Moskalev, Yu.I., Distribution and Biological Effects of Radioactive Isotopes, (p. 592-598), 718 p. 379
- Part of Moskalev, Yu.I., Distribution and Biological Effects of Radioactive Isotopes, (p. 670-677), 718 p. 152
- Part of Moskalev, Yu.I. (Ed.), Remote Aftereffects of Radiation Damage, (p. 416-424), 574 p. 387
- Part of Nettesheim, P., et al (Eds.), Proceedings of a Symposium on Morphology of Experimental Respiratory Carcinogenesis held in Gatlinburg, Tennessee, May 13-16, 1970, (p. 147-160), 483 p. 460
- Part of Nickson, J.J. (Ed.), Report of Conference on Plutonium, May 14th and 15th, (p. 1-4), 62 p. 287
- Part of Nickson, J.J. (Ed.), Report of Conference on Plutonium, May 14th and 15th, (p. 10-11), 62 p. 289
- Part of Nickson, J.J. (Ed.), Report of Conference on Plutonium, May 14th and 15th, (p. 12-15), 62 p. 290
- Part of Nickson, J.J. (Ed.), Report of Conference on Plutonium, May 14th and 15th, (p. 16-18), 62 p. 291
- Part of Nickson, J.J. (Ed.), Report of Conference on Plutonium, May 14th and 15th, (p. 19-26), 62 p. 292
- Part of Nickson, J.J. (Ed.), Report of Conference on Plutonium, May 14th and 15th, (p. 27-45), 62 p. 293
- Part of Nickson, J.J. (Ed.), Report of Conference on Plutonium, May 14th and 15th, (p. 46-56), 62 p. 294
- Part of Nickson, J.J. (Ed.), Report of Conference on Plutonium, May 14th and 15th, (p. 57-9), 62 p. 288
- Part of Nickson, J.J. (Ed.), Report of Conference on Plutonium, May 14th and 15th, (p. 57-62), 62 p. 295
- Part of Pearce, D.W. (Ed.), Annual Report for 1968, (p. 6-9), 238 p. 299
- Part of Proceedings of a Symposium on Delayed Effects of Bone-Seeking Radionuclides held at Sun Valley, Idaho, September 12-14, 1967. Published in Science, 161, 814-280
- Part of Proceedings of a Symposium on New Developments in Physical and Biological Radiation Detectors held in Vienna, Austria, November 23-27, 1970, (p. 225-234), 742 p. 207
- Part of Proceedings of a Symposium on New Developments in Physical and Biological Radiation Detectors held in Vienna, Austria, November 23-27, 1970, (p. 287-297), 756 p. 489
- Part of Proceedings of a Symposium on Plutonium and Environmental Metals in Man held in Albuquerque, New Mexico, May 9, 1973, (10p.) 247
- Part of Proceedings of a Symposium on Radiation-Induced Cancer held in Athens, Greece, April 28-May 2, 1969, (p. 361-367), 251
- Part of Proceedings of a Symposium on Radiological Health and Safety in Mining and Milling of Nuclear Materials held in Vienna, Austria, August 26-31, 1963, Vol. 1, (p. 253-274) 479
- Part of Proceedings of a Symposium on the Assessment of Radioactive Body Burdens in Man held in Heidelberg, Germany, May 11-16, 1964, Vol. 1, (p. 231-244), 1067 p. 276
- Part of Proceedings of a Symposium on the Assessment of Radioactive Body Burdens in Man held in Heidelberg, Germany, May, 1964, Vol. 2, (p. 589-602), 666 p. 194
- Part of Proceedings of a Symposium on the Assessment of Radioactive Body Burdens in Man held in Heidelberg, Germany, May, 1964, Vol. 2, (p. 603-615), 666 p. 195
- Part of Proceedings of a Symposium on the Interaction of Radioactive Contaminants with the Constituents of the Marine Environment held in Seattle, Washington, July 10-14, 1972, (p. 263-276), 786 p. 456
- Part of Proceedings of a Symposium on the Management of Radioactive Wastes from Fuel Reprocessing held in Paris, France, November 27-December 1, 1972, (33 p.) 275
- Part of Proceedings of a Symposium on the Metabolism of Biologically Important Radionuclides held January 25, 1963. Published in British Journal of Radiology, 37(434), 115-120 345
- Part of Proceedings of an International Symposium on Rapid Methods for Measuring Radioactivity in the Environment held in Neuherberg, Germany, July 5-9, 1971, (p. 171-181), 967 p. 66
- Part of Proceedings of an International Symposium on Rapid Methods for Measuring Radioactivity in the Environment held in Neuherberg, Germany, July 5-9, 1971, (p. 745-755), 967 p. 67
- Part of Proceedings of the AAREC Symposium on Environmental and Radiological Safety Aspects of the Mining and Processing of Uranium held in Lucas Heights, Australia, December 9-10, 1971, (20 p.), 97 p. 163
- Part of Proceedings of the American Industrial Hygiene Symposium held in Chase-Park Plaza, St. Louis, Missouri, May 13-17, 1968. Published in American Industrial Hygiene Association Journal, 29(1), 169-172 410
- Part of Proceedings of the IRPA 2nd European Congress on Radiation Protection Budapest, E. (Ed.), Health Physics Problems of Internal Contamination, held in Budapest, Hungary, May 3-5, 1972, (p. 21-29), 655p. 264
- Part of Proceedings of the IRPA 3rd International Congress on Radiation Protection Symposium held in Washington, D.C., September 9-14, 1973, (6 p.) 266
- Part of Proceedings of the National Industrial Hygiene Association Symposium held in Denver, Colorado, October 5-6, 1972, (24 p.) 308

PUBLICATION DESCRIPTION INDEX

- Part of Proceedings of the Southern Conference on Environmental Radiation Protection from Nuclear Power Plants, April 21-22, 1971, (p. 221-233), 246 p. 300
- Part of Proceedings of the 11th Symposium of the German Medical Radiologists Protection Association held in Zurich, Switzerland, June 19-20, 1970, (25p.) 414
- Part of Proceedings of the 17th Annual Meeting of the Health Physics Society held in Las Vegas, Nevada, June 12-16, 1972, (11 p.) 467
- Part of Proceedings of the 18th Annual Health Physics Society Meeting held in Miami Beach, Florida, June 17-21, 1973, (40 p.) 219
- Part of Proceedings of the 19th Annual Analytical Chemistry Symposium held in Jackson Hole, Wyoming, September 3, 1973, (12 p.) 411
- Part of Proceedings of the 2nd United Nations International Conference on the Peaceful Uses of Atomic Energy held in Geneva Switzerland, September 1-13, 1958, Vol. 23, (p. 306-312) 358
- Part of Proceedings of the 24th Northwest Region Symposium of the American Chemical Society held in Salt Lake City, Utah, June 12-13, 1969, (18 p.) 73
- Part of Proceedings of the 3rd Hanford Biology Symposium held in Richland, Washington, May 4-6, 1964 438
- Part of Proceedings of the 4th International Conference on the Peaceful Uses of Atomic Energy held in Geneva, Switzerland, September 6-16, 1971, Vol. II, (p. 341-353), 766 p. 335
- Part of Proceedings of the 4th International Conference on the Peaceful Uses of Atomic Energy held in Geneva, Switzerland, September 6-16, 1971, Vol. II, (p. 559-573), 766 p. 378
- Part of Proceedings of the 40th Annual Meeting of the Radiological Society of North America held in Los Angeles, California, December 5-10, 1958, Published in Radiology, 65(2), 253-259. 442
- Part of Proceedings of the 49th Meeting of the Biochemical Society held at Queen's University, Belfast, Ireland, September, 4-5, 1969, (p. 53) 415
- Part of Proceedings of the 5th Annual Health Physics Society Midyear Topical Symposium on the Health Physics Aspects of Nuclear Facility Siting, held in Idaho Falls, Idaho, November 3-6, 1970, Vol. 2, (p. 428-446), 288 p. 208
- Part of Proceedings of the 6th IEEE Region Symposium held in Portland, Oregon, May 22, 1968, (23 p.), 206 p. 32
- Part of Progress Report, July 1 to September 30, 1971, (p. 32), 56 p. 142
- Part of Radiobiologiya, (p. 101-106), 306 p. 245
- Part of Radiobiology, (p. 107-118), 306 p. 369
- Part of Radiobiology, (p. 160-169) 310
- Part of Radiobiology, (p. 169-177), 275 p. 339
- Part of Radiobiology, (p. 37-45) 241
- Part of Radiobiology, (p. 85-93), 238 p. 273
- Part of Radiobiology, (p. 97-104), 220 p. 242
- Part of Radionuclides in the Environment, Advances in Chemistry Series No. 93, (p. 97-117) 383
- Part of Rajewsky, B. (Ed.), Proceedings of the 9th International Congress of Radiology held in Munchen, Germany, July 23-30, 1959. Georg Thieme Verlag, Stuttgart, Germany, (p. 1251-1257), 1625 p. 223
- Part of Research Report on Internal Exposure to Plutonium, April 1969-March 1970, (p. 70-72), 91 p. 183
- Part of Rosenthal, M.W. (Ed.), Therapy of Radicellement Poisoning, Transcription of a Meeting on Experimental and Clinical Approaches to the Treatment of Poisoning by Radioactive Substances held October 20-21, 1955, (p. 12-22), 175 p. 344
- Part of Sanders, C.L., et al (Eds.), Proceedings of the 12th Annual Hanford Biology Symposium on Radionuclide Carcinogenesis held at Richland, Washington, May 10-12, 1972 (p. 1-14), 500 p. 412
- Part of Sanders, C.L., et al (Eds.), Proceedings of the 12th Annual Hanford Biology Symposium on Radionuclide Carcinogenesis held at Richland, Washington, May 10-12, 1972 (p. 138-153), 500 p. 46
- Part of Sanders, C.L., et al (Eds.), Proceedings of the 12th Annual Hanford Biology Symposium on Radionuclide Carcinogenesis held at Richland, Washington, May 10-12, 1972, (p. 241-436), 500 p. 49
- Part of Sanders, C.L., et al (Eds.), Proceedings of the 12th Annual Hanford Biology Symposium on Radionuclide Carcinogenesis held at Richland, Washington, May 10-12, 1972, (p. 307-311), 500 p. 47
- Part of Sanders, C.L., et al (Eds.), Proceedings of the 12th Annual Hanford Biology Symposium on Radionuclide Carcinogenesis held at Richland, Washington, May 10-12, 1972, (p. 322-346), 500 p. 48
- Part of Sanders, C.L., et al (Eds.), Proceedings of the 12th Annual Hanford Biology Symposium on Radionuclide Carcinogenesis held at Richland, Washington, May 10-12, 1972, (p. 465-474), 500 p. 50
- Part of Schultz, V. and Klement, A.W., Jr. (Eds.), Proceedings of the 1st National Symposium on Radiocotoxicology held at Colorado State University, Fort Collins, Colorado, September 10-15, 1961, (p. 373-383), 746 p. 137
- Part of Simpson, C.L., et al, Annual Report for 1971, (p. 82-87), 188 p. 123
- Part of Simpson, C.L., et al, Annual Report for 1971, (p. 88-90), 188 p. 124
- Part of Snyder, W.S., et al (Eds.), Proceedings of the 1st International Congress of Radiation Protection held in Rome, Italy, September 5-10, 1966, Part 2, Pergamon Press, Oxford, England, (p. 1181-1190), 1623 p. 162
- Part of Snyder, W.S., et al (Eds.), Proceedings of the 1st International Congress of Radiation Protection held in Rome, Italy, September 5-10, 1966, Part 2, Pergamon Press, Oxford, England, (p. 929), 1623 p. 354
- Part of Stover, B.J. and Jee, W.S.S. (Eds.), Radiobiology of Plutonium, J.W. Press, Salt Lake City, Utah, (p. 431-468), 552 p. 210
- Part of the Biomedical Division Preliminary Report for Project Schooner, (p. 6-28), 75 p. 409

PUBLICATION DESCRIPTION INDEX

PUBLICATION DESCRIPTION INDEX

PUBLICATION DESCRIPTION INDEX

- Part of Thompson, R.C. and Bair, W.J. (Eds.), Proceedings of the 11th Hanford Symposium on the Biological Implications of the Transuranium Elements held in Richland, Washington, September 27-29, 1971. Published in *Health Physics*, 22(6), 637-843 119
- Part of Thompson, R.C. and Sweazea, E.G. (Eds.), Annual Report for 1965, (p. 47-49), 139 p. 440
- Part of Thompson, R.C. and Sweazea, E.G. (Eds.), Annual Report for 1965, (p. 63-85), 139 p. 206
- Part of Thompson, R.C. and Sweazea, E.G. (Eds.), Annual Report for 1966, (p. 103-105), 207 p. 488
- Part of Thompson, R.C. and Sweazea, E.G. (Eds.), Annual Report for 1966, (p. 61-63), 207 p. 483
- Part of Thompson, R.C. and Sweazea, E.G. (Eds.), Annual Report for 1966, (p. 80-81), 207 p. 527
- Part of Thompson, R.C. and Woods, S.W. (Eds.), Hanford Biology Research Annual Report for 1964, (p. 118-121), 216 p. 222
- Part of Thompson, R.C. and Woods, S.W. (Eds.), Hanford Biology Research Annual Report for 1964, (p. 21-24), 216 p. 356
- Part of Thompson, R.C. and Woods, S.W. (Eds.), Hanford Biology Research Annual Report for 1964, (p. 75-78), 216 p. 368
- Part of Thompson, R.C. and Woods, S.W. (Eds.), Hanford Biology Research Annual Report for 1964, (p. 79-80), 216 p. 201
- Part of Thompson, R.C. and Woods, S.W. (Eds.), Hanford Biology Research Annual Report for 1964, (p. 81-82), 216 p. 203
- Part of Thompson, R.C. and Woods, S.W. (Eds.), Hanford Biology Research Annual Report for 1964, (p. 91-93), 216 p. 329
- Part of Thompson, R.C. et al (Eds.) Annual Report for 1967, (p. 412-415), 253 p. 333
- Part of Thompson, R.C. et al (Eds.), Annual Report for 1967, (p. 1.12-1.18), 253 p. 204
- Part of Thompson, R.C. et al (Eds.), Annual Report for 1967, (p. 3.11-3.12), 253 p. 239
- Part of Thompson, R.C. et al (Eds.), Annual Report for 1967, (p. 3.5-3.8), 253 p. 372
- Part of Thompson, R.C. et al (Eds.), Annual Report for 1967, (p. 3.8-3.10), 253 p. 361
- Part of Thompson, R.C. et al (Eds.), Annual Report for 1967, (p. 312-314), 253 p. 348
- Part of Thompson, R.C. et al (Eds.), Annual Report for 1967, (p. 323-334), 253 p. 349
- Part of Thompson, R.C. et al (Eds.), Annual Report for 1967, (p. 4.9-4.10), 253 p. 367
- Part of Thompson, R.C. et al (Eds.), Annual Report for 1967, (p. 411-412), 253 p. 355
- Part of Thompson, R.C. et al (Eds.), Annual Report for 1967, (p. 47-48), 253 p. 353
- Part of Thompson, R.C. et al (Eds.), Annual Report for 1967, (p. 5.5-5.7), 253 p. 190
- Part of Thompson, R.C. et al (Eds.), Annual Report for 1967, (p. 6.11), 253 p. 352
- Part of Thompson, R.C. et al (Eds.), Annual Report for 1967, (p. 6.13-6.17), 253 p. 214
- Part of Thompson, R.C. et al (Eds.), Annual Report for 1967, (p. 6.17-6.19), 253 p. 340
- Part of Thompson, R.C. et al (Eds.), Annual Report for 1967, (p. 6.20-6.21), 253 p. 217
- Part of Thompson, R.C. et al (Eds.), Annual Report for 1967, (p. 6.3-6.7), 253 p. 205
- Part of Thompson, R.C. et al (Eds.), Annual Report for 1967, (p. 3.17-3.20), 253 p. 342
- Part of Thompson, R.C. et al (Eds.), Annual Report for 1967, (p. 6.12-6.13), 253 p. 464
- Part of Thompson, R.C. et al (Eds.), Annual Report for 1967, (p. 6.9-6.10), 253 p. 465
- Part of Tokai Works Semi-Annual Progress Report, January-June, 1971, (p. 165-179), 194 p. 129
- Part of Tokai Works Semi-Annual Progress Report, January-June, 1971, (p. 180-184), 194 p. 130
- Part of Tokai Works Semi-Annual Progress Report, January-June, 1971, (p. 190-194), 194 p. 131
- Part of Tokai Works Semi-Annual Progress Report, January-June, 1971, (p. 54-75), 194 p. 128
- Part of Transfer of Radioactive Materials from the Terrestrial Environment to Animals and Man. The Chemical Rubber Company, CRC Press, Cleveland, Ohio, (p. 61), 57 p. 447
- Part of Vaughan, B.E., et al, Annual Report for 1972, (p. 2.2-2.4), 105 p. 359
- Part of Wallace, A., Annual Progress Report, Behavior of Certain Synthetic Chelating Agents in Biological Soil Systems, (p. 42-46), 99p. 332
- Part of Walton, W.H. (Ed.), Proceedings of the 3rd International Symposium on Inhaled Particles held in London, England, September 14-23, 1970, Vol. 1. Unwin Brothers Limited, The Gresham Press, Old Woking, Surrey, England, (p. 247-259), 1090 p. 184
- Part of Walton, W.H. (Ed.), Proceedings of the 3rd International Symposium on Inhaled Particles held in London, England, September 14-23, 1970, Vol. 2. Unwin Brothers Limited, The Gresham Press, Old Woking, Surrey, England, (p. 201-268), 1090 p. 132
- Part of Walton, W.H. (Ed.), Proceedings of the 3rd International Symposium on Inhaled Particles held in London, England, September 14-23, 1970, Vol. 2. Unwin Brothers Limited, The Gresham Press, Old Woking, Surrey, England, (p. 983-995), 1090 p. 133
- Part of 3rd Annual National Conference on Radiation Control held in Scottsdale, Arizona, May 2-6, 1971, (p. 305-308), 390 p. 482
- Part of 3rd Annual National Conference on Radiation Control held in Scottsdale, Arizona, May 2-6, 1971, (p. 309-317), 390 p. 485
- FEL-208 365
- Ph.D. Thesis, University of Michigan, 132 p. 419
- Ph.D. Thesis, University of Tennessee, 191 p. 283
- Physics in Medicine and Biology, 7(1), 83-91 366
- Physiological Zoology, 20, 405-421 433
- ENCT-631-72-01 128, 129, 130, 131
- PNE-714F 72

PUBLICATION DESCRIPTION INDEX

- POR-2512 393
- PR-B-91 142
- PR-B-95 134
- Proceedings of an International Symposium held in Neuerberg, Germany, July 5-9, 1971, 967 p. 65
- Proceedings of the AEC Symposium held in Lucas Heights, Australia, December 9-10, 1971, 97 p. 143
- Proceedings of the NAEGL Plutonium Environmental Studies Program Symposium held in Las Vegas, Nevada, October 2-3, 1973, 369 p. 1
- Proceedings of the Society for Experimental Biology and Medicine, 105, 351-356 279
- Proceedings of the 12th Annual Hanford Biology Symposium held at Richland, Washington, May 10-12, 1972, 500 p. 45
- Progress Report for September 1972-August 1973 258
- Progress Report of August 1, 1971 through July 31, 1972, 20 p. 269
- Radiation Botany, 12(6), 433-435 332
- Radiation Data and Reports, 13(2), 88-92 122
- Radiation Data and Reports, 13(2), 92-98 120
- Radiation Data and Reports, 13(4), 227-236 392
- Radiation Data and Reports, 13(5), 311-318 422
- Radiation Data and Reports, 13(7), 412 423
- Radiation Data and Reports, 13(7), 417-419 391
- Radiation Research, Supplement 1, 265-279 523
- Radiation Research, 13, 343-355 360
- Radiation Research, 15, 220-226 182
- Radiation Research, 17, 625-681 262
- Radiation Research, 22, 489-506 509
- Radiation Research, 22, 81-94 256
- Radiation Research, 34, 501-522 373
- Radiation Research, 37(2), 349-360 30
- Radiation Research, 4, 339-347 510
- Radiation Research, 43, 56-70 257
- Radiation Research, 44, 821-834 334
- Radiation Research, 48, 319-331 423
- Radiation Research, 50, 191-196 439
- Radiation Research, 54, 556-565 189
- Radiation Research, 55(1), 129-143 436
- Radiation Research, 55(1), 144-152 188
- Radiobiologiya, 1(4), 487-492 281
- Radiobiologiya, 10(4), 584-589 310
- Radiobiologiya, 5(6), 785-936 273
- Radiobiologiya, 7(6), 900-905 339
- Radiobiologiya, 8(1), 65-71 369
- Radiotekhnika, 9(1), 75-80 242
- Radiotekhnika, 8(1), 62-64 245
- Radiochemical and Radioanalytical Letters, 12(4-5), 215-221 28
- Radiological Health Data and Reports, 7(8), 483-484 74
- Records of Oceanographic Works in Japan, 11(2), 53-63 424
- RPP-2N9-72 153
- RPP-Trans-130 307
- RPP-1845 467
- RPP-1927 303, 304
- RPP-2054 455
- RLG-2225-T18-3 250
- Royal Society of Edinburgh, Series B, 72, 167-182 473
- Safety Series No. 1 298
- Safety Series No. 6 297
- SC-CR-50-3637 284
- SC-M-67-3000 157, 158, 159, 160
- Science, 122(3167), 453-456 281
- Science, 171, 68-71 337
- Science, 175, 629-631 468
- SLR-73-0339 43
- STI/PUB/269 207, 489
- STI/PUB/300 335, 370
- STI/PUB/313 456
- STI/PUB/319 298
- STI/PUB/322 297
- STI/PUB/88 190, 195, 276
- Strahlenschutz Potschung und Praxis, 11, 54-78 614
- SWRRL-110-r 58
- SWRRL-111-E 463
- SWRRL-50-r 68
- SWRRL-59-r 75
- The Chemical Rubber Company, CRC Press, Cleveland, Ohio, 57 p. 646
- The Viking Press, New York, New York, 281 p. 678
- The Williams and Wilkins Company, Baltimore, Maryland, 2nd Edition, 376 p. 31
- TID-18867 466
- TID-25857 51
- TID-25955 472
- TID-3317-S-4 252
- TID-3917 (Suppl. 1) 457

Transactions of the Kansas Academy of Science,
56 (3), 341-363 500

UCLA-12-858 108

UCLA-13-937 8

UCLA-34-P-51-35 332

UCRL-50718 409

UCRL-51349 151

UCRL-51412 138

UCRL-72534 208

UCRL-75884 17, 18, 19, 20, 21, 22, 23

USNRDL-TR-645 5C7

Vestnik Zoologii, 4(2), 12-15 312

WASH-1241 135

WASH-1259 43, 153, 170

WASH-1520 470

WASH-1527, (Draft) 471

WT-2512 393