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ABSTRACT

It is desirable to introduce radial straight sections into spiral sector
accelerators in order to accommodate accelerating cavities of reasonable
design and magnet windings. Such straight sections make the accelerator
non-scaling, i.e., in general the betatron oscillation frequencies vary
with energy and resonances may be crossed. These effects have been
investigated analytically in the linear approximation. The equations of
motion are now functions not only of the accelerator parameters, but also
of the geometry of the radial straight sections and of the equilibrium
orbit radius. If the number of spirals per revolution is N and the number
of radial straight sections per revolution is p, then all harmonic nunb ers
n<—§- g, where q equals p divided by the greatest common divisor of p and N,
do not contribute to the change of betatron oscillation frequencies with
energy. Since the contributions of a harmonic to the frequencies decrease
as the harmonic number increases, it appears that the variation of beta-
tron oscillation frequencies with energy can be kept within acceptable
limits.

*AEC Research and Development Report. Research supported by the
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I. INTRODUCTION

It is the purpose of this report to study the effect of radial straight
sections on the tune (i.e., the values of 1/ 5 -and 17 y) of a spiral sector
accelerator. At different radii the straight sections occur at different
positions relative to the spiral magnets. This destroys the scaling
properties of the accelerator, and 'ﬁx and ﬁy are no longer constant
for different radii. One can study the problem of variation of tune with
radius by treating the clearly equivalent problem of variation of tune
with the position of the straight sections.

Define 7 as the angular distance between a spiral ridge and the

center of a straight section along a circle of radius r Let p equal

o
the number of straight sections and N the number of sectors. If one

. . : /
moves out in radius to a new radius r' where 7’ the new angular

distance becomes equal to Fil . ;%% I " then the equilibrium orbit at

r’is scaling with respect to the equilibrium orbit at r Thus in order

o°

to study the variation of tune with radius, one need only consider the

217

variation of tune between ry and r' (i.e., between T and T+ W )

because the variation is periodic with a period equal to r' - r

o
. 2T . .
(i.e., g N ). As one can readily see, in order to decrease the

variation of the tune, one can decrease the periodicity of the variation
by choosing p and N such as to make q large. The largest value of q
is obtained by making p and N relatively prime numbers in which case

q equals p.

>c<q is hereafter used for the number equal to p divided by the greatest

common divisor of p and N.
2

s’
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This report obtains the linear equations of particle motion about the
equilibrium orbit for two types of radial straight sections. The special
case where one neglects the field harmonics greater than or equal to
q/2 for a spiral sector accelerator without radial straight sections is
treated in detail. It is found that for this case that there is no variation
of the tune with the radius for either type of radial straight sections.

II. THEORY

A. Form of Magnetic Field in Median Plane

The form of the magnetic field in the median plane for a spiral sector
design of a FFAG accelerator without radial straight sections is given
(1)
by the vertical field, [BJ (The f J about B'z‘ indicates the field in

the absence of straight sections):

A Ln
[B]=-8 (1+x)" 58, e’

where

3 §n

and the index n takes only the values:

One can expand the form of the vertical magnetic field in the median

plane with radial straight sections, Bi‘ , in a Fourier series:
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where A nh is a function of not only the geometrical properties of the
straight sections but also of the variable x (i.e., Ap = ln(x ) ).
Consider the two types of radial straight sections shown below.
Type I is where two radial slices are made and the portion of the magnet
between the two slices is removed. Type II is where a series of slices
are made and the magnets on each side of a slice are moved apart from
the slice while each magnet (and associated normal straight section) is

shortened or moved outward radially so that there are still N sectors

in the acc¢elerator.

Type T Tyre I

In the following development p is the number of straight sections,
A 6 the angular width of each straight section, and 7 the angular
distance between a spiral ridge and the center of a straight section along

a circle of radius To:



MURA-434

Below are diagrams showing B% as a function of 8 when r =

A-B2
N\
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Several things are apparent from the diagrams. First, Type I field

is of the form:
4 ing
B,= - B, (14x) Z @h ¢
n

e
except for a region of width '45’_"‘ on each side of a radial straight section,
Secondly, except for a region of width .AIG- on each side of the center

of the radial straight section, Type II field is of the form:
n¥(p- ras)

+
Bi‘: = 80 (H’X) Z n C

n

07
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where 2 1T

Y= 27-pbe

and where r is an integer equal to the number of straight sections
between the region under consideration and the origin. The factor
r A8 is needed because the field must slip in phase every time a
straight section is crossed. The factor ¥ is needed because n waves
must fit into a width 277~ P44

The results of Appendix I, where expressions for the 7\,:5 are
derived, are given below.

For Type 1 field:

Ap = (1+X) @h(i'ff—ﬁg)‘l"

= Z [(lfx){”w) @MSP (E_%_}C)(Mw Stfle';)

H
S%o

For Type II field: %
- _
: (1439 Y cg b @ [1-85] +

(k- L(!_*_S_.EE -.[(nfsp)T- nJLr ’T] _,’_n(|—zf)(A8'ag)
- Z (1+X) -C
”"’SF Qn' [ntsp)T=n]

S

Sy hn-h¥
X T

From the expressions for the 7\,,\5 it is readily apparent that the

form of the magnetic field in the median plane is:
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For Type I field:

[R-1 ‘",:,if)] (ne
Bz—"BoZ[(H” 7n,5 c
ns
where iRl
gn.o = BT |
[}
£ e S/w i%A_' leT
j"’s g5 < S @VHS{’ ¢
sxo m
For Type II field: [/k_t(anME)F]
Lo I+ X , ]
B} - B° Z }:( ) Jn.s
n s =
where
AL
An =t $nyry Si)’ff’ @% [ an‘J
) A6 . 8-2 L[(m:r)T""]T
Filnrsp)¥=n] 5 (n(r-1)(A F)
}n,s = (B -n] X,_ C n1sp S
sy nony an [nysp)¥-rid
Fr

it will be advantageous for the calculation to have the magnetic

field in the form:

B,= -B, Z{Aa‘n‘f/\bnx FALXF - ,}eme

This can be accomplished by expanding

~Iy 2 - -1)
(14x)%= [1+ px + e ey f—(—%l(f‘—)(zw“ cee]

J

09
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which gives for Type I field
- Z 9ns
Annz 2 (4= i 5EE) gns
Axn: /z (K- i B5E k-1 - o 2R ) Jns

and in general

‘ 5P
. iZ(& st Y gy 1 SEEE "'(/k-mﬂ"%)ﬁ"'s
m

M,Y\

and for Type II field

\”- Z/{ns
A'J”: Z('k"'%>/(/n,5

A /Z(’ﬁ ('HCFW)("k’ el (ﬂ_’_iﬁ)f) s
and in general

# r ht$ (H*W’M)’ i
A ‘mZ(%-t%)H PRTRITL. L WA LG LI B

B. The Equilibrium Orbit

The first step in determining particle motion in the accelerator
is to find the equilibrium orbit, i.e., find a periodic solution x = x (8).
One starts with the Lagrangian describing the particle motion in

(2)

the median plane

L= 9 {meh~ x* + -r;o—(go[x'An (H—X)Aa]}

J
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where &= Sk B. s Gl 1
x C? ro
/ o x
X = 2

Expanding the Lagrangian in terms of x and x' gives(z)

;2 /
2 | vt g Ut i [ X At (M Ao |

The approximate equation of motion derivable from this approximate

Lagrangian is

1"

2 P X
X"= |+% X +xx+ 5 (1tx) B:

Inserting the expression for BE gives:

For Type I field:

: ) Ghel- o %) {né
x"=;+'gx’+xx—°<2j(('“<) jn.s}e
For Type II field: ﬁ“_‘(_ﬁé&yﬁ] Sl
X'= 1+ 5 x4 xx'= X Z: g“*” JM} .

0=1)
Expanding () +)()e - [] +4 Q’“’ _Q_(ﬁr—- X1+" . ]
gives for the equation of motion

x#: I+g X/'z‘f"xxll‘ o( Z[Bo,n+ BI)HX+ lenxl‘k“v]e

nbd
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where for Type I field

7 5
S (1= B2 gns
B:,n :’iZ(//ﬂ-/'l %)('ﬁ"l. %‘D) yn.s

and in general

Z(—ﬁﬂ Lh;zf (,k-l—%tff‘) ’ "("A M+ =L "/TM";) 7;1,5

mn

and for Type II field
Bo,n. i Z /('1-5
S

B.,n: Z ('ﬁﬂ-i%)Xu-s
J‘n_ 22(4“’ 3 (msp)b”)(lk (nfsE 7()/(;“ ;

and in general

{n ,p)ﬂ’
=LZ(%+/—¢%¥)(4“%)”'(’& S v )/("'S

le ml

For the equilibrium orbit x = x () must be a periodic function, so

that we may expand x in a Fourier series,

x: anelﬂ&
nz=-<Q

Inserting this into the equation of motion and the use of harmonic

balance yields

5 ann: Jc,n-a( Bo,n_ O( Z Bh"‘ x“"“‘ 1'—
m
E %; ZM(n+M)XM-IV\Xn1 s d Z BJ‘W\ Xn-M‘r‘ Xr+ -
r m,

10
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(2)

In order to arrive at an approximate solution, we will substitute
the ith approximation in the right hand side and determine the (i + 1)th
approximation from the left hand side; also we will choose the zeroth
approximation equal to zero. We will choose x5 = 0 thus specifying the
value of X and hence the value of r,. This gives for the first approx-

imation Xn, 1

80 "
Xn,i BN N

y]i,

Since non-linear terms in x, are small, we will neglect them in

making the second approximation x, , and then it follows that

X Bl,m Bo,r.-m
Xh 1: _n‘z {Bo,n i °< (n—m)’- }

g min

If the process of successive apprxomation is continued and more
and more terms included, then higher and higher powers of X enter
the solution. There are therefore an infinite number of values for X .
However, most of these are not of practical interest, since I°(l >
and consequently the circumference factor is very large. Thus keeping

2
only terms through & gives the quadratic equation

S B Y T B = 20

m
mxQ

C. Linear Equations of Motion

Let the radius vector r be given by
N — -k -
r= r+Xxn+2b
11
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- . & e . = -, .
where T, is the radius vector of the equilibrium orbit, T is a unit

vector in the median plane perpendicular to the equilibrium orbit, and

Then the linearized

b is a unit vector perpendicular to the median plane.

(3)

equations of metion are

d*x Qi “
aw tlgrglx=o
2
d"2 h y
o e o
\
where —l- - - ( E..E?-) evaluated at | = A
b e
, D S -
n = <"€" s S evaluated at I = ¢
B 2%
€
Denoting 3, on the equilibrium orbit by Bz
o B ¥ @ ) {n?
v" ¢ P BZ‘C—‘_‘PBOZJO'VLG
ams
and s is the length measured along the

0

equilibrivim orbit, and So is the total length of the equilibrium orbit

around the machine. Observe that
9

n
(Ve Dt o 4f R
and h.ence that i M o _inV .
- 2

39,&" ",’tan S‘o B). ¢ OI

T e ‘
r‘c DB% _‘"J
=" ) ol oV
3' 21 B, I

12 ' 1
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1. Relationship Between d-t* and de

d ¥ ds
AdV= g jz Ao substituting for g——s; and S~
yields:
21T 1, "l
d?= Td(lﬂ()z‘i’xl Je,
Expanding \[ (1 + x)% + x'? in terms of x and x' yields:
d¥= J de
or
f.’_.ff ~ ’an [+ Xt 74 y g
deé e '
(né
Substituting for x the sum ZXh & yields

nig

dz/o' . |
d__ﬁ) = )\ﬂr [I— /ZM X‘ )(m Z (Xn"é ZM””“)X"XM-»-.)eu)eg

FLs
Since / - )
S0z fo ) VR X 6
o
then -
Se ™ I, [) (1tX+ 4 X‘l)de

or

St ANME ;; -4 Zsz,mX,ﬂf

one obtains
ITr,
S,

13
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and hence s
47 S (Xu-% % ntnm) X Xy ) €7
a8 " S L L . ~ /

/ = %‘ Z'Yﬂj X-;.--X‘m

since x, is small compared to one it can be neglected. Notice that
while x, is neglected compared to one, neither k x, or ’\ITV X, is

neglected compared to one.

Hence ,fi_l/. ~
o 6 )
-1.‘: ~ 9
and ‘ 21 ; ni
L - e 6
e Ry
T
J ~ Fo o ; -1
I N e :
) ’c a 80 » ax/ e 5/9

2. Relationship between X and x

The geometry of the equilibrium orbit is indicated in Fig. 3, from

which we obtain:

(\9)
~

f
T
8
o

&

@
i

2
»
o’

9—19..
DHin
"
o
N
e
=S

i 16
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ds TR
a8 = LV ex" X

Since rg=x and 5
s
75 =~ Ve and cos95 %~ | . Hence :
2r
—g—e-fxo) 5%~/ , and
3B, 38t ¢ ¢
s a0 OF - ORLIEE o B,
2 X or P 08 X or
or
&

oK
Consequently
1l e
R f o B, (nb
Fun = 2B, [0 DX ¢ d6
A L né
BE o "Bo Z {HG,VL 'f'/ql,.r\x T J,ILX?' te0
"
a 2 v ne
T8 T P A3 AX
n
S ey £ 1
Substituting for x the sum Z Xa'€ yields the
i
L ik Gl g B ¢ o B,
magnetic field on the equilibrium orbit 2 and the ~—;:
S
evaluated on the equilibrium orbit _3._83.
oX e
¢ 2 B,
it 4 yields,

Using these values for Bt and 5%

30,n {Aomf ZAI, -1X-€ *Z Ag,‘ (- X )( T

j ,

o

and
15
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3,n= {A, *3ZAn4 X t3 2 Avpeaor Xt oo

The linear equations of motion now become:

fZ:[:::f Z?v»mﬁwm "“‘* 3 ,n] n

3 2 —-_-:‘_ ": _-2. """"“"3
: ry dv APy
2
L i S I L)
SZ - rd'L d:,l -, rl-[ .d97
then 2
A% b
d6* Z JC =
and

and En = = /gbh

16
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D. Treatment of the Special Case for Type I Field
The speciél case treated is the one for which one can neglect the
field harmonics greater than or equal to q/2 for a spiral sector acceler-
ator without radial straight sections, where q is equal to p divided by
the greatest common divisor of p and N. The results of Appendix II

show that for Type I field and the special case A and B, p equal

m, n
zero unless n =r N - sp where r and s are zero, or positive or

negative integers. It also shows that:

LSpT

Am r N~ s,o "(m(r A9 ,,)L

and .
Bm,ruwp = Fm ( P, 46,rs) &

The equation for o( is:

h'l.

2 < Ba-r‘L — et
'Y 2Bt ¥ Bya] t A Bop =l =0
n
Since Bm,n=0 unless n=rN-sp

3 %2 [Burkle T TR [B 0y % Bopen]

o AB-r -35)T | |
= Z F(:Z = >“(ﬁwr,s>+;Fa(i;,,,_,/})
..-SF

F,3

Beon [
Since Z e l_B,i,J ¢ B,,. ] is independent of T
n
n
and f, = F,(p 46,20) is independent of 77 , it necessarily

follows that X is independent of 7 and X = X (P, A0)
17
‘ 5)
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The expression for xy is:

-

- iy Bl,” 3 e
Xn' fo_lgBoanZ—‘_“““”;‘/"’M]

mxn  (h=m)*

Since Bm, n=0 unless n=rN - sp
Z Bl,m o nem E BI iM*/,eF Bo o,Nn- (tN "*P)
¥ ?..
mAn i Ch= (twn- MF‘)}

and since B{ n-{tN=sp)= O unless

itai o B s TR L Rl A

and also B = 0 unless n=rN - sp, therefore x_ =0 unless n=rN -sp

o, n n

and

A e 8! £ N=anp B"l (v t)A/ (§~an)p

XrN'SP- (rN-:p)w {erws’a t °< L ————-—-E;;«-T—)«,J:(( )_;.:]._1,_

or, substituting for the B's yields

" 0( 15]:'i'
fo'SP- (YN‘SF)‘ Fg (P, A&, Y‘s‘) e "f"

t T
+°<Z Fr(psetu) € F(pag,t sn)€

L(s=-w)pPT

T e

" Loty n-(sap]®

and hence

Xywesy ™ H (P 26,7.5) €

Since X_('-'- O unless = { N-aep
then

'(Z Al, n=4 X-( = fZ /‘:/t, H-(tN‘MP) yt”-MP
//‘4—

18
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and since A Iy ne (EN=dsp) = O unless h=yN-5Sp
therefore 2/4') il )(4 £ unless pn= rN-Sp
Similarly
/] - a
VA
v /‘/2,;1-4 X-é
unless
Nz r N~SP
Az iN-mp
Z A;. ned=m X»«: Xm =0
A, m :
unless
y= rN=-SP
A= 1N-MP
m = KN"VP
and

Z A3I ne A =m X'( Xn{ s

HLym

unless
ns ryN=-sp
Az tN-1p
m= ;5N -«1/',)

Therefore 30‘ n and 'j,) n equal zero unless n = r N - sp.

Substituting for A, , and for x, yields

3"'-”"’#’: {{o(ﬁﬂolr) 5)"’ Z 'Fn ( a6 Y-l)<'M)H(P,Aé’) t,4) T

‘tl Mlz,‘{f

, ) ispT
Z 'Fa <P, Ag, Y“t‘z, 5= m-1r) H(P,ﬁé’,f, M)H(P}AG}%,V) + *“} é

19
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and

3 Ly N-sp T {;JF,A@J"'S) + QZ'FJ(F/AG’ -t $~u) H(P,A@,i,»«) 7
L An

tspT
+ 32{3 (P, Aeff't'ﬁ )S’M-“V)H(ﬂﬂﬁjth)H(ﬂ Aﬁjgly) + v o} c

'L,/“JZ,M'

and hence

LspT
Liriesy = (L AS Y 5 )e

Belk LspT
2)1,rN~5P = L (p)Aé,r,S)E’

It thus follows that:

[0(1 %I Do,m jo,;rnl t °< jl)n] =0

unless

h= rN-5S PJ

En: - d}':”:O
unless
n-= I’N’SPJ
LSPT
DrN—sp:M(P,AB,r,S) e’?F )
ani LSPpT
Ewnsp™ Q(P.Aers)@ .

From Vogt-Nilsen's formulas

an D
Cou T = coqa {5, — T2, Z LA
«Mo

A : M E4E.
(,OQV:', — arun\ro I Z ...kf,4f:_
“+k %0 0

20
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where V-x* is the phase change per revolution for radial betatron
oscillations, V&* is the phase change per revolution for vertical
betatron oscillations, Vx* & T4 '1/dx and V:}' * 2 ]‘T?/ay

Since Dy and Ej equal zero unless k =r N - sp, then it follows

that

FMJ” \)-]_)o D = D- 5]
% _ hEDS e rN-5p rN s
(oc Tx = OOQJ.FT\)‘—D; 2 \)’B‘( (V”'SPYI' '40,

and \f F
b JNVE = =[NTSP
W‘\M s WJT)J-"‘ ﬂAM\ Z be 5P r
¢ o \Jt (rnv-sp)t =4 F,

hs

Since D, and E, are independent of 7T

Dru-sp Perwrsp - M(p,a8,v,5) M (p, 26, -7 -5)
Crr-sp)t= 40
: s Lru-sel’

is independent of 7" and

is independent of 7° , it necessarily follows that V;(* and VE/‘ are
’ e s 0’ 5 o 0/ 3
independent of "/ . Since T - oo 97 , the change in the values

of Vx* and Tg"' due to a change in 7 are proportional to the change
in V}* and V:?* due to a change in the radius r. Therefore it must follow
that 'Tx*and V}* and hence 'lj;‘ and 7/% are independent of the radius r.

E. Treatment of the Special Case for Type II Field

The results of Appendix II show that for Type II field and the special

case where one neglects harmonics greater than or equal to q/2, Bm n

21
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equal zero unless n=r N - sp where r and s are zero or positive or
negative integers. It shows that:
trNCY-DYT [ spT
A iv-sp = R (Rae vis) e ¢

irNiy-1)T )T
B,rv-sps T (nao,ns)e e

The equation for O( is:

5 Bo,“n 5 p . =
D( “"‘;")""" 18,147%50),4]"'0{80& /' 0
n
Since Bm, n=0 uniess n=rN - sp

y < . A s+ Y p J = Z Bacf M y l
-Zm ‘T;M [ Bl,n L o,n (FN-SP)L B” Fu-5p t 4. Bo'yﬂ”jlt
n hs

T, (p, a6,-v, -5
- Z ’ ) ) [7"(?,43}":&})"' ,’;(To(F,AB,T»ﬂ]

(rN-sp)?
Y8

Since
Bo -n i I l
7 nl [ }31/7‘)*— ’3— B(),h.]
n

is independent of 7 and B° o5 To ( P AG, c~,‘o.) is independent of T ,

it necessarily follows that X is independent of 7 and = O(( f 1)8)
The expression for x, is:

G{ N BI Wi Bp,;L-m
Xn: 72- 559,” + ’<. Z ’c'\”;‘)x

mixn

22
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Since By, n =0 unless n=rN - sp

Z B""“ B"””‘ = B!.LN‘“»-«P Bo,r\'(t”’*‘l")
- )‘b A —

man Cn- (tN=p) ]

1, Ax

" =% £ 7 < /
and since Bth-(tN’up)‘O unless V=(t N-4p)= F'N-SP
or n=rN - sp and Bo, n =0 unless n=rN - sp, therefore Xn=0

unless n=rN - sp and

- X n-tN ” i CratNiiw
XY’N'SF- SRR {B 0,1 N-59 ‘f'O< Z IJ‘—-B--..‘“-f)Qd___(.wW)

(Y N-5p)* [(v f)N"(w’)P}

A

or substituting for the B's

X”"sf’ T sP)’{T(r A6 r,5) @”NM”TC”I’T

i(r-tNGr /)T (au)p T

ANCT-1) T ¥
+ O< Z T(Pﬁb.t 2 e “AP 7—(PA9 rt:-»)c
E(rtu-(\-«.«,)?'j

s e

hence

- e NQ=DT_ spT
XYN'SF = U (rae,rs) e € F,

Since Xl unless _{ = tN- up , then

Z A:,n-£ X.&’ = Z A =t Neanp) X“"’“F

t, A
and since A” n- (¢ N-«p) = O unless n =rN - sp, therefore
?:A:,n-ﬁ >(< =0 unless n =r N - sp.
23
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Similarly

_Z Aa.n-«? Y_C:O

unless

ns rN=§p
A= tN-pp 2

Z Aa.n——&’—m X xm = 0

4, m
unless
= FN-SP
‘,«'i = LN'}"-P
me - AL
fared Sl

and
Z A3, hed=m y.@ xm: O

A, m

unless
hs FN~S¢

Az tN-ap
mz gN-UP
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and
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From Vogt-Nielsen's formulas:(4)
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is independent of 7, it necessarily follows that Ux* and Ty* are

independent of ]~ . Since JdT = - }&9«'«/‘ d s the change in the
values of Vx* and tT:y* due to a change in 7 are proportional to the
change in TTX* and 7;7* due to a change in the radius r. Therefore
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independent of the radius r.
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V. APPENDICES

A. Magnetic Field in Median Plane

For Type I field BZ =» B ( H'-X)’k z Qm eim‘é except
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for a region width on both sides of the center of a radial straight

section where B2 =0 . We expand Bé in the Fourier series
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Performing the indicated integrations yields
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4 imY(p-rae)
For Type II field Bzf 'Bo(”x) ZQMG
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where ¥ = m and r is an integer equal to number of

straight sections between the region under consideration and the origin.
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Performing the indicated integrations,
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B. Special Case

In the following argument s, n, r, t, and u are integers or zero.
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N
Since ‘,%. and 7 are relatively prime numbers,
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In the following argument s, n, r, t, and u are integers or zero.
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P N :
Since e and o are relatively prime numbers,
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